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Preface

In this publication an attempt is made to study the
wave motion in a rectangular channelusingthe method applied
to electricalnetwork analysis., This method provides a clear
and systematic approach to solving problems of wave motion.
Also preserited are various ways of electrical analogue to

the tidal motion in a channel.

The study described in this publication was carried
out during the period the Tides and Water Levels Section
functioned as a part of the Water Survey of Canada in the

Inland Waters Branch.
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Chapter 1

Linearized Hydrodynamic Equation of One-dimensional Flow

In a river or estuary, the flow of water is
predeminantly in one direction and, therefore, the
motion of water can be considered as one-dimen-
sional motion. In this publication a channel

‘refers to the whole or a portion of a river or an

estuary.

Assuming a channel can be divided into -
sections of uniform width and depth and also
constant De Chezy's coefficient, each section can
be defined as a rectangular channel. At the
boundary between channels, perpendicular to the
flow, the following conditions can be assumed to
exist:

dout (1-1)
h+ (1-2)

Qin
h -

H ol

where qjp and qgyt denote the horizontal flow
entering and leaving the boundary while h- and
h+ represent the vertical movement with respect
to mean water level at the left-hand side and
right-hand side of the boundary.

The hydrodynamic equation of fluids con-
sists of two equations: the equation of conti-
nuity and the equation of motion.

For an incompressible fluid, the equation
of continuity in a rectangular channel is

3q dh _ . (1-3)
§+b°‘ﬁ-—0

where by is the width of the channel, i.e., the
length of the boundary.

By applying the following assumptions that:

1. the effect of wind force in negligible;

the flow is a laminar flow;

the Coriolis acceleration is not taken into
consideration;

4. the convective derivative of the acceleration
is negligibly small; and

5. the bottom of the channel is parallel to the
datum;

the equation of motion of the fluid can be ex-
pressed in the following equation: ﬁkonkers (lﬂ

3 sh (1-4)
-a—g- + Aq + gao a—x...: 0

where ag is the mean cross-sectional area of the
channel, g is the gravitational acceleration and
A is defined as follows:

8 g am (1.5)
3 Claghy

where qp is the mean of q in the channel, C is
De Chezy's coefficient of the channel, e is the
density and hy is the mean water height with
respect to the bottom. The variables ag, b, and
h, satisfy the following condition:

ag = bo hy (1-6)

Equations (1-3) and (1-4) are the basic
equations considered in this publication.

A=



Chapter 2

The Solution of the Hydrodynamic Equation

2-1 GENERAL SOLUTION.

Equation' (1-4) can be rewritten:

sh A .9, 1 .aq._ -
ox ¥ gag *gag s -0 (2-1)

If we define:A

G = o |
- A ’ . '
Ry = s (2-2)
=—i‘—
_ Lo g3o

then (1-3) and (2-1) become:

3q sh _ _
-oh y : 9 ) ;
KtRwatlysg=0 (2-4)

Assuming that the wave is a periodic
function of time t:

h= 3 (I + g IV (2-5)
g3 @I v eIy - @2-6)

where the superscript denotes the conjugate of the
variable, and by substituting (2-5) and (2-6) into
(2—3)’and (2-4) we obtain

Q. a0 R
S+ Ry + july) Q=0 (2-8)
If we define
Y = juCy (2-9)
Z=Ry+ july (2-10)
Equations (2-7) and (2-8) become
Borwm=o _ (2-11)
% +2Q =0 (2-12)

From (2-11) and (2-12)

2
2H v =g

552 (2-13)

where Y is called the complex propagation constant
and is defined as

Y= V¥

. (2-14)
The solution of (2-13) is -
H'= Kye'™ + Kpe X " (2-15)

where K; and K, are the constants to be determined
by the boundary conditions of the channel.

From (2-12) and (2-15) the solution for Q
is obtained as . o

_1 X p X o
Q= gz (Kie™ + Kpe™™) (2-16)

where Zc is called the characteristic impedance of
the channel and equal-to o :

V4
ZC:’T V
;J‘z— N ¢ 1))
The instantaneous power associated with
the wave is defined by Proudman (2) as

tZ—lSa)
H*E’jwt_) (QEJWt + Q*E—jwt)

P = pghq
= %—pg (Heth +
= %‘pg (HerZWt + H*Q*e'jZWt + H*Q + HQ*)
(2-18b)

Therefore the time average active tidal power can.
be defined as '

P =1 ogRe (H.Q") (2-19a)

or  p._ 3 ogRe (H*Q) (2-19b)




The propagation constant, v, the characte-
ristic impedance, Z¢, and the power, P, are
discussed separately in the follow1ng sub-sections.

2.2 PROPAGATION CONSTANT y

From (2-14), the propagétion.constant is
defined as . A
y = /IY _ - (2m20)

By substituting (2-9) and (2+ 10) into (2-20), we
obtain

. . R, 2-21
ve e BE Lo @2
If we define )
0= - (2-22)
then (2—21)‘becomes
= ju /Llew T30 (2-23)

By substituting (2-2) 1nto (2-22) and
(2-23), y and ¢ can be expressed in terms of the
dimension of the channel and its X.

A

v =ju [bo_ /=30 (2-25)
830 N
- or = _Jw /1__~J—¢ (2-26)
Ygho
Equation (2-26) can be written in polar
form as: ‘ '
J ' -
= - tan"lo)
y = 1+ 4)2)21 82‘ (" an ] (2-27)
Ygho
where the absolute value of Y is defined as:
Iyl = 8 (1 + 02)3 (2-28)
Vgho :
: Since y is a complex number, we may define
that o
Yy =a+jB (2-29)
where
a= 7l cos (§ - 3 tan-le) (2-30)
R 1 -
B = I¥| sin (%——‘Q-tan L) (2-31)

o and B are called the attenuatlon constant
and the phase shift respectively and are always
positive. By using trigonometrical manipulation

equations (2-30) and (2-31) become

. W - - . .
e T -s0)
- W
B = T2, T+oeZ+1 (2-33)

The varlatlon of o and B with respect to
frequency w may be investigated as follows:

Substltutlng in (2-32) and (2- 33), the
value of o in (2-24), we obtain

a = - A
B = —= a2 _zc
T LTt  (2-35)
If (a) w<<x that is A>>1
w
then Vux (2-36)
V2ghg
®) w=x that i g-= 1
then - o = ,0"64>-‘ o » (2-37)
Voghg A ,
g = L35 ’ (38
Y2ghg
(c) w>>) that is A<<l
’ w
o = LION L (2-39)
Y2ghg '
g~ lodlu  (2-40)
2g

4

From the above discussion the asymptotic
plot of o« and g versus frequency w mdy be obtained
as shown in Figure 2-1.

a’,B' /\Bl
/// ) .
///’/ =-\/29h°a
’/ . I-
// B:,/zghoﬁ
/ a!
Vs
/ /
’
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/ - .
’ /’f‘,
//
wz A w
Figure 2-1




Therefore, we might conclude that _at low

frequency both o and 8 are functions of /a, but at

high frequency & tends to be constant while B8
becomes linearly proportional to w.

Similarly, the asymptotic plot of o and B
in terms of A may be obtained as shown in Figure
2-2. :

]
a\B
BI
)//—-\\"/
’/ \
pr— — - \
\
\\/——-‘—
/”’
/// \ 1
- a
/’
-
A
Azw A
Figure 2-2

It is obvious that for chamnnels with small
A the attenuation constant ¢ is linearly propor-
tional to A while the phase shift g is almost the
same, however, for channels with large A both a
and 8 are proportional to VX.

Moreover, for constant A, the propagation

constant is independent of the aidth of the channel
and inversely proportional to the square root of
its height as shown in Figure 2-3.

B

ho
Figure 2-3
2-3 CHARACTERISTIC IMPEDANCE

According to (2-17), the characteristic
impedance Z. is defined as

(2-41)

By substituting in (2-41) the value of Z
and Y as shown in (2-9) and (2-10) we obtain

The equation of Zc can be expressed in
terms of the parameter of the channel by substi-
tuting equation (2-2) into (2-42),

(2-42)

=1 - (x -
Ze = o= Lo Q) (2-43)
or Zc = —3 -5 (2-44)
© bo’ghg (m)

Since Z. is a complex number, it can be
expressed in polar form as

Zc = [2¢| =k (2-45)
L &7
where |Z¢| = (1 + Qﬂ (2-46)
bo/ghg
=1 -1 A -
6 =5 tan~! & (2-47)

From (2-47) it is obvious that & is always
positive. Therefore, the phase angle of Zc is
always negative and varies between zero and _ %3

depending on the value of A.
w

The asymptotic variation of the magnitude
of Z¢ in terms of the frequency, w, can be obtained
in a way similar to that for o and B described in
the previous section.

If (a) w<<x that is Ao
w
1 — '
then |Z¢] = A (2-48)
-
If (b) w=) that is A _
w
then  |z¢| = 218 (2-49)
boYghg
If (e) w>>)x that is Ao
w
then  |Zc| = —% (2-50)
boYgho

Therefore, the asymptotic plot of [Z.]
versus frequency, w, is as shown in Figure 2-4,




|Zc|1\'

w=A w

Figure 2-4

which indicates that at low frequency |Z.| is a
function of 1 while at high frequency|Zc|
Y

approaches a constant.

The variation of |Z¢| in channels with
different ) can be obtained by the same procedure;
the asymptotic plot is shown in Figure 2-5.

IZcbll\

Acw Y

Figure 2-5

Figure 2-5 indicates that for chamnels
with small A, |Zc| is almost identical but for
channels with large » the magnitude of Z; is pro-
portional to vA.

Moreover, for constant A it is obvicus

w
that |Z.| is inversely proportional to the height
of the chanmnel hg,.

2-4 THE INTERPRETATION OF THE SOLUTION OF THE
HYDRODYNAMIC EQUATION

The solution of the hydrodynamic equation

of the rectangular channel was derived in
Section 2-1, it is

X

H=Ke™+ K™ (2-51)

Q=5 (K™ + KTV (2-52)

DN et

C

By substituting (2-29) and (2-45) into
(2-51) and (2-52), we obtain

H = K e(@I8) X, g -(o¥]8) x (2-53)

Q Il | [_Kleax + 3 (Bx+8)
Zc

+ Kpe X 7 (8x-9)] (2-54)
From these equations we may obtain the
instantaneous value of q and h by substituting
them into (2-5) and (2-6) which yield:
h (x;t) = Kleax cos (wt+Bx)
+ Kze_ax cos (wt-8x) (2-55)

q (x;t) = -I-%—C[ [—Klsax cos (wt+px+0)

+ Kze-ax

cos (wt—Bx+eil (2-56)

The constant phase velocity associated
with each term in (2-55) and (2-56) may be obtained
by setting the phase angle as constant and differ-
entiating it with respect to time t.

For the first term it yields

oo w (2-57)
P 4t 3
and for the second term it gives
X -
Vp “dt " B (2-58)

which indicates that the first term represents a
wave travelling in the opposite direction of x
and is called a retrogressive wave while the
second term denotes a wave travelling in the same
direction of x and is called a progressive wave;
the magnitudes of the velocities are identical
and equal to w.

B

Both the progressive and retrogressive

waves are attenuated by a factor e-alx[ along their
travelling paths if x is measured from the middle
of the channel; from the conclusion in Sectlon

2-2, we may state that

(a) the waves will be attenuated faster
in a channel with larger A;

(b) the waves will be attenuated faster
in a shallow chamnel; and

(c) the high frequency waves will be atte-
nuated faster than the low frequency
waves.



From (2-35) we obtain

"

Vol=% 1
/ - 5 -1

/Zghy [h+(§ +g (2-59)

The asymptotic plots of |Vp| with respect
to X and w-aré shown in Figure 2-6 and Figure 2-7.

Vel ]
///
e
S e
Figure 2-6
Vel 1
_.///A
///
_—®
N R
Figure 2-7

From (2-59) it is obvious that the velocity
is proportional to the square root of the height
of thé channel, therefore, the wave travels faster
in a deeper channel

By comparing the phase angle of each term
in (2-55) and (2-56), it is obvious that the
horizontal flow, q, is always leading the vertical
movement, h by an angle 8. From (2-47) we know
that - )

(2-60)

<
n

] =
g

€ |>

Therefore, the difference between the
phase angles of the q and h-of each wave is larger
in a channel with larger A, or for the wave with
lower frequency.

The ratio between the h and q of each wave
is equal to the magnitude of the characteristic
impedance, Z-, of the chamnel. Therefore, the
conclusions in Section 2-3 are applicable to this
ratio.

2-5 POWER

According to (2-19) the power associated
with the wave is defined as

P = 7 ogRe (H'Q). - (2-61)
P =‘§%§€T [}Klzézux cos (2px+e)
+ K, 2€,2ax cos (ZBX*GH (2-62)
or P = 7—3—— K262 cos (26x+e]
[Z .
+ ET%ET Kp2e 2% cos (28x-0)
(2-63)

The first term represents the power
associated with the retrogressive waves while the
second term denotes the power associated with the
progressive waves.

2-6  DETERMINATION OF Zc AND ¢Y% FROM THE BOUNDARY
CONDITION

If the horizontal and vertical tides of a
rectangular channel arée known, and we define that

at x.=o0 H = Hj
Q=0Qi (2-64)

x =212 H = Hy
Q=0 (2-69)

Substituting these boundary conditions
into (2-15) and (2-16) we obtain the following set
of equations:

Hi = Ky + K, (2-66)

Qi =7, (atks) - (2-67)
_ Yo, -Y -

Hy = Kye¥ + Kye (2-68)

Q=7 (K™ + Kpe*) (2-69)

(o

From (2-66) and (2-67) it is obvious that

K =7 (- QiZe)

(2-70)




Ko =3 (B + QiZd) (2-71)

From (2-68) and (2-69) we obtain

Ho + ZQo = 2Kpe Y* (2-12)

Ho - ZQo = 2K;e¥* (2-73)
and by multiplying these two equations we get
Ho? - Zc2Q02 = 4KiK, (2-74)

Substituting (2-~70) and (2-71) into (2-74)
we obtain the following equation

- Ho? - Z¢%Qo® = Hi2 - Zc2Q42 (2-75)

. The equation of Z: is obtained from (2-75)

2.2 = Hﬁ ‘ (2-76)

o —HiZ _
or Zc = 2= qiz Qi (2-77)

The equation for ¢ can be derived by
substituting (2-70) into (2-73) which yields

vt Ho - ZcQo (2-78)
Hi - 2cQi

Substituting equation (2-77) into (2-78)
we finally obtaln

© o Hp QT - Qi - Qi - Hy

Equations (2-77)-and (2-79) indicate that

Zc and eY* of the rectangular channel can be
obtained in terms of the measurements at both ends
of the channel.




Chapter 3

sz_i'ious [forms of the Solution of the Hydrodynamic Equation-

'The constants K; and K, appearing in the
solution of the hydrodynamic equation have been
obtained in terms of the boundary condition as
shown in (2-70) and (2-71). By substituting these
equations into (2-15) and (2-16) we obtain:

Ho = cosh v2.Hj - Z¢ sinh v2.Q; (3-1)

Q = - %b sinh y2.Hj + cosh y2 Q;  (3-2)

These equations can be written in matrix
form as

Ho cosh v& -Zcsinh yo —Hi
= 1 (3-3)
Qo - Zc sinh y& cosh v [Qi

L

By defining -2 matrix (X) as

cosh vy# -Zcsinh 4|
= (3-4)
[X] B -% sinh ye cosh y&
c

The solution becomes

‘ Qo Qi

Equation (3-5) is called the X-form of the
solution. It is obvious that the (X) matrix has
the following properties:

MBS (-5

X117 = X2 = cosh & (3-6)
X12 = 2.2 (3-7)
X21

X11X22 - X12Xp1 = 1 (3-8)

where xjj is the element of (X) at row i and
colum j

By defining
W) = 7! (3-9)

equation (3-5) may be written as

ST -
Qi QQ

this is the W-form of the solution where

cosh v& Zcsinh vg

[W]= - (3-11)
Zc sinh y¢  cosh yg
where Wi; = Wyp = cosh y& (3-12)
Wi 50
—£ =7 3-13
wgy L (3-13)
WiiWap = WigWpp = 1 (3-14) -

- If (3-2) is re-arranged as in the
following equation: :

A
H; = smﬁ—yz (-Qo + cosh y& Qi) (3-15)

and substituting (3-15) into (3-1), the following
equation is obtained:

YA .
HO = -Zccoth y2 QO + m Q3 (3-16)

Equation (3-15) and (3-16) may be written
in the following matrix form:

. 'ZC “

Hi _ ZCCOth Y m
- |z (3-17)

Ho —Sm -Zccoth ye

Again we define a matrix [Z] as

- Zc ]

) ZCCOth YL m
[Z:l = ?]%ﬁ—-‘y—ﬂ: 'ZcCOth Y2 (3_18)

the Z- form of the solution becomes

T e

It is obvious that

Z1] = =Zp9 = Zccoth y2 (3-20)
Zc _

Z12 T <221 =~ Siphyk (3-21)

211222 = 212Z21 = -Zc? (3-22)




If we define a matrix [Y] equal to the
inverse of the [Z] matrix

M-Et 29
1 -1 -
ke LR L v e |
[v] = . (3-28)
Z—-—l— - L coth y2
c51nh YL ZC :

Then we may obtam the Y-form of the
solution as

ol e

It is obvious that the [Y] matrix has the
following properties:

Vi = -Ypp = %,C coth y2 (3-26)
Y.o = <Y, = ._'.1_ (3-27)
12 = Y21 = 7 5Tk 2
o 1 .
Y1122 = Y12Y21 = - 7z (3-28)

Similarly, a G-form solution is obtained

as:
i [hs | :
= [(;] ‘ : (3-29
Ho Qo ,
~-tanh y& 1
Zc "Cco5h vy
where [G] = 1 (3-30)
'—'_‘—Cosh 'YQ —thanh ‘Yl

and the following prdperties are true:

822 _ 52 _

T (3-31)
1

812 = 821 T GESR vt 1L (3-32)

g11822 - €12821 = -1 (3-33)

Again, if we define

1] = [¢] (3-34)

then we have the H-form solution as

H . ) .
| = ] {Ql} (3-35)
Qo Ho '

» +Z‘ctanh YL COS]’ll 1%
where [_H:l = (3-36)
1 _ tanh y2 :
cosh y¢  Z¢

B—z—; = _ZC v . ’ (3-37)
hi2 =hy = a7 (3-38)
hy1has - hyohyy = -1 (3-39)

Because the solution of different forms
are .derived from the same equation, they are
correlated to each other. For example, if we write
the X-form solution as

Ho = x31Hj + X12Q4 (3=40)
Qo = X21Hj + Xx22Qi (3-41)
and re-arrange (3-4) as follows
A — Yeo0s _
H = 2 (Qo - x22Qi) (3-42)

and substitute equation (3-42) into (3-40) we
obtain

B = ML o +[X12X21 - xuxzz] G (343

X21 X21
By defining
By = Xy1X22 - X12X21 (3-44)
we obtain
i X11 Ax ;
H. = = - — -
0 %, L x5, & (3-45)

Equations (3-42) and (3-45) can be written
in matrix form as

Hj 1 ~Xz2 1 Qi y
= (3-46)

It is obvious that this is the Z-form,

vwhere
X21  X21| -
2 = oy xy (3-47)
[ X21  X21
or zZ11= -%——if
1
212° %7 (3-48)
-1
2217 X21
- X11
22 oy




[. ] -HO— l: ] -H; |. X111 Xlzz‘ 1 szzl 'Wl_z; 1 —"Y11 1 1 -22.2 -'A; 1 T’Ag " 822 Y 1 "hl 1‘:
X] 1 = X[, Sl : . g Voo = s—F el f
1 Qo Q] Xy X2 Aw W21 Wi 12 “by . Yap| | P21 -z 812 -e1n 1 | 12 |h;  -hj
-'>i-Hi g H(; 1 X2z xX12] Wi Wi 1 [-Y22 1] -1 -fZ-1~1 A 1 -1 gs] | 1 E»-'Ah hyq]
W] - [v] Ix ‘, L Y1 | Zr |, o | | &1 :
" Qi Q] | F {Xar x] W21 - Wzl SR ANEA ] I i LT ) 811 Ag] | h22 1
] i [] Hj| T 1 (w22 -8 (Y1 Y12 1 |72 -Z12] 1 [ e | ;1 -hg)
Y] | | | = [¥] L = f . = i Bt |
{Qo: [Ho 12 oy x| | 121 “W11] {21 Y22 2 |-z1 oz 822 | -821 1 1 lha1  tp
7] [Hi] - 2] Qi 1 x5, 1] 1 [w - DETID SPY z211 212 P EETY 1 lay iz
] | | =z S = nn | 1 L !
' Hot Q| [|* 2! |-y xn1 Va1 |1 W =Y21 Ynu Z21 222 g1 821 Ag] 22 1 -hy; 1
[] [Qi] [G] Hi] 1 x5, 1] 1 [Way ] 1 oy Y13] 1 1 ~212] g11- 812 1 f-hzzA ~hy2]
G = e 1= = Pl v=1" — _ v _ 2 : :
' Ho, Q| | "2 [ x| | 1 ~Wig & Y21 1 P11 Hzyy a 821 822 *h -hy1 hyy
[] [H;] [i] Qi | ETE] 1 [z 7y 1 [y Y] 1 [z zia] | (e ceiz] hiy  hy,
H =Tdl |} | & L 1 : 1 L |® ,
Qo - |Ho R W2z I “Wa1 | Va2 Y12 1 222 [-z21 1 g l-g21 gn hay * hyp

TABLE 3-1 CONVERSION TABLE




- By using the same procedure we may obtain
the relatlon between different forms of solutions,
the results are tabulated in Table 3-1.

In a rectangular chammel, the impedance

and admittance matrix can be computed if the Hand .

Q at both ends of the channel are known.

Consider the [Z]

matrix for example, by

applying the conditions in (3—20) and (3- 21) the

equations beccme .

Hi = ’ZuQi + Z12Qd

Hy = 'leQl = zllQo

(3-49)
(3-50)

From these two equations, the equatlon for

z,; and z;, can be derived:

211 = pii a0 (3-51)
P V Ml o
Zyp °© Q1 = Qo (352]

~The values of z,, and z,; follow directly
from (3—20) and (3—21)...

By usmg the conversmn tablé in Table
3-1, the equation for other matrices can be
der1ved the same result as (3-51) and (3-52) can
be obtamed by following the same procedure. The
tesults are tabulated in Table 3-2.

X = % * 2 (s + HoQo) |z oree = (s HQY)
X1z = - 1 (Hiz - Hoé) [ | 212 = <221 = ;'% (5o + HoQ1]
Xm:'%‘(Q QO) ;A=Q Qo

Wiy = Wpp = --(H1Q1 + HoQo) cls = gz1 - %’(HiQo + HoQij
wip ?% (Hi% - Ho?). g22 = '% (Hi2 - Ho?)

wo1 = 3 (Qi2 - Qo?) A =HiQj +HoQo -

b = HiQo + ey <1 (- 100

’Yii‘= ¥yy = 5 (HiQ + ﬁoQo}“ hyp = hyy = 1 (Hiqo + Hot)
Yig = a1 = = L (Hig + HoQy) H hos = - & (32 - Q?)

4 =.Hj? - Hy? 4 = HiQj + HolQo |

TABLE 3-2-.

11



Chapter 4

Block Diagram Representation of the Redangz)l¢r Channel

From the previous discussion, it is obvious

that a rectangular channel can be represented by
the block diagram shown in Figure 4-1,-

Qi Qo
Hj [a] H
PR B 1———-L°—-o
Figure 4-1

where the block represents the channel which is
characterized by the [A] matrix, which could be
[X], ], [Y], IX], [G] or [H]. In this diagram
H and Q denote the vertical movement and the hori-~
zontal flow respectively, the arrow of Q indicates
the direction of flow at the end of the channel.
The subscripts i and o denote the input and output
ends of the chamnel respectively. .

If a channel is divided into two rectangular

channels in series, it can be represented by the
block diagram shown in Figure 4-2.

Qi Qoi Qi Qo2
Hyy [Xu] "*'m ';‘ia [X z] Hl 02
Figure 4-2

where we are using [X] matrix to denote each

section of the channel, and their X-form solutions .

are
Hp; 4 |Hi

1 [QOJ s [Qj e
.H02 HiZ ;
[Qozjl ) [XZ] I:Qiz] “s

According te the boundary conditions
assumed at the beginning of Chapter 1 we know that

", = His (4=3)

Qi1 = Qi2

1 2

—E(]=

By using these conditions, the following
equation can be obtained from (4-1) and (4-2)

[Ho, ] ~ |Hia

o b ] o
_ [Ho, | _ Hi,
or ™ [XJ th] (4-5)
vhere [x] = [x2:| [xl:] (4-6)

From (4-5) it indicates that [X] is the
equivalent [X] matrix of two channels in series,
the result can be extended to several chamels in
series and the equivalent LX] matrix is therefore -

[+ [ foed e B[4

where n is the total number of channels in series.

(4-7)

If we assumé that

: [cosh u, ~Zcysinh uy]
[xl] | (4-8)
i - Ty sinh ML | cosh u1_
. [cosh 11y -Ze sinh p,)
[XZJ = ) (4-9)
_- 75 s?.nh us cosh uz_
& pp = eV14 (4-10)
nnere : -
up = cY2R2

by matrix multiplication we obtain

cosh u; cosh yu, Zcp cosh p; sinh y,

Z . L - .
+ -Z-‘C;-‘z- sinh p; sinh uy +Zcy sinh yp cosh up
J
i E sinh u1 cesh ug cosh 'u; cosh usy
. Zeo . .
+ 57— cosh yy sinh up| |+ %2 sinh u; sinh up
c2 Zcy -

(4-11)
For the special case when

Zey = 2c2 = Ic




equation (4-10) can be simplified as

[J cosh u ~Zcsinh u (
X 4-12)
- 512h u " cosh u
c
where u = uj + uy (4-13)

In general, if several chammels with
identical characteristic impedances are in series,
the u of the equivalent channel will be .

(4-14)
i=1

The matrix. [X] of the equivalent channel
will retain the properties in (3-6) to (3-8).

From (2-44) it was shown that
' 1. . (A
es—t= F7 @
bo Vgho °
Therefore, if the x of channels are the
same, then the condition for identical Zg for these

channels is

bolﬁ:l;=

(4-15)

constant (4-16)

In the case of two channels in parallel,
the block diagram representation is as shown in
Figure 4-3,

Qjz Qo2
*tlz [Yz] {‘oz‘
»QI> QU, Qol Qo
%: {'il [Yn] '%on Il'o .
Figure 4-3

The channels are desctibed by Y-form
solution as

[S:j - [v] [Hn} (4-17)
m "I m a-18)

with the boundary conditions
Qo = Qo1 + Qo2

Qi = Qi1 + Qi2

o . (4-19)
Ho = Hp1 = Hoz
Hi = Hil = Hj,

By adding (4-17) and (4<18) and applylng
the boundary condition we obtain

[j [Y]Ej | |
where [Y] = [¥;] + [¥g) (4-21)

It is obvious that the result can be
generalized as

M- 1 [

i=1

(4-20)

(4-22)

where n is the number of chénnels in parallel.

From (3=24)
[coth w1 -1 B
- ZCI Zc15inh H1
[Yl:! = 1 ~coth 1 (4-23)
| Zc18inh 1y Zey |
[coth u2 -1 R
Zcz Zczsinh 1'%
[:Yz] - 1 -coth u» (4-24)
ZS;s18h 1; " lcr |
where  pup = e'1%1
(4-25) .
Ny = cY2t2
the equivalent [YJ matrix is obtained as
[Y]
coth uj + coth uo -1 1 ]
Zc1 Zco Zc151nh W Zczsinh Hp
} + 1 =coth u1 _ coth u2
Zoisinh yy Zcosinh s Zc) Zcy
(4-26)
For the special case when
Mp T oHp T (4-27)
equation (4-26) is reduced to
coth u -1
Ze Zosinh u
Ed = 1 -coth u (4-28)
. chiﬂh u ZC
1 1 1
where + = + 4-29
c Lo Zgz (4-29)
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In general if n channels with identical
i are in parallel then the Z¢ of the equ1va1ent
channel becomes

n
7.= 1 73 (4-30)

i:l Ll ) N
Since . s
w=e't . (43D

14

substituting (2-26) irto’ (4-31) we obtain

4-32)

u=e

. Therefore, the condltlon for identical ¥
for channels with the sdme A is

= constant 5

L
y




Chapter 5

Analysis of the .W,éwe Motion in a Redahgulqr Channel

5-1 THE GENERATED SOURCES OF WAVES IN.AFCHANNEL

Waves in a charnel mamly originate from"
the tidal waves generated in the ocean, and are -
affected by the runoff d15charge of water into the
channel, Therefore, we can consider there is an
equ1va1ent source at the’ end of the channel as
shown in Flgure 5<1.

_________ 1 o ———

f Q_ Qi

! } o

-7 L TI [A]‘. ’To i L

b : |

e CHANNEL R
SOURCE | SOURCE 2 _

Figure 5-1

Edch source con51sts of a generator ¢ and
an internal \immittance, I, the generator can be a-
vertical movement generator or horizontal flow
generator; the former is associated with an inter-
nal impedance as shown in Figure 5-2a while the
latter is connected with an internal admittance
as shown in Figure 5-2b.

Ys Hg

”SCE B

(a) ' (b)
Figure 5-2

The source is considered to be independent
of the channel, so that any change in the chamnel
will not affect the source. Therefore, once the
values of Hs and Zg or Qg and Yg are determlned
they will be corisidered 'as constants regardless
_of any change to the channel

matrix [A] of the channel could be [Y]
. Dﬂ [C] or [H] depending on the type of sources
" connected at both ends of the channel as described
in Chapter 3 and tabulated in Table 5-1.

[a]
(1"
- Hs Qs 1]
o o [d] |
s o [Y] ]

IR O
TR

Table 5=1

Consider the case where both ends of the
channel are connected to the vertical movement
generator source as shown in Figure 5-3.

] — Qo Zge ,
T T '
Hy [Z] Ho ﬁ”sz

Figure 5-3

: Zs:
”;‘——{::3

_ The Z-form solution of the channel is'

' [Hi] [211 z12} Q3
= (5-1)
- HO . 7 221 : 222 QO ‘
If we define th_at‘
H =2Q

(5-2)

where H 'is the vertical movement drop across the
impedance and Q is the hotizontal flow passing -
through Z; H is con51dered p051t1ve in the d1rec— :
tion of Q.. -

Then we obtain

(5-3)

Hi= Hs; - Zs,Qi

Ho=Hs, + Zs,Qo - (5-4)

Substltutlng (5-3) and (5-4) into (5-1)
we obtain

15



Hsy - Z5:Qi 2y) Z12 Qi
= (5-5)
[Hs2 + Z52Q0 221 Zo2 Qo
which can be written as
- A :

Hs; 21y + Zg, z212] 1%

= , (5-6)
Hso| |22y Z33 - g2} |Qo

L

Using the same procedure, the equations
for various combinations of sources at the ends
of the chammel can be generalized as

%1 a) +In ayz 61
= . (5-7
$2 az) azz + Ty 6o
where the relations between ¢, ¢, I'y, T2, 0i,
6o and [A] matrix are shown in Table 5-2.

$1 b2 Ty Iy 8i 60 [A]
"Hey Hsy I “Zs; Q. Q [z].
Hs; Qsz2. Zs1 -Ys; Qi Ho [H] |
@) Hsz Ys1 Zsz Hi Qo [G)
Qs1 Qs2 Ys1 -Ys; Hi Ho [Y]

Table 5-2

From (5-7) it is obvious that since there
are four depéndent variables, ¢;, ¢, I'; and I'p in
two linear equations, we cannot solve for the
boundary conditions. However, we might assume
that

(a) If the source Tepresents an ocean then
the internal impedance is negligible.

(b) If the source is a river then the
internal admittance is negligible.

By these assumptions, a river is considered
as a horizontal flow source while an ocean is
equivalent . to a vertical movement source. The
overall system is approx1mated as shown in Figure -
5-4.

i C:i [a] ) $2 e

ei 90

Figure 5-4
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with [(h] - [4] ei] (5-8)
$2 ' 6o :

where the value of ¢; and ¢; are equal to the
corresponding boundary conditions.

5-2 WAVE CALCULATION

" To.calculate the wave in a channel we
should determine the sources at both ends of the
channel, and from these determine the type of
matrix to be used in the calculation according to
Table 5-2. Usually, because a channel is divided
into sections in series the overall matrix of the
channel is obtained in [X] matrix, and we must
convert the overall [X] matrix into the type that
is the opposite to the type of sources by the
conversion table in Table 3-1. By this procedure,
it is assumed that (5-8) is determined.

From which we obtain:

[J-w 1,

After the value of 8 and 65 are deteimined, the
wave at any section can be calculated, proceeding
from either end of the channel.

For example, if the schematic diagram of
a channel is as shown in Figure 5-5

OCEAN | 2 3 RIVER

CHANNEL
Figure 5-5

which is represented by the following block
diagram

[~]
(=]
~

Y-

ol | e | B | b

o/
x
2
I

Figure 5-6




The overall [x] matrix is obtained as
[x]= [x] [xa] [

From Table 5-2 it follows that we must
convert the [X] matrix into [H] -! matrix, that is,
[G] matrix, and obtain

Qi Hsy

Hg Qs2

The values of Qi and H, are therefore
determined.

(5-10)

(5=11)

The values of H;, Q; and H,, Q, can be
calculated from

;] Hs,

- [x (5-12)
Q] ] {QJ

and B [w] [HO} (5-13)
Q2] Qs2

5-3 MULTI-TERMINAL CHANNEL

If a channel has more than two terminals
then the procedure of calculation should be modi-
fied as explained in the following paragraphs.

Suppose a channel has three terminals and
is represented by the following block diagram.

Qo Qiz2
— I T ——
¢ [AJ TOI Tiz [Az] P2
8, ' ‘ 8,
Qis
Ti Dﬂ E>¢3
8,
Figure 5-7
Then we have
o1 ] [ Q]
= |:A1] (5-14)
Qo1 | Hon |
i, | i, | 5-15
- [ -
L2 | 02

Qis His
[ ] = [ag] [ : (5-16)
¢3 6

where the matrix [A] can be any matrix shown in

Table 5-2, depending on the source associated with
the channel.

By expanding the above three equations we
can obtain six linear equations.

¢1 = ajple; + ajp'Hoy (5-17)
Qo1 = a21%6; + a5,'Hoy (5-18)
Qiz = a11Hjz + 23,%0; (5-19)
02 = ap1%Hip + az,%6; (5-20)
Qis = a11°His + 21,%03 (5-21)
3 = a21°Hj3 + a;%03 (5-22)

where the superscripts of the matrix elements
denote the channel numbers.

By applying the boundary conditions that
Qo1 = Qiz2 * Qi3 (5-23)
Ho; = Hi, = His

we may obtain the following equation from (5-18),
(5-19) and (5-21).

(5-24)

ap1%81 + apy'Hoy = a11%Ho; + ajp?e,
+ a11°Hp; + 212%;

which yields

(5-25)

-a1101 + 21,26, + a0

Ho1 = a5,] 2 3 (5-26)

- a51° - an

By substituting (5-26) into (5-17), (5-20)
and (5-22)we obtain ’

| 1 1 1 2
a a a a
¢1 =[a111 - 12 21} el + 12 12 92
A A

1 3

+ 212 2127 o, (5-27)
&
a,,2 g,,1 , 21,2 2,2
9p = =217 @1 g, 4 |a,,2 + 2127 3017,
A A
2 5.,3 v
4+ 217 212 03 (5-28)
A
3 1 3 2
a a a a
03 =-_2217 321 4, 4 331" A1p" 4
A A
3 3
a a
+|ag,3 + 3317 2127} 4,
[ — (5-29)
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where A = az,! - ap? - a;® a (5-30)

and can be written in matrix form as

41 81
loa| = [&] e (5-3D)

~|¢$3 - 83

where EAJ
ajjta-ajplay, ! a1pla;p? ajptar,?
1 {-ap1%ap;! azp®a+az2an az1%a;,’
A

U laalan ! a1%a1p2  apydatapida;,?

(5=32)

It is obvious that the‘ dimension of the
matrix (A) is equal to the number of terminals of
the' channel.

"From (5-31) the value of el, 62, and 63 is
obtained from

61 _ -¢1

-1
62| = [&] o2 (5-33)
83 ¢3

By using the result together with the
values of ¢;, ¢, and ¢3 the tides at any section
can easily be calculated. .

5-4 POWER TRANSFER

According to the definition in (2-19), the
average active power is defined as .

P =7 ogRe (HQ) (5-34)

By defining Pi as the power input to the
channel and Px as the power at x distance from the
input end of the chamnel, we obtain

p; = % ogRe (Hi*Qi) (5-35)
Px = 1 ogRe (Hx*Gx) (5-36)
Since Hx =.X3;Hji + X1,Qi (5-37)
Qx = X21Hi + X55Qi (5-38)
we obtain
He* = X0 Hi* + x0,%03* (5-39)
‘therefore
Hx*Qx = Xli*xziHi*Hi + X)1*Xp,Hi *Qi
+ X12*X21Qi*Hi + X12*%X22Qi*Q1 (5-40)

18

Because
Hi*Hj = [Hj |2
Qi*Qi = Qil?

Therefore, the real part of (5 40) is
obtained as

Re (Hx*Qx) =
+ Re (x11*Xp2 Hi*Qi)*+ Re (X;2*X21Qi*Hi)

|Qil? Re (x12*X75)

(5-41)
(5-42)

[Hi|2 Re (x11%*Xp1)

+

(5-43)
Since
Xj1*X5, = cosh yx cosh y*x
- %-(cosh 2ax + cos 26x) (5-44)
X12*X5y = -Z¢* sinh v*x [Z:I sinh yx
e] 26 ) .
=5 (cosh 2ax - cos 2gx) (5-45)
X1p*Xpp = =Zc* sinh y*x cosh yx
Zc* .
.= _’T (smh 2a% - Jsm ZBx) (5-46)
X173*X51 -=-cosh y*x [2—1—:| sinh yx
C .
= - 7%5 (sinh 20x + jsin 28x)  (5-47)
where Zc = |Zc| 79® (5-48)
= Re - jXc . (5-49)
By defiining
Yo = 2 = Ge + jWc (5-50)

YA

and substituting theée'results into (5-43) we
obtain

. P
Re (Hx*Qx)= - IH%| (Gesinh 20x - We sin 2gx)
+ % (cosh 2Zax + cos 26x) Re (H'Q)
+—%-' (cosh 2ax - cos 28x) Re (ejzeQi*Hi]
- =5 (Resinh 2ax - Xc sin 2x)
' (5-51)
Since S I
Re (e7%° Qi*Hi) = Re,[;’ng (Hi*Qii]

cos 26 Re (Hi*Qi)
+ sin 26 Im (Hi*Qi) (5-52)




‘which shows that the imaginary part of Hj*Qji occurs
in (5-52), this term is called the reactive power
and defined as

= -Ppy sinh 2ax + Ppj

(Pr)i = £8 In (Hi*Qi) (5-53)
By defining

Phr = 5B |Hil2Gc Ppj = 55 [Hi|%W  (5-54)

2
88 1Qi|%Re Pgi = 35 [Q (5-55)

Par = 3 7 1Qi1*%e

The equation for average power Px becomes

sin 28x"

"+ (cosh 2ax + cos ZBX) P

PX=

“Pqr sinh 2ax + Pgi sin 28x

+ [cosh 2ox - cos 28x) (cos 26 P;

"+ sin 26 (Pr)i)
(5-56)
By cblle¢ting'tefms

-Phy sinh 2ox + Phi sin 28x

-Pqr sinh Zax + Pgj sin 2gx
+Pj [cosh 2ax (1 + cos 26)

+ cos 28x (1 - cos ZGi

+(P)1 (Cosh Zax -*cos 28x) sin 20 (5-57)
equation (5-57) can be written as
x = =(Phr *+ Pqr] sin 2ax
.+(Pﬁi + Pqi) sin 28x. .
+2p§ (cos26 cosh 2ax + sin%e cos 26x)
+[Pfjii(cosh'2ux - cos Zéx):sin 20 V (5;58)

The power at the output end of the channel
is obtained 51mp1y by replac1ng X by 2.

PO = -(Phr +'qu) S'ln 208
+(Pni + Pqi) sin 282
+2P; (cos?e cosh 208 + sin?e cos 282)

+(Pr)i (cosh Zag - cos 282) sin 26 (5-59)
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Chapter 6

Electrical Analogue for the Wave Motion in a Channel

6-1 INTRODUCTION

It has been shown that by applying a
certain degree of approximation wave motion in a
channel can be represented by linear equations.
Because similar equations for voltage and current
are found in some types of electrical networks,
these networks can be used to analogise the
chamnel, with the voltage and current analogous
to the vertical movement and the horizontal flow
in the channel. There are two types of analogy
between the electrical network and channel,
voltage-vertical movement analogy and voltage-
horizontal flow analogy. The former simulates the
vertical movement and horizontal flow by voltage
and current respectively while the latter simulates
the vertical movement and horizontal flow by
current and voltage respectively.

The type of analogy to be used depends on
the nature of the problem. For the constant
voltage source is more conveniently used in elec-
trical networks. Therefore, if the waves in the
channel are generated by an equivalent vertical
movement generator then the voltage-vertical
movement analogy is used, otherwise the voltage-
horizontal flow analogy is applied. Moreover,
the value of the equivalent resistance, R, induc-
tance, L, and capacitance, C, of the network will
not be the same for different types of analogy,
therefore, only the one which requires practical
values of R, L and C is chosen.

In either type of analogy there are some
different methods to simuldate the channel,
depending on what kind of mathematical represen-
tation of the wave motion in the channel we are
referring to.

For convenience, the partial differential
equations of the wave motion are rewritten from
(1-3) and (1-4).

3q 3h | -
X + bo 3t 0 (6-1)
& —)\- - L .a_q- = -
X * gao Q* gag ot 0 (6-2)

These equations are called the partial
differential form of the wave motion equation.

If the equations are integrated with
respect to x and we assume that the time variation
of h and q is constant, and q is linearly distri-.
buted along a section of the channel of length
Ax, then we obtain

20

qz - q; + boax %% =0 (6-3)
A
h, = h; + 2835 tx (a2 + QI)
+ —AE— d { + =0
Zgag at 92 Q) = (6-4)

where the mumeric subscripts represent the waves
at two ends. of the section respectively.

These equations are called the finite
difference form of the wave motion equation.

The above two sets of equations together
with the Z- and Y-form solution of the wave
motion in a rectangular channel are the basic
equations used in the following analogy technique.

6-2 ELECTRICAL ANALOGUE FOR THE PARTIAL DIFFEREN-
TIAL FORM OF THE WAVE MOTION EQUATION

Figure 6-1 represents a section of 2-wire
transmission line,

i(x) ¢ 2a
_________ — 14-' ———— ————
+
v(x) i
_________ - e ———
x
Figure 6-1

wheré a = radius of the conductor

b = distance between the center of two
conductors

i = the current passing the conductor at x

v = the voltage across the two wires at x.

The relationship between voltage and
current along the transmission line is represen-
ted by the following equations:

—.-+Gv+C:—¥=0 (6-5)

X




3V . 9l _ . -
i Ri+ L E 0 (6-6)

where R and L represent the series resistance and
inductance per unit length while G and C denote
the leakage conductance and capacitance per unit
length.

The values of R, L, G and C can be appro-
ximated by the following equations (King (3)}:

-1 e -
R=1a (Za1 _ (6-7)
D S VL TR -
Lem (Tt 73 (6-8)
G = o (6-9)

g
C =% (6-10)
30
a
where ul, ol = the permeability and conductivity
p ty _
of the conductor
u, o = the permeability and conductivity

of the media separating the two

wires.

w = angular frequency of the signal

The above equations are subject to the
following restrictions

b>>a (6-11)

a ;/u)o‘IuI >> 10 (6"12)

(A) VOLTAGE-VERTICAL MOVEMENT ANALOGY

If a medium with very small conductivity
is used to separate the wires, then the leakage
conductance can be neglected and the equations
become

3i v _ _
Vv . 31 _ _
™ +Ri + L pes 0 (6-14)

By comparing these equations with equation
(6-1) and (6-2), it is obvious that they are ana-
logous. The analogic parameters are shown in
Table 6-1.

Therefore, by defining

h = kpv

q = kqi

(6-15)
(6-16)

e = kxxXe ‘ (6-17)

te = ktte (6-18)

we = 1 we (6-19)
ke

where the subscripts c and e denote the channel and -
electrical network respectively, and substituting
(6-15) through (6-19) into (6-2) we obtain

3i kx v
=+ : = =0 6-20
v Kk 2 Kkx 1A
e EE gap" k¢ gap dte
(6-21)
TRANSMISSION
CHANNEL LINE
h v
q i
bo C
A
—_ R
gdo :
1
— L
gao

Table 6-1

Therefore, the relationship between the
parameters in the transmission line and the
channel can be obtained as

gk
R = 3%%55 (6-22)

1 - gk

* = ktkh

A
ga0
1
545 (6-23)

C = khkx bO

-k;rt (6-24)

The scaling factor must be adjusted to
provide a practical value for R, L and C of the
transmission line.

(B) VOLTAGE-HORIZONTAL FLOW ANALOGY

- From (6-7), if a conductor with very high
conductivity is used, then the resistance R can be

neglected. The equations of transmission line

become -
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IV 9i _ » o .
Lo O (6-25)
-3 v _

E*‘GV"'CB—t—O (6-26)

Obviously, the analogy between the wave
motion in a channel and the voltage-current in
transmission line is obtained as shown in Table
- 6<2. : o

" TRANSMISSION
CHANNEL LINE

q v
“bo L

X .
- G
gao .

1
—_ C
gao ’

Table 6-2

The scaling factdr in (6-15) ard (6-16)
are interchanged as

h = khi
q = kqv.
Equations (6-22) through (6-24) are still

valid except R is replaced by G, and the expres-
sions for L and C are interchanged.

(6-27)
(6-28)

~ This kind of analogy has the advantage
that the. cross-sectional variation of the channel
can be accomplished simply by the varidtion of the

size of the wire and the spacing between the wires.

Therefore, the same technique can be applied to
simulate the non=uniform channel. However, the
technique can be used only for one-dimensional
flow, and there is some difficulty. in the current
measurement along the lines; moreover, the
mounting of the line will affect the R, G, L and C
parameters of the lines, therefore, it is suitable
for qualitative study only.

6-3 ELECTRICAL ANALOGY FOR THE FINITE DIFFERENCE
FORM OF THE WAVE MOTION EQUATION
(A) VOLTAGE-VERTICAL MOVEMENT ANALOGY
The network in Figure 6-2 is a T-type two-
part network. The voltage and current relation

for this network are shown in the following
equations: S .

22

R L L R
i 2 2 v 2 2 ie
AV VY ’ T AV
: r =
Figure 6-2
iy =i +C =0 (6-29)
R (. . L 5 (o, =

W-V1+7h1fh)+7ﬁfh+lﬁ=0
(6-30)

By comparing the above equations with
(6-3) and (6-4) it is obvious that they are .of the
same form. Therefore, the wave motion in a section
of a channel can be. represented by the voltage and
current in the network as shown in Figure 6-2.

Table 6-3 shows the analogy between these
two systems

T-TYPE
-CHANNEL - NETWORK
h » v
q i
botx C
A
— A R
gao X
1
——A L
gao X
Table 6-3

By using the same proportional relation
defined in (6-15) through (6-19), (6-3) and (6-4)
become

i, - i + F%%E botx 2= 0 (6-31)
: X . Ly
Vo = vy + T 2880 Ay [12 + 11)
. 9 S8 (i, +d) =0  (6-32)
Inkt Zgao at- V"2 T .

Therefore, the R, L and C components of




the analogical network are obtained as:

- (6-33)

k}.l_
C= ktkq bosx
k
=-d_ A -3
.R h gao °x (6-34)
L= Xq _ax (6-35)

By adjusting the scaling factors kh, Kq
and kt a suitable value for R, L and C can be
obtalned

(B) VOLTAGE-HORIZONTAL FLOW ANALOGY

The network shown in Flgure 6-3 is a n-type
two-part network.

)
njo
njo

Figui“e 6*_-3

The relatlon between voltage and current
in this network is obtained as:

\) .->V1+L—=0

Y3 (6—36)

_.g_t (Vl + Y2)= 0

[Sle)

iz - i +%~(V1 +V-2) +
(6-37)
It is obvious that these equations are the

analogues of (6-3) and (6-4) accordlng to the
relation shown in Table 6-4.

o T-TYPE
CHANNEL NETWORK
h : i
q v
bo L
A
= G
gao
i
gao . ¢

Table 6-4

By using the scaling factor defined in
(6-27), (6-28) and (6-17) through (6-19) the
equations for G, L and C can be derived and they
should be the same as (6-33) through (6-35),
except that R is replaced by G, and L and'C are

-interchanged.

This type of analogy has the advantage
that ‘it has a simple relation between the R, L
and C components of the network and the parameters
of the channel, and the same technique can be
extended to be applied to two=dimensional flow.
The only disadvantage of this technique arises
from the assumption that 22, 3% ate constant
throughout the secticn Ax and q is linearly
distributed along the section.

The effect can be reduced by decreasing
the length of the section which, however, in turn
will increase the number of components used in the
network.

6-4 ELECTRICAL ANALOGY FOR THE SOLUTION FORM OF
THE WAVE MOTION EQUATION

Figures 6-4 and 6-5 show the typical
symmetrical T-type, and n-type, two-part networks:

"z, | 4

> 1.4 ]
+ ; ' +
v) v

T-TYPE NETWORK

Figure 6-4-

T -TYPE NETWORK

Figure 6=5

The voltage and current in these networks
are governed by the following equations:
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vi] [z, + 2, -Z,| [
T-TYPE: = (6-38)
v, |22 -(zy + 22)]  |Ig]
, 1] [vi+Y, Y| [
T-TYPE: | |= (6-39)
] Y2 -+ )| [V

The solution of wave motion in a rectan-.
gular channel ca~ be expressed in many forms as
described in Chapter 3. Here, particular interest
is directed to the Z-form and Y-form solutions,
they are:

NI
Jof] e

By comparing these equations with (6-38)
and (6-39), it is obvious that they are analogous.

(A) VOLTAGE-VERTICAL MOVEMENT ANALOGY
If vertical movement is simulated by

voltage, by using the scaling factor defined in
(6-15) and (6-16) we may obtain -

_V]_— kq -I 1-
= —= |7 (6-42)
.VZ_ h [ ] [I2]
1] g M
= = |Y (6-43)
. RE1 “a [: ] V2|

By comparing these equations with (6-38)
and (6-39), we obtain '

T-TYPE: kq

I =g 221 (6-44)
Zy + 1y = % Z11 (6-45)

TRy, -y (6-46)
YYo=y (6-47)
From (6-44) and (6-45) we obtain

T-TYPE: Zl = 'klaq (le - 221) (6—48)
Similarly, we obtain

TR Yy = 2 (1 - o) (6-49)
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The equation for the impedance Z and
admittance Y of the networks can be expressed in
terms of the parameter of the chamnel by substi-
tuting the value for zij and yjj as shown in (3-18)
and (3-24) respectively. They are:

T-TYPE: 7 - zc (6-50
2 = T, STEh vE )
Zy = Z, (cosh y& - 1} (6-51)

m=TYPE: _kn 1
Y2 = ¥q Zosinh vE (6-52)
Y; =Y, (cosh y& - 1) (6-53)

Therefore, if the wave motion in the
channel is represented in Z-form then the T-type
network is used, otherwise, we use wn-type network
to simulate the channel. The components of the
network are given by (6-44) and (6-45) or (6-50)
and (6-51) for the T-type network and (6-46) and
(6-47) or (6=52) and (6-53) for the n-type network.

(B) VOLTAGE-HORIZONTAL FLOW ANALOGY

By using the same procedure, we conclude
that if the wave motion in the chamnel is expressed
in Z-form then the channel is simulated by n-type
network and the equation for the components of the
network are the same as (6-44) and (6-45) or (6-50)
and (6-51) except that Z is replaced by Y; other-
wise, if the Y-form solution is used, then the
channel will be simulated by T-type network and
its components are given according to (6-46) and
(6-47) or (6-52) and (6-53), with Z replacing Y
in the equations. Note that in this kind of
analogy, the scaling factors defined in (6-27)
and (6-28) are used.

After the impedance Z or admittance Y of
the network is calculated, then the corresponding
resistance, inductance and conductance can be
obtained by the following equations:

T-TYPE: R = Re [Z] (6-54)
L=2m[z] if m[Z]>0  (6-59)
C = we Im [Z] Im[Z] <©  (6-56)
m-TYPE: 2 - Re [Y] (6-57)
L = we Im [Y) if Im [Y] <o (6-58)
C= i—e In [Y] Im[¥] >0 (6-59)

where we is defined by equation (6-19).

This technique will produce more accurate




results if a channel can be approximated by
sections of uniform rectangular channel. However,
some calculations involving complex numbers should
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