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Preface 

In this publication an attempt is made to study the 
wave motion in a rectangular? channel using the method applied 
to electricalnetwork analysis. This method provides a clear 
and systemat-ic approach to solving problems of wave motion. 
Also presented are various ways of electrical analogue to 
the tidal motion in a chan_nel. 

The study described in this publication was carried 
out during the period the Tides and Water Levels Section 
functioned as a part of the Water Survey of Canada ‘in the 
Inland Waters Branch. 
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Chapter I 

Lz'nezm'zea’ Hydmdynamic Equation of One-dimensiond Flow 

In a river or estuary, the flow of water is 
predominantly in one direction and, therefore, the 
motion of water can be considered as one-dimen- 
sional motion. In this publication a channel 
’refers to the whole or a portion of a river or an 
estuary. 

Assuming a channel can be divided into ' 

sections of uiform width and depth and also 
constant De Chezy's coefficient, each section can 
be defined as a rectangular channel. At the 
boundary between channels, perpendicular to the 
flow, the following conditions can be assued to 
exist: 

qout (1'1) 

h + (1-2) 
qin 
h .. II 

:1 

II 

where qin and qout denote the horizontal flow 
entering and leaving the boundary while h- and 
h+ represent the vertical movement with respect 
to mean water level at the left-hand side and 
right-hand side of the boundary. 

The hydrodynamic equation of fluids con- 
sists of two equations: the equation of conti- 
nuity and the equation of motion. 

For an incompressible fluid, the equation 
of continuity in a rectangular channel is 

sq ah _ _ (1-3) 3 * ‘>0 E ' 0 

where be is the width of the channel, i.e., the 
length of the boundary. 

By applying the following assumptions that: 

_l. the effect of wind force in negligible; 
the flow is a laminar flow; 
the Coriolis acceleration is not taken into 
consideration; 

4. the convective derivative of the acceleration 
is negligibly small; and 

5. the bottom of the channel is parallel to the 
datu; 

the equation of motion of the fluid can be ex- 
pressed in the following equation: finonkers (lfl 

3 sh _ (l-4) -3-3-+),q+gaoTX,_._0 

where a0 is the mean cross-sectional area of the 
channel, g is the gravitational acceleration and 
A is defined as follows: 

= §£ g 'qm (1.5) 
31r Czaoho 

where qm is the mean of q in the channel, C is 
De Chezy's coefficient of the channel, 0 is the 
density and ho is the mean water height with 
respect to the bottom. The variables ao, be and 
ho satisfy the following condition: 

a0 = bb ho (1-6) 

Equations (1-3) and (1-4) are the basic 
equations considered in this publication.

A



Chapter 2 

The Solution of the Hydrodynamic Equation‘ 

2-1 GENERAL SOLUTION. 

Equation (1-4) can be rewritten: 

ah _)\_ °qi L '3_q= 2-1 vavxigao +.gaO. at 0_ C ) 

If we define:‘ 

Cw‘_‘°o
. 

‘c2-2) 
_ 1- We-.3 

-then (1-3) and (2-1) become: 

aq ah _ §§*Cw§€’.0 
. 

<2-33 

%;+Rwq+.Lw'%=0. (2-4) 

Assuming that the wave-is a periodic 
function of time t: 

‘h 
., 

%. +v.H*€.‘JW?) 
I 

(2.5) 

. 

'<1'7‘%(Qe3“’? 4 Q.*e'5”‘) 
. (2.-63 

where the superscript denotes the conjugate of the 
variable, and by substituting (2-5) and (2-6) into 
(2-3) and (2-4) we obtain 

gg 
+' jiwCwH = 0 

I 
I I 2 

(2-7) 

3;‘. + [Rw + jwLw) Q = 0 (2-8) 

If we define 

Y = jmCw (2-9) 
2 = aw + jmLw (2-10) 

Equations (2-7) and (2-8) become 

g9 + m = 0 
_ (2-11) 

3; + .ZQ = 0 (2-12) 

From (2-11) and (2-12)
2 E - fY,2H =.0 M (2-13) 

where Y is called the complex propagation constant 
and is defined as 

Y-/Z?" 
. 

(2-14) 

The solution of (2-13) is -'» 

H"= K19)‘ 4 K25“ ' 

(2-15) 

where K1 and K2 are the constants to be detennined 
by the boundary conditions of the channel. 

From (2-12) and (2-15) thelsolution for Q is obtained as H 
_

. 

1 
._ .. 

__ 
Q ‘ EC [‘K1€?'X " K2? YX9 ‘(2-16) 

where ZC is called the characteristic impedance of 
the channel and equal to ~. 7

Z ZC = ,-Y- 

='\/7— . 3 
_ 

.2 .(2.—17) 

The instantaneous power associated with 
the.wave is defined by Proudman (2) as 

(2—l8a) 

H-xE’jwt_) + Q-kE'jwt) 

P = oghq 
= %—pg (Hejwt + 

zlrog (HQej”"‘ + H*Q*e'j2wt' + H*Q + HQ*) 
(2-18b) 

Therefore the time average active tidal power can ‘ ’ 

be defined as 

P = %=pgRe [H.Q*) (2f19a) 

0T‘ 
.p = % pgRe [H*Q) _(2--19b)



The propagation constant, Y, the characte- 
ristic impedance, Zc, and_the power, P, are 

_ , 

discussed separately in the following sub-sections. 

2.2 HPROPAGATION CONSTANT Y 

From (2-14), the propagation constant is 
defined as 

' 

_ 
3 

(2-20) 

By substituting (2-9) and (2=l0) into (2-20), we 
obtain 3 

. , 
- 2-21 rw, ( ) 

If we define
_ 

_ Rw 
2 

_ 

t

_ ¢ ‘ 
33;; 

(2 22) 

then (2-21) becomes 

Y = 3» /WW /F — 54>‘ 
. 

(2-23) 

By substituting (2-2) into (2-22) and 
(2-23), y and ¢ can be expressed in terms of the 
dimension of the channel and its A. ‘

A ¢ = ag A 

(2-24) 

Y: = )'w 13o_ /1 - )2‘ (2-25) 
830 

‘Or = jig.) 

Vgho ' 

Equation (2-26) can be written in polar 
form as: ' 

. 

J
_ 

—— -_t '1
. 

Y = 9? + (D2)), 62‘ 
(In (P) 

"850 

where the absolute value of y is defined as: 

lvl = £L—— [1 + ¢2)3 (2-28) 
Vgho 

' Since y is a complex number, we may define 
that vs 

y = on + 3'8. (2-29) 

where 

a =lv|cos(g—.%tmt}n Q-an 

pa = |Y| sin [%--)%-tan‘1¢] (2-31) 

a and e are called the attenuation constant 
and the phase shift respectively and are always 
positive. By using trigonometrical manipulation 
equations_(2—30) and (2-31) become 

5;%;;_$if7T"$F - 1 1 '(2-32) 

2 _....; 
t

- 

5 
Végfii; 

J/T 1 32 + 1 
_ 

(2-33) 

The variation of a and B with respect to 
frequency w may be investigated as follows: 

Substituting in (2-32) and (2-33), the 
value of u in (2-24), we obtain _ 

a = ' A 

E E w - 

)\ 
2 

- 

_ _ rm +(;) +1 (“M 
If (a) m<<A that is ;;>1 

(0 

then a = B N /3? (2-36) 
. 7_Ti; 

(b) m = A that is g-- 1 

then . a =,.9:9i£ (2-37) 
/2213

2 

Vlgho _ 

(c) m>>X that is §f<1 
' 

CL) 

= 9-Z9§? . (2-39) 
Vzgho ' 

B= 1-4-» (2-40) 
/Zgho‘ 

From the above discussion the asymptotic 
plot of a and 3 versus frequency w may be obtained 
as shown in Figure 2-1. 

al’B| /Z - 

/,/’ (II: Zghoa 
,//. . 

// Biz,/Zghofl 
/ a'

/ 
I / // 

// ‘a’ f’ V .

f I ./? 

u)=X W 
Figure 2-1



Therefore, we might conclude that at low 
frequency both a and 8 are fuctions of 
high frequency a tends to be constant while 3 
becomes linearly proportional to m. 

Similarly, the asymptotic plot Ofla and B 
in terms of A may be obtained as shown in Figure 
2-2. = 

¢3B'

I /,—\/B J? x
x
\ \\_ /ff 

Av/’ \aI 
/[Z 

3/ 

X=w K 
Figure 2-2 

It is obvious that for channels with small 
A the attenuation constant a is linearly propor- 
tional to A while the phase shift 6 is almost the 
same, however, for channels with large A both a 
and B are proportional to /7. 

Moreover, for constant A” the propagation 
constant is independent of the width of the channel 
and inversely proportional to the square root of 
its height as shown in Figure 2-3. 

0.8 

..—B 

"0 

Figure 2-3 

2-43 CHARACTERISTIC IMPEDANCE 
According to (2-17), the characteristic 

impedance ZC is defined as 

/E, but at (2-41) 

_ 
By substituting in (2-41) the value of Z 

and Y as shown in (2-9) and (2-10) we obtain 

The equation of Zc can be expressed in 
terms of the parameter of the channel by substi- 
tuting equation (2-2) into (2-42), 

(2-42) 

Zc = 5:07 ,/1 -J (3) (2-43) 

°’ Zc = 
b 2% /1 

- 3' (3 (2-44)
0 

Since Zc is a complex number, it can be 
expressed in polar form as 

zc = |_zc| 
65° (2-45) 

( 
4)) where |Zc| = ;.1 + (47) (2-46) 

boVgHo 

e =-%- tan-1 
2-’ (2-47) 

From (2-47) it is obvious that 6 is always 
positive- Therefore, the phase angle of Zc is 
always negative and varies between zero and _ g, 
-depending on the value of A, 

U.) 

The asymptotic variation of the magnitude 
of Zc in terms of the frequencncm can be obtained 
in a way similar to that for a and 8 described in 
the previous section. 

If (a) w<<A that is A —>>1 
(.0 

then |zc| = 1 Z (2-48) 
be/as J4 

If (b) ..)=) that is A = 1 
(1) 

then ]Zc[ = 1.18 (2-49) 
bo'gho 

If (e) w>>A that is A<<1 
(A! 

then |zc| = 1 (2-so) 
bo‘/§E' 

Therefore, the asymptotic plot of IZCI 
versus frequency, w, is as shown in Figure 2-4,



IzcM\ 

w=)\ °" 

Figure 2-4 

which indicates that at low frequency IZCI is a 
fuction of l while at high frequencylzcl 

/J 
approaches a constant. 

_ 
The variation of IZCI in channels with 

different A can be obtained by the same procedure; 
the asymptotic plot is shown in Figure 2-5. 

lZc,l 

{=w N 

Figure 2-5 

Figure 2-5 indicates that for channels 
with small A, IZCI is almost identical but for 
channels with large A the magnitude of ZC is pro- 
portional to /7. 

Moreover, for constant A it is obvious 
that IZCI is inversely proportional to the height 
of the channel ho. 

2-4 THE INTERPRETATION or THE soLUTIoN or TH 
HYDRODYNAMIC EQUATION 

The solution of the hydrodynamic equation 

of the rectangular channel was derived in 
Section 2-1, it is ’

X H = KIEYX + K2e‘* (2-51) 

Q = %- (-K1eYx + K2e'*x] (2-s2) 
. C 

By substituting (2-29) and (2-45) into 
(2-51) and (2-52), we obtain 

H ; K1e(a+jB) X + K2e‘(“*jB) X (2-53) 

2 _ 1 _ ax + j (Bx+e)' 
Q _ |Zc~| [K16 

+ K2e'“X ' 5 (5X‘9fl (2-54) 

From these equations we may obtain the 
instantaneous value of q and h by substituting 
them into (2-5) and (2-6) which yield: 

h (xlt) = Kleax cos (wt+BX) 
+ K2e'“X cos (wt-Bx)‘ (2-55) 

q (xlt) = 
-l-%C—[- [-Klcux COS (wt+BX+6) 

+ K2e’“x cos (wt—Bx+e£l (2-56) 

The constant phase velocity associated 
with each term in (2-55) and (2-56) may be obtained 
by setting the phase angle as constant and differ- 
entiating it with.respect to time t. 

For the first term it yields 

V (2-57) 
P dt 8 

and for the second term it gives 
. = dx _ 2. _ vp aE.— B 

(2 58) 

which indicates that the first term represents a 
wave travelling in the opposite direction of x 
and is called a retrogressive wave while the 
second term denotes a wave travelling in the same 
direction of x and is called a progressive wave; 
the magnitudes of the velocities are identical 
and equal to 3,

8 

Both the progressive and retrogressive 
waves are attenuated by a factor e'°lx[ along their 
travelling paths if x is measured from the middle 
of the channel; from the conclusion in Section 
2-2, we may state that ‘

' 

(a) the waves will be attenuated faster 
in a channel with larger A;- 

(b) the waves will be attenuated faster 
in a shallow channel; and 

(c) the high frequency waves will be atte- 
nuated faster than the low frequency 
waves;



From (2-35) we obtain 

|Vb| ‘ g" 
, _ 

_ 

2 
1

I 

/ . 

A 2 —§ _ 

'/_2g'h'O_ 
(1 + (E) + 1 (2.-59) 

The asymptotic plots of IVpI with respect 
to Aiand w are shown in Figure 2-6 and Figure 2-7. 

l"P|‘ 

,r”7’/
I 

//// 

in cm 

Figure 2-6 

lVv|‘ 

—-”{°// 

xl...‘ .w 7A 
Figure 2-7 

From (2-59) it is obvious that the velocity 
is proportional to the square root of the height 
of the channel, therefore, the.wave travels faster 
in a deeper channel, “ 

. 
-

’ 

By comparing the phase angle of each term 
in (2-55) and (2-56), it is obvious that the 
horizontal flow, q, is always leading the vertical 
movement, h, by an angle 6. From (2-47) we know 
that - 

' 

' 

- 

“ ’ 

-1 
tan i_ (2-60) 

' 

(1) 

N|»—-I

' 

9: 

Therefore, the difference between the 
phase angles of the q and hrof each wave is larger 
in‘a channel with larger A, or for the wave with 
lower frequency. 

The ratio between the h and q of each wave 
is equal to the magnitude of the characteristic 
impedance, ZC, of the channel. Therefore, the 
conclusions in Section 2-3 are applicable to this 
ratio. 

2-5 POWER 

According to (2-19) the power associated 
with the wave is defined as 

P = %-pgRe [H*Q). :(2-61) 

P = ['K12>E2uX' COS (28X+9) 

+ K22e'2aX cos (ZBX-63 (2-62) 

or P = —§%§—TVK12e2“X cos (2Bx+e] 
C‘ 

. 

V 

- v 

p 

+ 
§%%ET 

K22e_2“x cos [ZBX-9] 

- 
‘ l(Z-63) 

The first term represents the power 
associated with the retrogressive waves while the 
second term denotes the power associated with the 
progressive waves. 

2-6 DETERMINATION 01: zc AND J“ FROM THE BOUNDARY 
CONDITION '

- 

If the horizontal and vertical tides of a 
rectangular channel are lmown, and we define that 

at x = o H = Hi 
Q = Q1 (2-64) 

x=9. H='I-lo 
' 

Q=Qo. ((2-65) 

Substituting these boudary conditions 
into (2-15) and (2-16) we obtain the following set 
of equations: 

Hi = K1 + K2 (2-66) 

Qi ='%t ('K1*K2) 
I 

{2'57) 

-HO = K19-Y” + 1<2e'Y“ 
’ 

— (Z-68) 

Q0 = Z1 
‘ 

[—K1eY“_ + K2":-“(J (2469)
C 

From (2-66) and (2-67) it is_obvious that 

K1 =-§~ (Hi — Q1-Zc‘) (2-70)



"K2. =% (H: + Qizc) (2-71) 

From (2-68) and (2-69) we obtain 

no + zcqo = 2195*‘? . 

_ 

A 

_ 

. 

» (2_.—72)_ 

H0 . zcqo = 2x15” (2-73) 

and by multiplying these two equations we get 

H02 ' zc2Qo2 =.4K1K2 (2-74) 

Substituting (2-70) and (2-71) into (2-74) 
we obtain the following equation

' 

‘ H02 ‘ ZCZQOZ = H12 "zc2Qi2 (2-75) 

_ 

The equation of ZC is obtained from (2-75) 

= H02 ' “'2 _ 2C2 
_ 

(2 76) 

or zc = (2-77) 

The equation for 3Y2 can be derived by 
substituting (2-70) into (2-73) which yields 

*5” = ?9—“'°.-. 
‘ Z0 9’ 

A 

(2-78) H1 - ZcQi 

_ 

Substituting equation (2-77) into (2-78) 
we finally 

.gY“ = HQ_¥9Qm_;»Qi? ',Qo '7g2,* Hi '(2-7§) 
' Hi /Q02 «Q12 - QiVFIS"' - Hi’ 

Equations (2-77).and (2-79) indicate that 
ZC and 2Y2 of the rectangular channel can be 
obtained in terms of the measurements at both ends 
of the channel.



Chapter 3 

Vafious forms of the Solution of the Hydmdynamic Equation‘ 

\The constants K; and K2 appearing in the this is the W—form of the solution where 
solution of the hydrodynamic equation have been _ 

obtained in terms of the boundary condition as [vfl_ 
Cosh Y“ Zcsmh Y” 

3 11 shown in (2-70) and (2-71). By substituting these - 

_ 
1 .nh 1 0 h 2 

( ‘ ) 

equations into (2-15) and (2-16) we obtain: ZC 51 Y 
e 

C 5 ‘Y 

Ho = cosh 72.}-Ii - Zc sinh y2_Qi (3-1) where W11 = W22 = cosh yfl. (3-12) 
1 . 

Q0 = — 7C sinh y!L.Hi + cosh yz Qi (3-2) - = ZC2 (343) 

form as 
These equations can be written in matrix wuwzz _ wlzwzl = 1 (3_1 4) _ 

Ho cosh ysz -Zcsinh yz Hi 
(3 3) 

follwinglgqfigggnis 
re-arranged as in the 

‘ 
1 . 

_

' 

Q0 
A 

- 
EC sinh Y2. cosh yz Q1 

H _ ZC 
i 

' (‘Q0 + COSh Y2. 

By defining -a matrix (X) as" - 

and substituting (3-15) into (3-1), the following 
cosh Y2, -Zc"sin.h yl equation is obtained: 

= 1 _ Z . - 
7‘: 

sinh Y2. cosh Y2 Ho =_ —ZCcoth Y9. Q0 + E33911? Qi (3-16) 

The so1uti_on becomes Equation (3-15) and (3-16) may be written 
in the following matrix form: 

Ho Hi ' -zc 
‘-' (3-5) Hi ZCCOth Y9. 

Q0 Q1 
H0 

= 
zc Z fix 

Y (3-17) 
.. . -.—j — Cco Y2 
Equation (3-3) is called the X—form of the —5mh Y2 

:::“:::’;a:; ;:.,;::::::3hat 
the ‘X’ "W we eeeee e eeeeee ten ee 

' .zc 
. Z _ 

x11 = x22 = cosh yr. (3-6) Fgoth Y,‘ s1r_1H_ Y2 
(3 18) £1 = ZC2 (3_-7) T1 

C 
Y2 "ZcC0th Y1 

X21 —y 

the Z— form of the solution becomes 
X11X22 - X12X21 = 1 (3-3), 

H Q _. i ' 'i 

where xij is the element of (X) at row i and 
[ :l 

= 

i: J 

(3-19) 
colurm j H° Q° 

By defining It is obvious that 
(W) = (X)‘1 (3'9) 

211 = -zzz = Zccoth ya (3-20) 
equation (3-S) may be written as 

H_ 212 = ‘Z21 = - 

M = fwlm (3-'10) 
51 

Y. 

7-112122 * Z12Z21 = 'Zc2 (3423Q1



If we define a matrix [Y] equal to the 
inverse of the [Z] matrix 

(Y1 L21“ (3-23) 

1 _ . 

TC coth Y1). 
‘

I 

[Y] = 
1 

. 

1 
. (3-24) 

- 
2; coth Y9. 

Then we may obtain the Y-form of the 
solution as - 

= [Y] 
V 

(3325) 

It is obvious that the [ufl xnatrix has the 
following properties: 

Y11 .= 4'22 = coth Y2 (3-26) 
c . 

_ _ ; *1 
_

_ V12 ' 721 — 
Zcsinh Yak 

(3 27) 

1 , 

’y11y_2,2 " y12y21 = ‘ (3-Z3) 

Similarly, a G-form solution is obtained 
_as:« 

Q" Hi . 

= [G] 4 

« (3-29 
Ho Q0

, 

-tanh In 
‘ 

1 o, 
‘z-"C acoshyz 

where .= 
1 _ 

(3-3.0) 

-C3§E—-YT] -Zctanh ‘YJL 

and the following properties are true: 

E2; = . 2 _ 
‘gm ZC (3 31)

1 
812 = £2) = ;3gfir;; (3-32) 

E11822 ' 812221 = "-1- (3-33) 

Again, if we define 

[H] _= [G]'1 (3-34) 

then we have the H-form solution as 

H‘ .4 Q’
. 1 

[H] 
[ 

1] (3-35) 
Q0 Ho 

» 

+Z|ctanh Yz cos]'11 YBL 

where [H] = 
_ 

(3-36) 
1 _ tanh 12 ' 

cosh yz 
V 

ZC 

1-.l_1.1_ = _ ' 

' _ 
112.2 zC_ 

V 

pp (3 37) 

hi2 = h21 = Eggfi-gf (3-33) 

h1ih22 " 11121121 "' '1 (3-39) 

Because the solution of d_i_f_fere'nt forms 
are derived from the same equation, they are 
correlated to each other. For example, if we write 
the X-fom solution as 

Ho = X1131‘ "' XI2Qi (3'-'40) 

Qo ='x2’1Hi * X22-Qi (341) 

and re-arrange (3-4) as follows 
1 .- 

Hi = E ((20 - X22Qi) (3-42) 

and substitute equation (.3-42) into (3-40) we 
obtain 

Ho = 1“—1 Q0 +[———————"”"2.1 
’ "1.1"—“] Q1 (3-43) 

X21 X21 

B)’ defining 

5;: = XHX22 - X.12X.21 
3 

(3-44) 

we obtain 
“ = 51.1. _ A_X- ’_ Ho X21 Q0 X21 Q1 (3 45) 

Equations (3-42) and (3-45) can be written 
in matrix form as

_ 

Hi 1 -X22 1 Q1 - 

Ho " ‘Ax ’‘11 Qo 
It is obvious that this is the Z-form, 

where 

X21 X31 
[Z] - fix *1, (3-47) 

321 X21 

2: or z11= --35% 

_ l 212'‘ x2'1 (3'48) 

_ -1 Z21‘ X21 

= x11 322 X21
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V. 
H 

> using the same procedure we may obtain 
the relation between different forms of solutions, 
the results are tabulated in Table 3-1. 

In a rectangular chaxmel, the impedance 
and admittance matrix can be computed _if._. the H ia.I_1.d 1 

Q at both ends of the channel are 1<nown.
' 

Consider the [2] matrix for example, by 
applying the conditions in (3-20) and (3-21), the 
equ_a}t»i_Q_n_s become _ . 

1 _ . 
1. - 

Hi be 1,1,0; "'V312"Qo (3-49) 

Ho = 'i12‘_2i ‘ '31}1Qo 

From these two. equations, the equation for 

(3-50) 

4711 and 212 can be derived: 

2'” = (3-51) 

12,," .=~ -‘.(:3*—.s2) 

_ 

The values of 222 and 221 follow directly 
from (3-20) and (3-21)... 

By using the conversion table in Table 1 

3-1, the equation for other matrices can be 
derived; the same result as (3-51) and (3-52) can 
be obtained by following the same procedure. The 
results are tabulated in Table 3-2.. 

X11 = X222‘ (HiQi- j*‘:HoQo) 

.x_ 1 

. 

'

1 

-% (Q12 - Q02) 
A = H'iQo + HoQ_i 

[Z] Z12 =2 ‘Z221 = -% (HiQo' + H§Q1]
A 

% »(’H1.Q1‘,+ Hooo)‘:
‘ 

Z11 = 5222 

A = Qiz ‘ Q02 

wu = W22 % ‘(H311 + H000) 

[W] _ 
W12 ? (“.12 _-. H02) 

(Q12 - Q02) 

A HiQo * HoQi 

r>|1-I 

r>|>- 

' gi1=' % [Q12 + Q52) 

[G] 
3 1 2.. 

822 = ‘% (H12 ' H02) 
.321 =% (H‘iQo + HoQi) 

A = HiQ1»+: HoQo A 

‘V11 = -3'22 ¥% (HiQ.i'+ }.{QvQ>0)“

V 

[Y] 712'? ‘V21 = 7- '(HiQo + F*oQ;1) 

A =;Hi2 " H022 

hm =% (H12 - H02.) 

2 1; =11 =1 11-

b 

[H] 
12 21 A [ 1Qo IjIoQ1) 

(Qiz ' Q02]; 
"A = H-1621 + HoQo 

1122-- I>lr—t 

TABLE 3-21
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Chapter 4 

Block Diagram Rqrreséntatzbn of the Rectangzrlrzr Clmnnel 
I 

‘

4 

From the previous discussion, it is obvious 
that a rectangular channel can be represented by 
the block diagram shown in Figure 4-1, 

0' 0 

Hi 

I 

[A] H

o 

+———L‘;o 

Figure 4-1 

where the bloek represents the channel which is 
characterized by the 

hf] 
matrix, which could be 

[X]; a : [X] 2 or EH3‘ In this diagram 
H and Q denote the vertical movement and the hori- 
zontal flow respectively, the arrow of Q indicates 
the direction of flow at the end of the channel. 
The subscripts i and 0 denote the input and output 
ends of the channel respectively. . 

If a channel is divided into two rectangular 
channels in series, it can be represented by the 
block diagram shown in Figure 4-2. 

Oil Q01 012 002 °"T""“ - 

r + ~ 

4 

l"'T‘*" 
HII [XI] 5'0! via [X 2] “I 

02
' 

Figure 4-2 

where we are using [X] matrix to denote each 
section of the channel, and their X-form solutions. 

[:1] wE::J 

[:3 M [:21 
According to the boundary conditions 

assumed at the beginning of Chapter 1 we know that 

(4-1)= 

" 
L 
= Hi2 (4‘3) 

Qil = Qi2 

.12 

_ 
By using these conditions, the following 

equation can be obtained from (4-1) and (4-2) 

[:23-M [Kat] 

[:::lv4 [:11] 

where [x1= [X21 E9] <4-6) 

From f4—5) it indicates that [X] is the 
equivalent [X] matrix of two channels in series, 
the result can be extended to several channels in 
series and the equivalent [X] matrix is therefore- 

[xJ= M M 7- {X21 M 
where n is the total number of channels in series. 

(4-7) 

If we assume that 

_ 

"cosh 111 -Zc1SiI_1_h U1 
[X1] 1 . 

(4-8) 
, — 

2;; sinh n1. 
V 

cosh p1 

. cosh p2 —Z¢ sinh p2 
[X2] 

= 
1 _ 

- (4-9) 
- sinh p2 cosh 112 

U1 = €Y1i1 
where , (4-10) 

U2 = EY212 

by matrix multiplication we obtain 

[X] = 

cosh H1 cosh p2 -Zcz cosh p1 sinh pg 
Z . 

' 

. 

‘

i + 7%: sinh p1 sinh p2 +Zc1 sinh u1 cosh U2 

1 .
' 

7;? sinh pl cosh uz cosh pl cosh p2 — 
. zi, +~7l— cosh p1 sinh p2, + -93 sinh p1 s1nh H2 c2 Zc1' 

(4-11) 

For the special case when 

Zcl =,Zc2 = Zc



equation (4-10) can be sflnplified as 

- cosh u -Zcsinh u
( 

: X = . 4-12) 
' — Elgg-— ’ cosh'u 

where u = ul + u2 (4-13) 

In general, if several channels with 
identical characteristic impedances are in series, 
the u of the equivalent channel will be .

H 
u = Z vi 

i=1 
(4-14) 

The matriX.[X] of the equivalent channel 
will retain the properties in (3-6) to (3-8). 

From (2-44) it was shown that 
' 1. . A Zc = —- -3 (-1 (4-15) 
bo Vgho m 

Therefore, if the A of channels are the 
same, then the condition for identical Zc for these 
channels is 

bo /HE = constant (4-16) 

In the case of two channels in parallel, 
the block diagram representation is as shown in 
Figure 4-3. 

012 Get 

$12 [Y2] Fgioz‘ 

pal, Our Qol 00 
T‘ 4“ 2 if T’ T

7 

TI Tn [VJ To: To
V 

Figure 4-3 

The channels are described by Y—form 
solution as 

H‘) 
[Y1] 

[ 
11] (4-17) 

‘ H01 [:1]
p 

[:::J M[:::] 
(4-18) 

with the boundary conditions 
Q0~= Q01 + Q02 

.Qi ? Q11 * Q12 
. , 

‘ 

. . 
(4-19) 

Ho = H01 =’Ho2 -, 

B1 = H11 = Hi; 
- By adding (4-17) and(4-18) and applying 

the boundary condition we obtain 

[Y]

I 

[Y1] + [Y2] 

It is obvious that the result can be 
generalized as 

M E [Y1] 
1-1 

F2] 
where EX] 

(4-20) 

(4-21) 

(4-22) 

where n is the nuber of channels in parallel.

~ 

From (3-24) 

coth 1.11 -1 ; 
- ZC1 Zclsinh n1 
EYJ " 

1 -coth u1_ (4'23) 
Zcisifih ii ZC1 # 
coth uz -l 7 

Zcz ZC2S1Uh u2 
[Y4 = 

.n1.-,. -coth u2 (4-24) 
Zczsinh H2 

' zc¢“_i 

where p1 = eY1£1 

H2 =‘€Y222 
(4-25). 

the equivalent [YJ matrix is obtained as 

[Y] = 

coth u1 + Coth pg _ -1 _ 1
- 

ZC1 Zcz Zc1sihh'fi1 Zczsiflh U2 
I + "-“C0th 111 _ coth uz 

Zclslnh ul Zczslnh uz ZC1 ZQZ ‘ 
(4-26) 

For the special case when 

u; = U2 = u (4-27) 

equation (4-26) is reduced to 

coth u 

[1 
2° 

Y = 
1 (4-28) 

. Zcsinh u 

1 _ .1 1
V where —E - 2;? + 72; (4-29)

13



M In general if n c.ha.zm.e1s with .i.d§nt1iCa1 
u are in parallel then the 2'‘; of the equiya1eat1t 
channel becomes ' r 

11 

. l = I 
.z.c 4.2 . 

zic-i~= (4 30) 
1=1 ‘ 

Since , 

_ 

E i: 

u = 679 9 

4 

. 
(43-31) 

14 

substituting (2-2'6) 1:it6?(4-31) we dbtain’
_ 

u = efi 
,

J 

_. Therefore, the condition for identica1_u 
for channels with the A is

' 

= cpnsténf
_ 

$119 

(4-32)
I



Chapter 5 

Analysis of the W_'_a.12e._Mqtz'o"1:2;_=z's12‘.szz. Redaiiguiqr C/mmzel 

5-1 TH GENERATED SOURCES OF WAVES IN_A CHANNEL 

Waves in a channel mainly originate from’ 
the tidal waves generated in the ocean, and are H 

affected by the runoff discharge_of water into the 
channel, Therefore, we can consider,there is an" 
equivalent source at the end of the channel as‘ F" 
shown in Figure 541;

1 

. ‘ ’ — — — — —_7 
F 0: 

b J 9.. .; 
l + +

g :4» F. 7. [A1 ~,+o. 

: 
.. 

, i 

L ________ __ CHAN_NEL L___ ____ _._ 
souncsn 

_ 

souneg 2 g‘ 
“ :Figure 5-1 

Each source consists of a generator ¢ and 
an internaliimmittance; P; the generator can be a‘ 
vertical movement generator or horizontal flow 
generator; the former is associated with an inter- 
nal impedance as shown in Figure 5—2a while the 
latter is connected with an internal admittance 
as shown in Figure 5-2b. 

Ys H5 ME . A 

°? 

(0) ‘ 

(b) 

Figure_5-2 

The source is considered to be independent 
of the channel, so that any change in the channel 
will not affect the source. Therefore, once the 
values of H5 and Z5 or Q5 and Y5 are determined, 
they will be considered as constants regardless 
_of any change to the channel.

’ 

matrix Dfl_§£ the channel could be EH, ~ ‘ The 
r DU, [C].or fifl depending on the type of sources 
connected at both ends of the channel as described 
in Chapter 3 and tabulated in Table 5-1. 

A 

¢i;,; $2 lo [5] 

f 
",5 Q5 

' 

Q; 
s 

VH5 LG] 
‘<25 

‘ 

Qsl f 

[ [Y].[_7. 

Table 5=1 

Consider the case where both_ends of the 
channel are connected to the vertical movement 
generator source as shown_in Figure 5-3. 

0| 
' 

on 132
, 

4 - 

' 

4 ' ' ‘A ' 

'[‘I '[‘o 
E’? H52 

Figure 5-3 

' 23: 

I 

The Z§form_solution'of the channel is‘ H‘ 
F 

Hi. 
F 

211 Z12 Qi = (5-1) 
‘.1 Ho ‘g : 

V222‘ Q0
‘ 

If we define that 

H e ZQ 

where H‘i5 the vertical movement drop across the 
impedance and Q is the horizontal—flow passing "' 
through Z; H is considered positive in the-direc— ’ 

.tion'of Q; * v’ 
' '~ ‘ 

» -~ ~ -“ 

Then we obtain 

H1: H51 — Z51Qi (5-3) 

HO.=. H52 + ZSZQO I 
(5-4) 

Substituting (5-3) and (5-4) into (5-1) 
we obtain

_ 

15 

(5-2)



351 - Zs1Qi 211 Z12 Qi = (5-5) 
H52 * Z§2Qo 221 Z22 Q0 

which can be written as 

H51 Z11 * Z51 Z12 Qi = 
A 

(5-6) 
H52 121 Z22 ‘ Z52 Qo 

Using the same procedure, the equations 
for various combinations of sources at the ends 
of the channel can be generalized as 

¢1 311 * T1 312 6i 
= (5-7) 

¢2 321 322 4 P2 90 

where the relations between ¢1, ¢2, F1, F2, ei, 
6° and [A] atr1x are shown in Table 5-2. 

¢1 ¢2 T1 T2 9i 90 [3] 
' 

H51 H52 Z51 ‘ZS2 Qi- Qo [Z]. 

H51 'Qs2. Zs1 -Ysz Qi Ho [H]
' 

Q51 H52 Ys1 "252 Hi _Qo [G] 

Q51 ‘Q52 Ys1 ‘Ysz Hi Ho [Y] 

Table-5-2 

From (5-7) it is obvious that since there 
are four dependent variables, ¢1, ¢2,_r1 and F2 in 
two linear equations, we cannot solve for the 
boudary conditions. However, we might assue 
that 

(a) If the source represents an ocean then 
the internal impedance is negligible. 

(b) If the source is a river then the 
internal admittance is negligible. 

By these assuptions, a river is considered 
as a horizontal flow source while an ocean is 
equivalent to a vertical movement source. The 
overall system is approximated as shown in Figure . 

5-4. 

54>: ¢I(:§_ DH 
9] 90 

Figure 5-4 
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[iiJ= W [32] 

where the value of ¢1 and ¢g are equal to th 
corresponding boundary conditions. . 

(5-8) 

5-2 WAVE CALCULATION 
‘ To calculate the wave in a channel we 

should determine the sources at both ends of the 
channel, and from these determine the type of 
matrix to be used in the calculation according to» 
Table 542. Usually, because a channel is divided 
into sections in series the overall matrix of the 
channel is obtained in X3 matrix, and we must 
convert the overall [X] matrix into the type that 
is the opposite to the type of sources by the 
conversion table in Table 3-1. By this procedure, 
it is assumed that (5-8) is determined. 

From which we obtain: 

[::] 
11* 

[::] 

After the value of 61 and 60 are detehnined, the 
wave at any section can be calculated, proceeding 
from either end of the channel. 

(5-9) 

For example, if the schematic diagram of 
a channel is as shown in Figure 5-5 

OCEAN I 

' 

2 3 mvaa 

CHANNEL 

Figure 5-5 

which is represented by the following block 
diagram 

0 O N V. 

\.f G? _ 
__1_, [X2] . T: 

Figure 5-6



The overall [X] matrix is obtained as 

[X] = [X2] [X2] [*1] 

From Table 5-2 it follows that we must
: 

convert the pq nmtrix into fifl '1 matrix, that 15, 
[G] matrix, and obtain 

Q1 H51 
= [G] 

Ho ‘Q52 

The values of Q1 and HO are therefore 
determined. 

(5-10) 

(5311) 

The values of H1, Q1 and H2, Q2 can be 
calculated from 

1:111 1:1 
and 

12:1 1:21 

S-3 MULTI-TERMINAL CHANNEL 

If a channel has more than two terminals 
then the procedure of calculation should be modi- 
fied as explained in the following paragraphs. 

Suppose a channel has three terminals and 
is represented by the following block diagram. 

°oI Qiz 

¢- [A1 [A21 

9 99 

$12 
9. 

oi; 
92 

[A11, 
9: 

Figure 5-7 

Then we have 

¢1 Q1 
_ 

= A (5-14) 
Li] H [A] 

(5-15) 

13:19
I 

r;j 
Lt’_1 "'""E? 

co 

1-4-

N

N 

Q13 “is 
= [A3] 

' (5-16) 
¢3 9

9 

where the matrix [A] can be any matrix shown in 
Table 5-2, depending on the source associated with 
the channel. 

expanding the above three equations we 
can obtain six linear equations. 

¢1 = 311191 + 3121Ho1 (5-17) 

Q01 = 321191 + 3221501 (5-13) 

Q12 = 3112Hi2 + 312292 (5-19) 

¢2 = 3212512 + 322292 (5-20) 

Qia = 3113513 + 312393 (5-21) 

¢3 = 3213313 * 322393 (5-22) 

where the superscripts of the matrix elements 
denote the channel nubers. 

By applying the boudary conditions that 

Q01 = Q12 * Qis 

H01 = Hi2 = His 

we may obtain the following equation from (5-18), 
(5-19) and (5-21). ' 

(5-23) 

(5-24) 

321191 + 3221Ho1 = 3112Ho1 + 312292 

+ 3113501 + 312393 

which yields 
(5-25) 

'321191 + 312292 + 312393 
H01‘: a221 2 3 (5-25) ' 311 ‘ 311 

By substituting (S-26) into (5-17), (5-20) 
and (S-22)we obtain 

¢1 ==%J11 _ 3121 3211 91 + 3121 3122 92 
A A 

1 3 
+ 312 312 93 (5;27)

A 

_ a 2 1 
p 

2 2' 

‘$2 =-ii 91+ 3222 +33 62 
A A 

2 3 
+ 3219 312 e3 (5-28)

A 

a 3 a 1 3 2 
¢3 2 _ 21 21 91 + 331 312 92 

A A 

a 3 a 3 
'+[5223 +"3l“‘l3t] 93 (5-29)A

17



Where A = 3221 ‘ 3112 - 8113 (5-30) 

and oan be written in matrix form as 

¢1 91 

"42 = 
6.»; 

‘ 

(5431) 

I 
¢3 - «93 

where ER] 

a111A'a1213211 51213122 31213123 

= l. ‘a2123211 3222A+a1223212' 32123123 
A 

33133211 32133122 o32235i3213a123 

(5+3Z) 

it is obvious that the dimension of the 
matrix (A) is equal to the_number of terminals of 
the-channel. 

"From (5-31) the value of e1, 92, and e3 is 
obtained from ‘ 

91 
_ 

31 
-__--1 

a2 = 
[AJ ¢2 (5-33) 

93 ¢3 

By using the result together with theh 
values of ¢1, ¢2 and ¢3 the tides at any section 
can easily be calculated. I 

5-4 POWER TRANSFER 

According to the definition in (2-19), the 
average active power is defined as. 

P = %-pgRe [H*Q) (5-34) 

By defining Pi as the power input to the 
channel and PX as the power at x distance from the 
input end of the channel, we obtain 

Pi = %~pgRe (Hi*Q1) (5-35) 

PX = % pgRe (Hx*Qx) (5-36) 

Since Hx =4xi1Hi + x12Qi (5-37) 

Qx = X21Hi + X22Qi (5'33) 

we obtain 

Hx* = Xi1*Hi* + X12*Qi* (5‘39) 

‘therefore 

Hx*Qx = X11*X2iHi*Hi 4 X11*X22Hi*Qi 

+ X12*X21Qi*Hi + X12*X22Qi*Qi (5*40) 

18 

Because 

Hi*Hi = |Hi(2 

Q1*Q1_? lQil2 

Therefore; the real part of (5-40) is 
obtained as ‘ 

R? (Hx*Q<) = 

+ R5 (X11*X22 Hi*Qi)+ Re (X12*X2iQi*Hi] 

|Qil2 Re (X12*X22) 

(5-41) 

(5-42) 

[H112 Rb [X11*X21)'

+ 
(5-43) 

Since 

x11*x22 = cosh yx cosh y*x 

= %-(cosh Zax + cos Zak) (5-44) 

x12*x21 = —zc* sinh y*X 
Egg sinh yx 

= %J2e(cosh 2ax~— cos ZBX] (5-45) 

x12*x22 = -ZC* sinh y*X cosh yx 

_ Zc* -. 
- - 3' 

V

‘ — —» 
2 [sinh Zax - Jsin ZBX] (5-46) 

x1y*x21 = cosh y*X 
[gig 

sinh yx 

= — 
7%; (sinh Zax + jsin zex) (5-47) 

where zc = |zC| e'j9 (5-48) 

= Re - jxc. (5-49) 

By defining 

Yc = 1 = Gc + jwe cs-so) Zc 

and substituting these results into (5-43) we 
obtain 

Re [Hx*§x]= — 1H%|2 [Gesinh Zux - WC sin 28x) 

+ %-[cosh Zax + cos Zex) Re [H*Q] 

+ l cosh Zax - cos Zsx Re ej2eQi*H1
2 

- 
2 RCS1 

‘ 

ax,— Xc sin Bx] 
’ 

(5-51) 
Since 

I h 3 4* 
Re [5329 Qi*Hi] = Re [e’329 [Hi*Qii] 

cos 26 Re [Hi*Qi) 
+ sin 2e Im U{f*Qi) (5-52)



-which shows that the imaginary part of Hi*Qi occurs 
in (5—52), this term is called the reactive power 
and defined as 

[Pr)1 = %3 Im [Hi*Qi) (5-53) 

By defining 

Pm = %3 |Hil2Gc Phi = %g IHiI2wc (5-54) 

Pq_r = %‘5 lQil2Rc Pqi 31 lQi|2Xc (5-55) 

The equation for avefage power Px becomes 
- -Phr sinh Zax + Phi sin Zsx" 

' + [cosh Zdx + cos ZBX) Pi 

PX: 

:—Pqr sinh Zax + Pqi sin Zsx 

+ (cosh Zax — cos ZBX] [cos 26 Pi 
’+ sin 29 (Pr)i] 

(5-56) 

By collecting tefms 

—Phr sinh Zax + Phi sin Zax 

-Pqr sinh Zux + Pqi sin 28x 

+Pi [cosh Zax (1 + cos 26] 

+ cos 28x [1 — cos Zei 

+(br]i [cosh 2aX - cos zex) .sin 26 (5-57) 

equation (5-57) can be written as 

PX = -[Phr + pqr] sin Zax 

.+[Pfii + Pqi] sin 2BX«i~ 

¥2Pi [cosze cosh Zax + sinzé cos 28x)‘ 

‘4+[Pfji [cosh Zax — cos Zex) sin 26 
V 

(Se58) 

The power at the output end of the channe 
is obtained simply by replacing x by 2.. .

v 

P0 = ‘(Phr +’Pqt) 5i“ 202 
I 

I 

I
K 

+(Phi + Pqi) sin 232 

+2Pi.(cos2e cosh Zak + sinze cos Z62} 

+[Pr)i [cosh Zak — cos 282] sin 26 (5-59)
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6-1 INTRODUCTION 

It has been shown that by applying a 
certain degree of approximation wave motion in a 
channel can be represented by linear equations. 
Because similar equations for voltage and current 
are found in some types of electrical networks, 
these networks can be used to analogise the 
channel, with the voltage and current analogous 
to the vertical movement and the horizontal flow 
in the channel. There are two types of analogy 
between the electrical network_and.channel, 
voltage-vertical movement analogy and voltage- 
horizontal flow analogy. The former simulates the 
vertical movement and horizontal flow by voltage 
and current respectively while the latter simulates 
the vertical movement and horizontal flow by 
current and voltage respectively. 

The type of analogy to be used depends on 
the nature of the problem. For the constant 
voltage source is more conveniently used in elec- 
trical networks. Therefore, if the waves in the 
channel are generated by an equivalent vertical 
movement generator then the voltage—vertical 
movement analogy is used, otherwise the voltage- 
horizontal flow analogy is applied. Moreover, 
the value of the equivalent resistance, R, induc- 
tance, L, and capacitance, C, of the network will 
not be the same for different types of analogy, 
therefore, only the one which requires practical 
values of R, L and C is chosen. 

In either type of analogy there are some 
different methods to simulate the channel, 
depending on what kind of mathematical represen- 
tation of the wave motion in the channel we are 
referring to. 

For convenience, the partial differential 
equations of the wave motion are rewritten from 
(1-3) and (1-4). 

£1. E = _ 
ax 

I b0 at (6 1) 

E L t L .a_g- = _ 
ax 

+ 
gao q 

+ 
gao at 0 (6 2) 

These equations are called the partial 
differential form of the wave motion equation. 

If the equations are integrated with 
respect to x and we assue that the time variation 
of h and q is constant, and q is linearly distri-. 
buted along a section of the channel of length 
Ax, then we obtain 
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Q2 ‘ Q1 * boAx %% = 0 (6-3)

A hz ' h1 * 
zghd Ax [92 + Q1) 

Ax 3 _ " fggfi [<12 + <11) " 0 (6-4) 

where the numeric subscripts represent the waves 
at two ends of the section respectively. 

These equations are called the finite 
difference form of the wave motion equation. 

The above two sets of equations together 
with the Z- and Y—form solution of the wave 
motion in a rectangular channel are the basic 
equations used in the following analogy technique- 

6-2 ELECTRICAL ANALOGUE FOR THE PARTIAL DIFFEREN- 
TIAL FORM OF THE WAVE MOTION EQUATION 

Figure 6-1 represents a section of 2—wire 
transmission line, 

;(x) 20 -_ _ _ _ _ __——::——;4—————— _ . _ _ _ _ __ 

Figure 6-1 

where a - radius of the conductor 

b = distance between the center of two 
conductors 

i = the current passing the conductor at x 

v = the voltage across the two wires at x. 

The relationship between voltage and 
current along the transmission line is represen- 
ted by the following equations: 

—.+Gv+c‘a’—§c’=o (6-S)3X



av . 3i _ . _ 3; + R1 + L 3? — 0 (6 6) 

where R and L represent the series resistance and 
inductance per unit length while G and C denote 
the leakage condctance and capacitance per unit 
length. 

The values of R, L, G and C can be a pro- 
ximated by the following equations [King (3) : 

_ _1 21-_w _ R - 
11a 201 

_ 

(6 7) 

_ 1 ulw u b 

— IE. _ G - 
Eng 

(6 9)
a 

c = 123 (6-10) 
1611"‘a 

where ul, 61 = the permeability and conductivity 
of the conductor" 

u, o = the ermeability and conductivity P . 

of the media separating the two 
wires. 

w angular frequency of the signal 

The above equations are subject to the 
following restrictions 

b>>a (6-11) 

a VmoIuI >> 10 (6-12) 

(A) VOLTAGE-VERTICAL MOVEMENT ANALDGY 

If a mediu with very small conductivity 
is used to separate the wires, then the leakage 
conductance can be neglected and the equations 
become 

31 av = _ 3; + C at 0 (6 13) 

3v - 21-: _ 3;-+ R1 + L at 0 (6 14) 

By comparing these equations with equation 
(6-1) and (6-2), it is obvious that they are ana- 
logous. The analogic parameters are shown in 
Table 6-1. 

Therefore, by defining 

h = hfiy 

q = kqi 

(6-15) 

(6-16) 

xc = kxxe 
' 

(6-17) 

tc = ktte (6'18)

1 we = R; we (6-19) 

where the subscripts c and e denote the channel and" 
electrical network respectively, and substituting 
(6-15) through (6-19) into (6-2) we obtain 

61) + k; be §v_ _ 0 -— - - 6-20 3Xe t 3Xe ( ) 

a_v_ 1<q1<x(_x_- 1‘*_1_i- 
are 

T E gag,-1 * kt gag a e 0 

(6-21) 

TRANSMISSION 
CHANNEL LINE 

h v 

q i 

bo C

x ——— R 830 -

1 ——— L 830 

Table 6-1 

Therefore, the relationship between the 
parameters in the transmission line and the 
channel can be obtained as 

_1kqkX A R -2 kh gao . (6-22) 

‘ Egkx 1 
L ‘ ktkh '_gé_o “"233 

; khkx.
, c - ESE; bo (6-24) 

The scaling factor must be adjusted to 
provide a practical value for R, L and C of the 
transmission line. 

(B) VOLTAGE-HORIZONTAL FLOW ANALOGY 
V 

From|(6-7), if a conductor with very high 
conductivity is used, then the resistance R can be 
‘neglected. The equations of transmission line 
become >
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av 31 _ 
A 

._ _ 

3x_+ L 3; 5 0 (6-25) 

.3’ a §+cv+c%=o (em) 

Obviously, the analogy between the wave 
motion inpa channel and the vo1tage—current in 
transmission line is obtained as shown in Table 

‘ 

6-2. 

ETRANSMISSION 
CHANNEL. LINE 

72 

762 
72

1 

q V 

_bo L 

X 
. . 

——— G 
830.

1 ——— c 
830 ' 

Table 6-2 

The scaling factor in (6-15) and (6-16) 
are interchanged as 

h = khi 

q = kqv. 

Equations (6-22) through (6-24) are still 
valid except R is replaced by G, and the expres- 
sions for L and C are interchanged. 

(6-27) 

(6-28) 

_ 
This kind of analogy has the advantage 

that the cross—sectional variation of the channel 
can be accomplished simply by the variation of the 
size of the wire and the spacing between the wires. 
Therefore, the same technique can be applied to 
simulate the non-uniform.channel. However, the 
technique can be used only for one-dimensional 
flow, and there is some difficulty in the current 
measurement along the lines; moreover, the 
mounting of the line will affect the R, G, L and C 
parameters of the lines, therefore,_it is suitable 
for qualitative study only. 

6-3 ELECTRICAL ANALOG? FOR THE FINITE DIFFERENCE 
FORM OF THE WAVE MOTION EQUATION 

(A) VOLTAGE—VERTICAL MOVEMENT ANAIOGY 

The network in Figure 6-2 is a T-type two- 
part network. .The voltage and current relation 
for this network are shown in the following 
equations: - 

V
. 

22 

. 
.3" L ' 

1: R 
I.- 2 - 2 v (2 ‘E I: 

NNAAf "rump ~ 'rvz~ «mm» 

"' T° V‘ 

Figure 6-2 

12 - 11 + c §%1= 0 (6-29) 

n—v1+%fi1+h)+%£(fi+ifl=0 
(6-30) 

By comparing the above equations with 
(6-3) and (6-4) it is obvious that they are of the 
same form. Therefore, the wave motion in a section 
of a channel can be represented by the'voltage and 
current in the network as shown in Figure 6-2. 

Table 6-3 shows the analogy between these 
two systems 

T—TYPEv 
-CHANEL - NETWORK 

h 
i

V 

q 1 

b0 Ax C 

1 . 

fia-6 Ax L 

Table 6-3 

By using the same proportional relation 
defined in (6-15) through (6-19), (6-3) and (6-4) 
become 

.— . 3 
12 - 11 + F%%a boAx 3%é 

= 0 (6-31) 

V2 - V1 + in
k 

Therefore, the R, L and C components of



the analogical network are obtained as: 
‘ 

(6-433') _ kn ' 

C - ktkq boAx

k 
R _ E“ 5:; X (6-34) 

_ kq Ax L - FEE;-E53 (6-35) 

By adjusting the scaling factors kh, kq 
and kt a suitable value for R, L and C can be 
obtained. 

(B) VOLTAGE—HORIZONTAL FLOW ANALOGY 

The network shown in Figure 6-3 is a n-type 
two-part network; ' 

'

' 

-5

+ 
~|ca 

n:|o 
m|o 

Figure 6‘_~3 

The relation between voltage and current 
in this network is obtained as: ~V

’ 

V2 V1 + L = 0 at 

‘:7:-[1/1+)/>2)= 0 NIO i2 ' 11 * %‘[V1 * V2)V* 

(6-37) 

It is obvious that these equations are the 
analogues of (6-3) and (6-4) according to the 
relation shown in Table 6-4. _ 

””"j_ '+r—m>E 
'

" 

CHANNEL NETWORK 

h » 

1' 

q V 
bo L
A G 830
i 

836 -

C 

Table 6-4 

_ 
By using the scaling factor defined in 

(6-27), (6-28) and (6-17) through (6-19) the 
equations for G, L and C can be derived and they 
should be the same as (6-33) through (6-35), 
except that R is replaced by G, and L and’C are 
-interchanged. 

This type of analogy has the advantage 
that it has a simple relation between the R, L 
and C components of the network and the parameters 
of the-channel, and the same technique can be 
extended to be applied to two-dimensional flow. 
The only disadvantage of this technique arises 
from the assumption that %%,_%% are constant 
throughout the section AX and'q is linearly 
distributed along the section. 

The effect can be reduced by decreasing 
the length of the section which,'however; in turn 
will increase the nuber of components used in the 
network. 

6-4 ELECTRICAL ANALOGY FOR TH SOLUTION FORM OF 
THE WAVE MOTION EQUATION 

Figures 6-4 and 6-5 show the typical 
symetrical T-type; and n-type, two—part networks: 

I‘ r——1 
In 

lr‘r1 :1’. 

V: 
4 

V2 

T-TYPE NETWORK 

Figure 6-4- 

7_T -TYPE, N_ETV]0RK 

Figure 6-5 

The voltage and current in these networks 
are governed by the following equations:
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11 
or 

12 

II 
VI Z1 + -22 I1 

T-TYPE: (6-38) 
V2 Z2 ‘(Z1 * 22) I 

Y1 "7 Y2 -Y2 V1 
(6-39) 

Y2 ‘(Y1 ’' Y2) V2 

The solution of wave motion in a rectan-. 
gular channel ca“ be expressed in many forms as 
described in Chapter 3. Here, particular interest 
is directed to the Z-form and Y-fonn solutions, 
they are: 

:1 '3 E‘ 
H 

D-ll 

yo 

._- 

ll 

(:2) 
5 6 

(2) 
5 

(:1 

By comparing these equations with (6-38) 
and (6-39), it is obvious that they are analogous. 

(A) VOLTAGE-VERTICAL MOVEMENT ANALOGY 

If vertical movement is simulated by 
voltage, by using the scaling factor defined in 
(6-15) and (6-16) we H13)’ obtain ' 

(X) 
6 

(:1 

., 61 [Q] 
By comparing these equations with (6-38) 

and (6-39), we obtain
' 

(6-42) 

I555? 

(6-43) 

T-TYPE: _ kq Z2 - Z21 

Z1 + Z2 7-’ % Z11 

1r-TYPE: Y2 = ‘E91; ,,2, (5-45) 

IY1 + Y2 = 3% m (6-47) 

From (6-44) and (6-45) we obtain 

T-TYPE: Z1 = -kkfi (211 - 221) (6-48) 

Similarly, we obtain 

n-TYPE: Y1 = % (yu — Y21) (6-49) 
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The equation for the impedance Z and 
admittance Y of the networks can be expressed "in 
terms of the parameter of the channel by substi- 
tuting the value for 213' and yij as shown in (3-18) 
and (3-24) respectively. They are: 
T—TYPE: Z 

Z2 ‘ E 533???? (6-50) 

Z; = Z2 (cosh Y2 - 1') (6-51) 

TI"TYPEI Y2 = E11. (6-52) 

Y1 = Y2 (cosh Y2 - 1) (6-53) 

Therefore, if the wave motion in the 
channel is represented in Z-form then the T-type 
network is used, otherwise, we use 6-type network 
to simulate the channel. The components of the 
network are given by (6-44) and (6-45) or (6-50) 
and (6-51) for the T-type network and (6-46) and 
(6-47) or (6-52) and (6-53) for the n-type network. 

(B) VOLTAGE-HORIZONTAL FLOW ANALOGY 

By using the same procedure, we conclude 
that if the wave motion in the channel is expressed 
in Z-form then the channel is simulated by 1r-type 
network and the equation for the components of the 
network are the same as (6-44) and (6-45) or (6-50) 
and (6-51) except that Z is replaced by Y; other- 
wise, if the Y-form solution is used, then the 
channel will be simulated by T-type network and 
its components are given according to (6-46) and 
(6-47) or (6-52) and (6-53), with Z replacing Y 
in the equations. Note that in this kind of 
analogy, the scaling factors defined in (6-27) 
and (6-28) are used. 

After the impedance Z or admittance Y of 
the network is calculated, then the corresponding 
resistance, inductance and conductance can be 
obtained by the following equations: 

T-TYPE: R = Re [2] (6-54) 

L = 33-6 
Im [2] if Im [2] >0 (6-55) 

c = me Im [2] 1m [2] <0 (6-56) 

HYPE‘ 
.% = Re [Y] (6-57) 

L = me Im [Y] if Im [Y] <0 (6-58) 

c = 
33-6 

Im [Y] elm [Y] >0 (6-S9) 

where we is defined by equation (6-19). 

This technique will produce more accurate



results if a channel ca.n be approximated by 
sections of uniform rectangular channel. However, 
some calculations involving complex numbers should 

References 

1. Dronkers, J .J . , Tidal Computations (North 
Holland Publishing Company - Amsterdam), 
1964, p. 225. — 

2. Proudman, J ., Dynamical Oceanography (Mathuen— 

be done in‘ order to compute the value of the com- 
ponents in the network. Also, the method can be 
applied to one-dimensional flow only. 

London, John Wiley - New York), 1953, 
pp. 251. 

3. King, R.W.P., Transmission Line Theory (Dover 
Publication - New York), 1965, pp. 17. 

2-5



Environment Canada Libra . Burlinmton 

|"l9LJ5\|1'JJ,“JJ,!“!“' ~ ~ ~ ~ ~ ~ ~ ~ ~~~ ~ ~ ~ ~~ ~~ ~ ~ ~~ ~~ ~ ~~ ~ ~ ~ ~ ~ ~ 

REPORT SERIES 

,No. 1 PLAIN FORTRAN - A guide to compatibility in computer programming. J.J. Therrien. 
PLAIN FORTRAN is a restricted but compatible FORTRAN intended for the scientist who 
does not wish to become involved in the comparison of different versions of FORTRAN 
to determine their compatibility. 

No. 2 North—Centra1 Baffin Island Field Report 1967. 
A synopsis of the 1967 Baffin Island operation performed by the Geographical Branch. 

No. 3 The Federal Groudwater Program - Annual Project Catalogue 1968-1969. 
A catalogue of current groundwater studies summarizing the objectives and progress of 
each project. 

No. 4 Glacier Survey in Alberta. P.I. Campbell, I.A. Reid and J. Shastal. 
Report on the method used and the results obtained in computing the volumetric chang 
of two glaciers in Alberta. ‘ 

No. 5 Glacier Survey in British Colubia. P.I. Campbell, I.A. Reid and J. Shastal. 
Report on the method used and the results obtained in computing the volumetric change 
of five glaciers in British Columbia. . 

Copies of this publication may be obtained by writing to: 

Director, - 

Inland Waters Branch, 
Department of Energy, 
Mines and Resources, 

588 Booth Street, 
Ottawa, Ont. '


