

TECHNICAL REPORT ON THE SNOWMAKING CAFABILITY IN THE HYDRAULICS
 ENUIRONMENTAL ROOMS
 by
 J. Heidt, C.E.T.

[^0]1. CONTENTSFAGE NO.
2. Table of Contents 2
3. List of Fisures 3
4. Scope of Keport 4
5. Furfose 5
6. List of Equipment 6
7. Method 8
8. Observations 13
9. Chronolosy 15
10. Conclusions 19
11. Affendix
I$\therefore 23$.24
II .25

Figure

FAGE NO.

1. Schematic of Snowmakins Eauifment ...7
2. Gauses and Fressure Resulator ...8
3. Compressor and Water fump ...9
4. Ball Valves .. 10
5. Guri Control Equifment. .. 10
6. Spray Gun ..11
7. Nozzles ..11
8. S.G. With .062E Nozzle .. 19
9. S.G. With . O80B Nozzle . . 20
10. S.G. With . 125 Nozzle . 20
11. Cold Room Set vs Actual Temferature .. 25
3.1 The study of the snownakins cafability in the Hyoraulics Environmental Rooms was undertaken at the request of C.N. DeZeeuw, Head, Technical Services Section, Hydraulies Division.
3.2 This report consists of how the study was conducted, how the data was sathered and to what use the information will be put. Nesstive data will not be discussed but will be mentioned in the chronolosy.
12. 3 No attempt will be made to discuss the fhysics of snowmakins as it is besond the scope of this report and the author.
3.4 S.I. units are used in this refort. The pressure sasses are in Enslish units and were subsequently converted to S.I. units. The numbers assisned to the nozzles are used for identification of the nozzles and are not necessarily their diameter. Affendix I lists the nozzles and their sizes.

The snowmakins facility and equifment in the Hydraulics Division labouratory have never had a comprehensive examination to determine their full carabilities. The furfose of this study is to systematically sather data about snow type and auanity which can be displayed in tables and srafhs for different cold room temperatures arid air/water suffly farameters. Duriris the data collection, techniques will be learned that can be combined with the tables and srafhs to form an oferations manal. Therefore, simply stated, the purfose of this report is to contribute to the snownakins operations manual and to provide documentation of how the techniquesp tables and srafhs in that manual were derived.

5.1 AIR COMPRESSING EQUIPMENT

> 5.1.1 Insersoll-Find, Type 30 , Model 7 T , air compressor and associated cooler and dryer.
5.1.2 Aro air line resulator, Model 27354-20s
5.1.3 Marsh pressure siuse, Model 12054
5.1.4 Marsh bi-metal thermometer, Model L3145
5.1.5 Eall shut-off valve

5.2 WATEF FUMPING EQUIFMENT

5.2.1 Sherwood rotary sear pumf, Model "U"
5.2.2 Watts by-pass relief valve, Model 5300A
5.2.3 Marsh pressure sause, Model J2054
5.2 .4 Marsh bi-metal thermometer, Model L3145
5.2 .5 Eall shut-off valve

5.3 SNOW GUN

5.3.1 The snow sun is a fabricated piece of pipe in a "Y" shape with provision for nozzles, made from pife pluss, to be screwed into the stem of the 'Y'. Each les of the "Y" is threaded. The hish eressure water is introduced into the side les and the compressed air enters the straisht les.
5.3.2 Flexible hose is connected by means of auick disconnect couplinss to the ball shut-off valves inside the cold room.
5.3.3 Marsh needle valves, Model N1514
5.3.4 Marsh pressure sauses, Model 12054
5.3.5 Afollo check valves, Model 1/2*

5.4 MEASURING EQUIPMENT

5.4.1 Hewlett-Fackard temperature sensor,Model 2802A
5.4.2 Weather Measure humiditiy serisorg Model HM111 with coated probe.
5.4.3 Hewlitt-Packard strif chart recorder, Model 7100B
5.4.4 Precision balance
5.4 .5 Collection faris $34 \mathrm{~cm} * 24 \mathrm{~cm} * 1.5 \mathrm{~cm}$

FIG. 1 SCHEMATIC of SNOWMAKING EQUIPMENT
6. METHOD

6.1 STANDAFD SNOWMAKING GUN

Fisure 1 shows the schematic of the standard snowmakins equipment used in this study. The various nozzle types and sizes are screwed into the end of the showmakins sum. The air pressure supplied to the sur is coritrolled by the eressure resulator (fis. 2) located outside the cold room. The water pressure sufflied to the sun is controlled by the pressure relief valve (fis. 3) attached next to the water pump. The pressure sauses (Fis. 2) outside the cold room are used to set these pressures. The temperature of the water and air is measured with the

FIG. 2 gauges and pressure regulatok
thermometers (Fis, 2) located in the supply lines outside the cold room. The ball valves (Fis, 4) inside the cold room are merely for the convience of shuttins off the flows. The flows are finely controlled by the resulatins valves (Fis. 5) attached to the suri: Confirmation of the set supply pressures is read from the sauses (Fis. 5) attached to the sun. The check valves (Fis. 5) prevent back flow in the case of a compressor or pump break down.

6.2 SFRAY SNOWMAKING GUN

The only difference between the standard snownaking sun equipment and the spray snowmaking sun equipment is the actual sung. The spray snownaking suri (Fig. 6) consists of a sfras paintins mixing chamber ano either an internal nozzle or an external nozzle. The sun is mounted on an aluninium plate to which is fasteried a 500 Watt rins heater and thermostat. The 115 Volt heater prevents the nozzle from freezins.

FIG. 3 COMFRESSOR AND WATER PUMF

FIG. 4 BALL VALUES

FIG. 5 GUN CONTROL EQUIFMENT

FIG. 6 SFRAY GUN

FIG. 7 NOZZLES

6.3 METHOD OF DATA COLLECTION

The cold room controller was set to the temferature reauired for the test to be ferformed. The temferature sensor, humidity sensor and the strip chart recorder were turned on to record the Farameter chanses as the room cooled. The air compressor and the water pumf were switched on ard allowed to warm ue. The selected nozzle was installed in the sun.

When the cold room reached the required temperature the sun was mounted in the room and conriected to the sustem. The valves on the sun were ofened and the air arid water suffly pressures were set. The resulatins valves on the suri were adjusted to a settins to make snow. The collection pans were arransed on the floor and the suri was aimed at tine fans.

After a sufficient period of time had eassed to allow the Faris to fill with show, the suri was aimed away from the fans and they were removed from the cold room. Very ausckis the excess show was scraffed from the tof of the fans and they were weished. From the known volume of the fans and the weisht of the snow in them, the density of the snow was determined.

If another run was to be dorie the fans were emfined, dried and taken back, into the cold room to cool off. The valve settinss or suffly fressures were charised and the paris arransed on the floor to catch the snow.

RUN NUMEER	PRES AIF kF'a	SURE WATER kFa	ROOM TEMF desc	NOZZLE NUMEER	SFECIFIC gravity	REMARKS
812-1	1000	517	-10	. 125	-	
-2	1000	862	-10	. 125	-	
-3	862	862	-10	. 125	-	Wet snow, fulsatins
-4	862	862	-10	. 125	-	
813-1	862	862	+5	. 125	-	Warm test, rio pulsatins
-2	862	862	-5	. 125	-	
-3	862	862	-10	. 125	-	Valves full ofen
				.25 .187	-	All water All water
-4	862	862	-15	. 125	-	Room temp rises to -3.5
814-1	${ }^{-}$	-	-16	-	-	Fortable hish eress. washer with $\$ 4009$ tif All water
-2	862	862	-15	. 125	-	
	517	517	-15	. 125	-	Temp, measuremerits
816-1	517	517	-10	. 080 E	-	Fulsatins
	862	862	-10	. 080 B	-	Valves closed down
8110-1	862	862	-10	. 080 B	-	Gun fointed slishtly down. No pulsatiris
8111-1	862	862	-10	. 0808	-	Valves less than one turn ofen.
-2	862	862	-10	. 0808	-	Testins pans
-3	862	862	-10	. 080 B	-	Testins pans
8112-1	862	862	-10	. 080 B	-	Air ofen $1 / 2$ turn Water open 1-11/2
-2	862	862	-10	. 080 B	. 15	Air $1 / 2$ turn
-3	862	862	-10	. 080 B	. 155	
-4	862	862	-15	. 080 B	-	Nozzle froze
8113-1	862	862	-10	. 080 B	. 115	Air $1 / 2$ turn Water 1/4 turn
-2	862	862	-10	. 080 B	- .	Pump quit
8117-1	448	448	-10	. 080 E	-	Line pressure
	448	448	-10	. 062B	-	Valves at $1 / 4$ turny varyins desrees of
						snow wettriess
-	724	724	-10 -10	. 062B	. 175	
		724	-10	-	-	Air atomizins nozzle Almost water
8119-1	862	862	-10	-	-	Almost water
	517	517	-10	-	-	Air internal
						atomizins nozzle, line pressure,
	517	517	-10	-	-	nozzle froze
						Air external
						atomizins nozzle,

RUN NUMEER	PRES AIF k. Pa	SURE WATEF kPa	ROOM TEMF desc	NOZZLE NUMEER	SFECIFIC GRAUITY	REMARKS
8120-1	862	862	-10	. 125	. 195	Valves $1 / 4$ turn open
	862	862	-10	. 125	. 195	
-2	690	690	-10	. 125	. 24	-
	690	690	-10	. 125	. 25	-
-3	552	552	-10	. 125	. 265	-
	552	552	-10	. 125	. 25	- -
8124-1	552	552	-10	. 125	. 78	Valves $1 / 2$ turn open
-2-3	552	552	-10	. 080 B	. 28	, ${ }^{\text {a }}$
	552	552	-10	. 080 B	. 22	-
8125-1	552	552	-10	. 062 B	. 14	Valves 1/4 turn open
	690	690	-10	. 0662 B	+17	Valves $1 / 4$ turn oren
810319-1	827	827	-10	. 062 B	. 12	-
	965	965	-10	. 062 B	.13	" ' ${ }^{\text {' }}$
	690	690	-10	. 080 B	-	Bad readins
-4	690	690	-10	. 080 B	. 145	Valves $1 / 4$ turn ofen
-5	827	827	-10	. 080 B	. 11	
	965	965	-10	. 080 B	. 13	, -
810320-1	552	552	-10	. 125	. 30	- -
810323-1	758	758	-10	. 125	. 21	- "
	. 827	827	-10	. 125	. 14	- "
		965	-10	. 125	. 14	- "
-4	965	965	-10	. 125	. 15	:
810324-1.	827	827	-10	. 125	. 195	- ${ }^{\circ}$
-2	621	621	-10	. 125	. 215	- "
-3-4	896	896	-10	. 125	,	Ead readiris
	896	896	-10	. 125	. 11	Air 1 turn open
						Water 1/4 turn open 1891125 riternal mix
810602-1	345	345	-10	- -	-	1891125 Internal mis spray nozzle. Valves open 1/4 turn. Result was slush.
-2	345	345	-10	-	-	was slush. Small internal mix
	345		-			spray nozzle. Air Valve ofen full. Water valve barely open. Fine fowder
		345	-10	-	-	snow. Low auantits. Small external mix
						spras nozzle. Valves 1/4
						ofen. Fine fowder snow. Low ausntity.

What follows is a chronolosical listins of events that occurred durins this study. The furpose of presentins this here is so that hopefully some losic will be seen in decisions which were made affect this refort and snowmakins in seneral.

30 JAN 81: The temperature and humidity sensors and recorders were set uF, The fosition in the cold roof for the sensors was chosen so that a minimum of water or snow would accumulate on the humidity sensor. This fosition was within 15.2 cm of the ceilins and about 30.5 cm from either wall ini the Southwest. corner of cold room 1B. It was found that the room temperature controller had to be set to -11.25 C in order to reach an averase temperature of - 10 C . It was also noticed that 0 the actual room temperature varied by as much as t or - 1.5 C about the averase set for the room.

2 FEG 81: Attemfts to make snow were thwarted on every occasion by a tendency for the water stream to pulsate. Maris solutions to the Froblem were theorized and included heatins the nozzle to stop freezins and possible installation of check valves to stof air or water from travellins uf the wrons hose if a fressure imbalance occurred. It was not until a week. later that it realized that the sun must be keft fointed at a slisht down arisle to eliminate the fulsins. When this practice was fut into effect all fulsinis problems stopped.

3 FEB 81: Good snow was made usins the smallest supplied nozzle(. 125E).

Makins snow must have been mostly by accident as it had not yet been realized that the sun must be tipfed down, The temperature rise in the room while makins snow was guite dramatic. The temperature rose from -10 C to about -2.5 C and from -15 C 0 to $\mathbf{- 3 . 5} \mathrm{C}$ on two different occasions. The cold room return air srill was found to be clossed with snow farticles. It was removed and no further trouble with air temperature rises were observed. Two larser size nozzles (. 187 and .25) were tried but thes froduced only water or slishtly slushy water. It was suessed that the cold room coolins cafacity was too small and the suffly fressures too low to make snow with these size rozzles.

4 FEB 81: The hish pressure portable washer was set us to see if hish eressure water would make snow. With the riozale that was supplied with it, and at about 3500 kPa only freezins rain could be froduced. The resular sun was set uf with the .125 k nozzle and it was found that the temperature of the stream was $0^{\circ} \mathrm{C}$ about 61 cm from the nozzle. The humidity sensor auit workins. It was decided not to reflace it since recordinss had shown that the relative humidity rose to a hish value when snow makins was started. If the relative humidity had ary affect on snow makins there would be nothins that could be done about it in any case due to the limitations of the cold room.

6 FEB 81: A similar desisn of nozale but with a 2.03 cm dia. bevelled hole was tried. The resultins snow seemed to be of a drier auality althoush the auantity was less than in previous runs. The air compressor started to sive problems at this time. It
was decided to disconnect the intake line and araw the air for compressins from the $l a b$ and not the cold room. This method of oferation has had no effect on snow makins.

11 FEB 81: Testins was done to prove out the method of collectins the snow.

12 FEE 81: It was found that control valves ofeninss of less than $1 / 2$ turn caused the best snow to be formed.

13 FEE 81: The water supfly sear pump failed.

17 FEB 81: While farts were beins obtained to refair the fump, it was decided to try to make snow with just line water pressure. A smaller, nozzle (1.57 cm dia.) was manufactured. Only the .062 B and the .080 B nozzles were used durins this testins. while it is possible to make snow with line fressure, the quality of the snow varies in the room. This probably due to the fact that the line fressure varies due to the water usase in the building.

18-19 FEB 81: The pump was repaired. Various types of spray nozzles were at different fressures with mixed results. In most cases the nozzles froze uf in a short feriod of time but while operatins seemed to form ory show. The auantities were small. It was decided that this type of rozzle was worth pursuins as it offered the advantase of makins dry snow in a very localized area. Farts were ordered to heat the nozzles.

20-25 FEB 81: Llata collection proceeded with few froblems. However on 25 Feb the pump could not supely water at a pressure above 690 kFa, The fump was obviously about to break down asain. Samplins

Was suspended and a riew hisher quality sear fumf was ordered.

18 MAF 81: The new pumf was installed with one important difference, The intake water was now orawn from the cleari water pumpins system trench instead of the buildins water suffly, It had been noticed occasionally in the fast that wher other activities in the lab used a lot of buildins water the suffly fressure would drof and affect the output pressure of the pump.

19-24 MAF 81: Iata colleetion continued. On 24 Mar it was decided thet this phase of the testins should be stopeed. The reason for this will be discussed in the results section of this refort.

1-2 JuN 81: The parts for heatins the spray nozale has been assembled and were ready for testins, The small internal mix and external mix rozzles performed well althoush the auantities of show froduced froduced was too small to be measured in a reasoriable lensth of time. The larser sfras nozales made a larser auantity of snow; it seemed to be very slushy.

The observations made durins this study have proven that the Hydraulics Division snowmakins facility is inded capable of makins varied auantities and aualities of snow.

Wet snow is defined as a type that can be readily formed into a snowball and water can sometimes be squeezed out it. Iry snow is a little harder to form into a snowball and rio water can be squeezed out of it. All the snow was of the sranular fowder tyfe with no traditional flakes observed. Fisures 7;8 and 9 show flots of air and water suffly pressures versus sfecific sravity of snow. These graphs are based on measer data but do show the variations in specific sravity due to suffly pressures. Specific Sravities of snow between about 0.2 and 0.3 were judsed to be wet snow. A specific sravity less than about 0.2 was judsed to be diry snow.

FIG. 7 .062B NOZZLE

FIG. 8 . O8OB NOZZLE

FIG. 9.. 125 NOZZLE

The quantity of snow made in a siven time (rate) is entirely deperident on the flow of water throush the nozzle. No measurements were made durins tiis studs concernins rate of show makins since with the 125 nozzle larse ausntities are not a Froblem. By usins ambller rozzle or even a small internal mix sfray nozzle the rate can be reduced to a small amount,

Fisure 7 shows the ranse of specific sravities of sriow made usins the 062 B nozzle. The sraph indicates that snow made with this nozzle is in the dry snow ranse no matter what siffaly fressures are used. If a small quaritity of snow is reauired in the dry ranse then the 062 B nozzle is recommended.

The sraphs for the , o80E and the 125 nozzles in fisures 8 ard 9 resfectivels are auite similar with resfect to the quality of sriow that can be made. The ranse is from wet to dry. The only difference then between these rozales is in the auantity of snow that is froduced.

A sreat deal of information was learred in this studs about how the Hydraulics Iivision snowmakins facility works: This information will be used to write an operatins manual for snowmakins. The followins is a summation of pertinerit facts learned about snowmakiris:
9.1 A roon temerature of $-10^{\circ} \mathrm{C}$ is recommended for sriow makings Colder temferatures cause problems with equifment freezins. Warmer temperatures mean wetter sriow.
9.2 The water supfly ball shut-off valve in the room must be heated with a thermostatically controlled heater at all times.
9.3 Hearing protection should be worn in the cold room when making snow because of the intense noise of the snowmakins surn.
9.4 The sun and hoses should be placed in the room immediately before srowmakins and removed to the warmth of the lab when snow making is finished.
9.5 The water suffly should be turned on first when makins snow. The warmth of the surply water will keer the hose and sun from freezins.
9.6 The sun must tiffed down at a slisht ansle to prevent Fulsins of the air-water stream.
9.7 The return sill in the ceiling of the cold room must be removed before makins snow to prevent clossins and the resultins disfunctioning of the room.
9.8 The intake air for the compressor must come from the lab and not the cold roon to frevent the filter from clossing and the insestion of larse amounts of water into the compressor.
9.9 The air and water sufely pressures should be eaual or nearly equal to make snow.
9.10 The resulatins valves on the sun are usually opened less than $1 / 2$ turn to make the driest sriow.
9.11 The relative humioity in the room rises to almost 100% durins shownakins and seems to have no affect on the quality of snow produced.
9.12 The inlet temperatures of the air and water supply 0 (which were noted on occasion to reach 20 C) have no effect on snow produced as the temperature of the air-water stream measured 0.0 C at $0.6 \mathrm{~m}(2 \mathrm{ft})$ from the nozzle.

APPENDIX II S.I. CONUERSION UNITS

$$
\begin{aligned}
& 1 \mathrm{Fa}=1.0 * 10^{-3} \mathrm{kFa} \\
& 1 \mathrm{Fa}=145.038 * 10^{-6} \mathrm{PSi} \\
& 1 \mathrm{KFi}=145.038 * 10^{-3} \mathrm{PSi} \\
& 1 \mathrm{FSi}=6.895 \mathrm{kFa}
\end{aligned}
$$

APPENDIX III COLD ROOM TEMFERATURES

Dver a period of several days the cold room temperature was measured at various controller set temperatures in the rarise of - 30 C to +13 C . Fisure 10 shows the plot of the set temperature versus the measured temperature. The equation of the line is:

ROOM TEMF: $=0.52+0.95 *$ SET TEMF.
CORR. COEF. $=0.999$

FIGURE 10

[^0]: Technical Services Section
 Hydraulics llivision
 Canada Centre for Inland Waters July 1981

