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1.0 - INTRODUCTION

Wave measurements were made at Van Wagner's Beach, in conjunc-
tion with the suspended sediment experiments by Coakley (1980). The location of
the three gauge arrays was 245 m from the baseline, in about 5 m of water
(Figure 1). This location was outside the surf zone for all the sled experiments.

The purpose of this note is to present the parameters of the
significant waves as determined at the array, and to present the best estimate of
these parameters at the breaker line in the vicinity of the sled-way. More
- detailed analysis of the directional spectra of the waves is being prepared and
will be presented elsewhere. '

2.0 THE MODEL

The simple models of longshore transport commonly used relate the
amount of material transported to the wave energy and direction at the breaker
line. For example, in the Shore Protection Manual (Anon., 1977), the relation is
(equation 4-40, SPM)

Q = 7500 B, | (1)
where Q  is the longshore sediment transport (in yd3/y'r)
and
_ PE w2 . . P
Pos = i@ Hy Cgp, SiN 2 (in ft-1b/sec/ft) (2)
where o is the density

g  is the acceleration due to gravity .
Hy  is the (significant) breaker wave height
Cgb is the breaker group velocity
4, is the angle between the wave rays and the normal to the shore.
This relation is based on the assumptions of a shoreline with parallel
contours and waves with single frequency, height, and direction. None of these
assumptions hold exactly in a real situation, and the question of just how to

relate the real data to the model must be addressed.



Real waves do not break at one depth because their energy is
distributed in frequency and direétioﬁ, and because the bathymetry is, in general,
irregular. In these experiments, waves are simplified by representing them by
the peak frequency, the significant height and the direction of the peak
frequency. The breaker line was not chosen by applying one of the common
breaking criteria to this wave. The breaker line was taken to be the outer| limit
of the surf zone, that is, the offshore location where the largest waves break (see
Longuet-Higgins, 1972, Galvin and Vitale, 1976). The wave parameters, as
defined by the significant wave height and peak period at this ldcation, were used
to define the breaking conditions to be used in Equation 1.

3.0 WAVE MEASUREMENTS

The waves were measured either just prior to or during a sled
experiment. The time series were analyzed to obtain the spectra, from which
the peak period and characteristic (significant) wave height were calculated.
From phase differences among the wave gauges, the direction of the peak
frequency was determined. Theése data have been summarized in Table 1.

In addition, using bathymetric charts produced by Coakley (personal
communication), the angles the wave rays made with the local contour normal in
the vicinity of the array were calculated and are listed in Table I. Other
pertinent data are also listed, such as date and time of the experiment, local
depth, date of the bathymetric survey, and the correction of the depth relative
to the datum used for the charts (74.8 m above sea level, in cohtrast to the
hydrographic charts which use 74.0 m).

4.0 - ESTIMATION OF THE BREAKER LOCATION

Cpakle’y (pefsonal communication) made visual estimates of the outer
edge of the surf zone during most of the experiments. These were referenced to
a number of fixed locations such as the wave gauges, the outer pile of the sled-
way, and buoys marking fixed current meters. Using these estimates along with
the wave parameters, it was possible to identify likely features of the
bathymetry where the outer edge of the surf zone was located for each
expeﬁr-i‘rﬁent. It turned out that, for the five lérgest storms, the breaker line
. could be identified with the outer bar, (at about 175 m offshore from the



baseline) and, for the remainder, it could be identified with the (somewhat less
distinct) inner bar (about 85 m from the baseline). '

It was then a simple matter to identify the orientation of the
contours of the appropriate bar, in the vicinity of sled-way. The orientation is eb
in Table 2, and the bar is given in the Comments column.

- 5.0 REFRACTION

To determine the wave parameters at the breaker line in the vicinity
of the sled-way, refraction and shoaling had to be considered. A refraction
program by Dobson (1967) was used to do this.

Using the bathymetry data from the charts supphed by Coakley,
regular depth arrays made up of grid squares with sides of 10 m length, were
generated for each of the bathymetric surveys used. This involved some linear
interpolation between points, but the changes in bottom slopes were typically
fairly gentle, so that little error was introduced. ’

The Dobson refraction program was modified to allow wave rays to be
started in intermediate water depths. This involved calculating the reference
group velocity and wave length in the main program at line 160, using the
dispersion relation. The reference group velocity (CGO) was transferred between
subroutines by adding it to the COMMON/1/DEP... statement. The subroutine
HEIGHT was found to contain two errors, which cancelled each other as long as
rays were started in deep water. The term 0.5 was left off ¢_=0.5 (1+2kh/sinh

2kh)c and the shoaling coefficient was given as (co/cg)l/ 2 1z,

instead of (cg o/cg)
These were corrected.

With these changes, the program was run using the wave parameters
of Table 1. The rays were started in the vicinity of the gauge array, and the
starting points were distributed densely enough to give good coverage in the
region of the sled-way. Plots of the rays superimposed on the bathymetry for
each experiment are shown in Figures 1-13. The wave parameters were listed at
frequent intervals by the program, and the values of these at the location that
most closely corresponded to the breaker line on the’ sled-way have been listed in

Table 2.



6.0 DISCUSSION

_ In every case, the wave direction at the breaker line (Table 2)
indicates longshore sediment transport according to the model would produce a
northward movement. This is in contrast to the transport that would have been
predicted if the values at the wave gauge array were used (Table 1). In the latter
case, two of 13 experiments would have predicted southward movement.

Current measurements obtained from three sets of ducted impeller
meters located across the surf zone provide partial verification. The data return
from the meters was generally poor, but some indication of direction was
discernable in 11 of the 13 experiments. Of these 11, Six cases showed currents
going both north and south, with the northward current dominating. Of the
remaining five, four indicated a northward current, and one southward. The
recorded mean current in the last case was only about 1 cm, which is
inconclusive with respect to direction. In general, the wave direction and
current direction measurements tend to be supportive, but further comment is
not possible because of the poor quality of the current measurements.

Coakley (1980) has recorded the longshore currents across the surf
zone on the sled with considerably more success. The net flow as indicated by
the longshore discharge (his Table 2) is towards the north except in experiment
15-1, where it is southward. These results agree with those .inferred from the
wave directions except for experiment 15-1. Closer examination of Coakley's
current data indicates that the current direction is northward in the surf zone
except very near the shore, so that the agreement between the two data sources |
is good.

It is not possible to quantify the uncertainty introduced by the many
approximations and assumptions used in this note. However, cofifidence limits
can be placed on the estimate of the wave direction at the wave gauge array,
assuming that the orientation of the array is known exactly.' The degrees of
freedom of the squared coherency and phase calculations for the wave data are
80. Typically, the squared coherency at the spectral peak is greater than 0.9, so
that, using Figure 9.3 of Jenkins and Watts (1968), the 95 percent confidence
limits on the phase are at worst 2°,

The direction relative to the array is related to the phase by:

Y = sin'l 1?6 3) |



where is the direction relative to the array

L]

¢ is the phaSe angle between gauges

k is the wave number of the spectral component
D

is distance between the gauges. -

So the error in direction due to the phase is given by:

sy = ( ¢)12 77 T A )
) |

Typically ¢ < 5°or 0.09 radians
k > 0.162m
D> 35m
| aef < 2°
Therefore | Av| < 3.6°
That is, the 95 percent confidence limits for the direction are not greater than
3.6°.

This result is not very satisfying because in only seven of the 13
experiments is the absolute value of the angle, o, greater than 3.6°(Table 2).
Therefore the direction of inferred transport cannot be resolved in the remaining
cases, to the 95 percent confidence level. '

The effects of usin‘g considerable detail in the bathymetry (10 m grid)
and of the possible errors in the bathymetry on the calculated wave rays have not
been examined. For example, it may be more appropriate to use a smoothed

bathymetry. These questions will be examined at a later date.

7.0 SUMMARY

The wave data collected during the sled experiments have been
summarized and tabulated in Table 1. Reasonable estimates of the breaker line
wave height and angle have been made and are given in Table 2. In only seven of
the 13 experiments can the inferred direction of transport be determined, to the
95 percent confidence level,
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