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Analytical Solutions for testing of 3-D baroelinic and wind driven coastal 
models. 

C.He and P.Hainblin, AIERB. 
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‘Mr 360 
To be published as a contribution to modelling in the coastal zone. 

In response to a proposal to divert treated sewage from Hamilton Harbour to 
Lake Ontario a model development was undertaken. This is the first reporting 
on the model development in an international journal . 

This document reports on the temperature and flows suitable for testing three- 
dimensional mathematical models in lakes and coastal zones. ' 

These results will be disseminated to the appropriate persons making the 
decisions on how best to manage the coastal zone on Lake Ontario.
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Abstract 
It is always challenge for a model developer to verify three 
dimensional hydrodynamic and transport models, especially for 
the baroclinic term over variable topography, due to a lack of 
observational data sets or the availability of suitable 
analytical solutions. Heat flux through the water surface and 
wind stress are the two main forces controlling the 
stratification of a water body. In this paper, exact solutions 
for periodic forcing by surface heat flux and wind stress, are 
given by solving the linearized equations of motion in a three 
dimensional domain. neglecting the rotational and horizontal 
diffusion terms. The temperature at the bottom is set to a 
prescribed periodic value and a linear slip condition on flow 
is enforced at the bottom. The geometry of the quarter 
annular, which has been extensively studied for 2-D and 3-D 
analytical solutions of unstratified water bodies, with a 

‘ general power law 'variation of bottom slope in the .radial 
direction and constant in the azimuthal direction is used. The 
analytical solutions are derived jg: a cylindrical coordinate 
system, which describes the 3+D fluid field 511 a Cartesian 
coordinate system. The results presented in this paper should 
sprovide a foundation for‘ the study the treatment of the_ 
baroclinic term over topography in 3-D.numerical models. 

Introduction 
Various numerical methods for the solution of the Navier— 
Stokes equations have been applied to problems of flood 
routing, tidal circulation, storm surges and contaminant 
transport in coastal areas. The utility of such methods is 
often demonstrated. by comparison, of the computed ‘variables 
with field observations. However, this type of comparison is 
often incapable of adequately verifying that numerical nwdel 
accurately represents the dynamics of the study region, for 
example, Hackett and Road (1994). The limitations of this 
approach are due to incomplete understanding of the behavior 
of the numerical procedure and inadequate data. Observations 
of three dimensional components of flow are rarely available 
throughout the temporal and spatial domains of interest. Thus, 
in general, data bases are inadequate tools for establishing 
that a numerical model is correctly solving the governing 
equations. This .is particularly true for ‘vertical velocity 
which is too small to measure but is of practical importance 
to such phenomena as coastal upwelling. -
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_The precision with which a numerical scheme solves the full 
governing equations should also be established. Because of the 
nonlinearities in the equations, this is difficult to 
ascertain precisely. Furthermore the effect of an irregularly 
shaped boundary on the accuracy of the numerical solution is 
generally not completely known although it is acknowledged to 
be important. 

Lacking suitable analytical solutions for testing the output 
of three—dimensional numerical models various authors ( 

Tartinville et al. 1998 and Beletsky et a1. 1997) have 
resorted to comparing ‘various :models with one another. The 
difficulty with this approach is that it is hard to determine 
which model is correct. 

These various sources of error and uncertainty in verification 
can sometimes be obscurred in the" numerical solution by 
adjustment of such parameters as bathymetry, the eddy 
coefficients, and the bottom drag coefficients. It is our 
ibelief that a more systematic and rigorous assessment of error 
sources must be made in order to establish the credibility of 
a numerical model. To this end a number of analytical 
solutions are herein developed which should prove useful for 
comparison with numerical solutions. By necessity, the 
governing equations have been linearized. However, heat flux 
through water surface, bottom and internal friction, wind 
stress, and variable bathymetry have been incorporated into 
the equations. Solution for the dynamic steady state with a 
periodic ‘forcing function is obtained. In line with the 
philosophy that these solutions are useful primarily as tools 
for model verification rather than solutions to actual field 
problems, emphasis is placed on periodic solutions. 

A number of modellers have developed analytical solutions to 
aid“ in the development of their models. These may be 
classified into open with an offshore/boundary condition and 
closed basin solutions with no flux boundary conditions. By 
far the most widely used analytical solutions for the purposes 
of verification of coastal numerical models are the solutions 
for quarter annular geometry. This geometry is particular 
useful as a test of a model's ability to treat curved 
boundaries. The analytical solution for the depth-averaged 
case ‘was developed. by Lynch and. Gray (1978) for constant, 
linear, and quadratic bathymetry for both steady state wind 
setup and periodic tidal response. Their analytic solution was 
extended to three dimensions and rotation by Lynch and 
0fficer(1985). Lynch and. Werner (1987) calculated and 
displayed this analytical solution for tidal oscillations near 
a circular island where the tidal amplitude at the open ocean 
boundary varies with position. Muccino et al.(l997) who 
recognized the importance of vertical velocity gave an
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3 
expression for the vertical velocity associated with the Lynch 
and Officer case but with a spatially constant tidal amplitude 
forcing at the open boundary. Hannah and Wright (1995) tested 
a three—dimensional finite element model withgan analytical 
solution for linear depth—dependent wind—driven flows along a 
rotating coastline. All of these analytical solutions deal 
with unstratified water bodies. Once" stratification over 
variable ,bathymetry is added, numerical models employing 
vertically stretched co—ordinates have difficulty resolving 
the baroclinic terms (Hanney,1991) vso that analytical 
solutions are needed in the stratified case as well. 
By prescribing the density field, Loder(1980) introduced exact 
solutions for.U(x,z) and.V(x,z) under the condition of zero 
depth-integrated cross-front transport and vertically uniform 
viscosity.’ Farrow and_ Patterson (1993 and 1994) developed 
analytical solutions for two thermally driven flows for a two- 
dimensional-linearly sloping bottom neglecting advection but 
allowing for vertical diffusion. In closed basins a number of 
modellers have exploited the wind—driven flat bottomed 
analytical solutions of Csanandy (1968). However, Mass and Lam 
(1995) presented some free modes of oscillation over variable 
topography, uniform. rate of stratification, no friction or diffusion but linearized advection in a two—dimensional closed 
basin. Their solutions are interesting as there is a two—way 
coupling between the mass and velocity fields through 
advection unlike the solutions of Farell and Patterson (1993 and 1994) and Fortatuno and Baptista (1996) where the density 
field is prescribed. As forcing and friction are neglected in the solutions of Mass and Lam (1995) it is not clear how they 
can be used in coastal model validation. ' 

In this paper we develop analytical solutions aimed. at 
verifying three dimensional hydrodynamic models, especially 
for improving numerical schemes for calculating the baroclinic 
terms. We start with solving the vertical temperature diffusion equation in .a quarter— annulus which leads to a 
variable density field which, in turn, drives the circulation. 
Wind forcing is also included. For simplicity, "advection, 
horizontal diffusion and rotation terms are neglected- The 
vertical velocity is computed from the continuity equation. 
The rigid lid surface boundary condition is also assumed. A 
general power law dependence of depth with offshore distance 
allows for testing of numerical schemes for various degrees of 
bottom slope. 

Analytical Solution In o—Coordinate System 
The similar quarter annular bathymetry and radial coordinate 
system as used by Lynch and Officer (1985) will be adopted in 
this study which is shown in plan in Fig. (la) and in section 
in Fig. (lb). Because the governing equations, boundary
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4 
conditions and domai;n geometry do not depend on the azimuthal 
direction, variation occurs only in the radial and vertical 
directions. — 

-The stratification is generated by a periodic heat flux 
applied to the water surface. Here we seek periodic solutions 
of the form f(r,z,t)=Re[f0(f,z)e”"] for temperature and velocities. 
The governing equation of temperature in linearized and 
harmonic form with the horizontal diffusion and advection 
terms neglected is: / 

a2T . 

za;1;,—D az; =0 < (1) 

at surface 
3T0

1 D 32 — hF0 z — 0 (2) 

and at bottom
\ 

15 = B0 z = -h (3) 
in which T'o(‘z‘) is the complex amplitude of the temperature, 
D=NTh2 is the diffusivity of temperature, 0)‘ is the radian 
frequency, hE, is the amplitude of the heat flux at water 
surface, h‘(r')=hor”‘(h,, is a constant and m is unrestricted 
constant) is the bathymetric relation, r is the radial 
coordinate, and B0 is the amplitude of the temperature 
specified at the bottom. The reciprocal of NT may be 
interpreted as the thermal spin-up time. 
By use of the 0'-coordinate, the temporally and spatially 
varying water depth can be transformed into uniform depth, 
which can simplify the numerical formulation.

z - 
h p 

(4) 

In a general o'—coordinate system (where 6=0 at the free 
surface and m—1 at the bottom), the governing equation and 
boundary conditions become; 

z9’T iw 3a§—E1;=o * 

<5) 

37 N 2 0 = = ,h had M70 0' 0 (6) 

70:30 o'=—1 ' 

(7) 
The solution of ‘equation (5) with boundary conditions (6) and 
(7) is: 

7,‘, = M1 cosh(§ 0') — M265" ” 

(8) 
with ‘
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,= cosh§(Bo+ e‘) 
T 

T (9) 

-15. M2 — N; (10) 

in? C’ :E (11) 

Next, the density :field can be calculated from. the temperature 
psolution. Here, we assume that density is linearly related to 
temperature as:

V p=a,T+b (12) 
where aT is constant and b is a reference density, so the 
complex amplitude of the density difference, Apo, with respect 
to the reference density at any point "is: 

Ap0=aTTb 

The complex amplitude of baroclinic pressure, Po, ~ as a 
function of depth associated with the density variation is:

0 

pt 
,,W 

= -512-h[M2(1 — 55°‘) - M1sinh(§o')] (14) 
W

, 

where g is gravity and pw is water ref.erence density. The 
baroclinic term in the radial direction, then, can be computed 
in G coordinates: 

8P0 _ 8 2o'- 3 
Br 

£ P0 

m-1 
= M2[m.-‘ (m + 2o'§)e"§°] + M1[2o';’ cosh(§ 6') — msinh({,’o‘)]} (15) 

After the expression for the baroclinic term has been 
obtained , the 3 —dimensional veloci ty field driven by ‘ 

baroclinic forcing and wind stress can be computed frojm the 
momentum equation. We assu'1jne that the free surface elevation 
is zero everywhere for all time (rigid lid free‘ surface) and 
that wind stress has the same frequency as the heat f-lu_x' 

through the free surface. The momentum equation without 
advection, rota/tion, free surface pressure and horizontal 
diffusion terms is: ' 

_3_u_ g 8P D 82;; 
8t PW Br V azz 

where Dv-.-Nvhz is the vertical viscosity, and NV is a 
constant_. The horizontal velocity is decomposed by separation 

i“” = u,(r)uo(z)ei‘°’ , where 

(16) 

of variables with the form u(r,z,t),=U0(‘r,z)e
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u0(z) is the unknown complex amplitude of the horizontal 
velocity depending only on the vertical coordinate, z, and 
u,w(r)=r”"‘. By substituting u and the solution for baroclinic 
term >(15) , equation (16) becomes in the o'—coordinate system: 

2 -_ . 

53-.-—u§'-— flue = -51-Te-‘.29-—{M2[m— (m+ 2o'§)e'§"] + M1[2o'§’cosh(§o') —msinh({o')]} (17) 
80' ‘NV PWCNV

_ 

with the boundary Conditions, » 

' “ 
- \ 

8 u 
Ngglzfi = 1',,.h 0' = 0 (13) 

and _ 

2 8 "0 _ ' 
i 

__ _ N,h ——ha6 -1-,,hu,, o" — 1 
V 

(19) 

where h1.',., is the wind stress and M7,, is the bottom slip 
parameter. The general solution to equation (17) is: 

40 = Ae‘5" + Be'§" + Q (20) A 

where 
V

V 

2 _ 
'

i 

5 - N (21)
V 

and,Q is the particular solution which has two forms depending‘ 
on the Prandtl number (§=C,Pr=1) and (§¢§,Pr¢1). The details 
of the particular solutions are given in Appendix A. 

In following, we concentrate on the solution for case §¢§ 
which represents more general applications. The result for 
the case is given in Apjpe'ndi_x.B. 

As an aid to understanding the steps followed in the solution 
_3_£*_o_ 

. 

Bo"
_ 

differentiating (20) and from Q in Appendix A:
3 

5% = &<Ae¢° — 

4:3 {G} 

procedure the expression for is given here ‘by 

~‘ M2[(2 -=m)C * 25' C2 - F]? (22) 

where 
H =52 -52 (23) 

= E2. (24) 
PW; Nv 

Substituting (22) into the boundary conditions (18) and (19) 
yields;
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H 
_'4T€;_ op 

A5—Bé5+G H <M1—M2>=A;’ «=0 (25) 

' 4§3
. 

_g g 
G * 2 

(9-""'>5‘Tf_ 
5 _ 

4 2 

A59 -‘B59 +fi{M1[2C Sh§“"“"-If““‘€‘hC]—M2{C€ [(2-m)+2C"fi"i]}} 
V 

2 Q’ 2 

=—1—:"—{Ae~: +35 +0 {%[——2§ch;+(4é +m)sh€]—‘M2 -%+-61:1-(m+4F‘—2§')]}} 
V 

cr=—1 (26) 

From (25) and (26) , the constants A and B can be obtained: 
A -.—. 3+ M4 - (27) 

[G M3 — M..(§ —%>e‘¢1 

2(‘§sinh§+ 
A; 

c_osh§) 

in which 
2 '2 

,, 
r 

3
- 

M3 +m)si’nh§— 
A: 

§cosh§—2§2sinhC.—[(2-=m)§ +-4T?!-]cosh{} 

2 4 2 4 
-M2{§'i'2'=ffe+<m+%—2c>%—[<2—m>+2r;—iI§—1§r§a} <29) 

and
i

3 

[fir ~ G (M1-M2.)] 
M4 = " 

5 
V ~ (30) 

To obtain the complete three-dimensional velocity field, the 
Cartesian. vertical velocity,w0, may be determined from the 
continuity equation. In three dimensional cylindrical 
-coordinates‘, with variation in the a_zimuthal direction 
neglected and 0' coordinates in vertical direction, the 
continuity equation is: v 

—2o'h 8 
a 

h 5‘ 
_ 

6’
_ 

r2 '6E(”.‘o)'+:§"j(mo)+ a’:f=o <31) 

Integration of equation (31) vertically over 0' from 0' to O and
7



8 
from 0' "to -1, ' and incorporation of surface boundary 
conditions, w0(r,O)=0 (impermeability condition) and bottom / 

boundary condition wo(r‘,—1)='-Uo%=-. "HUG, yields:
r 

0' 20h 3 h 8 
. 

wo(r,‘o') = £[_;2_%(rUo) —:-5r—(rUoy)]da + w0(r,0) (32) 

and
. 

w0(r,o') = hzah —a—(rUo)a-£i(rU0)]dU+w0(r,—1) (33) 
_1 

r2 30' - r ar 

Multiplying equation (32) by (o'+l) and subtracting "equation 
(33) multiplied by 0' yields: 

w0(r,o') = (o' + l)R(f,o')l3 -a R(r“,o')l§1+(o' +1)wo(r,0)- o'w0(r,—1) 
= R(r,o') — (o' + 1)R(r,O) + o'R(r,—1)+(o' +1)w0(r,O)- O'w0(r,—l) (34) 

In which R(r,-0'), R(r,0)., R(r..-1).. wo(r,0), wo(r.-1) are: 

2ah_a_
’ 

r2 30' mo) = I I (7'Uo) -§%<rUo>1do 

e-—.§?o' 
.. . -5 

= hrm"2{A(2§o'—2—m)—e—€:+ B(2§o'+2+m) 

(-21;-'§fi]cosh(§’o') +- (-2-H—2+1+m) 

+ G{—_1€Ii[4§1o'2 + 

4asinh§o]-. M2{[fi1T2(2+2§c'+rri)4-4CO'(l+m+§o')+ 

e"€° m2o' 
<2+m>’1—:fi—?}}} <35)

2 

+i%s—]}} (36)
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:3 
-6 

R(r,-1’) = hr""'2{—A(2§ + 2 +m)-“'€—+ B(—2§ + 2 + m)
6 
+69%‘-[44 + 

-(3:€Ln—)i+ —4(l+m--1-%-_Ii—2-)si_r11;§‘] — 

st T 4:2<2—2: a) 4 a’ 
Mzu<2+m>2-4§<1+m-:>+——¢fi£‘=?11§ifI-+i;’71}} Q7) 

w0(r,O) = 0 (38) 

wo(r.-1) = —Uo(r,—1% 

:—- —hmrm'2 {Ae"§ ~+ Beg‘ + G{-1$[—-2C coshf 

4:2. . 

‘ 

4:’ ,‘ 
+(—fi—+m)smh§] — M2[(m+-F-2{)§fi+-£1:-]}} (39)

/ 

-Test Cases 

The solution presented herein incorporates several features 
which should be of interest to those working with numerical 
models. The inclusion of wind stress, baroclinic forcing, 
vertical mixing, bottom friction, nonlinear bottom slope, and 
horizontal and vertical velocity give a broad _spectrum of 
conditions agai;nst which model features can be tested. The 
availability of complete solutions for velocity provides the 
means for verification of the computed flow field, which are 
in many practical cases the most important aspect of a 
problem. The solutions for two dimensional polar geometry are 
especially interesting, since they can be used to compare with 
three dimensional numerical model outputs in a Cartesian 
-coordinate system. 

Here, the ‘two analytical evaluations have been given to 
compare with the output of a three dimensional finite element 
numerical model output, in order "to show the utilityof the 
analytical solutions. At the same time, they also show a 
sens_it~i—vity to vertical viscosity which is of considerable 
practical importance. The detailed description of the three 
dimensional finite element model, LACOM3D (Lake and Coastal 
Model—Three Dimensions) , and extensive comparison with 
different analytical solutions are left to a future study. 
We solve this problem on the mesh depicted. in Fig. (la), with 
825 nodes and 1536 triangular elements in the horizontal and

9



10 
16 evenly spaced levels in the vertical. The bottom slope, as 
shown in Fig. (lb),/ is quadratic in r such that h=h0r2 with 
h,,=6.25x10‘°/m. At the surface the heat flux, Fo=5xl0‘4 "CS4, and 
wind stress, 1,, =-5xA10’ums’2 , are applied with a) =‘7,.2’i§05x10’5 
corresponding to a forcing period of 24 hours. The temperature 
at the bottom, Bo=4°_C,, and bottom friction, z'b=1xlO'4s'1 are 
specified in the examples. The unforced open boundary is 
applied at both the inner and outer boundaries. The 
temperature volume expansion coefficient, a,, is determined 
linear least squares fit of general relationship between 
dens ity and temperature for fresh water , which -is 
~—o.169695kgm“3 “C3. The diffusivity coefficient NT=1x1O"5s’1 
corresponding to spin-up time around 1 day, is used during the 
test period. The numerical model was run f-rom rest. The 
baroclinic term is computed in the 0' coordinate system in 
LACOM3D as opposed to the z—level coordinate system, the time 
step is 10 seconds. 

Fig.(2a) and. Eig.(2b) display results for Pr=1.' Since the 
strongest wind stress and maximum heat flux at the‘surface are 
at t=0 and every 24 hours there after, and also because of the 
spin—up time is about 24 hours, in Fig. (2a) the comarison of 
currents and temperature along a radial cross section between 
the analytical and the numerical model outputs at t:24 hours 
is given. It can be seen that after 24 hours spin—up time the 
numerical model output matches the analytical result very 
well, and it also shows that the upper portion is dominated by 
wind and the lower is driven by the baroclinic forcing. Fig. 
(2b) shows that after 102 hours (the external forces are 
minimum),the_ numerical model does not show error cumulating- 
problem, and baroclinic term controls most of water body 
except for‘ the near surface part due to inertia. 

The second test uses the same parameters as test one except 
that. "vertical eddy viscosity is 10 times larger than the 
temperature diffusivity, the result are shown in Fig.(3a) and 
PigL(3b). It is obvious that not only the velocity is much 
weaker, but also it shows more uniform flow field due to 
higher viscosity. These solutions show a sensitivity to 
vertical viscosity which is‘ of considerable practical 
importance. As a result they constitute a useful test problem. 
Discus sion and Conc lus ions 

An analytical solution for baroclinic and wind forcing with 
inter_na,l and bottom friction and varying depth has been given 
for a 3D domain. The solutions differ depending on whether 
temperature diffusivity is equal to the vertical viscosity. 
All terms included in the analytical solution are important

10



ll 
factors for any real three dimensional numerical model, so it 
should be a useful tool in verifying three dimensional models 
and to evaluate different numerical schemes._ Though the 
analytical vsolutions represent a two dimensional domain in 
radial coordinate system, it does not reduce its usefulness 
for verifying three dimensional numerical models since nmst 
models are constructed.in-a Cartesian coordinate system. 
Although the solution presented consist of elementary 
transcendental functions, for ease of implementation. by the 
coastal modelling community the authors will supply’ upon 
request a copy of the FORTRAN source code for the analytical 
expressions presented herein. 
We advocate continual research into the= development of 
analytical solutions for numerical model testing. An obvious 
advance of our solution would be to include the free surface 
term. Moreover, inclusion of advection and rotation would be 
valuable . 
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List of Figure Captions 

la) Plan ‘View of the quarter annulus with inner and outer 
boundaries. 

lb) Cross sectional view oi the quarter annulus with quadratic 
bottom dependence. 

2a) Comparison of currents and temperature along a .radial 
cross section between the analytical and the numerical model 
outputs for viscosity equal to temperature'diffusivity after 
24 hours (as external fiorces are maximum). ' 

2b) The same icomparison as Fig.(2a) after 102 hours (as 
external forces are minimum). 

3a) The same comparison as Fig.(2a) except for a viscosity 10 
times larger than the temperature diffusivity. 

3b) The same comparison as Fig.(3a)_after 102 hours.
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Appendix A: Details of the Particular Solutions 
For ease of presentation , we rewrite equation (17) as: 

2 . 

%§— 5% = fiflg-{M2tm— <m+ 26C)e‘*“’] + M1[2occosh(co> — msinh<co)1} (A1) 

The right hand side can be rearranged in exponential function 
form as: 

= -% J“ +m(-A-:—1— M2,)e“§° + Mgoe“ + (M1 —2M2);ae'§?]}(A2) 
W‘ V

w 

The expression (A2) can be classified as three different forms 
which are: 

RH1 = 1 (A3) 
RH2 = E?“ ~ (A4) 

RH3 = oeif“ -. 

: (A5) 

The left hand side of (A1) can be written as: 

1-H = (D2 -52% = f (D)uo (A6) 
. 

2
I 

iWhere I)=—2— and If== 82 . The solution for RHl term is: 80' Ba
\

1 
u1 = -22- (A7) 

In order to solve RH2 term the following formulas (Beyer H. 
W.,l987) have to be used depending on.weather §¢§ or §=§. For 
the §¢§ case,

a 
therefore, 

For the §=§ case, due to §2—§2-.-O, the formula (A7) is 
unsuitable. In this case

15



16 
1 ax X ax e = 

. e .(A10) 
f(D) f (a) 

has to be need. so 

1 :1:§o 0" t§a ‘ =—— 
. =i——- . A11 ‘'2 D2_§2e 2:9 _ 

_ 

( . ) 

By applying the formula (Beyer H. W.,l987) 

.1...ax._ax._1 i

V 

f(D.)e V(x)-e —-—-fV(x) (A12) 

the RI-I3 term can be solved as: 

W21 2o'e'-*5” 
D *5 

=e"i§°'--——-—--—-1.2 0' 
(0:4) -52- 

D i2D§+§2-52 

H3: 

(A13) 

In order‘ to solve 113, the conditions for §:b§ with §=§ have to 
be considered separately. For case 134%, let: 

1 _ 2 
—————:D2i2D§+€2_£j2 _ c0+c1D+R(D )_ (A14) 

R(D2') represents the D terms of higher than the first power. 
Multiplying two sides of (A14) by D21-2D§+§2—§2 and only 
keeping the D terms /of less than second power, the constants 
co and c1 can be computed by comparing the terms of the same 
power in D on the two sides of (A15), 

1: c0(§2 -52) 1- c0§2D + c1(C2 -550 (A15,) 

1
. 

Co = 

:tc02§+ c1(C2 —§2) = 0 (A17) 
_ 2! 

/ 

. C1 = 

So 113 can be obtained as

16



l7 
1 . 

e «(:2 -52) + (C2 -52)’ 80)“ 

= -i§o(_£__—_L_) (A19) e <c2—é2>+<:’-W 

When §=§, the above method is unable to resolve co and c;. 
However, by rearranging f(D) (A13) as: 

f(D) = D2 J_r 21):; = D(D-_+2;) ; 021(0) 
I 

. (A20) 

and applying the following formula: ~ ~ 1 1 1 1 k V( )=---- V( )= V(x)(dr)' (A21) 
f(D) 

’‘ 
12'‘ h(D> 

’‘ 

i;Jh(D>

1 and as before, expanding Dizg as a polynomial of D: 
the solution (A13) beéome: 

/ _ _C , 1 

=ei§a_#a 
D(D i2§) 

_eiCo’I 1 

(D i2§) 
1 1 :9 _ei§O'J2€ 

i§o' . e 0' 1 = (id ——) (A22) 
4-5 C 

Combining solutions for R1911, RH2 and RH3 with corresponding 
factors, the particular solution. for equation (A1) can be 
obtained. When 

mM mM 4” M *4“ 2; CM 4° 
Q¢*¢=pgfE§°;[' :3‘2<;2‘5¢a*'"‘-%‘“2’2fi"“"F??’2T% 

2: l 

c ‘‘‘’l 

+(M, — 2M2)(o'+?-:—§-7)E—£—é§-

17



18 

= ii.T—::%{%‘—5;[2C6cosh(£ er) - <?‘_% + m>sinh<§a>1— 

M2[§fl2+-C—::_C-C-g-2-(2€0+€T"'€__-2-5-2-+m)]} (A23) 

and for 5:; » 

p 

i

; 

1 o'e’§" 
(M1-'2M2)(<7+E) 14 

= 4-2431+ 

M1o'[§o'sinh(§ 0') — (m+1)cosh(§ c_)]} 
’ 

‘ -(A24) 

Appendix B: Vertical Velocity for Case 5:: 
Due to the fact that the particular solution to equation (17) 
is different for the cases 5:4’ and 5:64‘, the constants A and 
B in so_lu_tion (20) and the solution for the vertical velocity 
will be different in the two different cases. Here, the final 
results for the case 5:; are given, which can be obtained by 
a similar method in the case "g'¢§ as mentioned before 

A =. 3+ M4 (B1) 

IGM3 + e‘5(§ —7‘f—>M41 / 

B = (B2) 
2(§ sinhc’§+7bcosh-§) 

A 

- G(m+1)(M2 — M1) 
M4 = v 

(.133) 
5 . 

= _§£L”0_ 
l 

2pw§2Nv 
(E4) 

M3 = M2u<m+1> —:<1—m> -52 +‘”41N1-'"—"—”-1e‘? +i:,J}+ M1{[€2 —<m+1>— 

9"7*v9”—"1cosh<: +[%"-l— <m— 1)C]sinh§} (B5)

18



19 
wo(r,of) = (O' +1)R(rv,o')|g-0'-R(r,o)|‘_’1+(o' +1)w0(r,O) — o'w0(r,-1) 
=_R(r,o') — (0 +1)R(r,0) + o'R(r,—1)+(o' +1)w0(r,0) — o'w0(r‘,-1) (B6) 

. a 2
, 

R<r,a> = J[2f2h'a%(7'Uo) {:9-—r-<rUo>1do 

ega e_§O. (o' + %)(m + 2)(m + 3) 
= h‘r”“2{A(2c‘_.fo' - 2 — m)—-5-+ B(2§o'+ 2 + m) : s + 

2 . 

0'2 (4 + 3m + 22; o')]e"’° + 2"; 6} + M1{%[(m+ 2)(m-+: 3) + 252 o'2]sinh(E‘o'-) _; 

-€21-22—[(4 + 3m)§3a3 + (m+ 2)(m + 3)]cosh(§o') }}} (B7) 

I_2('r,0) (B8) 

. 

-5 «: 

R(r,-1) .= hr”"2{+-A(_2§+ 2 + m)3—é—+ B(~2_§ + 2 +m)% + G{M2{[(4+ 3m — 25) 

(-51-—'1)(m+2)(m+3) m2 1 1 + 
‘E 

1e? — 
g 

]+M1{E[(m+2)(m+3)+2§2]sinh5-E5[(4+3m)§2 

+(m+ 2)(m+ 3)] cosh§}‘} } (B9) 
Wo("s0) = 0 (B10) 

w0(r,—1) = mr2""'1>ho{Ae‘5 + Beg + G{ M2[(§ — m —1)e5 -369] + 
M1[(~m+1)cosh1,‘ —<',‘sinh§]}} 

V 

(B11)

19
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