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PREFACE 

This manuscript traces the deveTopment of the various equations 
which are used in studying diffusion and dispersion in open—channe1 

f1ow. Starting from the genera] convective—diffusion equation, other 
simpTer equations appTicabTe to vertical, transverse, or one—dimensiona1 

transport are derived. The meaning of the various transport terms 
are expTained and-the equations commonTy used for caiculating the 

various dispersion coefficients are derived. This manuscript shou1d 
be a usefuT and concise summary for scientists and engineers who 
are working on diffusion probiems in open-channel flows.



PREEACE 

Le present document décrit ies étapes de 1'é1aboration des 

équations utilisées pour 1'étude des phénomenes de diffusion et de 

dispersion dans un canai 3 cie1 ouvert. A partir de 1’équation 

généraie de diffusion-convection, on peut obtenir des équations 

pius simpies, apoiicabies au transport verticai, transversai ou 

unidimensionnel. Les termes reiatifs au transport y sont définis 

et les équations qui servent généralement au ca1cu1 des divers 

coefficients de dispersion y sont établies. Ce document concis 

sera sans doute fort utiie aux scientifiques et aux ingénieurs 
qui étudient 1es problemes de diffusion dans les canaux 3 ciei 

.ouvert.



Convective Diffusion Equation 

Applying the principle of mass conservation to the diffusing substance, one gets the following equation

~ 9.2 -a_c. = 3,. «Tc <1-1) at + ““ax-. aziaxi.‘ 

where c is the concentration, and u is the velocity -- both are inn stantaneous values as used in equation (121). Dm is the molecular diffusion coefficient. 

Separating c and u into their time mean and fluctuating values one can write 

c = C + c‘, u = U + u', v = V + v', w = W + w' 
Substitute these into equation (1-1) and apply time averaging to the equation:

A 

9-Q —l- “E + Vtfi + VV3_C -JD... 9: + 9: -rig) + 9“7‘-7+ 3"‘-’V?+§I:‘.' (1-2)
l at 3:: ea 3;” as agar & 553 

The transport due to turbulent fluctuations are usually assumed to be proportional to the gradients of the mean quantities; 

. ,» -~7=e23% 

ex, ed, 22 are the turbulent diffusivities of mass in the x,y,z directions respeztively. Transport by the turbulent fluctuations are terms turbulent diffusion. The equation now becomes
- 

QQ U~£ VAQ w3C-. a‘c.a‘C SC psi?-5 ;‘335‘ 52°-“ - a_t+ ax-v 93+ i_).. 5-a—é‘+9—‘j—__+5_z_1 +52; +53 _~,_,_;_iaz (1 4) 

Equation (1-4) is the general convective diffusion equation. Very often the physical situation allows some of the terms to be dropped and the- equation simplified. This enables some analytical solutions to be obtained. The turbulent diffusion coefficients are generally not known and have to be determined experimentally.



Vertical Dliffusion 

In open—channel flows vertical mixing is usually completed long 
before the dispersing substance has spread across the channel. 

An expression for the vertical diffusion coefficient 5. can be 
derived by using Reynolds analogy between diffusivities of mass and momentum. For a wide open channel, assuming logarithmic velocity distribution 

z/cg): z/z/72¢-g/,7 .2 
/F“ //A) 

and a linear shear stress distribution 

TQ/)= 2: (/—e 

one gets (.2"l) 

‘37 
where 8 is the.vertical diffusivity of momentum, K is the Von Karman constanfmand h is the flow depth. 

The depth averaged value of eym is 

"4-' _’ /T 
__ 63,, — -6- 14/7 (2-2) 

Assuming e = A: one can see that the distribution of 8 in the vertical directigg will be parabolic. Measurements by Alysaffar (1964) showed that e and 2 had similar variations with depth but 2.. had a higher maximu value. Observations by Vanoni (1946) and Jobsozmand Sayre (.1970) of dye and sediment distiributions indicated that X? 1. 
For a steady state 2—dimensional flow with no concentration gradient in the z (transverse) direction and assuming that 35 is small compared with §g_ equation (1-4) becomes 3x 
33' 
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If the velocity U and the diffusion coefficient 2 are considered as constants or depth-averaged values it can be she , by multiplying both sides of (2-3) by y2 and integrating, that . 

J 
y 

) 

<2-4>
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where ¢;2;: _g€%'Cz1V is the variance of the vertical concentration 
/Cary 

distribution. 

However, if U = U(y) and e‘ = e (y) then one cannot use (2-4). s can 
be calculated from the profiles of the velocity and concentration. 

c//U9v("y9"J 
€,(_r/) = 7i (2.5). 

291? r 

‘’J 

The time scale for vertical mixing is Ty = 33-. From results of 
concentration distributions calculated from solution of equation (2-3), it can be seen that the time required for vertical mixing is approxi- mately 0.5T . Therefore, the distance Lvrequired for the concentration to become mgre or less uniform throughout the depth is 

Z ::. (2"5) 0-5 uh‘
V 

5} 

Transverse Diffusion and Dispersion 

For a steady.f1ow in which the mean vertical velocity is zero and in which molecular diffusion is neglected equation (1-4) can be written as ' 

C 
,
6 036+ wee =a€¢%-€ or Jifr + £32 (3.1) 55 «DZ 9;; {7' :92

. 

In open-channel flow the dispersing substance is often well mixed throughout the depth before significant transverse spreading has occurred. Therefore average values with depth can be used when studying transverse spreading. Let 

U=<7+u?',- C=5+c",- W=|7\’7+w",- €.=eZ+€;',- 5-63+ 6;" 
The overbar indicates depth-averaged values and the superscript " indi- cates deviations from the depth averaged values.
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Substituting these expressions into equation (3-1) and then 
averaging the equation over the depth results in the following equation:~ ~ T” ' 0 ‘V .7" 

92+ a_€e,;+a_4.§s€ ,‘ 31 533% :92 22¢ a " 

When conditions are well mixed vertically the last two terms on the right hand side can be neglected and one can write 

~ — —e ;— g:-2.5- <27) 

The terms u"c" and w"c" represent transport arising out of the deviations of velocities and concentration from the depth average values and are usually called dispersion terms. The diffusion and dispersion terms are genegally grouped together and described by the dispersion coefficients ex and ez, ie. 

L405?) 9"’ 
(3,3) 

(€,a_5_i3é_;.§y_——§,?_5r3-* (3—4) 92 az 

Equation (3—2) then becomes 

_. _ __ __n — E — "T U_£.,. "“e’_ = £.‘3“3‘>'z _,. L 3'2‘ (3-5) 69-76 97.: 9.2: a’z
; 

In a straight open channel, where there are no transverse velocities and when the concentration is varying slowly with x (3-5) simplifies to 

<2? & =- ._3_. dz (3-5) ax. a7z '

\ I 
ran“ 

There is no theory which allows E—- to be calculated and experimental determination has been used. Multiplying both sides of (3-6) by z2 and integrating across the channel from y = —B to y = +B



.3 ___ ..o>z 
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. dz _ C718 
A 

. (3-7) 

;n the region where the plume has not reached the sides of the channel, 
c = O at z — B and z = —B, then~ C7 6/ 

Algéféiiz 
—- 2 E":-__.' 8- i 

_. ac/aw <3—8> 1 Bcdfi __ __2__ 3:‘; 

Equation (3-8) is generally used to determine E; from experimental measurements of concentration profiles. 

so is usually assumed to be proportional to U*h or U*R where R is the hydraulic radius, ie. 

52:5 "‘ 46;‘? 
(3-9) 

Experimentally determined values for a have varied between 0.1 and .0.25. Much higher values have been found for some rivers and curved channels. It can be shown from dimensional analysis that 

' 

(3410) 

,Therefore, the value of a can be expected to vary with the friction factor as well as the width to depth ratio of the channel. 
Prych (1970) measured the spreading of salt solutions and showed that with the presence of a transverse density gradient, a secondary current was set up which increased the initial transversg_mixing and hence a . However, after the initial stages, the value of a returned to that 5f a flow without density gradient. Z ' 

For curved or meandering channels transverse Velocities exist and the spreading is affected by the advection by transverse velocity as well as by the differential convection w"c". Equation (3-5) has to be used, in some instances with a slight modification to allow for the variation of depth across the channel. '



Longitudinal Diffusion 

The turbulent transport by longitudinal diffusion and that by XL 
. u, ____§X differential convection u"c" are additive. However, u"c" is usually 

much larger, making it very difficult to measure 5 . It is possible to 
measure a at the surface of a flow by measuring the distribution of 
floating §articles. .

' 

One method used is to measure the longitudinal coordinate X. of 
particles at a time t after their release. Then the mean distanée 
x.(t) is 

/V "' */ 
.2'(t) 12(5) 

{-7 

where N is the number of particles released. 

The variance o§(t) is 
Al ‘ _. 2 

d«;(t)_-_—-_~.—-L E. (T¢""23) 
/V-'/ ¢'='/

2 
and = gféé) (4%-‘-1) 

Another method is to measure the time t.(x) taken by the particles 
to reach a station x and calculate the mean time and variance of the 
‘time_distribution. 

_ /1 
f(x)== ;¢}£%§ zficz) 

.3 
‘ 

_ 

~ —_" Z 
6ta)=/95$ ‘§(1‘.-A 5') 

Then 63’-X (4-2) 

Measurements by Sayre and Chang (1968) and Engelund (1969) gave values of about O.5U*h for ex at the surface. 

Lohgitudina}wDispersion 

When a slug of tracer has spread over the entire depth of a 2- dimensional channel or the entire cross-section of a natural stream, the governing mass transport equation can be simplified if depth averaged or cross-section averaged values of concentration is required. 
By averaging the equation, a transport term appears owing to the



5.1. 

.7. 

spatial variation of concentration and velocity. This differential 
convective transport term which is responsible for an apparent 
diffusion in the longitudinal direction, is termed longitudinal 
dispersion. It is often many times larger than the longitudinal 
diffusion term. The longitudinal dispersion coefficient usually have 
to be determined experimentally, although for 2-dimensional flows it '.is possible to derive an analytical expression for it. 

Two-dimensional flow 

For a 2-dimensional channel with no concentration or velocity 
gradient in the lateral direction, equation (l-4) can be rewritten with C = C + c", U ='U + u" and also neglecting the molecular diffusion 
terms. The overbar indicates depth average and ” indicates deviation from the depth average. 

—s 
,, __ 

' — ‘a(c'*‘+ '9 .9(C"«’«c'7 

s 1 
Averaging the above equation over the depth results in 

if 0 E 99?, -:J—. 
at * ;;2*;; 3% 5 <s—1-2> 

" " is a transport term in the x-direction arising out of the correl- u c 
ation between the spatial deviations. Under certain conditions, one can write 

7* 
c9§: (~ W5 

- (5.l~3) 

D is termed the longitudinal dispersion coefficient. Hence the 1ongi— 
in addition to the turbulent diffusion term a BC. xr— 

BX 
The equation of mass transport is 

tudinal dispersion term includes the differential convective transport U C Usually u"c" 
is the much larger of the two terms. 
now 

J25: (5.1—4) 9?? dz dz"
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The assumption of a Fickian type diffusion relationship for u"¢“ is 
not always valid. Fischer (1966) showed that it can be applied only 
when c"<<C and the rate of change of C is slow. 

For 2—dimensional flow, an analytical expression for D can be 
derived based on the velocity distribution and the value of e . From 
equation (5.1-l), with longitudinal turbulent diffusion negle ted and 
since §g_= O by definition,one gets 

By 

a_f5+c~J,. (¢7+u--)_a_(C‘+c'9_= 9 9;?—‘’' at ax J 
Putting E = x - at (co-ordinate moving with mean velocity) one gets 

II 0 *7 
I, 

v

u 

55 I 

cjfi‘ ua_§‘.(C+c)_.=;\¢%§'d--7.9 (5r1_5) 

._ 'l' 
;— 

_ I 
.—. The assumption that c"<<C and §£<<§§- and that c is varying slowly with time allows the equation to be simgiified to 

:49: _. 2 
c>3' —.fgf 

_. J .'.€£” =_ " 
_z%9 ésif O 

Lcaef 

35 dd .7 
II = —— W C ¢>3'p 5? Jzpzlcéf 

— 3 7 “hell I: a; D 6 9 

one can see now how the assumptions used allow one to write —u"c” = 3-D 

I s 1 y 
' D =.- 

—‘(uC-u 
L.‘ -.—l ” d " 

- - 
‘ 

_aE:' A L‘ 7 “'37 (5.1—6) 3? 0 0 ° ‘ 

ibis is the equation given by Elder (1959) for the dispersion coefficient in a 2-dimensional open channel. For a log velocity distribution, linear shear stress, and assuming ey = gym Elder evaluated DL = 5.86 hU*.
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For axisymmetric flow in a long straight pipe Taylor (1954) got 
DL = 10.1 aU* where a is the pipe diameter. 

Longitudinal _Dis,per.s:io.n. in Natural Streams 

The dispersion term in a Zrdimensional channel is caused by 
variations in velocity with depth. In natural streams where width to 
depth ratios may be 100 times or more there may be much higher con— 
centration differences between the centre of the stream and the banks 
than between the surface and the bottom. The tracer would usually have 
been mixed throughout the depth before it spreads across the whole width 
of a river. Hence in a natural stream it is the lateral variation in 
velocity which is important to the dispersion process and values for DL much greater than Elder's prediction of 5.9 U*d are found for rivers. 

The governing equation for this case can be derived as in the 
2—dimensional case but with the lateral variations included. Again, 
starting from equation (1-4), with v = w = 0 and neglecting molecular 
diffusion, one can write the variables as the sum of the crosswsectional 
mean plus deviations from the mean. Then the equation can be averaged 
over the cross—section. The-same assumptions have to be used in order 
to be able to write 

_ (‘"611 __._—=- .x2_a_€ ax 
The overbar in this case.denotes cross—sectional average and the double 
primed quantities represent deviations from the average. The governing 
equation becomes identical to (5.1-4) 

ac; 503:. 2.»? at ax " 5;: 

An analytical expression can also be derived for DL. The equivalent of equation (5.l—5) for this case is 

_. _. Q9” I 

_o:(C+c")+ u"a(C+=”)= a9»: .2554’ 
91‘ J3 9}" +dz ‘ 

(5.2.-2) 

Applying the same assumptions used previously, and also that %%r isH much less than the lateral variation §£- one gets2 

, 
— ac‘ “Ii. .-= £631 

:9 az
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. Integrating over the depth 

__ bag 
I 

fiwu 
, C” / “W 5/ -93? 43 3 D H 0 dz 

ffz.) 

A 

HrH»”Assuming that 22 and g5? do not vary with depth, one gets 

=" 
, 

_ 

69.9" 
. _r“—* b 1:" {(2) =32 (91 /1:22 >4, 7;

Y 
> _ .2 ‘ 

~'=‘§§; gQ2h£z:; /%%7 5E%%? 1' 

D I

- 

..f 2 z 
~ . . Ci —— ——- -—- Z 

i an e.~»«=»[ 3 
D 

Mflfiu A I z 
.-i- D .7." 

— —- ___l_ I: dz d ‘qr - 4 CD2? ——- ~ 

¢/%;//° ;; aéyak 5%?) .z 3" A0 0 66(2) 
T’ 

/ 
6 Z Z 

. / =- "“' (z)a’z -3&--V 

9 0 0 
(5.2-3) 

Experiments showed that the initial convective period in which the one-dimensional equation (5.2-1) does not apply was approximately 0.42 times the Eulerian time scale tE= E4 when L is transverse distance which 
V Z ' the tracer has to spread, say the %-width of a river. Using ez=0.23RU*,

~ 
(5.2—..4) 

(5.2—5)
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‘ where IL is the downstream distance from-injection where the one-dimensional equation starts to apply. I 

The distance criteria makes it impractical to use the one-dimensional equation for large rivers; 

It is interesting to note that for natural streams where transverse gradients dominate the time scale for mixing is proportional to the square of the width and inversely proportional to the depth whereas in Zedimensional flows, the time scale for mixing is proportional to the_ depth. 

5.3 iExperimental Determination of DL. 

The dispersion coefficient can be calculated from the theoretical expressions given above.if detailed velocity and depth transverses are made. More often, it is measured from tracer experiments, either by_a change of moment method or by a routing procedure relying on the solution of the diffusion equation. 

The change of moment method can be derived from equation (5.2-1) which, in a coordinate—£ moving with the mean velocity U, is

~ at afz 
—ao 

z 
_

_ Q : 5 gay <s.a-1» 

“’° 1... 

where ~ 5; = .-/ao‘}‘.Cd3’ 
(5,3—2) £3“? 

02 is the variance of the space distribution of concentration about an 
axis moving with the mean flow velocity. 

/'A“fiM 
- I A 

f'T’t:7:, C 
cc 

J7-‘7;’6“fV'.



However, the concentration is usually measured at fixed points at 
varying time intervals. Fischer showed that the variance of the time 
concentration is related to 0: by 

4o;’= V46; 
_a.. a. ,_ ''DL:f0C% 6 

( 3) __ " 5.3- 
_ 

. f, 

where E5 and fi are the mean times of passage of a cloud at stations 1 and 
2 respectively. of is the variance of the concentration—time curve at the 
particular location. 

One can also use the following equation if measurement at sufficient stations are taken. 

p —. (73 §’f_<5f (5.3—4) .—- ‘ -2.42. 

This derivation applies regardless of the initial concentration distribution and_can be used to estimate D as long as the stations are within the region where the one—dimensional equation applies. 
The routing procedure introduced by Fischer follows from the solution of the one-dimensional equation. 

-25,. Jae’: 22 .935 at ax ax 
with boundary conditions of a delta function type point source at x = 0, t = 0, the solution is ~ C" M -%"<7*2‘ 

( ,t =2 € 41?? I ) 
4,1/25 (5.3-5) 

This solution is sometimes matched with field data to obtain D . However this is incorrect since this solution does not recognize an initial period in which the equation does not apply. The correct procedure would be to use the concentration distribution existing at the beginning of the diffusive period and solve the equation with that particular distri- bution as initial condition. From that solution, a concentration distri— bution for another point downstream can be predicted using an assumed value of D . The value of DL which gives the best fit against the data is then the gest value of DL for that reach. ‘
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The governing equation in a co-ordinate moving with the mean flow 
velocity is 

Given at time t = to a certain spacial concentration distribution CO(€,to), the equation can first be transformed using t = t—t and then by 
applying complex Fourier Transform the solution is 

05 
_ Kr-I'll 

<:rr::2 e 4’5‘W-ta 4;’ (5..-.)~ 56, 29: / 
4279‘ (5-t,,)'°b 

This solution is in terms of space—concentration distribution. To use it 
for time concentration data, one has to assume that the time-concentration 
distribution measured at X is the same as the space~concentration 
distribution which would have been measured at time t where t is the time Of 
travel to station xo, i.e.. O 0 

56: Li): E(:<., 2:) 

Applying this principle, one can write the time concentration distribution 
for a point at xl 

ob 
' — ' — 

(’.:"f."'t 2 
C(i,) 1'): <,(I°’z) ‘ex/of (z.I__Z;)+f)]] 

dz. 
(5.3-7) 

"-=° ./ 4r»L2 at-t.) 

Therefore using an upstream time concentration curve, the concentration curve at another point downstream can be calculated from (5.3-7) using some value of D If this does not fit the experimental data, should - D be adjusted. The value of DL which enables a good fit is then theoretically the best estimate. 

Values of D of the o der of 230 ftz/sec. are common. This contrast with values of around 1 ft /sec. for the turbulent diffusivities.
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