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ABSTRACT 

A comprehensive methodology is proposed for various stages of 
urbanfrunoff modelling. _The methodology consists of three stages, namely, 
the data preparation stage, the planning stage and the design/analysis stage. _--‘Wan 

For_data preparation, a data analysis model was developed. The 
model serves as an interface between the existing climatological data banks 
and both the planning and design stage models.

I 

"' 
In the planning stage, various alternatives of land use, drainage 

‘systems, and resulting pollutional loads are evaluated. ‘Such an evaluation 
is done by means of a continuous urban runoff model (the STORM model of the 
U.S. Army) as well as by means of a simplified single-event model (Canadian 
version of the Storm water Management Model of U.S. EPA).

. 

In the design/analysis stage, the design of drainage and control 
alternatives is carried out as well as a detailed study of receiving waters.’ 

*V 

.For this purpose, the use of a Canadian version of the SWMM model or ofha new 
SNMMQWRE version including a dynamic wave flow routing scheme, can be made. 

A case study and practical experience with the models discussed are 
described.
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RESUME 

Lfarticle prékente une méthodolpgie élaboréé pour Ies diverses _ 
étapes de la modélisation et de la gestioh_d l'ééouI¢ment drbafin. LS‘ : 
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ceptrices. A cet§e fin, on peut utiliser une version canadienne du modéle 
SWMM ou une nouvelle versipn SWMM com§renant‘le sqhéma de che$fnefient H 

"‘dVnamique de l'éEoulement~de |'onde. 
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On décrit certines études de cés ét Tiexpé?ience pratiqué#acqfi}sé 
avec Ies modéles.
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-ns "The modelling of urban runoff has undergone a rapid development 
during the recent years. The first urban runoff models dealt with single 
events only and served for the sizing of storm drains. Current single-event 
and continuous simulation urban runoff models place equal emphasis on both 
runoff quantity and quality, and serve for the design of drainage systems as 
well as forienvironmental planning. 

.

S 

Combined features of the existing urban_runoff models, many of 
which may be called urban runoff management models, can satisfy to various 

C 

extent most-of the needs and requirements of potential users Illlt. Under 
these circumstances, instead of developing new models which do not necessa- 
rily advance the state of the art of hydrological modelling, it appears to be 
more rational to adopt, interface and modify some of the existing urban 
runoff models to obtain the modelling tool required. 

Such an approach based on the application, interfacing and modifi- 
cation of_some existing urban runoff models is described in this paper. The 
overall objective of the study was to develop and test a methodology for 
urban runoff studies in Canada. 

The proposed methodology consists of three stages - data pre- 
paration, planning and design/analysis. in the data preparation stage, the 
use is made of a newly developed Data Analysis Model. The planning stage is 
based on the STORM model of U.S. Corps of Engineers and partly on a lumped, 
modified version of the Storm water Management Model (SNMM) of the U.S. 
Environmental Protection Agency. For the design/analysis stage, a modified 
SWMM model or the water Resources Engineers version of the SWMM model are 
recommended. The methodology is schematically outlined in Figure 1. The
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description of individual components and of their testing follows. 
DATA. PREPARATION STAGE 

Applications of urban runoff models require large volumes of input 
data, the preparation of which amounts to a significant portion of the total 
project costs. (It is therefore desirable to simplify and computerize this 
part of the runoff modelling to the maximum possible extent.

A 

Generally, four types of input data are required: climatological, 
process, physical and operational data. The first type includes, in this 
study, precipitation and temperature data.’ The process data describe the 
hydrologic response of the catchment. Among examples of process data, one 
could name infiltration rates, surface storage capacity and overland flow 
parameters. Physical data describe the catchment geometry (area, slope) and 
properties of drainage elements (size, slope and roughness).( The term 
operational data refers here to the demographic information for the area, 
municipal cleaning practices (street sweeping, sewer cleaning), application A 

of de-icers, accumulation of dust and dirt, etc. 

Climatological data are typically most voluminous and therefore 
their processing was computerized by means of the Data Analysis Model (DAM)i 
[10] which serves as an interface between the existing data banks and both the 
planning and design stage models. 

The flow chart of the DAM model is shown in Figure 2. For the 
planning stage modelling with the STORM model, referred to as a long-term 
simulation, hourly precipitation and temperature data are required. Such 
data are available on a magnetic tape from the Data Bank of the Canadian 
Atmospheric Environment Service, and consequently, the data processing and 
analysis can be fully computerized. The design/analysis modelling, also. referred to as detailed modelling, typically requires short interval

J 
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~ 
nprecipitation data (5415 min) which are also available from the above sodree, 
but not yet in the digital form. Before using the DAM model, the user would 
have to digitize precipitation data_in arbitrary time intervals; Once this 
.has been done, the data processing is the same as in the former case. 

Figure 2. Data Analysis Model - Flowchart 
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The DAM model reads precipitation data and combines them into a 
,single record defined as a weighted average of all the gauge records. The 

: data quality is checked by plotting single and double mass curves for 
individual gauges. A similar procedure is followed for the temperature data. 

The output of the DAM model consists of the punched data cards for 
the STORM and-SNMM models, mass curves plots, and of event summaries. These 
summaries list the times of start and end bf each storm, its duration, the 
total depth of rainfall, the peak intensity and the antecedent dry period. 
"The event summaries are useful for-a fast review of precipitation data, and 
eventually, for the identification of critical rainfall/runoff events- ~An e ~— 
example of the DAM'model_event summarycis shown in Table 1. 

_M,__, ,“Th9 remaining process: physical and operational input d§:g_f9r_ 
urban runoff models are prepared menually. ' 

A 

_Lf'“W 
Thé préparation of these data gaéuia fie guided by the results-of, 

the sensitivity analysis of the model used.’ Such an analysis indicates”what" 
detail’end accuracy of input parameters is required. .For some parameters, 
rough eetimetes may be acceptable without decreasing appreciably the §fiEH:" 
racy of simulations. other parameters have to be accurately determined; 

Some information on the sensitivity analysis of the STORM;and,SwMM\ 
models is presented later. E‘ 

PLANNING STAGEA * f'” 

In the planning stage, véiiaug alternatives_of_land use, drainage 
systems and the resulting pollutional impact on the receiving waters 
are evaluated. Typically, only limited information regarding the watershed 
is available, and consequently, a detailed runoff simulation is not feasible 
at this stage. At the same time, it is important to establish the 
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-_Tab1_e 1. DAM MOdE1 Event-Summary 

STOTN EVENT SUNNARY FOR 1973, 
S.-NN - I-EsT—ToRoNIo STUDY AREA 

(A STORM HAS BEEN DEFINED As HAVING A TOTAL RAINFALHLE-GREATER THAN IN.‘ (0.76-Mvl) 
AND HAVING LESS THAN 3 CONSECUTIVE DRY HOURS.) 

STARTED ON THE 14TH MONTH, 2ND DAY, 2ND HOUR 
ANTECEDENT DRY DAYS UNKNONN 

._
I 

ENDED ON THE LITH MONTH, 3RD DAY, 10TH HOUR 
TOTAL DURATION IN HOURS = 33 
TOTAL RAINFALL IN HUNDREDTHS OF INCHES = 29 (7.-3-NM) 
r~’lAxI_MuM INTENSITY IN HUNDREDTHS OF INCHES PER HOU_R = 2 (0.5-NM/HR.) 

Is 

. STORM_HUNDER_2. 

STARTED ON THE LITH lVDNf_H, LITH DAY, 16TH HOUR 
ANTECEDENT DRY DAYS = 1.208 __ 

' 

ENDED ON THE LITH MONTH, LITH DAY, 2LlTH HOUR 
TOTAL DURATION IN HOURS = 9 _ . 

TOTAL RAINFALL IN HUNDREDTHS OF INCHES = 14 (3.5-MN) H 
HAxIMUM INTENSITY IN HUNDREDTHS OF INCHES PER HOUR = 3 (0.8-MVI/HR.) 

STARTED ON THE 4TH MONTH, 27TH DAY, 10TH HOUR 
PNTECEDENT DRY DAYS = 22.375

‘ 

ENDED ON THE 4TH NDNTH, 28TH DAY, LITH HOUR 
TOTAL DURATION IN HOURS =19

_ 

TOTAL RAINFALL IN HUNDREDTHS OF INCHES = 48 (12—MM)
V 

MAXIMUM INTENSITY. IN HUNDREDTHS OF INCHES PER HOUR = 8 (2.0-M’~1/HR.) 

.7-..,,._._.__:.,.r__..



a) to determine the_tota1“st9tmwaten_and overflow volumes,—total——-é~—«~~ 
~pollutant emissions, and frequencies of occurrence; 

S S if 

fji ‘ b) 5to ‘identify critical_ (quantity-wise and quality-wise) runoff 

» ’g~-of ‘I-;ng«ineer_s.» -— 

’. probability of occurrence of runoff events of various magnitude. This can be 
achieved by continuous simulation of urban runoff over a long period. Such a 
simulation is then referred to as long-term simulation. 

The main objectives of the long-term simulation are the following: 

events and their antecedent conditions on the basis of a pre- 
._, .-cipitation record;

S 

C) ” to: determine the statistical effectiveness- of such pollution 
~~7'5 * abatement measures as runoff storage, treatment and environmental- 
.‘ 

g , _’ly oriented land use.planning.'H ' 

; 
‘i"A literature search revealed that these obiectives could be met by- 

§~_an,existing:long-term simulation model - the STORM model of U.S. Army, Corps 

’»7". The STORM model is described in detail elsewhere [6]. Basically, 
: :it is a simple continuous simulation model which calculates runoff on an 
:d-hourly basis as a function of~rainfall and snowmelt, considering a composite 

. _runoff coefficient and precipitation reduced by the-available surface dep- 
: .ression storage; Hull” 

For the calculation of runoff volumes, the catchment impervious- 
ness related to the land use, appears to be the most important parameter. S H 

Runoff quality is calculated for various land uses, and finally 
runoff treatment and storage capacities are considered. 

To gain a better understanding of the STORM model and of its W_,V,R 
capabilities as well as limitations, the STORM model was applied on two test 
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catchments for which some runoff measurements were available. ‘The total 

runoff and overflow volumes as well as the number of events occurred and
’ 

their duration are summarized in Table 2. 

Table 2. ‘STORM Testing on Toronto-West and Bannatyne Catchments 
(After ref. 10) ' *

- 

Total.Event ' "g ‘Total Overflow .Number of 
CATCHMENT or Runoff Vol. Events Duration 

' -(cm) . (hrs.) ._ 

Toronto-west, A = 944 ha,‘ _ 

-

‘ 

combined sewer overflows 17.2 -18.70 *.-:53, 54 181 .-.»z27 
simulated over 7 months 

' " 

Meas. Comp. Meas. Comp. Meas. Comp. 

Bannatyne (Winnipeg), — - I 

i ‘ :~;'_ ; ,, 
‘ 

., _ 

.A = 220 ha, flows R 5.51 4.88 24 24 92 " ‘66 
simulated over 4 months 7': 

.- - 
_

- 

_ . The agreement between the measured and computed total volumes and 

overflow frequencies (Toronto-West only) is very good. 

The STORM model was found very inexpensive to operate, the computer 

1 time for the STORM application on a 944 ha catchment over a 7-month period 

cost 4.00 dollars which is less than the cost of a single event simulation by 

detailed models. 

‘The STORM model (1974 version) had several limitations, among 

these, the sanitary flow was not included in the model structure, and the 

simulation of limited storage/treatment options dealt only with flow rates 

without considering the flow quality. Also when comparing the observed and 

STORM-simulated peak flows, large discrepancies were found. Another urban 

- 3 -



"runoff model, the Storm Water Management Model (SNMM) of U.S. EPA, was found 

_ 

free of the above limitations. It was realized that by applying the SWMM 
-, model for selected events in the planning stage, the quantity as well as 

quality aspects of various runoff control alternatives could be studied and at 

greater accuracy of flow simulations could be achieved. 

The SWMM is, however, a single event model which requires the 

definition of antecedent conditions and yields no information regarding the 
frequency'of occurrence of runoff events. These limitations can be removed 

by applying the SNMM in conjunction with the continuous model STORM. “The 

'SIQRM.is,used to identify critical precipitation/runoff events, their free 

quenqy of occurrence and their antecedent conditions. ‘The simulations_of 

these selected events are then repeated with the SWMM model togobtain a 

greater accuracy and detail of these simulations. 
= ; The SNMM model or us. EPA is described in detail elsewhere [3, 9].’ 

Runoff, Transport, Storage (and Treatment) and Receiving waters. The model 

‘ 

can be applied in a various degree of detail depending on the purpose of the 
study. ‘The cost of SHMM simulations is directly related to the detail of 

‘ 

‘these simulations (e.g. the number of elements considered). 
The feasibility of using-the SWMM, in a multi-event simulation 

mode, as a planning tool was investigated. The SWMM model was not, however, 
modified to operate in the continuous simulation mode, since this would 

‘ 

require the addition of a water balance accounting.
A 

T 

‘For planning purposes, the SWMM simulations could be made cheaper 
by reducing the number of subcatchment and transport network elements to a 

minimum and increasing the time step._ Even large catchments can be, in the . planning -stage, represented by a single overland flow element. Depending on 

1 

H 

I 

' 

— 

' 

. - 9 - 
‘_ 

The model consists of an executive block and four computational blocks 1‘ ‘“



the circumstances, few or no transport elements are used. 

‘Parameters of the lumped overland flow element were defined as 

spatial averages. The element width, directly related to the length of 

overland flow, was defined as twice the total length of all main drainage 

'pipes and gutters serving the area. For runoff transport, the volume of 

ifpipes in the simplified system was set approximately equal to the volume of 

‘ 

plified, and the use of short time steps may not be necessary. As long as the 

the real system [10]. 

The simulations made with the lumped SWMM model closely appoxi- 

’Wmated those made with the discretized model, as demonstrated in Figure 3. 

In a lumped drainage system, routing effects are grossly sim- 

'continuity of outflow can be solved on the subcatchment, and the outflow 

i.computations are stable in time, longer time steps may be used in SWMM 
' simulations. Using the lumped single catchment SWMM, time and rainfall steps 

of 15, 30 and 60 minutes were investigated, and the results are shown in 

:Figure 4." Both runoff and transport elements were used in these simulations. 

‘As expected, the computed runoff volumes remained virtually constant and the 

iipeak flows decreased with the increasing time step. Even the reduced peak 
" 

flows, obtained for the time step of 60 minutes, were found accurate enough 
1 

for planning purposes. 

One of the STORM features not available in the SNMM model is 

snowmelt. Since snowmelt may be a fairly important aspect of environmental 

planning in Canadian conditions, particularly from the quality point of ' 

"view, a snowmelt quantity and quality model was developed and interfaced with 

the Runoff Block of SHMM. 

Following a literature survey, the Anderson's snowmelt model 

was selected to be built into the SNMM model as a user option [10]. This was 

one of the first attempts to simulate snowmelt in the urban environment, and, 
' 

mostly because of lack of field data, numerous approximations had to be made. 
-10- 
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‘ The s'nowpa'cI.< distributionand physical parameters were assumed’ to 
I 

I 

‘Abe known prior to the storm. The problem is then reduced to that of 

Iipdescribing the physical changes in the snow cover during the snowmelt and/or 
H 

rainfall periods and the resulting effects on runoff." The model requires 

1 hourly air temperature and wind speed data as climatological-input data. The 

f9basic calculation is made in hourly intervals. If required by the runoff 

” time intervals._ 

Since hardly any field data were available to formulate a con- 

__ _t-ceptual model of the quality of snowmelt water, the same approach as in the 

' iv.- 
the catchment surface were considered. The“listMof the SNMM water quality 

S _ onto the catchment surface was derived from typical application rates of de- 

manner as in the SNMM model I10]. 
T Limited attempts have been made to verify the snowmelt quantity and 

quality model on the Brucewood catchment for three events [3]. Though the 

model results indicated similar trends as observed data, more extensive 

testing will be required to reach conclusive results.
i 

For runoff control, the SNMM model considers runoff storage and 

_ several levels of treatment [8]. The costs of implementing these control 

alternatives are also determined by means of the model. These costs were 

modified for Canadian conditions, the rest of the Storage Block of the SWMM 
model was adopted without any major changes. 

p- 13 - 

§.calculation, the computed hourly volumes are linearly interpolated for other
_ 

SNMM quality modelling was used. Pollutant accumulation on and washoff from _L 

constituents was expanded for chlorides and lead.‘ The input of chlorides 

' 

“icing salts, the accumulation of other constituents is considered in the same
T 

0 -In some applications, a preliminary analysis of the receiving.



waters would also be carried out in the planning stage using the Receiving 

waters Block of the SWMM model or other models.
A 

‘In the planning stage, the user obtains a good indication of the 
’ nature of runoff or overflow problems in the studied area and also learns the 

effectiveness of various runoff/overflow control measures. The information 

is obtained at a planning level, for which the relative effects and magnie 

tudes are more important than absolute values required for design. 

:DESIG_N/ANAHLYSIS STAGE T 

T

, 

In this stage, the design of drainage system and control alter- 

natives is carried out as well as a detailed study of receiving waters. 

:Consequently, it is necessary, to produce, for selected events, .fairly 

;accurate runoff, hydrographs and" pollutographs by’ a calibrated, detailed 

.:simulation model. -At this level, the SWMM or a similar model, are recom- 

:mended. ‘. 
_ 

g _ “_ 

7”“ 
. 

‘ The older versions of_the_SwMM model (prior to May, 1976) have one 

‘limitation which may become apparent in the design/analysis stage -approxi- 

rmate simulation of sewer surcharging and_backwater effects [8, 9, 10]. Note 

that this problem was not encountered in the planning stage, because sewers 

"were either not considered at all (e.g. in the STORM model), or they were 

‘considered as an open channel network. Note also that the events which are 

zimportant for the pollution abatement are not the low frequency storms used- 

inlthe design and therefore the older SNMM versions are fully applicable to 

;water quality studies. 

Surcharging, however, becomes very important when analyzing flood- 

eing problems in an existing sewer system of insufficient capacity, or when 

evaluating the response of a drainage system to a storm of lower than design, 

frequency. Under these circumstances, the older SWMM versions are not 

applicable and newer versions (after May, 1976) or other models have to be. 

-14..



used. To simulate properly surcharging and backwater effects in a sewer 

system, it is necessary to use a model with the dynamic wave routing, such 

as, for eiample, the water Resources_Engineers version of the SWMM model 

(WRE-SIIJMM) [7] , or the‘ Dorsch HVM model [4]. 

In this study,_the Dorsch HVM and WRE-SNMM were applied on the 

Bannatyne test_catchment for two events [10]. one of these events, the 

sewer system was surcharged. Both models performed well under such condi- 

tions and produced more realistic hydrographs than the original SNMM model 

(1975).” 
T 

T
f 

The WRE dynamic wave routing subroutine has been added to the 

latest nonproprietary SWMM version (May, 1976), thus making the SNMM fully 

applicable to the surcharged sewer problems. 

The reliability of the SNMM simulations can be improved by cali- 

'bration. This is particularly true for runoff quality, but the runoff 

quantity may also require calibration, if the input parameters contain large 

‘uncertainties. For instance, it is sometimes difficult to determine what 

portion of the total impervious area is directly connected to the sewers. 

An answer can be found through model calibration. while the model calibra- 

tion is not necessary in the planning stage, and frequently not even possible 

because of lack_of time and data, it is recommended that the design/analysis 

simulations are done with a calibrated model. 

The model calibration requires some field data on runoff (over- 

flow) quantity and quality, and their variation in time. The model simu- 

lations are then compared to the measurements and model parameters are 

adjusted to improve the agreement between the both sets of data. If no field 

data are available, a data collection program may have to be undertaken. The 

scope of such program is determined on the basis of the information obtained 

in the planning stage. 
f- 15 -
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_ 
Model calibration, as well as the preparation of inputidatarfor 

detailed SNMM simulations, can be greatly aided by sensitivity analysis. 

Experimental sensitivity of the SNMM Runoff and Transport Blocks was per-' 

formed by means of repeated simulations on test catchments [10] and the ‘ 

results are summarized below. 
V _ _M’ _ 

.:_ tsensitivity analysis - to assist users in the preparation of input_ 

data for detailed SWMM simulations, an experimental sensitivity analysis of 

the SWMM Runoff and Transport Blocks was performed by means of repeated 

simulations on a test catchment [10]. 
I 

g V W. H 

The‘ parameters affecting the. SNMM runoff quantity simulations 

(Runoff_ Block) can‘ be listed, in the order of decreasing. importance as 

‘follows: 
A 

_ 

_. 

catchment imperviousness, 
A 

_ i 

‘i ; ‘catchment width (related to the length of overland flow)‘ 

infiltration_capacity
H 

V 

_gutter and catchment surface roughness 

catchment slope. 
V t

_ 
- 

In the Transport Block, the conduit length, number of conduits and 

conduit roughness were tested. The effects of the conduit length were 
negligible for pipes shorter than 1200 metres (4000 ft). For 3 km (2 miles) 
conduits, hydrograph attenuations of the order of 40% were found. Increasing, » 

conduit roughness attenuated proportionally the peak flow. 

In a similar manner, the sensitivity of the runoff quality sub-_ 
routine was studied considering the following parameters: 

the washoff equation exponent b’ 

options for the calculation of Suspended Solids '- 

number of dry days 
street cleaning, and 

catchbasin loads. 
- 16 -_



~ 
The washoff exponent affects directly the rate of the pollutant 

lgiremoval, particularly in the initial period of runoff. The pollutants are 

. washed off faster with the increasing value of the exponent b. Neither of 

Athe two options for the calculation of Suspended Solids to. be 

applicable over a wide range of antecedent conditions. The number of dry 

days is perhaps the most important parameter affecting quasi-linearly the 

total runoff pollution load. The effect of street cleaning is very pronounc- 

ed only for high cleaning efficiencies. Catchbasin loads contribute only 

little to the total pollution load. 

1n the Transport Block, the slope of combined sewers and the 
I 

specific gravity of solids affect significantly the sediment deposition- 

scouring process, and consequently, the results of the quality simulations 

for combined sewers.
Q 

hfter calibration, the model is verified. Model verification 

consists of a rational analysis of both the computed output and any em- 

pirically derived parameters. If possible, the computed model output is 

compared with observed system output for other events than those used in 

model calibration.
I 

The results of verifications of the SNMM model on eight urban test 

_catchments were summarized in a recent paper [5]. While the SNMM quantity 

.simulations were fully satisfacory for free flow in sewers, the quality 

simulations were in general much less satisfactory and an additional testing 

and/or refinement of the SNMM quality sub-routine was required. The results 

of these tests, described by the ratios of the observed to simulated 

hydrograph and pollutograph parameters, are given in Table 3 [5]. 

After new, calibrated hydrographs and pollutographs have been 

obtained, the design of sewer network, runoff storage and treatment, can be
' 
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Runoff volumes 
Ratio .V6l.°ba /Vol.8“ 

aver- standard .1 of simulationsi 
age deviation within 1201 of 

observations 4 

Bannatyne 1.40 0.34 242 
Brucevbod 0.91 0.19 662 
Calvin Park 1.03 0.17 752 

Gray Haven — — — 
Halifax 1.01 0.16 852 

Oakdale - —- - 
Halvern 1 . 01 0. 12 892 
Toronto-West 0.87 0.26 502 

Times to peak 
“do. hobs./ham 

aver- standard 1 of simulations 
age deviation within: 201 of 

’ observations 

lhannatyne 0.98 o.12_ 90: 

Bruceuood 0.91 0.10 871 

Calvin Park-- 0.93 .09 921 

Gray Haven 1.02 0.05 1001 

Halifax 1.11 » 0.21 601 

Oakdale 0.92 0._ 13 811 

Halvern 0.96 .” ‘ 0.07 991 - 

Toronto-West 1.1-3 0.22 . S51 

Banna tyne Dru: ewood Halve rh 
ISS=0‘ ISS=1 ‘I$S=0 ISS=1 ISS-0 

(3) avera 
Total BOD obs. 

ge average 
3.10 5.25 .66 .29 -- 

1.34 2.20 5.43 .46 4.12 

Total COD obs. 
Total COD sim. ‘('9 

Total N obs. 
Total‘ N sin. V 

"80 
Total P .obs,. 
Total P 51:11 

2"’5 

(b) 
Peak BOD obs. 

BOD Sim 2_9o 6.1.3 1.5_8 1.35 -- 

P k ss 5 . . 

;f§§7§;§;§_ 1.05 -— 9.60 .43 ‘$.48 

Peak» COD obs. 
Peak con sim. -23 

‘Peak N obs. 
Peak N’ Sim. 3-52 

Peak P obs. 
Peak P sin. 3'01 

Runoffjeak floua - 

_-13- 

xnno Qpoba./Qpain. 
ave:-— standard 

I 

X of simulations 
age deviation within 1 202 of 

' observations 

Bannatyne 1.12 o.o9 31: 

Brueeuood 1.22 0.25 422 

-‘Calvin Park 1.09 0.16 721 

Gray Haven 0.98 0.24 61! 

life: 0.78 0.22 Mo! 

akdale 1.04 0.19 701 ' 

_ 
lvetn _1.05 0.16 771 

oronto-Heat 1.12 0.16 701 

Table 3. SNMM Simulations on Selected 
Test Catchments [5].
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finalized and, lastly, the environmental impact of storm water or overflows 
. on receiving waters evaluated. 

_ 
DEMONSTRATION CASE srunv 

— A demonstration case study was conducted on a test catchment for 
which four-months precipitation/runoff data were available. In the planning 
stage, the STORM model was applied and its abbreviated output is shown in 
Table 4. A visual inspection of the output indicated that two storms from. 
the studied period might be of a particular interest -Storm No. 11 (July, 
1971), from the quantity point of view, and Storm No. 24 (September 5, 1971), 1 

from the quality point of view. The latter storm not only produced. 
significant runoff, but also was preceded by a long dry period - 16 days. 
This would allow high accumulation of pollutants on the catchment surface 
prior to the storm and their washoff during the storm. _.

1 

1 
Storm No. 24 was simulated with the calibrated SNMM model. The 

simulated runoff hydrograph and Suspended Solids pollutograph are shown, 
together with the observed hydrograph and pollutograph, in Figure 5. In the 
same Figure, the changes in the Suspended Solids pollutograph caused by the 
_runoff control by storage, swirl concentrator, and a microstrainer (treat- 
ment level 4 of the SWMM model) are shown and the corresponding costs. 
.Finally, it was assumed that the drainage system discharges into a lake and 
the simulation was carried out for such a receiving water body. Suspended 

. 
Solids were simulated at a point near the drainage outlet and the results are 
shown in Figure 6. For an antecedent dry period of 16 days and no effluent 
treatment, the Suspended Solids concentrations were as high as 610 mg/litre. 
This value dropped"-down to 460 mg/litre for an eight-day. period, and to 60 
mg/litre for one dry day. For comparison, the level 4 treatment (the 
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microstrainer) reduces the maximum Suspended Solids concentration to 210 

mg/litre, if the 16-day dry period is considered. There are numerous other 

control alternatives end measures nhich could be studied with the previously 

described models. 
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CONCLUSIONS 

The existing urban runoff models can satisfy most of the users‘ 
needs for environmental studies of urban drainage. _This may require the use 
of a combination of several models, which can be rather loosely interfaced, 
or some of their submodels modified, to obtain the desired modelling tool. 
»Such an approach was demonstrated in this study aimed at developing and 
"testing a methodology for urban runoff studies in Canada. Apart from data 
preparation, the methodology of_ two“ levels of modelling, the 
planning level and the design level. At the planning level, both the STORM 
and lumped SWMM models were used. ‘The former model serves to determine the 

xfrequencies of runoff events and can also be used to identify the critical 
rainfall/runoff events to be modelled in a greater detail later. A lumped, 
uncalibrated SWMM model was also applied in the planning stage to study and 

N 

‘compare various control alternatives. 

In the design/analysis stage, a detailed calibrated model, such as 
' e.g. the SWMM model, is used for the critical events identified in the 
preceding stage. The model calibration is particularly important for the 
:runoff quality aspects. Should extensive sewer surcharging occur, it is 
necessary to use an urban runoff model with a complete dynamic wave flow 
routing. 
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