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This publication reviews how two non-point sources of contamination were polluting the 
Dofasco boatslip, The run-off from the coal piles of Dofasco Inc. was badly 
contaminated with presumably at least partly from the oil sprayed onto the coal to 
suppress dust er_niss_ion_s.— Dofasco cooperated with this study and after this study, they 
released a contract to trap and treat the runoff from these piles. Much of the work was 
done as part of Dr. Irvine’s sabbatical from SUNY. His earlier work in Buffalo was 
partly on the efficiency of their coal pile‘ drainage treatment. Although coal pile 
management in Hamilton Harbou‘r is behind that in Buffalo, the other aspect. of this study 
was the same in both cities‘; runoff from these industrial sites was badly contaminated 
with metals. In Hamilton, the combined storm sewer overflow of greatest metal 
concentrations did not drain Dofasco but this sewershed included recycling yards. Both 
types of non-point source contaminants make the effectiveness of dredging in the 
Dofasco Boats1_ip short-l_ived.
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Summary 

Annexes V1 and 2 of the 1987 Protocol to the U.S.-Canada Great Lakes Water Quality Agreement have emphasized the development of ecosystem objectives, mainte. nance, and restoration of the physical, chemical, and biological integrity of each of the Great Lakes. Contaminated sediment is one sourceof environmental impairment in the Great Lakes and sediment remediation ofien is considered as a restoration 
option. However, evaluation of current contaminant loadings and fate is an essential 
first step in assessing the potential for long term remediation success. The develop- ment of lplanning level loading estimates for selected metals and PAHs from various contaminant sources discharging to an area of Hamilton Harbour is illustrated. Contaminant sources included combined sewer overflows (CSOs), industrial cooling water discharge, coal pile runoff, industrial stonnwater discharge, and groundwater discharge. Levels and loadings of total metals (Pb, Cr, Zn, Fe) and PAHs (fluoran- 
thene, phenanthrene, benzo(a)pyrene, pyrene, chrysene) were determined for the period April 1 through October 31, 1996, using ‘a combination of sampling, mathe- matical modeling, and literatiire review. The mean levels of all metals in the CSOs and coal pile runoff exceeded Canadian Water Quality Guidelines. Guideline exceedances of mean metals levels for the three cooling water discharge sites were: 
Pb, all sites; Fe, two of three sites; Zn, one of three sites; and Cr, no sites. Although the metals levels in the cooling water discharges were lower than other sampled sources, the large volume of discharged cooling water resulted in metals loadings 
that were greater than all other sources combined. Metals loadings for the study peri- od frorri all sources combined were: 788 kg ofPb; 220 kg of Cr; 4,708 kg‘ of Zn; and 12,715 kg of "Fe. PAH levels were not determined for the cooling water discharges, but mean levels of fluoranthene, phenanthren , pyrene, and chrysene in the particu- 
late phase of the coal pile runofl exceeded the provincial “Severe Effect Level” for sediment. PAH levels" and loadings in the coal pile runofl‘ were greater than those measured for the CSOs. It appears that the current levels and loadings of selected 
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Introduction 

Impairment of Great.Lakes water quality has been documented since the l800’s and 
there have been efforts for almost as long to remediate and restore water quality 
(International Joint Commission (IJC), _l987; Rossi, 1995). Initially, the greatest 

’ 

concerns were associated with pathogenic contamination due to sewage di_scharg'es, 
but with a growing population and industrial activity, the focus of_ remediation 
shifted to cultural eutrophication, and subsequently to pers'i_stent contaminants 
(organics and metals). Although there is a long history‘ of environmental impair- 
ment, there also have been success stories in water quality and habitat restoration 
throughout the Great Lal_<_es_. For exa;mple,“point source control of phosphorus 
discharge and the efforts of the Pollution from Land Use Activities Reference Group 
(PLUARG) have helped to reverse cultural eutrophication problems in the lower 
Great Lakes (Yaksich and Rumer, 1980;" IJC, 1987; Charlton, 1997). More recently, 
Annexes l and 2 of the 1987 Protocol to the U.S_.-Canada Great Lakes Water Quality 
Agreement (IJC, 1987b) have emphasized the development of ecosystem objectives, 
maintenance, and restoration of the physical, chemical, and biological integrity of 
each lake (Kelso and Hartig, 1995). Management and remediation initiatives for the 
lakes have been focused through programs such as Remedial Action Plan (RAP) 
development for the 42 Areas of Concern (AOCS) and Lakewide Management Plans 
(LaMPs). Areas of Concern are designated by the IJC because they exhibit some 
type of environmental impairment. The IJ C (1997) concluded that: 
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“Contaminated sediment is a major cause of environmental problems and a 
key factor in many irnpairrnents to beneficial uses of the Great Lakes. Based 
on application of chemical guidelines, all 42 Great Lakes Areas of Concern 
have contaminated sediment... A variety of sediment management options is 
available, ranging from source control andnatural recovery to full-scale reme- 
diation depending on the severity of the problem... In recognition of the 
scope of this problem and the limited progress in addressing it, IJC identified A 

contaminated sediment as a priority for the 1995-1997 biennial cycle.” 

Various in situ treatment and removal technologies are becoming available to reme- 
diate contaminated sediment (e.g. Randall, 1992: U.S. EPA, 1994; Murphy et 
al., 1995; Zeman and Patterson, 1997), but thorough evaluation of current contami- 
nant inputs and fate should be done before any remediation is considered, to help 
ensure that the remediation will produce the desired benefits. Sediment remediation 
is expensive and it is essential that a contamination problem does not recur some 
years after remediation because of a lack of source control. 

Mass b_alance’modeli_ng increasingly has been applied in the Great Lakes as a 
management tool to help guide policies regarding contaminant loading reductions, 
exposure risks, and remediation options (e.g. DePinto, l994; Diamond and Ling- 
L_ar_np'recht, l996; Diamond et al., 1996; IJC, 1997). Mass balance modeling accounts 
for chemical inputs to, outputs from, and transformations within a defined body of 
water. An important component of mass balance modeling is the determination of 
contaminant inputs or loadings from the various possible sources. Although the load- 
ing estimates do not provide information on the transport and fate of ‘the contaminant 
within the water body (DePinto, 1994), the estimates do provide important planning 
level insights to the potential magnitude of the contaminant problem and the relative 
importance of current contaminant sources. These planning level loading estimates 
can be derived with considerably fewer resources than a full mass balance, while at 
the same time acting as an initial step should a mass balance study be required. 

The objective of this paper is to illustrate the development of planning level load- 
ing estimates for selected metals and PAHs from various contaminant sources dis- 
charging to an area of the Hamilton Harbour, as an essential first step in making 
aquatic restoration decisions. The harbour is_ an AOC and there is considerable inter- 
est in furthering the habitat and water quality improvements that have been made 
over the last 15 years (e.g. Charlton and Le Sage, 1996; McNeil1, 1997). 

Methods ~ 

Field site \ 

The southern shore of I-I_ami_lton Harbour (Figure 1) is heavily industrialized, with steel 
production and steel-related industries being the predominant activities. The level of 
contarnination in the bottom sediment varies greatly throughout the harbour. For 
example, PAHpand PCB levels range from below detection to greater than 800 and 
2,000 ug g", respectively, in some “hot spots” near the industrial areas (Murphy et al-., 
1991; RAP, 1992). Clearly, anthropogenic activity along the southern shore has nega- 
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tively impacted aquatic habitat and biota and Holmes (1988) suggested that although 
a warm water fisheries rehabilitation might be done successfully in some parts of the 
harbour, the southemshore had no potential for rehabilitatiton. Despite Holmes’ (1988) 
view of the potential for rehabilitation, and perhaps because of the more recent RAP 
efforts (RAP, 1992), there has been an ir_icreasing‘interest in remediating hot spot areas 
along the southern shore (e.g. Murphy et al., 1995; McNeil], 1997). 

One of these hot spot areas of interest is known as the Kenilworth boat slip, locat- 
ed at the south eastern end of the harbour (Figure 1). Our ‘study focused on quanti- 
fying loadings of selected metals and PA}-ls to the boat slip from multiple sources 
that included combined sewer overflows (CSOs), direct discharge of industrial non- 
contact cooling water, untreated runoff from coal piles, stormwater nmoff from 
adjacent industrial properties, and groundwater discharge. 

Combined sewer overflows 
The Kenilworth sewershed (Figure 2) has a contributing area of 265.5 ha that is ser- 
viced principally by a combined sewer system. The CSO discharge point is located 
in the north eastern section of the boatslip (Figure 1). Much of the land use in the 
upper part of the sewershed is older residential, single family dwellings, with com- 
mercial ribbons along major streets. The lower sewershed (approximately 9% of the . 

total contributing area) is dominated by a mix ofindustry, including steel mills, rail- 
car manufacture, metal fabrication, construction material recycling, and lead recy- 
cling facilities. The Hamilton-Wentworth Pollution Control Plan (Paul Theil 
Associates and Beak Consultants, 1991) indicated that the Kenilworth sewershed is 
one of the largest C_SO discharge points (by volume) to the harbour and that a 5 mm 
design storm, distributed over 2 hours, could generate an overflow event 

Direct industrial nan—contapt cooling water discharge _ 

Non-contact cooling water from a major steel mill is discharged at three points to 
the Kenilworth boat slip (Figure 1). Under the provincial Municipal and industrial 
Strategy for Abatement (MISA) program, thesedischarges must comply with permit 
requirements that include continuous monitoring of flow quantity and weekly to 
monthly sampling for various quality parameters. 

Coal pile runofi"
j 

Coal, used in the production of steel, is stored in several locations around the boat 
slip. One of these storage fields, located to the south west of the boat slip, is drained 
by an underground ti_le system that discharges untreated runofi‘ directly to the water 
(Figure 1). The total contributing area of this coal field is 1.9 ha and typically there 
are several large coal piles on site, although pile size continually changes as coal is 
added or removed. The flow volume from the tile drain system is monitored contin- 
uously as part of the MISA program. 
Overland sronnwater discharge and groundwater discharge 
Overland nmofi‘ and groundwater from adjacent industrial property discharges 
directly to the boat slip. This runoff can originate from coal, iron ore, and limestone 
storage areas, oil bulking, scrap metal storage, and general industrial areas. The total 
contributing area for runoff is approximately 58.4 ha. 
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Loading estimate approach 

A simple, volumetric approach often is used to estimate contaminant loadings on an 
annual basis (e.g. Marsalek and Ng, 1989; Marsalelc, I990; Nix, 1990; Irvine et al., 
1993; Pratt et al., 1995) according to the following equation: 

L5 = E(Qi - Csi) ‘ 

(1) 

where: Lj is the annual load of pollutant, j 
Qi is the volume of each overflow event, i 

Cji i_s the event mean concentration of pollutant, j 

Clearly, there are two components in equation (1) that need to be determined; vol- ume of flow and a representative pollutant concentration. The approaches taken in 
our study to detennine these two components varied by source and are summarized 
in Table 1. Table 1 indicates, in fact, variations of equation (1) were used to calcu- 
late loadings, primarily due to sampling limitations. In general-,-a single arithmetic mean value calculated from all samples for each source was used to determine a rep- 
resentative pollutant concentration for that source. This representative concentration 
subsequently was multiplied by flow volume for the period of interest. Loading esti- 
mates were made for April 1 through October 31, 1996 si_nce this was the general 
period covered under our first year" sampling program. Marsalek (1990) reviewed 
several methods by which representative. concentrations could be calculated for 
equation (1), including the direct average method, flow-weighted concentration 
method, and the regression method. Marsalek (1990) ultimately recommended use of a probability distribution model approach to define event mean concentrations. 
The probability approach is attractivegbut for this preliminary study the data were 
not sufficient for a rigorous and meaningfirl probability application. 

Table 1. Summary of Approaches, by Source, Used to Determine Pollutant Loadings. 

Pollutant Source 
, Flow Estimate Pollutant Concentration Estimate 

CSO Application of the Stormwater 
, 
Mean Value of Grab Samples over 

Management Model Multiple Storms. 
Direct industrial 

_ 

Continuously Measured‘ by Mean Value of .24-hour Composite 
Discharge ' 

Industry and Reported under Samples Collected by industry and MISA Reported under MISA 
Tile-Drained Coal Pile Measured and Modeled Mean Value of Flow-proportioned. Runoff Composite Samples for Multiple 

Storms 
Application of the Stormwater Literaturcsearch, by Source-Area 
Management Model 

Groundwater Discharge Calculated in a Preliminary Literaturezsearch. by Source-Area 
l_-lydrogeological Study of the 
Area 

Overland Runoff 
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f’olufn‘e estimates 
The CSO volumes to operationalize equation (1) were calcu_late_d using a calibrated 
personal computer (PC) Stormwater Management Model, version 4 (i.e. PCSWMM4) run in continuous mode. The general CSO modeling approach, using 1986 (a typical rainfall year) data, is described in detail by Irvine et al-.—, (1998). PCSWMM is a dynamic, deterministic model that can calculate surface nmoff and 
route this runoff through a defined sewer network. Surface runoff is calculated in the RUNOFF computational block using Manning‘s equation and a non-linear reservoir 
approach that considers infiltration, surface storage, and evapotranspiration. The 
surface runoff is routed through the sewer network using a kinematic wave approach 
that considersboth Manning’s equation and a continuity equation. 

Flow volume from the tile-drained coal pilesite was measured at 15 mignute inter- 
vals within a discharge ilume using a re_cording Badger 2000 Obstructjonless No- 
Loss Flowrneter. The ins'trur_nent_ation to measure flow vo1ume.d_id not operate prop- 
erly in_ some cases and the flow volume for these events was estimated using a 
multiple regression approach that considered event rainfall depth and coal pile vol- 
uine (r2 = 0.74). The-multiple regression analysis is discussed in detail by Curran et 
at. (submitted)... 

" 
.. 

Overland runoff to the boat sl_ip___fr_o'rn adjacent industrial property was estimated 
us_ing'the RUNOFF block of PCSWMM, The contributing areas and direction of 
overland runoff were deterinined from a map produced by a private consulting firm 
»for one of the localaindustries.» For modeling and load estimate purposes, the over- 
land contributing areas were divided according to surface type (i.e. the various stor- 
age areas discussed previously).

, 

7 
Groundwater discharge rates were taken from a consultants preliminary report 

(Conestoga-Rovers & Associates, 1995) commissioned by one of the industries in the area. These discharge rates were calculated based on the assumption that the ground- 
water flow system is in equilibriuin'and'the infiltrating volume therefore is equal to 
the discharge volume. A surface infiltration rate of 0.305 m yr‘ was assumed by Conestoga-Rovers & Associates (1995). This estiiriate was derived as a function of 
the relatively per-meabl_e fill material th'at makes up the water table unit of the area. 

Data for the direct in_d_u_s_tria_l discharges were obtained through the MISA pro- gram and were not measured by our study team. The flow data were reported as daily mean values for each month. 
The hourly rainfall data used to drive the models in this study were obtained from 

the Atrnospheric Environment Service for the gauge at Mount Hope Airport, locat- 
ed approrgirnately 10.5 km south west of the boat slip.- Data from the Mount Hope 
gauge also were used in the development of the Hamilton-Wentworth Pollution 
Control Plan (Paul Theil Associates and Beak Consultants, 1991). 

Water qzlality determinations 
Grab samples ofthe CSOs were collected ata manhole, approximately 110 m up- 
pipe of the outfall mouth (Figure 2),_ The grab sarnples were obtained using a tele- 
scoping sample polethat was f1t'w‘ith clean 500 ml polyethylene bottles for metals 
analysis and 1,000 ml clean amber’ glass bottles for PAH analysis. The sewer is a twinbox at the CS0 sampling site, with each side being 2.13 ‘m x 1.75 Sampling 
was done at the mid-point of the eastern box and it was assumed that both sides were
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equally mixed. To the extent possible, multiple samples were collected at evenly spaced time periods through each CSO event. Sampling for metals began in May, 1996 and was completed at the end of October, 1996. Sampling forPAHs was con- ducted during October and November, 1996. 

The Badger flowmeter in the coal pile discharge flume ‘was connected to an American Sigma Streamline 700 pump sampler for the period June 1 through October 31, 1996. When flow in the flume reached a depth greater than 10 cm, the flowmeter triggered the pump sarnplerto begin collecting 200 ml samplesat 10 m3 intervals. The pump sampler composited the 200 ml samples in a clean l0 l glass bottle for each event. These flow-proportioned composite samples were removed from the field as soon as possible (normally within 5 hours) after the end ofeach runofi‘ event. The MISA permit requires that weekly samples for‘ most analytes of interest be 
col_lec_ted by the steel manufacturer that disc “ 

are 24,-hour composites of the permitted direct discharge and the 1996 analytical 
results were obtained from the permitted industry. More recently, the MISA program also has required permitted industrial facilities to conduct a stormwater sampling program and develop stormwater management plans. The stormwater management report is archived by each industrial facility and is made available -to the Ontario Ministry of Energy and Environment (MOEE) upon request. Although a sampling plan for stormwater runoff had been developed in 1996, results ofthe sampling were not available for our study. Therefore, representafive contaminant concentrations of stormwater runoff‘ and groundwater flow were determined using our CS0 and coal 
pile runoff data as a guideline and also by considering the range of concentrations reported in the literature for different land uses. 

Laboratory methods 

Total metals levels in the CS0 and coal pile runoff samples werevdetermiiied by the National Laboratory for Errvironrnental Testing-, Burl_ingtop, Ontario, using» induc- 
tively coupled argon plasma (ICAP) following Environment Canada Method 02- 2001 (Environment Canada, l994). Samples were fixed with 1 ml V(l:l.) Seastar 
nitric acid without filtration, 'u'po'n retrieval from the field. All samples were con- 
centrated l0 times and digested using ni_tri_c‘ acid. Quantification was done using an 
Appl_ied Research Laboratories (ARL) 3580 ICP optical emission spectrometer with a gasregulator suitable for argon and a Gilson 222 autosampler. The QA/QC proce- dures are described in detail by Curran et al. (submitted). A l I sub—sarnp'_le of thecoal pile runoff composite was collected in the laborato- 
ry and was filtered through Whatman Grade #l filter paper to separate’ the particu- 
l_ates from the water. The filtered particulates w'ere.analysed directly and henceforth 
the results are referred to as the particulate phase PA_Hs, while the PAHs ‘in the fil- 
trate are referred to as the dissolved phase PAHs_, Analysis was performed by Wastewater Technology International (W TI), Burlington, Ontario, using Gas Chromatography-Mass Spectrometry (GC-MS) and adapted from U.S. EPA Method 624 (US. EPA, 1984) for the dissolved phase and US. EPA Method 8270 (U.S. EPA,- l994b) for‘ the particulate phase.

a For the dissolved phase analysis, the 1 l sub-sample was spiked witha surrogate 
niixrure and serially extracted three times with diehloromethane under basic condi- 
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tions. The combined extracts were dried over sodium sulphate. The solvent was 
evaporated from the extract to a final volume of 3 ml. The extract was then 

com- 

bined with an internal standard and analysed by GC-MS. For the particulate phase, 
the sediment was spiked with a surrogate mixture and Soxhlet-extracted ‘yith an 

ace- 

tone-hexane (59:41) mix. The extract was base-partitioned with 2% potassium bicar- 
bonate solution. The aqueous medium was then back-extracted with hexane and the 
organic fractions combined. The combined organic extract was dried through 

sodi- 

um sulphate and concentrated for analysis by GC-MS, 
Forlboth the dissolved and particulate phase analyses, the GC was a, Hewlett 

Packard 5890 operated with an initial temperature of 30 °C, hold 
for" 1 min., ramp at 

6 degrees/min. to 285 °C, holdfor 16.5 min. The GC column was a DB.-5, 30 m nar- 
rowbore column with a 0.25 mm internal diameter" and a 0.25 pm film thiclcness. The 
MS was either a Hewlett Paclcard’5988 operated in electron impact mode with an ion 
source temperature of 200 °C, or a Hewlett Packard 597lopera_ted with a GC/MS 
interface temperature of 280 “C. Curran et al. (submitted) provide greater 

detail on 

the analytical methodology ar'1d__QA/QC for the PAH analysis. 
The I 1 samples from the CSOs were not filtered and the PAH concentrations 

I 

therefore reflect “total” concentration in these samples. Apart from this difference, 
- the analytical methodology followed that describediabove for the 

dissolved phase of 

the coal pile samples. 

Results 

Flow volume 

The estimated and measured flow volumes discharging to the Kenilworth boat slip 
from the various sources for the period April 1, 1996 through October 31, 

1996 are 

suiniilarizcd in Table 2. The CSO volume is comparable to the overflow volurne,esti- 
mated for the entire year, 1986 (31 1,000 m3), from Irvine et al. (1998). The rainfall 
for the year 1986 totaled 775 mm and the monthly distribution of rainfall through 
l986'was representative of the_30-year norm for the Hamilton area, The rainfall for 
the 1996_ study period totaled 713 m. V 

The PCSWMM modeling indicated that an area of buildings and paved parking 
was the principal source-area for surface runoff and that nearly all 

of the rainfall 

striking the pervious industrial land would infiltrate. These results are consistent 

with the preliminary infiltrationl groundwater study done for the area by 
Conestoga- 

Rovers & Associates (1995). V 

Table 2. Measured/Estimated Flow Volumes to the Kenilworth Boat Slip, by 
Source, April 1 through 

October 31, 1996. 

MISA Site M_l_SA Site MISA Site Coal Pile CSO Surface Ground- 

100 300 1200 Runoff 
‘ 

Runoff water 

Flow 5,780,132 1,858,634 39,427,471 9,690 318,000 37,870 277,289 

Volume, m3
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Metals arid PAH levels 
The mean and standard deviation of total Pb, Cr, Zn, and Fe levels in samples col- lected during the study period are presented in Table 3. Although other metals were analysed in the CS0 and coal pile runofl’ samples (see Irvine et al., 1998; Curran et 
al.-, submitted), we havefocused on thesezfour metals for illustrative purposes because they are the only metals that are reported under the MISA program. The metals lev- 
el_s shown in Table 3 for the MISA sites were adjusted by subtracting a concentration 
representative of ambient levels in the harbour: This downward adjustment accounts forthe metals levels that exist in the harbour water used for cooling purposes and the data in Table 3 therefore reflect only the metals levels added by industrial activity. The representative ambient harbour levels were calculated using data from Poulton 
(-1987); RAP (1992); and Diamond and Ling-Lemprecht (1996), and were as follows: Pb — 0.0033 mg l“; Cr - 0.0009 mg l"; Z_n — 0.014 mg H; Fe — 0.22 mg H. Canadian Water Quality Guidelines (Canadian Council of Resource and Environment Ministers, 1993) for the individual metals also are shown in Table 3. The mean levels of all metals in the CS0 and coal pile runoff samples exceeded these guidelines._The mean levels of Pb for the three direct industrial discharges exceeded the guidelines, while the mean levels of Cr for the same industrial dis- charges did not exceed the guidelines. Mean levels of Fe exceeded guidelines at two of three industrial discharge points and mean levels of Zn exceeded guidelines atone of three industrial discharges, - 

Samples of surface and groundwater runoff from the industrial properties were not collected for quality analysis..A literature review was conducted to determine a range of possible metals levels for these sources and the results are presented in Table 4. Our data for the CS0 and coal pile discharges also were considered in deter- mining representative metals levels for the surface and groundwater runoff and the results of our analysis are shown in Table 5. 

Table 3. Metals Levels (mg l") for Samples Collected during the Study Period‘. 
Pb, Mean Pb, S.D. Cr, Mean Cr, Zn, Mean Zn, S.D. Fe, Mean Fe, S.D. 

S.D. 

MISA 0.01 58 0.00_0l9 0.0075 0.0103 0.0240 0.0171 0.633 
- 

0.555 100 (n=28) (n=6) (n=2 8) (n=6) 
MISA 0.0158 0.00019 0.0025 0.0029 0.0176 0.0137 0.3 63 0.350 300 (n=25) (n=6) (n=2S) (n=6) 
MISA 0.0154 0.00087 0.00371 0.0040 0.1021 0.09 l 4 0.057] 0.0499 1200 (r_I=27) (n=6) ' (n=2 7) (n=6) CSO 0.0902 0.0777‘ 0.0244 0.0330 0.676 0.887 8.7 12.42 (n=20) (n=20) (n=20) 

, (ri=20) 
Coal Pile 0.022 0.018 0.024 0.024 0.28 0:30 15.5 14.4 (n=l5) 

_ 
(n=l5) 

_ 

(n=l 5) .(r_r=l 5) 
- Canadian Water Quality Guidelines (for Protection ofAquativ: Life) are; Pb — o.oo7; Cr — o.o'2; Zn — o.oa; Fe — 0.3 mg I"

_ S.D. — Sample Standard Deviation 

Contaminant levels and 10a. 

Table 4. Metals Levels (mg l") in 
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Pb 

Typical Range 
, 

0.1-0. 

Sources: I982; Reinertsen. I982; M 
and M_a_und_er. 1993; Banner-man at al, I99 

[able 5. Representative Metals L 
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Siirfaceand Cmmdwater Runoff 
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Coal Pile Runoff 
_ 
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Coal Pile Runoff 4.: 
(dissolved phase, ug I") (n=
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1 Z||.S;D. Fe, Mean Fe,S.D. 

0.0171 0.633 0.555 
(n=6) 

0013'? 0.363 0.350 
(n=6) 

0.0914 0.0571 0.0499 
(n=6) 

0.887 8.7 12.42 
(n=20) 

o._3o 15.5 14.4 
>__(n=l5v) 

:Cr—0.02;Zn—0_03;
_ 

Contaminant levels and loading estimates 61

~ 

Table 4. Metals Levels (mg 1“) in Runoff from Urban E_nvironrnen_ts an Emphasis on Industrial 
Land Uses). 

Pb Zn Cr Fe 

Typical Range 0.1-0.5 0.2-0.7 0.001-0.58 4-7 

Sources: Weeks, I982; Reinertsen. I982; Marsalelr and N3, l9_89; Granier et al., I990; Xanthopoulos and ljlalm, l993; D'Andre_a 
and “>’un'd_u{r, 1993; Bannerman et ale 1993 

Table 5. Representatjye Metals l,.ev_e_ls (mg I“) used for Calculation of Loadings from Industrial 
Propferty Surface and Groundwater Runoff. 

V W V ‘ 

Pb Zn Cr Fe 

Surface and Groundwater Runoff from General 0.1 0.5 0.02 9 
Industrial Property 

Groundwater Runoff from Coal Storage Areas 0.022 0.28 0.024 I6 

Groundwater Runofi from Iron Ore Storage Areas 0.1 0.5 0.02 I6 

The mean of selected PAHs in samples co'l1ect'ed during the study period are sum- 
marized in Table 6, Although we analysed for 16 different PAHs,_it was decided to 
focus on five of the PAI-Is (fluoranthene, pyre_n_e, chrysene, phenanthrene, and 
benzo(a)pyrene) for illustrative purposes. These five PAHs were selected for more 
detailedidiscussion because they frequently are reported in the l_iterature. Standard 
deviations were not calculated for the PAH data because of the small sample size. 
Data on PAH levels are not collected at the MISA sites of interest to our study, 
although benzo(a)pyrene and naphthalene loading limits have been identified for 
other discharge pointsfrom the steel mill. 

Canadian Water Quality Guidelines have not been developed for PAHs in water, 
but guidelines for PAHs in sediment have been established (MOEE, 1993), As noted 
by Curran et al. (submittejd),.mean levels of fluoranthene, phenanthrene, pyrene, and 
chrysene in the particulate phase of the coal pile runofl‘ (Table 6) exceeded the 
MOEE “Severe Effect Level” for sediment samples. 

Table 6. Mean Levels of Selected PAHs for Samples Collected During the Study Period. 
i I L 

WFluoxanthene Phenanthrene Benzo(a)pyrene Pyrene Chrysene 

cso (talai sample, pg I") 0.99 0.52 0.35 0.90 0.64 
(F2) (F2) (F2) (TF2) (YF2) 

Coal Pile Runoff 208.2 284.3 71 139.9 46.6 
(particulate phase, pg g4) (n—-4) (n=4) (n=4) (n-4) (n=4) 

Coal Pile Runoff 4.5 6.-l 0.9 3.1 0.7 
(dl5S'°|V€d Phase, I18 1") (F5) (F5) (F5) (F5) (F5) ~
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. , 

Metals and PAH loadings Nomcoma-ct 
- 

. . . . . 
Cooling Water 

Using the volumetric approach outlined by equation (1 ), the metals loadings (kg) for 
3 

, 93% 
the study period are summarized, by source, in Table 7. The percentage contribution 
of‘ each source also is summarized in Figure 3. Because of the limited PAH data, 
loadings were calculated only for the CS0 and coal pile discharges. Again, using the 
volumetric approach outlined by equation (1), the PAH loadings for these two . 

sources are sumrnari,zedi,r_1 Table 8. In the case of the coal pile discharge, PAH load- 
ings are the sum of the particulate and dissolved phase loadi_r_igs_.

V 

Conclusions and recomniendations 
‘

. 

Contaminant levels and loadings both must be considered in assessing the potential 3 Coal! 
impact of ‘current sources on the success of .sediment-and aquatic remediation "in the A 

' 

Run: 
Kenilworth boat slip. Sampled metals levels‘ generally were lower in the cooling — <19 
water discharge than in the CSOs or coal pile runo'ff. In fact, for some metals (e.g. 
Cr and Zn), the mean levels typically did not exceed Canadian Water Quality 
Guidelines in the cooling water discharge. On the other hand, mean levels of all met- 
als in the CSOs and coal pile runoff exceeded Canadian Water Quality Guidelines. 2 

Metalslevels exceeding the Canadian Water Quality Guidelines potentially could 
present some acute toxicity problems. The metals levels reported in our study repre- 
sent total concentrations, as this is the standard used under the Canadian Water 
Quality Guidelines. However, it has been argued that because of bioavailability 

Groundwater 
Runoff 
25%~ 

Table 7. Calculated loadings (kg) to the Kenilworth Boat Slip, by Source, April l through October 
31, 1996. 

Pb 
’ ‘ 

Fe Cr Zn 

CSO 28.7 2,767 7.76 215
' 

Coal Pile Runoff o_._2i 3 150 o_._2»3_s 2;72 
_ 

Industrial 
Cooling Water Discharge‘ 729 6,338 

, 
206 4337 Surface Runoff 

3% 
Surface Runoli Industrial Property 3.79 341 0.757 l8.9 

Groundwater Runoff 26 ' 

3,] 19 5.63 l34 

. 5”" °f '" W" Mm‘ sh" Fig. 3.- Relative loading contribut 
Zn were similar to that of Pb. 

Table 8. Calculated Loadings (kg) of PAHs to the Kenilworth Boat Slip, by Source, April l through 
October 31, I996.

A 

effects, the use of total meta 
te'n'a. In response to this con 
solved metals to set and me 
1997). Although use of d 
bioavailability issue, there ; 

Fluoranthene Phenanthrene B_cnzo(a)pyrene Pyrene Chrysene 

cso 0.315 0.165 0.1 1 l 0.286 ojzozi 

Coal Pile Runoff A 4.457 6.086 1.512“ _2.995 0.995
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C_r Zn 

7.76 2 l 5 

0.238 2.72 

206 4,337 

0.757 18.9 

5 .63 134 

oat Slip, by Source, April 1 through 

)(a)pyrenc Pyre_n‘e Chrysene 

xi 1 x "0283 0.204 

I .5l 2 2.995 0.995 
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Non—0ontact 
Cooling Water 

“"9" cso <1% ‘% Runoff 
3%

b 
Groundwater 030 

Runofi . , , 22% 
25% I

5 

Industrial 
surface Runoff 

3% N0D'COU.E°.t 
Cooling Water 

49% 

Fig. 3. Relative loading contributions. by source. for: (a) Pb: and (19) Fe- The cdntfibfitidns for Cr and 
Znwere similar to that of Pb. 

effects, the use of total metals is overly conservative in developing water quality cri- 
teria. In response to this concern, the U.S. EPA recently has allowed the use of d15- 
solved metals to set and measure compliance with water quality standards (Renner, 
1997).. Although use of dissolved phase metals addresses some aspects of the 
bioavailability issue, there are a host of natural factors that also can affect toxicity

~
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(e. g. pH, temperature, dissolved oxygen, presence of organic and inorganic ligands). 
Furthermore, it has been argued that the free metal ions (e.g. Cu") are most impor- 
tant in governing toxicity (e.g. Allen and Hansen, 1997; Renner, 1997). Given the 
relatively low level_s of metals in the coolingwater discharge, a study on the bioavail- 
ability of these metals should be conducted before major capital expenditures are 
undertaken to alleviate possible acute toxicity problems.

_ 

Because of the large volumes of water used for cooling purposes, the metals 
loads in the cooling water (even when adjusted for ambient metals levels in the bar- 

' bout) were greater than all other sources combined. The large loading associated
l with the cooling water discharge potentially may represent a more chronic type of ' 

aquatic and sediment degradation, particularly if the metals settle and accumulate in 
the bed sediment of the boat slip. The large volume of cooling water containing rel- 
atively lower levels of metals may be difficult to treat with current engineering 
approaches. Other aspects of the large loadings associated with the cooling water 
also should be considered. For example, the high Fe loadings may contribute to the 
brown colour of the harbour water (in addition to humic matter from wetlands areas 
in tributaries). The Fe also may enhance precipitation of phosphorus and reduce 
algal growth. 

' Data on PAH levels were collected for two sources, CSOs and coal pile runoff. 
PAH levels in the coal pile runoff were greater than those measured for the CSOs, 
Although the mean levels of fluoranthene, phenanthrene, pyrene, and chrysene in 
the particulate phase of the coal pile runoff exceeded the provincial Severe Effect 
Level for sediment, there is some uncertainty as to the bioavailability of coal-asso-V 
ciated PAHs (e.g. Bender et al., 1987; Chapman et al., 1996). Itis possible that the 
levels of'PAHs observed in the particulate phase of the coal pileninoff may have less 
impact upon the aquatic biota than the provincial guidelines suggest and detailed, 
site-specific bioavailability testing should be done. The PAH loadings from the coal 
pile runofl’ typically were an order of magnitude greater than for the CSOs,_p'rimar— 
ily because of the higher levels associated with the particulate phase. Given the 
smaller volume of runoff that would have to be treated and the hydrophobic nature 
of PAHs, construction of settling basins to contain the coal pile discharge could be 
an effective loading reduction tool. 

This study provided a planning level evaluation of leve_ls and loads associated 
with different sources that discharge to the Kenilworth boat slip. We were not able 
to quantify the impact of direct atmospheric deposition to the boat slip and harbour. 
In some areas of the Great Lakes, direct deposition has been considered an impor- 
tant source for certain contaminants (e.g. Kelly et al., l99l; Zhang et al.. 1993). 
Atmospheric deposition on the urban surfaces would be integrated in the CS0 dis- 
charges. In addition to impacting water quality, atmospheric emissions also may 
have a negative effect on human health (e.g. Chiras, 1991). Because of the planning 
level nature of this study, there clearly will be some uncertainty in the loading esti- 
mates for the sources that we examined. The greatest uncertainty is associated with 
those sources forwhich representative contaminant levels were obtained from a lit- 
erature review. Nonetheless, weexpect that our estimates are within the correct order 
of magnitude. It appears that the current levels and loadings of selected metals and 
PAHs are sufficient to negatively impact sediment. oraquatic habitat remediation 
efforts in the boat slip area..Although the contaminated sediment could be removed

_ 
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and treated, or treated in situ, the contamination problem will return if current 
sources are not reduced. 

Hamilton-Wentworth Region’s Pollution Control Plan, when fully "implemented, 
should greatly reduce the number and volume of C_SOs discharging to the boat slip 
(e.g. Stirrup, 'l996). Likewise, industrial pretreatment and pollution prevention pro- 
grams have been implemented in the past (RAP, 1992) and should continue to be 
encouraged as a means of reducing loadings from direct industrial discharges. 
However, given the volume of water involved, current approaches to treatment may 
be expensive. Storrnwater best management practices for industrial property runoff 
(including coal pile runofi) also should be vigorously pursued and for the immediate 
future may be the most t_eclfm_i_cally feasible and cfost-effective source control option. 

The contaminant sources evaluated in this study are common to many Great 
Lakes AQCs and the general planning level evaluation methodology discussed in 
this paper could be applied to any of these .sites._Quantitative source evaluations 
should be done at all sites prior to the planning and implementation of habitat or sed- 
iment remediation work.

r 

Summary 

Annexes 1 and 2 of the 1987 Protocol to the U.S.-Canada Great Lakes Water Quality 
Agreement have emphasized the development of ecosystem objectives, mainte- 
nance, and restoration of the physical, chemical, and biological integrity‘ of each of 
the Great Lakes. Contaminated sediment is one-source of environmental impairment 
in the Great Lakes and sediment remediation ofien is considered as a restoration 
option. However, evaluation of current contaminant loadings and fate is an essential 
first step in assessing the potential for long term remediation success. The develop- 
ment of planning level loading estimates for selected metals and PAHS from various 
contaminant sources discharging to an area of Hamilton Harbour is illustrated. 
Contaminant sources included combinedsewer overflows (CSOs), industrial cooling 
water discharge, coal pile runoff, industrial stormwater discharge, and groundwater 
discharge. Levels and loadings of total rrietals (Pb, Cr, Zn, Fe) and PAHs (fluoran-’ 
thene, phenanthrene, benzo(a)pyrene, pyfene, chrysene) were determined for the 
period April 1 through October 31, 1996, using a combination of sampling, mathe- 
matical modeling, and literature re'view.The mean levels of all metals in the CSOs 
and coal pile runoff exceeded Canadian Water Quality Guidelines. Guideline 
exceedances of mean metals levels for the three cooling water discharge sites were: 
Pb, all sites; Fe, two of three sites; Zn, one of three sites; and Cr, no sites. Although 
the metals levels in the cooling water discharges were lower than other sampled 
sources, the large volume of discharged cooling water resulted in metals loadings‘ 
that were greater than all other sources combined. Metals loadings for the study peri- 
od from all sources combined were: 788 kg of Pb; 220 kg of Cr; 4,708 kg of Zn; and 
12,715 kg of Fe. PAH levels were not determined for the cooling water discharges, 
butmean levels of fluoranthene, phenanthrene, pyrene, and chrysene in the particu- 
late phase of the coal pile runoif exceeded the provincial “Severe Effect Level” for 
sediment. PAH levels and loadings in the coal pile nmofl' were greater than those. 
measured for the CSOs. It appears that the current levels and loadings of selected
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metals and PAHs are sufiicient to negatively impact the long term viability of 
restoration efforts in this area of the harbour. Source control measures (e.g. 
storrnwater best management practices) should be evaluated and implemented prior 
to initiation of costly sediment and habitat remediation. 
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