ENVIRONMENT CANADA ENVIRONMENTAL PROTECTION BRANCH PACIFIC AND YUKON REGION

PAHs IN THE AQUATIC ENVIRONMENT OF BRITISH COLUMBIA

Regional Program Report No. 00-02

BY

C.L. GARRETT AND J.A. SHRIMPTON

March, 2000

ABSTRACT

This report summarizes information on polycyclic aromatic hydrocarbon (PAH) compounds in the aquatic environment of British Columbia, obtained from select studies conducted by Environment Canada, Pacific and Yukon Region between 1984 and 1992. The information reflects studies conducted mainly in urban areas such as the Fraser River Estuary, Vancouver, Victoria and Esquimalt harbours, however, data for some other coastal regions and reference sites are also presented.

This report also documents the existing information on the potential sources of PAH compounds and current environmental quality guidelines governing regulatory requirements.

A general overview of the toxicity and environmental levels of these compounds in other areas of the world has been presented to provide a broader context for the British Columbia data.

RESUME

Ce rapport fournit un sommaire d'informations sur les hydrocarbures aromatiques polycycliques (PAHs) dans l'environnement de la Colombie-Britannique et est le resultat d'etudes conduites par Environnement Canada, Pacific et la Region du Yukon entre 1984 et 1992.

L'objectif de ce rapport etait de documenter les informations existantes sur les niveaux de diffusion dans l'environnment des PAHs de l'etain en Columbi-Britannique et la legislation courante et les directives controlant la diffusion de ces composes.

Une vue d'ensemble generale des niveaux de toxicite et d'environnement de ces composes dans d'autre regions dans le monde a ete fournie au lecteur afin de mettre en relief ces informations pour la Columbie-Britannique.

TABLE OF CONTENTS

		Page
	ABSTRACT	i
	RESUME	ii
	TABLE OF CONTENTS	iii
	List of Figures	v
	List of Tables	vi
	List of Appendices	vii
	List of Site Location Maps	viii
	EXECUTIVE SUMMARY	ix
1.	INTRODUCTION	1
2.	PRESENCE IN THE ENVIRONMENT	3
2.1	Environmental Dynamics	3
2.1.1	Water and Sediments	3
2.1.2	Atmospheric Influences	6
2.1.3	Uptake into Aquatic Biota	9
2.1.3.1	Invertebrates	9
2.1.3.2	Fish	16
2.2	Biological Effects	20
2.3	Concentrations in the Aquatic Environment	30
2.3.1	General Information	30
2.3.1.1	Water and Sediments	30
2.3.1.2	Aquatic Biota	39
2.3.1.2.1	Aquatic Invertebrates	39
2.3.1.2.2	Fish	42
2.3.2	Concentrations in the British Columbia Environment	45
2.3.2.1	Surface Waters and Sediments	45
2.3.2.2	Aquatic Biota	56
2.3.2.2.1	Aquatic Invertebrates	56
2.3.2.2.2	Fish	62

iii

TABLE OF CONTENTS cont.

129

(iiiii)e

3.	LEGISLATION, REGULATIONS, AND GUIDELINES	64
3.1	Water Quality	64
3.2	Human Health	69
3.3	Ocean Disposal	69
3.4	Use and Release	70
3.5	Contaminated Sites	71
REFEI	RENCES	87

	ACKNOWI	EDGEMEN	ГS
--	---------	---------	----

LIST OF FIGURES

Page

Figure 1	Comparison of PAH Concentrations and Patterns in Sediments and Mussels	76
Figure 2	Percent Contribution of Individual PAH Compounds to Total PAHs in Sediments and Biota	81

.

v

LIST OF TABLES

i i i i k

li de

Table 1	Mean Percent Contribution of Individual PAH Compounds in Sediments from Coastal British Columbia	55
Table 2	Average PAH Concentrations in Mussels Collected in Vancouver Harbour (1988 to 1991)	56
Table 3	B.C. MELP Recommended Water and Sediment Quality Criteria (fresh and marine)	65
Table 4	Maximum Objective Levels for PAH Compounds in Burrard Inlet Sediments	66
Table 5	Canadian Water Quality Guidelines for the Protection of Aquatic Life - PAHs	67
Table 6	Interim Canadian Sediment Quality Guidelines (ISQG) and Probable Effects Levels (PEL) for the Protection of Aquatic Life - PAHs	68
Table 7	Recommended Maximum Benzo[a]pyrene Concentrations in Fish and Shellfish	69
Table 8	B.C. Contaminated Sites Regulation Generic Numerical Soil Standards for PAHs	72
Table 9	B.C. Contaminated Sites Regulation Generic Numerical Water Standards for PAHs	72
Table 10	B.C. Contaminated Sites Regulation PAH Standards Triggering Contaminated Soil Relocation Agreements	73
Table 11	Numerical Criteria for Assessing Freshwater Sediment Sites - PAHs	74
Table 12	Numerical Criteria for Assessing Marine and Estuarine Sediment Sites - PAHs	75

LIST OF APPENDICES

Appendix 1	Sampling and Analytical Methodology	130
Appendix 1.1	Field Collection Methods	131
Appendix 1.2	Analytical Methods	132
1.2.1	PAH Compounds	132
1.2.2	Particle Size Analysis	144
1.2.3	SFR/SVR Analysis	146
1.2.4	Lipid Content	147
Appendix 2	Sampling Station Coordinates	148
Appendix 2.1	Sediment Samples	149
Appendix 2.2	Biota Samples	158
Appendix 3	Sample Information	164
Appendix 3.1	Sediment Characteristics	165
Appendix 3.2	Biota Sample Information	172
Appendix 4	Quality Assurance and Quality Control	180
Appendix 4.1	Sediment Samples	181
Appendix 4.2	Biota Samples	195
Appendix 5	Environmental Concentrations of PAH Compounds	207
Appendix 5.1	PAH Concentrations in B.C. Sediments	208
Appendix 5.2	PAH Concentrations in Aquatic Organisms of B.C.	226

LIST OF SITE LOCATION MAPS

-

te star

ÜLS

Wits

Øb:

töib:

Think

N HE

Map 1	Coal Harbour Sampling Locations (Sites CH-1 to CH-6)	244
Map 2	False Creek (Sites FC-1 to FC-11)	245
Map 3	Lower Fraser River (Sites FR-16 to FR-20) and Mainland Sites (MS-3 and MS-4)	246
Map 4	Vancouver Outer Harbour (Sites BI-1 and SB-1)	247
Map 5	Burrard Inlet (Sites BI-2 to BI-5)	248
Map 6	Burrard Inlet (Sites BI-7, 8 and 9)	249
Map 7	Burrard Inlet (Sites BI-10, 11, 12, and 18)	250
Map 8	Burrard Inlet (Sites BI-14 to BI-17)	251
Map 9	Burrard Inlet (Sites BI-19 to BI-26)	252
Map 10a	Victoria Harbour (Upper, Inner, and Outer Harbour Sampling Locations)	253
Map 10b	Victoria Harbour (Selkirk and Gorge Waters)	254
Map 11	Esquimalt Harbour	255
Map 12	Vancouver Island (VI-13 to VI-14)	256
Map 13	Reference Sites (RF-1 to RF-8)	257
Map 14	Queen Charlotte Islands Reference Sites (RF-9 and RF-11)	258

EXECUTIVE SUMMARY

- Polycyclic aromatic hydrocarbons (PAHs) are organic compounds made up of hydrogen and carbon atoms with two or more benzene rings. Most PAHs are produced as by-products and released to the environment inadvertently. However, some PAHs are manufactured in North America as commercial chemicals and used mainly in the pharmaceutical, photographic, and chemical industries, as well as in the production of fungicides, insecticides, surfactants, and moth repellents. Elevated concentrations of PAHs in the environment are of concern due to their persistence and toxicity.
- PAHs have been designated as toxic substances under Section 11 of the Canadian Environmental Protection Act (CEPA, 1988). Many species of aquatic organisms exhibit adverse biological effects following exposure to micrograms per litre (µg/L) concentrations of PAH compounds. These include effects on growth, reproduction, immunocompetence, and survival. Due to their greater water solubility, the lower molecular weight (LMW) PAH compounds (two and three ring) generally exhibit greater acute toxicities to aquatic biota than the higher molecular weight (HMW) compounds (> four rings). However, several of the HMW compounds are carcinogenic and mutagenic. The toxicity of PAHs is also affected by environmental conditions. Toxicity to some aquatic species is increased several fold in the presence of light (phototoxicity), while the presence of high levels of organic carbon in sediments reduces the toxicity of PAHs to benthic organisms. The influence of local environmental conditions must be considered when setting and applying environmental objectives for the protection of aquatic species.
- PAHs in the aquatic environment can be degraded or transformed into new compounds by processes such as volatilization, photooxidation, and microbial degradation. The rate and extent to which PAH compounds are transformed or degraded are influenced by both the molecular structure of the compound and environmental conditions. For example, microbial degradation is favoured in oxygenated sediments and exposed tidal flats. Estuaries and harbours in urbanized and industrialized areas tend to have oxygen-depleted sediments and can serve as long term sinks for PAHs.
- Atmospheric deposition accounts for the majority of PAH input to most aquatic systems. PAHs are produced as by-products and released to the atmosphere during the combustion of organic matter, both naturally and as a result of human activity. Natural sources include forest and grass fires and volcanic eruptions. Anthropogenic sources of PAHs to the atmosphere include coal, oil and wood combustion for residential heating; transportation; aluminum smelters; steel and coking plants; municipal incinerators; agricultural, forest slash, and other open-air burning; and teepee burners at sawmills. A 1990 study conducted

for Environment Canada identified forest fires and aluminum smelters as the two main sources of PAH emissions in Canada. Forest fires accounted for 47% of the total PAH emissions to the atmosphere in 1990, while aluminum smelters accounted for 21% (LGL, 1993).

- High environmental concentrations of PAHs were found in the vicinity of the Alcan aluminum smelter in Kitimat, British Columbia. However, PAH emissions from the smelter have decreased more than 10 fold since the 1970's as a result of improvements to the process technology (Simpson, 1997). Sediment concentrations in many areas of Kitimat Arm have declined as a result of decreased PAH releases from the smelter, but concentrations within 1 km of the smelter remain high (Paine *et al*, 1996).
- Sediment concentrations in the vicinity of the Alcan smelter exceeded concentrations normally associated with adverse biological effects, however, an environmental effects monitoring program showed little evidence of adverse effects in resident communities and no sediment toxicity was observed in bioassays (Paine *et al*, 1996). The lack of adverse effects on local biological communities may be related to the fact that PAH releases from the smelter were associated with pitch globules or coal particles, rather than in solution or sorbed to suspended solids. Studies in Norway have shown that PAHs in sediments receiving discharges from an aluminum smelter are not readily available for degradation or biological uptake.
- Direct losses of PAHs to the aquatic environment occur through the use and spillage of petroleum products, coal, and creosote. These substances contain naturally high levels of PAHs. It has been estimated that the loss of PAHs from creosote-treated wood products may result in the release of up to 2000 tonnes of PAHs to soil and water each year (LGL, 1993). Other direct sources of PAHs to the aquatic environment include municipal treatment plants, industrial discharges, storm sewers, landfill leachate, and surface runoff.
- Environment Canada surveys conducted between 1984 and 1992 found high concentrations of PAH compounds in the sediments of False Creek and Vancouver, Victoria, and Esquimalt harbours. Total PAH concentrations in sediments from these areas ranged up to several thousand nanogram per gram (ng/g) (dry weight). Potential sources of PAHs to these areas include former coal gasification plants (False Creek), fuel combustion and spillage, leaching from creosote pilings, industrial discharges, atmospheric deposition, surface runoff and stormwater discharges. At some sites, multiple potential PAH sources are present in close proximity. For example, combined sewer overflows discharge to these areas and can make significant contributions to PAH concentrations in nearshore sediments. In some cases, the PAH contamination in nearshore sediments may not be associated with the current operations at that site. Historical reviews of land use along the shoreline in these areas indicated a diverse range of industrial activities since the early 1990's.

1 Hilis

х

During the late 1980's and early 1990's, the highest PAH concentrations in Vancouver Harbour were detected in sediments near several shipbuilding and repair facilities; Vancouver Shipyards (up to 85,614 ng/g), Versatile Pacific (up to 41,321 ng/g), Allied Shipyards (up to 114,880 ng/g), Rivtow (101,375 ng/g), B.C. Marine Shipbuilding/Sterling Shipyards (up to 402,530 ng/g), and Menchion's Shipyard (28,500 ng/g). As of March 2000 these facilities were closed, with the exception of Allied Shipyards and Vancouver Shipyards.

■ In 1990, PAH concentrations exceeding 10,000 ng/g (dry weight) were detected in sediments throughout Victoria Harbour with the highest concentrations (>20,000 to >30,000 ng/g) occurring in sediments at the Boatbuilding Facility, the now-closed Smith Cedar Products site, Rock Bay in the Upper Harbour, and at B.C. Shipyards in the Inner Harbour.

In 1990, the highest PAH concentration in Esquimalt Harbour sediments (63,250 ng/g) occurred in sediments collected near the Department of National Defence facility at Constance Cove. PAH concentrations in sediments throughout this area and at Dunn's Nook (site of a fuel oil jetty) exceeded 10,000 ng/g. Concentrations were also high in Plumper Bay sediments (up to 6,589 ng/g), but were much lower in sediments from the less urbanized/industrialized Fort Rodd (313 ng/g) and Upper Harbour (142 ng/g) areas.

PAH concentrations were elevated in the vicinity of some wood preservation facilities on the lower Fraser River. Total PAH concentrations were particularly high in the vicinity of the old Kopper's International site in Burnaby (up to 19,834 ng/g) which used creosote from the 1930's until the plant closed in 1981. PAHs were also detected in the vicinity of Domtar Wood Preservers in New Westminster (up to 3,175 ng/g), which has used creosote from the 1930's to the present, and also at the Domtar/Liverpool facility (up to 330 ng/g), where creosote was not used but was stored in large tanks and transferred from ships and barges to rail cars. The Domtar/Liverpool facility was decommissioned in the early 1980's. Although creosote has not been used at Princeton Wood Preservers or B.C. Cleanwood Preservers, PAHs (407 ng/g and up to 3,743 ng/g, respectively), were detected in Fraser River sediments collected near these sites. The elevated PAH concentrations detected in sediments near B.C. Cleanwood Preservers are likely due to PAH input from surface runoff and leaching from creosote pilings, and the fact that this facility is located in Gundersen Slough, which is an area of low flushing. The PAH concentrations detected in the sediments near Princeton Wood Preservers are not considered unusually elevated in comparison to levels found elsewhere in the Fraser River.

PAH concentrations in sediments collected from reference sites at Crescent Beach, Warn Bay (west coast of Vancouver Island), and the Queen Charlotte Islands were low (0.4 to 83 ng/g dry weight) in comparison to urban/industrialized areas. The presence of PAHs in remote areas is likely due to atmospheric deposition and boat traffic.

- PAH concentrations in sediments collected from many nearshore sites in False Creek and Vancouver, Victoria, and Esquimalt harbours in the late 1980's and early 1990's, greatly exceeded the Canadian Interim Sediment Quality Guidelines and probable effects levels (PELs) summarized in Section 3; Table 6. In some cases, the concentrations of individual PAH compounds were more than 10 fold higher than their PELs. PEL is defined as the level above which adverse effects are expected to occur frequently. It is apparent that the PAH concentrations at several locations in these regions were high enough to cause adverse environmental impacts, depending on local environmental conditions. At some sites, information on current environmental levels is not available and it is not know whether current levels exceed the ISQGs. However, at many of the facilities located in Vancouver Harbour (and at some sites in False Creek), environmental site assessments have been, or are being, conducted and are being reviewed by regulatory agencies. Remedial action will be taken where deemed necessary. In addition, the Ministry of Transport is currently in the process of conducting baseline studies for contaminated shoreline sites throughout Victoria and Esquimalt harbours. Where required, remediation and risk management actions will be undertaken.
- PAH concentrations in the hundreds of ng/g (wet weight) range were detected in mussels from most areas of Vancouver Harbour and False Creek in the late 1980's and early 1990's. Especially high concentrations (4,000 to 5,000 ng/g) were present in mussels collected from Vancouver Shipyard and Versatile Pacific Shipyard in Vancouver Harbour, and from Constance Cove (>3,500 ng/g) in Esquimalt Harbour. These levels are comparable to those detected in mussels from the highly contaminated Sydney Harbour in Nova Scotia (4,200 ng/g).

\$ Hine

ناڭ

t in

Della

- PAH concentrations in the hundreds of ng/g (wet weight) range were detected in clams from Vancouver, Victoria, and Esquimalt harbours and in crab hepatopancreas from False Creek and Vancouver and Victoria harbours in the late 1980's and early 1990's. Concentrations in the muscle tissue of crabs were much lower than those detected in the hepatopancreas.
- In the late 1980's and early 1990's, PAH concentrations in fish from False Creek, Vancouver, Victoria and Esquimalt harbours and from the Fraser River exceeded those in fish from reference areas. Concentrations in fish were generally much lower in fish than in shellfish and sediments from the same area, and only occasionally exceeded 100 ng/g (wet weight). These levels are consistent with findings reported in other areas of the world. Fish have a more efficient mixed-function oxidase (MFO) system than do invertebrate species and, therefore, are more able to metabolize PAH compounds.
- Evidence of PAH toxicity has been observed in the aquatic environment of British Columbia. In the late 1980's, a high incidence of liver neoplasms (up to 75%) was observed in the liver of English sole (greater than 20 centimetres in length) collected in the

vicinity of the loco oil refinery in the Port Moody area of Vancouver Harbour. The concentrations of PAH compounds in the sediments from this area were also elevated. In the early 1990's, a decline in the frequency of liver lesions (to 30-45%) was observed and was attributed to the fact that the process effluent from the refinery no longer discharged to the harbour (Goyette *et al*, 1988; Goyette, 1991; Goyette, 1994). Concentrations of PAHs in the sediments near the refinery also declined significantly over this period. A high incidence of cancer has been reported in aquatic biota, primarily fish, from several PAH-contaminated aquatic systems throughout the world

At virtually all areas sampled in British Columbia, the higher molecular weight compounds comprised the bulk of the total PAHs detected in sediments (>80% at most sites). The compounds detected at the highest concentrations were fluoranthene, pyrene, and benzofluoranthenes. Other high molecular weight compounds commonly detected were chrysene, benzo[a]anthracene, benzo[e]pyrene, benzo[a]pyrene, and indeno[1,2,3-c,d]pyrene. Of the lower molecular weight PAH compounds, phenanthrene made the largest contribution to the total PAH content in sediment samples. The mean percent contributions of individual PAH compounds were quite consistent throughout all areas sampled. The predominance of the four and five ring compounds, combined with the significant contribution of phenanthrene and preliminary indications of high contributions of alkylated compounds and dibenzothiophenes, suggests a combination of combustion and petroleum sources.

■ The patterns of PAH compounds in mussels, clams, and oysters from all areas were quite consistent and were very similar to that observed in sediments. The PAH pattern in crabs, shrimp, and fish was less consistent and was less likely to resemble those in sediments (Figures 1 and 2). This is probably due, in part, to the fact that both crustaceans and fish metabolize PAH compounds more efficiently than do bivalve species.

1. INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are organic compounds made up of hydrogen and carbon atoms. They consist of two or more aromatic (benzene) rings joined by a pair of shared carbon atoms. Parent PAH compounds contain only hydrogen and carbon atoms. Closely related compounds include PAH derivatives, which have an alkyl or other radical group attached to a ring; halogenated PAHs, which contain chlorine and bromine atoms; and heterocyclic aromatic compounds (HACs), in which one carbon atom in a ring has been replaced by nitrogen, sulphur or oxygen. Most environmental studies have focused on the parent PAH compounds and less information is available on the levels and impacts of PAH derivatives and HACs.

Most PAHs are produced and released to the atmosphere inadvertently, however, some PAHs are produced as commercial chemicals in North America. These include acenaphthene, acridine, anthracene, fluorene, naphthalene, pyrene, and quinoline. These compounds are used mainly by the pharmaceutical, photographic and chemical industries. Naphthalene is also used in the production of fungicides, insecticides, moth repellents, and surfactants (Nagpal, 1993).

PAHs are produced and released to the atmosphere during the combustion of organic matter, both naturally and as a result of human activity. Many factors affect the amount and type of PAHs produced including the type and quantity of fuel, the duration and temperature of combustion, and the presence of oxygen. Important sources of PAH releases to the atmosphere include residential heating (burning of coal, oil or wood); transportation; aluminum smelters; steel and coking plants; municipal incinerators; agricultural, forest slash, and other open-air burning; and teepee burners at sawmills. Natural sources of PAHs include forest fires, volcanic eruptions, and the natural occurrence of these compounds in coal derivatives and petroleum (NRC, 1983). In Sydney, Australia summer bush fires are thought to be a significant source of atmospheric PAHs (Freeman and Cattell, 1990). A 1990 study conducted for Environment Canada identified forest fires as the single most important source of PAHs to the environment in Canada (2010 tonnes or 47% of the total emissions). Aluminum smelters, the second most important source, contributed 925 tonnes or 21% of the total emissions (Environment Canada, 1994; LGL, 1993).

Although atmospheric deposition accounts for the majority of PAH input to aquatic systems, several sources of direct release have been identified including municipal treatment plants, storm sewers, oil refineries, industrial discharges, landfill and surface runoff. The use and spillage of petroleum products, coal, and creosote are also significant sources of PAHs to the aquatic environment due to their naturally high levels of PAHs. It has been estimated that the loss of PAHs from creosote-treated wood products may result in the release of up to 2000 tonnes of PAHs to soil and water each year (LGL, 1993).

1

Creosote is distilled from coal tar and contains a complex mixture of compounds, including very high concentrations of PAHs. The composition of creosote varies, from 40 to 85% according to some authors (Neff, 1979; Environment Canada, 1988; Mueller *et al*, 1989). Creosote has been used primarily as a wood preservative for treating railway ties, pilings, transmission and telephone poles. In Canada, telephone and transmission poles have not been treated with creosote since the mid-1970's (Environment Canada, 1988; Envirochem, 1991; Environment Canada, 1994). Creosote is still used for the treatment of railway ties and wood pilings, timbers and wood decking of piers and floating wharves in the marine environment. The production and use of creosote and creosote-treated structures has led to localized areas of high levels of environmental PAH contamination (Dunn and Stich, 1976; Wan, 1991; Wan, 1993).

The commercial production of creosote in Canada has decreased since the 1940's, when Canadian production was greater than 60×10^6 kg per year, to approximately 20 x 10^6 kg in 1990 (Envirochem, 1991). However, there is significant year to year fluctuation in the use of creosote. A 1995 pesticide use survey revealed that 2.2×10^6 kg of creosote was used in British Columbia in 1991 compared to 5.9×10^6 kg in 1995 (FRAP, 1997).

PAHs are often divided into two groups according to molecular weight. The high molecular weight (HMW) group includes the four to seven ring compounds, while the low molecular weight (LMW) group includes the two and three ring compounds. In environmental surveys, the most commonly studied high molecular weight compounds include fluoranthene, pyrene, chrysene, perylene, benzo[a]pyrene, benzo[e]pyrene, coronene, benz[a]anthracene, benzofluoranthenes, indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene, benzo[g,h,i]perylene. The most commonly studied low molecular weight compounds are naphthalene, acenaphthene, anthracene, phenanthrene, and fluorene.

1848 F

₩-ing

Wir Ba

10.00

The physical and chemical characteristics of these compounds and their biological effects vary with their molecular weight. The lower molecular weight compounds (three or less rings) are acutely toxic to many aquatic organisms. The higher molecular weight compounds (four or more rings) exhibit lower acute toxicity, but several are carcinogenic. PAHs have been declared toxic as defined under Section 11 of the *Canadian Environmental Protection Act* (CEPA, 1988). Benzo[a]pyrene, benzo[b]fluoranthene, benzo[f]fluoranthene, benzo[k]fluoranthene, and indeno[1,2,3-c,d]pyrene have been classified as probable human carcinogens. (Environment Canada, 1994). The higher molecular weight compounds are also more persistent in the environment as they are more resistant to degradation. Resistance to oxidation, reduction, and vapourization increases with molecular weight, while aqueous solubility decreases (Nagpal, 1993; Neff, 1979; Moore and Ramamoorthy, 1984; Herbes and Schwall, 1978; Wild *et al*, 1991; Cerniglia, 1981; Cerniglia, 1984; Environmental Protection Agency, 1990).

2. PRESENCE IN THE ENVIRONMENT

2.1 Environmental Fate

2.1.1 Water and Sediments

The behaviour and ultimate fate of PAH compounds in natural waters is determined largely by their molecular weight. Upon entering aquatic systems, the hydrophobic nature of the higher molecular weight compounds results in their rapid adsorption to particulates in the water column. They eventually settle out to the bottom sediments where they can persist for long periods of time. Due to their higher solubility, the lower molecular weight PAHs are more likely to remain in the water column (Kaiser *et al*, 1985; Eganhouse and Calder, 1976; MacKay and Shiu, 1977). Smith *et al* (1991) reported that the lower molecular weight PAHs (two to three ring compounds) were primarily dissolved in the water, while the higher molecular weight PAHs (four and five ring compounds) were primarily associated with particulates. Fluoranthene and pyrene showed intermediate behaviour and were distributed between the dissolved and particulate phases.

Environmental factors can affect the partitioning of PAHs between the water column and particulate matter. Laboratory tests have shown that the solubilities of PAHs increase with temperature (Neff, 1979; Cornelissen *et al*, 1997) but are lower in marine waters than in freshwaters (Rossi and Thomas, 1981). The presence of dissolved humic matter can increase the amount of PAH which remains in the water column and, therefore, increase the distance that the PAH can be transported from the point of entry (McCarthy and Jimenez, 1985a). Johnson and Amy (1995) also reported that natural organic matter in sediments facilitates the transport of PAHs and noted that the addition of organic matter to sediments with a low natural organic carbon content results in an increase in the release of PAHs from the sediments. Similarly, Chin and Gschwend (1992) reported that organic colloids (including humic substances) in sediment pore waters could enhance the amount of PAHs in the aqueous phase and influence the transport of these compounds in the aquatic environment. Schlautman and Morgan (1993) reported that water chemistry (pH and ionic strength) can affect the binding of PAHs by dissolved humic material.

Hardy *et al* (1987) reported that potentially carcinogenic, mutagenic, and teratogenic PAHs were present in most of the sea-surface microlayer samples collected from Puget Sound. Very high concentrations were detected at some sites including Elliott Bay and Commencement Bay. Many of the samples contained high concentrations of fluoranthene, pyrene, chrysene, and benzo[a]pyrene. In samples with high PAH concentrations approximately 90 to100% of the PAH was associated with particles while, in samples with low concentrations, the PAHs were more evenly distributed between the dissolved and particulate fractions. PAHs were not detected in samples of sub-surface water collected from several sites. A study of PAH content and sediment particle size fractions in river sediments from England revealed a bimodal distribution of organic matter content and PAH concentrations in sediment particle size fractions. The smallest and the largest size fractions contained the highest PAH levels. A linear relationship between individual and total PAH concentrations and organic matter content was observed. The proportions of individual PAH compounds remained relatively constant regardless of temporal and spatial differences in total PAH concentrations (Evans *et al*, 1990a).

In addition to adsorption and sedimentation, other processes controlling the fate of PAHs in aquatic systems include volatilization, photolysis and biodegradation.

While low molecular weight PAHs such as naphthalene volatilize readily, compounds with four or more rings have shown insignificant volatility under a variety of environmental conditions (Nagpal, 1993; Neff, 1979; Moore and Ramamoorthy, 1984; Lee *et al*, 1978; Sloof *et al*, 1989; Southworth, 1979; Lyman *et al*, 1982). Baker and Eisenreich (1990) report that the higher molecular weight compounds, which tend to be adsorbed to particulates in the water column, are less available for volatilization than are the low molecular weight compounds (such as naphthalene and phenanthrene), which may be dissolved in the water column. The amount of PAH volatilization from the water column is also determined by weather conditions (temperature and wind) and water movement (Southworth, 1979).

The sensitivity of PAH compounds to photodegradation varies. Some PAH compounds have been shown to photodegrade readily in both laboratory and field situations. Nagata and Kondo (1977), using acetone and carbon tetrachloride as solvents, concluded that anthracene, phenanthrene, and benz[a]anthracene were most likely to be photodegraded, while chrysene, fluorene, pyrene, and benzo[a]pyrene were relatively resistant to photodegradation. Solvents used in laboratory experiments have been shown to significantly influence the photosensitivity of PAHs and, therefore, care must be used when utilizing laboratory-derived photodegradation rates to predict the fate of PAH compounds in the natural environment. The presence of fulvic acid in pond water reduced the half-life of benzo[a]pyrene from 173 hours to 43 hours. The observed increase in the rate of photodegradation could be due to either increased solubility or increased photosensitivity of benzo[a]pyrene in the presence of fulvic acid. The rate of photodegradation decreased with increasing water depth due to factors such as decreased light intensity, temperature and dissolved oxygen. Photodegradation of PAHs in unexposed bottom sediments was negligible (Neff, 1979; Moore and Ramamoorthy, 1984).

Citiz

Net

ba

Ehrhardt *et al* (1992) demonstrated that alkyl derivatives are photodegraded faster than are parent PAHs and concluded that sunlight-induced oxidation in the natural environment would result in a depletion of alkyl-substituted PAHs originating from dissolved fossil fuels. The authors suggested that the remaining mixture of non-substituted PAHs in the environment could lead to the mistaken assumption that the PAHs originated from incomplete combustion processes.

The rate of microbial degradation of PAHs in sediments is determined by a number of factors including previous exposure, chemical structure, and environmental conditions including the presence of oxygen, nutrients, temperature, pH and salinity (Atlas, 1981; Kerr and Capone, 1988; Ward and Brock, 1976; Hambrick et al, 1980; Maher and Aislabie, 1992; Zaidi and Imam, 1999). Low molecular weight aromatic compounds such as naphthalene are more easily degraded by bacteria than are the higher molecular weight aromatic compounds (Lee et al, 1978; Atlas, 1981; Herbes, 1977; Readman et al, 1982). In addition, the alkylation of a parent compound inhibits microbial degradation (Cerniglia and Heitkamp, 1989). There is some evidence that prior exposure to even one PAH can result in increased degradation of other PAHs (Bauer et al, 1988). Exposure results in the adaptation of microbial populations to PAH and results in enhanced degradation compared to cleaner sediments (Cerniglia and Heitkamp, 1989; Kerr and Capone, 1988; Shiaris, 1989b; Heitkamp and Cerniglia, 1989). The biodegradation of PAH compounds under anaerobic conditions has been observed (Mihelcic and Luthy, 1988; Rochne and Strand, 1998), however, the highest rates of degradation have been measured in oxygenated surface sediments. Under anaerobic conditions, degradation is slower. Microbial degradation would, therefore, be favoured in non-urban oxygenated estuaries and exposed tidal flats. Estuaries in urbanized and industrialized areas tend to have oxygen-depleted sediments and probably serve as long term sinks for PAHs (Cerniglia and Heitkamp, 1989; Hambrick et al, 1980; Bauer and Capone, 1985; Mihelcic and Luthy, 1988; Delfino and Miles, 1985; Delaune et al, 1981). PAH degradation is stimulated in sediments containing the polychaete worm Capitella capitata due to the fact that the worms aerate the sediments and provide nutrients, such as nitrogen and phosphorus, that are essential for microbial growth (Kerr and Capone, 1988). Degradation rates are lowest during the cooler temperatures of winter and highest in the warmer temperatures of summer (Shiaris, 1989a). Hambrick et al (1980) reported that degradation rates were higher at pH 8 than at pH 5.

The source of the PAH compounds may affect their fate and behaviour in the aquatic environment. Maruya et al (1996) reported variations in the partitioning of PAHs between sediments and porewaters collected from various locations in San Francisco Bay. Variations were noted with location and also between samples collected in wet and dry seasons. The authors attributed these variations to the soot content of sediments and suggested that sediments with higher soot contents had a higher retention of PAHs and, therefore, a lower concentration of PAHs in porewaters. McGroddy and Farrington (1995) measured PAH concentrations in the sediments and porewaters of sediments cores collected from Boston Harbour. PAH concentrations in the porewaters were much lower than would be expected based on equilibrium partitioning models and measured partition coefficients. The authors suggested that pyrogenically derived PAH compounds associated with soot particles in the bottom sediments of Boston Harbour were less likely to partition to porewaters than were PAHs from petroleum sources. Other researchers have also reported that PAHs from combustion sources are more strongly bound to particulates than are PAHs from petroleum related sources. Combustion generated PAHs are reported to be less available for adsorption and desorption processes, partitioning into the water column and porewaters, and uptake

5

into biota (Prahl and Carpenter, 1983; Socha and Carpenter, 1987; Farrington *et al*, 1983b). For example, some researchers have suggested that PAHs in sediments receiving discharges from an aluminum smelter in Norway are not readily available for degradation or biological uptake (Naes and Oug, 1997; Chapman *et al*, 1995; Knutzen, 1994).

2.1.2 Atmospheric Influences

PAHs are present in the air in very small amounts (ng/m^3) in the gas phase and adsorbed onto particulates. Between 70 and 90% of the PAHs are associated with particles and most are adsorbed to particles in the respirable fraction (less than 5 µm) (Nikolauo *et al*, 1984; Pierce and Katz, 1975), however, low molecular weight compounds (lower than fluoranthene) are present mainly in the gas phase (Venkataraman *et al*, 1994).

PAHs are transported in the atmosphere and can be deposited near their point of release or in areas far removed from sources. PAHs can be present in significant concentrations in long-range transported aerosols and particulates (NRC, 1983; Neff, 1979; Lunde and Bjorseth, 1977). Long range transport of fine particulates entering the atmosphere as a result of dust storms in agricultural areas in Asia are thought to be a significant source of PAHs and other contaminants in brown snow deposited in the Canadian Arctic (Welch *et al*, 1991). Examination of sediment cores from lakes allowed Welch *et al* (1991) to determine fluxes of these pollutants. The authors concluded that the PAHs deposited during the single brown snow event monitored may have contributed greater than 10% of the total annual input of PAH to this area. Jaffrezo *et al* (1994) studied surface snow samples from the Greenland ice cap and concluded that current PAH contamination was due primarily to fossil fuel combustion with lesser inputs from biomass burning. Atmospheric deposition of PAHs to the Canadian high Arctic areas appears to have remained constant over the last 20 years (Peters *et al*, 1995).

1) (I

Vieta

te inte

Hites and Gschwend (1982) collected sediment cores from urban and remote areas of northeastern United States and calculated PAH fluxes to these sites. They concluded that sites near urban areas had much higher PAH fluxes areas (approximately 35 ng/cm/yr) than did remote sites (0.8 to 3 ng/cm/yr).

PAH compounds enter the aquatic environment in association with both wet and dry deposition. Analysis of rainwater and air particulates in Europe showed that the lower molecular weight PAH compounds were present in greater proportions in rainwater than were the higher molecular weight compounds (Muller, 1984).

Eisler (1987) estimated that atmospheric fallout contributed 50,000 tonnes of PAH compounds to aquatic systems annually. Eisenrich *et al* (1981) has estimated that 582 tonnes of total PAHs were deposited to the Great Lakes annually. Baker and Eisenreich (1990) measured gas and aerosol samples collected over Lake Superior in 1986. Total PAH

concentrations (2.5 to 6.3 mg/m³) were typical of background concentrations found in continental air. The more volatile (lower molecular weight) PAHs such as fluorene, phenanthrene, fluoranthene, and pyrene were detected in the gas phase while the higher molecular weight compounds (such as indeno[1,2,3-c,d]pyrene and benzo[g,h,i]perylene were found primarily in the aerosol samples. Simcik *et al* (1996) reported that the higher molecular weight PAHs were deposited to Lake Michigan and settled out to the bottom sediments. Although particulate deposition was the main source of PAH entry to Lake Michigan, lower molecular weight PAHs associated with the gas phase also entered the lake through air-water exchange and then partitioned to the organic matter in the water column.

Particulate and gaseous PAH compounds were collected from the air in Toronto and Montreal between 1984 and 1986. Mean PAH concentrations were higher in Montreal than in Toronto and, of the compounds considered to be possible or probable carcinogens, benzo[b,k]fluoranthene was present at the highest concentrations in both cities (Dann, 1988). Environment Canada has conducted monitoring of atmospheric PAHs in several areas of Canada. The highest concentrations were found in the vicinity of sources such as aluminum smelters (up to 16,390 ng/m³ total PAHs and 460 ng/m³ benzo[a]pyrene). Lower, but still elevated, concentrations have been detected in urban areas which receive PAH inputs from wood burning and urban transportation (up to 1,000 ng/m³ with mean levels of approximately 100 ng/m³ or less). PAH concentrations are usually much lower in areas not directly influenced by local sources (low ng/m³ range or less) (Ringuette *et al*, 1993).

Hoff and Chan (1987) measured PAH concentrations ranging from 3 pg/m³ to 40 ng/m³ in the particulate and gas phases of air samples collected along the United States-Canada border and the Niagara River. Concentrations were highest near urban and industrial sources. PAHs with three or less rings were present in the gas phase while the higher ring compounds were found in the particulate phase. The authors concluded that the particulates were originating from local sources, while the gas phase PAHs suggested regional or long-range transport. Similarly, Naf *et al* (1992) reported that PAHs associated with airborne particulates originating from various emission sources in Sweden were not transported great distances but were quickly deposited within a 10 to 50 km² area around the sources. Other researchers reported that submicron particles are important in long-range transport (Bidleman, 1988), while particles greater than 1 μ m in size are deposited in the vicinity of the emission source due to gravitational settling (Broman *et al*, 1990).

Katz and Chan (1980) reported that PAH concentrations in air particulates from Hamilton, Ontario were higher than those reported for New York City and Los Angeles, probably due to the presence of coke ovens and iron and steel manufacturing facilities in the Hamilton area. The U.S. Environmental Protection Agency reported that cities with coke ovens consistently have higher benzo[a]pyrene concentrations in the air than do cities without coke ovens.

Motor vehicle exhaust has also been identified as a major contributor to atmospheric PAHs. It has been estimated that motor vehicle exhausts account for approximately one third of the PAH emissions in the United States (Biorseth and Ramdahl, 1985). Marr et al (1999) reported that light-duty vehicles released significant amounts of heavier (four and five ring) compounds, while heavy-duty diesel engines were the main source of three-ring compounds such as fluoranthene and pyrene. Benzo[g,h,i]perylene was present in higher concentrations than other PAHs in air samples collected in Hamilton, Los Angeles (Gordon, 1976) and Toronto (Pierce and Katz, 1975). It was suggested that the main source of this compound was motor vehicle exhaust (Katz and Chan, 1980). Handa et al (1980) reported that the ratio of the atmospheric PAH level to the benzo[g,h,i]perylene level in Japan was in agreement with the PAH levels in exhausts from Japanese cars. Similarly, Aceves and Grimalt (1993) concluded that motor vehicle emissions were the main source of PAHs to aerosol samples collected in Barcelona, Spain. Gordon (1976) reported that the major source of PAHs in the well ventilated coastal areas in Los Angeles county was automobile exhaust while, in inland areas, non-automobile related sources also made significant contributions to the total PAH load. In Christchurch, New Zealand motor vehicle exhaust was also reported to be a major source of airborne particulate matter, however, during periods of heavy air pollution, domestic fires for home heating were reported to the major source (Cretney et al, 1985).

Many researchers reported that PAH concentrations in the ambient air are higher near emission sources (Vogt *et al*, 1987; Karlesky *et al*, 1987). However, meteorological conditions can also influence PAH concentrations in ambient air (Pierce and Katz, 1975; Nielson, 1988; Masclet *et al*, 1988). Temperature influences the PAH composition of aerosols and particulates deposited from the atmosphere (Bidleman, 1988; McVeety and Hites, 1988). At least some PAH compounds (phenanthrene, fluoranthene, and pyrene) are more strongly retained by the particulate phase in colder temperatures. This favours the adsorption of the more volatile PAHs by aerosols and snow and results in the deposition of these compounds during the Arctic winter (Hoff *et al*, 1995; Yunker *et al*, 1996).

In urban areas, where the main sources of PAHs to the air are fossil fuel combustion and motor vehicle traffic, PAH concentrations are often higher in the winter than in the summer (Katz and Chan, 1980; Prahl *et al*, 1984; Muel and Saguem, 1985). Gordon (1976) reported that PAH concentrations in airborne particulates from Los Angeles County were highest in the winter. Similarly, in Barcelona Spain, the hydrocarbon pattern in particle fractions was indicative of motor vehicle traffic. PAH concentrations were up to 10 times higher in the winter than in the summer. The authors attributed this mainly to the increased photochemical degradation of some PAH compounds during the warmer temperatures of summer (Aceves and Grimalt, 1993).

Pierce and Katz (1975) reported that, in the winter, 85 to 90% of the total PAH in aerosol samples from Toronto, Ontario was associated with particles with a diameter of less than 5 μ m while, in the summer, 70 to 85% was associated with this size fraction. Examination of the PAH content of particulate matter in the atmosphere above Argentina

revealed that the greatest proportion of PAH was associated with the smallest particles, which tended to be carbonaceous. Greater amounts of PAHs were present in the winter than in the spring and summer (Cattoggio *et al*, 1989). According to Greiner *et al* (1977), PAHs adsorbed to carbonaceous particulate matter in the atmosphere are less subject to photochemical processes.

PAH photodegradation is largely influenced by the type of substrate to which these compounds are adsorbed. Behymer and Hites (1988) reported that the colour of the fly ash (determined by the amount of carbon present) was an important factor. The darker the fly ash (or the higher the carbon content) the greater the resistance to photodegradation. This was explained by the fact that the fly ash samples adsorbed most of the light and prevented it from getting to the PAH. On black fly ash particles, the half-life was in the order of several days. Korfmacher *et al* (1980) also reported that, while PAHs photolyzed readily in solution and when adsorbed on activated alumina, they were resistant to photodegradation when adsorbed on fly ash. PAHs were also more resistant to photodegradation when they were adsorbed to particulates at high concentrations compared to low concentrations, as the upper layers have been found to protect the lower layers from oxidation (Sloof *et al*, 1989; Kamens *et al*, 1988).

It has been reported that the products of PAH photooxidation (PAH nitroderivatives) are more toxic than the parent compounds. For example, the nitro-derivatives formed when benzo[a]pyrene reacts with NO₂ have been shown to be direct mutagens according to the Ames Test (Pitts *et al*, 1978). Nitropyrene has been shown to be a potent mutagen and is largely responsible for the mutagenic activity of particulate diesel exhaust (Tokiwa *et al*, 1981; Salmeen *et al*, 1982; Grosjean *et al*, 1983). Similarly, PAH reacts with ozone to form oxygenated compounds, some of which are mutagenic (Nikolauo *et al*, 1984; Wislocki *et al*, 1976; Pitts *et al*, 1980). Moller *et al* (1982) studied the mutagenicity of airborne particulate matter deposited on street surfaces. They concluded that the mutagenic activity varied with traffic intensity and was primarily associated with the presence of PAHs.

2.1.3 Uptake into Aquatic Biota

2.1.3.1 Invertebrates

.

Aquatic invertebrates are good indicators of environmental levels of PAHs. The high octanol/water partition coefficients of these compounds cause them to be readily accumulated in many species of aquatic invertebrates, with bioconcentration factors increasing with the K_{ow} coefficient (Trucco *et al*, 1983; Geyer *et al*, 1991; Southworth *et al*, 1978).

Characteristics of the organism (species, feeding habits, and developmental stage) and environmental conditions (temperature, sediment grain size, and the presence of dissolved humic or organic matter, particulate matter and other chemical contaminants) can

influence PAH uptake into aquatic organisms. The route, duration and conditions of exposure are also important factors (Majewski and Scherer, 1985; Landrum and Scavia, 1983; Landrum, 1983; Korn *et al*, 1979; McCarthy *et al*, 1985; McCarthy *et al*, 1985; Curto *et al*, 1993; Landrum *et al*, 1992; Landrum, 1989; Germain *et al*, 1993).

Bivalve molluscs, particularly mussels, have been shown to readily accumulate PAHs in the environment. In laboratory experiments the uptake rates from water for both benzo[a]pyrene and fluorene were one to two orders of magnitude higher for mussels than for diatoms, while the depuration rates were similar. Bioconcentration factors in mussels were 21,428 and 394 for benzo[a]pyrene and fluorene, respectively, compared to bioconcentration factors of 636 and 11, respectively, for these compounds in diatoms (Majewski and Scherer, 1985). Similarly, Bender *et al* (1988) observed that oysters generally accumulated three times the body burdens of clams under the same conditions of exposure, and attributed this difference to a faster depuration rate in clams.

The developmental stage of the organism has been reported to be an important factor in the uptake of PAHs in some species. Mothershead and Hale (1992) exposed molting and intermolt blue crabs to high levels of PAH and reported that newly molted blue crabs accumulated much higher PAH levels in the muscle and hepatopancreas than did the intermolt crabs. The authors suggested that the higher accumulation in newly molted crabs may be due to increased water uptake and shell permeability at ecdysis or decreased PAH metabolism during molting.

100

inita

¥ ik

tiliie

The molecular weight of PAH compounds is a major determining factor in the uptake and retention of PAHs in aquatic species. Dunn (1980) reported that the more hydrophobic higher molecular weight PAH compounds showed less accumulation in the tissues of mussels relative to concentrations in sediments than did the lower molecular weight (and more soluble) compounds. Varanasi et al (1985) examined clams and amphipods from contaminated sediments in Puget Sound and concluded that four ring PAH compounds were more readily accumulated in these organisms than were the three or five ring PAH compounds. Tatem (1984) exposed Rangia cuneata (clam) and Nereis virens to PAH contaminated (approximately 100 µg/g) sediments from Connecticut Harbour and reported that, while both low and high molecular weight compounds were accumulated, the higher molecular weight compounds were less readily depurated and were retained throughout the study period (12 days). Similarly, Mix (1982) reported that the depuration of clams in clean seawater for a 24 hour period resulted in the loss of significant amounts of three and four ring compounds but not the five, six and seven ring compounds. Lee et al (1978) examined the depuration rate of PAHs in oysters and estimated the half-lives of anthracene, fluoranthene. benzo[a]anthracene, and benzo[a]pyrene to be 72, 120, 216, and 432 days, respectively. These authors also concluded that the lower molecular weight PAHs were more readily eliminated from oysters than were the higher molecular weight compounds. In comparison, Pruell et al (1986) reported that the half-lives of benzo[a]pyrene, benzo[a]anthracene, and fluoranthene in mussels were 15, 18, and 30 days, respectively. Sato et al (1992) studied PAH depuration in the clam Mercenaria mercenaria and observed that the lower molecular weight compounds

were more readily depurated, but that the rate of depuration was also affected by the solubility of the PAH in seawater. Clams exposed *in vitro* for 48 hours to 9 parent PAHs found in waste crankcase oil, and then allowed to depurate for 45 days, showed no significant depuration of PAHs (Tanacredi and Cardenas, 1991).

Landrum (1988) studied the uptake of PAHs into the amphipod *Pontoporeia hoyi* and reported that, for compounds less water soluble than anthracene, the uptake rate constant is inversely proportional to the mass of the organisms and directly proportional to the temperature. The depuration rate constant was inversely proportional to the octanol-water partition coefficient, the mass of the organism, and the lipid content of the organisms, and directly proportional to the temperature.

Mix et al (1981) and Widdows et al (1983) reported that the elimination of benzo[a]pyrene from mussels was biphasic with an initial period of rapid elimination followed by a longer period of slow release. They suggested that this biphasic elimination of PAHs indicated that shellfish store PAHs in two different compartments. Sato et al (1992) also observed a two component depuration of certain PAHs, including naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and chrysene from *Mercenaria mercenaria*. However, a single-stage depuration was observed for benzo[a]anthracene and benzo[a]pyrene.

McLeese (1982) studied uptake and excretion in marine invertebrates exposed to PAHs in water and in sediments. Clams exposed to five PAH compounds in water had relatively high uptake rates, with calculated bioconcentration factors (BCFs) ranging from 1,280 for phenanthrene to 10,000 for perylene, while excretion rates were low. Uptake and excretion patterns for the five PAH compounds were similar in clams exposed to PAHcontaminated sediments. In comparison to PAH concentrations in the surface waters, the calculated bioconcentration factors (BCFs) following sediment exposure were smaller and ranged from 890 for phenanthrene to 3,900 for triphenylene. Molecular complexity and weight of the PAH compounds affected both the BCF and the excretion rate. Increased molecular complexity and weight resulted in an increase in BCF and a decrease in percent loss over 14 days. The percent loss ranged from 80 to 100% for phenanthrene and from 20 to 40% for perylene.

Sediment and water characteristics are also important in influencing PAH uptake into aquatic organisms. For example, the availability of PAHs for uptake in aquatic organisms is influenced by their association with particulate matter. Narbonne *et al* (1992) observed that the uptake of benzo[a]pyrene in mussels was more than five times higher when sediment particles were suspended in water and suggested that the filtration rate in mussels was increased in the presence of sediment. This theory is supported by the work of Bjork and Gilek (1996) who reported that the concentration of particulate organic matter in the water influences both the partitioning of phenanthrene and the physiology of the mussels. For this reason, the authors concluded that processes such as filtration and ingestion, which are dependent on particle concentrations, must be considered when assessing contaminant uptake in filter feeding bivalves. The presence of dissolved organic matter (DOM) in high concentrations can result in reduced PAH uptake. Oikara and Kukkonen (1990) reported that the bioaccumulation of benzo[a]pyrene by *Daphnia magna* from five lakes was inversely correlated with the DOM concentration of the waters. The authors suggested that animals in waters with low DOM concentrations may be more vulnerable to water-borne toxicity from benzo[a]pyrene and related chemicals than those in waters with a higher DOM concentration. Similarly, McCarthy *et al* (1985b) reported that PAHs bound to dissolved humic matter are less bioavailable to *Daphnia magna* than unbound PAH.

Foster and Wright (1988) reported that bioaccumulation factors for unsubstituted PAH compounds in clams (*Macoma* sp.) and *Nereis* ranged between 0.2 and 4 for sediments with organic carbon contents of more than 0.5%. More PAH was bioaccumulated by organisms exposed to coarse-grained sediments with low organic carbon contents than by organisms exposed to fine-grained sediments. Total PAH concentrations in both species paralleled the concentrations in muddy-bed sediments. The PAHs detected most frequently in the biota were those compounds present in the highest concentrations in the sediments (phenanthrene/anthracene, fluorene, pyrene, benz[a]anthracene, and chrysene).

In addition, the rate of PAH uptake is influenced by the presence of other contaminants. The accumulation of naphthalene by oysters was antagonistically affected by a simultaneous exposure to a PCB mixture, although no effect was observed on benzo[a]pyrene uptake (Fortner and Sick, 1985). Landrum (1983) reported that the uptake of both benzo[a]pyrene and anthracene by the amphipod *Pontoporea hoyi* was reduced by 50% in the presence of toluene.

Farrington *et al* (1983a) observed that PAH concentrations in bivalves and polychaetes were substantially different from PAH concentrations in sediments from the same general locations. The authors suggested that both the source and the physical-chemical form of the PAHs in the environment were important factors. PAHs from combustion sources are more strongly bound to particulates than are PAHs from petroleum related sources. Combustion generated PAHs are reported to be less available for adsorption and desorption processes, partitioning into the water column and porewaters, and for uptake into biota (McGroddy and Farrington, 1995; Prahl and Carpenter, 1983; Socha and Carpenter, 1987; Farrington *et al*, 1983a; Farrington *et al*, 1993b).

Aging of contaminated sediments in the environment can also affect the uptake of specific PAHs into aquatic organisms. Burns and Yelle-Simmons (1994) reported on the uptake of PAHs from heavily oiled sediments in the Panama area several years after an oil spill. Over a period of at least 5 years, PAHs leaching out of oiled sediments were bioaccumulated by bivalves. Organisms contained the whole range of alkylated PAHs in amounts proportional to what leached out of the sediments. In the fifth year, a change in the composition of PAH compounds being bioaccumulated at most sites was interpreted as a depletion of the most soluble and most acutely toxic compounds. The most persistent PAH compounds in both sediments and bivalves were the dibenzothiophene, phenanthrene and chrysene series. Also, Landrum *et al* (1992) reported that when the contact time between the sediment and the PAH was increased (from 3 days to 60 days), the bioavailability of phenanthrene and pyrene to the amphipod *Diporeia* species decreased and then stabilized.

Seasonal variations in the uptake of PAH compounds in aquatic organisms have been observed. Biota-sediment accumulation factors (BSAFs) for PAHs in a coastal marsh in San Francisco Bay varied with season and along an intertidal gradient. The BSAFs were lowest during the rainy season while, during the dry season, BSAFs were lowest in the high intertidal zone closest to shore. BSAFs also varied (almost three orders of magnitude) with species and were lowest in polychaetes and highest in Asian clams. Sediment characteristics also influenced BSAFs, which decreased with increasing percent fines and with PAH concentrations on an organic carbon basis. These findings support the theory that the content of highly aromatic soot particles is an important factor. The soot particle content increased during periods of surface runoff. According to the authors, during the dry season soot particle content would likely be highest in the high intertidal zone where finer particles preferentially accumulate (Maruya *et al*, 1997).

Aquatic invertebrates accumulate PAHs from the sediments, water and food (Varanasi et al, 1985; Pruell et al, 1986; Eadie et al, 1983; Mix and Schaffer, 1983a and 1983b; Reichart et al, 1985; Neff and Anderson, 1975). Uptake studies with Macoma species have shown that clams concentrate PAHs from water more readily than they do from sediment. The authors suggested that the PAHs, which accumulated in the clams exposed to contaminated sediments, originated in the interstitial waters rather than from sediment particles (Roesijadi et al, 1978). Similarly, Landrum (1989) examined the uptake of PAH from sediments by the benthic amphipod (Pontoporeia hoyi) and concluded that the uptake occurs largely via the sediment interstitial water and is controlled by the desorption of PAHs from sediment particles and dissolved organic matter. However, it was suggested that uptake and assimilation from ingested particles may be significant for strongly sorbed compounds such as benzo[a]pyrene. The desorption rate from the sediments likely determines whether the major source to the organism is interstitial water or ingested particles. The bioavailability of the contaminants sorbed to the sediments decreased as the contact time between the sediment and the contaminant increased. Bioavailability was reduced despite the fact that the chemical extractability remained high. Landrum et al (1991) reported that the concentration of PAH in the sediments influenced the rate of PAH accumulation from sediments into amphipods (Diporeia). Furthermore, they concluded that it was not possible to predict the rate of accumulation through measured partitioning between the interstitial water and sediment particles.

Kaag et al (1997) reported that feeding habits of benthic invertebrates were important in assessing the risk of contaminated sediments. They reported that sediment ingestion was the major route of uptake for the sediment-feeding lugworm *Arenicola marina* and for the clam *Macoma balthica*, however, PAH residues in the filter-feeding mussel *Mytilus edulis* were independent of PAH concentrations in the sediments. Leppanen and Kukkonen (1998) reported that after 8 days of exposure, 61% of the body burden of PAHs in oligochaetes had originated from ingested sediments rather than from pore water. Eadie *et al* (1983) reported that benthic filter-feeders in the Great Lakes obtain more PAH from sediments than from water in areas where PAH concentrations in sediments are high. Fortner and Sick (1985) reported that more naphthalene and benzo[a]pyrene were taken up by oysters in dissolved than in particulate form. Significant uptake from food has also been observed in larvae of clams (*Mercenaria* sp.) preying on diatoms (*Thalassiosira pseydonana*). Within a 24 hour period, 44% of the benzo[a]pyrene associated with the diatoms was transferred to the clam larvae (Dobrowsky and Epifanio, 1980). Lee *et al* (1976) reported that blue crab accumulated more benzo[a]pyrene from food than from water.

Dillon (1982) reported that the route of exposure can influence both the uptake and retention of PAH compounds in invertebrates. The laboratory exposure of aquatic crustaceans demonstrated that, in comparison with naphthalene in solution, naphthalene was obtained from the diet more efficiently and retained in the tissues for longer.

The bioaccumulation of PAH compounds in aquatic organisms is determined largely by their ability to metabolize and excrete these compounds via mixed-function oxidases (MFOs) enzymes. The metabolism of PAHs can result in the production of less toxic compounds or more reactive intermediates with higher toxicity or carcinogenicity. Cytochrome P450 (CYP or P450) system plays an important role in biotransformation.

The ability of bivalve molluscs to accumulate PAHs to high concentrations has been attributed to the belief that they lack an efficient MFO system and, as a result, they are unable to readily metabolize and excrete these compounds (Stegeman, 1980; Payne *et al*, 1983; Anderson, 1977; Vandermeulen and Penrose, 1978). However, while the MFO system is undoubtedly less active in molluscs than in vertebrates, cytochrome P450 MFO activity has been identified in molluscs and several researchers observed some metabolism of PAH compounds by bivalves (Broman *et al*, 1990; Gilewicz *et al*, 1984; Livingstone and Farrar, 1985; Michel *et al*, 1994; Stegeman, 1985; Rudolph and Rudolph, 1999).

Low MFO activity has also been reported for some species of echinoderms and annelids (Payne and May, 1979; Lee and Singer, 1980). However, McElroy (1990) reported that polychaetes exposed to benzo[a]anthracene contaminated sediment, water or diets for periods of days to weeks rapidly accumulated and metabolized this PAH, primarily to water soluble and unextractable compounds.

Crustaceans metabolize most PAH compounds to water soluble compounds via their MFO system which is more active than in bivalves but less active than in fish. Cytochrome P-450 activity has been observed in the tissues of several crustaceans including crabs, lobsters and copepods (Singer *et al*, 1980; James *et al*, 1979; James *et al*, 1980; Walters *et al*, 1979). The hepatopancreas is the major site of cytochrome P-450 dependent xenobiotic monooxygenase in crustacean species. Cytochrome P-450 and monooxygenase activities have been reported in other crustacean organs including the antennal gland (green gland) and stomach. Crustaceans are not as sensitive as fish to the induction of P-450 and

ilia (ji

monooxygenase activity. It has been reported that the cytochrome P-450 content in the digestive gland of spiny lobster was higher

than in many other species studied, and yet the MFO activity in *in vitro* studies was lower (James *et al*, 1979; James *et al*, 1980). The fact that lobsters accumulate very high concentrations of PAHs indicates that they may have a limited ability to metabolize these compounds. No aryl hydrocarbon hydroxylase (AHH) induction was observed in lobsters exposed to petroleum for a period of up to 6 months (Payne and May, 1979).

Cytochrome P-450 MFO activity has also been observed in the digestive gland of mussels, the green gland of shrimp, pyloric caecum of starfish, larvae of aquatic insects, blood suckers, limnaed snails, annelida and cladocerans (McElroy, 1990; Stegeman, 1985; Den Besten *et al*, 1992; Den Besten *et al*, 1990; Gill *et al*, 1993; Lemaire *et al*, 1993; Winston *et al*, 1992). Mixed function oxidase (benzo[a]pyrene hydroxylase) activity and cytochrome P-450 content generally increased in polychaetes and crabs after exposure to oil, benzo[a]pyrene or PCBs (Lee *et al*, 1981).

The transfer of PAH compounds through the trophic levels has been observed by some researchers and, therefore, the presence of high concentrations of PAH compounds in aquatic invertebrate species can result in the contamination of predator organisms. McElroy and Sisson (1989) examined the trophic transfer of benzo[a]pyrene metabolites from polychaetes into winter flounder and concluded that the metabolites produced by the worms were absorbed by flounder but were less available than the parent benzo[a]pyrene. The authors also reported that metabolites accumulated through the diet may be further modified by the prey organisms. Other studies have shown that the pre-carcinogenic compound 7,8-diol benzo[a]pyrene in prey organisms such as zooplankton, crustaceans and mussels can be transferred up the food chain (Reichart *et al*, 1985; Stegeman, 1985; Winston *et al*, 1993).

Dobrowsky and Epifanio (1980) reported that when diatoms were cultured in water contaminated with benzo[a]pyrene and then fed to larvae of the hard clam (*Mercenaria* sp.), the rate of direct benzo[a]pyrene uptake from seawater by the diatoms was much greater than the rate of trophic transfer of benzo[a]pyrene from the diatoms to the clam larvae. This was attributed to the greater efficiency of direct uptake and to the larger quantity of benzo[a]pyrene available in the water. A comparison of direct uptake by bivalves with trophic transfer indicated that the processes may be equally important in accumulation of benzo[a]pyrene in natural populations of bivalves.

2.1.3.2 Fish

Bioconcentration factors in fish are influenced by a number of factors including the PAH compound, fish species, development stage, route of exposure, and environmental conditions such as temperature and the presence of sunlight, dissolved organic matter, suspended sediments and other chemical contaminants.

Uptake of naphthalene and benzo[a]pyrene in rainbow trout decreased as temperature decreased from 17° C to 8° C in association with a decrease in oxygen consumption (Black *et al*, 1991). Jimenez *et al* (1987) reported that benzo[a]pyrene uptake, metabolism, and elimination in bluegill sunfish was significantly affected by temperature. Uptake and elimination rates were lower at 13° C than at 23° C and the metabolite profiles indicate that biotransformation of benzo[a]pyrene is much slower at colder temperatures.

The presence of dissolved organic matter (DOM) and humic acid reduced the bioavailability of PAHs (Spacie *et al*, 1983; McCarthy and Jimenez, 1985b; Stein *et al*, 1984). The presence of other chemical contaminants can also influence the PAH uptake in fish. The uptake of benzo[a]pyrene in English sole was enhanced in the presence of Aroclor 1254. The formation and accumulation of toxic metabolites in sole liver was also increased in the presence of the PCB mixture (Stein *et al*, 1984; Stein *et al*, 1987). In contrast, antagonistic effects of simultaneous PCB exposure on PAH uptake in oyster have been reported by Fortner and Sick (1985).

itte:

Fish accumulate PAHs primarily by direct uptake from the water column, with uptake via the gills being of greater importance than adsorption through the skin (Balk *et al*, 1984). Although uptake of PAHs from food has been observed in some studies, this route is generally thought to be less important than direct uptake from water. For example, Southworth *et al* (1979a,1979b) examined uptake in fathead minnows directly from the water and from a food source (*Daphnia* sp.) and concluded that uptake from water was the more important route. Studies have demonstrated that adsorption of PAHs through the digestive tract in fish is inefficient (Whittle *et al*, 1977; Lemaire *et al*, 1992).

Uptake of PAHs from bottom sediments has been demonstrated in English sole under experimental conditions (Stein *et al*, 1984; Varanasi and Gmur, 1981). However, Malins *et al* (1984) concluded that English sole in Puget Sound accumulate more PAHs from ingesting benthic fauna than from the sediments. Hellou *et al* (1995) studied the bioconcentration of PAHs from sediments to muscle tissue in winter flounder. PAH concentrations in sediments ranged from those typically found in pristine areas to between 25 and 50 times higher. The lower molecular weight water soluble PAH compounds displayed the highest biota-sediment bioaccumulation factors (BSAFs). The less soluble higher molecular weight PAHs required a much longer time to reach steady state because of their low concentration in water. Ariese *et al* (1993) reported that direct contact with the sediment was the most important factor determining uptake of PAHs in flounder. Uptake via the water and the diet were less significant.

PAH concentrations in wild fish populations (edible tissue) are usually low (ng/g wet weight). Unlike aquatic invertebrates, fish species are capable of rapidly metabolizing these compounds (Lawrence and Weber, 1984; Uthe and Musial, 1986; Veith et al, 1979). According to some researchers, the PAH compounds detected in fish are usually of low molecular weight (e.g. naphthalene and 2,6-methylnaphthalene). The lower water solubility of the higher molecular weight PAH compounds results in a decreased bioavailability of these compounds in natural water systems. As a result, it is the lower molecular weight PAH compounds which tend to be accumulated in aquatic biota (Hellou et al, 1995; Lake et al, 1990; DiToro et al, 1991; Hellou and Warren, 1997). In addition, it has been reported that the high molecular weight compounds, such as the carcinogen benzo[a]pyrene, are detected less commonly as they are more effectively metabolized by fish than the lower molecular weight compounds (Varanasi and Gmur, 1981; Hellou and Warren, 1997; Schnell et al, 1980; Varanasi and Stein, 1991; Malins et al, 1980; McCain et al, 1978). Varanasi et al (1989) reported that PAH excretion from fish was dependent on molecular size with the higher molecular weight compounds being excreted more readily. They also observed that starry flounder and rock sole depurated the PAHs rapidly in the first few days and more slowly after that. PAH concentrations in blood, muscle and urine decreased significantly within one week, while concentrations in the liver and bile of flounder decreased very little within two weeks.

The half-lives of PAHs in fish are relatively short compared to those reported for aquatic invertebrates. Spacie *et al* (1983) reported that the half-lives for ¹⁴C-anthracene and ¹⁴C-benzo[a]pyrene, were 17 and 67 hours, respectively, in bluegill sunfish exposed for a 5 hour period. Lemaire *et al* (1992) reported that the half-lives of benzo[a]pyrene in sea bass are 8.2, 3.5, 3.3, and 0.8 days, respectively, for liver, gallbladder, intestines and kidneys.

Schnitz *et al* (1987) reported that metabolic studies on dimethylbenzo[a]anthracene (DMBA) in rainbow trout support the theory that the primary route of PAH elimination in fish involves the metabolism of PAHs in the liver, followed by the transport of the parent compound and conjugated metabolites to the gall bladder, and subsequent excretion to the intestine.

Exposure to PAHs and many other pollutants, including 2,3,7,8-TCDD, PCBs, some organochlorine pesticides, petroleum and some industrial effluents, can result in the induction of the MFO system in the liver of many species of fish. This effect has been observed in the laboratory as well as in the natural environment (Lech *et al*, 1982; Perdu *et al*, 1993; Payne *et al*, 1985; Holdway *et al*, 1994; Stein *et al*, 1992; Collier *et al*, 1986; Livingstone *et al*, 1993; Ahokas *et al*, 1994; Lindstrom-Seppa *et al*, 1990; Goksoyr and Forlin, 1992; Forlin and Celander, 1993; Di Guilio *et al*, 1993; Stegeman *et al*, 1987). Several enzyme systems make up the mixed-function oxidases including aryl hydrocarbon

hydroxylase (AHH) (also known as benzo[a]pyrene hydroxylase), ethoxycouramin Odeethylase (ECOD), and ethyoxyresorufin O-deethylase (EROD). Exposure to PAH compounds causes AHH, ECOD, and EROD to be activated. As a result, soluble PAH metabolites in the bile and blood are excreted as water soluble compounds (Di Giulio *et al*, 1993; Varanasi *et al*, 1987; Collier *et al*, 1980; Krahn *et al*, 1980). MFO systems in fish are similar to those in mammals and are more effective in metabolizing PAHs than the MFO system in lower animals, such as bivalve molluscs (Lawrence and Weber, 1984).

In fish, CYP1A is the major cytochrome P-450 subfamily which responds to compounds such as PAHs, PCBs and dioxins. The liver is the main site of CYP1A expression and activity is localized in the hepatocytes and endothelial cells (Goksoyr and Forlin, 1992). However, CYP1A induction has been observed in other organs of fish. Atlantic cod and European flounder caged for 3 months in a contaminated Norwegian Fjord exhibited CYP1A induction in the liver and in several extrahepatic organs (biliary epithelial cells, mucosal epithelial cells in the intestine, and renal tubular epithelial cells). The most significant induction was observed at the most contaminated sites (Beyer et al, 1996; Husoy et al, 1996). Hepatic CYP1A induction was significantly correlated to PAH exposure as measured by fluorescent aromatic compounds (FACs) in the bile (Bever et al. 1996). Van Veld et al (1990) reported that the intestine also plays an important role in the absorption and metabolism of dietary PAHs and may be a useful indicator of dietary exposure to these compounds. Similarly, a study by McElroy and Kleinow (1992) showed that the liver and intestinal mucosal cells had similar abilities to metabolize benzo[a]pyrene or 7,8-diol in the winter flounder. This provides further evidence that the intestine also plays an important role in the metabolism of dietary carcinogens in winter flounder.

Fish hepatic monooxygenase induction is often used as an indicator of the sublethal effects of exposure to PAHs and other chemical contaminants. The most commonly used indicator is the induction of ethoxyresorufin O-deethylase (EROD) or benzo[a]pyrene hydroxylase (B(a)PH) (also known as AHH). Lange et al (1992) reported that cytochrome P-450 and EROD activity in the liver of dab from the North Sea was highest at various sites within the German Bight. This finding was attributed to the high levels of PAH and PCB contamination in this area. Van Veld et al (1990) also reported that the levels of cytochrome P-450 and EROD were elevated in both the intestine and the liver microsomes of spot from the highly contaminated Elizabeth River. Addison et al (1994) reported that hepatic monooxygenase activity in winter flounder from Sydney Harbour in British Columbia increased with sediment PAH concentrations. In addition, they reported that cyanoethoxycourmarin Ode-ethylase activity was as sensitive an indicator of monooxygenase induction as was EROD or B[a]PH (AHH), with all three being well correlated with both cytochrome P-450 1A concentrations and sediment concentrations. Kezic et al (1983) reported that benzo[a]pyrene monooxygenase (B[a]PMO or AHH) activity in non-migratory fish from a river area was highly correlated to the recent pollution history in that area. Experimental fish caged for a 10 day period in various areas of the river exhibited B[a]PMO activity comparable to the natural populations of fish. The authors concluded that B[a]PMO measurement was a relevant measure of harmful pollutant potential in aquatic systems.

Induction of the cytochrome P-450 enzyme system can be influenced by a number of variables including the developmental stage and sex of the organism (Andersson and Forlin (1992). In mammals, it has been shown that males generally contain higher hepatic P-450 levels than females. However, in salmonids this appears to hold true only during the late stage of their cycle. In mature male rainbow trout several hepatic P-450 activities are higher than in adult females (Forlin, 1980; Forlin and Haux, 1985; Koivusaari *et al*, 1981; Stegeman and Chevion, 1980).

Temperature in the ambient environment also affects enzyme induction. Andersson and Koivusaari (1985) showed that induction of P-450 by PAH compounds occurred in both cold and warm acclimated fish, but the warm acclimated fish demonstrated a faster and stronger induction reaction. Kennedy *et al* (1989) reported that gulf toadfish were capable of rapidly metabolizing benzo[a]pyrene with metabolism proceeding more quickly under warmer temperatures. The major metabolite produced was benzo[a]pyrene 7,8dihydrodiol. Metabolite production was influenced by the exposure temperature with more carcinogenic metabolites being produced at the warmer temperatures (Andersson and Forlin, 1992; Andersson *et al*, 1988).

Since PAH metabolism proceeds quite quickly in fish, parent PAH compounds do not usually accumulate to high levels in fish tissue. However, the bile of fish exposed to PAHs contains many oxygenated PAH derivatives, usually in the form of glucoronide, sulphate, or glutathione conjugates. In analysis, these compounds are normally quantitated and reported as benzo[a]pyrene equivalents. However, the major contribution to the overall benzo[a]pyrene equivalents is usually from the metabolites of the lower molecular weight compounds such as pyrene and fluoranthene, which are more readily adsorbed than are the higher molecular weight compounds (Krahn *et al*, 1987).

The exposure of fish to PAH compounds is often determined by screening the gallbladder bile for PAH metabolites. Since these compounds are usually cleared from fish quite readily, quantification of bile metabolites indicates recent exposure to PAHs. The quantification of PAH metabolites in bile is a more sensitive measure of fish PAH exposure than is the quantification of PAH compounds in tissues. For example, McDonald *et al* (1992) reported that the tissue PAH concentrations were similar in fish collected near a small scientific station and in fish from remote areas of Antarctica. However, the PAH metabolites were elevated in the bile of fish from the research station, indicating that they had been exposed to petroleum-derived PAHs. The presence of bile PAH metabolites has also been used to confirm the long-range transport of PAHs to mountain lakes and uptake into fish from those lakes and also in deep-sea fish species in a remote areas of the northwest Mediterranean Sea (Escartin and Porte, 1999a and b).

Leadly *et al* (1999) reported that, although the presence of fluorescent aromatic compounds (FACs) in the bile of fish is a useful biomarker of PAH contamination in fish, there is great deal of variability in the FAC levels detected even under controlled laboratory conditions. In the field, differences in the movements and feeding of the individual fish would contribute to even greater variability in the FAC levels detected. However, these authors also

report that FACs were a valuable way of demonstrating recent PAH exposure as FAC bile concentrations show elevation after only a few hours of exposure.

MacCubbin *et al* (1988) reported that bullheads fed PAH contaminated food in laboratory studies exhibited polar metabolites of PAH in their bile within 24 hours. Similarly, bullheads collected from the Buffalo River contained benzo[a]pyrene equivalents in their bile at concentrations 7 to 148 greater than those in fish from less contaminated areas.

The main metabolite of pyrene, 1-hydroxypyrene, accounts for a large percentage of the total metabolite profile in the bile of fish exposed to combustion related PAHs (Krahn *et al*, 1987). Ariese *et al* (1993) reported that North Sea flounders exposed to contaminated sediments exhibited a similar ratio, between 3-hydroxy benzo(a)pyrene and 1hydroxypyrene, to that observed in English sole from polluted areas of Puget Sound (Krahn *et al*, 1987). It was suggested that different locations with comparable PAH sources could have similar PAH metabolite profiles and that 1-hydroxypyrene may, therefore, be a relevant measure for the total uptake of pyrolytic PAHs.

2.2 Biological Effects

Toxic effects in many species of aquatic organisms have been observed following exposures to $\mu g/L$ concentrations of PAH compounds. According to the Environment Canada Assessment Report on PAHs (Germain *et al*, 1993), existing information on the toxicity of PAH compounds suggests that PAHs can be considered to be at ecotoxic levels in the water when concentrations reach the $\mu g/L$ range.

The exposure of aquatic species to PAH compounds can result in effects on growth, reproduction, and survival.

Most of the existing information on acute toxicity of PAH compounds pertains to the lower molecular weight compounds. The solubility of these compounds in water is higher than that of the higher molecular weight compounds and, therefore, they more readily reach toxic levels in water. Although some higher molecular weight compounds are acutely toxic to aquatic organisms, their lower solubility makes it much less likely that they will reach acutely toxic levels in aquatic systems. The toxicity of PAH compounds increases as the octanol-water partition coefficients of the compounds increase (Millemann *et al*, 1984).

For many PAH compounds, acutely toxic concentrations (as measured under lab conditions) exceed the aqueous solubilities of the compounds. Fluoranthene toxicity has been demonstrated in some aquatic organisms at environmentally realistic concentrations (lower than its aqueous solubility) (Suedel *et al*, 1993; Swartz *et al*, 1990). According to Suedel and Rodgers (1996), the 48hr LC₅₀ and the 10 day LC₅₀ for the cladoceran *Daphnia* magna exposed to fluoranthene were 106 μ g/L and 103 μ g/L, respectively. In comparison, the amphipod *Hyalella azteca* was more sensitive and exhibited a 48hr LC₅₀ value of 92 μ g/L and a 10 day LC₅₀ value of 30 μ g/L (Swartz *et al*, 1990). Exposure to fluoranthene levels of 200 and 400 μ g/L affected the immunocompetence of mussels (*Mytilus edulis*) (Coles *et al*, 1994). Differences in the sensitivity of various species of aquatic organisms to PAH compounds have been noted. For example, Neff (1979) reported that crustaceans are more sensitive to fluoranthene toxicity than are polychaete worms or fish.

Weinstein (1997) studied oysters from an urbanized fluoranthene-contaminated site in South Carolina and reported that the seasonal profile of epithelial thickness was related to the body burden of fluoranthene and other PAH compounds. The oysters from this area contained PAH concentrations of up to 683 ng/g dry weight. Exposure to 5 mg/L fluoranthene in the lab also resulted in a reduction in the mean digestive epithelial thickness. The authors concluded that observations of thinning epithelial thickness in oyster populations could provide a useful indicator of fluoranthene-induced stress. In addition, Eertman *et al* (1995) reported that mussels with high fluoranthene body burdens exhibited decreased gonadal development.

Walker *et al* (1998) reported that exposure of bullfrog larvae to fluoranthene and solar ultraviolet radiation, simultaneously, caused significant effects on locomotor behaviour at 60 μ g/L after 48 hours and at 40 μ g/L after 96 hours. In addition, the skin of the larvae showed signs of necrosis after exposure to as little as 10 μ g/L fluoranthene.

At much higher concentrations of benzo[a]pyrene (10 mg/L), Sabourin and Tullis (1981) observed significant decreases in the heart activity of mussels (*Mytilus californianus*).

Miller *et al* (1982) reported that exposure of pink shrimp (*Pandalus duorarum*) to 1 μ g/L chrysene over a 28 day period, increased the incidence of molting. Fiddler crab exposed to naphthalene exhibited hyperglycemia, which is mediated by CHH (crustacean hyperglycemic hormone) from the eyestalks (Reddy *et al*, 1996).

Exposure to naphthalene had toxic effects on the hepatopancreatic cells of crayfish, however, cells were able to proliferate once exposure was terminated. This indicates that the crayfish hepatopancreas is similar to the mammalian liver in its ability to replace lost cells (Sarojini *et al*, 1993). Naphthalene also affects the vitellogenesis of crabs (Elumalai and Balasubramanian, 1999).

A chronic (lifetime) exposure of the copepod (*Eurytemora affinis*) to 10 μ g/L of certain naphthalene compounds (2-MNA, d-MNA, and t-MNA) resulted in a reduced lifespan and decreased reproductive success. The production of eggs was reduced to approximately 50% of the control group as a result of exposure to 10 μ g/L of any of the naphthalene compounds (Ott *et al*, 1978).

18.44

Mummichogs (*Fundulus heteroclitus*) exposed to naphthalene concentrations as low as 200 μ g/L for a period of 15 days exhibited histological effects in the brain, liver and pancreas. Concentrations as low as 20 μ g/L resulted in neurosensory damage after 15 days and metabolic stress (as indicated by elevated serum glucose, protein and cortisol) (DiMichele and Taylor, 1978). Similarly, mature fathead minnow exposed to up to 20 μ g/L exhibited decreased reproductive output (number of eggs), egg percent hatch, and fry survival. In addition, teratogenic effects (in the form of internal hemorrhaging and eye and yolk deformities) were observed in hatched fry (Hall and Oris, 1991).

A study of the toxicity of phenanthrene to marine polychaetes (*Nereis* sp.) showed that 48 hour old emergent juveniles (14 day LC_{50} of 51 µg/L) were more sensitive than were adults (14 day LC_{50} of 501 µg/L). Worm growth and reproduction were both adversely affected (Emery and Dillon, 1996).

Hardy *et al* (1987) reported that there were fewer sand sole eggs and neustonic organisms in sea surface samples collected from Puget Sound than in those from reference sites during spawning season (February and March). The hatching success of sole eggs from urban areas was 50% or less that of sole eggs at reference areas. A number of toxic effects were observed in developing organisms exposed in the laboratory to surface microlayer samples from urban bays. These effects included increased chromosomal aberrations in developing sole embryos and reductions in both the hatching success of sole larvae and the growth in trout cell cultures. The authors noted that the toxicity of the sea-surface microlayer was strongly correlated with the presence of high concentrations of PAHs and metals.

Exposure of larval zebrafish to retene at concentrations of $320 \mu g/L$ and higher for a 14 day period caused reduced growth, yolk sac edema, and mortality. The same study revealed that retene concentrations of 32 to 320 $\mu g/L$ caused increased incidence of blue-sac disease in larval rainbow trout. Other effects observed in rainbow trout were yolk sac edema, subcutaneous hemorrhaging, fin erosion, opercular sloughing, reduced growth, craniofacial malformations and increased cytochrome P4501A enzyme activity (Billiard *et al*, 1999).

White *et al* (1999) reported that fathead minnow larvae two generations after exposure to the mutagen, benzo[a]pyrene, exhibited a significant decrease in survival. At the highest exposure level (1 ppb) both the larvae survival and the reproductive capacity were affected.

In general, PAH compounds are more toxic to organisms during the early developmental stages. However, carcinogenic effects of PAH compounds are more common in older organisms as these effects develop over longer time periods (Black, 1983; Hawkins *et al*, 1990).

۱*d*

9-8 U

iin

¥() :

1 Biba
Although the higher molecular weight PAH compounds are usually of lower acute toxicity to aquatic organisms, many of them are recognized as mutagens and/or carcinogens, including benzo[a]pyrene, dibenz[a,h]anthracene, and benzanthracenes. Other compounds, such as chrysene, have been shown to be tumour promoters (Metcalfe *et al*, 1990).

Hawkins *et al* (1990) reported that benzo[a]pyrene and 7,12 dimethylbenz[a]anthracene (DMBA) induced hepatic neoplasms in both guppy and Japanese medaka. Benzo[a]pyrene exposure (150 to 250 μ g/L) resulted in hepatic neoplasms, while DMBA exposure resulted in hepatic and extrahepatic neoplasms. DMBA was a stronger carcinogen than benzo[a]pyrene and neoplasms in medaka and guppy occurred following exposures to <5 μ g/L and 30 to 50 μ g/L, respectively. Earlier work by Hawkins *et al* (1989) demonstrated that hepatic and extrahepatic neoplasms appeared in guppies exposed to \geq 20 μ g/L DMBA for 6 hours once each week over a four week period.

Exposure to PAH contaminated sediments has also been reported to cause toxic effects in aquatic organisms. Long *et al* (1995) reported that adverse effects were associated with sediments containing phenanthrene, fluoranthene and low molecular weight PAHs at concentrations of 2.25, 7.65, and 4.74 μ g/g (dry weight at 1.5% organic carbon content). Other researchers reported that concentrations in the 1 to 20 μ g/g dry weight range have been associated with impacts on benthic species (Steinhauer and Boehm, 1992; Misitano and Schiewe, 1990). Landrum *et al* (1991) reported that sediment concentrations in the range of 100 μ g/g dry weight of total PAHs (11 compounds) caused mortality in amphipods (*Diporeia* spp.) over a 26 day exposure period. Two species of benthic amphipods (*Rhepoxinius* and *Corophium* sp.) exposed to fluoranthene contaminated sediments (0.18 % organic carbon content) exhibited 10 day LC₅₀s of 3.4 and 5.1 μ g/g dry weight (Swartz *et al*, 1990).

Lotufo (1997) reported that the 4 day LC_{50} s for the estuarine copepod (Schizopera knabeni) exposed to sediment-associated phenanthrene and fluoranthene were 473 µg/g and >2,100 µg/g dry weight, respectively. They also reported that feeding was inhibited at concentrations less than the LC_{50} (50% decrease at 48 to 94 µg/g dry weight), as was nauplii and copepodite production (50% decrease at 38 to 64 µg/g, dry weight). Avoidance behaviour was also observed at sublethal concentrations. The authors concluded that, although mortality occurred only at very high sediment concentrations, sublethal levels would likely affect fitness, distribution and abundance of aquatic species in contaminated areas. This emphasizes the need to consider sublethal effects during the development of sediment quality criteria.

Mussels from Kitimat Harbour have a high incidence of a condition involving extensive infiltration of tissue by hyalinocytes. The incidence of the condition correlates positively with benthic sediment levels of PAHs (Brown *et al*, 1983; Cretney *et al*, 1980). However, Chapman *et al* (1995) and Paine *et al* (1996) reported that, despite the very high PAH concentrations in sediments offshore the Alcan smelter in Kitimat Arm, an environmental effects monitoring program showed little evidence of adverse effects. Few indications of disturbances were detected in benthic infaunal, crab and bottomfish communities and sensitive toxicity tests (bioassays) showed no effects related to PAHs. The authors suggested that the limited bioavailability and lack of adverse effects on local biological communities may be related to the fact that PAH releases from the smelter were associated with pitch globules or coal particles rather than in solution or sorbed to suspended solids. Simpson (1997) suggested that, over time, PAH could become more bioavailable as a result of microbial action, particle breakdown, or other natural processes in the environment. However, examination of a Kitimat sediment core showed no evidence of weathering or biotransformation of the anthropogenically generated PAHs (Simpson *et al*, 1998).

Carman *et al* (1995) used a microcosm system to study the effects of PAHs on a benthic estuarine sedimentary salt-marsh food web. Sediments containing 0.3 to 3 mg/kg dry weight were tested, however, it is estimated that surface concentrations may have reached 27 mg/kg. Microalgae activity, physiological condition and meiofaunal community composition were affected but bacterial activity, physiological condition, abundance and meiofaunal grazing were not. The authors suggested that the chronic petroleum contamination in this coastal salt marsh over the past several decades may have allowed the resident microorganism populations to adapt to elevated PAH concentrations.

Creosote contaminated sediments have been associated with a number of toxic effects in aquatic organisms. According to Tagatz et al (1983) the lowest creosote sediment concentration that affected the number of benthic individuals or species in recolonization experiments was 844 µg/g dry weight for molluscs and 177 µg/g for echinoderms, annelids, and arthropod (including amphipods). Swartz et al (1989) reported that creosote contaminated sediment from one station in Eagle Harbour, Washington was highly toxic to the amphipod Rhepoxynius, however, sediments from other nearby stations (within 150 metres) were not acutely toxic. This demonstrates that sediment contamination and toxicity can be highly variable even between stations in close proximity. Total PAH concentrations were as high as 29.000 µg/kg at some sites in Eagle Harbour. Sved et al (1992) observed a number of effects in spot exposed to coal tar creosote contaminated sediments for 14 days including; severe fin erosion, epidermal lesions, and mortality. Goyette and Brooks (1998) investigated the spatial and temporal effects of creosote treated pilings in the marine environment. They concluded that, under worst case conditions, creosote treated wood can cause adverse effects in the marine environment and that care should be taken during the use of treated structures to minimize environmental risks. However, adverse biological impacts were significant only to a distance of 0.65 metres from the structure. Significant environmental PAH contamination was restricted to within 7.5 metres of the structure. The authors concluded that creosote tends to remain intact in the bottom sediments, even when agitated, limiting its spread from the source and its contact with local biota (Goyette, personal communication).

Some researchers have suggested that the concentration of chemicals in the interstitial waters provides a better indication of the potential sediment toxicity than do chemical concentrations in bulk sediments (Hargis *et al*, 1984; Adams *et al*, 1985). Swartz *et al* (1989) analyzed the interstitial waters from sediments collected from several sites within

يەر. بەر

tw-∎

∎i ∈

in a

۱.

E I

Eagle Harbour and observed that $6 \mu g/L$ was the highest phenanthrene concentration at which no amphipod mortality occurred. This value is in agreement with the safe level for amphipods reported by Tetra Tech (1986).

In many studies, a strong association has been observed between the contamination of bottom sediments with PAHs in urban waterways and the prevalence of liver lesions, including neoplasms, in bottom fish (Varanasi and Stein, 1991). Such an association has been reported in several contaminated river systems in the United States including the Buffalo and Hudson rivers in New York, the Black River in Ohio, the Detroit River in Michigan, and the Elizabeth River in Virginia. Similar findings have been reported for Puget Sound in Washington State; in contaminated areas near Los Angeles, California; in Alabama; and in the Elbe River in the vicinity of the North Sea (Bowser *et al*, 1990; MacCubbin *et al*, 1990; Krahn *et al*, 1986; Malins *et al*, 1985; Schiewe *et al*, 1991; Landahl *et al*, 1990; Pritchard *et al*, 1996; Myers *et al*, 1991; Simpson, 1992).

Mummichog from a creosote contaminated site in the Elizabeth River in Virginia had a high prevalence of idiopathic hepatic lesions. Visible hepatic lesions were observed in 93% of individuals with 33% of these having hepatocellular carcinomas. Hepatic lesions were not observed at the less contaminated sites in the river (Vogelbein *et al*, 1990). In addition, Hargis *et al* (1989) reported that mummichog from the Elizabeth River had a high incidence of papillomas of the lip and mouth., while Hargis and Zwerner (1988a, 1988b) reported that five species of fish from this river had lens cataracts. Fin rot and skin ulcerations were also observed. The prevalence of all lesions was highest in areas of high sediment PAH concentrations.

Hepatic lesions were also identified in English sole from Vancouver Harbour (Goyette *et al*, 1988; Goyette, 1991; Goyette, 1994). Based on data up to 1991, the highest incidence (up to 75% of the individuals greater than 20 cm in length) of preneoplastic and neoplastic liver lesions in Vancouver Harbour English sole were observed in Port Moody Arm, an area of low tidal exchange which receives petroleum refinery and other industrial and urban discharges. At this time, maximum surface sediment concentrations were between 20,000 and 40,000 ng/g. Lesions were found in 5 to 40% of the fish collected in the outer harbour and central portion of the inner harbour. Histological studies showed no evidence of liver lesions or hepatocellular disorders in English and flathead sole from reference sites including Loughborough Inlet, Alice Arm, and Barclay Sound. The frequency of liver lesions near the refinery in Port Moody declined in 1991 (45%) and 1992 (30%). This decline was attributed to the fact that the process effluent from the refinery had been re-directed to the Greater Vancouver Regional District sewer system in 1989 (Goyette, 1991; Goyette, 1994; Goyette and Boyd, 1989).

Fish exposed to PAHs (such as benzo[a]pyrene) during laboratory tests have also exhibited tumour formation. For example, Metcalfe *et al* (1988) reported that exposure of rainbow trout to extracts from PAH contaminated sediments from Hamilton Harbour resulted in the development of hepatocellular carcinomas.

A study of English sole from several locations in Puget Sound revealed that fish with liver lesions had significantly higher bile concentrations of compounds with benzo[a]pyrene fluorescence than did fish without lesions. Bile of English sole from polluted locations contained individual metabolites from fluorene, phenanthrene, anthracene, and dimethylanthracene. Concentrations ranged from 90 to 19000 ng/g wet weight (Krahn et al, 1984). Several authors reported that there was a significant positive correlation between the concentrations of metabolites of aromatic compounds and total liver lesions in flatfish and other bottomfish species. Observed lesions included hepatocellular and biliary neoplasms, preneoplastic focal lesions, degenerative/necrotic lesions, and non-neoplastic proliferative lesions (Husoy et al, 1996; Krahn et al, 1986). Myers et al (1991b) reported that, although liver neoplasms are rare in young fish, the detection of other liver lesions in juvenile flatfish can be useful as early indicators of biological effects in fish exposed to contaminants. Juvenile starry flounder. English and rock sole collected from Puget Sound contained high incidences of several types of nonspecific degenerative liver lesions at the more highly contaminated sites. These lesions have also been induced experimentally in fish by exposure to various toxicants. The presence of lesions in all three species were positively correlated to mean bile FACs (fluorescent aromatic compounds).

Laboratory studies indicate that hepatic enzymes in fish metabolize benzo[a]pyrene to intermediate compounds that bind to DNA. The binding of chemicals or their metabolites to DNA results in the formation of the carcinogen-DNA adducts and is thought to be the first step in carcinogenicity. The presence of DNA adducts in fish is used as one measure of the genetic damage originating from exposure to environmental carcinogens (MacCubbin *et al*, 1990; Miller and Miller, 1981; Okey, 1989). Laboratory studies have shown that hepatic enzymes in fish metabolize benzo[a]pyrene to glutathione conjugates, glucuronides and sulfates. One of the major metabolites is benzo[a]pyrene-7,8-dihydrodiol (BaP-7,8-diol), which is a precursor to the suspected ultimate carcinogen, anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (anti-BaPDE), which readily forms DNA adducts (Sikka *et al*, 1990; Thakker *et al*, 1977; Steward *et al*, 1990; Grady *et al*, 1992; Pangrekar and Sikka, 1992; Varanasi *et al*, 1989).

۲h

Qi.

1

.

١

1

I.

Work by Stein *et al* (1989) and Varanasi *et al* (1989) indicated that benzo[a]pyrene DNA-adducts persist in English sole after a single exposure to benzo[a]pyrene. The ability of the fish to repair DNA damage determines the persistence of the DNA-adducts in fish tissues. Although carcinogen-DNA adducts are efficiently eliminated from mammals by a process called excision repair, this process occurs more slowly in fish (Grady *et al*, 1992; Shugart *et al*, 1987; Shugart, 1988; Shugart, 1990).

Increased levels of DNA adducts have been associated with a higher incidence of liver lesions in wild populations from PAH contaminated areas and in test fish exposed to PAHs in the laboratory. In Puget Sound, a positive correlation has been found between hepatic CYP1A induction, the prevalence of preneoplastic hepatic lesions, and the level of hepatic DNA-adducts (Myers *et al*, 1997). In addition, the laboratory exposure of English sole to PAH contaminated sediments from the Eagle Harbour area of Puget Sound, over a five week period, resulted in elevated DNA adducts and increased fluorescent aromatic compounds (FACs) in the bile. These effects occurred in relation to the dose. Sampling of the wild population of English sole from Eagle Harbour confirmed the presence of elevated levels of DNA adducts in fish exposed in the natural environment. The authors concluded that DNA adducts are persistent in English sole and that when a significant amount of the DNA damage occurs it is not easily repaired (French *et al*, 1996).

Some species are more sensitive to the carcinogenic effects of PAHs than others. For example, brown bullhead from rivers contaminated with PAH compounds exhibit a high incidence of liver tumours, while carp from the same areas show a low or zero incidence of tumours. Lab studies have confirmed the higher susceptibility of bullhead to PAH-induced carcinogenesis. Carp metabolize benzo[a]pyrene faster than bullhead, however bullhead liver microsomes formed a higher proportion of BP-phenols and BP-quinones among the total metabolites produced than did carp liver microsomes (Sikka et al, 1990; Steward et al, 1989). Pangrekar and Sikka (1992) suggested that the formation of a relatively high proportion of toxic BP-quinones in the liver may contribute to the observed susceptability of brown bullhead liver to BP-carcinogenesis. These authors reported that both liver and kidney microsomes formed PAH metabolites, primarily 7,8-diol, 9,10-diol, 3-hydroxy-BP, and 9hydroxy-BP. In addition to these metabolites, liver microsomes also formed a significant amount of 3,6-quinone. A significant difference between the liver and kidney microsomes was noted in the proportion of BP-quinones formed. While quinones accounted for nearly 26% of the total metabolites formed by liver microsomes, they were not detected with kidney microsomes. BP-quinones are known to cause DNA damage.

Similarly, studies have shown that starry flounder are less susceptible to hepatocarcinogenesis than are English sole. Although starry flounder and English sole accumulated similar concentrations of PAHs from the sediments, and had similar rates of benzo[a]pyrene metabolism and benzo[a]pyrene 7,8-diol formation by liver microsomes, the binding of benzo[a]pyrene metabolites to hepatic DNA was higher in English sole than in flounder. It was suggested that this difference may be associated with the higher amounts of glutathione (for conjugating metabolites) in starry flounder than in English sole (Stein *et al*, 1990; Varanasi *et al*, 1986)

Spiny lobsters exposed to benzo[a]pyrene have been shown to efficiently eliminate benzo[a]pyrene metabolite DNA adducts within 28 days of exposure. This may, in part, explain the resistance of crustaceans to chemical carcinogenesis. Benzo[a]pyrene metabolites can bind to lobster hepatopancreatic DNA, but the adducts are not as persistent as those found in carcinogen-sensitive fish species (James *et al*, 1992).

Venier and Conova (1996) reported that DNA reactive intermediates were formed in the gills of mussels treated with benzo[a]pyrene and suggested that this may indicate that PAHs can cause genetic damage in this species. Other researchers reported that exposure to benzo[a]pyrene resulted in chromosomal aberrations and micronuclei in the gill cells of mussels (Al-Sabtum and Kurelec, 1985) Tumour development has also been observed in oysters exposed to contaminated sediments. Gardner *et al* (1992) reported that sediments containing a mixture of contaminants (PAHs, PCBs, chlorinated hydrocarbons, an aromatic amine, a nitrosamine and heavy metals) produced kidney and gastrointestinal tumours after a 30 day exposure period. Previous studies had reported tumour development in oysters exposed to contaminated sediments from Black Rock Harbour in Connecticut for 30 days. Several organ and tissue systems were affected including the kidney, intestine, gills, gonads, heart and nerves (Gardner *et al*, 1991).

Oysters exposed to contaminated sediments from the Elizabeth River in Virginia have demonstrated increased susceptibility to infectious disease (Chu and Hale, 1994). Decreased immunocompetence has also been observed in fish exposed to sediments from this river system (Weeks *et al*, 1986).

Oysters from some PAH-contaminated areas have been shown to be mutagenic (Kira and Ogata, 1989). In addition, studies have shown that oysters that were relocated to polluted waters from pristine areas develop mutagenic activity within 3 days. Pittinger *et al* (1987) reported that oysters relocated to the polluted Elizabeth River in Virginia showed an increased mutagenic activity over a 14 day period. The level of mutagenic activity in the relocated oysters was similar to that in the oysters native to the area. When oysters were relocated back to a pristine area, mutagenic activity quickly decreased and was not detected after 14 days. The authors noted that there was little association between the levels of PAHs in the tissues and the mutagenic activity.

The toxicity of PAH compounds to aquatic species is influenced by a number of environmental variables. The amount of organic matter, the ambient temperature, and the presence of sunlight are thought to be among the most important factors. 1110

i i i e

ill**

1.49

The amount of sediment organic carbon influences the biological impacts of hydrophobic organic compounds, including PAHs, by reducing their bioavailability and toxicity (Swartz *et al*, 1990; DeWitt *et al*, 1992; Oris *et al*, 1990). Weinstein and Oris (1999) reported that the presence of dissolved humic materials reduced both the bioaccumulation of phenanthrene and the phototoxicity of this compound to juvenile fathead minnow.

Korn *et al* (1979) reported that an increased sensitivity was observed in shrimp exposed to naphthalene at higher temperatures, despite the fact that toxicants were lost more rapidly at higher temperatures. Synergistic effects of naphthalene and temperature on mysid respiration have also been observed. Respiratory compensation for naphthalene toxicity was no longer effective at high temperatures and high exposure combinations, resulting in 50% mortality over a 96 hour period. Respiratory rates were affected at the lowest concentration tested (200 μ g/L). The authors reported that both the size and the sex of mysids influenced the response (Smith and Hargreaves, 1985).

The effects of salinity are less clear. Sabourin (1982) studied the effect of acclimation salinity on the respiratory and circulatory responses of blue crab exposed to naphthalene. No salinity related difference was observed in the resistance of crabs to naphthalene, however, underlying responses of the respiratory and circulatory system to naphthalene are affected by salinity. The response of the oxygen transport system to naphthalene differed with salinity. Naphthalene appears to exert sublethal effects on gill epithelia by disrupting ion exchange. Compensation is a complex process and occurs via increased ventilation and blood flow (Sabourin, 1982).

Some PAH compounds, including anthracene, fluoranthene, and pyrene, exhibit photo-induced toxicity. This means that, in the presence of natural or simulated ultraviolet light, these compounds are much more toxic to a variety of species, including insect larvae, daphnids, amphibians, invertebrates, fish and algae, than in the absence of light (Newsted and Giesy, 1987; Veith *et al*, 1995; Ankley *et al*, 1994; Kagan *et al*, 1984; Kagan *et al*, 1985; Monson *et al*, 1995; Alfred and Giesy, 1985; Bowling *et al*, 1983; Oris and Giesy, 1985; Cody *et al*, 1984; Gala and Giesy, 1983). Phototoxicity is increased by both a stronger intensity and a longer duration of light exposure (Oris and Giesy, 1987; Ankley *et al*, 1995; Oris and Giesy, 1986; Hatch and Burton, 1998).

Juvenile sunfish exposed to anthracene in the presence of sunlight exhibited a 96 hr LC_{50} that was 190 to 1800 times lower than the 24 hour no effect concentration in the absence of sunlight. Simultaneous exposure to sunlight and anthracene also resulted in increased opercular ventilation rate and structural changes in the gills and epidermis (Bowling *et al*, 1983; Oris and Giesy, 1985). Holst and Giesy (1989) reported that *Daphnia magna* exposed to ultraviolet radiation and anthracene (at concentrations ranging from 6 to 22% of the aqueous solubility) suffered a 69% reduction in the production of neonates.

Pelletier *et al* (1997) exposed larval and juvenile bivalves (*Mulinia lateralis*) and juvenile mysid shrimp (*Mysidopsis bathia*) to known phototoxic PAH compounds (anthracene, fluoranthene and pyrene) simultaneously with fluorescent or ultraviolet light. The authors reported that exposure to light increased the toxicity of individual PAH compounds by 12 fold to more than 50,000 fold. Exposure to ultraviolet light usually resulted in LC₅₀s and EC50s which were below the water solubility of the PAHs. This finding suggests that low levels of PAHs could cause significant toxicity in the environment in the presence of ultraviolet light. The authors also reported that the phototoxicity of petroleum products was determined by the presence of phototoxic PAHs. Heavier oils such as Arabian Light Crude, Prudhoe Bay Crude and Fuel Oil #6 were found to be phototoxic, while the lighter Fuel Oil #2 was not phototoxic. Fewer multiple aromatic ring phototoxic compounds occur in the lighter oils. The authors suggested that exposure to ultraviolet radiation after an oil spill could potentially increase the toxicity by 2 to 100 fold. The organisms at highest risk would be those species with pelagic larvae and species living in shallow areas where ultraviolet light penetration is possible (50 metres in clear water and up to 1 metre in turbid coastal water). Organisms in some aquatic systems may be experiencing increased mortality and reduced reproductive success due to the phototoxicity of PAH compounds. For example, Gala and Giesy (1992) reported that, since the 24 hr EC_{50} for primary production in green alga ranged from 24 to 3.3 µg/L anthracene (depending on the UVA intensity), PAH concentrations in some aquatic systems are high enough that photo-induced toxicity may pose a hazard to natural algal communities.

There is evidence that, during periods of darkness, organisms can repair part of the damage caused by phototoxicity. Oris and Giesy (1986) reported that, during periods of darkness, bluegill sunfish were able to slowly repair damage caused during exposure to anthracene and ultraviolet light. However, despite the repairs which took place during periods of darkness, the accumulation of damage caused during periods of light was sufficient to cause eventual death.

In addition, the presence of other environmental contaminants can influence the toxicity of PAH compounds to aquatic species. McCarthy *et al* (1989) reported that bluegill sunfish pre-exposed to 3-methylcholanthrene five days prior to injection with benzo[a]pyrene, exhibited double the number of DNA benzo[a]pyrene adducts compared to fish exposed to only benzo[a]pyrene. The authors suggested that multiple contaminants appear to act synergistically on DNA adduct formation and, therefore, the effects of multiple carcinogens may be greater than would be predicted based on laboratory results of exposures to single compounds.

11æ

ظلأ

₩ HP

₿~ |ak

2.3 Concentrations in the Aquatic Environment

2.3.1 General Information

2.3.1.1 Water and Sediments

Concentrations of PAH compounds in surface waters are generally low due to their low solubility in water. In particular, the higher molecular weight compounds are rarely detected in sub-surface ambient waters. PAHs are mainly associated with suspended particulate matter with only a small fraction present in dissolved form. Most of the PAHs entering aquatic systems are ultimately deposited in the bottom sediments.

Recycling of some PAHs (particularly low molecular weight compounds) between the sediments and the water column can occur, but depends on factors such as water depth and mixing conditions. A study conducted in a deep, rural lake in the United Kingdom revealed that, in the case of phenanthrene, significant recycling between the sediments and water column occurred and resulted in remobilization and diffusive release (Sanders *et al*, 1996).

Brisbane Estuary in Australia receives discharges from petroleum refineries, fertilizer plants, cement factories, sewage treatment plants and also storm runoff from urbanized centres. Kayal and Connell (1989a) reported that more than 99.9% of the total PAHs present in water samples were associated with particulate matter, with less than 0.01% of the PAHs dissolved in the water column. PAH concentrations in filtered water samples were very low with naphthalene present at the highest concentrations (19 to 26 ng/L). Compounds with molecular weights greater than benzo[a]pyrene were not detected. Total PAHs in particulate matter ranged from 2.38 to 14.78 µg/g, with fluorene and pyrene present at the highest concentrations. Water samples collected from rivers bordering large Australian cities contained total PAH concentrations ranging from less than 0.3 to 525 ng/L (Smith et al. 1991). Lower molecular weight compounds such as fluorene (45-525 ng/L), anthracene (20-335 ng/L) and phenanthrene (4-35 ng/L) accounted for virtually all of the PAH present. Higher molecular weight compounds such as benzo[k]fluoranthene and benzo[a]pyrene were tightly adsorbed to particulate matter and extractable concentrations were below 0.3 ng/L in most samples. Fluoranthene and pyrene concentrations ranged from 1 to 18 ng/L and were distributed between the particulate and dissolved fractions.

PAH concentrations in particulates from seawater in Antarctica ranged from 1.5 to 9.8 ng/L (mean of 7.3 ng/L). The presence of alkylated derivatives of naphthalene and phenanthrene indicated a petroleum source (Green *et al*, 1992).

PAHs were detected in microlayer and subsurface waters of Winyah Bay and North Inlet in South Carolina (Kucklick and Bidleman, 1994). The most predominant compounds were fluoranthene and pyrene. However, the authors noted that previous studies in Chesapeake Bay (Hardy *et al*, 1990) and Lake Superior (Baker and Eisenreich, 1990) had demonstrated that phenanthrene was a major component of total PAHs in waters. Total PAH concentrations in water samples from Winyah Bay and North Inlet rarely exceeded 1000 ng/L with the highest concentrations occurring near commercial boat docks and a local steel mill (Kucklick and Bidleman, 1994). In general, the results supported a previous study by Bidleman *et al* (1990) in that the highest concentrations occurred close to urban Georgetown. PAH profiles in Winyah Bay and North Inlet indicate that runoff or fallout of urban dust may be the main PAH source to this area. PAHs were enriched in the surface microlayer and were detected at concentrations 18 times greater (on average) than the concentrations in subsurface samples.

Analysis of water samples collected off the coast of Finland at depths of 22 to 230 metres revealed that PAH concentrations in water samples collected closer to bottom sediments were higher than concentrations in upper water layers. Particularly high concentrations were detected at the sediment-water interface. In water samples, pyrene was detected at the highest concentrations while the higher molecular weight 5- and 6- ring compounds accumulated in the sediments or at the sediment-water interface. The authors noted that most of the carcinogenic PAH compounds would be deposited in the bottom sediments (Kirso *et al*, 1990)

Seasonal variations in PAH concentrations in surface waters have been observed in some regions. Bouloubassi and Saliot (1991) reported that PAHs associated with particulates in water samples from the Rhone delta area of the Mediterranean Sea ranged from 420 to 6000 ng/g. Concentrations detected in the winter were higher than in the summer and were attributed to increased pyrolytic contributions of PAH-enriched particles in the winter. Examination of PAH profiles suggested that PAH contributions were mainly from fossil fuel sources in the winter, while sources in the summer appeared to be more heterogeneous. Dissolved PAHs were present at concentrations ranging from 4 to 31 ng/L in the summer and 19 to 50 ng/L in the winter. As with particulates, the profiles of dissolved PAHs indicated a fossil fuel origin in the winter and mixed sources in the summer. In contrast to most other areas, a higher proportion of PAHs were in dissolved form (>80%) than associated with particulate matter. Alkylated and sulfur-containing compounds were particularly enriched in the dissolved phase.

Dissolved PAH concentrations in the Humber Estuary area of the United Kingdom were highest in September and lowest in June (Zhou *et al*, 1996). However, a significant increase in PAH concentrations was noted off a sewage outfall in June. Fluoranthene (2 to 66 ng/L) was detected in samples from all coastal stations including some located 40 km from shore. Pyrene was also present (3 to 61 ng/L), however, concentrations were near the detection limit at most sites.

Studies worldwide have shown that the highest concentrations of PAHs occur in sediments collected from urban and industrialized harbours and waterways. The combustion of fossil fuels and organic matter and the release of uncombusted petroleum products are the major sources of PAHs to coastal sediments (Maher and Aislabie, 1992; McGroddy and Farrington, 1995).

Shiaris and Jambard-Sweet (1986) reported that sediments from Boston Harbour in Massachusetts contained total PAH concentrations (sum of 14 unsubstituted compounds) ranging from 480 to 718,000 ng/g (dry weight). Particularly high concentrations were detected in the vicinity of a raw sewage pumping station in the inner harbour. Much lower concentrations (1,000 to 5,000 ng/g) were found in the outer harbour. The most predominant PAH compounds detected were the four and five ring compounds fluoranthene, pyrene, chrysene, benzanthracene, and benzo[a]pyrene. Phenanthrene was also detected, but at lower concentrations than the four and five ring compounds. The higher molecular weight compounds dibenzanthracene, indeno[1,2,3-cd]pyrene, and benzo[g,h,i]perylene were not detected in any Boston Harbour sediment samples. Hites *et al* (1978) reported that PAH concentrations ranged from 160 to 120,000 ng/g but decreased rapidly with distance from Boston (approximately one order of magnitude for every 40 km). Sediment samples collected from the Gulf of Maine, and from deep ocean areas off the continental shelf, contained total PAH concentrations ranging from 200 to 870 ng/g and from 18 to 160 ng/g, respectively.

i de

Bates *et al* (1987) reported that the concentrations of total four, five and six ring PAH compounds in surficial bottom sediments and suspended sediments from the main basin of Puget Sound ranged from 600 to 3,200 ng/g. Concentrations in fine-grained surficial

bottom sediments were quite uniform throughout the central basin (1000 to 1200 ng/g). However, somewhat higher concentrations (2,700 to 3,000 ng/g) were detected in samples collected in Elliott Bay, the industrial harbour in Seattle. The highest PAH concentrations on suspended sediments were detected in samples collected near Seattle (1200 to 2000 ng/g). Concentrations decreased with distance from Seattle and also with the depth of collection within the water column. The PAH pattern in the suspended sediments and the surficial bottom sediments was similar. Elevated concentrations of retene, which is found naturally in conifer resin and in coal, were present in some samples. The highest levels (480 ng/g) were detected in the Commencement Bay area where the major source is thought to be input from the Puyallup River, which runs through several coal outcrops (Barrick et al, 1984). In comparison, bottom sediments collected from the Seattle area contained 90 ng/g of retene. In coastal marine sediments and sediments from lakes in forested watersheds, retene concentrations are usually in the 10 to 100 ng/g range. However, pulp mills can be significant sources of retene and, in sediments downstream from pulp mills, concentrations of up to 1,600,000 ng/g have been detected (Billiard et al, 1999). Malins et al (1984) reported that, in the Puget Sound area, the highest concentrations of the carcinogenic PAH compounds benz[a]anthracene (7,600 ng/g) and benzo[a]pyrene (2,400 ng/g) were detected in Elliott Bay which receives industrial and municipal waste and urban runoff.

PAHs were detected in the thousands of ng/g concentrations throughout the Brisbane River estuary in Australia. The highest total PAH concentration (16,100 ng/g) was detected in the most highly urbanized area. Fluoranthene and pyrene were present in the highest concentrations. Benzo[a]pyrene comprised 4 to 7% of the total PAH. Mean concentrations of individual PAH compounds ranged from 30 ng/g for dibenz[a,h]anthracene to 2340 ng/g for fluoranthene (Kayal and Connell, 1989c).

Although atmospheric deposition accounts for the major input of PAHs to the aquatic environment, there are often multiple direct releases of PAHs to industrialized harbours and waterways. These include sanitary and storm sewage discharges, the use and spillage of fuel and other petroleum products, creosoted pilings and wharf structures, and industrial discharges and runoff.

Dunn and Stich (1976) reported elevated PAH concentrations in sediments collected in the vicinity of a sewage discharge near Vancouver, British Columbia. These authors reported that the increase in benzo[a]pyrene concentrations in sediments from stations closest to the outfall of the sewage treatment plant suggested that this was the major source of benzo[a]pyrene to the Fraser River Estuary.

Urban and roadway runoff contribute significant amounts of PAHs to the aquatic environment directly and through stormwater releases (MacKenzie and Hunter, 1979; Carr *et al*, 2000). PAHs are deposited on road surfaces from asphalt and tire particles, atmospheric fallout, crankcase oil and petroleum, and exhaust fumes (Hoffman *et al*, 1984; Hoffman *et al*, 1985; Hermann, 1981; Payne *et al*, 1978; Wakeham *et al*, 1980a; Eganhouse *et al*, 1981; Enzminger and Ahlert, 1987; Evans *et al*, 1990b). PAHs adsorbed to street and roof dust are mobilized by storm events and transported to aquatic systems where they are

deposited in the bottom sediments (Evans *et al*, 1990b). Urban/road runoff was thought to be the major source of PAHs to the Derwent River in England. Sediment samples collected at several locations in the late 1980's contained mean total PAH concentrations of 5,220 to 35,240 ng/g, with a maximum concentration of 209,590 ng/g. Pyrene and fluoranthene were the main compounds detected. Sediments collected in a rural location upstream contained much lower levels of PAHs (mean of 580 ng/g; maximum of 2,450 ng/g).

PAHs are major constituents of creosote and high PAH concentrations have been detected in sediments collected off wood preservation facilities utilizing creosote. In 1982, sediments obtained off a wood preservation facility in Newcastle, New Brunswick contained 400,000 to 11,000,000 ng/g PAH, while sediments from the discharge stream at a wood preservation plant in Truro, Nova Scotia contained 1,500 to 6,300,000 ng/g. At both locations the PAH compounds detected at the highest concentrations were phenanthrene, pyrene, and fluoranthene (Kieley *et al*, 1986).

Perhaps the most recognized area of high PAH contamination in Canada is Sydney Harbour in Nova Scotia. For many years a steel coking operation discharged wastes in the vicinity of Muggah Creek and very high contamination levels have been reported in this area of the harbour. In 1981, Matheson *et al* (1983) reported total PAH concentrations (based on the sum of 12 compounds) of up to 2,800,000 ng/g dry weight in sediments at the mouth of Muggah Creek. The predominant compounds detected in the sediments were phenanthrene, fluoranthene, benzo[a]anthracene and pyrene. Subsequent sampling in 1986 demonstrated that PAH concentrations had declined significantly over the 5 year period. Total PAH concentrations at the mouth of Muggah Creek were 310,000 ng/g, and the predominant compounds detected were fluoranthene, pyrene, benzo[a]pyrene, phenanthrene, benzo[e]pyrene, and benzo[b]fluoranthene. The decline in concentrations between 1981 and 1986 was attributed to the reduction in discharges from the coke plant (Kieley *et al*, 1988).

Steel mills in other areas have also resulted in high levels of PAH contamination in the environment. Simcik *et al* (1996) reported that coke and steel production were the major sources of PAH to Lake Michigan sediments, contributing approximately 600 to 800 mg/m²/yr. Core samples showed that, over the last 70 years, the distribution of PAHs was identical, both vertically within each core, and also between cores taken throughout the lake. This finding implies that the major sources of PAHs to Lake Michigan sediments have not changed significantly since the beginning of the century. In Hamilton Harbour, Ontario a total PAH concentration of 1,470,000 ng/g was detected in sediments from the vicinity of two steel mills. Individual PAHs such as pyrene, fluoranthene and benzo[a]pyrene were present at high concentrations (280,000, 189,000, and 69,200 ng/g, respectively).

Aluminum smelters can also be major sources of PAHs to the environment (Bjorseth *et al*, 1979; Naes *et al*, 1994; Simpson *et al*, 1995; Ayres, 1995). Total PAH concentrations in the hundreds of thousands of ng/g dry weight have been detected in sediments near aluminum smelters in Norway. The compounds present in the highest concentrations were fluoranthene, chrysene/triphenylene, benzofluoranthenes, benzopyrenes, and benzo[g,h,i]perylene (Naes and Oug, 1997; Naes *et al*, 1994). Similar findings were reported for sediments from the Saguenay Fjord in Quebec which received discharges from an aluminum smelter (Smith and Levy, 1990). PAH concentrations in sediments from this area increased markedly in the 1940s following a major expansion of the smelter and the implementation of a new process called the 'Soderberg' process. Martel *et al* (1987) reported that concentrations of several thousands of $\mu g/g$ were present in the sediments from this area. Smith and Levy (1990) concluded that, until 1964, atmospheric deposition was the principal source of PAHs to the environment. After that time, discharges of scrubber effluents directly to water became the major PAH source until 1976, when discharges released to water were reduced and atmospheric deposition, once again, became the major input.

Similarly, the distribution of PAHs in surficial sediments in Kitimat Arm, on the northern coast of British Columbia, demonstrated that the nearby Alcan aluminum smelter was the major source of PAHs to this area. According to Simpson et al (1998), major sources to Kitimat Arm were atmospheric particulate emissions, aqueous effluent releases, and spills of raw materials such as coke briquettes and pencil pitch. Very high PAH concentrations were detected in sediments collected near the smelter in the 1980's, but concentrations decreased rapidly with increasing distance from the smelter (Cretney et al, 1983; Goyette and Wagenaar, 1995; Simpson, 1997). Cretney et al (1983) reported that the sediments from Kitimat Arm contained an overall mean concentration of 140 ng/g dry weight with a maximum concentration of 9,300 ng/g. PAH concentrations in age-dated cores indicated a major input of PAHs to sediments in the mid-20th century following a period of at least 150 years of constant but low PAH deposition (Cretney et al, 1983). PAH concentrations of up to 257,700 ng/g were detected in the Alcan Yacht Basin in 1989 (Goyette and Wagenaar, 1995). Chapman et al (1995) reported that the PAH concentration in some sediment samples collected in the vicinity of the aluminum smelter approached 1% and the concentrations varied over a 1000-fold range. However, they noted that PAH concentrations in surface sediments had decreased as a result of decreased PAH releases from the smelter. Paine et al (1996) reported that PAH concentrations in sediments from many sites in Kitimat Arm have decreased since the 1980's, however, PAH concentrations in sediments within one kilometer of the smelter remain high (typically <150 mg/kg with a maximum of 10,000,000 ng/g total PAH). Simpson (1997) reported that sediment obtained from an effluent lagoon at the Alcan smelter contained a total PAH concentration of over 10,000,000 ng/g dry weight. Sediment samples collected throughout the fjord contained PAH concentrations ranging from 1,000 to 528,000 ng/g dry weight, with concentrations exceeding 2,000 ng/g at 16 of the 25 sites sampled. The highest concentrations were found in sediments collected in close proximity to the smelter. Simpson (1997) reported that the PAH composition was characteristic of a combustion source. The 4-and 5-ring compounds were present at higher concentrations than were the 2- and 3- ring compounds and unsubstituted PAH compounds were more abundant than their alkylated homologues. Simpson et al (1998) reported that a sediment core from Kitimat Arm showed no compound-specific weathering or biotransformation with sediment depth. The authors suggested that this may indicate that PAHs emitted from smelters have limited chemical and biological availability.

Analysis of sediment core samples from Puget Sound indicates that PAHs had not been significantly degraded or produced in the sediments over at least the last 100 years represented by the cores. Many of the cores contain maximum PAH concentrations in the 1945 to 1960 horizons. Data from Strait of Georgia sediment cores shows similar distributions of PAH but lower concentrations (Macdonald and Crecelius, 1994).

Examination of sediment core samples from several areas throughout the world revealed a similar decline in PAH inputs in recent decades (Simcik et al, 1996; Hites et al, 1980; Gschwend and Hites, 1981; Prahl and Carpenter, 1979; Bates et al, 1984; Hursthouse et al, 1994; Heit et al, 1988; Barrick and Prahl, 1987; Grimmer and Bohnke, 1975; Catallo et al, 1995). This has led to suggestions that the change in fuel sources for residential heating from coal to natural gas may be responsible for the downward trend. Heit et al (1988) reported that in sediment cores from Cayuga Lake in New York State, PAH deposition around 1850 was at least an order of magnitude less than that in the period of maximum deposition (1940 to 1955). However, significantly lower inputs have occurred from the late 1960's to the present. Since coal fired power plants did not begin operation in this area until 1955, the authors concluded that this could not be the predominant historical source of PAH to sediments in this area. In fact, the decline in coal combustion at electrical utilities in New York State occurred at least 10 years after the PAH decline observed in sediment cores. The authors concluded that their observations supported the theory that the decline was attributable to the replacement of coal with petroleum and natural gas as the primary residential heating fuels. Dasch (1982) reported that the inefficiency of coal combustion during residential burning resulted in the release of much higher levels of PAHs than commercial coal burning, wood burning or automotive exhaust. Based on their observations on historical PAH deposition in sediments, Heit et al (1988) also suggested that PAH contributions from modern and efficient power plants utilizing either coal, petroleum or natural gas, were minor in comparison to past contributions from coal combustion for residential heating.

Elevated PAH concentrations have been found in areas which are not highly industrialized or urbanized. The Penobscot Bay region of the Gulf of Maine is relatively undeveloped, however, total PAH concentrations of up to 8,800 ng/g were detected in the sediments from this area. The authors suggested that the major source was atmospherically transported particulate combustion products which enter the bay through freshwater runoff (Johnson *et al*, 1985).

It can be difficult to determine the source of PAHs in the aquatic environment. Methods employed for distinguishing between likely sources of PAHs in environmental samples are based on the recognition of patterns in the PAH composition which are characteristic of certain sources (Lipiatou and Saliot, 1991). Steinhauer and Boehm (1992) summarized information on sources of various PAH compounds in the environment as follows:

i de la

Naphthalenes - includes the 2-ring parent compound and the alkyl-substituted homologues. These compounds are rarely found in clean sediments and

	the presence of naphthalene compounds is indicative of unweathered or fresh petroleum (crude oil).
Phenanthrenes -	includes the 3-ring parent compound and the alkyl-substituted homologues. These compounds can originate from petroleum, combustion and diagenetic sources, but the presence of more highly alkylated compounds indicates a petroleum source.
Dibenzothiophenes -	includes the 3-ring sulfur heterocyclic parent compound and the alkyl-substituted homologues. These compounds are present in many crude oils.
4-,5-ring PAHs -	The sum of the 4- and 5- ring compounds includes the high molecular weight compounds formed by combustion of fossil fuels and wood.
Σ PAHs -	A comparison of the sum of the 4- and 5- ring compounds and the Σ PAHs (2- to 5-ring compounds) can provide information regarding the relative contributions of petrogenic and pyrogenic sources.
Phenanthrene/ dibenzothiophenes -	The presence of dibenzothiophenes (D) indicates a petroleum source. In oiled sediments the D value approaches the phenanthrene (P) value and the ratio P/D gets closer to 1. In unoiled sediments D is not present at high concentrations and this ratio can range from 10 to 100 or more.
Naphthalene/ Phenanthrene -	Phenanthrene may originate from petrogenic, pyrogenic or diagenetic sources, however, the presence of naphthalene indicates a fresh petroleum source. In sediments with crude oil contamination the N/P ratio would be much greater than 1 but decreases to less than or near 1 in unoiled sediments.
Perylene-	This compound is present in sediments from diagenetic sources (Heit et al, 1988; Wakeham et al, 1980; Aizenshtat, 1973).
Fossil fuel pollution index (FFPI) -	This ratio was described by Boehm & Farrington (1984) to approximate fossil fuel derived PAHs relative to total PAHs. Pyrogenic or combustion-derived PAHs are rich in 3- to 5- ring compounds, while uncombusted fossil fuels are rich in 2- and 3- ring compounds (also dibenzothiophene and its alkyl homologues). The FFPI ranges between 100 for fossil fuels and 0 for combustion PAHs.

In addition, the presence of alkyl derivatives of PAHs at higher concentrations than the parent compounds indicates a petroleum source as these compounds are found at high proportions in petroleum products (Yunker *et al*, 1996; Platt and Mackie, 1981; Pereira *et al*, 1996).

37

Researchers have utilized PAH patterns in sediments to determine predominant PAH sources in many aquatic systems.

Fluoranthene, which is often associated with a combustion source, was the predominant PAH in sediment cores collected from Cayuga Lake in New York State. This finding, combined with the low presence of alkylated compounds, led authors to conclude that combustion was the main source of PAH to Cayuga Lake (Heit et al, 1988; Laflamme and Hites, 1978). Similarly, O'Malley et al (1996) estimated that 50 to 80% of the PAH input to St. John's Harbour sediments is of combustion origin. The most likely source was thought to be vehicular emissions carried into the harbour via surface runoff. The remaining 20 to 50% of the total PAH input to the harbour was attributed to petroleum sources, possibly dominated by crankcase oil. The authors concluded that the dominance of three, four and five ring parental PAH compounds together with the presence of alkylated PAHs was evidence of both combustion and petroleum sources. In addition, the presence of retene and perylene suggested a lesser diagenetic source. Diagenesis has been cited as the source of some PAHs including perylene and retene (methyl-1 isopropyl-7 phenanthrene). Retene is commonly found in resins in conifers in temperate climates and can be used as a molecular marker for combustion of conifer vegetation. The main sources of these compounds are forest fires and forest soils (Lipiatou and Saliot, 1991; Ramdahl, 1983).

Hites *et al* (1978) reported that the PAH pattern observed in sediment samples collected in Massachusetts Bay also indicated a predominant combustion source, even in Boston Harbour. Although sediments from nearby Gulf of Maine and from the deep ocean areas off the continental shelf contained much lower levels of PAH compounds, the PAH patterns in sediments from these locations were also indicative of a combustion source. Shiaris and Jambard-Sweet (1986) suggested that urban runoff was a major source of PAHs to Boston Harbour.

In the highly industrialized seaport of Hampton Roads, Virginia (Elizabeth River), different sources appear to predominate in different areas of the port. In the area of maximum sediment toxicity, the lower molecular weight PAH compounds (two and three ring) were predominant. The source of the PAHs to this area was thought to be petroleum related, originating from shipbuilding and repair operations in addition to shipping and anchorage activities. In the vicinity of three creosote plants, the predominant PAHs were similar to those found in other creosote contaminated areas (phenanthrene, anthracene, pyrene, fluoranthene, benzo[b]fluoranthene, and benzoanthracene). In another region of the port, the two and three ring compounds virtually disappeared from the sediments and the higher molecular weight compounds predominated. Benzo[a]pyrene and benzo[b]fluoranthene were present at the highest concentrations followed by chrysene, pyrene, fluoranthene, and benzo[a]anthracene. This pattern indicates a high-temperature combustion source and likely sources were nearby power plants and highway runoff (Alden and Butt, 1987).

In sediments collected in the Brisbane River estuary in Australia, fluoranthene, pyrene, benzo[a]pyrene, chrysene, benzo[k]fluoranthene, benzo[e]pyrene, and benzo[a]anthracene were present at higher levels than their alkyl derivatives, indicating a

38

linit

ii:Hilli:

this s

∎ø:

predominantly pyrolytic source. However, the presence of naphthalene and the phenanthrene/ anthracene series indicated a petroleum source as well. The authors also reported that the phenanthrene/anthracene ratio indicated that urban runoff was an important source of PAHs to this area (Kayal and Connell, 1989b).

Studies in the Lauritzen Canal area of San Francisco Bay have shown that this area is highly contaminated with PAHs and the oil storage tanks located in this area are thought to be a probable source. A maximum total PAH concentration of 30,000 ng/g was detected in this area (Pereira *et al*, 1996) compared to a mean concentration of 2,400 ng/g total PAHs in San Francisco Bay sediments (Long *et al*, 1988). The authors concluded that the predominance of the four ring compounds, such as fluoranthene, pyrene, benz[a]anthracene, and chrysene, suggested a highly weathered petroleum source. The presence of alkylated homologs of chrysene at higher concentrations than the parent compound was also indicative of a petrogenic source. It was suggested that the loading of furnace coke into ships may be the source of the elevated concentrations of anthracene compounds (benz[a]anthracene, anthracene, and 2-methylanthracene) detected in the sediments (Pereira *et al*, 1996; Boehm *et al*, 1991).

Yunker *et al* (1996) reported that the MacKenzie River input of natural PAHs and petroleum dominates anthropogenic sources into the Beaufort Sea. PAH levels in sediments from the Beaufort Sea were relatively high and consistent at all stations. This finding, combined with the fact that the alkyl forms were present at higher concentrations than were the parent compounds, led the authors to suggest a strong petrogenic source. In contrast, although PAH concentrations in the Barents Sea were much lower than in the Beaufort, it was concluded that anthropogenic contributions were greater to the Barents Sea and alkyl compounds were present at lower concentrations than their parent compounds (Yunker *et al*, 1996; Steinhauer and Boehm, 1992). Sediment sampling at a research station in the Antarctic detected PAH compounds with phenanthrene, fluoranthene and chrysene being the predominant compounds (Cripps, 1992).

PAH pattern characterizations can be useful in distinguishing between combustion versus petroleum related sources, however, more specific identification of various combustion sources is much more difficult due to the overlap in signature sources and the degradation of PAHs in the environment. Recently, however, Yunker *et al* (1996) has reported that the use of principal components analysis (PCA) can improve this capability.

2.3.1.2 Aquatic Biota

2.3.1.2.1 Aquatic Invertebrates

PAH compounds have been detected in a variety of different tissues of invertebrate species. PAH parent compounds and metabolites are found mainly in the hepatopancreas of crustaceans, however, lower levels are detected in other tissues. PAHs tend to accumulate in the digestive glands of mussels and the pyloric caecum of starfish (Lemaire *et al*, 1993; Uthe and Musial, 1986; Moore *et al*, 1984; Michel *et al*, 1993; Den Besten *et al*, 1993; Sanborn and Malins, 1980; Williams *et al*, 1985; Uthe *et al*, 1984). Mix *et al* (1982) reported that benzo[a]pyrene is stored mainly in the somatic tissues of mussels rather than the gonad, even during spawning season. Benzo[a]pyrene in the gonad accounted for a minor portion of the whole body concentrations and did not measurably affect seasonal variation in whole body benzo[a]pyrene.

PAH concentrations in aquatic invertebrates are highest in industrialized areas. Mix and Schaffer (1983b) reported that the average total PAH concentration in mussels collected from industrialized regions in Oregon in 1979/80 was 986.2 ng/g (wet weight) compared to an average of 273 ng/g in mussels from more remote sites. The more water soluble lower molecular weight compounds were present at concentrations of 1 to 2 orders of magnitude greater than were the higher molecular weight compounds. These authors also reported that PAH concentrations were highest in marine clams from industrialized areas (551.1 ng/g) and lowest in clams from remote areas (76.3 ng/g) (Mix and Schaffer, 1983a).

Especially high PAH concentrations have been detected in marine organisms collected from harbours in the vicinity of creosote treated structures such as wharves and pilings. Eaton and Zitko (1978) reported that PAH levels in shellfish were generally higher close to creosoted structures and decreased with increasing distance from wharves and bridges. Dunn and Young (1976) reported that mussels, collected from mainland and island stations at least 1 km from piers and wharves in the Southern California Bight, contained benzolalpyrene concentrations at or near the limits of detection (0.1 ng/g wet weight). Mussels collected from creosoted pilings contained higher PAH concentrations (up to 8.2 ng/g) than did mussels collected near large harbours and marinas (up to 2.3 ng/g). Dunn and Stich (1976) reported that PAH concentrations in mussels collected from creosoted structures in Vancouver Harbour contained 215 ng/g wet weight, while mussels taken from nearby rocks ranged from 54 to 172 ng/g. The average PAH concentration in mussels from outer Vancouver Harbour was approximately 2 ng/g. Mussels collected from the outer harbour stations in the Spanish Banks area ranged from less than 2 to more than 8 ng/g, while mussels collected from False Creek ranged from less than 10 to more than 30 ng/g wet weight (Dunn and Stich (1976). Mussels from Sydney Harbour in Nova Scotia contained up to 4200 ng/g total PAH (O'Neill and Kieley, 1992).

Some samples of mussels collected in Lake George, New York contained detectable concentrations of PAHs: phenanthrene (1 to <60 ng/g dry weight), fluoranthene (<1 to 370 ng/g), pyrene (1 to 450 ng/g), 1-methylpyrene (<1 to 90 ng/g), perylene (<10 to 300 ng/g), and dibenzothiophene (<1 to 4 ng/g). Benz[a]anthracene, benzo[a]pyrene, and dibenzacridine were not found in any samples (Heit *et al*, 1980).

Mussels from the Finnish Archipelago Sea contained several PAH compounds including naphthalene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]pyrene and compounds of the benz[a]anthracene/chrysene/triphenylene group. Naphthalene, phenanthrene and pyrene were detected in most samples while benzo[a]pyrene was detected only in two samples which had been influenced by an oil spill. Concentrations of individual PAH compounds ranged from <0.5 to 109 ng/g wet weight (Raino *et al*, 1986). Much higher levels were detected in mussels collected near a ferro alloy smelter in Norway (2,785 ng/g wet weight) (Grimmer and Bohnke, 1975). The dominant PAH compound detected in these mussels was benzo[a]fluoranthene. Mussels collected near an Oslo sewage treatment plant also contained elevated PAH concentrations ranging from 534 to 1,060 ng/g wet weight (Kveseth *et al*, 1982).

In the San Francisco Bay estuary, total PAH concentrations in Asian clams (496 to 1,002 ng/g dry weight) were higher than the concentrations in bed sediments (15 to 675 ng/g) but similar to those in suspended sediments (498 to 1,059 ng/g) (Pereira *et al*, 1992). In contrast, Smith *et al* (1984) reported that PAH concentrations in clams from the uncontaminated Great Barrier Reef in Australia were close to the detection limit at most sites (0.01 to 0.07 ng/g wet weight). Clams from two sites exposed to frequent boating activity contained detectable PAH concentrations (1 to 5 ng/g) (Smith *et al*, 1984). Sediment and oyster samples collected from islands on the Rowley Shelf off Western Australia between 1986 and 1988 contained PAH concentrations of <5 ng/g dry weight and 10 to 150 ng/g wet weight, respectively. Possible sources of contamination to this area included fishing boats, commercial shipping and work boats (Pendoley, 1992).

A seasonal variation in PAH concentrations was observed in both mussels and clams from the Oregon coast, with the lowest concentrations occurring in autumn and winter and the highest concentrations occurring in spring and summer (Mix and Schaffer, 1983a and 1983b). Seasonal variations have also been observed in oysters from other areas. Marcus and Stokes (1985) also reported that elevated PAH concentrations occurred in oysters collected in the vicinity of marinas. However, these authors noted that the highest levels occurred in the cooler months, at a time when lipids and glycogen reserves were accumulating in the oysters in preparation for spawning.

Elevated PAH concentrations are often detected in the hepatopancreas of crabs collected in the vicinity of PAH sources, but concentrations in muscle tissue of crabs are usually much lower. PAHs were identified in the muscle and hepatopancreas of two crab species collected from nearshore and offshore in Newfoundland, with the highest concentrations occurring in the hepatopancreas. Phenanthrene was the predominant compound detected in both species (120 to 560 ng/g dry weight in the hepatopancreas; 40 to 55 ng/g in the muscle). Alkylated phenanthrenes, benzo[a]anthracene and chrysene were also detected in the hepatopancreas. The lower molecular weight compounds, fluoranthene and pyrene, were not detected despite the fact that these compounds were present in the sediments (Hellou et al, 1994). In comparison, blue crabs from the Elizabeth River in Virginia (Mothershead et al, 1991) contained 2,600 to 24,000 ng/g (dry weight) of total PAH in the hepatopancreas and 300 to 4,100 ng/g in the muscle. Newly molted blue crab from the Elizabeth River had higher PAH concentrations than did intermolt crab (Mothershead and Hale, 1992). Winger et al (1990) reported that whole body concentrations in crab from the lower Savannah River, Georgia and South Carolina ranged from below detection to 50 ng/g (wet weight). Kayal and Connell (1989a) reported that the soft tissues of crabs from the

42

Brisbane Estuary in Australia contained 55.5 to 123.1 ng/g of total PAH (mean of 93.1 ng/g wet weight). They concluded that, unlike fish, tissue lipid content was not the primary factor in determining PAH concentrations in crab.

Uthe and Musial (1988) concluded that lobsters can accumulate high concentrations of PAHs because they have a limited capacity to metabolize these compounds. In Sydney Harbour, Nova Scotia the presence of total PAH concentrations ranging from 23 to 1,000 ng/g (wet weight) resulted in a closure for lobster fishing in this area (Sirota *et al*, 1983). Lobsters collected in Nova Scotia, from an area contaminated with creosote, contained 750 to 22,500 ng/g in the hepatopancreas and 25 to 2,500 ng/g in the tail muscle (wet weight) (Uthe and Musial, 1986). The hepatopancreas of lobster collected near a coal coking plant in Sydney harbour in Nova Scotia contained an estimated 80 PAH compounds and halogenated aromatic compounds (HACs), most of them alkylated. Some of the compounds were suspected carcinogens including benzo[c]phenanthrene, 7-methylbenz[a]anthracene, 5-methylchrysene, benzo[a]fluoranthene, benzo[b]chrysene, and dibenzanthracenes. The benzoquinolines were also present at high levels. Alkylated phenanthrenes and alkylated fluorenes, which are suspected mutagens, were also present at significant levels (King *et al*, 1993).

Dunn and Fee (1979) reported on PAH carcinogens in commercial seafood from 15 countries. PAHs were detected in most shellfish species sampled, however, samples of fish did not contain detectable concentrations. Concentrations were less than 10 ng/g wet weight in most shellfish samples, but higher levels (up to 36 ng/g) were occasionally detected. Crab and shrimp muscle samples contained little or no benzo[a]pyrene (ND to 0.5 ng/g), however, concentrations in the tail muscle of commercial lobsters were variable (0.8 to 7.9 ng/g). Freshly caught lobsters contained less than 1 ng/g benzo[a]pyrene. Lobsters which had been kept alive for three months in a commercial tidal pond made of creosoted timber, were also examined. These lobsters contained elevated concentrations of a number of carcinogenic or tumour-promoting PAHs including benzo[a]pyrene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, dibenz[a,h]anthracene and indeno[1,2,3-c,d]pyrene. Benzo[a]pyrene concentrations of up to 2,300 ng/g in hepatopancreas and 281 ng/g in edible tail meat were reported.

2.3.1.2.2 Fish

PAH concentrations are usually low in fish tissues, compared to levels detected in bivalves from the same area, due to their ability to rapidly metabolize these compounds (Amodio-Cocchieri *et al*, 1993; Amodio-Cocchieri *et al*, 1990). For this reason, the determination of PAH concentrations in fish tissues is not considered to be an accurate reflection of PAH exposure.

Benzo[a]pyrene and phenanthrene concentrations in bullheads from the highly contaminated Black and Buffalo Rivers in the United States, were 1 and 26 ng/g, respectively. These levels are between 100 and 1000 times lower than the concentrations of these

ti an

26

hite

compounds in the sediments collected from these rivers (MacCubbin et al, 1988). PAH concentrations were usually less than the detection limit (<15 to <45 ng/g dry weight) in the liver and muscle tissue of English sole collected from both urban and non-urban regions within Puget Sound in Washington State. PAHs (primarily benzothiophene, dibenzothiophene, pyrene and chrysene) were detected in a limited number of English sole and rock sole livers. In contaminated areas of Puget Sound, PAH compounds were detected in the muscle of some fish but these compounds were normally the low molecular weight non-carcinogenic compounds (naphthalene; 1-, 2-methylnaphthalene; acenaphthene; 2,6-dimethylnaphthalene). Eagle Harbour is highly contaminated with creosote and English sole collected from this area contained detectable concentrations of PAH compounds in the liver tissue. LMW compounds (primarily naphthalene compounds) were present at higher concentrations (7 to 103 ng/g wet weight) than were the HMW compounds (38 to 39 ng/g). The HMW compounds detected included fluorene, phenanthrene, fluoranthene, perylene and benzo[e]pyrene. Benz[a]pyrene was not detected in any samples (Malins et al, 1980; Malins et al, 1984; Malins et al, 1985; Malins et al, 1988; Varanasi and Stein, 1991; Varanasi et al, 1987;). Muscle tissue of several recreational sport fish species collected from Puget Sound contained total PAH concentrations ranging from less than 1 to 32 ng/g wet weight (as measured by HPLC) (Landolt et al, 1985).

Raino *et al* (1986) reported that fish from the Finnish Archipelago Sea contained only a few of the 14 PAH compounds analyzed for. Fluoranthene and pyrene were detected in only one third of the herring samples. Low levels (<0.5 to 27 ng/g wet weight) of fluoranthene, pyrene, phenanthrene, chrysene and compounds of the benzo[a]anthracene/chrysene/triphenylene group were detected in the muscle tissue of some fish. Benzo[a]pyrene was not detected. In addition to the compounds detected in muscle tissue, naphthalene was detected in the liver and gallbladder of some fish. Elevated total PAH concentrations were detected in the liver (118 to 445 ng/g) and gallbladder (237 to 313 ng/g) of pike, perch and burbot from the Finnish Archipelago Sea. Phenanthrene and fluoranthene were especially elevated in these organs.

PAH concentrations detected in organs such as the liver and the gall bladder are normally much higher than in the edible tissue. Fish accumulate PAH compounds primarily in the gallbladder and the liver with lower concentrations occurring in the gonads, viscera, brain and muscle (Spacie *et al*, 1983; Balk *et al*, 1984). PAHs have also been detected in fish eggs (Hall and Oris, 1991; Kuhnhold and Busch, 1978).

In highly industrialized regions, elevated PAH concentrations have been detected in the edible tissues of some fish species. Humason and Gadbois (1982) detected total PAH concentrations of 62 to 536 ng/g wet weight in the edible portions of winter flounder, windowpane and red hake from the New York Bight area of New Jersey. Phenanthrene was detected at the highest concentrations (50 to 200 ng/g range). Benzo[a]pyrene was present at concentrations ranging from 2 to 22 ng/g. Several other carcinogenic compounds were detected at lower concentrations including benzo[b]fluoranthene, benzo[a]anthracene, and chrysene.

The muscle tissue of fish collected from the Gulf of Naples contained total PAH concentrations of 94 to 1,930 ng/g wet weight, with anchovy, bogue and common sole containing the highest concentrations. The distribution of PAHs and the relative concentrations were variable in fish. A wide variety of both LMW and HMW compounds were detected and the predominant compounds were benzo[a]anthracene and benzofluoranthenes. Benzo[a]pyrene was detected in 11 of the 14 fish species tested with concentrations ranging from 3 to 44 ng/g wet weight. Sediments from this region contained primarily fluoranthene, chrysene, benzo[a]anthracene and phenanthrene (Amodio-Cocchieri *et al*, 1990). Total PAH concentrations in fish from the Ionian Sea in Italy ranged from 22 to 580 ng/g. Phenanthrene and anthracene were the compounds detected most frequently, however, the concentrations of these compounds were low (13 to 17 ng/g). Benzo[a]pyrene was present in 16% of the samples tested with concentrations ranging from 5 to 79 ng/g (average of 17 ng/g) (Amodio-Cocchieri *et al*, 1990).

Whole body PAH concentrations in various fish species collected from the Savannah River in the southern United States ranged from less than the detection limit to 150 ng/g wet weight. Phenanthrene was present in the highest concentrations (up to 70 ng/g) (Winger *et al*, 1990).

Kayal and Connell (1989a) reported that mean total PAH concentrations in the muscle tissue of bony bream, blue catfish and sea mullett from the Brisbane River Estuary in Australia were 118.3, 94, and 137.3 ng/g wet weight, respectively. Lower molecular weight compounds appeared to be preferentially accumulated compared to the higher molecular weight compounds. The authors concluded that the tissue lipid content was the primary factor in determining PAH concentrations in fish species. Trophic level, size and age of the fish were not considered to be important factors. Other researchers reported that lipid content is an important factor in determining PAH uptake in fish. Black *et al* (1980) suggested that the higher lipid content in brown trout (2.11 % lipid) accounted for the higher PAH content in this species compared to bottom-feeding white suckers (0.18% lipid) from the same river. Akpan *et al* (1994) also reported that there was a positive correlation between the concentrations of carcinogenic compounds in fish and the lipid content in the tissues.

Dittie

ti de

طرق

¥ i

Hellou and Warren (1997) reported that flatfish (American plaice and yellowtail flounder) collected from the Northwest Atlantic contained a broader range of PACs (parental and alkylated PAHs and sulphur heterocycles) in the liver than in the gonad or the muscle tissue. Ratios of parental to alkylated compounds varied with the species, tissue, sampling location and season. The level of alkylated compounds in the liver showed a greater correlation with lipid content than did the parent compounds. Naphthalene was the predominant compound in all samples.

The authors also noted that smaller American plaice contained higher concentrations of PAHs in the muscle tissue than did the larger individuals, indicating that differences may exist between the uptake, elimination and/or metabolism rates between younger and mature fish (Hellou and Warren, 1997). Stronkhorst (1992) reported on trends of various chemical contaminants in flounder from two Dutch estuaries. No linear trend was detected for PAH concentrations in either estuary, however, it was observed that PAH concentrations in the liver of flounders decreased with increasing size of fish.

2.3.2 Concentrations in the British Columbia Environment

Data on PAH concentrations in the British Columbia environment, obtained from Environment Canada sampling programs conducted by Garrett and Shrimpton between 1984 and 1992, are presented in Appendix 5. Associated quality control information is presented in Appendix 4. Sampling station coordinates are listed in Appendix 2 and site maps are located at the end of this report (pages 243 to 258). Sample characteristics information for sediments (particle size, SFR, SVR) and biota (size, sex, number of individuals, moisture content, lipid content) is located in Appendix 3. Sampling and analytical methodologies are summarized in Appendix 1.

2.3.2.1 Surface Waters and Sediments

Environment Canada surveys did not measure PAH concentrations in surface waters of British Columbia, and information available from other sources is very limited. According to the 1996 Fraser River Estuary Environmental Quality Report, water samples collected in six sloughs in the Fraser River in 1993/94 contained detectable concentrations of PAHs. The most commonly detected low molecular weight (LMW) compounds were naphthalene and phenanthrene, and the most commonly detected high molecular weight (HMW) compounds were pyrene and benzo[a]anthracene. The highest concentrations of total PAHs were detected in Gundersen Slough (average of 900 ng/L; range of 300 to 1,600 ng/L). Water samples from the other five sloughs contained from 300 to 700 ng/L total PAHs. The higher PAH concentrations in Gundersen Slough were attributed to inputs from surface runoff and leaching from creosote pilings (FREMP, 1996).

Environment Canada surveys conducted in the late 1980's and early 1990's revealed high PAH concentrations in sediments from False Creek and from Vancouver, Victoria, and Esquimalt harbours. Elevated PAH concentrations were also detected in the vicinity of some wood preservation facilities on the Fraser River. Data presented in Appendix 5.1 on a dry weight basis where obtained from surveys conducted by Garrett and Shrimpton. All sediment data are presented on a dry weight basis. Additional information on PAH concentrations in Vancouver Harbour is presented in other Environment Canada reports (Goyette and Boyd, 1989; Goyette, 1991; Goyette, 1994; Boyd and Goyette, 1993).

Environment Canada sampling in 1990 detected elevated PAH levels in sediments collected off wood preservation facilities on the lower Fraser River (Map 3) (Garrett and Shrimpton, 1992). Total PAH concentrations (5,679 to 19,834 ng/g) were particularly high in the vicinity of the old Kopper's International site in Burnaby, which used creosote from the 1930's until the plant closed in 1981. Total PAH concentrations of 861 to 3,175 ng/g were detected in the vicinity of Domtar Wood Preservers in New Westminster, which has used creosote from the 1930's up to the present, and also at the Domtar/Liverpool facility (7 to 406 ng/g). Creosote was not used at the Domtar/Liverpool location but was stored in large tanks and transferred from ships and barges to rail cars. This facility was decommissioned in the early 1980's. PAHs were also detected in sediments at Princeton Wood Preservers in Surrey (111 to 407 ng/g) and B.C. Cleanwood Preservers in Surrey (79 to 3,643 ng/g), however, creosote has not been used at these sites. B.C. Cleanwood Preservers is located on Gundersen Slough, where elevated PAH concentrations have also been detected in surface water samples (FREMP, 1996). Gundersen Slough is a backwater area in the Main Arm of the Fraser River near Annacis Island. The accumulation of elevated concentrations in sloughs was expected as the flushing in these areas is lower than in the open areas of river. The PAH concentrations near Princeton Wood Preservers were not elevated in comparison to concentrations detected in many other areas of the Fraser River.

Swain and Walton (1993) measured PAH concentrations in sediments from several areas of the Fraser River in 1992. North Arm sites included Scott Paper (52 to 118 ng/g), Domtar Paperboard (737 to 869 ng/g), Eburne Slough (449 to 1,384 ng/g), McDonald Beach Boat Launch (569 ng/g), Celtic Boat Yard (568 to 750 ng/g), a blind channel on the south side (located about three kilometres downstream from New Westminster) (198 ng/g), and McDonald Slough (1,106 ng/g). Main Arm sites were Annacis Channel (91 to 260 ng/g), Ewen Slough (351 ng/g), Deas Slough (28 to 1,993 ng/g), a backwater area near the B.C. Ferries refit/servicing operation (941 to 1,706 ng/g), and Ladner Slough (158 to 2,833 ng/g). Likely sources in the Deas Slough and Ladner Slough areas included stormwater runoff and the many boats moored at these sites. Main Stem sites included Barnston Island (50 ng/g) and Sapperton Channel (177 ng/g). Middle Arm sediments were collected from a ditch on the South Terminal of the Vancouver Airport (west of Dinsmore Bridge) and from the Fraser River at the point where the ditch discharged. The ditch received drainage from a South Terminal machine shop. PAH concentrations in these sediments were 8,221 ng/g and 885 ng/g, respectively.

Swain and Walton (1993) concluded that, while PAH levels at most sites were low, PAH contamination in the lower end of the North Arm was widespread at concentrations which may be of concern. The higher concentrations detected in this area were attributed to the large volumes of stormwater that discharge to the North Arm. Of particular concern were the elevated concentrations of benzo[g,h,i]perylene, fluoranthene, indeno[1,2,3_xc,d]pyrene, and phenanthrene) at McDonald Slough. Other PAHs present at concentrations which may be of concern at some sites were: fluoranthene, fluorene, and phenanthrene at Eburne Slough; phenanthrene, indeno[1,2,3-c,d]pyrene, and benzo[g,h,i]perylene at Deas Slough; fluoranthene, phenanthrene, and pyrene at B.C. Ferries; and acenaphthene, chrysene, fluoranthene, phenanthrene, and pyrene at Ladner Slough. The authors noted that the time of sampling for PAHs in the river was an important factor as PAH concentrations were lower in sediments collected following freshet in 1989 and 1990.

ikin.

According to the 1996 Fraser River Estuary Environmental Quality Report (FREMP, 1996), PAH compounds such as pyrene, fluoranthene, phenanthrene and benzo[a]anthracene, frequently exceeded Interim Canadian Sediment Quality Guidelines (ISQGs) for the protection of aquatic life. However, concentrations were below the probable effects levels (refer to Section 3; Table 6). The report concluded that existing information was too limited to determine whether PAH concentrations in the Fraser River sediments were increasing or decreasing. Stormwater transport of vehicular PAH emissions was identified as a primary source of PAHs to the estuary (FREMP, 1996).

Kooi (1996) reported that combined sewer overflows discharging to the Fraser River in 1994/95 commonly contained detectable concentrations of several PAH compounds including: benzo[a]pyrene; methyl-, dimethyl- and trimethylnaphthalenes; benzo[b]fluoranthene; fluoranthene; methyl- and dimethylphenanthrene. It was estimated that the annual PAH loading to the Fraser River Basin from urban runoff was 502 kg.

Sekela *et al* (1995) detected PAHs in suspended sediments collected upstream and downstream of six pulp mills in the Fraser Basin. Samples collected in the Fraser River at Shelley, Woodpecker, Marguerite, and Yale between 1992 and 1994 contained PAH concentrations ranging from 75 to 393 ng/g. Suspended sediments collected at McLure and Savona on the Thompson River contained PAH concentrations ranging from 134 to 2,287 ng/g, with the highest concentrations at Savona. Perylene, a natural PAH derived from terrestrial plant sources, was the predominant compound in samples from all sites, with the exception of Savona. On both the Thompson and the Fraser rivers, PAHs were generally found at higher concentrations downstream from pulp and paper mills than at reference sites located upstream of the mills. The authors noted that concentrations were generally higher during winter base flow periods compared to fall low flow periods. Partitioning of PAHs between the sediment and water was highly variable and appeared to be influenced by both sampling time and individual compound solubility.

Limited sampling of sediments from the Fraser River Estuary near the Iona Island sewage treatment plant by Environment Canada in 1985 and 1987 revealed total PAH concentrations of 200 to 700 ng/g (Map 3) (Garrett and Shrimpton, 1992). Harding *et al* (1988) detected concentrations of 166 to 177 ng/g PAH in sediments from the estuary region and less than 100 ng/g in sediments from Roberts Bank and Sturgeon Bank. Fanning *et al* (1989) reported that total PAH concentrations in the estuary region were less than the levels of detection (40 to 120 ng/g). Dunn and Stich (1976) observed higher benzo[a]pyrene concentrations at stations closest to the sewage treatment plant outfall and suggested that the treatment plant was the major source of benzo[a]pyrene to the Fraser River Estuary.

Swain and Walton (1994) reported that PAH concentrations in sediment samples collected from an offshore site in Boundary Bay (in the centre of the Bay near the international border) in 1993 were below the water quality objectives for Burrard Inlet (refer to Section 3; Table 4). The concentrations of some individual PAHs in the inshore (off Crescent Beach) sample slightly exceeded the long-term water quality objectives for Burrard Inlet. In addition, the concentrations of benzo(a)anthracene, fluoranthene, fluorene, and phenanthrene at this site exceeded the Canadian Interim Sediment Quality Guidelines (ISQGs) but were lower than the PEL values (Section 3; Table 6). Historical sources of PAHs to False Creek included fuel combustion and spillage; coal use; and discharges from sawmills, wood preservation operations, shingle mills, and other industrial facilities. The east basin of False Creek was the site of most of the industrial activity, and coal gasification facilities which operated in this area from the late 1800's until the 1950's were a major PAH source. Current sources of PAHs to False Creek include leaching from creosoted pilings, surface runoff and contaminated groundwater, storm sewers, boat traffic, and atmospheric deposition. A study conducted for Environment Canada in 1992 identified several combined sewer overflows (CSOs) discharging into False Creek. CSOs discharging to the south shore of False Creek were located off Terminal Avenue in the east basin, off the Crow Street Yard just east of the Cambie Street Bridge, off Heather Street near the marina east of Monk McQueen's, off Laurel Street (about half way between the Cambie Bridge and Granville Island, and off Hemlock Street near the Granville Street Bridge. The CSO discharges to north shore of False Creek include Jervis Street (into the outer creek area), Granville Street (under the bridge), and Drake Street (west of the Cambie Street Bridge) (Environment Canada, 1992).

High PAH concentrations were detected throughout False Creek (Map 2) in the late 1980's and early 1990's. The highest levels of contamination were observed in the northeast portion and were likely associated with the historic operation of coal gasification plants and other industrial facilities in the east basin. Total PAH concentrations ranging from 26,377 to 49,250 ng/g were detected in this area, compared to levels between 10,000 and 20,000 ng/g in other areas of False Creek. Lower levels were detected in sediments collected from the outer creek area (2,316 to 4,254 ng/g) (Garrett and Shrimpton, 1992). Goyette and Boyd (1989) detected a total PAH concentration of 17,000 ng/g in sediments from the east basin in 1988 and 80,180 ng/g in 1991 (Boyd and Goyette, 1993). According to these authors, GVRD studies detected concentrations ranging from 3,140 to 11,870 ng/g in sediments collected from other areas within False Creek in 1991. Boyd *et al* (1998) reported that sediments collected off Monk McQueen's in False Creek in 1995 contained 16,227 ng/g total PAHs.

1

۱**۲**

1.

1.00

Past and present sources of PAHs to B.C. harbours are numerous and include fuel combustion and spillage, boat and ship traffic, marinas, industrial discharges and waste disposal, surface runoff, leaching from creosoted pilings, storm sewers, and atmospheric deposition.

Sediments collected from marinas in the Coal Harbour area of Vancouver Harbour contained high PAH concentrations (Map 1). Much of the Coal Harbour shoreline is currently undergoing re-development. However, numerous industries were located in this area in the past including shipbuilding and repair facilities, foundries, metal working operations, lumber operations, fuel transfer facilities, and a tank farm. Numerous marinas are currently located along much of the shoreline, especially adjacent to the Bayshore Inn and the Royal Vancouver Yacht Club. Floating fuel stations for boats are also located in Coal Harbour. Concentrations of several thousand ng/g (>5,000 ng/g) were present in sediments at the

48

Bayshore Inn Marina, in 1991, and the Royal Vancouver Yacht Club (RVYC), in 1988 and 1991 (1600 to >9,130 ng/g) (Garrett and Shrimpton, 1992). Goyette and Boyd (1989) also reported 13,300 ng/g PAHs in sediments collected from RVYC marina in 1988, and >30,000 ng/g total PAHs were detected in sediments collected near the Bayshore Marina in 1993 (Fanning *et al*, 1989). Boyd and Goyette (1993) reported total PAH concentrations of 11,780 to 117,380 ng/g in Coal Harbour sediments collected in 1991.

High concentrations of PAHs were present in sediments collected in the vicinity of several shipyards and commercial docks in Vancouver Harbour (Maps 4 to 9). The highest concentrations were detected at shipbuilding and repair facilities; Vancouver Shipyards (up to 85,614 ng/g dry weight), Versatile Pacific (up to 41,321 ng/g), Allied Shipyards (up to 114,880 ng/g), Rivtow (101,375 ng/g), Sterling Shipyard/B.C Marine Shipbuilding (up to 402,530 ng/g), Belaire Shipyards (up to 11,100) and Menchion's Shipyard (28,400 ng/g) (Garrett and Shrimpton, 1992). These concentrations were detected in the 1980's when many of the facilities were still in operation (or shortly after closure). With the exception of Allied Shipyards and Vancouver Shipyards, these shipyards have been closed for a number of years and, in many cases, the sites are being re-developed.

Elevated PAH concentrations were also detected at several commercial docks and loading facilities in Vancouver Harbour including Vancouver Wharves (up to 11,661 ng/g), Neptune Terminals (up to 8,200 ng/g), Seaboard Terminals (up to 13, 390 ng/g), Lynnterm (up to 3,712 ng/g), Vanterm (up to 2,256 ng/g), Centerm (up to 2,112 ng/g), Canada Place (up to 8,607 ng/g), United Grain Growers (5,087 ng/g), and Saskatchewan Wheat Pool (up to 6,068 ng/g) (Garrett and Shrimpton, 1992).

Sediments collected near the old L&K Lumber site contained up to12,240 ng/g of total PAHs (Garrett and Shrimpton, 1992). L&K Lumber operated a lumber operation adjacent to Vancouver Wharves from 1926 until 1984 and used pentachlorophenol for wood preservation. There is no record of creosote use at this facility. High PAH concentrations were also detected in sediments collected at the Rivtow site (up to 101,375 ng/g) located northeast of the old Sterling Shipyards site on the south shore of Vancouver Harbour (Garrett and Shrimpton, 1992).

Goyette and Boyd (1989) also reported concentrations of several thousand ng/g PAHs in sediments collected from Vancouver Harbour in the 1980's. Total PAH concentrations in sediments collected at L&K Lumber, Vancouver Wharves, Sterling Shipyards/B.C. Marine Shipbuilders and off the Clark Drive combined sewer overflow (located between United Grain Growers and Vanterm) ranged from 2,620 to 12,240 ng/g, 1,030 to 7,460 ng/g, 4,870 to 9,530 ng/g and 4,970 to 17,420 ng/g, respectively. High PAH concentrations were also detected in sediments near Menchion's Shipyard (21,200 ng/g).

High PAH concentrations were also detected in sediments collected from Port Moody Arm in the vicinity of the loco petroleum refinery (4,040 to 36,730 ng/g). In January 1991, sediments collected nearshore at the loco refinery at Port Moody were about 22,000 to 24,000 ng/g, however, by September 1991 and 1992 the PAH concentration in sediments at this location had declined to approximately 5,000 ng/g. This decline was attributed to the fact that the process effluent from the refinery, which had been discharged to Port Moody Arm, was re-directed to the Greater Vancouver Regional District sewer system in 1989 (Goyette, 1994).

Boyd and Goyette (1993) reported that total PAH concentrations ranged from 350 ng/g (Indian Arm) to 57,950 ng/g (Vancouver Shipyards) in sediments collected from the Inner Harbour, Central Harbour, Port Moody Arm and Indian Arm regions of Vancouver Harbour in1991. Sediment collected in the vicinity of the old Menchion's Shipyard site in Coal Harbour contained the highest PAH concentration (117,380 ng/g). This level was higher than those reported by Boyd and Goyette (1993) and Garrett and Shrimpton (1992) for this area in the 1980's (21,200 and 28,400 ng/g, respectively). Boyd *et al* (1998) reported that mean total PAH concentrations in sediments collected from 14 stations in Vancouver Harbour in 1995 ranged from 706 ng/g (Indian Arm) to 8,003 ng/g in Port Moody Arm.

In many cases, the PAH contamination in nearshore sediments may not be associated with the current operations at that site. Historical reviews of land use on the shores of Vancouver Harbour indicated a diverse range of industrial activities since the early 1900's. For example, the elevated PAH concentrations detected at the Vancouver Shipyards site may be associated mainly with the historic operation of a wood-preserving plant which utilized creosote at that location between 1926 and 1965. Similarly, multiple potential sources can be present in close proximity. High PAH concentrations have been detected in sediments in the vicinity of Sterling Shipyards and B.C. Marine Shipbuilders. However, the Victoria Drive combined sewer overflow (CSO) discharges to Vancouver Harbour between these two facilities. Sediments collected at the sewer overflow in 1992 contained PAH concentrations of 37,700 ng/g (Goyette and Wagenaar, 1995). A CSO also discharges off Clarke Drive between United Grain Growers and Vanterm. Elevated PAH concentrations have been detected in sediments from the vicinity of both of these facilities. Combined sewer overflows located at these sites and elsewhere in Vancouver likely make significant contributions to PAH concentrations in nearshore areas. A report prepared for Environment Canada in 1992 identified 53 untreated combined sewer overflows (CSOs) discharging to Burrard Inlet (Vancouver Harbour (south shore only), False Creek and English Bay). In addition to Victoria Drive and Clarke Drive CSOs, other sewers which discharged in the vicinity of identified areas of PAH contamination include those located in Coal Harbour off Denman Street (adjacent to the Bayshore Inn), off Burrard Street near Canada Place, and off Heatley Street and Hawks Street near Centennial and Ballantyne Piers, and off Columbia Street near Centerm. CSO discharges entering Vancouver Harbour from the north shore were not identified in this study (Environment Canada, 1992).

Goyette and Wagenaar (1995) detected elevated PAH concentrations in sediments collected at combined sewer overflows in Vancouver Harbour. Sediments collected near the Clark Drive, Victoria Drive, and Denman Street (Coal Harbour) discharges in 1992 contained 10,300, 37,300, and 7,600 ng/g total PAHs, respectively. The bulk of the PAH was associated with the solid phase of the discharge rather than the liquid portion of the effluent. iti in

PAH concentrations exceeding 10,000 ng/g were detected in sediments collected throughout Victoria Harbour in the early 1990's. The highest concentrations (>20,000 to >30,000 ng/g) were detected at the Boatbuilding Facility, the old Smith Cedar Products site, and Rock Bay in the Upper Harbour, and near B.C. Steamships in the Inner Harbour (Maps 10a and b) (Garrett and Shrimpton, 1992).

Very high concentrations of PAHs were also detected in Esquimalt Harbour (Map 11) with the highest concentrations (up to 63,250 ng/g) occurring in sediments collected off the Department of National Defence (DND) facility at Constance Cove. Sediments from all sites in this vicinity contained greater than 10,000 ng/g and several contained between 20,000 and 30,000 ng/g. Sediments collected in the vicinity of DND facilities at Dunn's Nook, on the west shore of Esquimalt Harbour, contained over 10,000 ng/g (Garrett and Shrimpton, 1992). Dunn's Nook is the site of DND's D-jetty and F-jetty (a fuel oil jetty). DND ship repair activities have also been conducted at this location. According to Bright and Reimer (1993), sediments dredged from this area in 1986 were highly contaminated and disposal posed a problem. The sediments were deposited on DND land in Colwood and were later transferred to a secure storage facility in 1992.

Sediments from the Plumper Bay area (north of Constance Cove) contained lower levels of PAH contamination (1,579 to 6,589 ng/g) (Garrett and Shrimpton, 1992). Historical activity in the Plumper Bay area included sawmill operations, oil tanks and wharves. Sediment samples from the relatively undeveloped Upper Harbour area and from Fort Rodd (southwestern shore of the harbour) contained lower levels of PAH contamination (143 ng/g and 313 ng/g, respectively).

Sediment monitoring was also conducted in Esquimalt Harbour by Bright *et al* (1993) in the early 1990's. PAH concentrations were comparable to those detected during Environment Canada surveys, with total PAH concentrations ranging from (380 to 103,000 ng/g). In addition, these authors noted that sediments collected from offshore and center channel stations in the harbour contained lower PAH concentrations than those collected from nearshore areas. However, all sites contained elevated PAH concentrations relative to the reference site at Parry Bay (180 ng/g), which is located approximately 15 km south of Esquimalt Harbour and is relatively free of direct industrial and urban sources of contamination.

Much lower PAH concentrations were detected in sediments from the less urbanized and industrialized Ladysmith Harbour. Concentrations of total PAHs ranged from 44 to 2,083 ng/g (Map 12) (Garrett and Shrimpton, 1992).

PAH concentrations in sediments collected from reference sites (Maps 13 and 14) were very low (0.4 to 83 ng/g dry weight) in comparison to concentrations detected in sediments from urban/industrialized areas.

لونة

PAH concentrations in sediments collected from many nearshore sites in False Creek and Vancouver, Victoria, and Esquimalt harbours in the late 1980's and early 1990's greatly exceeded the Interim Canadian Sediment Quality Guidelines and probable effects levels (PELs) summarized in Section 3; Table 6. In some cases, the concentrations of individual PAH compounds were more than 10 fold higher than their PELs. PEL is defined as the level above which adverse effects are expected to occur frequently. Consequently, PAH concentrations at several locations in these regions were high enough to cause adverse environmental impacts, depending on local environmental conditions. ISQGs alone can not be used to accurately predict adverse effects on aquatic species, however, as many factors affect the bioavailability and toxicity of PAH compounds. Site specific considerations must be taken into consideration.

At some of the sites where high PAH contamination was detected by Environment Canada surveys in the late 1980's and early 1990's, more recent information on PAH levels in sediments is not available and it is not known whether current levels exceed the ISQGs. Attempts to determine changes in sediment PAH concentrations over time can be difficult due to a number of factors. The heterogeneity of the bottom sediments can cause PAH concentrations to vary widely in samples collected within metres of each other. In addition, attempts to obtain samples from the same station can be confounded by boat movement during sampling, changing shorelines as a result of new developments, and the absence of clear fixed markers on shore. Repeat sampling of sites can be especially difficult in harbours as access to sampling stations is often obstructed by the presence of large ships. As a result, variations in the location of sampling stations occurs between surveys. In addition, past dredging activity is an important factor to consider when assessing concentrations of contaminants in sediments over time. A complete dredging history for many sites was not available.

However, at many of the facilities located in Vancouver Harbour, environmental site assessments have been, or are being, conducted as a requirement to obtain approval for site modifications or re-development of the property shoreline. Site assessment reports are reviewed by provincial and federal regulatory agencies to determine whether site remediation is required prior to re-development. È.

Under B.C. Ministry of Environment's Criteria for Managing Contaminated Sediment in British Columbia (refer to Section 3.5), the current remedial objective for sediments is the average effects level (AEL), which is an average of the threshold effects level (TEL) and the probable effects level (PEL). The AEL is approximately equal to the EC_{20} . Sediments which are below the AEL do not require remediation. The PAH criteria used for assessing freshwater and marine/estuarine sediment sites are listed in Tables 11 and 12, respectively. At sites where the concentrations of PAH compounds and/or other contaminants exceed the provincial remedial objectives for contaminated sites, sediments may be removed to meet the AEL objective or sediment toxicity tests may be conducted to ensure that the levels of contamination will not impact aquatic life. Site assessments are complete or in progress for Vancouver Wharves/L&K Lumber, Vancouver Shipyards/Seaspan, Versatile Pacific, B.C. Marine Shipbuilders/Rivtow, Coal Harbour, and parts of False Creek. Remedial action will be taken where considered necessary by regulatory agencies.

Similarly, the Ministry of Transport is currently in the process of conducting environmental baseline studies for contaminated shoreline sites throughout Victoria Harbour and Esquimalt Harbour. Where required, remediation and risk management actions will be undertaken.

The relative proportions of PAH compounds in British Columbia sediments are shown in Appendix 5.1. At virtually all locations sampled during Environment Canada surveys, the higher molecular weight compounds comprised the bulk of the total PAHs detected in sediment samples (greater than 80% at most sites) (Garrett and Shrimpton, 1992). Exceptions were Vancouver Wharves (37% HMW compounds), where high proportions of LMW compounds phenanthrene (25%) and fluorene (20%) were present, and Koppers International, where naphthalene contributed up to 32% of the total PAH concentration. The higher molecular weight compounds, fluoranthene, pyrene, and benzofluoranthenes, were present at the highest concentrations in all areas. Other high molecular weight PAH compounds commonly detected in sediments were chrysene, benzo[a]anthracene, benzo[e]pyrene, benzo[a]pyrene, and indeno[1,2.3-c,d]pyrene. Of the lower molecular weight PAH compounds, phenanthrene made the largest contribution to the total PAH content in sediments (Garrett and Shrimpton, 1992). Similar findings were observed in sediments collected in Vancouver Harbour by Goyette and Boyd (1989) in the 1980's.

Mean percent contributions of individual PAH compounds in sediment samples from coastal areas of B.C. are summarized in Table 1 and Figures 1 and 2. The percent contributions of the various individual PAH compounds were quite consistent throughout all B.C. coastal areas sampled. There was a predominance of the high molecular weight four and five ring compounds combined with a significant contribution from phenanthrene. This indicates a combination of sources including combustion and weathered petroleum. In addition, a limited number of samples collected from Vancouver Harbour in the early 1990's were analyzed for alkylated PAH compounds and were found to contain higher levels of the alkylated forms of naphthalene and phenanthrene/anthracene than the parent compounds. In addition, dibenzothiophenes were also detected (Goyette and Boyd, unpublished). Both of these findings indicate the presence of a petroleum source.

The Fraser River and estuary and Ladysmith Harbour sediment samples contained a higher proportion of naphthalene than did sediment samples from other locations, suggesting a fresh petroleum source at these sites. Similarly, a diagenetic source was suggested by the higher proportion of perylene in the Fraser River and estuary stations than at other sites. The presence of perylene in Fraser River sediments was also reported by Sekela *et al* (1995).

Yunker et al (in preparation) examined surface sediments, suspended particulates, and sediment cores from the Fraser River, Fraser basin lakes and the Strait of Georgia. They reported that the sediments from lakes nearest to large population centres indicated a combustion PAH source, likely atmospheric deposition of fuel-combustion products from Greater Vancouver. Sediments throughout the Fraser River revealed petroleum inputs, with the presence of retene at some sites indicating inputs from pulp mills, logging, road building, or wood combustion. Although an obvious influence of the Fraser River on Strait of Georgia sediments was observed, the PAH concentrations in the surface sediments from the Strait of Georgia were much higher than in the older sediments from the Fraser River system. This suggests contributions from other local sources such as the Point Roberts coal superport, municipal wastewater treatment plants and stormwater runoff. Sediments collected northward in the Strait of Georgia, towards Vancouver Harbour, showed a greater influence of combustion. Vancouver Harbour sediments contained the highest PAH contamination due to the numerous sources, however, PAH concentrations exceeded the provincial or federal sediment quality guidelines in Kamloops Lake, at most sampling sites in the Fraser River estuary and in Vancouver Harbour, and in sediment cores from the Strait of Georgia.

litin n

li e de

 Table 1:
 Mean Percent Contributions of Individual PAH Compounds in Sediments from Coastal British Columbia

Location	Naptha- iene	Acenaph- thylene	Acenaph- thene	Anthra- cene	Phenan- thracene	Fluorene	Fluor- enthene	yrene	chrysene	Benz(a)an- thracene	Benzofiuor- anthenes	Benzo(a)- pyrene	Benzo(ghi)- perytene	Dibenz(ah) anthracene	Indeno(123- cd)pyrene	Benzo(e)- pyrene	Perylene
Fraser Estuary	7.5 (7 - 8)	(0 - 0) 0	(0 - 0) 0	(0 - 0) o	14 (14 - 14)	1 (0 - 2)	11 (10 - 12) 12	(12 - 12)	10 (9 - 10)	7 (8 - 7)	11 (8 - 14)	5 (5 - 5)	3 (0 - 5)	(0 - 0) O	4 (4 - 4)	Q	17 (18 - 17)
Fraser River (off wood preservation facilities)	7.9 (0 - 32)	0 (0 - 2)	3 (1 - 10)	3 (1 - 19)	16 (8 - 26)	5 (D - 10)	19 (11 - 28) 13	(9 - 24)	ê (D - B)	5 (0 - B)	8 (0 - 14)	2 (0 - 7)	2 (0 - 6)	0 (0 - 1)	2 (0 - 6)	3 (0 - 6)	9 (0 - 24)
False Creek	3 (1 - 7)	2 (0 - 3)	1 (0 - 2)	3 (2 - 5)	8 (5 - 15)	2 (1 - 3)	14 (10 - 23) 16	(12 - 20)	9 (5 - 15)	8 (4 - 11)	12 (8 - 14)	8 (5 - 11)	4 (3 - 7)	1 (1 - 2)	5 (3 - 6)	5 (4 - 7)	2 (1 - 3)
Vancouver Harbour (outer)	•	0	80	2	25	50	Ħ	t :	a	2	ŧ	~	чD	WN	N)	Ð	6
Vancouver Harbour (inner)	3 (0 - 10)	0 (0 - 2)	2 (0 - 8)	5 (1 - 13)	11 (6 - 28)	4 (0 - 37)	19 (8 - 43) 17	(0 - 46)	0 (1 - 23)	8 (2 - 18)	12 (0 - 24)	5 (0 - 13)	3 (0 - 8)	1 (0 - 1)	3 (0 - 6)	7 (8 - 70	3 (2 - 3)
Port Moody Arm	5 (3 - 6)	2 (1 - 2)	1 (1 - 1)	3 (3 - 4)	8 (5 - 10)	2 (1 - 2)	11 (7 - 12) 22	(15 - 33)	8 (5 - 8)	3 (3 - 3)	13 (12 - 15)	6 (5 - 7)	5 (4 - 6)	1 (1 - 1)	5 (3 - 8)	7 (6 - 7)	3 (2 - 3)
Coal Harbour	1 (0 - 2)	1 (0 - 1)	1 (0 - 1)	4 (1 - 6)	8 (5 - 12)	1 (1 - 2)	18 (13- 29) 22	(13-46)	8 (1 - 15)	7 (5 - 11)	14 (10 - 21)	6 (1 - 9)	4 (0 - 7)	1 (0 - 2)	4 (0 - 7)	5 (0 - 7)	2 (0 - 2)
Victoria Harbour The Gorge Seikirk Waters	2(1-2) 4(2-7)	1 (0 - 1) 0 (0 - 1)	0 (0 - 0) 3 (1 - 7)	2 (2 - 2) 4 (2 - 9)	5 (5 - 5) 8 (6 - 17)	1 (1 - 1) 4 (1 - 9)	18 (15 - 18) 18 17 (5 - 24) 27	(15 - 16) (12 - 50)	8 (7 - 8) 8 (4 - 7)	7 (6 - 7) 5 (4 - 7)	13 (13 - 13) 9 (7 - 13)	10 (9 - 10) 5 3 - 70	6 (6 - 6) 2 (6 - 6)	1(1-1)	(g - g) g	7 (8 - 7)	2(2-2)
Upper Harbour Inner Harbour Outer Harbour	3 (1 - 6) 3 (1 - 5) 2	1 (0 - 1) 1 (0 - 2)	2 (1 - 4) 1 (1 - 3) 2	4 6 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	11 (5 - 21) 10 (6 - 17) 15	3(1-0) 2(1-4)	17 (13 - 20) 18 16 (11 - 20) 17 17	14-13 12-13 14-14 14-14	8 (5 - 19) 8 (5 - 11) 8	7 (5 - 8) 7 (5 - 8) 6	12 (8 - 26) 12 (7 - 14) 8	7 (8 - 8) 7 (8 - 8)	1 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		999 799 799	- - - - - - - - - - - - - - - - - - -	2(1-2)
Esquimait Harbour Constance Cove Plumper Bay Upper Harbour	1 (1 - 2) 2 (1 - 2) 0	0 (0 - 1) 1 (1 - 1) 0	1 (1 - 2) 1 (1 - 2) 1	4 (2 - 14) 3 (2 - 6) 3	8 (6 - 11) 9 (7 - 11) 12	2(1-2) 2(1-3) 1	15 (9 - 19) 16 19 (16 - 33) 18 (14	(9 - 26) (18 - 18) · 14	9 (7 - 17) 6 (6 - 7) 6	7 (8 - 10) 5 (5 - 8) 8	14 (10 - 18) 10 (6 - 13) 12	8 (7 - 11) 6 (3 - 6) 10	7 (3 - 8) 3 (2 - 5) 5	1 (0 - 1) 1 (0 - 1)	5 (4 - 9) 3 (1 - 5) 5	6 (5 - 7) 4 (2 - 8) 5	2(1-6) 3(3-3) 2
Ladysmith Harbour	8 (5 - 14)	0-0)0	2 (1 - 3)	3 (2 - 4)	16 (13 - 19)	3 (2 - 4)	15 (10 - 18) 12 ((11 - 12)	7 (6 - 8)	ê (5 - 6)	8 (G - 11)	5 (5 - 6)	5 (4 - 8)	t (t - t) t	4 (3 - 5)	\$ (\$ - 6)	3 (2 - 5)

- 99 -

2.3.2.2 Aquatic Biota

2.3.2.2.1 Aquatic Invertebrates

PAH concentrations detected in aquatic invertebrate samples collected during Environment Canada surveys in British Columbia conducted by Garrett and Shrimpton between 1984 and 1992 are presented in Appendix 5.2. The highest PAH concentrations were detected in mussels, with especially high concentrations present in mussels from industrialized urban centres such as Vancouver Harbour (refer to Table 2; Maps 4 to 9). For example, concentrations of between 4,000 and 5,000 ng/g total PAHs (wet weight) were detected in mussels from Vancouver Shipyard and Versatile Pacific Shipyard in the late 1980's (Garrett and Shrimpton, 1992). These levels are comparable to the maximum concentrations (4,200 ng/g) detected in mussels from Sydney Harbour, Nova Scotia (O'Neill and Kieley, 1992).

Location	LMW Compounds	HMW Compounds	Total BAH
	(n	g/g wet weight)	
Vancouver Wharves	168	585	753
L&K Lumber	168	824	992
Vancouver Shipyard	1064	3892	5056
Versatile Pacific	72 - 1505	300 - 3353	372 - 4858
Seaboard Terminals	167 - 189	192 - 1425	982 - 1592
Lynnterm	153	289	442
Allied	118	424	542
B.C. Marine Shipbuilders	56	329	385
Canada Place	91	416	506
Menchion's Shipyard	88	321	347
Bayshore Marina	44 - 70	290 - 317	333 - 387
RVYC Marina	37 - 770	215 - 1954	252 - 2724
False Creek	27 - 68	234 - 305	261 - 373

Table 2:Average PAH Concentrations in Mussels Collected in Vancouver Harbour
(1988 to 1991) (Garrett and Shrimpton, 1992)

Mussels collected from the Versatile Pacific site in 1991 contained much lower PAH concentrations (372 ng/g). It is possible that the lower concentrations detected in 1991 may be, at least in part, due to the fact that the shipyard was no longer operational in 1991. Insufficient data is available to determine whether PAH concentrations in mussels have

22

declined in recent years, however, mussels from all Vancouver Harbour sites sampled in 1991 contained elevated PAH concentrations (several hundred ng/g of total PAH compounds) (Garrett and Shrimpton, 1992).

High PAH concentrations were also detected in mussels collected from the Constance Cove and Plumper Bay areas of Esquimalt Harbour (>3,500 and >900 ng/g wet weight, respectively) in 1990 (Map 11). Much lower PAH concentrations (<20 to 100 ng/g) were detected in mussels from Ladysmith Harbour in 1992 (Map 12) (Garrett and Shrimpton, 1992).

At most of the sites where both mussels and sediment samples were collected, lower PAH concentrations were present in the mussels than in the sediments (Garrett and Shrimpton, 1992) (refer to Figure 1). The exceptions were the Lynnterm and Seaboard Terminals sites in Vancouver Harbour and Constance Cove and Plumper Bay sites in Esquimalt Harbour. At these locations, the PAH concentrations in mussels exceeded those detected in sediments from these sites (when concentrations were compared on a dry weight basis) (refer to Figure 1).

The percent contributions of individual PAH compounds to total PAH concentrations in aquatic invertebrates are also presented in Appendix 5.2. The patterns of PAH compounds present were similar in sediments and mussels collected from the same sites (refer to Figure 1). As with sediments, mussels from all areas contained a greater proportion of higher molecular weight (HMW) compounds than lower molecular weight (LMW) compounds, with the predominant compounds being fluoranthene (15 to 30%), pyrene (8 to 15%), chrysene (~10%) and benzofluoranthenes (~10%). Mussels generally contained a higher proportion of fluoranthene than did sediments from the same area, while sediments generally contained a higher proportion of benzo[a]pyrene than did mussels. However, mussels from almost all locations in Vancouver Harbour contained higher levels of benzo[a]pyrene than did mussels collected from wharves and pilings in the Southern California Bight (8.2 ng/g) by Dunn and Young (1976). Phenanthrene was the predominant lower molecular weight compound detected in both mussels and sediment samples (8 to 15%) (Figure 1). At most sites, lower molecular weight compounds contributed less than 30% to the total PAH burden in both sediments and mussels. In contrast, sediments from Vancouver Wharves contained predominantly LMW compounds (>60%). Particularly high levels of naphthalene, acenaphthene and, especially, fluorene were detected in the sediments from this site. It is interesting to note that the proportion of LMW compounds in the mussels collected at this site was not unusually elevated (22%), but was similar to that observed at other sites (20%). Acenaphthene, dibenz[a,h]anthracene, and perylene made virtually no contribution to total PAH concentrations in mussels, and minimal contributions to total PAH concentrations in sediments (Garrett and Shrimpton, 1992)

PAH concentrations in clams and oysters collected in British Columbia were generally lower than those detected in mussels. However, it is not possible to make species comparisons as these species were not usually collected from the same locations. The highest PAH concentrations in mussels were detected in Vancouver Harbour, however, with the exception of bentnose clams collected at the RVYC Marina in Coal Harbour (332 ng/g total PAHs) (Map 1), clams were not obtained from Vancouver Harbour sites (Garrett and Shrimpton, 1992).

Bentnose clams from Laurel Point in Victoria Inner Harbour (Map 10a) contained the highest PAH concentrations (1,353 ng/g) (Garrett and Shrimpton, 1992). This level is comparable to the highest concentration (1579 ng/g) reported by Goyette and Wagenaar (1995) for clams (*Mya* sp.) collected near the Alcan smelter at Kitimat in 1992. Lower concentrations were detected in clams from other areas of Victoria Harbour and from Esquimalt Harbour. Bentnose clams from Selkirk Waters (Map 10b), north of the old sawmill site, contained up to 500 ng/g of total PAHs, while those collected near the Hidden Harbour Marina in the Inner Harbour contained 377 ng/g of total PAHs. Clams (*Macoma* sp.) from the Plumper Bay area of Esquimalt Harbour contained 100 to 132 ng/g PAHs (Map 11) (Garrett and Shrimpton, 1992).

Manila and littleneck clams and oysters from Nanaimo Harbour (Map 12) contained PAH concentrations ranging from 25 to 169 ng/g in clams and from 11 to 111 ng/g in oysters (Garrett and Shrimpton, 1992).

.....

The pattern of PAH compounds in clams and oysters was very similar to that in mussels and sediments (Figure 2 (j, k, m, and s) and Appendix 5.2). Clams and oysters contained mainly HMW compounds (~80%), with the most predominant compounds being fluoranthene (20 to 40%), pyrene (16 to 24 %), chrysene (~10%) and benzofluoranthenes (~10%). Phenanthrene was the predominant LMW compound detected. As was the case in mussels, acenaphthylene, dibenz[a,h]anthracene, and perylene made only minimal contributions to the total PAH concentrations (Garrett and Shrimpton, 1992).

PAH concentrations in crab hepatopancreas were usually much higher than those in the crab muscle tissue. For example, the hepatopancreas of Dungeness crabs from Coal Harbour, False Creek, Port Moody, and Upper Victoria Harbour contained 548, 300, up to 930, up to 569 ng/g total PAH, respectively, compared to concentrations of 28, up to 29, up to 45 ng/g and less than detection, respectively, in the muscle tissue of these crabs. Dungeness crabs collected from the Fraser River Estuary in the vicinity of the Iona Island sewage treatment plant in 1986 contained up to 48.8 ng/g total PAHs in the muscle tissue and over 100 ng/g in the hepatopancreas (Garrett and Shrimpton, 1992).

Dungeness crabs collected in 1988 from the East Basin and off Monk McQueen's Restaurant in False Creek (Map 2) contained 267 ng/g and 577 to 831 ng/g total PAHs, respectively, in the hepatopancreas. Total PAH concentrations in the muscle tissue were less than 30 ng/g. Similar concentrations were present in crabs collected from the East Basin of False Creek in 1991; 300 ng/g in the hepatopancreas and less than 30 ng/g in the muscle (Garrett and Shrimpton, 1992). Goyette and Boyd (1989) reported that crabs collected from False Creek in the late 1980's contained 148 to 1,240 ng/g total PAHs in the hepatopancreas and 25 to 169 ng/g in the muscle tissue (dry weight) (38 to 322 ng/g and 5 to 32 ng/g wet weight, respectively).
PAHs were not detected in the hepatopancreas of Dungeness crabs from two sites in outer Vancouver Harbour (near the Pacific Environment Institute (PEI) and Spanish Banks; Map 4). Crabs from the inner harbour contained PAH concentrations in excess of 100 ng/g at several sites. The highest concentration (up to 930 ng/g) was detected in the hepatopancreas of crabs collected from the vicinity of the Ioco petroleum refinery in Port Moody. PAH concentrations in muscle tissue of crabs collected from Vancouver Harbour (Maps 4 to 9) were much lower and ranged from less than detection to 45 ng/g (off Ioco) (Garrett and Shrimpton, 1992). Similarly, Goyette and Boyd (1989) reported that PAH concentrations in crab hepatopancreas from the Port Moody area ranged from less than the detection limit to 996 ng/g dry weight (189 ng/g wet weight), while concentrations in the muscle tissue ranged from 10 to 20 ng/g dry weight (2.6 to 5.2 ng/g wet weight). PAHs were not detected in crabs collected from the outer harbour (PEI) or in Indian Arm.

In Dungeness crabs from Victoria Harbour (Maps 10a and b), PAH compounds were detected at concentrations ranging from less than the detection level to 11 ng/g in the muscle tissue, and from 6 to over 500 ng/g in the hepatopancreas. PAH concentrations in muscle tissue of Dungeness crabs from Esquimalt Harbour ranged from 7.3 to 16.1 ng/g, while the hepatopancreas contained 37.7 to 96.6 ng/g (Garrett and Shrimpton, 1992).

Dungeness crabs collected from the reference area at Fortune Channel (Map 13) contained only 1.2 ng/g in the hepatopancreas, however, the hepatopancreas of crabs from the reference site at Delkatla Slough in the Queen Charlotte Islands (Map 14) contained surprisingly high PAH concentrations (120 ng/g). Sediment samples from this location also contained higher PAH concentrations (36.1 to 75.3 ng/g) than did sediments from other reference sites (ND to 7.2 ng/g) (Garrett and Shrimpton, 1992). Hepatopancreas tissue from Dungeness crabs collected at a reference site at Loughborough Inlet contained 0.6 ng/g (Goyette, personal communication).

PAH concentrations in shrimp were very low, ranging from 2.0 to 27.3 ng/g, with the exception of shrimp from Agememnon Channel (Map 13) which contained 211.4 ng/g. This level of contamination was unexpected as this was considered to be a reference site. Shrimp collected from the reference site at Rivers Inlet contained only 3.3 ng/g of total PAH compounds (Garrett and Shrimpton, 1992).

Delkatla Slough and Agamemnon Channel are frequented by recreational boating traffic and would be subject to contamination associated with fuel combustion and leakage.

The pattern of PAH compounds in the tissues of crabs and shrimp were less consistent than in bivalves and was less likely to resemble those in sediment samples from the same sites (Garrett and Shrimpton, 1992) (refer to Figure 2 and Appendix 5.2). This is probably due, at least in part, to the fact that crustaceans metabolize PAH compounds more efficiently than do bivalves.

In crabs from the Fraser Estuary (Figure 2c; Map 3), virtually all of the PAH in both muscle and hepatopancreas was present as LMW compounds (primarily naphthalene) despite the fact that approximately 80% of the PAH in sediments from this site were HMW compounds. Naphthalene contributed only 7 to 10% to the total PAH concentrations in the sediments from this site (Garrett and Shrimpton, 1992).

Crab samples collected from the East Basin and off Monk McQueen's restaurant in False Creek in 1988 (Map 2), contained a wide variety of both LMW and HMW compounds in the hepatopancreas and muscle tissue (Figure 2h and j). In the hepatopancreas, greater than 60% of the PAH was present as LMW compounds, predominantly acenaphthene. In the muscle tissue, most of the PAH was present as HMW compounds (>70%). The predominant HMW compounds were the same as those found in mussels and sediments from this site (fluoranthene, pyrene, chrysene and benzofluoranthenes). The predominant LMW compounds detected in the muscle tissue were fluorene and acenaphthene, however, these compounds were detected in very low levels in sediments from this site (Stronkhurst, 1992). Govette and Boyd (1989) also detected a wide range of LMW and HMW PAH compounds in both the hepatopancreas and muscle tissue of crabs from False Creek in the late 1980's. Crab samples collected from False Creek in 1991 (Figure 2i; Map 2) contained predominantly LMW compounds in both muscle (>80%) and hepatopancreas (100%) despite the fact that less than 20% of the PAHs in sediments were in the form of LMW compounds. Muscle tissue contained primarily naphthalene and acenaphthene, while the hepatopancreas contained primarily acenaphthylene and acenaphthene. Lower amounts of phenanthrene and fluorene were present in both tissues. None of these compounds contributed more than 8% of the total PAH compounds to sediments in this area (Garrett and Shrimpton, 1992). It is interesting that English sole collected from False Creek East Basin in 1991 also contained a higher proportion of LMW compounds than did 1988 samples (Figures 2h and i).

Crabs collected in Vancouver Harbour (Map 4 to 9) contained a variety of HMW and LMW compounds. The HMW compounds predominated in the hepatopancreas of crabs collected off Seaboard Terminals (Figure 21) and B.C. Marine/Sterling Shipyards (Figure 20), and the pattern of PAH compounds in these samples was similar to those in sediments from these sites. However, the LMW compounds predominated in the hepatopancreas of crabs collected off Versatile Pacific (Figure 2k) and the pattern of PAH compounds in the crabs did not closely resemble that in sediments from this site. At B.C. Marine/Sterling and Seaboard Terminals, the predominant compounds in crab hepatopancreas were similar to those in mussels. The predominant HMW compounds were fluoranthene, pyrene, chrysene, and benzo[a]anthracene, while the predominant compounds were acenaphthene. In crabs collected off Versatile Pacific the predominant compounds were acenaphthene, phenanthrene, and fluorene. Together these compounds accounted for approximately 60% of the total PAHs in crab hepatopancreas, despite the fact that these compounds made only minor contributions (<15% combined) to the total PAHs in sediments from this site. Muscle tissue samples were not analyzed from crabs collected at these sites (Garrett and Shrimpton, 1992).

Crabs collected off Menchion's Shipyard in Coal Harbour (Figure 2p; Map 1) contained predominantly LMW compounds in the hepatopancreas tissue (primarily

acenaphthene). The one muscle sample containing detectable PAH concentrations contained almost exclusively naphthalene. Sediment samples collected from this site in 1984 contained predominantly HMW compounds (Garrett and Shrimpton, 1992). Goyette and Boyd (1989) also reported that crab from Coal Harbour contained only LMW PAH compounds in both the muscle and hepatopancreas.

Elevated PAH concentrations detected in the hepatopancreas of crabs collected near the loco petroleum refinery (Figure 2n; Map 8) in 1986 were due primarily to the presence of LMW compounds, while the 1988 samples contained lower levels overall but a greater proportion of HMW compounds. The major compounds detected, in decreasing order of predominance, were phenanthrene, pyrene, chrysene, benz[a]anthracene, and fluoranthene. Only one of the 1988 muscle tissue samples contained detectable concentrations of PAH compounds. These were predominantly HMW compounds; primarily fluoranthene and pyrene. Sediments from this area contained predominantly HMW compounds (>80%) with major contributions from pyrene, fluoranthene, and benzofluoranthenes (Garrett and Shrimpton, 1992).

Crabs collected from Victoria Harbour (Maps 10a and b) in 1987 and 1990 contained primarily LMW compounds in the hepatopancreas tissue. The major compounds detected in crabs from the Selkirk Waters (Figure 2r) and Upper Harbour (Figure 2s) areas included naphthalene, acenaphthene, fluorene and phenanthrene. Crabs from the Inner Harbour area (Figure 2t) contained primarily naphthalene, acenaphthene, anthracene, and phenanthrene. LMW compounds contributed less than 25% to the total PAH concentrations in sediments from all areas of Victoria Harbour. The predominant LMW compound in sediments was phenanthrene (~10%), while other LMW compounds contributed less than 5% to the total PAHs in sediments (Garrett and Shrimpton, 1992).

Crabs from Esquimalt Harbour contained predominantly LMW compounds in both the hepatopancreas and muscle tissue (Figure 2; Map 11). In crabs from the Constance Cove area (Figure 2u), the major compounds in the hepatopancreas were phenanthrene, naphthalene, acenaphthene, and fluorene, while the muscle tissue contained mainly phenanthrene, naphthalene, and acenaphthene and also a significant amount of fluoranthene. Sediments contained approximately 15% of total PAHs as LMW compounds; primarily fluorene, pyrene, and benzofluoranthenes. Crabs from the Plumper Bay area (Figure 2v) contained greater than 90% of the total PAHs in both muscle and hepatopancreas tissue as LMW compounds. The predominant compounds in both tissues were acenaphthene and fluorene (421). The sediments from the Plumper Bay area contained less than 20% of the total PAHs as LMW compounds. The predominant compounds in the sediments were fluorene and pyrene (Garrett and Shrimpton, 1992).

The contribution of PAH compounds to total PAHs in shrimp was not consistent. While shrimp from Victoria Harbour and Plumper Bay (Esquimalt Harbour) contained 100% of the total PAHs as LMW compounds, shrimp from the Constance Cove area of Esquimalt Harbour and from Agamemnon Channel contained exclusively HMW compounds.

2.3.2.2.2 Fish

PAH concentrations in fish (whole body concentrations on a wet weight basis) collected from coastal areas of British Columbia were lower than those detected in mussels (refer to Appendix 5.3).

English sole from False Creek (Map 2) contained whole body PAH concentrations of 81 to 113 ng/g in 1988 and from 22 to 29 ng/g in 1991. In Vancouver Harbour (Maps 4 to 9), PAH concentrations in whole body of flatfish ranged from 2.7 to 164.4 ng/g, with the highest concentration being detected in starry flounder collected off Allied Shipyards. Starry flounder collected off the Ioco petroleum refinery in Port Moody Arm contained 15 ng/g of total PAHs in the liver, 1.1 ng/g in the whole body, and non-detectable levels in the muscle tissue. English sole from this location contained 21 to 51 ng/g total PAHs. Total PAH concentrations in English sole (whole body) from Victoria Harbour (Maps 10a and b) ranged from <2 ng/g to 32.4 ng/g. English sole from nearby Esquimalt Harbour (Map 11) contained 11.8 to 51.3 ng/g (Garrett and Shrimpton, 1992).

Starry flounder collected off the Iona Island Sewage Treatment Plant in the Fraser River Estuary (Map 3) contained low PAH concentrations (13 ng/g). Starry flounder and sculpin collected upstream in the Fraser River off wood treatment facilities contained higher PAH concentrations ranging, from 13.9 to 119.1 ng/g (Garrett and Shrimpton, 1992).

İliyê

Eta e

Fish collected from the Fraser River in 1988 rarely contained detectable PAH concentrations in muscle tissue (detection limits of 0.004 to $0.5 \mu g/g dry$ weight depending on the compound). Low concentrations of acenaphthene, fluoranthene and phenanthrene were detected in a few fish from the North Arm. The presence of PAHs in fish from the North Arm was attributed to the stormwater discharges to this region of the river. PAH were detected more frequently and at higher concentrations in liver samples than in muscle tissue despite the fact that the detection limits in liver samples were approximately five times higher. However, a statistical analysis of naphthalene (the only compound present frequently enough to permit statistical comparisons), indicated that there was no significant difference within or between species of fish collected from the North Arm and the Main Arm of the river (Swain and Walton, 1989).

In 1994, peamouth chub and starry flounder collected from the Fraser River contained detectable levels of only six to eight of the 23 PAH compounds analyzed for. Differences were observed in the concentrations of PAHs detected in fish from various reaches of the river; North Arm > Main Arm> Main Stem. PAH concentrations in the liver tissue (up to >300 ng/g wet weight) were approximately 10 times higher than in the muscle (up to >30 ng/g wet weight). PAH metabolites were detected in the bile. Concentrations of individual PAH compounds were lower in peamouth chub in 1994 (<10 ng/g) than in 1988 (5 to 200 ng/g) (Swain and Walton, 1993).

Swain and Walton (1994) reported that PAHs were present in biota samples collected from Boundary Bay in 1993 but not in samples collected in 1989. The authors attributed this to the lower detection limits used in the 1993 analysis. Sculpin (whole body samples) collected from the inshore site in 1993 contained the highest concentration of PAH (0.221 μ g/g wet weight) and the greatest variety of PAH compounds. Phenanthrene was detected most commonly in the crab and fish samples (0.006-0.040 μ g/g wet weight).

Sole from reference sites at Crescent Beach and St. Vincent's Bay (Map 13) contained 8.4 and 15 ng/g of total PAHs, respectively (Garrett and Shrimpton, 1992).

In whole fish samples collected from most sites, PAHs were present mainly as HMW compounds (Figure 2). The major HMW compounds detected were fluoranthene, pyrene, chrysene and, in some samples, benz[a]anthracene and benzofluoranthenes (refer to Figure 2). The patterns of PAH compounds in fish samples were not consistent from site to site and did not closely resemble those observed in sediments from the same sites (Garrett and Shrimpton, 1992).

Some fish samples contained mainly LMW compounds, however, this was usually due to high concentrations of naphthalene. This was particularly true of sculpin and starry flounder from the vicinity of wood treatment facilities along the Fraser River (Figure 2d,e,f,and g). In these fish samples, naphthalene contributed from 24 to 66% of the total PAHs. A Fraser River Estuary Report (FREMP, 1996) also stated that LMW compounds predominated in fish collected from the Fraser River. Major LMW compounds present in peamouth chub and starry flounder collected from the Fraser River in 1994 were naphthalene, phenanthrene, anthracene, acenaphthene, acenaphthylene, and fluorene. HMW compounds were also detected but were present at lower concentrations. The major HMW compounds detected were pyrene, fluoranthene, and chrysene.

Naphthalene and a predominance of LMW compounds were also observed in rock sole from Seaboard Terminals (Figure 21), English sole in False Creek East Basin (1991 only) (Figure 2i), and English sole from Esquimalt Harbour (Figure 2v).

3. LEGISLATION, REGULATIONS, AND GUIDELINES

Current regulations and guidelines pertaining to the presence or release of PAH compounds into the aquatic environment of British Columbia are as follows.

3.1 Water Quality

In Canada, federal and provincial environmental quality guidelines for PAHs have been developed and serve as a useful tool in assessing environmental quality. Guidelines are provided for reference as one source of information in assessing environmental quality. It must be emphasized that guidelines should not be used in direct isolated comparisons with monitoring data. Site specific factors including local biophysical conditions must also be considered and guideline numbers may need to be modified to suit local aquatic conditions. For example, the bioavailability and toxicity of PAHs and other chemicals vary with environmental variables including pH, temperature, water hardness, presence of organic carbon and other toxic compounds as well as the species and life stage of the organisms.

In 1983, the Great Lakes Science Advisory Board (GLSAB) recommended that the concentration of benzo[a]pyrene in Great Lakes waters not exceed 0.01 μ g/L and that the concentration of benzo[a]pyrene in sediments or prey organisms for freshwater fish not exceed 1,000 ng/g dry weight (Great Lakes Science Advisory Board, 1983).

104

The British Columbia Ministry of Environment, Lands and Parks (B.C. MELP) Ambient Water Quality Criteria for PAHs (Nagpal, 1993) recommend criteria for raw drinking water, ambient water, fish and shellfish, and sediment. Table 3 lists recommended criteria designed to protect freshwater life from phototoxic and long-term effects and to protect marine aquatic life from long-term effects. The recommended criteria listed in Table 3 are for sediments containing 1% organic carbon. Appropriate criteria for sediments containing organic carbon contents other than 1% should be calculated by multiplying the values shown in the table by the percent organic carbon content of the sediment.

In 1990, British Columbia Ministry of Environment, Lands, and Parks published the Coquitlam-Pitt River Area, Burrard Inlet Water Quality Assessment and Objectives (British Columbia Ministry of Environment, 1990). These objectives were established as goals which would ensure the protection of all uses of the water system and its aquatic life. They were designed to be used as tools in policy development and planning. Maximum objective levels for PAH compounds in Burrard Inlet sediments are shown in Table 4.

Table 3:BC MELP Recommended Water and Sediment Quality Criteria
(fresh and marine) (Nagpal, 1993)

PAH Compound	Water (j	ug/L)	Sediment (ng/g dry	
	Freshwater	Marine	<u>Freshwater</u>	Marine
Naphthalene	1	1	10	10
Acenaphthene	6	6	150	150
Fluorene	12	12	200	200
Anthracene	4	NR	600	NR
Phenanthrene	0.3	NR	40	NR
Acridine	3	NR	1,000	NR
Fluoranthene	4	NR	2,000	NR
Chrysene	NR	0.1	NR	200
Benz[a]anthracene	0.1	NR	200	NR
Benzo[a]pyrene	0.01	0.01	60	60

Recommended Criteria

* These criteria are based on sediment containing 1% organic carbon.

NR Not recommended due to insufficient data.

Table 4:	Maximum Objective Levels for PAH Compounds in Burrard Inlet	
	Sediments (ng/g dry weight) (B.C. MELP, 1990)	

LPAH Compounds	Criteria	HPAH (Compounds	Criteria
naphthalene	500	pyrene	260
acenaphthylene	200	fluoranthene	170
acenaphthene	60	benzo[a]anthracene	130
fluorene	50	chrysene	140
phenanthrene	150	benzofluoranthene*	320
anthracene	100	benzo[a]pyrene	160
Total LPAH	500	indeno[1,2,3-c,d]pyrene	e 60
		dibenz[a,h]anthracene	60
		benzo[g,h,i]perylene	70
		Total HPAH	1.200

* Total benzofluoranthenes = benzo[b]-, benzo[j]-, and benzo[k]fluoranthene

Canadian interim guidelines for specific PAH compounds in water (Table 5) and sediments (Table 6) were published by the Canadian Council of Ministers of the Environment (CCME) in 1999 (CCME, 1999).

Table 5:Canadian Water Quality Guidelines for the Protection of Aquatic Life -
PAHs (µg/L) (CCME, 1999)

LMW PAH Compounds	Guideline	HMW PAH Compounds	Guideline
Freshwater:			
Acenaphthene	5.8	Benz[a]anthracene	0.018
Acridine	4.4	Benzo[a]pyrene	0.015
Anthracene	0.012	Fluoranthene	0.04
Fluorene	3.0	Pyrene	0.025
Naphthalene	1.1	•	
Phenanthrene	0.4		
Quinoline	3.4		
<u>Marine:</u>			

Naphthalene 1.4 (interim) (Insufficient data was available to develop marine guidelines for other PAH compounds.)

Substance	Marine an Se	nd Estuarine diments (ng/g dry weig	Freshwa Sedime ht)	ater nts
LMW - PAHs	<u>ISQG</u>	PEL	<u>ISQG</u>	PEL
Naphthalene	34.6	391	34.6*	391*
2-methylnaphthalene	20.2	201	20.2*	201*
acenaphthylene	5.87	128	5.87*	128*
acenaphthene	6.71	88.9	6.71*	88.9*
fluorene	21.2	144	21.2*	144*
phenanthrene	86.7	544	41.9	515
anthracene	46.9	245	46.9*	245*
HMW - PAHs				
fluoranthene	113	1494	111	2355
pyrene	153	1398	53.0	875
benz[a]anthracene	74.8	693	31.7	385
chrysene	108	846	57.1	862
benzo[a]pyrene	88.8	763	31.9	782
dibenz[a,h]anthracene	6.22	135	6.22*	135*

Table 6:Interim Canadian Sediment Quality Guidelines (ISQG) and Probable
Effects Levels (PEL) for the Protection of Aquatic Life (CCME. 1999)

ISQG = interim sediment quality guideline

PEL = probable effects levels. This is defined as the level above which adverse effects are expected to occur frequently.

Янін Мар

*= provisional

3.2 Human Health

There are presently no Canadian guidelines for acceptable levels of PAH compounds in fish and shellfish for human consumption. Incidents of elevated PAH concentrations in commercially important species would be reviewed by Health Canada on a case by case basis.

The B.C. Ministry of Environment, Lands and Parks Ambient Water Quality Criteria for PAHs (Nagpal, 1993) recommends interim criteria for benzo[a]pyrene, as shown in Table 7, to protect consumers of fish and shellfish.

Table 7 :Recommended Maximum Benzo[a]pyrene Concentrations in Fish and
Shellfish (Nagpal, 1993)

<u>B[a]P Concentration</u> (ng/g wet weight in edible tissue)	<u>Safe Weekly Consumption</u> * (g wet weight)
4	50
2	100
1	200

* These values are for a weekly consumption on a regular basis.

In 1989, Health Canada recommended that maximum benzo[a]pyrene concentrations in drinking water not exceed 0.01 μ g/L (Health Canada, 1989). This recommended level was also adopted by the B.C. Ministry of Health. Similarly, in 1993 the B.C. MELP Ambient Water Quality Criteria for PAHs adopted this value as the drinking water guideline (Nagpal, 1993).

3.3 Ocean Disposal

The disposal of wastes and other materials in Canadian waters is regulated under the federal *Canadian Environmental Protection Act* (CEPA, 1988), Part VI, Ocean Dumping Regulations. In consultation with the Regional Ocean Disposal Advisory Committee (RODAC), the Ocean Disposal Control Permit Issuing Office of Environment Canada, has developed interim guidelines for sampling, analyzing and reporting proposed ocean disposal activities (Environment Canada, 1999). These interim guidelines set the rejection/screening limit for total PAH compounds at 2.5 μ g/g (2500 ng/g) dry weight in materials proposed for ocean disposal.

3.4 Use and Release

Federal and provincial legislation provide controls on the entry of PAH compounds into the environment.

Naphthalene, used in the production of fungicides, insecticides and moth repellents, and creosote-based wood preservatives are considered to be pesticides and, therefore, would be subject to both provincial and federal legislation on pest control products. The provincial *Pesticide Control Act* ensures that the sale and use of pesticides in British Columbia comply with label instructions. The federal *Pest Control Products Act* requires the registration of all pesticides used, manufactured, and sold in Canada. It also regulates these products with respect to their composition, efficacy, and package labeling. The Pest Management Regulatory Agency administers the *Pest Control Products Act* and is currently conducting a comprehensive re-evaluation of all heavy duty wood preservatives including creosote. The re-evaluation is scheduled for completion in late 2000.

In 1988, Environment Canada developed codes of practice containing recommendations for the design and operation of heavy duty wood preservation facilities in Canada. Implementation of the codes is voluntary, however, Environment Canada inspection programs conducted in 1998 found that 91% of the facilities in British Columbia had implemented the best management practices outlined in the codes compared to 62% of the facilities inn 1992 (Environment Canada, 1998).

Several of the substances which may be released to the environment as a result of the use and manufacture of heavy-duty wood preservatives, including PAHs and creosoteimpregnated wastes, have been designated as toxic under Section 11 of the Canadian Environmental Protection Act (CEPA, 1988). Both PAHs and creosote-impregnated wastes are classified as Track 2 substances under the federal government's Toxic Substances Management Policy. While substances classified as Track 1 under this policy are targeted for virtual elimination from the environment, Track 2 substances require full lifecycle management to prevent or minimize release into the environment. Under the process established for managing toxic substances under CEPA, a risk management strategy is developed through a Strategic Options Process (SOP). In the SOP, the various stakeholders from industry, government, and non-government organizations make recommendations for the most effective options for managing the toxic substances. A report on the Strategic Options for the Management of CEPA-Toxic Substances from the Wood Preservation Sector was completed in 1999. The SOP recommendations address releases of CEPA toxic substances from chemical manufacturing, treatment of wood, use of treated wood, and the waste management of post-use treated wood. Two steering committees and nine working groups have been formed to oversee the implementation of the SOP recommendations.

The federal *Fisheries Act* subsection 36(3) prohibits the deposition of deleterious substances into waters frequented by fish.

The British Columbia *Waste Management Act* controls the handling, disposal, and release of wastes from industrial, provincial, and municipal sources. Regulations under this Act also control the transportation and disposal of contaminated waste materials. Through a permitting system, this legislation enables allowable releases to be set for pollutants discharged in wastewater and released to the atmosphere.

The federal government's *Transportation of Dangerous Goods Act* regulates the transportation of dangerous goods according to their type and classification. Commercial PAH chemicals, products containing PAHs, and PAH-contaminated wastes are covered by this legislation. Regulations under this Act are administered jointly by the Federal, Provincial and Territorial governments.

3.5 Contaminated Sites

The provincial Contaminated Sites Regulation (B.C. MELP, 1997) under the authority of the *Waste Management Act* came into effect in 1997. Under this regulation, a site can be designated as contaminated if the PAH content in the soil exceeds the concentration values listed in Table 8 or if the surface water or groundwater at the site exceed the values listed in Table 9. Similarly, remediation of a contaminated site is considered satisfactory if soil (to a depth of 3 metres) and surface water and/or groundwater on the site do not contain PAH concentrations in excess of the values listed in Tables 8 and 9. Also, the standards relating to PAH concentrations, which would trigger contaminated soil relocation agreements, are listed in Table 10.

Substance	Agricultural	Urban Park	Residential	Commercial	Industrial
benz[a]anthracene	0.1	1	1	10	10
benzo[b]fluoranthene	0.1	1	1	10	10
benzo[k]fluoranthene	0.1	1	1	10	10
dibenz[a,h]anthracene	0.1	1	1	10	10
indeno[1,2,3-c,d]pyren	ne 0.1	1	1	10	10
naphthalene	0.1	5	5	50	50
phenanthrene	0.1	5	5	50	50
pyrene	0.1	10	10	100	100

Table 8:B.C. Contaminated Sites Regulation Generic Numerical Soil Standards
for PAHs (μg/g) (B.C. MELP, 1997)

<u>Table 9</u> :	B.C. Contaminated Sites Regulation Generic Numerical Water Standards
	for PAHs (µg/L) (B.C. MELP, 1997)

Substance	Site Relocation to Nonagricultural Land	Soil Relocation to Agricultural Land	Waste Disposal Prohibited without Authorization
benzo[a]anthracene	1	0.1	10
benzo[b]fluoranthene	1	0.1	10
benzo[k]fluoranthene	1	0.1	10
benzo[a]pyrene	1	0.1	10
dibenz[a,h]anthracene	1	0.1	10
indeno[1,2,3-c,d]pyrer	ne 1	0.1	10
naphthalene	5	0.1	50
henanthrene	5	0.1	50
oyrene	10	0.1	100

Table 10:B.C. Contaminated Sites Regulation PAH Standards Triggering
Contaminated Soil Relocation Agreements (μg/g) (B.C. MELP, 1997)

The Contaminated Sites Regulation contained no guidance on the management of contaminated sediments. In 1999, the Criteria for Managing Contaminated Sediment in British Columbia (pursuant to Section 26(1) of the Waste Management Act) was prepared by the B.C. Ministry of Environment, Lands and Parks (B.C. MELP, 1999). These criteria are used only at sites identified under the Contaminated Sites Regulation. The current remedial objective for sediments is the average effects level (AEL) which is an average of the threshold effects level (TEL) and the probable effects level (PEL). The AEL is approximately equal to the EC_{20} Sediments which are below the AEL do not require remediation. At sites where contaminant levels in the sediments exceed this value (Level I), sediments may be removed to meet the AEL objective or sediment toxicity tests may be conducted to ensure that the levels of contamination will not impact aquatic life. Where contaminants levels exceed the PEL (Level II), sediments can be removed to meet the AEL objective or a full scale risk assessment for the site can be conducted. The numerical criteria for assessing freshwater and marine/estuarine sediment sites are shown in Tables 11 and 12, respectively.

Substance	Level I Aq	uatic Life	Level II A	quatic Life
	Bulk Sediment (ng/g d.w.)	Porewater (µg/L)	Bulk Sediment (ng/g d.w.)	Porewater (µg/L)
LMW - PAHs		<u></u>		
acenaphthene	48	6.0	89	12
acenaphthylene	67	NC	130	NC
acridine	NC	3.0	NC	6.0
anthracene	150	4.0	250	8.0
fluorene	83	12	140	24
naphthalene	210	1.0	390	2.0
2-methylnaphthalene	110	NC	200	NC
phenanthrene	280	0.30	520	0.60
Total LMW PAHs	880	NC	1,400	NC
HMW - PAHs				
benz[a]anthracene	210	0.10	390	0.20
benzofluoranthene	NC	NC	NC	NC
benzo(k)fluoranthene	e NC	NC	NC	NC
benzo(g,h,i)perylene	NC	NC	NC	NC
benzo[a]pyrene	410	0.01	780	0.02
chrysene	460	NC	860	NC
dibenz[a,h]anthracen	e 71	NC	140	NC
fluoranthene	1,200	4.0	2,400	8.0
indeno(1,2,3c,d)pyrei	ne NC	NC	NC	NC
pyrene	460	NC	880	NC
Total HMW PAHs	3,700	NC	6,700	NC

Table 11 :Numerical Criteria for Assessing Freshwater SedimentSites (μg/g) (B.C. MELP, 1999)

Substance	Level I Aquatic Life		Level II Aquatic Life		
	Bulk Sediment (ng/g d.w.)	Porewater (µg/L)	Bulk Sediment (ng/g d.w.)	Porewater (µg/L)	
LMW - PAHs					
acenaphthene	48	6.0	89	12	
acenaphthylene	67	NC	128	NC	
anthracene	150	NC	250	NC	
fluorene	83	12	140	24	
naphthalene	210	1.0	390	2.0	
2-methylnaphthalene	110	1.0	200	2.0	
phenanthrene	320	NC	540	NC	
Total LMW PAHs	880	NC	1,400	NC	
HMW - PAHs					
benz[a]anthracene	380	NC	690	NC	
benzofluoranthene	NC	NC	NC	NC	
benzo(k)fluoranthene	NC	NC	NC	NC	
benzo(g,h,i)perylene	NC	NC	NC	NC	
benzo[a]pyrene	430	0.01	760	0.02	
chrysene	480	0.10	850	0.2	
dibenz[a,h]anthracene	71	NC	140	NC	
fluoranthene	800	NC	1,500	NC	
indeno(1,2,3c,d)pyren	e NC	NC	NC	NC	
pyrene	780	NC	1,400	NC	
Fotal HMW PAHs	9,200	NC	17,000	NC	

Table 12:Numerical Criteria for Assessing Marine and Estuarine Sediment
Sites (µg/g) (B.C. MELP, 1999)

Figure 1: Comparison of PAH Concentrations and Patterns in Sediments and Mussels

LAnd

1000 .D

1.01

PAH Compounds

Prive Prive Cong Books Books Books Books Diselve Disel

Nue Acon Acon Acon Pran Flan

- 76 -

Figure 1: Comparison of PAH Concentrations and Patterns in Sediments and Mussels

Figure 1: Comparison of PAH Concentrations and Patterns in Sediments and Mussels

Figure 1: Comparison of PAH Concentrations and Patterns in Sediments and Mussels

Figure 2: Percent Contribution of Individual PAH Compounds to Total PAHs in Sediments and Biota

Figure 2: Percent Contribution of Individual PAH Compounds to Total PAHs in Sediments and Biota

Figure 2: Percent Contribution of Individual PAH Compounds to Total PAHs in Sediments and Biota

REFERENCES

Aceves, M. and J. O. Grimalt. 1993. Seasonally dependent size distributions of aliphatic and polycyclic aromatic hydrocarbons in urban aerosols from densely populated areas. *Environ. Sci. Technol.* 27: 2896-2980.

Adams, W.J., R.A. Kimerle, and R.G. Mosher. 1985. Aquatic safety assessment of chemicals sorbed to sediments. *In*: Proceedings of Aquatic Toxicology and Hazard Assessment: 7th Symposium. STP 854. ASTM, Philadelphia, Pa., R.D. Cardwell, R. Purdy, and R.C. Bahner, eds. pp. 429-453.

Addison, R.F., D.E. Willis and M.E. Zinck. 1994. Liver microsomal monooxygenase induction in winter flounder (*Pseudopleuronectes americanus*) from a gradient of sediment PAH concentrations at Sydney Harbour, Nova Scotia. *Mar. Environ. Res.* **37**: 283-296.

Ahokas, J.T., D.A. Holdway, S.E. Brennan, R.W. Goudey and H.B. Bibrowska. 1994. MFO activity in carp (*Cyprinus carpio*) exposed to treated pulp and paper mill effluent in Lake Coleman, Victoria, Australia, in relation to AOX, EOX, and muscle PCDD/PCDF. *Environ. Toxic. Chem.* **13**: 41-50.

Aizenshtat, Z. 1973. Perylene and its geochemical significance. *Geochimica et Cosmochimica Acta* 37: 559-567.

Akpan, V., M. Lodovici and P. Dolara. 1994. Polycyclic aromatic hydrocarbons in fresh and smoked fish samples from three Nigerian cities. *Bull. Environ. Contam. Toxicol.* 53: 246-253.

Alden, R.W. and A.J. Butt. 1987. Statistical classification of the toxicity and polynuclear aromatic hydrocarbon contamination of sediments from a highly industrialized seaport. *Environ. Toxicol. Chem.* **6**: 673-684.

Alfred, P.M. and J. P. Giesy. 1985. Solar radiation induced toxicity of anthracene to *Daphnia pulex. Environ. Toxicol. Chem.* **4:** 219-226.

Al-Sabtum K. and B. Kurelec. 1985. Induction of chromosomal aberration in the mussels *Mytilus galloprovincialis* watch. *Bull. Environ. Cont. Toxicol.* **35**: 660-665.

Amodio-Cocchieri, R., A. Arnese, and A.M. Ninicucci. 1990. Polycyclic aromatic hydrocarbons in marine organisms from Italian central Mediterranean coasts. *Mar. Poll. Bull.* **21**(1): 15-18.

Amodio-Cocchieri, R., U. Del Prete, A. Arnese, M. Giuliano, and A. Roncioni. 1993. Heavy metals and polycyclic aromatic hydrocarbons (PAHs) in marine organisms from the Ionian Sea. *Bull. Environ. Contam. Toxicol.* **50**: 618-625. Anderson, R.S. 1977. Benzo[a]pyrene metabolism in the American oyster *Crassostrea* virginica. U.S. Environmental Protection Agency, Report No. EPA-600/3-78-009. 25 pp.

Andersson, T. and L. Forlin. 1992. Regulation of the cytochrome P450 enzyme system in fish. Aquat. Toxicol. 24: 1-20.

Andersson, T., L. Forlin, J. Hardig and A. Larsson. 1988. Physiological disturbances in fish living in coastal water polluted with bleached kraft pulp mill effluents. *Can. J. Fish. Aquat. Sci.* **45**: 1525-1536.

Andersson, T. and U. Koivusaari. 1985. Influence of environmental temperature on the induction of xenobiotic metabolism by B-naphthoflavone in rainbow trout, *Salmo gairdneri*. *Toxicol. Appl. Pharmacol.* **80:** 43-50.

Ankley, G.T., S.C. Collyard, P.D. Monson, and P.A. Kosian. 1994. Influence of ultraviolet light on the toxicity of sediments contaminated with polycyclic aromatic hydrocarbons. *Environ. Toxicol. Chem.* **13**(11): 1791-1796.

Ankley, G.T., R.J. Erikson, G.L. Phipps, V.R. Mattson, R.A. Kosian, B. Sheedy and J.S. Cox. 1995. Effects of light intensity on the phototoxicity of fluoranthene to a benthic macroinvertebrate. *Environ. Sci. Technol.* **29**: 2828-2833.

Ariese, F., S.J. Kok, M. Verkaik, C. Gooijer, N.H. Velthorst, and J.W. Hofstraat. 1993. Synchronous fluorescence spectrometry of fish bile: a rapid screening method for the biomonitoring of PAH exposure. *Aquat. Toxicol.* **26**: 273-286.

Atlas, R.M. 1981. Microbial degradation of petroleum hydrocarbons: an environmental perspective. *Microbiol. Rev.* **45**: 180-209.

Ayres, J. 1995. PAH releases from primary aluminum smelters in Canada. *In*: Proceedings of the Workshop on Polycyclic Aromatic Hydrocarbons in British Columbia. March 6-7, 1995. Simon Fraser University, Harbour Centre, Vancouver, B.C. pg. 17.

Baker, J.E. and S.J. Eisenreich. 1990. Concentrations and fluxes of polycyclic aromatic hydrocarbons and polychlorinated biphenyls across the air-water interface of Lake Superior. *Environ. Sci. Technol.* 24: 342-352.

O ite

hite of

Balk, L., J. Meijer, J.W. Depierre and L.E. Appelgren. 1984. The uptake and distribution of 3H-benzo[a]pyrene in the northern pike, *Esox lucius*: examination by whole body autoradiography and scintillation counting. *Toxicol. Appl. Pharmacol.* **74**: 430-449.

Barrick, R.C., E.T. Furlong, and R. Carpenter. 1984. Hydrocarbon and azaarene markers of coal transport to aquatic sediments. *Environ. Sci. Technol.* 18: 846-854.

Barrick, R.C. and F.G. Prahl. 1987. Hydrocarbon geochemistry of the Puget Sound region - III. Polycyclic aromatic hydrocarbons in sediments. *Estuar. Coastal and Shelf Sci.* 25: 175-191.

Bates, T.S., S.E. Hamilton, and J.D. Cline. 1984. Vertical transport and sedimentation of hydrocarbons in the central main basin of Puget Sound, Washington. *Environ. Sci. Technol.* **18**(5): 299-305.

Bates, T.S., P.P. Murphy, H.C. Curl, Jr., and R.A. Feely. 1987. Hydrocarbon distributions and transport in an urban estuary. *Environ. Sci. Technol.* 21: 193-198.

Bauer, J.E. and D.G. Capone. 1985. Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments. *Appl. Environ. Microbiol.* **50**(1): 81-90.

Bauer, J., R.P. Kerr, M.F. Bautista, C.J. Decker, and D.G. Capone. 1988. Stimulation of microbial activities and polycyclic hydrocarbon degradation in marine sediments inhabited by *Capitella capitata. Mar. Environ. Res.* 25: 63-84.

Behymer, T.D. and R.A. Hites. 1988. Photolysis of polycyclic aromatic hydrocarbons adsorbed on fly ash. *Environ. Sci. Technol.* 22(11): 1311-1319.

Bender, M.E., W.J. Hargis, Jr., R.J. Huggett and M.H. Roberts. 1988. Effects of polynuclear aromatic hydrocarbons on fishes and shellfish: an overview of research in Virginia. *Mar. Environ. Res.* 24: 237-241.

Beyer, J., M. Sandvik, K. Hylland, E. Fjeld, E. Egaas, E. Aas, J.U. Skare, and A. Goksoyr. 1996. Contaminant accumulation and biomarker responses in flounder (*Platichthys flesus* L.) and Atlantic cod (*Gadus morhua* L.) exposed by caging to polluted sediments in Sorfjorden, Norway. *Aquat. Toxicol.* **36**: 75-98.

Bidleman, T.E. 1988. Atmospheric processes. Environ. Sci. Technol. 22(4): 361-367.

Bidleman, T.F., A.A. Castleberry, W.T. Foreman, M.T. Zaranski and D.W. Wall. 1990. Petroleum hydrocarbons in the surface water of two estuaries in the southeastern United States. *Est. Coastal Shelf Sci.*, **30**: 91-109.

Billiard, S.M., K. Querback, and P.V. Hodson. 1999. Toxicity of retene to early life stages of two freshwater fish species. *Environ. Toxicol. Chem.* **18**(9): 2070-2077.

Bjork, M. and M. Gilek. 1996. Uptake and elimination of 14C-phenanthrene by the blue mussel *Mytilus edulis* L. at different algal concentrations. *Bull. Environ. Cont. Toxicol.* 56: 151-158.

Bjorseth, A., J. Knutzen, and J. Skei. 1979. Determination of polycyclic aromatic hydrocarbons in sediments and mussels from Saudafjord, W. Norway, by glass capillary gas chromatography. *Sci. Total Environ.* **13**: 71-86.

Bjorseth, A. and T. Ramdahl. 1985. Sources and emissions of PAH. *In:* Handbook of Polycyclic Aromatic Hydrocarbons, Bjorseth, A. and T. Ramdahl, eds. Marcel Dekker, New York, pp. 1-20.

Black, J.J. 1983. Field and laboratory studies of environmental carcinogenesis in Niagara River fish. J. Great Lakes Res. 9(2): 326-334.

Black, J.J., T.E. Hart, and E. Evans. 1980. HPLC studies of PAH pollution in a Michigan trout stream. *In*: Polynuclear aromatic hydrocarbons: Chemical analysis and biological fate. 5th International Symposium. M. Cooke and A.J. Dennis, eds. Battelle Press. Columbus, Ohio. pp. 343-355.

Black, M.C., D.S. Millsap, and J.F. McCarthy. 1991. Effects of acute temperature change on respiration and toxicant uptake by rainbow trout *Salmo gairdneri Richardson*. *Physiol. Zool.* 64: 145-168.

Boehm, P.D. and J.W. Farrington. 1984. Aspects of the polycyclic aromatic hydrocarbon geochemistry of recent sediments in the Georges Bank region. *Environ. Sci. Technol.* **18**(11): 840-845.

Boehm, P.D., H.J. Costa, and C.F. Bleczinski. 1991. Assessment of the changes in composition and concentration of San Joaquin Valley crude oil in estuarine and subtidal habitats: Final year 1 report Ref. 65239, submitted to the State of California, Department of Justice, Contract No. 81-2125, Arthur D. Little Inc., Cambridge, Massachusetts, USA. (as cited in Pereira *et al*, 1996).

Bouloubassi, I. and A. Saliot. 1991. Composition and sources of dissolved and particulate PAH in surface waters from the Rhone Delta (N.W. Mediterranean). *Mar. Poll. Bull.* **22**(12) 588-594.

Bowling, J.W., G.J. Leversee, P.F. Landrum, and J.P. Giesy. 1983. Acute mortality of anthracene-contaminated fish exposed to sunlight. *Aquat. Toxicol.* **3**: 79-90.

Bowser, P.R., D. Martineau, R. Sloan, M. Brown, and C. Carusone. 1990. Prevalence of liver lesions in brown bullheads from a polluted site and a nonpolluted reference site on the Hudson River, New York. J. Aquat. Anim. Health 2: 177-181.

Boyd, J. and D. Goyette. 1993. Polycyclic aromatic hydrocarbon (PAH) and dioxin/furan concentrations in Vancouver Harbour sediments, January 1991. Environment Canada, Pacific and Yukon Region. Data Report DR91-07. 15 pp.

**

Boyd, J., R. Macdonald, D. Paton, K. Hutton, J. Baumann, S. Bertold and B. Moore. 1998. Burrard Inlet Sediment Core Contaminant Profiles. Prepared for Burrard Inlet Environmental Action Program (BIEAP), BIEAP Environmental Quality Objectives and Monitoring Action Team (EQOMAT) and Ocean Chemistry, Institute of Ocean Sciences (IOS).

Bright, D.A. and K.J. Reimer. 1993. An environmental study of Esquimalt Harbour: Part I. Historical inputs, marine sediment contamination, and biological uptake. Prepared by the Environmental Sciences Group, Royal Roads Military College for the Director General Environment, Department of National Defence. 198 pp. and appendices.

B.C. MELP (British Columbia Ministry of Environment, Lands and Parks). 1990. Coquitlam-Pitt River Area Burrard Inlet Water Quality Assessment and Objectives.

B.C. MELP (British Columbia Ministry of Environment, Lands and Parks). 1997. Contaminated Sites Regulations. Under the authority of the *Waste Management Act*, ss. 35 and 35.1.

B.C. MELP (British Columbia Ministry of Environment, Lands and Parks). 1999. Criteria for Managing Contaminated Sediment in British Columbia (Prepared pursuant to Section 26(1) of the *Waste Management Act*.

Broman, D., C. Naf, M. Wik and I. Renberg. 1990. The importance of spheriodal carbonaceous particles (SCPs) for the distribution of particulate polycyclic aromatic hydrocarbons (PAHs) in an estuarine-like urban coastal water area. *Chemosphere* 21: 69-77.

Broman, D., C. Naf, and Y. Zebuhr. 1990. The *in situ* study of the distribution, biotransformation and flux of polycyclic aromatic hydrocarbons (PAHs) in an aquatic food chain (seston - *Mytilus edulis* L. - *Somateria mollissima* L.) from the Baltic: an ecotoxicological perspective. *Environ. Toxicol. Chem.* **9**: 429-442.

Brown, D.A., K.A. Thompson, W.A. Heath, P.E. Erikson, W.J. Cretney and C.S. Wong. 1983. Histopathological evaluation of bivalves from Kitimat Arm - Douglas Channel and Alberni Inlet, British Columbia. *Can. Tech. Rep. Hydrogr. Ocean Sci.* 18: 196-218.

Burns, K.A. and L. Yelle-Simmons. 1994. The Galeta oil spill. IV. Relationship between sediment and organism hydrocarbon loads. *Estuar. Coastal Shelf Sci.* 38: 397-412.

CCME (Canadian Council of Ministers of the Environment). 1999. Canadian environmental quality guidelines. Canadian Council of Ministers of the Environment, Winnipeg.

Carman, K.R, J.W. Fleeger, J.C. Means, S.M. Pomarico and D.J. McMillin. 1995. Experimental investigation of the effects of polynuclear aromatic hydrocarbons on an estuarine sediment food web. *Mar. Environ. Res.* **40**(3): 289-318.

Carr, R.S., P.A. Montagna, J.M. Biedenbach, R. Kalke, M.C. Kennicutt, R. Hooten and G. Cripe. 2000. Impact of storm-water outfalls on sediment quality in Corpus Christi Bay, Texas, USA. *Environ. Toxicol. Chem.* **19**(3): 561-574.

Catallo, W.J., M. Schlenker, R.P. Gambrell and B.S. Shane. 1995. Toxic chemicals and trace metals from urban and rural Louisiana lakes: recent historical profiles and toxicological significance. *Environ. Sci. Technol.* **29**(6): 1436-1445.

Cattoggio, J.A., S.D. Succar and A.E. Roca. 1989. Polynuclear aromatic hydrocarbon content of particulate matter suspended in the atmosphere of La Plata, Argentina. *Sci. Total Environ.* **79**: 43-58.

Cerniglia, C.E. 1981. Aromatic hydrocarbons: metabolism by bacteria, fungi and algae. *Rev. in Biochem. Toxicol.* **3**: 321-361.

Cerniglia, C.E. 1984. Microbial metabolism of polycyclic aromatic hydrocarbons. *Adv. Appl. Microbiol.* **30**: 31-71.

900 () h

fil e

1- I

i.

Cerniglia, C.E. and M.A. Heitkamp. 1989. Microbial degradation of polycyclic aromatic hydrocarbons in the aquatic environment. *In*: Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. U. Varanasi (Ed.), CRC Press Inc., Boca Raton, Florida, pp. 41-68.

Chapman, P.M., P.A. Allard, and M.D. Paine. 1995. Alcan smelter marine monitoring program. *In*: Proceedings of the Workshop on Polycyclic Aromatic Hydrocarbons in British Columbia. March 6-7, 1995. Simon Fraser University, Harbour Centre, Vancouver, B.C. pg.8.

Chin, Y-P and P.M. Gschwend. 1992. Partitioning of polycyclic aromatic hydrocarbons to marine porewater organic colloids. *Environ. Sci. Technol.* **26**(8): 1621-1626.

Chu, F.L.E. and R.C. Hale. 1994. Relationship between pollution and susceptibility to infectious disease in the eastern oyster, *Crassostrea virginica*. *Mar. Environ. Res.* **38**: 243-256.

Cody, T.E., M.J. Radike, and D. Warshawsky. 1984. The phototoxicity of benzo[a]pyrene in the green alga *Selenstrum capricornutum*. *Environ*. *Res.* **35**: 122-132.

Coles, J.A., S.R. Farley and R.K. Pipe. 1994. Effects of fluoranthene on the immunocompetence of the common marine mussel, *Mytilus edulis*. *Aquat. Toxicol.* **30**: 367-379.

Collier, T.K., J.E. Stein, R.J. Wallace, and U. Varanasi. 1986. Xenobiotic metabolizing enzymes in spawning English sole (*Parophrys vetulus*) exposed to organic-solvent extracts of marine sediments from contaminated and reference areas. *Comp. Biochem. Physiol.* 84C: 291-298.

Collier, T.K., M.M. Krahn and D.C. Malins. 1980. The disposition of naphthalene and its metabolites in rainbow trout *Salmo gairdneri*. *Environ. Res.* 23: 35-41.

Cornelissen, G., P.C.M. Van Noort, J.R. Parsons, and H.A.J. Govers. 1997. Temperature dependence of slow adsorption and desorption kinetics of organic compounds in sediments. *Environ. Sci. Technol.* **31**: 454-460.

Cretney, J.R., H. K. Lee, G. J. Wright, W.H. Swallow and M.C. Taylor. 1985. Analysis of polycyclic aromatic hydrocarbons in air particulate matter from a lightly industrialized urban area. *Environ. Sci. Technol.* **19**(5): 397-404.

Cretney, W.J., C. S. Wong, D.A. Brown, W.A. Heath, K.A. Thompson, and B.R. Fowler. 1980. A statistical correlation between an infiltrative hyalinocytic condition in a marine bivalve mollusk and sediment levels of polycyclic aromatic hydrocarbons. *Can. Tech. Rep. Aquat. Sci.* 975: 192-203.

Cretney, W.J., C.S. Wong, R.W. MacDonald, P.E. Erickson, and B.R. Fowler. 1983. Polycyclic aromatic hydrocarbons in surface sediments and age-dated cores from Kitimat Arm, Douglas Channel and adjoining waterways. Can. Tech. Rep. Hydrogr. Ocean Sci. No. 18. pgs. 163-194.

Cripps, G.C. 1992. The extent of hydrocarbon contamination in the marine environment from a research station in the Antarctic. *Mar. Poll. Bull.* **25**(9-12): 288-292.

Curto, M.J., B. Van Hattum and J.F. Cid. 1993. In situ bioaccumulation of PAH in freshwater isopods in relation to partitioning between sediments and water: *In*: Polycyclic aromatic compounds XIII: Synthesis, properties, analytical measurements, occurrence and biological effects. Proc. of 13th International Symposium on Polynuclear Aromatic Hydrocarbons. P. Garrigues and M. Lamotte, Eds., Bordeaux, France. October 1-4, 1991. Gordon and Breach Sciences Publ., Yverdon, Switzerland. Pp. 1031-1038. (as cited in Environment Canada, 1994).

Dann, T. 1988. Measurement of polycyclic aromatic hydrocarbons (PAH) in the ambient air (Toronto, Ontario and Montreal, Quebec). *In:* Proc.3rd Conference on Toxic Substances, April 6-7, 1988, Montreal Quebec. pp. 23-52.

Dasch, J.M. 1982. Particulate and gaseous emissions from wood-burning fireplaces. *Environ. Sci. Technol.* 16: 639-645.

Delaune, R.D., W.H. Patrick, Jr., and M.E. Casselman. 1981. Effect of sediment pH and redox conditions on degradation of benzo[a]pyrene. *Mar. Poll. Bull.* **12**(7): 251-253.

Delfino, J.J. and C.J. Miles. 1985. Aerobic and anaerobic degradation of organic contaminants in Florida groundwater. *Proc. Soil Crop Sci. Soc. Fla.* 44: 9-14.

Den Besten, P.J., H.J. Herwig, E.G. Donselaar, and D.R. Livingstone. 1990. Cytochrome P-450 monooxygenase system and benzo[a]pyrene metabolism in echinoderms. *Mar. Biol.* 107: 171-177.

Den Besten, P.J., P. Lemaire, S.C.M. O'Hara, and D.R. Livingston. 1993. Metabolism of benzo[a]pyrene by the sea star *Asterias rubens*. *In*: Polycyclic aromatic compounds XIII: Synthesis, properties, analytical measurements, occurrence and biological effects. P. Garrigues and M. Lamotte, eds. Proc. 13th International Symposium on Polynuclear Aromatic Hydrocarbons. October 1 to 4, 1991. Bordeaux, France. Gordon and Breach Sciences Publishers. Yverdon, Switzerland. pp. 1055-1061.

Den Besten, P.J., S.C.M. O'Hara, and D.R. Livingstone. 1992. Further characterization of benzo[a]pyrene metabolism in the sea star, *Asterias rubens* L. *Mar. Environ. Res.* 34: 309-313.

DeWitt, T.H., R.J. Ozretich, R.C. Swartz, J.O. Lamberton, D.W. Scultz, G.R. Ditsworth, J.K.P. Jones, L. Hoselton, and L.M. Smith. 1992. The influence of organic matter quality on the toxicity and partitioning of sediment-associated fluoranthene. *Environ. Toxicol. Chem.* 11: 197-208.

inter and the second se

ر بتن

1

副曲

₿-it i

NHÖ IL

Di Giulio, R.T., C. Habig, and E.P. Gallagher. 1993. Effects of Black Rock Harbour sediments on indices of biotransformation, oxidative stress, and DNA integrity in channel catfish. *Aquat. Toxicol.* **26**: 1-22.

Dillon, T.M. 1982. Dietary accumulation of dimethylnaphthalene by the grass shrimp *Palaemonetes pugio* under stable and fluctuating temperatures. *Bull. Environ. Contam. Toxicol.* **28**: 149-153.

DiMichele, L. and M.H. Taylor. 1978. Histopathological and physiological responses of *Fundulus heteroclitus* to naphthalene exposure. J. Fish. Res. Board Can. 35: 1060-1066.

DiToro, D.M., C.S. Zarba, D.J. Ansen, W.J. Berry, R.C. Swartz, C.E. Corwan, S.P. Pavlou, H.E. Allen, N.A. Thomas, and P.R. Paquin. 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. *Environ. Toxicol. Chem.*, **10**: 1541-1583.

Dobrowsky, C.J. and C.E. Epifanio. 1980. Accumulation of benzo[a]pyrene in a larval bivalve via trophic transfer. *Can. J. Fish. Aquat. Sci.* 37: 2318-2322.
Dunn, B.P. 1980. Polycyclic aromatic hydrocarbons in marine sediments, bivalves and seaweeds: analysis by high-pressure liquid chromatography. Reprint from: Polynuclear Aromatic Hydrocarbons: Fourth International Symposium on Analysis, Chemistry, and Biology. Battelle Press, Columbus, Ohio. pp. 367-377.

Dunn, B.P. and J. Fee. 1979. Polycyclic aromatic hydrocarbon carcinogens in commercial seafoods. J. Fish. Res. Board Can. 36: 1469-1476.

Dunn, B.P. and H.F. Stich. 1976. Monitoring procedures for chemical carcinogens in coastal waters. *Jour. Fish. Res. Bd. Can.* 33(9): 2040-2046.

Dunn, B.P. and D.R. Young. 1976. Baseline levels of benzo(a)pyrene in southern California mussels. *Mar. Poll. Bull.* 7(12): 231-234.

Eadie, B.J., W.R. Faust, P.F. Landrum, N.R. Morehead, W.S. Gardner, and T. Nalepa. 1983. Bioconcentration of PAH by some benthic organisms of the Great Lakes. *In*: Polynuclear aromatic hydrocarbons: formation, metabolism and measurement. M. Cooke and A.J. Dennis, eds., Battelle Press, Columbus, Ohio. pp. 437-449.

Eaton, P. and V. Zitko. 1978. Polycyclic aromatic hydrocarbons in marine sediments and shellfish near creosoted wharf structures in eastern Canada. International Council for the Exploration of the Sea, Marine Environmental Quality Committee, C.M. 19789/E:25. 7 pp.

Eertman, R.H.M., C.L.F. Groenink, B. Sandee, and H. Hummel. 1995. Response of the blue mussel *Mytilus edulis* L. following exposure to PAHs or contaminated sediments. Mar. *Environ. Res.* **39**: 1169-1173.

Eganhouse, R.P. and J.A. Calder. 1976. The solubility of medium molecular weight aromatic hydrocarbons and the effects of hydrocarbon co-solutes and salinity. *Geochim. Cosmochim. Acta* **40**: 55-561.

Eganhouse, R.P., B.R.T. Simoneit, I.R. Kaplan. 1981. Extractable organic matter in urban stormwater runoff. 2. Molecular characterization. *Environ. Sci. Technol.* 15: 315-326.

Ehrhardt, M.G., K.A. Burns and M.C. Bicego. 1992. Sunlight-induced compositional alternations in the seawater-soluble fraction of a crude oil. *Marine Chemistry* 37: 53-64.

Eisenreich, S.J., B.B. Looney, and J.B. Thornton. 1981. Airborne organic contaminants in the Great Lakes ecosystem. *Environ. Sci. Technol.* 15: 30-38.

Eisler, R. 1987. Polycyclic aromatic hydrocarbon hazards to fish, wildlife and invertebrates: a synoptic review. Biological Report 85(1.11), Contaminant Hazard Reviews, Report No. 11, U.S. Dept. of the Interior, Fish and Wildlife Service. 81 pp.

Elumalai, M. and M.P. Balasubramanian. 1999. Influence of naphthalene on esterase activity during vitellogenesis of marine edible crab, *Scylla serrata*. *Bull. Environ. Contam. Toxicol.* **62**: 743-748.

Emery, V.L. and T.M. Dillon. 1996. Chronic toxicity of phenanthrene to the marine polychaete worm, *Nereis (Neanthes arenaceodentata)*. Bull. Environ. Contam. Toxicol. 56: 265-270.

Envirochem. 1991. An inventory of sources, uses and waste disposal practices of creosote in Canada. Prepared under contract for Environment Canada, Environmental Protection Service, Western and Northern Region, Edmonton. 74 pp.

Environment Canada. 1988. Creosote wood preservation facilities. Environment Canada, Conservation and Protection, Ottawa. Report No. EPW 2/WP/1.

Environment Canada. 1992. Combined sewer overflow inventory for Fraser River and Burrard Inlet. Prepared by UMA Engineering Ltd., Burnaby B.C. for Fraser Pollution Abatement Office, Environment Canada.

Environment Canada. 1994. Polycyclic aromatic hydrocarbons. Priority Substances List Assessment Report. 63 pp.

Environment Canada. 1998. 1998 Annual Compliance Report for Heavy Duty Wood Preservation. Regional Program Report 99-18. Environment Canada, Environmental Protection Service, Pacific and Yukon Region.

Environment Canada. 1999. Regional Ocean Dumping Advisory Committee Interim Contaminant Testing Guidelines for Ocean Disposal, Pacific and Yukon Region.

Environmental Protection Agency (U.S. EPA). 1980. Ambient water quality criteria for polynuclear aromatic hydrocarbons. Report US NTIS PB81-117806. Environmental Protection Agency, Washington, D.C.

Environmental Protection Agency (U.S. EPA). 1990. Chemical fate rate constants for SARA Section 113 chemicals and superfund health evaluation manual chemicals. Report No. 6-02-4254. Environmental Protection Agency, Washington, D.C.

9H 1

Stern

9kar

Enzminger, J.D. and R.C. Ahlert. 1987. Environmental fate of polynuclear aromatic hydrocarbons in coal tar. *Environ. Technol. Lett.* 8: 269-278.

Escartin, E. and C. Porte. 1999a. Biomonitoring of PAH pollution in high-altitude mountain lakes through the analysis of fish bile. *Environ. Sci. Technol.* 33: 406-409.

Escartin, E. and C. Porte. 1999b. Hydroxylated PAHs in bile of deep-sea fish. Relationship with xenobiotic metabolizing enzymes. *Environ. Sci. Technol.* 33: 2710-2714.

Evans, K.M., R. A. Gill, and P.W.J. Robotham. 1990a. The PAH and organic content of sediment particle size fractions. *Water, Air, & Soil Poll.* **51**: 13-31.

Evans, K.M., R.A. Gill, and P.W.J. Robotham. 1990b. The source, composition and flux of polycyclic aromatic hydrocarbons in sediments of the River Derwent, Derbyshire, U.K. *Water, Air and Soil Poll.* **51**: 1-12.

Fanning, M.L., D.J. Jones, D. Larson, and R.G. Hunter. 1989. Iona deep sea outfall environmental monitoring. Prepared for the Greater Vancouver Regional District. Vol. I and II. 108 pp. and appendices.

Farrington, J.W., E.D. Goldberg, R.W. Risebrough, J.H. Martin, and V.T. Bowen. 1983a. U.S. mussel watch 1976-1978: An overview of the trace metal, DDE, PCB, hydrocarbon and artificial radionuclide data. *Environ. Sci. Technol.* 17: 490-496.

Farrington, J.W., J.M. Teal, B.W. Tripp, J.B. Livramento, and A. McElroy. 1983b. Biogeochemistry of petroleum components at the sediment-water interface. Final report prepared for Department of Energy, Bureau of Land Management, U.S. Department of the Interior, Washington, D.C.

Forlin, L. 1980. Effects of chlophen A50, 3-methylcholanthrene, pregene-16a-nitrile, and phenobarbitol on the hepatic microsomal cytochrome P-450-dependent monooxygenase system in rainbow trout, *Salmo gairdneri*, of different age and sex. *Toxicol. Appl. Pharmacol.* 54: 420-430.

Forlin, L. and M. Celander. 1993. Induction of cytochrome P450 1A in teleosts: environmental monitoring in Swedish fresh, brackish and marine waters. *Aquat. Toxicol.* **26**: 41-56.

Forlin, L. and C. Haux. 1985. Sex differences in hepatic cytochrome P-450 monooxygenase activities in rainbow trout during an annual reproductive cycle. *J. Endocrinol.* **124**: 207-213.

Fortner, A.R. and L.V. Sick. 1985. Simultaneous accumulations of naphthalene, a PCB mixture, and benzo(a)pyrene, by the oyster, *Crassostrea virginica*. *Bull. Environ. Contam. Toxicol.* **34**: 256-264.

Foster, G.D. and D.A. Wright. 1988. Unsubstituted polynuclear aromatic hydrocarbons in sediments, clams and clam worms from Chesapeake Bay. *Mar. Poll. Bull.* **19**(9): 459-465.

FRAP. 1997. Survey of Pesticide Use in British Columbia: 1995. Prepared by Norecol Dames and Moore, Vancouver, B.C. for the Provincial Ministry of Environment, Lands and Parks and Environment Canada's Fraser River Action Plan. Technical Report No. DOE FRAP#1997-16. 37 pp.

Freeman, D.J. and C. R. Cattell. 1990. Woodburning as a source of atmospheric polycyclic aromatic hydrocarbons. *Environ. Sci. Technol.* 24: 1581-1585.

FREMP. 1996. The Fraser River Estuary Environmental Quality Report. Prepared for the Fraser River Estuary Management Program. 164 pp.

French, B.L., W.L. Reichert, T. Hom, M. Nishimoto, H.R. Sanborn, and J.E. Stein. 1996. Accumulation and dose-response of hepatic DNA adducts in English sole (*Pleuronectes vetulus*) exposed to a gradient of contaminated sediments. *Aquat. Toxicol.* **36**: 1-16.

Gala, W.R. and J.P. Giesy. 1992. Photo-induced toxicity of anthracene to the green alga, Selanastsrum capricornutum. Arch. Environ. Contam. Toxicol. 23: 316-323.

Gardner, G.R., P.P. Yevich, J.C. Harshbarger, and A.R. Malcolm. 1991. Carcinogenicity of Black Rock Harbour, Bridgeport, CT sediment to the American oyster (*Crassostrea virginica*) and trophic transfer of Black Rock Harbour carcinogens from the blue mussel (*Mytilus edulis*) to the winter flounder (*Pseudopleuronectes americanus*). J. Environ. Health Perspect. 90: 53-66.

Gardner, G.R., R.J. Pruell, A.R. Malcolm. 1992. Chemical induction of tumors in oysters by a mixture of aromatic and chlorinated hydrocarbons, amines and metals. *Mar. Environ. Res.* 34: 59-63.

Garrett, C.L. and Shrimpton, J.A. 1992. Environmental monitoring data for PAH compounds (1984 to 1992). Environmental Protection Branch, Environment Canada, North Vancouver, B.C.

رفت

10r

Set :

ted a

1 🖷

Germain, A., F. Perron, and R.Van Collie. 1993. PAHs in the environment: fate, ecotoxicity and regulations. Supporting Document No. 3 for Assessment Report on PAHs. Prepared under the *Canadian Environmental Protection Act* Priority Substances List. Environment Canada, Conservation and Protection, Quebec Region, Montreal, Quebec. 104 pp.

Geyer, H.J., I. Schennert, R. Bruggeman, C. Steinberg, F. Korte and A. Kettrup. 1991. QSAR for organic chemical bioconcentration in *Daphnia*, algae and mussels. *Sci. Total Environ.* **109**: 387-394.

Gilewicz, M., J.R. Guillaume, D. Carles, M. Leveau, and J.C. Bertrand. 1984. Effects of petroleum hydrocarbons on the cytochrome P450 content of the mollusc bivalve *Mytilus galloprovincialis*. *Marine Biology* **80**: 155-169.

Gill, R.A., K.M. Evans, P.W.J. Robotham and B.M. Taylor. 1993. *In vivo* metabolism and identification of some metabolites of benzo[a]pyrene by the stone loach *Noemacheilus barbatulus*, the gastropod *Limnaea peregra* and the leech *Glossiphonia complanata*. *In:* Polycyclic aromatic compounds XIII: Synthesis, properties, analytical measurements,

occurrence and biological effects. P. Garrigues and M. Lamotte, eds. Proc. 13th International Symposium on Polynuclear Aromatic Hydrocarbons. October 1 to 4, 1991. Bordeaux, France. Gordon and Breach Science Publ., Yverdon, Switzerland. pp. 1063-1069.

Goksoyr, A. and L. Forlin. 1992. The cytochrome P-450 system in fish, aquatic toxicology and environmental monitoring. *Aquat. Toxicol.* **22**: 287-312.

Gordon, R.J. 1976. Distribution of airborne polycyclic aromatic hydrocarbons throughout Los Angeles. *Environ. Sci. Technol.* **10**(4): 370-373.

Goyette, D. 1991. The relationship of sediment contamination to the occurrence of preneoplastic and neoplastic liver lesions in English sole (*Parophyrs vetulus*) from Vancouver Harbour. *In:* Canadian Technical Report of Fisheries and Aquatic Sciences No. 1774 (Volume 1). Proc. of the 17th Annual Aquatic Toxicity Workshop, November 5-7, 1990, Vancouver, B.C.

Goyette, D. 1994. Spatial and temporal patterns in hepatic lesions in adult English sole from Vancouver Harbour - 1986 to 1992. *In:* Proceedings of the First Annual Pacific Ecozone Workshop, Sidney, B.C. February 1-3, 1994. Environment Canada, Canadian Wildlife Service, Technical Report Series No. 222, pgs. 76-79.

Goyette, D. July 23, 1998. Personal communication.

Goyette, D. and J. Boyd, Environmental Protection Branch, Environment Canada, unpublished data.

Goyette, D. and J. Boyd. 1989. Distribution and environmental impact of selected benthic contaminants in Vancouver Harbour, British Columbia: 1985 to 1987. Regional Report No. 89-02. Environmental Protection Branch, Environment Canada. 99 pp. and appendices.

Goyette, D. and K. Brooks. 1998. Creosote Evaluation: Phase II. Sooke Basin Study -Baseline to 535 Days Post Construction 1995-1996. Prepared for the Creosote Evaluation Steering Committee. Environment Canada, Pacific and Yukon Region. Regional Program Report PR98-04.

Goyette, D., D. Brand, and M. Thomas. 1988. Prevalence of idiopathic liver lesions in English sole and epidermal abnormalities in flatfish from Vancouver Harbour, British Columbia, 1986. Environment Canada, Pacific and Yukon Region, Regional Program Report 87-09. 48 pp.

Goyette, D. and A. Wagenaar. 1995. Point source profiles of PAHs in sediment and biota. *In:* Proceedings of the Workshop on Polycyclic Aromatic Hydrocarbons in British Columbia. March 6-7, 1995. Simon Fraser University, Harbour Centre, Vancouver, B.C. pg. 9. Grady, A.W., R.M. McLaughlin, C.W. Caldwell, C.J. Schmitt and D.L. Stalling. 1992. Flow cytometry, morphometry and histopathology as biomarkers of benzo(a)pyrene exposure in brown bullheads (*Ameiurus nebulosus*). Journ. Appl. Toxicol. **12**(3): 165-177.

Great Lakes Science Advisory Board. 1983. Annual report: report of the Aquatic Ecosystem Objectives Committee. Report to the International Joint Commission, Ontario.

Green, G., J.H. Skerratt, R. Leeming and P.D. Nichols. 1992. Hydrocarbon and coprostanol levels in seawater, sea-ice algae and sediments near Davis Station in Eastern Antarctica: A regional survey and preliminary results for a field fuel spill experiment. *Mar. Poll. Bull.* **25**: 293-302.

Greiner, A.C., C. Spyckerelle, P. Albrecht, and G. Ourisson. 1977. Aromatic hydrocarbons from geological sources. V. Mono- and di-aromatic hopane derivatives. J. Chem. Res. 12: 3829-3871.

Grimmer, G. and H. Bohnke. 1975. Profile analysis of polycyclic aromatic hydrocarbons and metal contents in sediment layers of a lake. *Cancer Lett.* 1, 75-83.

Grosjean, D., K. Fung, and J. Harrison. 1983. Interactions of polycyclic aromatic hydrocarbons with atmospheric pollutants. *Environ. Sci. Technol.* 17: 673-679.

Gschwend, P. and R.A. Hites. 1981. Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in northeastern United States. *Geochim. Cosmochim. Acta.* **45**: 2359-2367.

Hall, A.T. and J.T. Oris. 1991. Anthracene reduces reproductive potential and is maternally transferred during long-term exposure in fathead minnows. *Aquat. Toxicol.* **19**: 249-264.

Hambrick, G.A., R.D. Delaune, and W.H. Patrick. 1980. Effect of estuarine sediment pH and oxidation-reduction potential on microbial hydrocarbon degradation. *Appl. Environ. Microbiol.* **40**: 365-369.

Handa, T., Y. Kato, T. Yamamura, and T. Ishii. 1980. Correlation between the concentrations of polynuclear aromatic hydrocarbons and those of particulates in an urban atmosphere. *Environ. Sci. Technol.* **14**(4): 416-422.

Harding, L., M. Pomeroy, A. Colodey and L.L. Grooms. 1988. Fraser River Estuary marine environmental monitoring results, 1984-1986. Environmental Protection Service, Environment Canada, Pacific and Yukon Region. Regional Program Report, PB 87-18. 69 pp.

Hardy, J.T., E.A. Crecelius, L.D. Antrim, V.L. Broadhurst, C.W. Apts, J.M. Gurtisen, and T.J. Fortman. 1987. The sea-surface microlayer of Puget Sound. Part II. Concentrations of contaminants and relation to toxicity. *Mar. Environ. Res.* 23: 251-272.

1

b (be

ta ir

¥ 8

1688 6

Hardy, J.T., E.A. Crecelius, L.D. Antrim, S.L. Kiesser and V.L. Broadhurst. 1990. Aquatic surface microlayer contamination in Chesapeake Bay. *Mar. Chem.* 28: 333-351.

Hargis, W.J., M.H. Roberts, and D.E. Zwerner. 1984. Effects of contaminated sediments and sediment-exposed effluent water on an estuarine fish: acute toxicity. *Mar. Environ. Res.* 14: 337-354.

Hargis, W.J. and D.E. Zwerner. 1988a. Effects of certain contaminants on eyes of several estuarine fishes. *Mar. Environ. Res.* 24: 265-270.

Hargis, W.J. and D. E. Zwerner. 1988b. Some effects of sediment-borne contaminants on development and cytomorphology of teleost eye-lens epithelial cells and their derivatives. *Mar. Environ. Res.* 28: 399-405.

Hargis, W.J., D.E. Zwerner, D.A. Thoney, K.L. Kelly, and J.E. Warinner. 1989. Neoplasms in mummichogs from the Elizabeth River, Virginia. *Jour. Aquat. Animal Health* 1: 165-172.

Hatch, A.C. and G.A. Burton. 1998. Effects of photoinduced toxicity of fluoranthene on amphibian embryos and larvae. *Environ. Toxicol. Chem.* 17(9): 1777-1785.

Hawkins, W.E., W.W. Walker, J.S. Lytle, T.F. Lytle, and R.M. Overstreet. 1989. Carcinogenic effects of 7,12-dimethylbenz(a)anthracene on the guppy (*Poecilia reticulata*). *Aquatic Toxicol.* **15**: 63-82.

Hawkins, W.E., W.W. Walker, R.M. Overstreet, J.S. Lytle, and T.F. Lytle. 1990. Carcinogenic effects of some polycyclic aromatic hydrocarbons on the Japanese medaka and guppy in waterborne exposures. *Sci. Total Environ.* **94**: 155-167.

Health Canada. 1989. Guidelines for Canadian Drinking Water Quality. Health Canada, Ottawa, Ontario. 25 pp.

Heit, M., C.S. Klusek, and K.M. Miller. 1980. Trace element, radionuclide, and polynuclear aromatic hydrocarbon concentrations in Unionidae mussels from northern Lake George. *Environ. Sci. Technol.* 14(4): 465-468.

Heit, M., Y.L. Tan, and K.M. Miller. 1988. The origin and deposition history of polycyclic aromatic hydrocarbons in the Finger Lakes region of New York. *Water, Air and Soil Poll.* 37: 85-110.

Heitkamp, M.A. and C.E. Cerniglia. 1989. Polycyclic aromatic hydrocarbon degradation by a *Mycobacterium* sp. in microcosms containing sediment and water from a pristine ecosystem. *Appl. Environ. Microbiol.* **55**(8): 1968-1973.

Hellou, J., D. MacKay and B. Fowler. 1995. Bioconcentration of polycyclic aromatic compounds from sediments to muscle of finfish. *Environ. Sci. Technol.* 29: 2555-2560.

Hellou, J., C. Upshall, D. Taylor, P. O'Keefe, V.O'Malley and T. Abrajano. 1994. Unsaturated hydrocarbons in muscle and hepatopancreas of two crab species, *Chionoecetes* opilio and *Hyas coarctatus*. Mar. Poll. Bull. 28(8): 482-488.

Hellou, J. and W.G. Warren. 1997. Polycyclic aromatic compounds and saturated hydrocarbons in tissues of flatfish: insight on environmental exposure. *Mar. Environ. Res.* **43**(1/2): 11-25.

Herbes, S.E. 1977. Partitioning of polycyclic aromatic hydrocarbons between dissolved and particulate phases in natural waters. *Water Research* 11: 493-496.

Herbes, S.E. and L. R. Schwall. 1978. Microbial transformations of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. *Appl. Environ. Microbiol.* **35**: 306-316.

Herrmann, R. 1981. Transport of polycyclic aromatic hydrocarbons through a partly urbanized river basin. *Water, Air and Soil Pollut.* 16: 445-467.

Hites, R.A. and P.M. Gschwend. 1982. The ultimate fates of polycyclic aromatic hydrocarbons in marine and lacustrine sediments. *In*: Polynuclear aromatic hydrocarbons: physical and biological chemistry. M. Cooke, A.J. Dennis, and G.L. Fisher, Eds. 6th International Symposium. Battelle Press, Columbus, Ohio. pp. 357-366.

Hites, R.A., R.E. Laflamme, and J.G. Windsor, Jr. 1978. Polycyclic aromatic hydrocarbons in the marine environment: Gulf of Maine sediments and Nova Scotia soils. *In:* Hydrocarbons and Halogenated Hydrocarbons in the Aquatic Environment., Symposium Proceedings. B.K. Afghan and D. Mackay (eds.), Plenum Press, New York, pp. 397-403.

Hites, R.A., R.E. Laflamme, and J.G. Windsor, Jr. 1980. Polycyclic aromatic hydrocarbons in an anoxic sediment core from the Pettaquamscutt River (R.I. USA). *Geochim. Cosmochim.* Acta 44: 873-878.

11 r

製鋼

Hilli

Hoff, J.T., F. Wania, D. Mackay, and R. Gillham. 1995. Sorption of nonpolar organic vapours by ice and snow. *Environ. Sci. Technol.* 29: 1982-1989.

Hoff, R.M. and K-W. Chan. 1987. Measurement of polycyclic aromatic hydrocarbons in the air along the Niagara River. *Environ. Sci. Technol.* 21(6): 556-561.

Hoffman, E.J., J.S. Latimer, C.D. Hunt, G.L. Mills, and J.G. Quinn. 1985. Stormwater runoff from highways. *Water, Air and Soil Pollut.* 25: 349-364.

Hoffman, E.J., G.L. Mills, J.S. Latimer, and J.G. Quinn. 1984. Urban runoff as a source of polycyclic aromatic hydrocarbons to coastal waters. *Environ. Sci. Technol.* 18: 580-587.

Holdway, D.A., S.E. Brennan and J.T. Ahokas. 1994. Use of hepatic MFO and blood enzyme biomarkers in sand flathead (*Platycephalus bassensis*) as indicators of pollution in Port Phillip Bay, Australia. *Mar. Poll. Bull.* 28(11): 683-695.

Holst, L.L. and J.P. Giesy. 1989. Chronic effects of the photoenhanced toxicity of anthracene on Daphnia reproduction. *Environ. Toxicol. Chem.* 8: 933-942.

Humason, A.W. and D.F. Gadbois. 1982. Determination of polynuclear aromatic hydrocarbons in the New York Bight Area. *Bull. Environ. Contam. Toxicol.* 29: 645-650.

Hursthouse, A.S., M. Adamczyk, L. Adamcyzk, F.J. Smith and P. Iqbal. 1994. Inorganic and organic contaminants in intertidal sediments of the Clyde: preliminary observations of historical trends? *Mar. Poll. Bull.* **28**(12): 765-767.

Husoy, A-M., M.S. Myers, and A. Goksoyr. 1996. Cellular localization of cytochrome P-450 (CYPIA) induction and histology in Atlantic cod (*Gadus morhua* L.) and European flounder (*Platichythys flesus*) after environmental exposure to contaminants by caging in Sorfjorden, Norway. *Aquat. Toxicol.* **36**: 53-74.

Jaffrezo, J.L., M.P. Clain, and P. Masclet. 1994. Polycyclic aromatic hydrocarbons in the polar ice of Greenland. Geochemical use of these atmospheric tracers. *Atmos. Environ.* 28: 1139-1145.

James, M.O., A.H. Altman, C-L J. Li, and S.M. Boyle. 1992. Dose- and time-dependent formation of benzo[a]pyrene metabolite DNA adducts in the spiny lobster, *Panulirus argus. Mar. Environ. Res.* **34**: 299-302.

James, M.O. and P.J. Little. 1980. Characterization of cytochrome P450 dependent mixedfunction oxidation in the spiny lobster, *Panulirus argus*. *In*: Biochemistry, Biophysics and Regulation of cytochrome P-450. J.A. Gastafsson, J.Carlstedl-Duke, A. Mode and J. Rafter, eds., Elsevier Scientific Publish. Co., Elsevier, North Holland.

James, M.O., M.A.Q. Khan, and J.R. Bend. 1979. Hepatic microsomal mixed-function oxidase activities in several marine species common to coastal Florida. *Comp. Biochem. Physiol.* C 62: 155-164.

Jimenez, B.D., C.P. Cirmo, and J.F. McCarthy. 1987. Effects of feeding and temperature on uptake, elimination and metabolism of benzo(a)pyrene in the bluegill sunfish (*Lepomis macrochirus*). Aquat. Toxicol. 10: 41-57.

Johnson, A.C., P.F. Larsen, D.F. Gadbois, and A.W. Humason. 1985. The distribution of polycyclic aromatic hydrocarbons in the surficial sediments of Penobscot Bay (Maine, USA) in relation to possible sources and to other sites worldwide. *Mar. Environ. Res.* 15: 1-16.

Johnson, W.P. and G.L. Amy. 1995. Facilitated transport and enhanced desorption of polycyclic aromatic hydrocarbons by natural organic matter in aquifer sediments. *Environ. Sci. Technol.* **29**: 807-817.

Kaag, N.H.B.M., E.M. Foekema, M. C. Scholten and N.M. Van Straalen. 1997. Comparison of contaminant accumulation in three species of marine invertebrates with different feeding habits. *Environ. Toxicol. Chem.* **16**(5): **837-842**.

Kagan, J., E.D. Kagan, A. Kagan, P.A. Kagan, and S. Quigley. 1985. The phototoxicity of noncarcinogenic polycyclic aromatic hydrocarbons in aquatic organisms. *Chemosphere* 14: 1829-1834.

Kagan, J., P.A. Kagan and H.E. Buhse, 1984. Light dependent toxicity of a-terthienyl and anthracene to late embryonic stages of *Rana pipiens*. J. Chem. Ecol. 10: 1115-1122.

Kaiser, K.L.E, M.E. Comba, H. Hunter, R.J. Maguire, R.J. Thacz and R.F. Platford. 1985. Trace organic contaminants in the Detroit River. *J. Great Lakes Res.* 11: 386-399.

Kamens, R.M., Z. Guo, J.N. Fulcher, and D.A. Bell. 1988. Influence of humidity, sunlight and temperature on the daytime decay of polyaromatic hydrocarbons on atmospheric soot particles. *Environ. Sci. Technol.* **22**: 103-108.

Karlesky, D.L., G. Ramelow, Y. Ueno, I.M. Warner and C-N Ho. 1987. Survey of polynuclear aromatic compounds in oil refining areas. *Environ. Poll.* 43: 195-207.

Katz, M. and C. Chan. 1980. Comparative distribution of eight polycyclic aromatic hydrocarbons in airborne particulates collected by conventional high-volume sampling and by size fractionation. *Environ. Sci. Technol.* 14(7): 838-843.

Kayal, S. and D.W. Connell. 1989a. Polycyclic aromatic hydrocarbons in biota from the Brisbane River estuary, Australia. *Estuar.*, *Coastal and Shelf Sci.* **40**: 475-493.

制度

ti: pia

No.

\$-**6**0

Kayal, S.I. and D.W. Connell. 1989b. Polycyclic aromatic hydrocarbons (PAHs) in sediments of the Brisbane River (Australia)- Preliminary results. *Water Sci. Tech.* 21(2): 161-165.

Kayal, S.I. and D.W. Connell. 1989c. Occurrence and distribution of polycyclic aromatic hydrocarbons in surface sediments and water from the Brisbane River estuary, Australia. *Estuar. Coastal Shelf Sci.* **29:** 473-487.

Kennedy, C.J., K.A. Gill, and P. J. Walsh. 1989. Thermal modulation of benzo(a)pyrene metabolism by the gulf toadfish. *Aquat. Toxicol.* **15**: 331-344.

Kerr, R.P. and D.G. Capone. 1988. The effect of salinity on the microbial mineralization of two polycyclic aromatic hydrocarbons in estuarine sediments. *Mar. Environ. Res.* 26: 181-198.

Kezic, N., S. Britvic, M. Protic, J.E. Simmons, M. Rijavec, R.K. Zahn, and B. Kurelec. 1983. Activity of benzo[a]pyrene monooxygenase in fish from the Sava River, Yugoslavia: correlation with pollution. *Sci. Total Environ.* **27**: 59-69.

Kieley, K.M., P.A. Hennigar, R.A.F. Matheson, and W.R. Ernst. 1988. Polynuclear aromatic hydrocarbons and heterocyclic aromatic compounds in Sydney Harbour, Nova Scotia- a 1986 survey. Environmental Protection, Environment Canada, Atlantic Region. Report No. EPS-5-AR-88-7. 41 pp.

Kieley, K.M., R.A.F. Matheson, and P.A. Hennigar. 1986. Polynuclear aromatic hydrocarbons in the vicinity of two Atlantic region wood preserving operations. Environmental Protection Service, Environment Canada, Atlantic Region. Report No. EPS-5-AR-86-3. 28 pp.

King, T.L., J.F. Uthe, and C.J. Musial. 1993. Polycyclic aromatic hydrocarbons in the digestive glands of the American lobster, *Homarus americanus*, captured in the proximity of a coal-coking plant. *Bull. Environ. Contam. Toxicol.* **50**: 907-914.

Kira, S and M. Ogata. 1989. Detection of mutagenicity in mussels and their ambient water. Bull. Environ. Contam. Toxicol. 43: 583-589.

Kirso, U., L. Paalme, M. Voll, E. Urbas and N. Irha. 1990. Accumulation of carcinogenic hydrocarbons at the sediment-water interface. *Mar. Chem.* **30**: 337-341.

Knutzen, J. 1994. Effects on marine organisms from polycyclic aromatic hydrocarbons (PAH) and other constituents of waste water from aluminum smelters with examples from Norway. *Sci. Total Environ.* **163**: 107-122.

Koivusaari, U., M. Harri, and O. Hanninen. 1981. Seasonal variation of hepatic biotransformation in female and male rainbow trout (*Salmo gairdneri*). *Comp. Biochem. Physiol.* **70C**: 149-157.

Kooi, B. 1996. Status of urban programs in pollution abatement. Presented at the 3rd DOE Fraser River Action Plan (FRAP) Research Workshop, February 20-22, 1996. Simon Fraser University, Vancouver, B.C. Environment Canada, Pacific and Yukon Region.

Korfmacher, W.A., E.L. Wehry, G. Mamantov, and D.F.S. Natusch. 1980. Resistance to photochemical decomposition of polycyclic aromatic hydrocarbons vapour-adsorbed on coal fly ash. *Environ. Sci. Technol.* **14**(9): 1094-1099.

Korn, S., A. Moles and S.D. Rice. 1979. Effects of temperature on the median tolerance limit of pink salmon and shrimp exposed to toluene, naphthalene, and Cook Inlet crude oil. *Bull. Environ. Contam. Toxicol.* **21**: 521-525.

Krahn, M.M., D.W. Brown, T.K. Collier, A.J. Friedman, R.G. Jenkins and D.C. Malins. 1980. Rapid analysis of naphthalene and its metabolites in biological systems. *J. Biochem. Biophys. Methods* **2**: 233-246.

Krahn, M.M, D.G. Burrows, W.D. MacLeod, and D.C. Malins. 1987. Determination of individual metabolites of aromatic compounds in hydrolyzed bile of English sole (*Parophyrs vetulus*) from polluted sites in Puget Sound, Washington. *Arch. Environ. Contam. Toxicol.* 16: 511-522.

Krahn, M.M., M.S. Myers, D.G. Burrows, and D.C. Malins. 1984. Determination of metabolites of xenobiotics in the bile of fish from polluted waterways. *Xenobiotica* 14(8): 633-646.

Krahn, M.M., L.D. Rhodes, M.S. Myers, L.K. Moore, W.D. MacLeod, Jr., and D.C. Malins. 1986. Associations between metabolites of aromatic compounds in bile and the occurrence of hepatic lesions in English sole (*Parophyrs vetulus*) from Puget Sound, Washington. *Arch. Environ. Toxicol.* 15: 61-67.

Kucklick J.R. and T.F. Bidleman. 1994. Organic contaminants in Winyah Bay, South Carolina I: Pesticides and polycyclic aromatic hydrocarbons in subsurface and microlayer waters. *Mar. Environ. Res.* **37**: 63-78.

Kuhnhold, W.W. and F. Busch. 1978. On the uptake of three different types of hydrocarbons by salmon eggs (*Salmo salar L.*). *Meeresforsch.* **26**: 50-59 (as cited in Eisler, 1987)

Kveseth, K., B. Sortland, and T. Bokn. 1982. Polycyclic aromatic hydrocarbons in sewage, mussels and tap water. *Chemosphere* 11: 623-639.

1im

9 m

Laflamme, R.W. and R.A. Hites. 1978. The global distribution of polycyclic aromatic hydrocarbons in recent sediments. *Geochim. Cosmochim. Acta* 42: 289-303.

Lake, W.J., N.I. Rubinstein, H. Lee, L.A. Lake, J. Heltshe, and S. Pavignano. 1990. Equilibrium partitioning and bioaccumulation of sediment-associated contaminants by infaunal organisms. *Environ. Toxicol. Chem.* **9**: 1095-1106.

Landahl, J.T., B.B. McCain, M.S. Myers, L.D. Rhodes, and D.W. Brown. 1990. Consistent associations between hepatic lesions in English sole (*Parophyrs vetulus*) and polycyclic aromatic hydrocarbons in bottom sediment. *Environ. Health Perspect.* **89**: 195-203.

Landolt, M., F. Hafer, A. Nevissi, G. van Belle, K. Van Ness, and C. Rockwell. 1985. Potential toxicant exposure among consumers of recreationally caught fish from urban embayments of Puget Sound. NOAA Technical Memorandum. NOS OMA-23. (as cited in Myers *et al*, 1991)

Landrum, P.F. 1983. The effect of co-contaminants on the bioavailability of polycyclic aromatic hydrocarbons to *Pontoporeia hoyi*. *In*: PAHs: Mechanisms, Methods and metabolism. M. Cookes and A.J. Denis (eds.). pgs. 731-745.

Landrum, P.F. 1988. Toxicokinetics of organic xenobiotics in the amphipod, *Pontoporeia hoyi*: role of physiological and environmental variables. *Aquat. Toxicol.* **12**: 245-271.

Landrum, P.R. 1989. Bioavailability and toxicokinetics of polycyclic aromatic hydrocarbons sorbed to sediments for the amphipod *Pontoporeia hoyi*. *Environ. Sci. Technol.* **23**: 588-595.

Landrum, P.F., B.J. Eadie and W.R. Faust. 1991. Toxicokinetics and toxicity of a mixture of sediment-associated polycyclic aromatic hydrocarbons to the amphipod *Diporeia* sp. *Environ. Toxicol. Chem.* **10**: 35-46.

Landrum, P.F., B.J. Eadie, and W. R. Faust. 1992. Variation in the bioavailability of polycyclic aromatic hydrocarbons to the amphipod *Diporea* (spp.) with sediment aging. *Environ. Toxicol. Chem.* 11: 1197-1208.

Landrum, P.F. and D. Scavia. 1983. Influence of sediment on anthracene uptake, depuration and biotransformation by the amphipod *Hyalella azteca*. *Can. J. Fish. Aquat. Sci.* **40**: 298-305.

Lange, U., J. Jedamski-Grymlas, D. Siebers and L. Karbe. 1992. Ethoxyresorufin 0deethylase and cytochrome P450 in the liver of dab (*Limanda limanda*) from the central and southern North Sea. *Mar. Poll. Bull.* **24**(9): 446-451.

Lawrence, J.F. and D.F. Weber. 1984. Determination of polycyclic aromatic hydrocarbons in some Canadian commercial fish, shellfish, and meat products by liquid chromatography with confirmation by capillary gas chromatography-mass spectrometry. J. Agric. Food Chem. 32: 789-794.

Leadly, T.A., L.D. Arcand-Hoy, G.D. Haffner and C.D. Metcalfe. 1999. Fluorescent aromatic hydrocarbons in bile as a biomarker of exposure of brown bullheads (*Ameiurus nebulosus*) to contaminated sediments. *Environ. Toxicol. Chem.* **18**(4): 750-755.

Lech, J.J., M.J. Vodicknick, and C.R. Elcombe. 1982. Induction of monooxygenase activity in fish. *In*: Aquatic Toxicology. W.J. Weber, Ed. Raven Press, New York. pp. 107-148.

Lee, R.F., W.S. Gardner, J.W. Anderson, J.W. Blaylock, and J. Barwell-Clarke. 1978. Fate of polycyclic aromatic hydrocarbons in controlled ecosystem enclosures. *Environ. Sci. Technol.* **12**(7): 832-838.

Lee, R.F., C. Ryan and M.L. Neuhaser. 1976. Fate of petroleum hydrocarbons taken from food and water by the blue crab *Callinectes sapidus*. *Mar. Biol.* 17: 201-208.

Lee, R.F. and S.C. Singer. 1980. Detoxifying enzyme system in marine polychaetes: increases in activity after exposure to aromatic hydrocarbons. *Rapp. P.-V. Reun., Cons. Int. Explor. Mer* 179: 29-32.

Lee, R.F., S.C. Singer and D.S. Page. 1981. Responses of cytochrome P-450 systems in marine crab and polychaetes to organic pollutants. *Aquat. Toxicol.* 1:355-365.

Lemaire, P., P.J. Den Besten, S.C.M. O'Hara, and D.R. Livingstone. 1993. Comparative metabolism of benzo[a]pyrene by microsomes of hepatopancreas of the shore crab *Carcinus maenas* L. and digestive gland of the common mussels, *Mytilus edulis* L. *Poly. Arom. Comp.* **3**(Suppl): 1133-1140.

Lemaire, P., S. Lemaire-Gony, J. Berhaut and M. Lafaurie. 1992. The uptake, metabolism, and biological half-life of benzo[a]pyrene administered by force-feeding in sea bass *Dicentrarchus labrax*. *Ecotoxicol. Environ. Safety* **23**: 244-251.

LGL (Lalonde, Girouard, Letendre et Associés). 1993. PAH emissions into the environment in Canada - 1990. Prepared for Environment Canada, Conservation and Protection, Quebec Region, Montreal, Quebec.

Lippanen, M.T. and J.V.K. Kukkonen. 1998. Relative importance of ingested sediment and pore water as bioaccumulation routes for pyrene to oligochaete (*Lumbriculus variegatus*, Muller). *Environ. Sci. Technol.* **32**: 1503-1508.

Lindstrom-Seppa, P., O. Hanninen, J. Tuominen, and H. Pyysalo. 1990. Polycyclic aromatic hydrocarbons in perch (*Perca fluviatilis*) following an oil-spill in Vaasa Archipelago, Finland. *Toxicol. Environ. Chem.* **19:** 83-86.

b se

1

i ana

Lipiatou, E. and A. Saliot. 1991. Fluxes and transport of anthropogenic and natural polycyclic aromatic hydrocarbons in the western Mediterranean Sea. *Mar. Chem.* **32**: 51-71.

Livingstone, D.R. and S.V. Farrar. 1985. Responses of the mixed oxidase system of some bivalve and gastropod molluscs to exposure to polynuclear aromatic and other hydrocarbons. *Marine Environ. Res.* 17: 101-105.

Livingstone, D.R., P. Lemaire, A. Matthews, L. Peters, D. Bucke and R.J. Law. 1993. Prooxidant, antioxidant and 7-ethoxyresorufin 0-deethylase (EROD) activity responses in liver of dab (*Limanda limanda*) exposed to sediment contaminated with hydrocarbons and other chemicals. *Mar. Poll. Bull.* **26**(11): 602-606.

Long, E., D. MacDonald, M. Baker Matta, K. Van Ness, M. Buchman and H. Harris. 1988. Status and trends in concentrations of contaminants and measures of biological stress in San Francisco Bay, California. National Oceanic and Atmospheric Administration, NOAA Technical Memorandum NOS OMA 41. Seattle, Washington, 268 pp. (as cited in Pereira *et al*, 1996).

Long, E.R., D.D. MacDonald, S.L. Smith and F.D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. *Environ. Manage.* **19**: 81-97.

Lotufo, G.R. 1997. Toxicity of sediment-associated PAHs to an estuarine copepod: effects on survival, feeding, reproduction and behaviour. *Mar. Environ. Res.* 44(2): 149-166.

Lunde, G. and A. Bjorseth. 1977. Polycyclic aromatic hydrocarbons in long-range transported aerosols. *Nature* **268**: 518-519.

Lyman, W.J., W.F. Reehl and D.H. Rosenblatt. 1982. Handbook of chemical property estimation methods. Chapter 15: Environmental behaviour. McGraw Hill, New York.

MacCubbin, A.E., J.J. Black, and B.P. Dunn. 1990. 32 P-Postlabeling detection of DNA adducts in fish from chemically contaminated waterways. *Sci. Total Environ.* 94: 89-104.

MacCubbin, A.E., S. Chidambaram, and J.J. Black. 1988. Metabolites of aromatic hydrocarbons in the bile of brown bullheads. J. Great Lakes Res. 14(1): 101-108.

Macdonald, R.W. and E.A. Crecelius. 1994. Marine sediments in the Strait of Georgia, Juan de Fuca Strait and Puget Sound: what can they tell us about contamination? *In:* Review of the Marine Environment and Biota of Strait of Georgia, Puget Sound and Juan de Fuca Strait, Proceedings of the B.C./Washington Symposium on the Marine Environment, January 13 and 14, 1994. Wilson, R.C.H., R.J. Beamish, F. Aitkens and J. Bell, eds. Canadian Technical Report of Fisheries and Aquatic Sciences No. 1948. pgs. 101-137.

MacKay, D. and W. Y. Shiu. 1977. Aqueous solubility of polynuclear aromatic hydrocarbons. J. Chem. Eng. Data 22: 399-402.

MacKenzie, M.J. and J.V. Hunter. 1979. Sources and fates of aromatic compounds in urban stormwater runoff. *Environ. Sci. Technol.* 13(2): 179-183.

Maher, W.A. and J. Aislabie. 1992. Polycyclic aromatic hydrocarbons in nearshore marine sediments of Australia. *Sci. Total Environ.* **112**: 143-164.

Majewski, H.S. and E. Scherer. 1985. Uptake and depuration of two polycyclic aromatic hydrocarbons, fluorene, and benzo[a]pyrene, in the mussel *Mytilus edulis* and the diatom *Phaeodactylum tricornutum. Water Poll. Res. J. Canada* **20**(2): 29-35.

Malins, D.C., M.M. Krahn, D.W. Brown, L.D. Rhodes, M.S. Myers, and B.B. McCain, and S-L. Chan. 1985. Toxic chemicals in marine sediment and biota from Mukilteo, Washington: relationships with hepatic neoplasms and other hepatic lesions in English sole (*Parophrys vetulus*). Jour. Nation. Cancer Inst. 74(2): 487-494.

Malins, D.C., B.B. McCain, D.W. Brown, S.L. Chan, M.A. Myers, J.T. Landahl, P.C. Prohaska, A.J. Friedman, L.D. Rhodes, D.G. Burrows, W.D. Gronlund and H.U. Hodgins. 1984. Chemical pollutants in sediments and diseases of bottom-dwelling fish in Puget Sound, Washington. *Environ. Sci. Technol.* 18: 705-713.

Malins, D.C., B.B. McCain, D.W. Brown, A.K. Sparks and H.O. Hodgins. 1980. Chemical contaminants and biological abnormalities in central and southern Puget Sound. NOAA Tech. Memo. OMPA-2, pp. 1-295.

Malins, D.C., B.B. McCain, J.T. Landahl, M.S. Myers, M.M. Krahn, D.W. Brown, S-L Chan, and W.T. Roubal. 1988. Neoplastic and other diseases in fish in relation to toxic chemicals: an overview. *Aquat. Toxicol.* **11**: 43-67.

Marcus, J.M. and T.P. Stokes. 1985. Polynuclear aromatic hydrocarbons in oyster tissue around three coastal marinas. *Bull. Environ. Cont. Toxicol.* 35: 835-844.

Marr, L.C., T.W. Kirchstetter, R.A. Harley, A.H. Miguel, S.V. Hering, and S.K. Hammond. 1999. Characterization of polycyclic aromatic hydrocarbons in motor vehicle fuels and exhaust emissions. *Environ. Sci. Technol.* **33**: 3091-3099

ii mi

1

Martel, L., M.J. Gagnon, R Masse and A Leclerc. 1987. The spatio-temporal variations and fluxes of polycyclic aromatic hydrocarbons in the sediments of the Saguenay Fjord, Quebec, Canada. *Water Res.* 21(6): 699-707.

Maruya, K.A., R. W. Risebrough, and A.J. Horne. 1996. Partitioning of polynuclear aromatic hydrocarbons between sediments from San Francisco Bay and their porewaters. *Environ. Sci. Technol.* **30**: 2942-2947.

Maruya, K.A., R.W. Risebrough and A.J. Horne. 1997. The bioaccumulation of polynuclear aromatic hydrocarbons by benthic invertebrates in an intertidal marsh. *Environ. Toxicol. Chem.* **16**(6): 1087-1097.

Masclet, P., P. Pistikopoulos, S.Beyne, and G. Mouvier. 1988. Long range transport and gas/particle distribution of polycyclic aromatic hydrocarbons at a remote site in the Mediterranean Sea. *Atmos. Environ.* **22**: 639-650.

Matheson, R.A.F., G.L. Trider, W.R. Ernst, K.G. Hamilton, and P.A. Hennigar. 1983. Investigation of polynuclear aromatic hydrocarbon contamination of Sydney Harbour, Nova Scotia. Environmental Protection Service, Environment Canada, Atlantic Region. Report No. EPS-5-AR-83-6. 86 pp.

McCain, B.B., H.O. Hodgins, W.D. Gronlund, J.W. Hawkes, D.W. Brown, M.S. Myers and J.H. Vandermeulen. 1978. Bioavailability of crude oil from experimentally oiled sediments to English sole (*Parophyrs vetulus*), and pathological consequences. J. Fish. Res. Board Can. **35:** 657-664.

McCarthy, J.F. and B.D. Jimenez. 1985a. Interactions between polycyclic aromatic hydrocarbons and dissolved humic material: binding and dissociation. *Environ. Sci. Technol.* **19**(11): 1072-1076.

McCarthy, J.F. and B.D. Jimenez. 1985b. Reduction in bioavailability to bluegills of polycyclic aromatic hydrocarbons bound to dissolved humic material. *Environ. Toxicol. Chem.* **4**: 511-521.

McCarthy, J.F., B.D. Jimenez and T. Barbee. 1985. Effect of dissolved humic material on accumulation of polycyclic aromatic hydrocarbons: structure-activity relationships. *Aquat. Toxicol.* **7**: 15-24.

McCarthy, J.F., D.N. Jacobson, L. R. Shugart, and B.C. Jimenez. 1989. Pre-exposure to 3methylcholanthrene increases benzo(a)pyrene adducts on DNA of bluegill sunfish. *Mar. Environ. Res.* 28: 323-328.

McDonald, S.J., M.C. Kennicutt, and J.M. Brooks. 1992. Evidence of polycyclic aromatic hydrocarbon (PAH) exposure in fish from the Antarctic Peninsula. *Mar. Poll. Bull.* 25: 9-12.

McElroy, A.E. 1990. Polycyclic aromatic hydrocarbon metabolism in the polychaete *Nereis virens. Aquat.Toxicol.* **18**: 35-50.

McElroy, A.E. and K.M. Kleinow. 1992. In-vitro metabolism of benzo(a)pyrene and benzo(a)pyrene-7,8-dihydrodiol by liver and intestinal mucosa homogenates from the winter flounder (*Pseudopleuronectes americanus*). Mar. Environ. Res. 34: 279-285.

McElroy, A.E. and J.D. Sisson. 1989. Trophic transfer of benzo(a)pyrene metabolites between benthic marine organisms. *Mar. Environ. Res.* 28: 265-269.

McGroddy, S.E. and J. W. Farrington. 1995. Sediment porewater partitioning of polycyclic aromatic hydrocarbons in three cores from Boston Harbour, Massachusetts. *Environ. Sci. Technol.* **29:** 1542-1550.

McLeese, D.W. 1982. Accumulation of polynuclear aromatic hydrocarbons (PAH) from water and sediment by marine invertebrates. In: Report on Ocean Dumping R and D Pacific Region, Department of Fisheries, 1980-1981. S.C. Byers and G.S. Calderwood, Eds. Canadian Contractor Report of Hydrography and Ocean Sciences 3. Institute of Ocean Sciences, Department of Fisheries and Oceans, Sidney, B.C. pg. 20-21.

1.0

10**0**0

10

McVeety, B.D., and R.A. Hites. 1988. Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: a mass balance approach. *Atmosph. Environ.* 22: 511-536.

Metcalfe, C.D., G.C. Balch, V.W. Cairns, J.D. Fitzsimmons, and B.P. Dunn. 1990. Carcinogenic and genotoxic activity of extracts from contaminated sediments in western Lake Ontario. *Sci. Total Environ.* 94: 125-141.

Metcalfe, C.D., V.W. Cairns, and J.D. Fitzsimons. 1988. Experimental induction of liver tumours in rainbow trout (*Salmo gairdneri*) by contaminated sediment from Hamilton Harbour, Ontario. *Can. J. Aquat. Sc.* **45**: 2161-2167.

Michel, X.R., P.M. Cassand, D.G. Ribera and J.F. Narbonne. 1993. Metabolism of benzo[a]pyrene by microsomes from mussel digestive gland and sea bass liver. *In*: Polycyclic aromatic compounds XIII: Synthesis, properties, analytical measurements, occurrence and biological effects. P. Garrigues and M. Lamotte, eds. Proc. 13th International Symposium on Polynuclear Aromatic Hydrocarbons. October 1 to 4, 1991. Bordeaux, France. Gordon and Breach Sciences Publishers. Yverdon, Switzerland. pp. 1071-1078.

Michel, X., J.-P. Salaun, F. Galgani and J.-F. Narbonne. 1994. Benzo(a)pyrene hydroxylase activity in the marine mussel *Mytilus galloprovincialis*: a potential marker of contamination by polycyclic hydrocarbon-type compounds. *Marine Env. Res.* **38**: 257-273.

Mihelcic, J.R. and R.G. Luthy. 1988. Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. *Appl. Environ. Microbiol.* 54(5): 1182-1187.

Millemann, R.E., W.J. Birge, J.A. Black, R.M. Cushman, K.L. Daniels, P.J. Franco, J.M. Giddings, J.F. McCarthy, and A.J. Stewart. 1984. Comparative acute toxicity of aquatic organisms or components of coal-derived synthetic fuels. *Trans. Amer. Fish Soc.* 133: 74-85.

Miller, D.L., J.P. Corliss, R.N. Farragut, and H.C. Thompson, Jr. 1982. Some aspects of the uptake and elimination of the polynuclear aromatic hydrocarbon chrysene by mangrove

snapper, *Lutjanus griseus*, and pink shrimp, *Penaeus duorarum. In:* N.L. Richards and B.L. Jackson, eds. Proc. of Carcinogenic Polynuclear Aromatic Hydrocarbons in the Marine Environment. August 14 to 18, 1978. Pensacola Beach, Florida. pp. 321-335.

Miller, E.C. and J.A. Miller. 1981. Mechanisms of chemical carcinogenesis. *Cancer* 47: 1055-1064.

Misitano, D.A. and M.H. Schiewe. 1990. Effect of chemically contaminated marine sediment on naupliar production of the marine harpacticoid copepod, *Tirgriopus californicus*. *Bull. Environ. Contam. Toxicol.* 44: 636-642.

Mix, M.C. 1982. Polynuclear aromatic hydrocarbons and cellular proliferative disorders in bivalve molluscs from Oregon estuaries. U.S. Environmental Protection Agency. Report No. 600/4-82-026. 49 pp.

Mix, M.M., S.J. Hemingway, and R.L. Schaffer. 1982. Benzo(a)pyrene concentrations in somatic and gonad tissues of bay mussels, *Mytilus edulis*. *Bull. Environ. Contam. Toxicol.* **28**: 46-51.

Mix, M.C. and R.L. Schaffer. 1983a. Concentrations of unsubstituted polycyclic aromatic hydrocarbons in softshell clams from Coos Bay, Oregon, USA. *Mar. Poll. Bull.* 14(3): 94-97.

Mix, M.C. and R.L. Schaffer. 1983b. Concentrations of unsubstituted polynuclear aromatic hydrocarbons in bay mussels *Mytilus edulis* from Oregon, USA. *Mar. Environ. Res.* **9**: 193-209.

Mix, M.C., R.L. Schaffer, and S.J. Hemingway. 1981. Polynuclear aromatic hydrocarbons in bay mussels (*Mytilus edulis*) from Oregon. *In:* Phyletic approaches to cancer. C.J. Dawe, J.C. Harshbarger, S. Kondo, T. Sugimura and S. Takayama, eds. Japan Sci. Soc. Press, Tokyo. pp. 167-177.

Moller, M., I. Alfheim, S. Larssen and A. Mikalsen. 1982. Mutagenicity of airborne particles in relation to traffic and air pollution parameters. *Environ. Sci. Technol.* **16**(4):221-225.

Monson, P.D., G.T. Ankley, and P.A. Kosian. 1995. Phototoxic response of *Lumbriculus* variegatus to sediments contaminated by polycyclic aromatic hydrocarbons. *Environ. Toxicol.* Chem. 14: 891-894.

Moore, J.W. and S. Ramamoorthy. 1984. Aromatic hydrocarbons - polycyclics. *In*: Organic Chemicals in Natural Waters: Applied Monitoring and Impact Assessment. Springer-Verlag, New York, NY. p. 76-87.

Mothershead, R.F. and R.C. Hale. 1992. Influence of ecdysis on the accumulation of polycyclic aromatic hydrocarbons in field exposed blue crabs (*Callinectes sapidus*). *Mar. Environ. Res.* **33**: 145-156.

Mothershead, R.F., R.C. Hale and J. Greaves. 1991. Xenobiotic compounds in blue crabs from a highly contaminated urban sub-estuary. *Environ. Toxic. Chem.* 10: 1341-1349.

Muel, B. and S. Saguem. 1985. Determination of 23 polycyclic aromatic hydrocarbons in atmospheric particulate matter of the Paris area and photolysis by sunlight. *Intern. J. Environ. Anal. Chem.* **19**: 111-131.

-

10 10

Mueller, J.G., P.J. Chapman, and P.H. Pritchard. 1989. Creosote-contaminated sites. *Environ. Sci. Technol.* 23(10): 1197-1201.

Muller, J. 1984. Atmospheric residence time of carbonaceous particles and particulate PAH-compounds. *Sci. Total Environ.* **36**: 339-346.

Myers, M.S., J.T. Landahl, M.M. Krahn, and B.B. McCain. 1991. Relationships between hepatic neoplasms and related lesions and exposure to toxic chemicals in marine fish from the U.S. west coast. *Environ. Health Perspect.* **90**: 7-15.

Myers, M.S., L.L. Johnson, T. Hom, T.K. Collier, J.E. Stein, and U. Varanasi. 1997. Toxicopathic hepatic lesions in subadult English sole (*Pleuronectes vetulus*) from Puget Sound, Washington, U.S.A.: relationships with other biomarkers of contaminant exposure. *Mar. Environ. Res.* 45(1): 47-67.

Myers, M.S., O.P. Olson, L.L. Johnson, T. Hom and U. Varanasi. 1991b. Toxicopathic hepatic lesions in juveniles of three species of flatfish from Puget Sound, Washington: relationship to other indicators of contaminant exposure. *In:* Proceedings of the 17th Annual Aquatic Toxicity Workshop: November 5-7, 1990, Vancouver, B.C. Chapman, P., F. Bishay, E. Power, K. Hall, L. Harding, D. McLeay, M. Nassichuk and W. Knapp, eds. Canadian Technical Report of Fisheries and Aquatic Sciences No. 1774 (Volume 1).

Naes, K., J. Knutzen, L. Berglind, and T. Norseth. 1994. Occurrence of PAH in marine organisms and sediments from smelter discharge in Norway. *Sci. Total Environ.* 163: 93-106.

Naes, K. and E. Oug. 1997. Multivariate approach to distribution patterns and fate of polycyclic aromatic hydrocarbons in sediments from smelter-affected Norwegian fjords and coastal waters. *Environ. Sci Technol.* **31**(5): 1253-1258.

Naf, C., D. Broman, H. Pettersen, C. Rolff, and Y. Zebuhr. 1992. Flux estimates and pattern recognition of particulate polycyclic aromatic hydrocarbons, polychlorinated dibenzop-dioxins, and dibenzofurans in the waters outside various emission sources of the Swedish Baltic coast. *Environ. Sci. Technol.* **26**(7): 1444-1457.

Nagata, S. and G. Kondo. 1977. Photooxidation of crude oils. *In*: Proc. Oil Spill Conference (Prevention, Behaviour, Control, Cleanup). Washington, D.C. American Petroleum Institute. pp. 617-620 (as cited in Neff, 1979)

Nagpal, N.K. 1993. Ambient Water Quality Criteria for Polycyclic Aromatic Hydrocarbons (PAHs). Water Quality Branch, Water Management Division, B.C. Ministry of Environment, Lands and Parks. 117 pp.

Narbonne, J.F., D. Ribera, P. Garrigues, M. Lafaurie, and A. Romana. 1992. Different pathways for the uptake of benzo(a)pyrene adsorbed to sediment by the mussel *Mytilus galloprovincialis*. *Bull. Environ. Contam. Toxicol.* **49**: 150-156.

NRC (National Research Council of Canada). 1983. Polycyclic Aromatic Hydrocarbons in the Aquatic Environment: Formation, Sources, Fate and Effects on Aquatic Biota. NRC Associate Committee on Scientific Criteria for Environmental Quality, Publication No. NRCC 18981, Ottawa, Ontario. 209 pp.

Neff, J.M. 1979. Polycyclic aromatic hydrocarbons in the aquatic environment: sources, fate and biological effects. Applied Science Publishers, London. 262 pp.

Neff, J.M. and J.W. Anderson. 1975. Accumulation, release and distribution of benzo[a]pyrene 14C in the clam *Rangia cumecta*. *In:* Proc. Confer. on Prevention and Control of Oil Pollution. J.W. Anderson, ed., American Petroleum Institute, Washington, D.C. pp. 469-471.

Newsted, J.L. and J.P. Giesy. 1987. Predictive models for photoinduced acute toxicity of polycyclic aromatic hydrocarbons to *Daphnia magna*. *Environ. Toxicol. Chem.* **6**: 445-461.

Nielson, T. 1988. The decay of benzo(a)pyrene and cyclopenteno(cd)pyrene in the atmosphere. *Atmos. Environ.* 22: 2249-2254.

Nikolauo, K., P. Masclet and G. Mouvier. 1984. Sources and chemical reactivity of polynuclear aromatic hydrocarbons in the atmosphere - a critical review. *Sci. Total Environ.* **32**: 103-132.

Oikara. A. and J. Kukkonen. 1990. Bioavailability of benzo(a)pyrene and dehydroabietic acid from a few lake waters containing varying dissolved organic carbon concentrations to *Daphnia magna. Bull. Environ. Contam. Toxicol.* **45**: 54-61.

Okey, A.B. 1989. Carcinogenesis and mutagenesis by xenobiotics: principles of medical pharmacology. 5th Edition. Kohent A. and Roschlon, eds. Elsevier Press, Amsterdam. pp. 632-643.

be III

O'Malley, V.P., T.A. Abrajano, Jr., and J. Hellou. 1996. Stable carbon isotope apportionment of individual polycyclic aromatic hydrocarbons in St. John's harbour, Newfoundland. *Environ. Sci. Technol.* **30**: 634-639.

O'Neill, H.J. and K.M. Kieley. 1992. Polynuclear aromatic hydrocarbons: Atlantic Region data summary and review. Environment Canada, Conservation and Protection, Atlantic Region, Moncton, N.B. 64 pp.

Oris, J.T. and J.P. Geisy. 1986. Photoinduced toxicity of anthracene to juvenile bluegill sunfish (*Lepomis macrochirus*): photoperiod effects and predictive hazard evaluation. *Environ. Toxicol. Chem.* 5: 761-768.

Oris, J.T. and J.P. Giesy. 1985. The photoenhanced toxicity of anthracene to juvenile sunfish (*Lepomis spp.*). Aquat. Toxicol. 6: 133-146.

Oris, J.T. and J.P. Giesy. 1987. The photo-induced toxicity of polycyclic aromatic hydrocarbons to larvae of the fathead minnow (*Pimephales promelas*). Chemosphere 16(7): 1395-1404.

Oris, J.T., A.T. Hall, and J.D. Tylka. 1990. Humic acids reduce the photo-induced toxicity of anthracene to fish and *daphnia*. *Environ. Toxicol. Chem.* **9**: 575-583.

Ott, F.S., R.P. Harris, and S.C.M. O'Hara. 1978. Acute and sublethal toxicity of naphthalene and three methylated derivatives to the estuarine copepod, *Eurytemora affinis*. *Mar. Environ. Res.* 1: 49-58.

Paine, M.D., P.M. Chapman, P.J. Allard, M.H. Murdoch, and D. Minifie. 1996. Limited bioavailability of sediment PAH near an aluminum smelter: contamination does not equal effects. *Environ. Toxicol. Chem.* **15**(11): 2003-2018.

Pangrekar, J. and H.C. Sikka. 1992. Xenobiotic metabolizing enzyme activity in the liver and kidney of the brown bullhead (*Ictalurus nebulosus*). Mar. Environ. Res. 34: 287-291.

Payne, J.F. and N. May. 1979. Further studies on the effect of petroleum hydrocarbons on mixed-function oxidases in marine organisms. *In*: Pesticide and Xenobiotic Metabolism in Aquatic Organisms. M.A.Q. Khan, J.J. Lech, J.J. Menn, Eds. American Chemical Society, Washington, D.C. pp. 339-347.

Payne, J.F., L. Fancey, J. Kiceniuk, U. Williams, J. Osborne and A. Rahimyula. 1985. Mixed-function oxygenases as biological monitors around petroleum hydrocarbons development sites: potential for induction by diesel and other drilling mud base oils containing reduced levels of polycyclic aromatic hydrocarbons. *Mar. Environ. Res.* 17: 328-332.

Payne, J.F., I. Martins, and A. Rahimtula. 1978. Crankcases oils: are they a major mutagenic burden in the aquatic environment? *Science* 200: 329-330.

Payne, J.F., A. Rahimtula and S. Lein. 1983. Metabolism of petroleum hydrocarbons by marine organisms: the potential of bivalve molluscs. *Proc. Can. Fed. Biol. Soc.* 26: 99.

Pelletier, M.C., R.M. Burgess, K.T. Ho, A Kuhn, R.A. McKinney, and S.A. Ryba. 1997. Phototoxicity of individual polycyclic aromatic hydrocarbons and petroleum to marine invertebrate larvae and juveniles. *Environ. Toxicol. Chem.* **16**(10): 2190-2199.

Pendoley, K. 1992. Hydrocarbons in Rowley Shelf (western Australia) oysters and sediments. *Mar. Poll. Bull.* **24**(4): 210-215.

Perdu, E., N. Gasc, J.P. Cravedi and J. Tulliez. 1993. Comparative biotransformation of benzo[a]pyrene in TCDD induced chondrostei and teleost fish. *In:* Polycyclic aromatic compounds XIII: Synthesis, properties, analytical measurements, occurrence and biological effects. P. Garrigues and M. Lamotte, eds. Proc. 13th International Symposium on Polynuclear Aromatic Hydrocarbons. October 1 to 4, 1991. Bordeaux, France. Gordon and Breach Science Publ., Yverdon, Switzerland. pp. 1111-1118.

Pereira, W.E., F.D. Hostettler, and J. B Rapp. 1992. Bioaccumulation of hydrocarbons derived from terrestrial and anthropogenic sources in the Asian clam, *Potamocorbula amurensis*, in San Francisco Bay Estuary. *Mar. Poll. Bull.* **24**(2): 103-109.

Pereira, W.E., F.D. Hostettler, and J.B. Rapp. 1996. Distributions and fate of chlorinated pesticides, biomarkers and polycyclic aromatic hydrocarbons in sediments along a contamination gradient from a point-source in San Francisco Bay, California. *Mar. Environ. Res.* **41**(3): 299-314.

Peters, A.J., D.J. Gregor, C.F. Teixeira, N.P. Jones, and C. Spencer. 1995. The recent depositional trend of polycyclic aromatic hydrocarbons and elemental carbon to the Agassiz Ice Cap, Ellesmere Island, Canada. *Sci. Total Environ.* **160/161**: 167-179.

Pierce, R.C. and M. Katz. 1975. Dependency of polynuclear aromatic hydrocarbon content on size distribution of atmospheric aerosols. *Environ. Sci. Technol.* **9**: 347-353.

Pittinger, C.A., A.L. Buikema, Jr., and J.O. Falkinham. 1987. *In situ* variations in oyster mutagenicity and tissue concentrations of polycyclic aromatic hydrocarbons. *Environ. Toxicol. Chem.* 6: 51-60.

Pitts, J.N., D.M. Lokensgard, P.S. Ripley, K.A. Van Cauwenberghe, L. Van Vaeck, S.D. Shaffer, A.J. Thill and W.L. Belser, Jr. 1980. Atmospheric epoxidation of benzo[a]pyrene by ozone: formation of the metabolite benzo[a]pyrene-4,5-oxide. *Science* **210**(4476): 1347-1349.

Pitts, J.N., K.A. Van Cauwenberghe, D. Grosjean, J.P. Schmid, D.R. Fitz, W.L. Belser, G.B. Knudson, and P.M. Hynds. 1978. Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives. *Science* **202**(3): 515-519.

1.18

is).

Platt, H.M. and P.R. Mackie. 1981. Sources of Antarctic hydrocarbons. *Mar. Poll. Bull.* 12: 407-409.

Prahl, F.G. and R. Carpenter. 1979. The role of zooplankton fecal pellets in the sedimentation of polycyclic aromatic hydrocarbons in Dabob Bay, Washington. *Geochim. Cosmochim. Acta* **43**: 1959-1972.

Prahl, F.G., E. and R. Carpenter. 1983. Polycyclic aromatic hydrocarbon (PAH)-phase associations in Washington coastal sediment. *Geochim. Cosmochim. Acta* 47: 1013-1023.

Prahl, F.G., E. Crecelius, and R. Carpenter. 1984. Polycyclic aromatic hydrocarbons in Washington coastal sediments: an evaluation of atmospheric and riverine routes of introduction. *Environ. Sci. Technol.* 18: 687-693.

Pritchard, M.K., J.W. Fournie, and V.S. Blazer. 1996. Hepatic neoplasms in wild common carp. J. Aquat. Anim. Health 8: 111-119.

Pruell, R.J., J.L. Lake, W.R. Davies, and J.G. Quinn. 1986. Uptake and depuration of organic contaminants by blue mussels *Mytilus edulis* exposed to environmentally contaminated sediments. *Mar. Biol.* **91**: 497-508.

Raino, K., R.R. Linko, and L Ruotsila. 1986. Polycyclic aromatic hydrocarbons in mussel and fish from the Finnish Archipelago Sea. *Bull. Environ. Contam. Toxicol.* 37: 337-343.

Ramdahl, T. 1983. Retene - a molecular marker of wood combustion in ambient air. *Nature* **306**: 580-582.

Readman, J.W., R.F.C. Mantoura, M.M. Rhead, and L. Brown. 1982. Aquatic distribution and heterotrophic degradation of polycyclic aromatic hydrocarbons (PAH) in the Tamar Estuary. *Estuar. Coastal and Shelf Sci.* 14: 369-389.

Reddy, P.S., R.V. Katyayani, and M. Fingerman. 1996. Cadmium and naphthalene-induced hyperglycemia in the fiddler crab, *Uca pugilator*: differential modes of action on the neuroendocrine system. *Bull. Environ. Contam. Toxicol.* **56**: 425-431.

Reichart, W.L., B-T. Le Eberhart, and U. Varanasi. 1985. Exposure of two species of deposit-feeding amphipods to sediment-associated [3H]benzo[a]pyrene: uptake, metabolism and covalent binding to tissue macromolecules. *Aquat. Toxicol.* **6**: 45-56.

Ringuette, S., A. Germain, C. Gonthier, and F. Perron. 1993. Presence of PAHs in the Canadian environment - an overview. Environment Canada, Conservation and Protection. 24 pp.

Rochne, K.J. and S.E. Strand. 1998. Biodegradation of bicyclic and polycyclic aromatic hydrocarbons in anaerobic enrichments. *Environ. Sci. Technol.* **32**(24): 3962-3967.

Roesijadi, G., D.L. Woodruff, and J.W. Anderson. 1978. Bioavailability of naphthalenes from marine sediments artificially contaminated with Prudhoe Bay crude oil. *Environ. Poll.* 15: 223-229.

Rossi, S.S. and William H. Thomas. 1981. Solubility behaviour of three aromatic hydrocarbons in distilled water and natural seawater. *Environ. Sci. Technol.* **15**(6): 715-716.

Rudolph, A. and M.I. Rudolph. 1999. Activity of benzo(a)pyrene hydroxylase in three marine species. *Bull. Environ. Contam. Toxicol.* 63: 639-645.

Sabourin, T.D. 1982. Respiratory and circulatory responses of the blue crab to naphthalene and the effect of acclimation salinity. *Aquat. Toxicol.* **2**: 301-318.

Sabourin, T.D. and R.E. Tullis. 1981. Effect of three aromatic hydrocarbons on respiration and heart rates of the mussel, *Mytilus californianus*. *Bull. Environ. Cont. Toxicol.* **26**: 729-736.

Salmeen, I., A.M. Durisin, T.J. Prater, T. Riley, and D. Schuetzle. 1982. Contribution of 1nitropyrene to direct acting Ames assay mutagenicities of diesel particulate extracts. *Mutat. Res.* 104: 17-23.

Sanborn, H.R. and D.C. Malins. 1980. The disposition of aromatic hydrocarbons in adult spot shrimp (*Pandalus platyceros*) and the formation of metabolites of naphthalene in adult and larval spot shrimp. *Xenobiotica* **10**(3): 193-200.

Sanders, G., J. Hamilton-Taylor, and K.C. Jones. 1996. PCB and PAH dynamics in a small rural lake. *Environ. Sci. Technol.* **30**: 2958-2966.

Sarojini, R., P.S. Reddy, R. Nagabhushanam, and M. Fingerman. 1993. Naphthaleneinduced cytotoxicity on the hepatopancreatic cells of the red swamp crayfish, *Procambarus clarkii. Bull. Environ. Contam. Toxicol.* **51**: 689-695. Sato, C., H. Kim, and J.T. Tanacredi. 1992. Characterization of polycyclic aromatic hydrocarbons (PAHs) by the kinetics of depuration in bivalve molluscs, *Mercenaria mercenaria. Water Sci. Tech.* **25**(3): 33-38.

Scarpato, R., L Migliore, G. Alfinito-Cognetti and R. Barale. 1990. Induction of micronuclei in gill tissue of *Mytilus galloprovincialis* exposed to polluted marine waters. *Mar. Poll. Bull.* 21(2): 74-80.

Schiewe, M.H., D.D. Weber, M.S. Myers, F.J. Jacques, W.L. Reichert, C.A. Krone, D.C. Malins, B.B. Malins, S-L Chan, and U. Varanasi. 1991. Induction of foci of cellular alteration and other hepatic lesions in English sole (*Parophrys vetulus*) exposed to an extract of an urban marine sediment. *Can. J. Fish. Aquat. Sci.* 48: 1750-1760.

ban

i in shi

Schlautman, M.A. and J.J. Morgan. 1993. Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. *Environ. Sci. Technol.* 27: 961-969.

Schnell, J.V., E.H. Gruger, and D.C. Malins. 1980. Monooxygenase activities of coho salmon (*Oncorhynchus kisutch*) liver microsomes using three polycyclic aromatic hydrocarbon substrates. *Xenobiotica* 10: 229-234.

Schnitz, A.R., K.S. Squibb, and J.M. O'Connor. 1987. Fate of 7,12dimethylbenz[a]anthracene in rainbow trout, *Salmo gairdneri*. *Bull. Environ. Contam. Toxicol.* **39**: 29-36.

Sekela, M., R. Brewer, C. Baldazzi, G. Moyle, and T. Tuominen. 1995. Survey of contaminants in suspended sediment and water in the Fraser River Basin. Report prepared for Fraser River Action Plan, Environment Canada, Pacific and Yukon Region. Report No. DOE FRAP 1995-21. 170 pp.

Shiaris, M.P. 1989a. Seasonal biotransformation of naphthalene, phenanthrene, and benzo(a)pyrene in surficial estuarine sediments. *Appl. Environ. Microbiol.* 55: 1391-1399.

Shiaris, M.P. 1989b. Phenanthrene mineralization along natural salinity gradient in an urban estuary, Boston Harbour, Massachusetts. *Microbial Ecol.* 18: 135-146.

Shiaris, M.P. and D. Jambard-Sweet. 1986. Polycyclic aromatic hydrocarbons in surficial sediments of Boston Harbour, Massachusetts, USA. *Mar. Poll. Bull.* 17(10): 469-472.

Shugart, L.R. 1988. Quantitation of chemically induced damage to DNA of aquatic organism by alkaline unwinding assay. *Aquat. Toxicol.* 13:43-52.

Shugart, L.R. 1990. 5-methyl deoxycytidine content of DNA from bluegill sunfish (Lepomis macrochirus) exposed to benzo[a]pyrene. Environ. Toxicol. Chem. 9: 205-208.

Shugart, L., J. McCarthy, B. Jimenez and J. Daniels. 1987. Analysis of adduct formation in the bluegill sunfish (*Lepomis macrochirus*) between benzo(a)pyrene and DNA of the liver and hemoglobin of the erythrocyte. *Aquat. Toxicol.* **9**: 319-325.

Sikka, H.C., J.P. Rutkowski and C. Kandaswami. 1990. Comparative metabolism of benzo[a]pyrene by liver microsomes from brown bullhead and carp. *Aquat. Toxicol.* 16: 101-112.

Simcik M.F., S.J. Eisenreich, K.A. Golden, S-P Liu, E. Lipiatou, D.L. Swackhamer and D.T. Long. 1996. Atmospheric loading of polycyclic aromatic hydrocarbons to Lake Michigan as recorded in the sediments. *Environ. Sci. Technol.* **30**: 3039-3046.

Simpson, C.D. 1997. Some aspects of the distribution and fate of polycyclic aromatic hydrocarbon contamination in the Kitimat Fjord system. PhD Thesis, Department of Chemistry, University of British Columbia. 195 pp.

Simpson, C.D., A.M. Mosi, X.F. Li, W.R. Cullen, G.K. Eigendorf, and K.J. Reimer. 1995. PAH contamination in Kitimat Arm: distribution, effects and environmental fate. *In:* Proceedings of the Workshop on Polycyclic Aromatic Hydrocarbons in British Columbia. March 6-7, 1995. Simon Fraser University, Harbour Centre, Vancouver, B.C. pg. 6.

Simpson, C.D., C.F. Harrington, and W.R. Cullen. 1998. Polycyclic aromatic hydrocarbon contamination in marine sediments near Kitimat, British Columbia. *Environ. Sci. Technol.* **32**: 3266-3272.

Simpson, M.G. 1992. Histopathological changes in the liver of dab (*Limanda limanda*) from a contamination gradient in the North Sea. *Mar. Environ. Res.* **34**: 39-43.

Singer, S.C., P.E. March, F. Gonsoulin, and R.F. Lee. 1980. Mixed function oxidase activity in the blue crab, *Callinectes sapidus*: characterization of enzyme activity from stomach tissue. *Comp. Biochem. Physiol.*, C 65: 129-134.

Sirota, G.R., J.F. Uthe, A. Sreedharan, R. Matheson, C.J. Musial, and K. Hamilton. 1983. Polynuclear aromatic hydrocarbons in lobster (*Homarus americanus*) and sediments in the vicinity of a coking facility. *In*: Polynuclear aromatic hydrocarbons: formation, metabolism, and measurement. M. Cooke and A.J. Dennis, eds. Batelle Press. Columbus, Ohio. pp. 1123-1136.

Sloof, W., J.A. Janus, A.J.C.M Matthijsen, G.K. Montizaan, and J.P.M. Ros, eds. 1989. Integrated Criteria Document PAHs, National Institute of Public Health and Environmental Protection (RIVM), Bilthoven, Netherlands, Report No. 756474011, 119 pp. (as cited in Environment Canada, 1994) Smith, J.D., J. Bagg, and B.M. Bycroft. 1984. Polycyclic aromatic hydrocarbons in the clam *Tridacna maxima* from the Great Barrier Reef, Australia. *Environ. Sci. Technol.* 18: 353-358.

Smith, J.D., J. Bagg, and I. Wrigley. 1991. Extractable polycyclic hydrocarbons in waters from rivers in south-eastern Australia. *Water Research* **25**(9): 1145-1150.

Smith J.N. and E.M. Levy. 1990. Geochronology for polycyclic aromatic hydrocarbon contamination in sediments of the Saguenay Fjord. *Environ. Sci. Technol.* 24: 874-879.

Smith, R.L. and B.R. Hargreaves. 1985. Respiratory rate in the mysid *Neomysis americana*: effects of naphthalene, temperature, and other factors. *In:* Marine Pollution and Physiology: Recent Advances. F.J. Vernberg, F.P. Thurberg, A. Calabrese and W. Vernberg, eds. University of South Carolina Press, Columbia, S.C. pp. 477-503.

Socha, S.B. and R. Carpenter. 1987. Factors affecting pore water hydrocarbons concentrations in Puget Sound sediments. *Geochim. Cosmochim. Acta* 51: 1273-1284.

Southworth, G.R. 1979. The role of volatilization in removing polycyclic aromatic hydrocarbons from aquatic environments. *Bull. Environ. Contam. Toxicol.* 21: 507-514.

Southworth, G.R, J.J. Beauchamp, and P.K. Schmieder. 1978. Bioaccumulation potential of polycyclic aromatic hydrocarbons in *Daphnia pulex*. *Water Res.* **12**: 973-977.

Southworth, G.R., J.J. Beauchamp, and P.K. Schmieder. 1979a. Bioaccumulation of carbazoles: A potential effluent from synthetic fuels. *Bull. Environ. Contam. Toxicol.* 23: 73-78.

Southworth, G.R., B.R. Parkhurst, and J.J. Beauchamp. 1979b. Accumulation of acridine from water, food and sediment by the fathead minnow, *Pimephales promelas*. *Water, Air, Soil Pollut.* **12**: 331-341.

Spacie, A., P.F. Landrum and G.J. Leversee. 1983. Uptake, depuration, and biotransformation of anthracene and benzo[a]pyrene in the gill fish. *Ecotox. Environ. Safety* 7: 330-341.

Stegeman, J.J. 1980. Mixed-function oxygenase studies in monitoring for effects of organic pollution. Rapp. R.-V. Reun. Cons. Int. Explor. Mer. 179: 33-38.

Stegeman, J.J. 1985. Benzo[a]pyrene oxidation and microsomal enzyme activity in the mussel (*Mytilus edulis*) and other bivalve mollusc species from the western North Atlantic. *Mar. Biol.* **89**: 21-30.

Stegeman, J.J. and M. Chevion. 1980. Sex differences in cytochrome P-450 and mixed function oxygenase activity in gonadally mature trout. *Biochem. Pharmacol.* 29: 553-558.

Stegeman, J.J., F.Y. Teng. and E.A. Snowberger. 1987. Induced cytochrome P450 in winter flounder (*Pseudopleuronectes americanus*) from coastal Massachusetts evaluated by catalytic assay and monoclonal antibody probes. *Can. J. Fish. Aquat. Sci.* 44: 1270-1277.

Stein, J.E., T.K. Collier, W.L. Reichert, E. Casillas, T. Tom and U. Varanasi. 1992. Bioindicators of contaminant exposure and sublethal effects: studies with benthic fish in Puget Sound, Washington. *Environ. Toxicol. Chem.* **11**: 701-714.

Stein, J.E., T. Horn, E. Casillas, A. Friedman and U. Varanasi. 1987. Simultaneous exposure of English sole to sediment-associated xenobiotics. Part II: Chronic exposure to an urban estuarine sediment with added 3H-benzo[a]pyrene and 14C-polychlorinated biphenyls. *Mar. Environ. Res.* 22: 123-149.

Stein, J.E., T. Horn, and U. Varanasi. 1984. Simultaneous exposure of English sole to sediment-associated xenobiotics. Part I: Uptake and disposition of 14C-polychlorinated biphenyls and 3H-benzo[a]pyrene. *Mar. Environ. Res.* 13: 97-119.

Stein, J.E., W.L. Reichart, M. Nishimoto and U. Varanasi. 1989. 32P- postlabeling of DNA: a sensitive method for assessing environmentally induced genotoxicity. In: Oceans '89; Volume 2: Ocean Pollution. Sept. 19-21, 1989, Seattle, Washington, pp.385-390.

Stein, J.E., W.L. Reichert, M. Nishimoto, and U. Varanasi. 1990. Overview of studies on liver carcinogenesis in English sole from Puget Sound: evidence for a xenobiotic chemical etiology II: biochemical studies. *Sci. Total Environ.* **94:** 51-69.

Steinhauer, M.S. and P.D. Boehm. 1992. The composition and distribution of saturated and aromatic hydrocarbons in nearshore sediments, river sediments, and coastal peat of the Alaskan Beaufort Sea: implications for detecting anthropogenic hydrocarbon inputs. *Mar. Environ. Res.* 33: 223-253.

Steward, A.R., J. Zaleski, R.C. Gupta, and H.C. Sikka. 1989. Comparative metabolism of benzo(a)pyrene and benzo(a)pyrene-7,8-dihydrodiol by hepatocytes isolated from two species of bottom-dwelling fish. *Mar. Environ. Res.* **28**: 137-140.

Steward, A.R., J. Zaleski and H.C. Sikka. 1990. Metabolism of benzo[a]pyrene and -transbenzo[a]pyrene-7,8-dihydrodiol by freshly isolated hepatocytes of brown bullheads. *Chem.-Biol. Interact.* 74: 119-138.

Stronkhorst, J. 1992. Trends in pollutants in blue mussel *Mytilus edulis* and flounder *Platichthys flesus* from two Dutch estuaries, 1985-1990. *Mar. Poll. Bull.* 24(5): 250-258.

Suedel, B.C. and J.H. Rodgers. 1996. Toxicity of fluoranthene to *Daphnia magna*, *Hyalella azteca*, *Chironomus tentans*, and *Stylaria lacustris* in water-only and whole sediment exposure. *Bull. Environ. Contam. Toxicol.* **57**: 132-138.

Suedel, B.C., J.H. Rodgers, and P.A. Clifford. 1993. Bioavailability of fluoranthene in freshwater sediment toxicity tests. *Environ. Toxicol. Chem.* 12: 155-165.

Sved, D.W., P.A. Van Veld, and M.H. Roberts. 1992. Hepatic EROD activity in spot, *Leiostomus xanthurus*, exposed to creosote-contaminated sediments. *Mar. Environ. Res.* 34: 189-193.

Swain, L.G. and D.G. Walton. 1989. Report on the 1988 fish monitoring program. Fraser River Estuary Monitoring. Joint publication of Fraser Port and Province of British Columbia.

Swain, L.G. and D.G. Walton. 1993. Chemistry and toxicity of sediments from sloughs and routine monitoring sites in the Fraser River Estuary - 1992. Report prepared for the Fraser River Estuary Monitoring Program. Joint report of Fraser Port/BC Ministry of Environment. 234 pp.

Swain, L.G. and D.G. Walton. 1994. Contaminant patterns in sediments and tissues from Boundary Bay and the Fraser River estuary. *In:* Proceedings from the First Annual Pacific Ecozone Workshop, Sidney, B.C. February 1-3, 1994. Environment Canada, Canadian Wildlife Service, Technical Report Series No. 222, pgs. 24-37.

Swartz, R.C., D.W. Schultz, T.H. Dewitt, G.R. Disworth, and J.O. Lamberson. 1990. Toxicity of fluoranthene in sediment to marine amphipods: a test of the equilibrium partitioning approach to sediment quality criteria. *Environ. Toxicol. Chem.* **9:** 1071-1080.

Swartz, R.C., P.F. Kemp, D.W. Schults, G.R. Ditsworth and R.J. Ozretich. 1989. Acute toxicity of sediment from Eagle Harbour, Washington, to the infaunal amphipod *Rhepoxynius abronius*. *Environ. Toxicol. Chem.* 8: 215-222.

Tagatz, M.E., G.R. Plaia, C.H. Deans and E.M. Lores. 1983. Toxicity of creosotecontaminated sediment to field- and laboratory-colonized estuarine benthic communities. *Environ. Toxicol. Chem.* **2:** 441-450.

Tanacredi, J.T. and R.R. Cardenas. 1991. Biodepuration of polynuclear aromatic hydrocarbons from a bivalve mollusc, *Mercenaria mercenaria* L. *Environ. Sci. Technol.* **25**(8): 1453-1461.

Tatem, H.E. 1984. Accumulation of polycyclic aromatic hydrocarbons by *Rangia* and *Nereis* exposed to contaminated sediment. Reprint from the Fifth International Ocean Disposal Symposium, Sept. 10-14, 1984, Oregon State University, Corvallis, Oregon. pp. 138-139.

Tetra Tech Inc. 1986. Eagle Harbour preliminary investigations. Final Report No. EGHB-2, TC 3025-03. Bellevue, Washington (as cited in Swartz et al, 1989)

Thakker, D.R., H. Yagi, H. Akagi, M. Koreeda, A.Y.H. Lu, W. Levin, A.W. Wood, A.H. Cooney and D.M. Jerina. 1977. Metabolism of benzo[a]pyrene VI. Stereoselective metabolism of benzo[a]pyrene and benzo[a]pyrene 7,8-dihydrodiol to diol epoxides. *Chem.-Biol. Interact.* **16**: 281-300.

Tokiwa, H., R. Nakagawa, K. Morita, and Y Ohnishi. 1981. Mutagenicity of nitro derivatives induced by exposure of aromatic compounds to nitrogen dioxide. *Mutat. Res.* 85: 195-205.

Trucco, R.G., F.R. Englehardt, and B. Stacey. 1983. Toxicity, accumulation and clearance of aromatic hydrocarbons in *Daphnia pulex. Environ. Pollut.* (Series A) 31: 191-202.

Uthe, J.F., D.W. McLeese, G.R. Sirota, and L.E. Burridge. 1984. Accumulation of polycyclic aromatic hydrocarbons by lobsters (*Homarus americanus*) held in a tidal pond. Can. Tech. Rep. Fish Aquat. Sci. Report No. 1059. 10 pp.

Uthe, J.F. and C.J. Musial. 1986. Polycyclic aromatic hydrocarbon contamination of American lobster, *Homarus americanus*, in the proximity of a coal-coking plant. *Bull. Environ. Cont. Toxicol.* **37**: 730-738.

Uthe, J.F. and C.J. Musial. 1988. Intercomparative study on the determination of polynuclear aromatic hydrocarbons in marine shellfish tissue. J. Assoc. Off. Anal. Chem. 71(2): 363-368.

Vandermeulen, J.H. and W.R. Penrose. 1978. Absence of aryl hydrocarbon hydroxylase (AHH) in three marine bivalves. J. Fish. Res. Board Can. 35: 643-647.

Van Veld, P.A., D.J. Westbrook, B.R. Woodin, R.C. Hale, C.L. Smith, R.J. Huggett, and J.J. Stegeman. 1990. Induced cytochrome P-450 in intestine and liver of spot (*Leiostomus xanthurus*) from a polycyclic aromatic hydrocarbon contaminated environment. *Aquat. Toxicol.* 17: 119-132.

Varanasi, U. and D.J. Gmur. 1981. Hydrocarbons and metabolites in English sole (*Parophyrs vetulus*) exposed simultaneously to [³H]benzo(a)pyrene and [¹⁴C]naphthalene in oil-contaminated sediment. *Aquat. Toxicol.* 1: 49-67.

Varanasi, U., M. Nishimoto, W.L. Reichert and B-T Le Eberhart. 1986. Comparative metabolism of benzo(a)pyrene and covalent binding to hepatic DNA in English sole, starry flounder, and rat. *Cancer Research* **46**: 3817-3824.

Varanasi, U., W.L. Reichert, B-T Le Eberhart, and J.E. Stein. 1989. Formation and persistence of benzo(a)pyrene-diolepoxide-DNA adducts in liver of English sole (*Parophyrs vetulus*). Chem. Biol. Interactions **69**: 203-216.

Varanasi, U., W.L. Reichert, J.E. Stein, D.W. Brown, and H.R. Sanborn. 1985. Bioavailability and biotransformation of aromatic hydrocarbons in benthic organisms exposed to sediment from an urban estuary. *Environ. Sci. Technol.* **19**: 836-841.

Varanasi, U. and J.E. Stein. 1991. Disposition of xenobiotic chemicals and metabolites in marine organisms. *Environ. Health Perspect.* **90**: 93-100.

Varanasi, U., J.E. Stein, and M. Nishimoto. 1989. Biotransformation and disposition of polycyclic aromatic hydrocarbons (PAH) in fish. *In*: Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. U. Varanasi, ed. CRC Press, Boca Raton, Florida. pp. 93-149.

Varanasi, U., J.E. Stein, M. Nishimoto, W.L. Reichert, and T.K. Collier. 1987. Chemical carcinogenesis in feral fish: uptake, activation, and detoxification of organic xenobiotics. *Environ. Health Perspect.* **71**: 155-170.

Veith, G.D., D.L. Defoe, and B.V. Bergsted. 1979. Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish. Res. 36: 1040-1048.

Veith, G.D., O.G. Mekenyan, G.T. Ankley, and D.J. Call. 1995. A QSAR analysis of substituent effects on the photoinduced acute toxicity of PAHs. *Chemosphere* **30**: 2129-2142.

Venier, P. and S. Canova. 1996. Formation of DNA adducts in the gill tissue of *Mytilus* galloprovincialis treated with benzo(a)pyrene. Aquat. Toxicol. 34: 119-133.

Venkataraman, C., J.M. Lyons, and S. K. Friedlander. 1994. Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 1. Sampling, measurement methods, and source characterization. *Environ. Sci. Technol.* **28**: 555-562.

Vogelbein, W.K., J.W. Fournie, P.A. Van Veld, and R.J. Huggett. 1990. Hepatic neoplasms in the mummichog *Fundulus heteroclitus* from a creosote-contaminated site. *Cancer Research* **50**: 5978-5986.

Vogt, N.B., F. Brakstad, K. Thrane, S. Nordenson, J. Krane, E. Aamot, K. Kolset, K. Esbensen, and E. Steinnes. 1987. Polycyclic aromatic hydrocarbons in soil and air: statistical analysis and classification by the SIMCA Method. *Environ. Sci. Technol.* **21**: 35-44.

Wakeham, S.G., C. Schaffner, and W. Giger. 1980. Polycyclic aromatic hydrocarbons in recent lake sediments - II. Compounds derived from biogenic precursors during early diagenesis. *Geochim. Cosmochim. Acta* 44: 415-429.

Wakeham, S.G., C. Schaffner, and W. Giger. 1980a. Polycyclic aromatic hydrocarbons in recent lake sediments - II. Compounds having anthropogenic origins. *Geochim. Cosmochim.* Acta 44: 403-413.

Walker, S.E., D.H. Taylor, and J.T. Oris. 1998. Behavioural and histopathological effects of fluoranthene on bullfrog larvae (*Rana catesbeiana*). *Environ. Toxicol. Chem.* 17(4): 734-739.

Walters, J.M., R.B. Caikn, I.J. Higgins and E.D.S. Corner. 1979. Cell-free benzo[a]pyrene hydroxylase activity in marine zooplankton. J. Mar. Biol. Assoc. UK. 59: 553-563.

Wan, M.T. 1991. Railway and right-of-way contaminants in the Lower Mainland of British Columbia: polycyclic aromatic hydrocarbons. J. Environ. Qual. 20: 228-234.

Wan, M.T. 1993. Utility right-of-way contaminants: polycyclic aromatic hydrocarbons. Environment Canada, Environmental Protection Branch, Pacific and Yukon Region, Vancouver. Unpublished report.

Ward, D.M. and T.D. Brock. 1976. Environmental factors influencing the rate of hydrocarbon oxidation in temperate lakes. *Appl. Environ. Microbiol.* 31: 764-772.

Weeks, B.A., J.E. Warriner, P.L. Mason, and D.S. McGinnis. 1986. Influence of toxic chemicals on the chemotactic response of fish macrophages. *J. Fish Biol.* 28: 653-658.

Weinstein, J.E. 1997. Fluoranthene-induced histological alterations in oysters, Crassostrea virginica: seasonal field and laboratory studies. Mar. Environ. Res. 43(3): 201-218.

Weinstein, J.E. and J.T. Oris. 1999. Humic acids reduce the bioaccumulation and photoinduced toxicity of fluoranthene to fish. *Environ. Toxicol. Chem.* **18**(9): 2087-2094.

Welch, H.W., D.C.G. Muir, B.N. Billeck. W.L. Lockhart, G.J. Brunskill, H.J. Kling, M.P. Olson, and R.M. Lemoine. 1991. Brown snow: a long-range transport event in the Canadian Arctic. *Environ. Sci. Technol.* **25**: 280-286.

White, P.A., S. Robitaille, and J.B. Rasmussen. 1999. Heritable reproductive effects of benzo(a)pyrene on the fathead minnow (*Pimephales promelas*). *Environ. Toxicol. Chem.* **18**(8): 1843-1847.

Whittle, K.J., J. Murray, P.R. Mackie, R. Hardy, and J. Farmer. 1977. Fate of hydrocarbons in fish. *Rapp. P.V. Reun. Cons. Int. Explor. Mer* 171: 139-142.

Widdows, J., S.L. Moore, K.R. Clarke, and P. Donkin. 1983. Uptake, tissue distribution and elimination of (1-¹⁴C) naphthalene in the mussel *Mytilus edulis*. *Mar. Biol.* **50**: 195-207.

Wild, S.R., M.L. Berrow and K.C. Jones. 1991. The persistence of polynuclear aromatic hydrocarbons (PAH) in sewage sludge amended agricultural soils. *Environ. Poll.* 72: 141-157.

Williams, U.P., J.W. Kiceniuk and J.R. Botta. 1985. Polycyclic aromatic hydrocarbon accumulation and sensory evaluation of lobsters (*Homerus americanus*) exposed to diesel oil at Arnolas's Cave, Newfoundland. Can. Tech. Rep. Fish. Aquat. Sci. Report No. 1402. 13 pp.

Winger, P.V., D.P. Schultz and W.W. Johnson. 1990. Environmental contaminant concentrations in biota from the Lower Savannah River, Georgia and South Carolina. *Arch. Environ. Contam. Toxicol.* **19**: 101-117.

Winston, G.W., M.O. James and C.S.E. Jewell. 1992. *In vitro* studies of benzo[a]pyrene metabolism by representatives of the class crustacea. *In:* Polycyclic aromatic compounds XIII: Synthesis, properties, analytical measurements, occurrence and biological effects. P. Garrigues and M. Lamotte, eds. Proc. 13th International Symposium on Polynuclear Aromatic Hydrocarbons. October 1 to 4, 1991. Bordeaux, France. Gordon and Breach Science Publ., Yverdon, Switzerland. pp. 1079-1086.

Wislocki, P.G., A.W. Wood, R.L. Chang, W. Levin, H. Yagi, O. Hernandez, P.M. Dansette, D.M. Jerina and A.H. Conney. 1976. Mutagenicity and cytogenicity of benzo(a)pyrene arene oxides, phenols, quinones, and dihydrodiols in bacterial and mammalian cells. *Cancer Res.* **36**: 3350-3357.

Yunker, M.B., L.R. Snowdon, R.W. MacDonald, J.N. Smith, M.G. Fowler, D.N. Skibo, F.A. McLaughlin, A.I. Danyushevskaya, V.I. Petrova, and G.E. Ivanov. 1996. Polycyclic aromatic hydrocarbon composition and potential sources for sediment samples from the Beaufort and Barents Seas. *Environ. Sci. Technol.* **30**: 1310-1320.

Yunker, M.B., R.W. Macdonald, R. Brewer, S. Sylvestre, T. Tuominen, M. Sekela, R. Mitchell, D. Paton, B. Fowler, C. Gray, D. Goyette, and D. Sullivan. In preparation. Assessment of natural and anthropogenic hydrocarbon inputs using PAHs as tracers. The Fraser River basin and Strait of Georgia (1987-1997). Aquatic and Atmospheric Sciences Division, Environment Canada, Pacific and Yukon Region.

Zaidi, B.R. and S. H. Imam. 1999. Factors affecting microbial degradation of polycyclic aromatic hydrocarbon phenanthrene in the Caribbean coastal water. *Mar. Poll. Bull.* **38**(8): 737-742.

Zhou, J.L., T.W. Fileman, S. Evans, P. Donkin, R.F.C. Mantoura, and S.J. Rowland. 1996. Seasonal distribution of dissolved pesticides and polynuclear aromatic hydrocarbons in the Humber Estuary and Humber Coastal Zone. *Mar. Poll. Bull.* **32**(8/9): 599-608.

him

ACKNOWLEDGEMENTS

The authors would like to thank Duane Brothers and Hal Nelson of Environment Canada for their assistance in field programs; Axys Analytical Services in Sidney, B.C. for providing chemical analyses; and Richard Strub and his staff at the Pacific Environmental Services Centre for their review of the quality assurance/quality control information. Laurie Phillips at Axys Analytical Services was particularly helpful in coordinating sample analysis. The assistance of Andrew Fabro and Jenny O'Grady at the Environment Canada library, in obtaining literature, and that of Bryan Kelso, Darcy Goyette and Janice Boyd of the Environmental Protection Branch of Environment Canada, in reviewing the draft report, was also appreciated.

129

APPENDIX 1

SAMPLING AND ANALYTICAL METHODOLOGY
APPENDIX 1.1 Field Collection Methods

Water samples were collected at a depth of 0.5 metres using 1 litre amber glass bottles with aluminum foil cap liners. The bottles and foil cap liners had been solvent-rinsed and heat-treated. The bottles were submerged to a depth of 0.5 metres and the caps removed to allow water to enter until the bottle was filled. Samples were stored at 4^{∞} C until analyzed. Two samples were collected at each station and samples were composited prior to analysis. Samples were not filtered prior to analysis.

Sediment grabs were collected with a modified stainless steel Ponar Grab or a stainless steel Smith-MacIntyre grab. A minimum of three grabs were collected at each station. A relatively undisturbed sample of the top 2 cm of sediment from each grab was collected using a stainless steel spoon after carefully decanting overlying water. The surface material from each of the three grabs was composited and then thoroughly mixed in a stainless steel bucket. From the composited sample, three to four subsamples were collected for analyses for organotin compounds and other organic chemicals. Subsamples were also collected for trace metals, particle size, SVR, and SFR. Samples for organotin compounds and other organic chemicals and heat-treated 125 ml glass jars with heat-treated aluminum foil liners. Samples for trace metals, particle size, SVR, and SFR were collected in a kraft paper bag, enclosed in Whirlpak O bags. Samples were either frozen immediately (-20O C) or temporarily stored on ice in the field until samples could be transferred to lab freezers.

Fish, and some crab samples, were collected using a small otter trawl with a 3.8 cm mesh net and a 5.8 metre throat. The trawl was towed at a speed of approximately 1 to 1.5 knots. Trawl catches were sorted by species. Number of individuals, lengths, and weights were recorded and are presented in Appendix 4. At some locations crabs were also collected using crab traps. Mussels and oysters were collected by hand off rocks at low tide. At several sites mussels could not be found growing on rocks, particularly in harbour and marina locations. At these sites mussels were collected from dock structures and pilings at low tide. Clams were dug at low tide using clam shovels and garden forks.

Dissections were performed on teflon boards using sterlized stainless steel scalpels, scissors, and forceps. Tissues collected for analysis included: tail muscle from shrimp and prawns, leg muscle and hepatopancreas from crabs, dorsal muscle (skin removed, liver and gill (without gill arch) from fish, and soft tissue from bivalves. Tissues from individuals of like species and size from each location were composited. Samples were homogenized prior to analysis. Approximately 30 to 50 gram aliquots of homogenized tissue were placed in solvent-rinsed, heat treated 125 ml glass jars for organotin and lipid content analysis and in Whirlpak O bags for metals analysis. The weight of each homogenized sample was recorded. Samples were kept frozen (-20P C) until analyzed.

APPENDIX 1.2 Analytical Methods

1.2.1 PAH Compounds

Laboratory 1 (Axys Analytical Services Ltd.)

The following information on analytical methodologies was provided by Axys Analytical Services Ltd. in Sidney, British Columbia.

Batch 342:

Materials

Solvents used were pesticide grade and distilled in glass (hexane, pentane, methanol, and dichloromethane supplied by BDH Omnisolve). A solvent blank was determined for each new solvent. Solvents were used only if blank gas chromatograms were free of interfering peaks.

Silica gel (Bio-Rad, 100-200 mesh) was heated for 10 hours at 350° C, cooled, deactivated with glass-distilled water (5% by weight) and allowed to stand at least 24 hours before use.

Anhydrous sodium sulfate (Mallinckrodt, granular) was cleaned by heating at 350° overnight.

Potassium hydroxide solution (50% w/w) was prepared by mixing equal quantities (weights) of potassium hydroxide and distilled water.

Distilled water was extracted with dichloromethane (2 X 100 mL) and hexane (100 mL) before use. Potassium hydroxide solution was extracted with dichloromethane/hexane (3/5, 3 x 100 mL) before each analysis.

Copper turnings were activated before use by standing in dilute HCl/methanol for 15 min., followed by rinsing with acetone and hexane. The copper turnings were stored in a stoppered flask under a nitrogen atmosphere.

All glassware was washed in laboratory detergent, rinsed with tap water, air dried, and baked overnight at 340° C in a forced air oven before use.

Internal standards (perdeuterated naphthalene, acenaphthene, phenanthrene, pyrene, chrysene, perylene, dibenz(a,h)anthracene and benzo(g,h,i)perylene; Merck, Sharp and Dohme) were used as received. Known quantities of the standards were dissolved in methanol to prepare an internal standard solution.

Extraction Method

Sample Size	Tissue	1-10 g wet tissue
	Sediment	25 g wet sediment

A subsample of sediment was weighted into a tared glass Petri dish and air-dried at 80° C to constant weight to determine moisture content.

Tissue samples were homogenized in a Virtis homogenizer.

A weighed sample was placed in a round-bottomed flask and methanol (100 mL), potassium hydroxide solution (10 mL, 50% w/w), an aliquot of internal standard (1.0 mL) and boiling chips were added. The mixture was heated under reflux for 1 hour, cooled 5-10 minutes and then extracted water (100 mL) added through the condenser. The solution was again heated under reflux for another 30 minutes. The solution was allowed to cool to lukewarm to settle suspended solids.

The liquid was decanted into a separatory funnel. The remaining solids in the flask were rinsed with methanol $(2 \times 40 \text{ mL})$ and these rinses added to the separatory funnel.

The digest was extracted with pentane $(3 \times 100 \text{ mL})$ by shaking the separatory funnel vigorously for 2 minutes. The aqueous layer was collected in the digestion flask and the pentane in an Erlenmeyer flask. The pentane layers were combined in another separatory funnel.

The combined pentane layers were washed with extracted water $(3 \times 100 \text{ mL})$ to remove any methanol from the pentane. The pentane layer was collected in an Erlenmeyer flask and dried over sodium sulphate for 10 - 15 minutes. The pentane extract was then evaporated to $\sim 1 \text{ mL}$ in a Kuderna-Danish flask in a 50° C water bath. Activated copper was added to the extract to remove sulphur. The extract was then ready for cleanup on a silica gel column.

Column Cleanup

A silica gel column (10 g. 5% deactivated) was slurry packed in pentane. The sample was loaded onto the column with rinses and eluted with pentane (25 mL, Fraction 1). The column was then eluted with dichloromethane (25 mL, Fraction 2). The eluate was collected in a small Kudera-Danish flask and subsequently concentrated to 1-2 mL. Fraction 2 contains the PAHs. The extract was transferred to a centrifuge tube with rinses for GC/MS analysis.

The sample was concentrated under a stream of nitrogen to 100 μ L for GC/MS analysis.

Procedural Blanks

Procedural blanks were determined initially for each sample type and a routine procedural blank was carried through the analysis with each suite of samples. When blank levels of an analyte are detectable, the determined absolute quantities of the analyte are blank corrected.

Instrumental Analysis

Aromatic fractions were analyzed on an Incos 50 gas chromatograph/mass spectrometer (GC/MS), using a Restek Rt_x-5 column (30 m, 0.25 mm id., 0.25 μ m film thickness) and the following gas chromatograph program: splitness injection at 50° C for 2 minutes, heat to 100°, after 5 minutes heat at 10° C/minute to 300° C and hold for 10 minutes. Usually 1 μ L of extract was injected. Molecular ions for PAH, selected alkyl PAH and perdeuterated standards were monitored using the Multiple Ion Detection (MID) acquisition mode of the mass spectrometer.

Batches 1171 and 1187:

Summary

All sediment and tissue samples were spike with an aliquot of surrogate standard solution (perdeuterated PAHs - acenaphthene, chrysene, naphthalene, perylene, phenanthrene, pyrene, dibenz(a)anthracene, and benzo(g,h,i)perylene) prior to a base digestion extraction procedure. The digest was extracted with pentane and then separated on a silica gel column. The final extract was analyzed for PAHs by GC/MS.

Dis

Extraction Method

Sediment and Tissue

Samples were homogenized well and a subsample of sediment was dried for moisture determination. A subsample of tissue was taken for moisture determination.

Sediment sample (10 g) or tissue sample (5 g), methanol, potassium hydroxide solution, and an aliquot of surrogate standard solution were heated together under reflux for 1 hour. Extracted water was added and heating continued. When cool, the aqueous phase was extracted three times with pentane. The combined pentane extracts were washed with extracted water, dried over anhydrous sodium sulphate and concentrated in a Kuderna Danish flask. The extract was ready for fractionation on a silica gel column.

Column Cleanup

The sample extract was loaded onto a silica gel column and eluted with pentane (discarded) followed by dichloromethane. The dichloromethane fraction was concentrated in a Kuderna-Danish flask. Activated copper was added to the extract to remove sulphur. The extract was then transferred to a microvial, concentrated under a stream of nitrogen to almost dryness and an aliquot of recovery standard (benzo(b)fluoranthene d-12, fluoranthene d-10, and acenaphthylene d-8) was added. The extract was ready for analysis by GC/MS.

Instrumental Analysis

Sample extracts were analyzed for PAHs and alkylated PAHs (when required) by gas chromatography (GC) with detection by mass spectrometer (MS). Analysis of the extract was carried out using a Finnigan Incos 50 mass spectrometer equipped with a Varian 3400 gas chromatograph with a CTC autosampler and a DG 10 Data system. The chromatographic separation was carried out using a Restek_x-5 column (30 m, 0.25 mm i.d. x 0.25 μ m film thickness). The mass spectrometer was operated in the El mode (70 Ev) using Multiple Ion Detection (MID) to enhance sensitivity, acquiring two characteristic ions for each target analyte and surrogate standard. A split/splitless injection sequence was used.

Batches 2820 and 2844

Summary

All samples were spiked with perdeuterated PAH surrogate standards (acenaphthene, chrysene, naphthalene, perylene, phenanthrene, pyrene, benzo(a)pyrene, dibenz[a,h]anthracene, and benzo[g,h,i]perylene) prior to analysis. Both sediment and tissue samples were solvent extracted on a shaker table and the extract separated on a silica gel column. Analysis was performed by GC/MS.

Extraction Methods

Sediments:

A subsample of homogenized sediment was dried for moisture determination. The sediment sample, to which an aliquot of surrogate standard had been added, was extracted with 1:1 dichloromethane:methanol by shaking on a shaker table for 30 minutes. The extraction procedure was repeated twice more with dichloromethane. The combined extracts were washed with solvent extracted distilled water to remove the methanol and dried over anhydrous sodium sulphate. The solvent was exchanged to hexane and the extract was concentrated in a Kuderna-Danish flask. Activated copper was added to the extract to remove sulphur. The extract was ready for column cleanup.

Tissues:

A subsample of homogenized tissue was dried for moisture determination. The tissue sample, to which an aliquot of surrogate standard had been added, was extracted with 1:1 dichloromethane:methanol by shaking on a shaker table for 30 minutes. The extraction procedure was repeated twice more with dichloromethane. The combined extracts were washed with solvent extracted distilled water to remove the methanol and dried over anhydrous sodium sulphate. The solvent was exchanged to hexane and the extract was concentrated in a Kuderna-Danish flask. The extract was placed on a calibrated gel permeation column and eluted with a 1:1 dichloromethane:hexane. The 125-300 mL fraction was collected and evaporated to a small volume prior to cleanup and separation on a silica gel column.

Column Cleanup

The sample extract was loaded onto a silica gel column and eluted with pentane (discarded) followed by dichloromethane (F2, retain) which contained the PAH compounds. The fraction was concentrated in a Kuderna-Danish flask and then transferred to a microvial where an aliquot of recovery standard solution was added (acenaphthylene d-8, fluoranthene d-10 and benzo[b]fluoranthene d-12). The extract was ready for analysis by GC/MS.

GC/MS Analysis

Sample extracts were analyzed by gas chromatography (GC) with detection by mass spectrometer (MS). Analysis of the extract was carried out using a Finnigan Incos 50 mass spectrometer equipped with a Varian 3400 gas chromatograph with a CTC autosampler and a DG 10 Data System. The chromatographic separation was carried out using a Restek_x-5 column (30 m, 0.25 mm i.d. x 0.25 μ m film thickness). The mass spectrometer was operated in the El mode (70 Ev) using Multiple Ion Detection (MID) to enhance sensitivity, acquiring two characteristic ions for each target analyte and surrogate standard. A split/splitless injection sequence was used.

Laboratory 2 (Enviro-Test Laboratories)

Batches 251, 383

Sample Preparation

Sediments:

Each sediment sample was dried at room temperature for 48 hours and sieved with a #10 (2mm) sieve. Approximately 15 g was weighed into a glass extraction thimble and soxhlet extracted for 16 hours with methylene chloride. The organic extract was transferred to a 2 L separatory funnel along with 500 mL of organic free de-ionized water. The pH was adjusted to \geq 10 with 6N NaOH and the sample was extracted with 3 x 100 mL methylene chloride. The organic extracts were combined and dried (base/neutral fraction). The aqueous phase was re-extracted with 3 x 100 mL methylene chloride at pH \leq 2 with 6N H2S04. The organic extracts were combined and dried (acid fraction).

Because of the oily nature of the base/neutral extracts, further clean-up and fractionation was necessary prior to GC/FID and GC/MS analysis. The acid fractions were reduced to 2 mL and analyzed by GC/FID.

Tissues:

Approximately 2 g of biota was weighed into a beaker and mixed with Na2SO4. The fish sample was blended with dry ice and stored in a freezer overnight to allow the dry ice to sublime. The sample was then mixed with Na2SO4. The samples were soxhlet extracted for 16 hours with methylene chloride. Prior to acid and base/neutral partitioning, the sample extracts were concentrated to approximately 2 mL and run through a column packed with Bio-Beads SX-3 to remove interfering lipids. The first 100 mL of eluate containing the lipids was discarded. The next 130 mL of eluate was collected. The extract was poured into a separatory funnel along with 500 mL of organic free deionized water. The pH was adjusted to ≥ 10 (6N NaOH) and the sample was extracted with 3 x 100 mL methylene chloride. The organic extracts were combined and dried (base/neutral fraction). The aqueous phase was re-extracted at pH ≤ 2 (6N h2S)4) with 3 x 100 mL methylene chloride. The organic extracts were combined and dried (acid fraction).

Column Clean-Up

Basic alumina (Camag, activity 1) was chosen for clean-up because of its reliable success in separating saturates from aromatics. Before its use, the alumina was rinsed with ethyl ether and air dried until free-flowing.

18 g of basic alumina was added to a column (30 cm X 11 mm i.d.) and rinsed with 45 mL pentane. The base/neutral extract was added and 3 fractions collected:

Fraction 1 (saturates)	- 45 mL pentane
Fraction 2 (aromatics)	- 150 mL benzene
Fraction 3 (polar compounds)	- 150 mL methylene chloride

All three fractions were concentrated and made up to a known volume.

Method of Analysis

All samples were analyzed by GC/FID and semi-quantitated against a calibrated standard. Sediment fractions 1 and 3 were calculated against a diesel standard for total hydrocarbons. Sediment fraction 2 was calculated against a PAH calibration mix for total aromatics. The acid fractions were calculated against a diesel standard for total extractable acids. The biota extracts were also analyzed by GC/FID. The samples were concentrated to $100 - 500 \mu$ L prior to GC/MS analysis.

All fractions were then injected for GC/MS analysis. Batch software techniques were used to generate spectra and library search each sample fraction. All non-target compounds that were resolved and generated adequate spectra were library searched for identification. Those compounds searched were then manually interpreted and a confidence of identification was assigned to each compound identified.

Method of Quantitation

a.) Using Calibration Mixes with Anthracene-d10 as Internal Standard

The target EPA compounds (Priority Pollutants) were analyzed and quantitated according to the EPA method 625. This is an internal standard method in which response factors for the compounds in the calibration mixes are calculated on a routine basis and updated before sample analysis. Anthracene-d10 is added to each extract and to each standard mix.

Identification of the EPA compounds were done by extracted ion methods, that is three ions for each compound were scanned within a specified retention window. If the ions are present in the right abundance they are extracted, printed out with the calculated amount. This method is very precise resulting in positive identifications and accurate quantification. Biota sample extracts were reduced to 100 μ L before injection. *This reduction in volume decreases the accuracy of the results. Thus the EPA priority pollutants identified in the biota samples are semi-quantitative only.*

b.) Using Anthracene-d10 as an External Standard

All the non-target compounds were quantitated against anthracene-d10. A known amount of anthracene-d10 was added to each sample and the area counts of it as well as the non-target compounds were generated (automated software program). The non-target compounds were compared directly with the anthracene-d10 added, calculated in relation to the final volume and the dry weight of the sample. All non-target compound (confidence level of 1 to 5) were calculated using this method. The accuracy of the quantitation using this method is estimated at \pm 50 - 100%.

Batch 425

Method of Sample Preparation

Sediments:

Each sediment is dried at room temperature for 48 hours and sieved with a #10 (2mm) sieve. Approximately 15g is weighed into a glass extraction thimble and soxhlet extracted for 16 hours with dichloromethane (DCM). Prior to extraction the sample is spiked in the thimble with three surrogate compounds (100 μ L if 20 ng/ μ L). The DCM is stripped to near dryness using a rotary evaporator with the water bath at 35° C and is quantitatively transferred to a 3 ½ mL vial. The remaining DCM is chased with the addition of hexane and the sample again stripped to near dryness under a nitrogen evaporator. The extract is then transferred to a scintillation vial containing vial containing 2 g of neutral alumina (Woelm Grade). The sample is gently blown with nitrogen until the alumina is free flowing. The sample (alumina) is transferred to a 9 g alumina column (30 cm x 11 mm i.d.) which is dry

packed. Three fractions are collected using 20 mL of pentane (FR. 1), 70 mL of benzene (FR. 2) and 100 mL of DCM (FR. 3). Fraction 2 (PAHs is stripped to near dryness and made up to exactly 1 mL in DCM. Mercury is added to the extract and the vial is shaken vigorously to remove interfering sulphur. A portion of the extract is transferred to an autosampler vial, internal standard (anthracene d10) added and injected onto a GC/MSD system for analysis. A second injection was made onto a GC/MS system in the TIC mode for those samples requiring additional priority pollutant analysis.

Biota:

Approximately 10 g of biota sample was weighed into a mortar containing Na2S04 and ground into the Na2S04 using a pestle. This was transferred to a soxhlet extraction thimble as in the sediment procedure and extracted for 16 hours with DCM. The DCM was removed by rotoevaporator, weighed and an aliquot of 1 mL of lipid was removed for gel permeation chromatography (GPC). A 25 minute waste was discarded and a 15 minute collect fraction was evaporated to near dryness. The DCM was chased with hexane and cleaned-up with neutral alumina as in the sediment procedure.

Selected Ion Techniques (SIM)

Using the MSD 5971 the software generates a calibration table using standards at 2 levels (0.1 ppm and 1.0 ppm). The GC/MS automatically scans for each target PAH compound, generates a selected ion chromatogram (SIC) and integrates and quantitates 3 ions for each target PAH. The GC/MS 5971 generates a calibration curve from 2 levels of standards. The target PAH are quantitated against this calibration curve to give a final concentration in $\mu g/g$ (ppb), listed as amount on the chromatography.

This technique has resulted in an approximate 50 fold reduction in detection limits compared to GC/MS in the total ion mode.

Total Ion Chromatography (TIC)

Using the HP-5993 and the HP-MSD 5971 in the total ion monitoring mode, full mass spectral data is generated for each compound. The sensitivity of this equipment in the TIC mode is 50 to 100 times lower than in the SIM (Selective Ion Monitoring Mode). Consequently, detection limits are much higher (0.1 to 0.5 ppm).

1.00

Detection Limits

A general detection limit of 0.005 ppm in sediment and biota was determined for each target PAH compound using the following weights and volumes:

- a.) Sediments 15 g of sample and a 1 mL final volume
- b.) Biota 10-11 g of sample, about 1/3 of the resulting lipid cleaned-up on GPC and a 1 mL final volume

Calculations

All data was adjusted using the average surrogate recovery of terphenyl d2 fluorobiphenyl for all PAHs except naphthalene which was adjusted using naphthalene d8 surrogate recovery for each sample.

Batch 1287

Sediments:

Extraction-

Each sediment is dried at room temperature for 48 hours and sieved with a #10 (2mm) sieve. Approximately 20g is weighed into a pre-extracted glass extraction thimble and soxhlet extracted for 16 hours with 1:1 acetone/hexane (acidified with 0.5% acetic acid) The organic extract was transferred to a 2 L separatory funnel containing 500 mL of de-ionized, organic free water. The pH was adjusted to ≥ 10 with 6N NaOH. The sample was then extracted with methylene chloride. Enough methylene chloride was added (approximately 100 mL or more) during the first extraction to force the hexane layer into the methylene chloride. The sample was extracted twice again using 100 mL of methylene chloride for each extraction. The organic extracts (base/neutral fraction) were dried through sodium sulphate, combined and concentrated to a known volume using a rotary evaporator and a gentle stream of nitrogen.

The aqueous phase was then acidified (pH ≤ 2 6N H2SO4) and extracted with 3 x 100 mL of methylene chloride. Again the extracts were dried (acid fraction), combined and concentrated to a know volume.

It was obvious from the oily nature of the base/neutral extracts that further column clean-up and fractionation would be required. The acid fraction was reduced to 2 mL and analyzed by GC/FID and GC/MS.

Column Clean-up-

Basic alumina (Woelm Grade, Akt 1, fully activated from bottle) was chosen for the clean-up because of its reliable success in separating saturates from aromatics.

Many of the base/neutral extracts were extremely oily and precipitation was evident. Because of this a technique which has been used successfully for oily sludge samples was used. 3 g of basic alumina was mixed with the extracts in a vial and the sample was then placed in a fumehood and allowed to dry. This 3 g was then quantitatively added to a column (30 cm x 11 mm i.d.) containing 9 g of basic alumina. The column was eluted as follows:

Fraction 1 (Saturates)	- 30 mL pentane
Fraction 2 (Aromatics)	- 100 mL benzene
Fraction 3 (Polar compounds)	- 100 mL methylene chloride

All three fractions were concentrated and made up in a known volume of hexane. In some cases methylene chloride is added to keep the samples from precipitating.

Method of Analysis

All fractions were analyzed by GC/FID and semi-quantitated against a calibrated standard. Fractions 1 and 3 from alumina

Biota:

Approximately 10 g of biota sample was weighed into a mortar containing Na2S04 and ground into the Na2S04 using a pestle. This was transferred to a soxhlet extraction thimble as in the sediment procedure and extracted for 16 hours with DCM. The DCM was removed by rotoevaporator, weighed and an aliquot of 1 mL of lipid was removed for gel permeation chromatography (GPC). A 25 minute waste was discarded and a 15 minute collect fraction was evaporated to near dryness. The DCM was chased with hexane and cleaned-up with neutral alumina as in the sediment procedure.

Hite:

8-m

Selected Ion Techniques (SIM)

Using the MSD 5971 the software generates a calibration table using standards at 2 levels (0.1 ppm and 1.0 ppm). The GC/MS automatically scans for each target PAH compound, generates a selected ion chromatogram (SIC) and integrates and quantitates 3 ions for each target PAH. The GC/MS 5971 generates a calibration curve from 2 levels of standards. The target PAH are quantitated against this calibration curve to give a final concentration in $\mu g/g$ (ppb), listed as amount on the chromatography.

This technique has resulted in an approximate 50 fold reduction in detection limits compared to GC/MS in the total ion mode.

Total Ion Chromatography (TIC)

Using the HP-5993 and the HP-MSD 5971 in the total ion monitoring mode, full mass spectral data is generated for each compound. The sensitivity of this equipment in the TIC mode is 50 to 100 times lower than in the SIM (Selective Ion Monitoring Mode). Consequently, detection limits are much higher (0.1 to 0.5 ppm).

Detection Limits

A general detection limit of 0.005 ppm in sediment and biota was determined for each target PAH compound using the following weights and volumes:

- a.) Sediments 15 g of sample and a 1 mL final volume
- b.) Biota 10-11 g of sample, about 1/3 of the resulting lipid cleaned-up on GPC and a 1 mL final volume

Calculations

All data was adjusted using the average surrogate recovery of terphenyl d2 fluorobiphenyl for all PAHs except naphthalene which was adjusted using naphthalene d8 surrogate recovery for each sample.

1.2.2 Particle Size Analysis

The Environment Canada Sediment Lab conducted the particle size analysis for sediment samples from Laboratory 1 Batches 1 through 8 using the pipette method (Black, 1965). Samples were dried and passed through a series of sieves with decreasing mesh sizes for grain separation. The amount collected from each sieve was weighed and the percent composition of the total weight calculated to determine particle size distribution. Mesh sizes used for grain separation were as follows:

silt and clay	- <0.063 mm (-230 mesh)
very fine sand	- 0.063 - 0.125 mm (230 mesh)
fine sand	- 0.125 - 0.250 mm (120 mesh)
medium sand	- 0.250 - 0.500 mm (60 mesh)
coarse sand	- 0.500 - 1.000 mm (35 mesh)
very coarse sand	- 1.000 - 2.000 mm (18 mesh)
granules	- >2.00 mm (10 mesh)

Soilcon Laboratories Ltd. conducted the particle size analysis for sediment samples from Laboratory 1 Batch 9 using the following procedure.

For standard texture the following size fractions are tested for: 250, 125, 53, and $2 \, \mathcal{T}m$. Particle size analysis is done by the pipette method on air dry soil/sediment, which has passed through a 2 mm sieve (USDI, 1962; Lavkulich, 1981; Sheldrick and Wang, 1993). Organic matter is removed from a 40 g (\pm 0.5 g) sub-sample of soil/sediment using hydrogen peroxide. A dispersant, 0.4 N sodium pyrophosphate, and water is added to the soil/sediment to break apart any fine soil particles. The solution of soil/sediment, sodium pyrophosphate, and water is blended in an electric 'milk-shake' style mixer. The blended liquid is then transferred to a 1000 mL cylinder and brought up to volume.

The soil suspension is stirred with a plunger for a minimum of 30 seconds to ensure the sample is homogenous. Samples of the suspended soil are taken in a 20 mL volumetric pipette at predetermined time intervals dependent on the temperature of the liquid and the size of the particles one wants to measure.

化油

Following pipette analysis, the remaining contents of the cylinder are wet sieved to determine the various sand fractions.

There is no certified reference material for soil/sediment particle size analysis. Soilcon, however, has it's own standards for particle size, which are analyzed on a regular basis. In addition, the 53 \mathscr{T} m size fraction is determined both by pipetting and wet sieving. These two values must be within 5% of each other to be accepted. If the difference exceeds 5%, the sample is repeated.

<u>References:</u>

- Black, C.A. (editor). 1965. Methods of Soil Analysis Part 1. American Society of Agronomy. Chapter 43: 552-562.
- Lavkulich, L.M. 1981. Methods Manual: Pedology Laboratory, Third Printing. University of British Columbia, Soil Science Department. Pages 147-158 and 136-139.
- Sheldrick, B.H. and C. Wang. 1993. Particle size distribution. In: Martin R. Carter, ed. Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. Lewis Publishers, London, pp. 499-512.

1.2.3 SFR/SVR Analysis

Sediment residue analysis was conducted at the Pacific Environmental Science Centre. Samples were oven dried and then ignited at $550 \, \mathbb{O} \, C$ in a muffle furnace. The loss of weight on ignition represents the sediment volatile residue (SVR), and the remaining residue represents the sediment fixed residue (SFR). Volatile residue is only an approximate measure of the organic content as results may also reflect loss of water at crystallization, loss of volatile organic matter before combustion, incomplete oxidation, and decomposition of mineral salts during combustion. For a detailed description of the residue analysis refer to APHA (1985) or Swingle and Davidson (1979).

References:

- APHA/ AWAA/WPCF. 1985. Standard Methods for the Examination of Water and Wastewater. 14th Edition. Washington, D.C.
- Swingle, R.B. and J. W. Davidson. 1979. Environmental Laboratory Manual, Laboratory Services, Department of Environment and Department of Fisheries and Oceans.

-

Unite

Hille

1.2.4 Lipid Content

The following description of analytical methodology was provided by Axys Analytical Services in Sidney, British Columbia.

Gravimetric lipid analyses were carried out on extracts during either the extraction procedure for organotin compounds or the extraction procedure for PCB congeners and coplanars (many of the samples were also analyzed for PCBs). The percentage lipid was determined using a wet tissue weight.

Colourimetric lipid analyses were carried out on a small number of tissue samples. A lipid extract was prepared by homogenizing dry tissue sample with chloroform/methanol (2:1) and filtering the residue. The filtrate was made up to a volume of 100 mL.

The lipid concentration was quantified colourimetrically using the sulphophosphovanillin method of Barnes and Blackstock (1973). A portion of the lipid extract (0.5 mL) was placed in a test tube, the solvent evaporated under a stream of nitrogen, and concentrated sulphuric acid added (0.5 mL). The stoppered tubes were heated in a water bath (100° C) for 10 minutes. When cool, an aliquot (0.1 mL) of extract was transferred to a test tube, and phosphovanillin reagent (2.5 mL) was added. After 30 minutes the absorbance was measured at 520 nm against a procedural blank. A calibration curve was made with a cholesterol standard. Total lipid concentration was calculated using a conversion factor given by Barnes and Blackstock (1973) which equates 80 mg cholesterol standard with 100 mg total lipid.

Reference:

Barnes. H. and J. Blackstock. 1973. J. Exp. Mar. Bio. Ecol. 12: 103-1189

APPENDIX 2

SAMPLING STATION COORDINATES

Sediment Samples:

1846

Site No.	Location	Latitude	Longitude	Water Depth (m)
FRASER RI	VER ESTUARY			
MS-3	Off Iona Island sewage treatme Station 1	ent plant 49° 12.112'	123° 15.988'	2
FRASER RI	VER			
FR-16	Koppers International Station 1 Station 2 Station 3	49° 13.381'	122° 55.852′	2.5 5 4
FR-20	BC Cleanwood Preservers Station 1 Station 2 Station 3 Station 4	49°11.030'	122° 54.909′	5 13 4 5
FR-17	Domtar Wood Preservers Station 1 Station 2 Station 3 Station 4	49° 11.280′	122° 57.780'	2 2 3 2
FR-19	Princeton Wood Preservers Station 1 Station 2 Station 3 Station 4	49° 11.908′	122° 54.000′	1 5.5 5 3.5
FR-18	Domtar/Liverpool Site Station 1 Station 2 Station 3 Station 4	49°12.723′	122° 52.995'	.75 1.5 1 10

Sediment Samples:

Site No.	Location	Latitude	Longitude	Water Depth (m)
FALSE CRE	ЭЕК			<u></u>
FC-1	Marina at Market	49° 16.352'	123° 08.166′	
	Station 2			
	Station 3	49° 16.310'	123° 08.178'	3
	Station 4	49° 16.280'	123° 08.178'	6
	Station 5	49° 16.255	123° 08.166	4
FC-4	Outer creek - midchannel			
	Station 1	49° 16.630'	123° 08.244'	8
FC-5	At Granville Ferries			
	Station 1	49° 16.480'	123° 08.064'	7.5
FC 4	Off Granvilla Jaland Hatal			
FC-0	Station 1	49° 16 200'	123° 07 706'	6
		47 10.200	125 07.700	0
FC-7	Off Marina at Monk McQueen's			
	Station 1	49° 16.136'	123° 07.264'	6
FC-8	Off Monk McOueen's: near Camb	vie Bridge		
	Station 1	49° 16.292'	123° 06.861'	7
FC-9	Inside Cambie Bridge off dumpsi	te		
	Station 1	49° 16.429'	123° 06.339'	9
FC-10	Northeast corner			
	Station 1	49° 16.503'	123° 06.237'	7
	East basin			
r U- 11	East Dasin Station 1	40° 16 405'	1230 06 227	2
	Station 1	77 10.473	123 00.327	2

ii diin

bide

.

Sediment Samples:

Site No.	Location	Latitude	Longitude	Water Depth (m)
BURRARD I	NLET			
BI-1	Vancouver Outer Harbour	(Pacific Environment I	nstitute)	
	Station 2	49° 19.72'	123° 13.52'	54
BI-2	Vancouver Wharves			
	Station 4	49° 18.546'	123° 06.963'	19
BI-3	L&K Lumber			
21.5	Station 2a	49° 18.654'	123° 06.700'	14
BI-4	Vancouver Shinyard/Seaso	an		
211	Station 1	49° 18.775'	123° 06.234'	8
	Station 3	49° 18.748'	123° 06.294'	20
	Station 4	49° 18.644'	123° 06.333'	8
BI-5	Versatile Pacific (was Burr	ard Yarrows)		
	Station 2	49° 18.500'	123° 04.684'	11
	Station 4	49° 18.543'	123° 04.774'	7
	Station 5	49° 18.367'	123° 04.663'	18
BI-7	Saskatchewan Wheat Pool			
	Station 1	49° 18.267'	123° 03.507'	14
BI-8	Neptune Terminals			
	Station 2	49° 18.203'	123° 03.077'	20
	Station 2a	49° 18.197'	123° 03.131'	15.7
BI-9	Seaboard Terminals			
	Station 1x	49° 18.061'	123° 02.621'	15.5
	Station 1xb	49° 18.075'	123° 02.684'	17
BI-10	Lynnterm			
	Station 4	48° 17.803'	123° 01.634'	15

Sediment Samples:

Site No.	Location	Latitude	Longitude	Water Depth (m)
BURRARD I	INLET cont.			<u> </u>
BI-11	Belaire Shipyards Station 1	49° 17.870'	123° 01.449'	8
BI-12	Allied Shipyards Station 2	49° 18.187'	123° 01.345'	9
BI-14	Boulder Rock Station 1	49° 18.20 '	122° 56.36 '	28
BI-15	Ioco Station 1	49° 17.84 '	122° 53.13 '	12
BI-16	Ioco/Port Moody Station 2	49° 17.36 '	122° 51.75 '	11
BI-17	Port Moody Station 1	49° 17.50 '	122° 55.66 '	21
BI-18	Alberta Wheat Pool Station 1	49° 17.528'	123° 01.888'	20
BI-19	Central Harbour Station 1	49° 17.95 '	123° 05.00 '	34
BI-20	Rivtow Straits Station 2	49° 17.466'	123° 03.590'	17.6
BI-21	Sterling Shipyards Station 1	49° 17.284'	123° 03.785'	2
BI-22	B.C. Marine Shipbuilders Station 1	49° 17.270'	123° 03.922'	3

Sediment Samples:

Site No.	Location	Latitude	Longitude	Water Depth (m)
BURRARD I	NLET cont.			
BI-22a	B.C. Marine/Sterling Station 1	49° 17.263'	123° 03.871'	5
BI-23	Vanterm Station 2	49° 17.345'	123° 04.305'	19-28
BI-24	United Grain Growers Station 1	49° 17.334'	123°04.633'	26-31
BI-25	Centerm Station 1	49° 17.357'	123° 05.649'	23-26
BI-26	Canada Place Station 2	49° 17.365'	123° 06.634'	18-20
Coal Harbou	r Area:			
CH-1	Bayshore Inn Marina Station 1 Station 3 Station 4	49° 17.580' 49° 17.597' 49° 17.613'	123° 07.575' 123° 07.614' 123° 07.649'	3 2 6
CH-3	Royal Vancouver Yacht Clu Station 1 Station 4 Station 5 Station 6	b Marina 49° 17.808' 49° 17.719' 49° 17.685' 49° 17.709'	123° 07.539' 123° 07.587' 123° 07.563' 123° 07.638'	2 6 6 5
CH-5	Menchions Shipyard Station 1	49° 17.519'	123° 07.584'	7
CH-6	Bayshore/Menchions Station 3b	49° 17.576'	123° 07.560'	6.5

Sediment Samples:

Site No.	Location	Latitude	Longitude	Water Depth (m)
VICTORIA H	IARBOUR			
The Gorge:				
VH-1	SW-7	48° 26.658'	123° 23.811'	3
VH-2	SW-8	48° 26.852'	123° 24.341'	1.5
Selkirk Wate	rs:			
VH-3	SW-1b	48° 26.398'	123° 22.922'	4.5
VH-4	SW-2	48° 26.415'	123°22.725'	2
VH-5	SW-3	48° 26.355'	123° 22.734'	4.5
VH-6	SW-4	48° 26.278'	123° 22.728'	4.5
VH-7	SW-5	48° 26.329'	123° 22.613'	3
VH-8	SW-6	48° 26.351'	123° 22.534'	3-4
Upper Harbo	ur:			
VH-9	UH-1	48° 26.030'	123° 22.531'	7
VH-10	UH-2	48° 26.131'	123° 22.131'	4
VH-11	UH-3	48° 26.053'	123° 22.060'	4
VH-12	UH-4	48° 26.030'	123° 22.313'	7
VH-13	UH-5	48° 25.951'	123° 22.552'	5
VH-14	UH-6 (Site 1)	48° 25.899'	123° 22.496'	4.5
VH-14a	UH-6a (Site 2)	48° 25.955'	123° 22.549'	5.5
VH-15	UH-7	48° 25.812'	123° 22.331'	6.5
VH-16	UH-8	48° 25.787'	123° 22.222'	2.5
VH-17	UH-9	48° 25.940'	123° 22.208'	7.5

Cife

1e#

Sediment Samples:

Site No.	Location	Latitude	Longitude	Water Depth (m)
VICTORIA I	HARBOUR cont.		·	
Inner Harbo	ur:			
VH-18	IH-1	48° 25.575'	123° 22.416'	3
VH-19	IH-2	48° 25.521'	123° 22.343'	6.5
VH-20	IH-3	48° 25.385'	123° 22.157'	7
VH-21	IH-4	48° 25.307'	123° 22.119'	2
VH-22	IH-5	48° 25.305'	123° 22.184'	7
VH-23	IH-6	48° 25.395'	123° 22.446'	6.5
VH-23a	IH-7			
VH-24	IH-8	48° 25.384'	123° 22.655'	5
VH-25	IH-9	48° 25.372'	123° 22.802'	1.5
VH-26	IH-10	48° 25.442'	123° 23.123'	7
VH-27	IH-11	48° 25.493'	123° 22.708'	8
VH-28	IH-12	48° 25.577'	123° 22.764'	7
VH-29	IH-13	48° 25.556'	123° 22.637'	8
VH-30	IH-14	48° 25.679'	123° 23.523'	9-13
Outer Harbo	ur:			
VH-31	OH-2	48° 24.962'	123° 23.281'	13-18

Sediment Samples:

Site No.	Location	Latitude	Longitude	Water Depth (m)
ESQUIMAL	T HARBOUR			
Upper Harbo	ur:			
EH-1	Upper Harbour Station 1	48°27.380'	123°27.109'	1.5
Plumper Bay	:			
EH-2	Station PB-1	48° 26.844'	123° 26.044'	3
EH-3	Station PB-2	48° 26.648'	123° 25.833'	4
EH-4	Trawl Site	48° 26.797'	123° 26.209'	9
ЕН-5	Dunn's Nook	48° 26.456'	123° 26.856'	10
EH-6	Fort Rodd	48° 25.787'	123° 26.909'	10
Constance Co	ove:			
EH-7	Station 1	48° 26.143'	123° 25.703'	12
EH-8	Station 6a	48° 26.221'	123° 25.756'	7.5
EH-9	Station 2	48° 26.018'	123° 25.214'	9
EH-10	Station 3	48° 26.014'	123° 25.420'	8
EH-11	Station 4	48° 25.914'	123° 25.550'	10
EH-12	Station 5	48° 26.008'	123° 25.862'	11.5
EH-13	Station 6	48° 26.014'	123° 26.206'	12
EH-14	Station 7	48° 26.032'	123° 25.641'	13

Willi

Yes))

÷.

i.

-

-

<u>ال</u>

1-1

١.

ł

Sediment Samples:

ti di

.

Site No.	Location		Latitude	Longitude	Water Depth (m)
MS-14	LADYSMITH HA LH-29 LH-30 LH-31 LH-32 LH-33 LH-34 LH-36 LH-37	ARBOUR Station 29 Station 30 Station 31 Station 32 Station 33 Station 34 Station 36 Station 37	49° 00'	123° 48′	NI
REFERENCE S	SITES				
RF-1	Crescent Beach Station 1		49° 03.358'	122° 53.199'	1
RF-5	Warn Bay Station 1		49° 15.172'	125° 45.660'	1
Queen Charlotte	e Islands:				
RF-9 RF-11	Delkatla Slough Tow Hill		54° 54°	132° 131°	

Biota Samples:

Site No.	Location		Latitude	Longitude
Fraser River:				
MS-3	Fraser estuary off Iona Island Sewage	Treatment P	lant 49°12.112'	123°15.988'
FR-16	Koppers International		49°13.381′	122° 55.852′
FR-20	BC Cleanwood Preservers		49° 11.030′	122° 54.909′
FR-17	Domtar Wood Preservers		49° 11.208'	122°57.780′
FR-19	Princeton Wood Preservers		49° 11.908′	122° 54.000′
FR-18	Domtar/Liverpool Site		49° 12.723'	122° 52.995′
False Creek Ar	ea:			
FC-1	Marina at Market Station 3 Station 4 Station 5		49° 16.310' 49° 16.280' 49° 16.255'	123° 08.178' 123° 08.178' 123° 08.166'
FCT-1	East Basin Trawl	start stop	49° 16.187 49° 16.296	123° 07.205' 123° 06.888'
FCT-2	Monk McQueens Trawl	start stop	49° 16.159' 49° 16.273'	123° 07.413' 123° 06.992'

4()-1#

Biota Samples:

Site No.	Location		Latitude	Longitude
Burrard Inlet	•		<u>,</u>	
SB-1	Spanish Banks Trawl			
	Trawl SBT-1	start	49° 17.84'	123° 12.35'
		stop	49° 17.73	123° 11.55'
31-1	Vancouver Outer Harbour (Pacific Enviro	onment In	stitute)	
	Trawl VOT-1	start	49° 19.75'	123° 14.32'
		stop	49° 19.73'	123° 13.62'
21.7	Vancouver Wharves			
J1-2	Station M1		49° 18 528'	123° 06 891'
	Station M2		49° 18.497'	123° 06.810'
3I-3	L&K Lumber			
	Station M1		49° 18.667'	123° 06.564'
31-4	Vancouver Shipyard/Seaspan			
	Station M1		49° 18.703'	123° 06.353'
	Station M2		49° 18.789'	123° 06.291'
81-5	Versatile Pacific (was Burrard Yarrows)			
	Station M1		49° 18.562'	123° 04.732'
	Station M2		49° 18.451'	123° 04.460'
	Station C1		49° 18.464'	123° 04.851'
	Trawl VCT-1	start	49° 18.259'	123° 04.758'
		stop	49° 18.166'	123° 04.418'
31-9	Seaboard Terminals			
	Station M1		49° 18.145'	123° 02.845'
	Station M2		49° 18.079'	123° 02.653'
	Trawl ST-1	start	49° 18.048'	123° 02.945'
		stop	49° 17.931'	123° 02.545'
	Station C1	•	49° 18.071'	123° 02.845'
	Station C2		49° 18.059'	123° 02.564'

Sampling Station Coordinates cont. **APPENDIX 2.2**

Biota Samples:

Site No.	Location		Latitude	Longitude
BURRARD I	NLET cont.			
BI-10	Lynnterm			
	Station M2		49° 17.824'	123° 01.706'
BI-12	Allied Shipbuilders			
	Trawl AT-1	start	49° 18.157'	123° 01.425'
		stop	49° 18.060'	123° 01.330'
	Station M1	F	49° 18.157'	123° 01.312'
	Station M2		49° 18.120'	123° 01.303'
BI-17	Port Moody/Joco			
	Trawl PM/I-1a	start	49° 17.54'	122° 53.91'
		ston	49° 17 51'	122° 54.92'
	-1b	start	49° 17 51'	122° 54 92'
		ston	49° 17 54'	122° 53.92
	-1c	start	49° 17 52'	122 53.91
	10	stop	49° 17.50'	122° 54.90'
BI-22	B.C. Shipbuilders/Sterling Shipyard			
	Trawl BCT-2	start	49° 17.400'	123° 03.716'
		stop	49° 17 474'	123° 03 952'
	Station M1	010P	49° 17.438'	123° 03.537'
BI-26	Canada Place			
	Station M1		49° 17.308'	123° 06.840'
CH-7	Coal Harbour			1000 07 000
	Irawi CHI-I	start	49° 17.510'	123° 06.992'
		stop	49° 17.486'	123° 06.353'
CH-5	Menchions Shipyard			
	Station M1		49° 17.494'	123° 07.602'
	Station C1			
<u> </u>				
с <i>оаі Нагьоці</i> Сн.1	Area: Paychore Marine			
C11-1	Dayshure Marina		409 17 667	1000 07 707
	Station 5		49~ 17.667	123° 07.787'
	Station 5		49° 17.603'	123°07.821′
	Station /		49 17.607'	123° 07.733'
	Station 8		49° 17.608'	123° 07.649'

-

Mark

Biota Samples:

Site No.	Location		Latitude	Longitude
Coal Harbou	r Area cont.:			
CH-1	Bayshore Marina cont. Station 9 Station 10 Station 11		49° 17.597' 49° 17.588' 49° 17.573'	123° 07.620' 123° 07.587' 123° 07.579'
CH-3	Royal Vancouver Yacht Club Station 1 Station 2 Station 3 Station 8		49° 17.765' 49° 17.732' 49° 17.726' 49° 17.728'	123° 07.587' 123° 07.581' 123° 07.596' 123° 07.521'
Victoria Harl	oour:			
Selkirk Water	5:			
SW-C1	Station C1		48° 26.398'	123° 22.899'
SWT-1	Trawl SWT-1	start stop	48° 26.404' 48° 26.404'	123° 23.119' 123° 22.911'
SWT-2	Trawl SWT-2	start stop	48° 26.294' 48° 26.337'	123° 22.684' 123° 22.534'
SWT-3	Trawl SWT-3	start stop	48° 26.349' 48° 26.192'	123° 22.843' 123° 22.652'
SW-SS1	Station SS1	•	48° 26.551'	123° 22.784'
SW-SS2	Station SS2		48° 26.290'	123° 23.129'
Upper Harbo	ur:			
UHT-1	Trawl UHT-1	start stop	48° 26.012' 48° 25.781'	123° 22.546' 123° 22.260'
UH-C2	Station C2	5.0P	48° 26.051'	123° 22.617'

₩¤**ë**

Biota Samples:

Site No.	Location		Latitude	Longitude
Victoria Ha	rbour cont.:		· · · · · · · · · · · · · · · · · · ·	<u></u>
Inner Harbo	our			
IH-C3	Station C3		48° 25.409'	123 22.811'
IHT-1	Trawl IHT-1	start	48° 26.012'	123 22.546'
		stop	48° 25.781'	123 22.260'
IH-SS3	Station SS3		48° 25.391'	123 22.443'
IH-C4	Station C4		48° 25.585'	123 23.505'
IH-SS4	Station SS4		48° 25.716'	123 23.708'
(same as VI-	-4)			
Esquimalt H	larbour:			
Constance C	Cove			
CC-M2	Station M2		48° 26.014'	123° 26.097'
CC-C1	Station C1		48° 26.067'	123° 26.150'
CCT-1	Trawl CCT-1	start	48° 26.147'	123° 25.997'
		stop	48° 26.112'	123° 25.476'
Plumper Ba	y v	*		
PBT-1	Trawl PBT-1	start	48° 27.103'	123° 26.762'
		stop	48° 26.930'	123° 26.403'
PBT-2	Trawl PBT-2	start	48° 26.930'	123° 26.268'
		stop	48° 26.641'	123° 26.250'
PBT-3	Trawl PBT-3	start	48° 27.060'	123° 26.886'
		stop	48° 26.633'	123° 26.432'
PB-M2	Station M2	1	48° 26.864'	123° 25.985'
PB-M3	Station M3		48° 26.809'	123° 26.027'
PB-SS5	Station SS5		48° 26.821'	123° 25.991'
Dallas Rant				
PB-SS6	Station SS6		48° 26.743'	123° 25.985'

ماداد

1

صلا

1

Biota S	Samples:
---------	----------

1 🖬

Site No.	Location		Latitude	Longitude
VI-14	Ladysmith Harbour Site #29 Site #30 Site #31 Site #32 Site #33 Site #38		49°	123°
VI-13	Nanaimo Harbour Stn. 1 - South of Nanaimo Yacht Club Stn 2 - North of Nanaimo Yacht Club Stn 3 - South of Moby Dick Motel Stn 4 - Petro-Can Fuel Dock Stn 5 - North of Air Rainbow Stn 6 - South of Shaft Point Stn 7 - Newcastle Island - across from Unique Seafoods Stn 8 - Newcastle Island - South tip		49° 10.537' 49° 10.708' 49° 10.790' 49° 11.185' 49° 11.437' 49° 11.673' 49° 11.092' 49° 10.637'	123° 56.460' 123° 56.581' 123° 56.617' 123° 56.873' 123° 56.830' 123° 56.651' 123° 56.412' 123° 55.957'
<u>Reference Site</u>	<u>x</u>			
RF-1	Crescent Beach Station 1		49° 03.358'	122° 53.199'
RF-2	St. Vincents Bay Trawl	start stop	49° 49.786' 49° 49.786'	124° 04.924' 124° 03.765'
RF-3	Agamemnon Channel Trawl	start	49° 45.489' 49° 45 892'	124° 00.994' 123° 59 247'
RF-6	Fortune Channel Station 1	зтор	49° 11.535'	125° 46.942'
RF-7	Larkin Island, south end Station 1		48° 56.380'	125° 17.471'
RF-8	Rivers Inlet Station 1		51° 39′	127° 26′
RF-9	Delkatla Slough, Queen Charlotte Islands Station 1		54°	132°

APPENDIX 3

SAMPLE INFORMATION

1 i bei

APPENDIX 3.1 SEDIMENT CHARACTERISTICS

SITE NO.															
	LOCATION	DATE	MEDIAN Particle	CLAY	AND SILT ((x			SAND (%			GRANULES	SFR	SVR.	
			size	Clay (%)		His Xi		Sand (%)	Medium Sand (X)	Coarse Sand (%)	Sand (%)	Ē			
	FRASER RVER														
WS 4	Fraser Estuary 0.6 km from Iona Sewage Trailment Plant Station 1	08-Jul-85	clay	86.3		Ţ	e.	8) 8)	4	0.7	0.5		943000	57000	
t-sw	Iona Island Sewage Treatment Plant Station 1	20-Jul-87	fine sand	-	₹. 0	-	H.	5 41.6	28.1	7.6	0.7	1.2	¥	¥	
FR-18	Kopper's international Station 1 Station 3 Station 3 Station 4	26-Sep-90	ciay ciay ciay	62.2 63.2 71.3 73.9	30.7 29.4 20.6	5.6 6.1 7.8	- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1-	0.2					980000 977000 967000 964000	20400 23300 32500 36400	
FR-17	Domiar Wood Preservers Slation 1 Station 3 Station 4 Station 4	24-Sep-90	0 0 0 0 9 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	80 75.6 62.8 57.1	11.3 14.7 23.9 17.4	5.5 8.3 7.8	0.0 3.1 2.8 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	6.	9.1	n	1		970000 971000 973000 973000	29600 28900 27100 28600	
FR-18	Domtar/Liverpool Site Station 1 Station 3 Station 3	26-Sep-90	ciay ciay ciay very fine sand	74.8 64.7 65.8 2.1	14.2 28.4 19.5	6.7 5.5 76.8 76.8	1 2 2 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	03	0.3	62			696000 977000 978000 978000	31500 23400 22400 7710	
FR-19	Phincedon Wood Preservers Station 1 Station 3 Station 3 Station 4	25-Sep-90	day ciay ciay	86.4 91.3 76.4 71.1	6.6 6.6 21.2	23 11.6 6.4	0.2 0.5 0.3 0.3 0.1						965000 962000 961000 970000	35100 38300 38800	
FR-20	B.C. Clearwood Freervers Station 1 Station 3 Station 4 Station 4	25-Sep-90	silt silt Very fine sand clay	18.9 44.2 83.7	40.2 31.7 4.3	37.9 21 7	1.6 0.2 2.7 0.4 8.1 7.0 2.7 0.3	0.2 3.7	0.3	0.2			983000 974000 940000	17000 26100 60100	
-	Marina at Market Station 2	12-Aug-88	the sand	17	4. 10	1.4.7	6.1 13.1	12.6	28.4				91000	90100	
	Outer creek - midchannel Siation 1 M Granville Ferries	04-Jun-91	medium sand	5.5	7	8.5	9 2	18.2	36.9	18.1	3.1	0.51	864000	36200	
	Station 1 Station 1 Station 1 Station 2	04-Jun-91 16-Nov-94 04-Jun-81 16-Nov-84	silt day and silt silt clay and silt	24.8 [26.8 [11.3 02.9 8.4 53.1	49.8] 43.5]	et 16	2.9 2.9 13.7	1.6 10.9 1.8 15.2	0.6 3.2 3.6 3.6	0.14 0.5 0.27 1.3	0 1.01 1.41 2.7	944000 931000 942000 934000	55600 68900 57900 66000	

1 🖷

APPEND	NX 3.1 SEDIMENT CHARACTERISTICS													
SITE NO	LOCATION	DATE	MEDIAN	CLAY	AND SILT	(%)	Very		(%) UNVS		Very	GRANULES (%)	SFR	svr
			size	Clay (%)		sitt (%)	Fine Sand (%)	Fine Sand (%)	Medium Sand (%)	Sand (%)	Course Sand (K)			
	FALSE CREEK AREA cont.: 5112								7					
FC-7	Off Marina at Monk McQueen's Station 1	04-Jun-91	h	17.7	7.3	31.6	4.6 4.0	8.6	10.7	11.1	5.01	5.04	\$30000 \$27000	70200 72600
	(Lab duplicate)	18-Nov-94	clay and silt	-	22	-	6.9	8.1 1.8	7.3	3.4	2.5	<u>6</u> .1	919000	\$1300
FC-8	Off Monk McQueen's; near Camble Bridge Station 1	04-Jun-91 18-Nov-94	siit clay and silt	19.3 [10.2 74.3	42.8 J	5.1 8.8	7.7 8.8	7.6 8	**	1.8 0.6	1.6	921000 928000	78800 72000
FC-	Inside Cambie Bridge off dumpatie Station 1 (Lab duplicate)	04-Jun-91	ailt.	19.8	11.6	48.6	3.8 NO INFORM	2.8 AATION	3.3	3.1	2.6	8). 8)	918000 926000	82000 73700
FC-10	Northeast correr Station 1 (Lab dupicate)	04-Jun-81	clay and silt	19.7	12.2	47.2	4.4 NOINFORN	5.6 A A T I O N	5.5	2.9	8.1	1.5	914000 910000	86200
FC-11	East Besin Station 1	04-Oct-88					NOINFORM	AATION						
	BURRARD INLET:													
27 7	Vancouver Outer Harbour (Pacific Environment Institute) Station 2 (Lab dupkcate)	0 8 -Sep-91	T,	33	10.4	54.5	2.4 NO INFOR	0.67 MATION	0.11	0.0	0.01	۰	949000 949000	51000 50800
BI-2	Vancouver Wharves Station 4 (Repeat analysis)	12-Sep-91	medium sand		Ę	-	1.2 NO INFORI	14.4 MATION	44.8	19.6	8.8 2.5	10.6	759000	241000 62300
7	L & K Lumber Station 2a (Repeat analysis)	12-Sep-91	very fine sand clay and silt		40.8 80.2		15.9 8.5	5.1 5.1	16.7 3.7	4.8	1.1 0.9	1.1 0.1	928000 NN	71300 NA
1	Vancouver Shipyarda/Seaspan Station 1 Station 3 Station 4	20-Aug-84 14-Sep-88 12-Sep-81	fine sand coarse sand	1.73	23.5	1.2	NO INFOR 18.6 0.96	MATION 25.3 5.5	15.8 27	6 6	2.0 16.2	9.9 9.9	926000 941000	73900 58900
7	Versatile Pacific (was Burrard Yarrowe) Station 4 Station 4 Station 5	20-Aug-84 28-Ju+88 12-Sep-91	clay and silt medium sand very fine sand	1 15.5	62.3 3.1 4.8	1	9.8 17.1 19.2	8.8 3 20.6 2 26.2	8 13.4 3.8	6.9 12.6 1.8	2.3 12.7 0.69	21 21 21	NA 969000 950000	NA 31100 49700
81-7	Saskatchewan Wheat Pool Station 1	12-Sep-91	very fine sand	10.2	2.4	22.3	31.	5 26.6	4.3	0.6	0.2	2.6	967000	32900

- 166-

۱H)

.

tei

.

نحدا

ينتنا

-
APPENDIX 3.1 SEDIMENT CHARACTERISTICS

) (**16**

SITE NO.	LOCATION	DATE	MEDIAN PARTICLE	CLA	Y AND SILT	(X)		Very	•	(%) GNB		Verv	GRANULES (%)	SFR	SVR
			SIZE	(X)		¥8 (X		Fine Sand (X)	Fine Sand (%)	Sand	Coarse Sand (%)	Coarse Sand (%)	Ī		
	BURRARD INLET cond.:														
•	Mepture Terminals Station 2 Station 2	20-Aug-84 12-Sep-91	very fine sand	-	25.2	-	NI ON	F 0 R M A ' 24.7	71 O N 28.6	1.71	3.4	-	8. 1.8	000558	47000
	(Repeat analysis)		very fine sand	8.2	2.5	21.3		- 0 K M A 1 21.9	X 0 X	13.6	1 .0	0.3	•	NA 00	¥ 20800
1	Seaboard Terminais Saboon ta Saboon ta Saboon ta (Repeat analysie)	14-Sep-88 12-Sep-91	medium sand medium sand medium sand		5 8.8 1.6	0		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	22.8 16.4 18.5	35.1 21.5 20.2	15.4 12.4	5.9 7.5 7.5	7.3 21.2 21.2	872000 860000 NA	27500 40400 NA
BI-10	Lynnkern Station 4	11-Sep-91	the sand	3.3	2	7.1		8.3	44.5	27	7	-	32	963000	37200
BI-11	Belaire Shipyards Station 1	20-Aug-84					N O N	FORMAT	NOIL						
BI-12	Allied Shipyards Station 2	14-Sep-88	very fine sand	-	34.4	-		19.9	14.1	13.4	9.3	5.3	9.E	894000	106000
2-18 1-12	Boulder Rock Station 1 (Lab dup#cate)	11-Sep-91	발망	18.9	4.7	41.7	INI ON	28.2 FORMAT	8.24 1 0 N	0.18	90.0	0	0	848000 853000	51800 46700
81-16	IOCO Station 1	10-Sep-91	medium sand	-	8	-		60	6	5	2	ន	ŝ	894000	106000
81-16	IOCO/Port Moody Station 2 (Repeat analysis)	08-Nov-89	siit and clay	_	92.4	-		2.6	2.5	1.7	0.5	0.3	6. 1.	381000 894000	19000
BI-17	Port Moody Station1 (Blind dupticate)	11-Sep-91					L ON	ORMAT	N 0 0 1					012000 020000	87700 19700
81-48	Alberta Wheat Pool Station 1 (Blind dupticale)	11-Sep-91	sit	12.5	10.3	52		2.4	5.1	9.1	۹D	2.4	2.54	888000 888000	11800
81-19	Centrai Marbour Station 1	12-Sep-91	ŧ	20.2	6.5	34.1		15.8	16.7	2.8	0.21	0.05	5.8	951000	48900
BI-20	Rivtow Straks Station 1	20-Aug-84					INI ON	FORMAT	NOL						
BI-21	Starting Shipyards Station 1	20-Aug-84					INI ON	FORMAT	NOL						
81-22	B.C. Martine Stripbuilders Station 1	20-Aug-84					INI ON	FORMAT	NOL						
BI-22a	B. C. Martine/Sterling Station 1	14-Sep-88	fine sand	-	21.4	-		13.8	16.6	52.9	12.3	ţ	•	981000	119000

- 167 -

CHARACTERISTICS	
SEDIMENT C	
4DIX 3.1	

APPEND	NX 3.1 SEDIMENT CHARACTERISTICS													1
SITENO). LOCATION	DATE	MEDIAN	CLAY	AND SILT	(%)			SAND (%)		Very	GRANULES	SFR	SVR
			PARTICLE	i			Fine	Fine	Medium	Coarse	Coarse			
				(X)) (*)	(%)	(%)	(%)	(%)	(%)			
	BURRARD INLET cont.:													
81-23	Varkern Station 2 (Lab duplicate) (Bind duplicate)	12-Sep-91	coarse sand	5.7	2.4	13.5	4.6 NO INFORMA	8 ATION ATION	14.3	15.8	16.1	22.8	839000 938000 949000	61500 62200 50800
97-19	unned drain drowers Station 1 Station 2	12-Sep-91 15-Mar-95	fine sand silt	15	31.8] 38.2	15.4 [15.9	12.7 45.7	1.1	3.6 J	12.6	943000 NA	57100 NA
Bi-26	Certern Station 1	12-Sep-91	fine sand	12.5	3.5	20.3	111	24	21.7	•	13	2	958000	42500
BI-26	Canada Place (Pier BC; NHB)		÷	i	:			6		0 63	Ş	c	943000	57100
	Station 2 (Lab duplicate) (Blind duplicate)	12-Sep-91	Ĩ	23.1	12	774	13.8		•		8	5	942000 940000	57800
	COAL HARBOUR AREA:													
CH-1	Bayethore Iran Marina Station 1,3,4 (composite) (Lab duplicate)	25-Mar-81	na Na	20.2	6.7	38.4	1.9	2.9	3.3	3.6	3	30.4	898000 898000	102000
CH3	Royal Vancouver Yacht													
		16-Mar-88	medium sand fine cand		11.2		1.51 1	12.7 32.1	32.1 31.5	18.6 3.6	6.7 40.1	5.5 6.1	937000 NA	63200 NA
	(repeat anarysis) Station 4,5,6 (composite) (Blind duplicate)	25-Mar-91		-			NOINFORM	ATION					921000 915000	79500 85500
CH.	Menchion's Shipyard Station 1	20-Aug-84					NO INFORM	ATION						
CH.4	Bay shore/Menchions Station 3b	14-Sep-88	medium sand	-	23.3	-	7.5	8.8	11.1	7.8	11.7	28.7	886000	114000

APPEND	IX 3.1 SEDIMENT CHARACTERISTICS													
SITE NO	LOCATION	DATE	MEDIAN PARTICLE	CLAY	AND SILT	(%)	Very		SAND (%)		Vary	GRANULES (%)	SFR S	SVR
			SIZE	Clay (%)		Hig (X)	Sand (%)	Fine Sand (%)	Medium Sand (%)	Coarse Sand (%)	Coarse Sand (%)			
	VICTORIA MARBOUR:													
	The Gorge:													
1-HV	Sen. SVL7; storm drains across from Aaron Point	11-Jul-90	gue sand		28.8	-	15.1	ន	20.9	4.4	0	o	861000	139000
VH-2	Stn. SV+8; off Gorge Park	11-Ju l-9 0	medium sand	_	13.1	-	13.7	22.3	34.3	14.9	1.7	•	868000	132000
	Selkirk Waters:													
5H7	Stn SW-1d; off BCFP	20-Jul-87	fine sand	-	13.7	-	23.5	21.4	14.3	14.4	6.3	6.2	ž	ž
Ŧ	Str. SW-2; off old BCFP/Fletcher Challenge sawmill, west side	11-Jul-90	very fine sand	-	40.5	-	18.6	19.7	16.9	£.4	0	0	861000	119000
9 H.X	Sh. SW3; off old BCFP/Fletcher Challenge sammil; southwest side	11-Jul-90	very fine sand	_	30.5	-	19.9	20.7	20.7	7.2	o	•	893000	107000
₽-HA	Sth. SW-4; trawl site, midchannel	11-Jul-80	fine sand	-	25.4	-	15.5	19.5	23.9	15.7	o	0	854000	146000
<i>1</i> -нл	Shr. SV45: south and of old BCFP/ Flecher Challenge summil; off location of old dip tanks	11-Jul-00	fine sand	-	52	-	17.7	21.7	26.8	8.3	6.0	0.2	865000	135000
₽HA	Shr. SW43; off storm drain south of sawmitt sile	11-Jul-90	fine sand	-	24.1	-	14.8	24	34.6	7	0	0	856000	144000
	Upper Harbour:													
€-HV	Sh. UH-1; Victoria Machinery Depot	11-Jul-90	fine sand	-	37	-	17.4	20.2	8	2.3	1.1	o	885000	115000
VH-10	Sh. UH-2; Rock Bay	11-Jul-90	sitt and clay	_	52.9	-	18.1	15.3	10.9	2.8	ø	o	679000	121000
VH-11	Sh. UH-3; head of Rock Bay	11-Jul-80	very fine sand	_	45.8	-	21.3	19.5	10.9	7	0.7	0	875000	125000
VH-12	Sth. UH-4; midchannel trawl site	11-Jul-90	fine sand	~	29.9	-	15.7	20.3	51	10.8	2	0.2	883000	117000
CH-H3	Sh. UH-5; Smith Cedar Products	11-Jul-90	fine sand	_	23.2	-	1 6	22.1	23.1	13.8	1.5	0.2	879000	121000
VH-14	Str. UH-6; Site 1	11-Jul-90	coarse sand	-	1.9	-	1.9	ø	222	41.8	24.2	0.8	90200	96200
VH-14a	Shi. UH-6a; Site 2	11-Jul-85					NOINFORMA	TION						
VH-16	Sh. UH-7; Hope PoinVStandard Oil	11-Jul-90	very fine sand	-	48.1	-	54	19.9	7.3	0.7	0	•	891000	109000
VH-16	Sh. UH-6; Garbage Depot/Standard Oil	11-Jut-90	very fine sand	-	43.4	-	21.7	18.2	15.3	0.4	Ð	0	861000	119000
71-HV	Shi. Ut+9; Boatbuilding FacHty	0 0-Ma r-91					NO INFORM	ATION						

- 169 -

SEDIMENT CHARACTERISTICS	
APPENDIX 3.1	

ITE NO	. LOCATION	DATE	MEDIAN PARTICLE	CLA	r and silt	8	Yary		SAND (%)		, and M	GRANULES	SFR	SVR
			SIZE	Clay (%)		Silt Silt	Sand Sand	Fine Sand	Medium Sand	Coarse Sand	Sand Sand	Ē		
								Ē	2	È	i.			
	VICTORIA HARBOUR cont.:													
	Inner Harbour:													
# #	Str. IH-1; Off Songhees	11-Jul-90	very fine sand		26.9	-	27.7	24.7	13.8	4.2	2.1	0.5	936000	64400
H-19	Str. IH-2; West Coast Air	11-Jul-90	very fine sand	_	35.6	-	19.5	19.2	16.8	1.8	1.8	1.3	949000	51400
H-20	Str. IH-3; commercial dock at entrance to James Bay	11-Jul-90	coarse sand	-	13.1	-	6.9	11.5	18.1	10.3	12.2	27.8	911000	89400
H-21	Str. IH-4; Undersea Gardens	11-Jul-90	very fine sand	_	32.5	-	24.4	222	12.9	4	0.2	3.8	939000	61000
H-21a	Str. IH-4a; Blackball Ferries	11-Jul-85					NO INFORM	ATION						
H-22	Str. iH-5; B.C. Steamships	11-Jul-90	very fine sand	-	35.8	-	18.3	ġ	18.9	ŝ	1.5	1.5	927000	72700
H-23	Stn. IH-6; bay beside B.C. Steamships	11-Jui-90	very fine sand	_	32.2	-	24.7	25.2	12.8	4.9	0.1	0.1	915000	85000
H-23a	Str. IH-7; west side of Laurel Point	11-Jul-90												
H-24	Stn. IH-8; Trotac Marine	11-Jul-90	very fine sand	_	35.1	-	17.3	18.9	23.6	4.3	0.4	0.4	877000	123000
H-26	Sin. IH-0; Raymer PoinUFIsherman's Wharf	11-Jul-90	fine sand	-	25.2	-	27.8	25.6	12.9	5	2.8	1.7	837000	63000
H-26	Sin. 114-10; between Shoal Point and Fisherman's Whaif	11-Jul-90	fine sand	-	11.5	-	2.1	57.2	7.2	0.7	0.1	0.2	961000	38600
H-27	Str. IH-11; Centre Channel trawf site	11-Jul-90	medium sand	_	15.6	-	17.4	24.3	17.4	2.5	2.5	20.4	831000	66200
H-28	Str. Itt-12; south side Songhees/old Seaspan site	11-Jut-90	medium sand	_	10.1	-	7.1	13	26.2	24.9	9 .4	6.9	879000	121000
6 2-¥	Stn. itt 13. south side Songhees/old Shell Cil site	11-Jul-90	fine sand	-	35	-	20.3	27.5	17.9	5.9	Ð	₽ .0	899000	101000
97 H	Str. IH-14; West Bay	11-Jul-90	very fine sand	-	58	-	25.1	29.4	15.5	0.7	0.3	0	914000	85700
	Outer Harbour:													
7	Str. OH-2; Ogden Point Wharves	11-Jul-90	very fine sand	-	27.4	-	37.1	24.4	10.4	0.7	0	0	963000	37200
	ESQUIMALT HARBOUR:													
ž	Upper Harbour	11-Jul-90	fine sand	-	14.7	-	26.6	32.9	20.3	2.7	8.0	o	961000	19500
	Plumper Bay:													
7	Shr. PB-1; off old wood products facility	11-Jul-90	fine sand	-	L.H.	-	20.8	26.5	27.9	13.7	0	0	\$10000	190000
7	Shn. PB-2; off sales of old dip tank	11-Jul-90	medium sand	_	26.2	-	12	16.9	32.9	6.8	1.6	1.1	863000	137000
1	Trawi site	11-Jul-90	very fine sand	-	47.3	-	17.5	16.1	18.6	0.5	0	o	827000	72600
7	Durn's Nook	11-Jui-90	very fine sand	-	1.74	-	Ð	16.6	17.8	1.9	o	0	925000	75000

170.

<u>i an</u>i

1

APPENL	DIX 3.1 SEDIMENT CHARACTERISTICS													
SITE NC	D. LOCATION	DATE	MEDIAN PARTICLE	CLAY	AND SILT	(X)	Very		SAND (%)		Verv	GRANULES	3F.R	3VR
			SIZE	(%) (%)		38 K	Fine Sand (%)	Fine Sand (%)	Medium Sand (%)	Coarse Sand (%)	Coarse Sand (%)	ł		
EH4	Fort Rodd Constance Cove:	11-Jul-90	fine sand		ţ	-	12.7	31.5	30.5	•	3.3	40°F	84000	36000
EH-7 EH-8	Station 1 Station 6a; B-jetty	11-Jul-90 11-Jul-85	medium sand	_	4.6	-	5.5	16.9	43.6	15.1	8.1		128000	71600
EH-9 EH-10	Station 2 Station 3	11-Jul-90	fine sand		28	-	12.2 12.2	18.4	25.5	12.5	3.4	9	20000	80300 95900
EH-11	Station 4	11-Jul-90	verv fine		27.8		15.2	27.2	24.2	4.2	0.6	8.0	26000	74200
EH-12	Station 5	11-Jul-90	clay and silt		59.7		171	0 E	13.7	9 9 9 9	2.3	6.6	28000	71600
EH-14	Station 7	11-Jul-90	clay and silt		50		14.7	12.7	13.7	5.7	3.2	5.6	5000	50000
	Trawf site (Blind duplicate)	11-Jul-90	day and silt day and silt		52.8 93.8		13 3	15.3 1.7	17.3 1.2	0.5 0.3	0.3 40.1	0.0 8.0.1	28000 NA	72300 NM
	REFERENCE AREAS:													
RF-1	Crescent Beach Station 1	28-Aug-88	medium sand	_	6 .1	-	13,4	32.6	37.2	8.7	30		0000	
RF-6	Warn Bay Station 1	23-Jun-88	very coarse sand	_	1.5	-	1.9	3.3	10.8	7	ŝ			0000
RF-0	Queen Charlotte Islands: Deikatta Stough	25-Jul-89	medium sand	_	0.2	-	3.6	22.8	41.7	18.3				
RF-11	Tow Nill	22-Jul-89	fine sand	-	14.2	_	42.3	54	6.9	8.4	1		E Z	zz

Clay Sit Sit and clay Very fine sand Fine sand Medium sand Coarse sand Very coarse sand Granules

<0.004 mm
 <0.004 - 0.063 mm
 <0.003 mm
 <0.0033 - 0.125 mm
 <0.125 mm
 <0.125 mm
 <0.125 mm
 <0.125 mm
 <0.120 mm
 <0.20 mm
 >2.00 mm

NA = Information not available

- 121 -

APPENDIX 3.2	BIOTA SA	MPLE INFORM	ATION								
SITE NO.	LOCATION	DATE	SPECIES	TISSUE	N	SEX	AGE	LENGTH (cm)	WEIGHT (9)	MOISTURE CONTENT (%)	LIPID CONTENT (%)
	Fraser River Estuary:										
MS-3	Fraser River off lona Island	22-Jul-97	Dungeness crab	Hepatopancreas	LO I	SM	Z :	15.3-17.0	294.2-450.0 204 2 450.0	Ż Ż	6.33
	Sewage Treatment Plant		Dungeness crab Starry flounder	Muscle Whole body	n vo	NG IZ	zź	22.0-25.5	119.3-179.2	Ē	1.46
	Fraser River:										
FR-20	B.C. Cleanwood Preservers	25-Sep-90	Starry flounder Sculpin	Whole body Whole body	38 32	ī ī	ĪŽ	6.5-12.5 8.0-18.0	4.4-24.8 5.5-110.2	83 72	z z
FR-19	Princeton Wood Preservers	25-Sep-90	Starry flounder	Whole body	ø	ž	ź	11.5-16.0	20.4-41.8	80	ž
FR-16	Koppers International	20-Sep-90	Starry flounder	Whole body	24	ī	ž	6.0-8.0	3.2-6.0	11	ź
ED 18	Domlar - Livernool Site	20-Sep-90	Prickly sculpin	Whole body	7	z	ž	9.0-16.5	3.2-62.0	76	ī
		-									
	False Creek Area:										
FC-1	Marina at Market										
	Station 3,4,5 (composite) Station 3,4,5 (composite)	12-Aug-88 25-Mar-91	Mussels (large) Mussels (large)	Soft tissue Soft tissue	91 171	ZŻ	ΞŻ	3.8-5.5 3.5-5.2	ī ī	90.3 87	0.67/0.41
FCT-1	East Basin Trawl	04-Oct-88	Dungeness crab	Hepatopancreas	თ (6M;3F	ź i	6.3-14.0 6.3 14.0	29.2-267.0 29.2-267.0	žZ	8.61/7.31 0.21/0.23
		04-Oct-88	Dungeness crab	Muscle Meda body	¢ מ		ž Z	9.8-18.8	7.4-63.6	72.4	4.56/4.0
		04-Oct-88	English sole Dunneness crah	Wilde Body Muscle	2 ~	X	Ī	11.0-13.2	153.4-286.0	82/84	0.02
		04-Jun-91	Dungeness crab	Hepatopancreas	7	Σ	ī	11.0-13.2	153.4-286.0	11	12.9
		04-Jun-91	English sole	Whole body	o	ź	ź	14.8-19.0	32.6-54.0	80	7
ECT 3	Mediater's Traw	04-Oct-88	Dungeness crab	Hepatopancreas	56	50M;6F	ž	5.9-15.7	13.4-397.4	68	11.92/6.7
7-10-1		04-Oct-88 06-Jun-91	English sole English sole	Whole body Whole body	4 0	z z	ŻŻ	13.3-18.8 18.5-26.0	24.8-60.6 57.2-154.0	72.8 78/80	4.12/3.3

- 172 -

-

-

-

APPENDIX 3.2

100

a

SITE NO.	LOCATION	DATE	SPECIES		TISSUE	N	SEX	AGE	LENGTH (cm)	WEIGHT (g)	MOISTURE Content (%)	LIPID CONTENT (%)
	Burrard Inlet:											
BI-1	Vancouver Outer Harbour, (Pacific Environment Institute) Traw VOH-1	23-Sep-86	Dungeness	: crab	Hepatopancreas			0 z	INFORM	AATION		
SB-1	Spanish Banks Traw	11-Oct-88	Dungeness	s crab	Hepatopancreas	4	Ψ	ī	16.0-17.0	513.4-566.4	87.5	3.87
BI-2	Vancouver Wharves Stations M1, M2 (composite)	29-Oct-91	Mussek	(mixed sizes)	Soft lissue	82	z	ī	0.5-4.5	ź	84/86	0.7
BI-3	L & K Lumber Station M1	29-Oct-91	Mussels	(small)	Soft tissue	56	Ī	Ī	1.5-4.0	Ī	88	0.6/0.7
BI-4	Vancouver Shipyards/Seaspan Stn. M1,M2 (composite)	14-Sep-88	Mussek	(large)	Soft tissues	83	Z	Ī	3.8-6.0	ž	90.6	1.06
BIS	Versatile Pacific/Burrard Yarrows Station M1 Station M2 Station C1 Station VCT-1	28-Jul-88 29-Oct-91 16-Sep-88 16-Sep-88	Mussels Mussels Dungeness Rock sole	(small) (small) : crab	Soft tissue Soft tissue Hepatopancreas Whole body	200 98 5 4	NI NI NI NI	ŽŽŽŽ	1.8-3.6 0.2-2.0 9.1-15.6	NI NI 88.0-525.2 121.4-415.6	88.3 88 77.3 73.4	0.45 1.2 3.89/2.8
6 -8	Seaboard Terminals Station M1 Stations C1,C2 (composite) Traw ST-1 Station M2	14-Sep-88 16-Sep-88 16-Sep-88 29-Oct-91	Mussels Dungeness Rock sole Mussels	(mixed sizes) · crab (small)	Soft tissue Hepatopancreas Whole body Soft tissue	88 5 87	ZŻŻŻ	ŽŽŽŽ	2.5-6.0 10.0-15.0 20.5-24.7 0.5-2.5	NI 78.0-479.8 203.0-323.0 NI	84.8 64.2 73.3 85/86	1.02 17.15 4.08/2.8 0.8
Bi-10	Lynnterm Station M2	29-Oct-91	Mussels	(small)	Soft tissue	117	Z	Z	0.5-3.5	Z	86/84/85	1,4/1,4
BI-12	Allied Shipbuilders Stations M1,M2 (composite) Traw AT-1	14-Sep-88 16-Sep-88	Mussels Starry flour	(small) ider	Soft tissue Whole body	96 5	ΞΞ	Z Z	1.9-3.8 3.8-13.5	NI 0.8-29.4	ΖŻ	1.24 1.48

APPENDIX 3.2	BIOTA SAI	MPLE INFORM	ATION								
SITE NO.	LOCATION	DATE	SPECIES	TISSUE	N	SEX	AGE	LENGTH (cm)	WEIGHT (g)	MOISTURE CONTENT (%)	LIPID CONTENT (%)
	e tarre de la										
BI-17	Port Moody/IOCO Trawl PM/IT-1	24-Sep-86	Dungeness crab	Hepatopancreas			0 X	INFORM	ATION		
		24-Sep-86	Dungeness crab	Muscle	I		0 z	INFORM	ATION	ç	
		12-Oct-88	Dungeness crab	Muscle	1	6M;1F	Z	9.0-13.5	94.2-290.0	70	47.00 10.00
		12-Oct-88	Dungeness crab	Hepatopancreas	۰,	6M;1F	Ż Ż	9.0-13.5 36 4 410	94.2-290.0	NI 77 4	10.96 0.96
		12-Oct-88	Starry flounder	Muscle	n (2 3	Z	014-4-00	8		36.01
		12-Oct-88	Starry flounder	Liver	ო	Ī	Ż	36.4-410	>600	Z	10.40
		12-Oct-88	English sole	Whole body	21	Ī	ž	9.0-18.1	6.8-55.2	75.4	4.17
BI-22	B.C. Marine Shipbuilders/Sterling Ship Station M1	yards 14-Sen-88	Mussels (mixed sizes)	Soft tissue	138	Ŧ	Ī	2.3-4.6	Ī	85.3/85.5	0.67
		16-Sen-88	Dungeness crab	Hepatopancreas	7	1M;1F	ž	14.0-15.6	397.0-472.4	z	14.87
		16-Sep-88	Starry flounder	Whole body	ŝ	ž	ĩ	20.3-28.5	161.6-385.2	74.6	2.65/1.9
BI-26	Canada Place Station M1	29-Oct-91	Mussels (mixed sizes)	Soft tissue	56	ź	ī	1.0-4.5	Ī	85/87	1.5
CH-5	Menchion's Shipyard Station M1	28-Jul-88	Mussels (large)	Soft tissue	66	Z	Ŧ	4.0-6.0	Ŧ	86.9	1.05
	Coal Harbour:										
CH-6	Coal Harbour Traw CHT-1	23-Sep-86 23-Sep-86 16-Sep-88 16-Sep-88 16-Sep-88 16-Sep-88	Dungeness crab Dungeness crab Dungeness crab Dungeness crab Rock sole Shrimp	Muscle Hepatopancreas Hepatopancreas Muscle Whole body Tail	20 5 185	15M;5F 15M;5F NI NI	00zzzzz	INFORM INFORM 6.8-16.0 6.8-16.0 6.8-16.0 1.7-4.0	IATION IATION 37.6-558.4 37.6-558.4 93.4-221.6 NI	66 79 75.6	12.07 4.36/0.10 4.09/4.1 2.20

174 -

1

10

)+E

APPENDIX 3.2

100

1868

SITE NO.	LOCATION	DATE	SPECIES		TISSUE	ÖN	SEX	AGE	LENGTH (cm)	WEIGHT (9)	MOISTURE CONTENT (%)	LIPID CONTENT (%)
	Burrard Inlet cont.:											
	Coal Harbour cont.:											
CH-5	Menchion's Shipyard Station C1 Station C1 Station M1	23-Sep-86 23-Sep-86 28-Jul-88	Dungenes: Dungenes Mussels	s crab s crab	Musc le Hepatopancreas Soft tissue	66	Z	° ° z z	INFORM INFORM 8.0-10.0	ATION ATION NI	Ī	ž
CH-1	Bayshore Inn Marina Stations 3,7,9,10 (composite) Stations 5,8,10,11 (composite) Stations 5,8,10,11 (composite)	20-Mar-89 25-Mar-91 25-Mar-91	Mussels Mussels Mussels	(large) (large) (large)	Soft tissue Soft tissue Soft tissue	35 128 128	z z z	ŽŽŽ	4.2-5.4 3.6-6.3 3.6-6.3	ŽŽŽ	92.8 0.89 0.02	0.61/0.41 88 87
CH3	Royal Vancouver Yacht Club (RVYC) Marina Station 1 Stations 2,3,8 (composite) Stations 2,3,8 (composite)	17-Mar-88 20-Mar-89 25-Mar-91	Bentnose o Mussels Mussels	karns (large) (large)	Soft tissue Soft tissue Soft tissue	8 35 6	Z Z Z	ZZZ	3.7-5.2 4.4-5.9 4.0-6.2	ZZZ	82.2 91.1 89/90	0.68 0.75 0.4
	Victoria Harbour:											
SW-C1	Selkirk Waters Station C1 Station C1 Trouch C1	20-Jul-87 20-Jul-87	Dungeness	: crab	Hepatopancreas Muscle	9 Q	Σ Σ	ZZ	16.5-18.4 16.5-18.4	341.2-550.6 341.2-550.6	68.6 78	12.37 0.09
SWT-3	Traws Swr - 1 and 2 Traw Swr - 3	20-Jul-87 10-Jul-90 10-Jul-90 10-Jul-90	Starry floun English solv Dungeness Dungeness	e e crab crab	Whole body Whole body Muscle Hepatopancreas	τ ∞ ∞ ∞	z z & &	ŽŽŽŽ	3.8-7.2 6.8-14.6 16.0-19.0 16.0-19.0	0.6-4.0 8.7-10.9 408.4-750.0 408.4-750.0	72.3 76.4 81.9 81.7	1.56 1.4 0.01 8.4
SW-SS1 SW-SS2	Stn. SS1 (off old sawmill site) Stn. SS2 (beach at Barnfield Park)	11-Jul-90 13-Jul-90	Bentnose c Bentnose c Bentnose c	anrimp larms larms	Tail Soft tissue Soft tissue	97 20 21	Z Z Z	ž ž z	7.2-10.6 2.0-5.5 2.5-4.5	3.0-10.2 NI NI	74.9 NI NI	0.3

SITE NO.	LOCATION	DATE	SPECIES	TISSUE	Öz	SEX	AGE	LENGTH (cm)	WEIGHT (a)	MOISTURE CONTENT	LIPID
	Victoria Harbour cont.:										<u>è</u>
UHT-1 UH-C2	Upper Harbour Trawl UHT-1 Station C2 Station C2	10-Jul-90 11-Jul-90 11-Jul-90	English sole Dungeness crab Dungeness crab	Whole body Muscle Hepatopancreas	ည် လ လ	IN 88 W8	ZZZ	6.1-11.5 16.0-19.0 16.0-19.0	2.2-14.8 408.4-750.0 408.4-750.0	77.2 80.4 77.2	0.05 1.9
IH-C3/IHT-1	Inner Harbour Station C3 and Trawl IHT 4										ļ
HT-1	Traw IHT-1	10-Jul-90 10-Jul-90 10-Jul-90	Dungeness crab Dungeness crab Endish sola	Muscle Hepatopancreas	44	44 M4	źź	15.0-18.0 15.0-18.0	441.8-497.0 441.8-497.0	80.3 77/77	0.02
H-C4	I rawl IH I-1 Station SS3 (Laurel Point) Station C4 (West Bav)	10-Jul-90 11-Jul-90 00 1.1 60	Shrimp Bentnose clams	vniole pody Tail Soft tissue	55 58 59 50 50 50 50 50 50 50 50 50 50 50 50 50	ŻŻŻ	2 Z 2	5.4-11.3 5.4-11.3 2.0.2 E	1.4-15.8 1.4-11.8	78.7 75.5	1.0 0.5
IH-SS4	Station SS4 (Hidden Harbour Marina)	11-Jul-90	Dungeness crab Bentnose clams	Hepatopancreas Soft tissue	5 58	2M;4F Ni	ZZ	2.5-6.0	NI 496.0-645.2 NI	82.9 83.5	e V ž
	Esquimait Harbour;										
cc-M cc-c1	Constance Cov e Station M2 Station C1	09-lu(-90 09-lu(-90	Mussels (mixed sizes) Dungeness crah	Soft tissue	126	ž	ž	2.5-5.0	ž	2	, ,
CCT-1	Traw CCT-1 Traw CCT-1	06-Iul60 06-Iul60 06-Iul60	Dungeness crab English sole Shrimp	muscle Hepatopancreas Whole body Tail	9 47 152	¥ss ž ž	ŻŻŻŻ	14.0-19.0 14.0-19.0 6.0-16.0 4.5-9.5	405.4-752.8 405.4-752.8 2.2-37.8 0.6-7 0	83 83.9 7.77	12 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20
PBT-1,2,3	Plumper Bay Traw PB-1,2,3 Traw PB-1,2,3 Traw PB-1,2,3	12-Jul-90 12-Jul-90	English sole Shrimp	Whole body Tail	44 92	ZŽ	ž	4.7-11.1	0.8-11.8	78.2	
		04-Mar-91	Dungeness crab Dungeness crab	Muscle Hepatopancreas	5 2	11M;1F 11M;1F	ZZ	2.0-18.0 2.0-18.0 2.0-18.0	0.8-8.2 212.2-654.2 212 2-654.2	¥ 2 3	0.3
EM,2M-07	Stns. M1,M2 (adjacent old sawmill site)	09-Jul-90	Mussels (large)	Soft tissue	83	īz	ž	3.0-5.5	N N	M 86.3	N 0

APPENDIX 3.2

- 176 -

1

1

ر **الل**

APPENDIX 3.2

SITE NO.	LOCATION	DATE	SPECIES	TISSUE	Ö	SEX	AGE	LENGTH (cm)	WEIGHT (g)	MOISTURE CONTENT (%)	LIPID CONTENT (%)
	Victoria Harbour cont.:										
	Plumper Bay cont.:										
PB-SS5	Station SS5	06-Jul-90	Macoma clams	Soft tissue	-	Ī	Z	7.5	ż	z	0.5
PB-SS6	Dallas Bank Station SS6	06-Inf-60	Bentnose clams	Soft fissue	46	z	Ē	3.0-5.5	z	80.7	0.6
	Ladysmith Harbour: Sie #29 Sie #31 Sie #31 Sie #33 Sie #33 Sie #33	20-Jan-92 20-Jan-92 20-Jan-92 20-Jan-92 20-Jan-92 20-Jan-92	Mussels Mussels Mussels Mussels Mussels Mussels	Soft tissue Soft tissue Soft tissue Soft tissue Soft tissue			0 0 0 0 0 0 0 z z z z z z z	N N N N N N N N N N N N N N N N N N N	11100 11100 11100 11100 11100 11100 11100 11100		0.3 2 4 4 1.6 1.6
VI-13	Nanaimo Harbour:										
	Station 1 - South of Nanaimo Yacht Chub	20-Mar-91	Manita/ Littleneck clams	Soft tissue	Ŧ	z	ž	īz	Z	Ī	ï
	Station 2- North of Nanaimo Yacht Club	20-Mar-91	Manita/ Littleneck clams	Soft tissue	Ī	Ŧ	Ŧ	Z	z	īz	ī
	Station 3 - South of Moby Dick Motel	20-Mar-91	Manita/ Littleneck clams	Soft tissue	Ī	Z	Ī	z	Ī	Ī	Z
	Station 4 - Petro-Can Fuel Dock	20-Mar-91	Manita/ Littleneck clams	Soft tissue	z	ż	ž	ž	ž	ż	Z
	Station 5 - North of Brechin Point Boat Ramp	20-Mar-91	Manila/ Littleneck clams	Soft tissue	ž	z	Z	ž	ž	ī	Ŧ

- 171 -

SITE NO.	LOCATION	DATE	SPECIES	TISSUE	ġ	SEX	AGE	LENGTH (cm)	WEIGHT (g)	MOISTURE CONTENT (%)	LIPID CONTENT (%)
	Nanalmo Harbour cont.:										
	Station 6 -South of Shaft Point	20-Mar-91	Manila/	Soft tissue	z	Z	ž	z	Z	Z	īz
		20-Mar-91	Littleneck clams Oysters	Soft tissue	ź	ž	ž	ī	Z	Z	ī
	Station 7 -Newcastle Island - across from Unique Seafoods	20-Mar-91 20-Mar-91	Clams Oysters	Soft tissue Soft tissue	z z	źΞ	z z	ĪŽ	7 7	ī ī	žŻ
	Station 8 - Newcastle Island - south tip	20-Mar-91 20-Mar-91	Clams Oysters	Soft tissue Soft tissue	z z	N N	ī ī	ž Z	z z	z z	z z
	Reference Sites:										
RF-1	Crescent Beach CBT-1	16-Jun-91	Rock sole	Whole body	11	Ŧ	Z	8.5-12.5	5.0-16.8	75/76	2.0/2.1
RF-2	St. Vincents Bay SVBT-1	13-Feb-88	Stender sole	Whole body	8	Z	Ī	14.8-21.5	19.0-54.0	ź	1.98/1.06
RF-3	Agememnon Channel ACT-1	13-Feb-88 13-Feb-88	Rockfish Shrimp	Whole body Tail	4 b	ΖŻ	ΖZ	20.0-32.0 1.5-3.6	104.0-510.0 NI	74.9 NI	NI 2.85
RF-6	Fortune Channel Station 1	23-Jun-88	Dungeness crab	Hepatopancreas	2	5M;2F	Z	16.6-21.6	486.8-1036.0	6.77. 0	3.42
RF-7	Larkin Island - south end Station 1	23-Jun-88	Mussels (M. californianus)	Soft tissue	e	Ī	Z	15.9-16.0	ž	88.7	0.42

APPENDIX 3.2

- 178 -

.

تنفا

4 (**m**

APPENDIX 3.2 BIOTA SAMPLE INFORMATION

1

٠

SITE NO.	LOCATION	DATE	SPECIES	TISSUE	Я	SEX	AGE	LENGTH (cm)	WEIGHT (g)	MOISTURE CONTENT (%)	LIPID CONTENT (%)
	Reference Sites cont.:										
RF-8	Rivers Inlet Station 1	26-Oct-89	Pink shrimp	Tail	92	ź	ź	7.0-10.0	1.2-8.2	11	0.7
RF-9	Delkatla Skough, Queen Charlotte Islands Station 1	25-Jul-89	Dungeness crab	Hepatopancreas	ŝ	4M;1F	z	14.0-19.5	302.0-731.8	77/78	13

NI no information was available N/A no 1.D. number assigned - 179 -

APPENDIX 4 QUALITY ASSURANCE AND QUALITY CONTROL

APPENDIX 4.1	QUALITY /	ASSURANC	E AND QU		TROL · Se	diment Sample:	1	ng/g dry we	ight)										-	
	Naptha- Iene	Acenaph- / thylene	Aconaph- thene	Anthra- cene	Phenan- threne	Fluorene	Total LIMW PAHs	Fluor- anthene	yrene C	hrysene Ber th	ız(a)an- Be racene a	inzofluor- B	enzo(a)- Be pyrene i	nzo(ghi)- [berylene a	libenz(ah) In nthracene c	deno(123- B d)pyrene	enzo(e)- Pe	nylene	Total HRMV PAH:	Total PANs
LABORATORY DUPL	JCATES:			2 2 2 2																
LAB 1																				
Batch 342: Sample 1 Lab duplicate	1100	170 160	20000 22000	19000	69000 74000	51000 51000	160270 164760	110000	58000 48000*	17000	18000	18000° 19000°	6200 5700	3500 3400	760 1000	4200 3900	6600 6800	1800 1700	226260 37500	386530 202260
Batch 1171: Sample 1 Lab duplicate	78 50	2.5 NDR(1.8)	88 57	23 15	320 180	130 75	852.5 377	280 160	190 100	11	49 31	52 35	8 1	7.5 8.3	€7.8 6.0	NDR(6.6) NDR(5.9)	13	24 18	679.5 404.3	1332 781.3
Sample 2 Lab duplicate	75 99	5.7 5	38 38	32 27	150 150	6 6 6	339.7 369	210 130	150 110	64 55	48 48	79 77	31 36	19 20	NDR(2.9) NDR(3.4)	2 E	28 28	4 42	885 582	1024.7 831
Sample 3 Lab duplicate	6.1 5.9	40.8 1.1	41 47	NDR(2.5) NDR(2.2)	33	9.6 7.1	38.7 34	22 18	18 12	10 5.8	6.4 5.2	10	NDR(3.9) <2.6	NDR(5.2) <4.3	NDR(2.2) <4.4	3.7	4DR(3.8) 4DR(4.0)	32	101.1 77.1	138.8 111.1
Sample 4 Łab duplicate	5 5	3.2	2	NDR(3.6) NDR(3.4)	26 25	8.8 7.7	52.2 50.9	27 26	នន	14 9.2	8.8 8	18	8.2 NDR(5.4)	8.6 5.9	NDR(2.7) <2.3	NDR(6.4) NDR(4.6)	~ ~	48 45	164.4 140.1	216.6 191
Sample 5 Lab duplicate	<5.2 <4.9	40.5 4.0	€0.8 7.0>	NDR(1.2) NDR(1.4)	8. L 8. L	≤0.8 ≤0.9	1.6	2.1	1.7 1.8	6.0≻ 8.0≻	<1.0 <0.8	€0.8 <1.0	40.9 41.3	1. 1 .	30	41.1 41.5	<0.7 <1.0	1.7 1.6	5.4 5.5	7.2
Sample 6 Lab duplicate	86 130	4 50	38	220 250	710 750	160 100	1282 1313	1300 1900	1500 1900	680 1000	590 750	1200 1300	780 650	460 380	120 100	560 440	530 570	210 190	7830 9180	9212 10493
Sample 7 Lab duplicate	470	18	1200 1100	520 390	3100 2600	1600 1300	6934 5880	3300 3200	2300 2200	1100 880	900 780	1300 1200	790 710	410 390	83 26	430	570 530	190 180	11373 10558	18307 16438
Sample 8 Lab duplicate	450 270	74	320 110	470	1600	500 270	3414 2422	3200 2600	3000 2700	1400 1400	1400 1300	2800 2700	1600 1500	770 780	180 190	800 810	1000 1000	340 370	16490 15550	19904 17972
Sample 9 Lab duplicate	110	8.1 5.9	250 190	330 140	1600 1100	4 90 270	2788.1 1775.8	1400 1000	920 720	770 290	480 250	600 390	350 240	150 120	39	160 130	250	22	5191 3389	7979.1 5164.9
Sample 10 Lab duplicate	330 250	5 <u>5</u>	5 8	360	1200	230 250	2370 23 60	3400 2300	2800 2700	1200 1100	1000	2200 2100	1400	810 830	170 170	1100 1300	1000 870	340	15420 14070	17790 16430
Sample 11 Lab duplicate	440 580	110 120	160 170	590 850	1300 1500	290 340	2890 3360	3700 4200	4300	1800 2000	1700 2000	3100 3400	1900 2000	1100	250 240	1200	1300	470 440	20820 22680	23710 26040
Sample 12 Lab duplicate	61 78	8 9	9 2	76 80	240 230	62 50	494 507	430 440	480 500	300 280	190 200	450 450	210 210	160 170	36	190 190	180 190	100 110	270 6 2777	3200 3284
Sample 13 Lab duplicate	300 520	0 9	56 140	240 400	740	140 250	1578 2570	1500 2300	1800 2000	900 830	830 780	1200 1200	850 910	450 480	150 120	430	740 620	200 240	9050 10130	10 626 12700
Sample 14 Lab duplicate	220 210	37 51	220 240	510 720	1700 2200	230 340	2917 3761	3300 5400	2900	1600 2500	1500 2800	3000	3300	1200 1700	250 380	1200 1900	1300 2000	450 710	18700 29790	21617 33551
Batch 1187:																				
Sample 1 Lab duplicate	6 6	NDR(0.2) NDR(0.3)	0.7	NDR(1.2) 1.1	9 9.5	NDR(1.3) 1.6	9.7 12.6	7.7	5.4	2.6	5 4	4.0 0.1	55	2.7 2.4	NDR(0.6) NDR(0.5)	23	53	5 .1 1.1	33.5 33.2	43.2 45.8

- 181 -

	Naptha Iene	- Acenaph- thylene	Acenaph- thene	Anthra- cene	Phonan- throne	Fluorene	Total LMW PAHs	Fluor- anthene	Pyrene G	chrysene B.	enz(a)an- B hracene	ienzofluor- E anthenes	lenzo(a)- E pyrene	lenzo(ghi)- perylene	Dibenz(ah) Ir anthracene	deno(123- B dipyrene	enzo(e)- Per		Total AMN AHs	Total
LAB 1 cont.:																				
Balch 2820:																				
Sample 1 Lab duplicate	1300 2000	5 2	300 360	290 330	880 1300	260 320	3043 4322	920 1200	600 777	370 340	280	420	9	28	5	2	140	8	9089	6132
Sample 2	170	20	27	83	200	5	603	270	390	120	150	000			- 8	8 3	DZ 1	5	3358	7678
Lab duplicate 1 Lab duplicate 2	150 140	52 100	39 39	190 110	590 410	140 87	1198 886	570 690	670 820	190	270	310	2 8 2	5 5 5	8 8 8	8 2 5	120	382	1713 2829	2316 4027
Sample 3 Lab duplicate	280 300	140 130	83 88	390 330	820 800	230	1843 1848	1400	1700	810	830	1200	990	420	8 <u>8</u>	061 084	190	8 8	3368 3710	4254 10653
Sample 4	550	220	140	530	1400	340	UCCF.	0061	0091	D98	810	1300	820	390	88	410	570	2005	8888	10744
Lab duplicate	650	380	120	480	1300	320	3250	2100	2500	6/0 590	960 910	1400 1700	1100 1200	590 620	140 160	620 620	720	00	0570 1880	13790
Sample 5 Lab duplicate	520 580	300 250	130 96	450	1200 910	370 240	2970 2478	2000 1400	2500 1900	1300 970	1000 950	1800 1500	1300 860	680 540	NDR(230) 140	630 640	830	20	2340 700	15310
Sample 8 Lab duplicate	880 750	300 260	66 66	320 370	830 910	230 230	2859 2819	1400 1500	2200 2200	009	600 910	1200 1600	820 880	470	NDR(150) 180	410 870	560	88	25	11100
Sample 7 Lab duplicate	240 200	150 150	22	330 290	850 690	230 170	1871 1571	1400 1000	2000 1600	870 750	730 750	1800	1200	690	150	950	010	8 8	0630	12501
Sample 8 Lab duplicate	NDR(510) 610	540 400	130	650 780	1100	370	2790	2800	3000	1600	1600	2800	2200	1100	270	1100	1300 5	- 	520 8270	10091
Sample 9	140	55	01	390	950	290	1905	2400	2900 1600	1800	2200 Ann	3000	1900	1100	şç Ş	1400	1300	8	00	22450
Lab duplicate	170	8	<u>6</u>	320	0//	260	1640	1700	1300	720	690	096	800	310	80	360 370	450 450	88	380	10854 9020
sample 10 Lab duplicate	32 32	2.7	8 8	5 5	150 160	31 28	254.7 274.5	190 200	140 130	74 84	82	00 88	8 4	22	7.5 6.1	31 28	36	* *	57.5	012.2
Sample 11 Lab duplicate	35 38	38	8 1	48 48	150 120	16 1	303 256	310 190	360 200	220 130	160 91	310 200	07 1 12	00 ta	2	110 84	5 E			2256
Sample 12 Lab duplicate	120 83	53	34 35	130 140	470	58 92	865 817	1000 820	1100	590 540	330 330	1000	8	310	2	3 % S	8 8	- 40 2 - 50	61 FL	1431 6599
Sample 13 Lab duplicate	NDR(1.6) NDR(1.7)	6.0 7.0	6.0 8.0 8.0	4DR(0.7) 4DR(1.0)	42	0.7 NDR(0.7)	4.8	8.5 18	55	6.1 0.7	1.8	2	DR(0.5)	8 T 3	40.4	3/0	2 290	8 N	510 8.1	6327
Sample 14 Lab dupiicate	N N	<0.2 NDR(0.1)	40.3 4 0.2	4DR(0.3) 4DR(0.2) h	1 4DR(1.0)	NDR(0.8) 0.3	3 2.3	0.7 0.8 N	0.4 N	DR(0.4) <0.4	0.2	4DR(0.4)		3.2 <0.4 VDR(1.0)	5 5 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	2.8 40.4	5.4 5.4 0.8	9 N N	5.3 3.1 2.8	83 6.1 5.1
Batch 2520b:																				
Sample 1 Lab duplicate	500 320	200 130	4	220 150	760 520	100 84	1825 1245	1000 640	1500 940	690 NC 420 NE	0R(400) 0R(260)	1000 630	470 330	480 300	NDR(82) NDR(48)	420 260	550 2 330 1	8 S	310	8135 5215

APPENDIX 4.1 QUALITY ASSURANCE AND QUALITY CONTROL - Sediment Samples

(hg/g dry weight)

-

- 182 -

APPENDIX 4.1 QUALITY ASSURANCE AND QUALITY CONTROL - Sediment Samples

-

APPENDIX 4.1	QUALIT	Y ASSURA	NCE AND Q	UALITY CO	NTROL - S	ediment Samp	105	n Alp B/Bu)	()thgie											
	Naptha Ione	- Acenapt thylene	- Acenaph- thene	Anthra- cene	Phenan- threne	Fluorente	Total LMW PAHs	Fluor- anthene	Pyrene G	chrysene 1	Benz(a)an-	Benzofluor-	Benzo(a)- pyrene	Benzo(ghi)- perylene	Dibenz(ah) anthracene	indeno(123- E cd)pyrene	Jenzo(e)- Pe pyrene	rytene	Total HMW PAHs	Total PAHs
LAB 2																				
Batch 383																				
Sample 1 Lab dupiicate	<u>8</u> 1		<u>5</u> 5	900 800	••	00 00	1100	2400 1800	2600 2000	2500 2200	••	2100 2300	Ş 8						10000 8600	11100 Benn
Sample 2 Lab duplicate	800 200	₿ I	900 300	4200 2600	••	900 300	6900 3400	4700	6000 5100	2200 700	••	4000 2800	1600 400						18500 13500	
Sample 3 Lab duplicate	- 200		6 8 9	700 600	••		008 008	1200 1100	1500 1400	1200 1100	••	0081 000	50 90 90						6200 4900	7000 5800
Batch 425																				
Sample 1 Lab duplicate	5 1	8 8	22	1 2 1 3	5 8 5 8	აწი ი	14 84	19 25	3 33	ġ \$	£ 5	28 16	\$ \$	\$ =	22	⊢ 6	22	88	140 140	190 202
Sample 2 Lab duplicate	96 06	55 85	83 85	044 044	1700 1600	200 160	2568 2550	2600 2600	2700 2300	2300 2600	1700 1800	2000 2000	1000	510 630	170 200	9 00 9 90 9	.	280 280	13840 14520	18408 17070
Sample 3 Lab duplicate	410 410	88	30 190	680 520	2500 2100	450 340	4240 3750	3600 3600	4200 4300	4100 2500	2900 1900	3200 3200	1900 1900	1200	520 280	1400 1300	22	480	23200 20530	27440 24280
Batch 1287																				
Sample 1 Lab duplicate	' §		30 1	1300 100	••	1 00	1300 600	5000 3000	5500 3200	100 200	••	200 ≺100	8 8 8 8						10800 6400	12100
Sample 2 Lab duplicate			800 1600	5400 5700	•••	1500	0077 7300	13300 13800	13000 13300	2300 2500	•••	6000 7000	60 100 100						34800 38800 38800	42300
148.3																				
Batch 916																				
Sample 1 Lab duplicate	420 460	8 8	< <u>500</u>	3570 3060	••	\$00 \$00	3090 3520	4590 3800	\$00 \$00	2720 2790	1600 2110	2740 3630	1860 1680	<1000 <1000	009> 009>	00¢>	žž	22	13510 13610	17500
Sample 2 Lab duplicate	430 538	ê ê	\$00 \$00	7300 3720	••	500 500 500	7730 4258	5890 2360	\$00 \$00	1860 2300	1100 1670	2920 2210	1540 1830	<1000 <1000	008> 008>	8 8 8	22	22	13410	21140
Sample 3 Lab duplicate	410	8 90 90 90	540 520	4150 3450	•••	580 510	5680 4850	3070 2490	3050 2500	2360 3200	2460 2520	5500 4780	2660 2910	2250 1480	009>	2800 1570	žž	22	24150 21430	28830 26380 26380
LAB 4																				
Batch 9390																				
Sample 1 Lab duplicate	88	88	52 S	140 83	660 280	21	954 491	830 560	900 710	57D 470	340	730 640	380 280	240 210	61 52	240 200	ž ž	X X	4371 3342	5325 3833

APPENDIX 4.1	GUALIT	Y ASSURA	ICE AND DI	UALITY CO	NTROL - S	ediment San	ples	(ng/g dry	weight)											
	Naptha- Iene	- Acenaph thylene	- Acenaph- thene	Anthra- cene	Phonan- threne	Fluorene	Totaf LMV PAHs	Fluor- anthene	Pyrene	Chrysene	Benz(a)an-	Benzofluor. anthenes	Benzo(a)- E pyrene	Jenzo(ghi)- perylene	Dibenz(ah) Ir Inthracene	ldeno(123- B cd)pyrene	lenzo(e)- P pyrene	erylene	Total HIMW PAHs	Total PAHe
BLIND DUPLICATE	201																			
LAB 1																				
Batch 342																				
Original Bilind	290	4 6	62 66	230 250	290 320	88 89	1003 871	380	1900 1800	300 350	160 170	720 880	300 360	250 270	9 1	220	380	150 150	4800 5055	5803 6026
Batch 1171																				
Original Blind	170 330	23	62 66	130 230	330 580	110 160	827 1420	760 1200	930 1300	390 550	250 430	710 750	340 450	210 260	\$2	190 290	290 350	100 130	4213 5782	5040 7202
Batch 2820																				
Original Blind	850 520	3 80 300	120 130	480	1300	320 370	3250 2970	2100 2000	2500 2500	990 1300	910 1000	1700 1800	1200 1300	620 660	160 NDR(230)	620 630	780 830	300 320	11880 12340	15130 15310
Original Blind	38	1.4 3.8	24 86	8 8	110 4 10	19 47	191.4 654.8	170 570	150 460	72 280	58 290	100 490	45 280	29 160	8.8 5.4	37 220	37 180	22	726.6 3057	918 3711.8
Original Blind	84 57	23 II	48 17	70 58	180	33	430 314	270 250	300 280	170 230	130 150	280 340	130 150	81 83	8 2	8 3	110 130	2 2	1650 1798	2080
Origina) Blind	57 77	36 4 3	52 68	120 150	300 630	40 110	578 1076	930 1000	940 1000	530 850	350 350	960 1000	380 400	300 310	59 20	340	370 400	44 46	5303 5650	5881 6726
Batch 2906																				
Original Blind	220 170	92 120	190 160	340 340	1400	390 180	2632 2270	2200 2400	2400 2500	1100	1000 1100	2200	1500 1500	890 950	210 250	990 1300	1100	360 410	13950 16310	16582 18580
LAB 2																				
Batch 426																				
Orignal Blind	006	180 82	1100 820	2500 2000	9200 10000	500 1000	14770 14802	6200 17000	5200 11000	8100 9000	7300 5500	17000	8500 8500	2200 3500	860 1200	1600 3800	22	550 1300	56510 68200	71280 83002
Batch 1287																				
Original Blind			1 200	1400 1300	••	300	1900 1300	3300 5000	3500 5500	200 100		300 200	<100 <100						7300 10800	8200 12100
Original Blind	1600 2000	5500 5500	••			7300 7500	13800 1330 9000 1000	0 2500 0 600	•••	2000	<100							36600 19800	43900 27100	
LAB3																				
Batch 915																				
Original Blind	480 430	00 0 20 0	\$00 \$00	3060 7300	•••	<500 <500	3520 7730	3800 5990	<500 <500	2790 1860	2110 1100	3530 2920	1680 1540	<1000 <1000	009>	00¢>	žž	22	13010 13410	17430 21140
																				-
-	-	•	•		1	-				9 1	÷		ł	1						
	<u> </u>	•		18 1	i i i i i															

APPENDIX 4.1 QUALITY ASSURANCE AND QUALITY CONTROL - Sediment Samples

(hgidry weight) APPENDIX 4.1 QUALITY ASSURANCE AND QUALITY CONTROL - Sediment Samples

	Kaptha- Iene	Acenaph- thylene	Acenaph- thene	Fluorene	Phonan- threne	Anthra- cene	Fluor- anthene	Pyrene	Benz(a)an- thracene	Chrysene Br	enzofluor-	Jenzo(e)- B pyrene	enzo(a)- P. pyrene	erylene id	eno(123- D	ibenz(ah)- F nthracene	ienzo(ghi)- perylerie
Sediment Procedural Bla	anks																
Laboratory 1																	
Batch 342:																	
Blank 3	•	<u>6</u> .1	4 .0	-	5	0.8	0.8	0.6	40.1	0.1	\$0.3	•	4.0°	20.5	503	\$. \$.
Blank 6 Blank 7	6 6	40.08 40.03	0 2 02	€0.08 40.1	6.5 6.5	<0.07 <0.08	0.3 <0.2	0.5 ≪0.4	€0.08 1.0>	6.1 1.0	47 0 2	02		¢	1	2.07	7
Batch 1171:																	
SBLK · 74	:	802	6 U>	<n a<="" td=""><td>NDR(1.6)</td><td><0.5</td><td><0.5</td><td>\$0,8</td><td>6.0></td><td>\$0.6</td><td>4.1</td><td>4.1</td><td>4:12</td><td><1.1</td><td>€0.8</td><td>4.15</td><td><0.7</td></n>	NDR(1.6)	<0.5	<0.5	\$0,8	6.0>	\$0. 6	4.1	4.1	4:12	<1.1	€0.8	4.15	<0.7
	0.8>	412	s.1.5	22	2.1	6 <u>.</u> 6	8.0>	8.0≻	4.15	6.0>	<1.1	1.1	<1.7	<1.2	<1.9	2.5	<1.8
105	4	4.45	÷	9.1	8.3	6.6>	<2.3	<2.5	<4.5	3.5	<7.5	<7.8	₽ 7	6.7.9	3.5	1.15	32
106	<6.5	<1.1	<3.3	2.6	<4.2	<1.7	3.2	3.2	<2.0	1.6	53		5			0.7	
107	NDR(2.5)	\$0.5		\$ <u>5</u> 0	NDR(6.0)	4.12	NDR(10)	NDR(9.2)				2.5			2	0	9 7
108	35	2.12	0 T	7 6			11	2.5	<u> -</u>	<u>,</u> 1	3			13	NDR(6.4)	1.4	12
100	(1.c)))/NUM	(+-1)X(N		, e		(a.7) 3	e us	R QS	80	417	t ₽	412	<1.8 1.8	42	424	3.5	23
111	: E	20	8.0	99 97	NDR(4.1)	2.8	NDR(3.0)	NDR(2.4)	45	3.0	5	4.2	€2.9	4.1	€.7	6 .1	6.5
120	NDR (4.4)	23	4.2	26	NDR (8.5)	25	NDR (4.3)	<2.0	<4.5	•	<4.7	<4.5	4 .8×	<4.6	⊲.2	€.9×	4 2.8
121	NDR(1.5)	0.0>	00	4.14	¢1.0	<1.2	<0.7	<0.8	4.14	<1.0	c1.0	¢.0>	<1.3	8 .0≽	<0.8	<1.7	8 .0
122	3.1	<1.2	422	23	2.1	€.0>	€.0>	€0.8	\$0 <u>8</u>	€.O>	0.15	412 1	6. î.	÷.	NDR(1.6)	0	
123	NDR(3.0)	€.0>	2 0	€0.8	•	<0.8	6.0 6	1.0	0.0	1.0	7	- (2 7	2 6		4 4 2	2 2
124	NDR(8.4)	<1.8 2	2.8	12	NDR(2.5)	10			2				7	;÷	89	0.42	42
126	190	4.1	42.1	47	NDK(8.0)	<0./	(A.C.)AUN	40.2)MUR	1.04	(1.5)202	0.07			ļ	}		
Batch 1187:																	
143	€0.6	6 .1	<0.3	4:0>	41.0	<0.3	9.0×	€.0	<0.3	€.	€0.B	<u>6</u> .2	<u>6</u> 3	40.7 7	9	6.9 5	ê, ê
11	€0.8	6 .1	<0.3	\$.0×	<1.5	<0.2	€.0>	<0.7	9	ę,	0, Ç			- - -	2	5	
150	<#1	8.0>	53	<1.2	NDR(1.4)	1.1>	NUK(1.8)	0.12	975	2	3	ţ	;	2	Ş		į
Batch 2520:																	
362	NDR (1.6)	<1.5	<1.0	NDR (0.8)	NDR (2.5)	NDR (1.0)	NDR (0.7)	NDR (0.8)	NDR (0.9)	NDR (0.9)	€.0×	€.0>	8 .0≻	<0.5	<1.5	<1.1	412
551	NDR (3.1)	2.7	NDR (3.2)	NDR (3.2)	NDR (5.0	NDR (3.9)	5.3	4.7	6	NDR (4.3)	32	3.2	9	0	4.4	5	• (
603	NDR (0.9)	4.0	•	0.7	-;	NDR (0.4)	9.0	•	NDR (0.5)	NDR (0.7)		NUK (2.U)	0.15 7	5	35	200	
307	NDR (1.9)		8 V		9.4 NDR (1.8)	<0.9 <1.2	NDR (1.1)	NDR (0.8)	015	NDR (1.3)		5.15	1.5	12	2.5	4.4	41.7
404 212					8.3	412	3.7	3.3	4.5	2.6	6.6	NDR (1.5)	NDR (3.3)	NDR (1.5)	NDR (1.4)	€.8>	NDR (5.0)
342	NDR (1.6)	1.5	41.0	NDR (0.8)	NDR (2.5)	NDR (1.0)	NDR (0.7)	NDR (0.8)	NDR (0.9)	€.0>	9 .0⊳	€0.6	€0.6	<0.5	<1.5	4.1	<1.2
Batch 2906:																	
154	<2.3	41.1	42.2	<1.8	4.8	<1.6	3.7	3.8	2.2	1 .8	3.8	1.7	0 .	7	1.8	<1 2	8.

- 185 -

APPENDIX 4.1 QUALITY ASSURANCE AND QUALITY CONTROL - Sediment Samples (ng/g dry weight)

Benzo(ghi)	perylene
Dibenz(ah)-	anthracene
ldeno(123-	cdipyrene
Perylene	
Benzo(a)-	pyrene
Benzo(e)-	pyrene
Benzofluor-	anthenes
Chrysene	
Benz(a)an-	thracene
Pyrene	
Fluor-	anthene
Anthra-	cene
Phenan-	threne
Fluorene	
Acenaph-	thene
Aconaph-	thylene
Naptha-	lene

Laboratory 2

Batch 383:

Two method blanks were nn with this batch of samples. Compounds identified in the blanks were not listed, however, it was noted that samples had been blank corrected for any compounds detected.

Batch 426:

A method blank was run with the samples and contained no PAH compounds above the delection limit of 0.005 up/g.

Batch 1287:

A method blank was run with the samples and contained no PAH compounds above the delection limit of 0.1 up/g.

Laboratory 3

Batch 916:

A method blank was run with the samples and contained no PAH compounds above the detection limits (varies with the PAH compound).

8 **m** i

11-MI

- 186 -

APPENDIX 4.1	QUALITY ASSURANCE AN	ND QUALITY C	ONTROL - Sed	iment Sampler	Gu)	/g dry weight)											
	Naptha- Iene	Acenaph- thylene	Acenaph- thene	Fluorene	Phenan- threne	Anthra- cene	Fluor- anthene	Pyrene	Benz(a)an- thracene	Chrysene E	senzofluor- Be anthenes p	nzo(e)- B yrene	enzo(a)- Pe pyrene	rytene Id cc	eno(123- D) Jipyrene al	ibenz(ah)- B thracene	lenzo(ghi)- perylene
Spiked Referer	nce Samples																
Laboratory 1																	
NRC HS6 Marine	Reference Sediment																
Certified Conc. (S.D.);	4100 (1100)	190 (150)	230 (70)	470 (120)	3050 (800)	1130 (400)	3540 (850)	2890 (600)	1840 (300)	2050 (300)	4250 (750)	NC	240 (400)	NC 15	950 (580)	490 (160)	1780 (720)
Batch 342:																	
Determined: #1 #3	3500 3500	100 100	140 140	390 420	2800 2900	830 930	3600	2800 2800	1400	1800	5300 1800	1900 1700	1700 450	470 1800	1500 310	430 1600	1700
Batch 1171:																	
Determined:																	
Sample # 017 018 020 021 022 023 023 023 023 023 023 023 023 023	400 400 400 400 400 400 400 400 400 400	200 200 220 220 220 260 300 300 140 140 140 220 220	158 140 140 158 158 158 158 158 158 158 158 158 158	480 470 481 480 480 880 880 380 400 400 470 470	3400 3400 3400 3400 3500 3500 3200 3200 3300 3300	820 770 840 840 820 800 840 840 840	3900 3700 4000 4000 4100 3900 3900 3900 3000 5000	2800 2800 2800 2800 2800 2800 3000 2800 28	1500 1500 1500 1800 1700 1700 1700	1800 2000 2000 2000 2000 2100 2100 2000 1900 2000 1900	4300 4000 4200 4200 5100 5100 5100 5100 5100 5100 5100 5	1900 1800 1800 1800 1800 1800 1700 2100 2100 2100 1700	2100 1900 2100 2100 2100 2100 2100 2200 22	480 480 480 480 480 480 480 480 480 480	2100 2000 1900 1900 1900 21000 21000 21000 2000	410 380 380 380 380 380 410 410 350 370 370 370	1800 1700 1800 1700 1700 1800 1800 1700 17
Q37 Q36	4100	250	140	580 420	3200	720	3900 4000	2700 2800	1600 1800	1800	4600 4600	1900	2000	D94	2000	9 1	1700
Batch 1187:																	
NRC HS6 Marine	Reference Sediment																
Certified Conc. (S.D.):	4100 (1100)	190 (150)	230 (70)	470 (120)	3050 (800)	1130 (400)	3540 (650)	2990 (600)	1840 (300)	2050 (300)	4250 (750)	U N	2240 (400)	Ŷ	1950 (580)	490 (160)	1780 (720)
070 072 077	4400 4400 4500	180 180 230	5 9 9 9 9 9 9	390 420 370	3200 3100 3500	860 940 920	3700 2800 3700	2700 2600 2700	1700 1700 1700	1900 2000 2100	4700 4900	2000 2000 1900	2200 2200 2300	490 580 510	2000 2200 2100	400 500 470	1700 1800 1800
NC	Not certified for t	this compound															
Batch 2820:																	
NiST Marine Ref	lerence Sediment																
SCRM 40 Certified Determined	4100 +/- 1100 4500	190 +/- 50 250	230 +/- 70 130	470 +/- 120 520	3000 +/- 600 3300	1100 +/- 400 920	3540 +/- 650 3900	3000 +/- 600 2800	1800 +/- 300 1500	2000 +/- 300 1900	4230 +/- 750 4000	•••	200 +/- 40 1900	•••	950 +/- 580 2000	490 +/- 160 420	1780 +/- 720 1700
SCRM 42 Certified Determined	4100 +/- 1100 4100	190 +/- 50 190	230 +/- 70 120	470 +/- 120 470	3000 +/- 600 3300	1100 +/- 400 800	3540 +/- 650 3600	3000 +/- 600 2600	1800 +/- 300 1700	2000 +/- 300 2500	4200 +/- 750 4500	•••	2200 +/- 40 1700	•••	1950 +/- 580 2200	490 +/- 160 490	1780 ++ 72(1600

- 187 -

.

APPENDIX 4.1 QUAL	ITY ASSURANCE AN		ONTROL - Sed	iment Sample:	Bu)	(J dry weight)											
	Naptha- Iene	Acenaph- thylene	Acenaph- thene	Fluorene	Phonan- threne	Anthra- cene	Fluor- anthene	Pyrene	Benz(a)an- thracene	Chrysene	Senzofluor- anthenes	Benzo(e)- pyrene	Benzo(a)- P pyrene	erylene ic	deno(123- 1 d)pyrene a	Nbenz(ah)- E Inthracene	enzo(ghi)- perylene
Spiked Reference Se	diments																
Batch 2906:																	
NIST Marine Reference :	lediment HS-8																
#SCRM 36 Certified Determined	4100 +/- 1100 4100	190 +/- 50 340	230 +/- 70 130	470 +/- 120 480	3000 +/- 600 3200	1100 +/- 400 590	3540 +/- 650 3800	3000 +/- 600 2600	1800 +/- 300 1400	2000 +/- 300 1900	4230 +/- 750 3900	• 1800 2	200 +/- 40 1800	• \$	950 +/- 580 1900	490 +/- 160 1 400	780 +/- 720 1600
 This reference sample: 	t is not certified for th	ese compounds	_														
Spiked Sediments																	
Batch 2820:																	
#127 Expected Determined	44	4 8	÷ 8	₽ ₽	77	43 38	47 48	ŧ 1	8 Q	44	52 55	£ £	36	38 39	3	36 35	36 37
#249 Expected Determined	240	200 200	230	250 280	240 250	250 240	250 250	210 210	210 230	210 220	270 270	230	190 190	210	190 190	240	210 210
#278 Expected Determined	240 240	200 200	230 260	250 270	240 280	250 290	250 250	210 230	210 230	210 250	270 250	220	190 220	210 240	180 130	240 300	210 240
#169 Expected Determined	240 230	200 230	230 230	250 190	240 230	250 230	250 280	210 200	210 200	210 200	270 280	220	190 190	210 210	180 170	240 240	210 200
#172 Expected Determined	240 220	200	230	250 270	240 210	250 190	250 280	210 200	210 190	210 200	270 270	230 240	190 180	210 210	190 180	240 240	210 200
#174 Expected Determined	240 230	200 240	230	250 200	240 230	250 220	250 290	210 200	210 210	210 210	270 260	230 230	180 180	210	190 200	240 240	210 200
Laboratory 2																	
Batch 383:	2-Chloro-	Acenaph-	Fluoranthene														
% Recovery	naphthalene 83	thylene 77	110														
Batch 426:																	
HS-5A HS-56 HS-5C HS-5C		83 120 126	26 65 61	58 73 78 71	91 110 110	80 113 76 61	101 121 131	83 96 105 103	68 66 79	107 103 118 111	100 110 127		80 71 82 76		80 92 115	125 85 80 80	75 92 85
Average Recovery Overall Recovery	83% 92%																

i::

- 188 -

APPENDIX 4.1 QUALITY	r assurance a	ND QUALITY CC	DNTROL - Sedi	ment Samples	jan j	/g dry weighl	•											
	Naptha- Iene	Aconaph- thylone	Acenaph- thene	Fluorene	Phonan- threne	Anthra- cene		Fluor- anthene	Pyrene	Benz(a)an- thracene	Chrysene	Senzofluor-	Benzo(e)- B pyrene	enzo(a)- Pe	rylene Ide cd)	no(123- D)pyrene =	ibenz(ah)- B nthracene	enzo(ghi)- perylene
Spiked Sediments cont	. 18																	
Laboratory 2 cont.:																		
Batch 1287;																		
Splike A Splike B	2-Chloro- naphthalene 89 140	Acenaph- F thylene 98 98	Fluoranthene 117 120															
Laboratory 3																		
Batch 916:																		
Spiked Samples % Recovery	ı	8	88	11	99]	-	I		ı	75	14	2	ı	8		62	11	5
Surrogate Recoveries fi	or Sediment P	rocedural Bla	inks															
Black #	Napthalene d-B	Acenaph- thene d-10	Phenanth- rene d-10	Pyrene d-10	Chrysene d-10	Perylene d-10	Dibenz(ah)- anthracene	Benzo(ghi)- perylene										
Batch 1171:							4-1 4	d-12										
*2	36	55	62	88	8	73	14	4										
104	5	30	55 55	11	2 3	52	62	2										
90	5 82	28	8 9	8	8 2	8 2	3 2	8 2										
107	8,	8 2	88	83	80	81	1	ន										
60	5, F	58	8	5.5	5	8 8	25	88										
110	7 :	81	۶ : ع	\$	4	8	53	2										
120	<u>o</u> 6	28	¥ ¥	₽\$	24	8 8	7 2	4 5										
121	18	28	48	61	89	8	32	87										
<u>13</u>	8 7	5 2	6 8	5 5	67 87	62 83	45 465	53 88										
124 126	16 15	28 21	88	4 4	5	5 2	8 23	48 28										
Batch 1187:																		
143	47	55	69	81	87	75	22	85										
150	88	50 55	22	80 71	8 50	8 B	8 4	8 8 8										
Batch 2820:																		
	Napthalene d-B	Aconaph- thene d-10	Phenanth- rene d-10	Pyrene d-10	Chrysene d-10	Perylene d-10	Dibenz(ah)- anthracene d-14	Benzo(ghi)- perylene d-12	Benzo (a) pyrene d-12									
362	12	15	29	33	ą	30	2	72	٩Ľ									
551 Ann	85	8	4	; 5 5 #	4	583	5 8 3	; 4 ;	88									
307	5 12	00 15	5 8	28	58	5 7 7	36 36	8 3 37	gg,									
409 313	= =	16 12	33 18	7 8	4 5	50	8 5	ç :	5									
382	12	5	50	5	ę	8	5 2	37	35									

۲

- 189 -

APPENDIX 4.1 QUALIT	Y ASSURANCE A	ND QUALITY CI	ONTROL - Sedi	ment Samples	(hor)	dry weight)	_											
	Naptha- Iene	Acenaph- thylene	Acenaph- thene	Fluorene	Phenan- threne	Anthra- cene		Fluor- anthene	Pyrene	Benz(a)an- thracene	Chrysene	Benzofluor- anthenes	Benzo(e)- pyrene	Benzo(a)- F pyrene	erytene id ci	eno(123- E d)pyrene a	Nbenz(ah)- B Inthracene	enzo(ghi)- perylene
Surrogate Recoveries	for Spiked Refi	arence Sedim	ents	5	(6/01													
	Napthalono d-8	Acenaph- thene d-10	Phenan- threne d-10	Pyrene d-10	Chrysene d-12	Perylene D d-12 a	Dibenz(ah)-	Benzo(ghi)- perylene	Senzo (a) pyrene									
Sample #							d-14	d-12	d-12									
Batch 1171:																		
Q17 Q18	16 17	8 2	8 8	61 24	73 55	80 59	82 62	78 56										
019 020	5 7	37	61 55	88 44	85 43	2 2	3 8 1 8 1 8	78 68										
022 023	e z e	5 9 F	52 51	799	98 98 98	8 2 8	110 110	1 8 9										
031	2 2 2	35 33	62 60 60	60 57	52 62	22	86 78	74										
Q33 Q35	5 F	65 40	5 3 5	75 50	67 47	51 78	45 110	37 99										
036 037 038	855	R 7 R	844	121	50 50 51	64 57 57	75 83 53	527										
Batch 1197:																		
070 072	88	20	75 92	72 92	74	69	88	69 78										
977	8	ŧ.	82	67	8	8	19	69										
Batch 2820:																		
127 246 278 189	38 5 1	28 53 15	46 75 81 28	49 87 35	61 51 43	68 61 45	80 55 40	8 8 8 4	9 9 1 1									
NIST MARINE REFERENCE	SEDIMENT HS-																	
SCRM 40 SCRM 42	20	21 12	35 19	39	45 27	54 28	62 32	53 30										

١¢،

-190-

) (U

ted

	Naptha- Iono	Acenaph- thylene	Acenaph- thene	Fluorene	Phenan- threne	Authra- cene	Fluor- anthene	Pyrene	Benz(a)an- thracene	Chrysene	Benzofluor- ardhenes	Benzo(e)- B pyrene	benzo(a)- Pi pyrene	rylene Iden cd)p	o(123- Dibenz yrene anthra	(ah)- Benzo((sene peryfe
Laboratory 2																
Batch 383:																
Surrogate Spiked Samp	des (% Recovery)															
	2-bromo- phenol	naphthalene -d8	2-fluoro- biphenyl													
Sterling Shipyards	107	8	92													
Belair Shipyards - Iab duplicate Site VH-14a	80 50 18	88 86 65	8 5 8													
(Shr. UH-6a) - Iab dunlicate	8	109	74													
Sile VH-17	10	8	48													
(sen urr-e) Site EH-8	18	74	53													
Batch 426:																
All sediment samples we	ore spiked with a toti Manhthalene	i of 2 ug of each 2-fluoro-	r of 3 surrogate . Terbhenvi	PAH compound	4											
	Ę	biphenyl	41													
% Recovery (average of 23 samples)	8	70	Ĩ													
Relative S.D.	31	30	21													
Batch 1287:																
	2-Auoro- biphenyl	naphthalene -dB	4-bromo- phenol													
Menchion's Shipyard	E	8	96													
B.C. Marine Shipyard	105	64 8	109													
- lab duplicate (2)	88	2	81													
Vanc. Shipy/Seaspan Neptune	82 78	82 113	116													
Burrard Yarrows - Iab duplicate	8	70 69	58 09 [.]													
Average % Recovery	96.1	85.5	96													

ΪĒ.

• <u>•••</u> ••••	Naptha- iene d-8	Acenaph- thene d-10	Phenan- threne d-10	Pyrene d-10	Chrysene d-10	Perylene d-12	Dibenz(ah)- anthracene d-14	Benzo(ghi)- perylene d-12	Benzo(a) pyrene d-12
Samples:									
Batch 342									
No information available									
Batch 1171									
S-419	19	30	52	53	62	62	54	55	
S-420 S-414	20	35	5/	56 66	58 76	66 76	65 74	64 72	
(Lab duplicate)	17	27	44	51	59	63	60	58	
S-415	15	25	43	42	46	56	55	54	
S-416	10	21	34	45	61	60 ~~~~	61	47	
S-417 S-418	17	31 25	5U 42	52 43	5/ 54	59 59	62 58	55 55	
S-421	14	25	49	46	54	64	64	61	
S-422	23	40	55	58	67	75	110	81	
S-423	22	35	39	49	68	66	62	48	
S-424 (Lab duplicate)	22 18	30	69 61	59 55	50	63 62	57	57 54	
S-425	25	50	65	67	54	55	29	37	
S-426	14	28	57	59	74	79	78	77	
(Lab duplicate)	23	35	60 27	60 29	69 25	76 60	71 70	71	
S-427 S-428	24	4) 35	34	30 29	30	65	76 70	60	
(Lab duplicate)	16	35	50	59	76	70	70	54	
S-514	16	47	57	66	72	64	85	70	
(Lab duplicate)	23	54	43	50	56	66 65	99	74	
S-429 (Blind duplicate)	16	29	52	46 52	47 56	66	57 72	62 61	
S-430	22	29	33	53	58	71	73	63	
(Lab duplicate)	26	28	45	44	63	60	72	62	
S-431	18	33	34	32	31	64 65	120	97	
S-432 S-433	20	30 44	54 68	53 62	78	60 76	78 120	59 92	
S-434	18	31	50	51	73	72	120	76	
S-435	22	32	50	50	56	67	71	60	
S-436	23	29	32	29	40	62	77	64	
5-437 5-438	29 20	42	60 60	57	79 58	84 72	130	100	
S-439	32	49	76	70	74	79	86	81	
(Lab duplicate)	18	29	42	31	39	61	65	53	
S-440	17	28	52	48	50	66	75	71	
S-441 S-442	24 19	30	45 54	53	100	70 51	66 40	45 43	
S-444	20	31	52	54	76	77	110	82	
S-445	28	44	55	61	57	59	51	48	
S-448	40	N ⁱ			~	co	~		
S-449 S-450	26	29 37	50 64	20 66	63 82	83	64 85	61 78	
S-451	38	57	74	67	68	85	89	73	
S-452	33	50	66	59	48	61	61	60	
(Lab duplicate)	22	47	64	58	54	71	81	72	
5-453 5-454	32	49	60 35	59 37	52 47	72 57	72	69 53	
S-455	15	22	41	38	43	54	61	52	
S-457		 N(OT ANALYZED) C				~*	
(Lab duplicate)		N	OT ANALYZED)					
S-446 S-447	20	41 24	53	49	45	60 27	51	46	
S-456	10	51 M		40	32	31	33	34	
S-461	18	35	54	60	66	71	62	65	
S-462	20	32	51	54	57	70	60	66	
S-463	20	32	55	62	70	76	70	72	

APPENDIX 4.1 SURROGATE STANDARD RECOVERIES FOR PAH ANALYSIS (% Recoveries)

-

-

-

1

44**m**

-

1986

-

×.

12

100e

iá sir

8 **8**

-

1:00

APPENDIX 4.1 SURRUGATE STANDARD RECOVERIES FOR PAH ANALTSIS	APPENDIX 4.1	SURROGATE STANDARD RECOVERIES FOR PAH ANALYSIS
---	--------------	--

9

-

(% Recoveries)

	Naptha- lene d-8	Acenaph- thene d-10	Phenan- threne d-10	Pyrene d-10	Chrysene d-10	Perylene d-12	Dibenz(ah)- anthracene d-14	Benzo(ghi)- peryiene d-12	Benzo(pyren d-12
Samples:					· · · · · · · · · · · · · · · · · · ·		··· ··· ··		
Batch 1171 cont.:									
S-464	20	31	49	52	59	70	59	64	
(Lab duplicate)	27	41	65	70	69	76	65	70	
S-465	22	35	53	57	63	64	37	46	
S-466	18	30	49	55	66	71	61	64	
(Lab duplicate)	19	28	44	50	57	65	57	60	
S-467	13	24	43	43	44	64	82	75	
S-468	14	28	53	56	57	73	91	88	
S-469	8	26	53	58	64	70	65	66	
(Lab duplicate)	18	30	51	56	65	68	40	49	
S-470	18	27	44	47	57	54	29	36	
S-471	21	24	38	36	50	55	52	52	
S-472	14	28	55	61	64	68	57	59	
(Lab duplicate)	20	28	49	50	62	61	40	46	
S-477	38	53	48	65	48	42	17	30	
S-478	30	48	47	64	50	45	21	32	
S-479	32	51	55	75	57	51	21	34	
S-480	47	62	57	77	61	55	29	44	
Lab duplicate)	44	61	51	67	46	42	19	31	
S-483	16	25	39	40	46	57	73	64	
S-482	18	32	50	53	61	68	63	51	
S-481	17	29	45	49	60	70	82	65	
(Lab duplicate)	20	30	48	48	56	70	87	72	
Batch 1187									
LH-3	41	64	73	81	78	75	75	75	
	29	61	76	78	78	74	76	72	
LH-9	45	63	75	78	79	72	74	70	
LH-33	43	63	76	77	73	71	76	73	
(Lab duplicate)	21	44	71	79	76	74	78	74	
LH-39	37	63	89	98	100	80	100	88	
LH-34	32	56	68	77	76	71	78	73	
LH-13	27	58	86	93	99	82	100	92	
LH-19	41	64	100	110	110	71	90	80	
Batch 2820									
E 406	25	F 2	66	04	67	40	0 0		
2-430 E AQA	20	03 55	00	04 86	3/ 76	40	33	44	51
5-734 2 405	32	55	60	00	/0 57	52	30	40	20
l ah dunlicate)	27	49	02 66	80	56	52	34	42	- 53 €4
2.497	20		60	84	12	<u></u>	30	44	
S-500	∠ I 19	48	67	0 4	06		ZZ 51	52	40
S-507	8	-0	23	26	47	48	33	20	00
5-506	1/	3 21	20 38	20	42 A5	40	55	23 40	
() ah dunlicate)	20	27	47	54	-5 65	75	SI RE	-+0 80	
2.505	14	18	37	36	44	54	51	51	
5-508	17	31	51	50	79	71	80	80	74
5-509	15	27	48	50	70	60	27	77	67
5-504	10	22	40	54	10 65	65	02 96	11 7E	0/ 67
S-510	25	53	76	34 85	87	81	100	75 0E	20
S-511	35	20	36	46	60	50	100	30 40	63 40
Lah dunlicate)	9 10	20	33	40	50	50	40	40	40
cab dupiloate)	12	∡ I 4Ω	33 27	4U 24	23	20	52	24	4/
l ah dunlicate)	13	20	27	34	40	31	34	52	
Lau dupiloate)	10	14	21	31	33	33	40	40	
Jah dunlicate)	10	14	23	29	40	30	34 57	29	
Lab dupicate)	CI 40	23 14	29	30 20	40 25	44	5/ 25	23	
-432 Lab dunlicato)	10	14	23	20	30	32	30	29	
Lab dupicate)	13	∠1 34	29	30	30	40 56	22	48	
	24	34	40	40	40	30	84	28	
	10	13	24	20	32	53	33	30	

APPENDIX 4.1 SURROGATE STANDARD RECOVERIES FOR PAH ANALYSIS (% Recoveries)

	Naptha- lene d-8	Acenaph- thene d-10	Phenan- threne d-10	Pyrene d-10	Chrysene d-10	Perylene d-12	Dibenz(ah)- anthracene d-14	Benzo(ghi)- perylene d-12	Benzo(a) pyrene d-12
Samples:									
Batch 1171 cont.;									
(Lab duplicate)	12	20	29	34	39	39	47	44	
S-482	32	41	48	56	73	64	80	73	62
(Blind duplicate)	25	36	49	55	68	71	81	74	68
S-481	25	30	41	44	58	57	69	62	55
(Lab duplicate)	27	39	52	57	76	68	82	74	66
S-483	20	28	37	40	46	51	62	57	46
S-520	31	40	53	74	74	72	49	79	65
(Lab duplicate)	43	57	53	64	44	46	23	48	43

Viela

ti+ip

10) h

-

1)ig

۹Þ

۱h

ŧi ie

Hile

制御

(iii)

Batch 2905

No information available

Laboratory 2

No information available

APPENDIX 4.2 QUALITY ASSURANCE AND QUALITY CONTROL - Biola Samples (ng/g wet weight)

							-															1
	Kaptha- Iene	. Aconapt thylene	1- Aconaph- thene	Anthra- cene	Phenan- threne	Fluorene	Total LMW PAHs	Fluor- anthene	Pyrene C	hrysene B	thracene a	lenzofluor- B. anthenes I	enzo(a)- B pyrene	lenzo(ghi)- perylene	Dibenz(ah) l anthracene	indeno(123- E cd)pyrene	Benzo(e)- P pyrene	enylene	Total HMW PAH=	PAHs 1	da . No.	5.
Laboratory Dup	licates																					
Laboratory 1																						
Batch 342:																						
Sample 1 Lab duplicate	4	8.0 4.0	7 7	8.0 8.0 8.0	% &	. .	0 V 0 4	<u>6</u> 6	<u>6</u> 6	t> 0.8	60.6 4.0	6 <u>8</u>	8.0 ₽.0	40.8 ≪0.7	₽ 6	8.0 8.0	€0.8 4:0>	€.6 4.0	0 8) 8)	ND 8.0		44
Sample 2 Lab duplicate	100 130	8. 9. 8. 9.	40	2 Q	r 0	Çiro	111 150	r Ç	~ Ç	NDR(0.2) <1	NDR(0.2) <1	8.0	8.0 ₽	6 ĝ	8.0 8.0	6 2	6,7	6 .6 ₽	s 0	116 150		44
Sample 3 Lab duplicate	& &	6.3 0.2	n n	99	47 4 7	3 5	ພາກ	စက		n n	Q 2	5 40.9	v v	6 2	26	⊽⊽	∾ ⊽	2 Q	24 8	5 S		44
Sample 4 Lab duplicate	22	8 8 4	40.5 40.7	4.0 4.0	44	<0.4 <0.5	QN	8.0 8.02	80 8. ¢	4 .0 ₽	NDR(0.2) <1	6.0 8.0	40.4 ≪0.5	40.5 40.3	40.5 €.0	8.0 8.0	6.0 4.0	0 0 0 0	Q Q	0 2		겉딮
Sample 5 Lab duplicate	20	8.0 8.0	ŝ	6	55	ço.	95.6 97.6	210 220	6 5 5	t	\$ 8	8 8	4 40	0 N	8.0> 8.0>	9.19	18 17	ыы	453 488	548.6 565.6		<u> 9</u> 9
Sample 6 Lab duplicate	8₽	0.3 40.2	40.4 40.5	<u>a</u> a	8 8	40.6 40.5	0.0 ND	\$ 8	32	82	5 1	43 16	5 D	6 6	00	0 8	± =	40	221 169	221.3 169		22
Batch 1171:																						
Sample 1 Lab duplicate	27 26	2.8	5.1 5.0	a 5	37 38	81.7	8.8.9 87.3	130 130	110	2 5 25	NDR(27) NDR(29)	57 62	30 5 8	1 5	3.2	NDR(18) NDR(19)	3 5	NDR(7.3) NDR(8.3)	417.2 426.5	506.1 513.8		<u> 4</u> 4
Sample 2 Lab duplicate	48.0 <7.5	4.5 4.2	2.5 2.8	9.0> 8.0>	46.5	3.65	Q Q	2.5	25	2.8 2.0	₹0.7 8.0>	413 413	3.7 2.0	5.7 6.15	58 28	478 418	415 415	428 415	9 9	Q Q		55
Sample 3 Lab duplicate	<13 <17	8.0 8.0	640 845	<1.5 NDR(2.2)	6.5 11	5 5 -	ND NDR (2.2)	5.8 43	8.4 8.6	3.0	23 5.4	<4.5 <8.5	25	3.8 2.45	5 2	35 42	418 416	<1.9 <1.7	5.4	23		11
Sample 4 Lab duplicate	Ç •	6.6 2.6	2.8 2.3	413 1.0	4.8 6.13	2 .0	14.9 11.3	4.7 4.7	415 412	4 .9 8.0	4 .0 7.0	\$ \$	40.7 40.6	603 603	0.5 4.0	4 .0 4 .0	8.0 4.0	NDR(1.8) <0.4	<u>8</u>	14.0 11.3		121
Sample 5 Lab duplicate	6.0 8.6	6.3 6.5	1.2 4.7	0.1> 8.0	2.8	NDR(1.2) <2.0	4 60	2 2.3	NDR(2.1) 1.4	1.3 €.6	NDR(1.4) <0.9	NDR(1.1) <0.8	NDR(1.3) <1.2	NDR(8.8) <0.8	4.D 4.1	NDR(1.7) <1.2	NDR(1.7) <0.9	8 Q.Q	3.3	7.3 11.7		171
Sample 6 Lab duplicate	48.2 410	10	66	0,15 0,15	0.42 0.42	42.0 41.9	Q Q	4.15 1.7	3.5 3.1	41.9 41.9	0.1> 0.1>	25 25	1.15	99	42.0 40.7	** 5	0; 0; 0; 0;	€.1 1.0	3.5	3.5 8.8		5 5 5

- 195

APPENDIX 4.2 QUALITY ASSURANCE AND QUALITY CONTROL · Biota Samples (ng/g wet weight)

	Naptha- Iene	Acenaph	Acenaph- thene	Anthra- cene	Phonan- threne	Fluorene	Tolal LMW PAHs	Fluor- anthene	Pyrene	Chrysene E	Bena(a)an- thracene	Benzoñuor- anthenes	Benzo(a)- 1 pyrene	Benzo(ghi)- perylene	Dibenz(ah) anthracene	ndeno(123- B cd)pyrene	enzo(e)- P pyrene	erylene	Total HMMV PAHs	Total L	4	5 .
Laboratory Dupli	cates																					1
Laboratory 1																						
Batch 1171 cont.																						
Sample 7 Lab duplicate	a 5.5	6.0 4.0	2.3 1.9	≤0.8 <0.6	3.2 NDR(2.4)	6 .2	11.7 5.9	2 NDR(1.4) h	1.4 IDR(1.1)	1 NDR(0.7)	<0.6 <0.5	NDR(1.4) <1.0	41. 4 41.8	6.0> 6.0>	<1.6 <1.7	4 1 2 2 2 2 5	40.8 41.0	<0.9 <1.1	4 Q	18.1 5.9	==	33
Sample 8 Lab duplicate	<0.2 <6.0	8.0 8.0	5 5	7 7.5	140 130	15 15	174 158	360 360	190 180	28	25	å 1	6.4 6.3	3.7 3.3	413 413	K) 4	52 52	5.6 5.4	7.7.7 7.18	801.7 874	==	33
Sample 9 Lab duplicate	8.4.	60.0≻ <0.7	e :	6.8 7.4	150 130	19 16	193.7 168.8	380 330	200	67 55	25 21	8 1	NDR(5.5) NDR(5.5)	NDR(3.4) NDR(2.6)	41.8 41.0	NDR(4.0) NDR(3.3)	27 22 N	DR(4.7) DR(1.8)	748 639	841.7 807.8	==	33
Batch 1187:																						
Sample 1 Lab duplicate	3.2	40.7 40.7	1.3 1.3	3.3 4.4	23 28	3.2	33.6 39.9	98 98	‡ 8	27 33	NDR(10) NDR(12)	53 19	5.1 NDR(6.0)	5.7 5.7	<1.1 <0.9	44	5 1 2	DR(6.2) 1 4.8 2	196.3	229.9 273.8	22 	2 2
Sample 2 Lab duplicate	25	₽.0×	€.6 40.7	5€	6.6 3.9	<1.9 <1.7	1.1 3.0	10 5.7	6.1 4.2	1.4 0.42	3.8 <3.9	NDR(4.0) <3.7	45	2.7 41.1	8 1.8 1.8	15 15	<4.0 <1.7	<2.9 <1.0	24 9.9	25.1 13.8	22 	12
Sample 3 Lab duplicate	<2.6 3.0	4 .0	0.8 0.8	t 0.0	6.2 6	1.5 1.6	10 8.7	27 25	18 17	7.8 7.3	44 47	8 6.2	22	NDR(1.0) NDR(0.6)	NDR(0.7) NDR(0.6)	12	3.6	6.0	71.7 60.3	81.7 78	22 	10
Sample 4 Lab duplicate	\$ \$	<u>2</u> 2		Ø 11	= =	3 13	*1	8 6	12	4 40	7 7	NDR(2) NDR(3)	⊽ ⊽	Q 2	Q 2	6 2 2	<1 NDR(2)	v v	88	8 8 8	22 	2 2
Sample 5 Lab dup#cate	§ §	22	N N	<u> 6</u> 2	5 a	⇔ +	15 15	25	18 17	5 2	8	6 ¢	<u>a</u> a	2 Q	v v	20	~ 0	<u>a</u> a	98 98	11 103	22 	2 2
Sample 6 Lab duplicate	3	v v	N -	হ হ	••	7 7	8	£ 6	6	10 4		NDR(2) NDR(2)	د د	2 2	ۍ <u>۵</u>	~ ~	7 7	v v	88	3 8	22 	55
Sample 7 Lab duplicate	32	ت ت	52	22	3.6	\$ ~	2	4 00	1 40	- 2	₽ ∾	NDR(Z) NDR(5)	হ হ	ت ت	* *	₽ ₽	2 Q	v v	a 1	= R	22 	55

te da

- 196 -

14**8**

())))

16 P

80

--

APPENDIX 4.2 QUALITY ASSURANCE AND QUALITY CONTROL - Biota Samples (ng/g wet weight)

																						1
	Naptha- Iene	Acenaph- thytene	Acenaph- thene	Anthra- cene	Phenan- threne	Fluorene	Total LMW PAHs	Fluor- anthene	Pyrene Ct	B enerth	3ena(a)an- E thracene	3enzofiuor- E anthenes	lenzo(a)- B pyrene	lenzo(ghi)- perylene	Dibenz(ah) k antitracene	ndeno(123- E cd)pyrene	lenzo(e)- P. pyrene	erytene I	Total HIMV PAHs	Total L PAHs N	ab Bato No	f a
Laboratory Dup	Icates																					
Laboratory 1																						
Batch 2820:																						
Sample 1 Lab duplicate	8.8 5.6	8.0 8.0	4.1 3.8	0.8 NDR(0.7)	3.8 1.5	2.8 1.8	18.7 13.5	2.5 NDR(1.1) P	2.6 (DR(1.7)	1.2 0.6	0.9 NDR(0.4)	NDR(1.4) NDR(0.8)	8 :0 4 :0	40.7 40.4	4.0× 4.05	<1.1 4.6	8.6 4.6	43 43	7.2 0.6	25.9 14.1	1 282	នុន
Sample 2 Lab duplicate	17	1.5	16 15	15 19	88 00	8 8 8	165.2 170.5	190 210	110	77 84	38	73 78	31 15	5.8 6.3	NDR(2.1) NDR(2.0)	6.7 7.3	31	5.6	569.6 601.4	734.8 771.9	1 282	ក្ត ក្ត
Sample 3 Lab duplicate	7.2 8.2	2.4 2.9	7.1 8.8	4.8 8.9	8.6 9.1	3.E 2.E	34.2 39.3	<u>8</u> 8	6.7 3.1	415 5.0	<5.5 <5.7	NDR(2.0) NDR(1.9)	6.1 0.1	8.0× 2.7	9.0 9.0	6.0>	4.0 4.0 3	40.1 1.0 2.1	4 1 8 1 8	34.6 36.6	1 282	ក្តក្ត
Batch 2844: Sample 1 Lab duplicate	2 Đ	4.04.0.33	7.5 8.1	NDR (0.72 NDR (0.76	6 3 2	4.4 N D	33.2 35	4.8.	IDR (1.2) IDR (1.3)	<0.25	€0.49 40.27	40.98 40.63	<1.1 <0.72	4.1 0.71	<1.5<0.98	<1.3 <0.86	<1.0 <0.67	<1.1 0.64	t. 5 5.	34.6		33
Laboratory 2 <u>Batch 261:</u>																						
Sample 1 Lab duplicate	88	88	8 2	88	88	8, 8, 8, 8,	20	20 20	8, 6,	88	88	88	8 8	<u>8</u> 8	09×	99 98	¥ ¥	žž	9 9	5 S	8 8 7 7	55
Batch 426: Sample 1 Lab duplicate	ţ ţ	& &	4 10	4) e o	2 E	5 œ	85 93	110	50 53	\$ \$	r 9	8 15	& A	22	& &	& A	V.N V.N	4 4	221 223	306 345	44	x x

- 187 -

APPENDIX 4.2		QUALITY AS	SURANCE /	AND QUALI	TY CONTROL	Blota Samples	5/6u)	g wet weigt	ht)								
	Naptha- lene	Acenaph- thylene	Acenaph- thene	Fluorene	Phenan- threne	Anthra- cene	Fluor- anthene	Pyrene	Benz(a)an- (thracene	Chrysene f	Benzofluor- anthenes	Benzo(e)- pyrene	Benzo(a)- pyrene	Perylene	ldeno(123- cd)pyrene	Dibenz(ah)- I anthracene	3enzo(ghl)- perylene
SPIKED REFERE	NCE TISSI	JES															
Laboratory 1																	
Batch 1171:																	
Expected:	2350	2030	2320	2540	2370	2480	2530	2100	2090	2080	2670	2250	1900	2080	1850	2430	2060
Determined: 1171.T.SPM# 22 3 3 16 2 3 5 2 2 35 25 35	2700 2500 2800 2800 2800 2700 2400	1800 1700 1700 1500 1500	2400 2400 2600 2500 2500 2400 2300	2800 2700 3100 3100 3100 2800 2800 2700	2500 2500 2500 2500 2500 2500 2500 2500	2000 2500 2300 2300 2300 2300 2300 2400	2800 2700 2700 2700 2700 2700 2700 2700	2300 2300 2300 2300 2300 2300 2300 2300	2400 2200 2300 2300 2300 2200 2200 2200	1800 1700 1700 1800 1800 1800 1800 1600	2900 2800 2500 2500 2500 2500 2500 2500 25	2800 2200 2200 2400 2400 2400 2400 2400	2400 2200 2200 2200 2200 2200 2200 2200	2100 2000 2200 2200 2100 2100 2100 2100	2000 2300 2300 2300 2100 2100 2100 2100	2600 2600 2800 2800 2800 2800 2800 2800	2200 2100 2300 2300 2300 2300 2300 2300
Batch 1187:																	
Expected:	2350	2030	2320	2540	2370	2480	2530	2100	2090	2080	2670	2250	1900	2080	1850	2430	2060
Determined: 1187-T-SPM# 26 29 30	2800 2800 2900	1700 1800 1800	2500 2700 2700	3200 3100 3200	2600 2800 2800	2300 2200 2100	2700 2900 3000	2200 2400 2500	2400 2400 2500	1900 1900 2000	2600 2700 3000	2500 2600 2800	2500 2600 2600	2100 2400 2300	2400 1900 2600	2600 2600 2600	2300 2500 2500
Batch 2820:																	
SPM 126						5				5	c.c.		001				5
Determined	520	170	500	240	220	230	250	190	190	310	270	210	170	500	520	2 6	9 6
SPM 168																	
Expected Determined	240 220	50 50 50	230	250 270	240 240	250 250	250 240	210 210	210 240	210 210	260 270	230 230	190 190	210	240 240	190 200	210
SPM 175																	
Expected Determined	240 230	200 250	230 220	250 290	240 220	250 220	250 300	210 210	210 250	210 210	270 300	230 230	96 190	210 150	2 40 240	180 270	210 210
% Recovery	8	125	96	116	92	88	120	100	119	1 0	111	105	1 00	11	0 0	150	1 00
								÷	ç								
		t da	N H	986			e na	•	• • • • • • • • • • • • • • • • • • •		b e		-	₩10	•		•
,	_		W	¥	•)	lik	i)]#		1		1	-	•		

Benz(a)an- Chrysene Benzofluor- Benzo(e)- Benzo(a)- Perylene ideno(123- Dibenz(ah)- Benzo(ghi)-thracene anthenes pyrene pyrene col)pyrene anthracene perylene 220 210 210 18 18 ĝ 240 ₿ 200 230 <u>6</u> 6 ĝ <u>3</u>8 105 260 25 250 300 220 105 230 240 114 230 230 (ng/g wet weight) Pyrene 220 **1**230 Fluor-anthene 250 100 270 QUALITY ASSURANCE AND QUALITY CONTROL - Blota Samples Anthra-cene 210 240 86 Phenan-threne 250 260 Acenaph- Fluorene thene 290 300 300 Spike % Level (ugig) Recovery 250 54 2<u>80</u> Acenaph-thylene 0.047 0.075 180 33 S Naptha-lene 240 Laboratory 1 cont. Benzo(a)pyrene Dibenzo(ah)-anthracene Benzo(ghi)-perylene Batch 2820 cont. Laboratory 2 **APPENDIX 4.2** Expected Determined Expected Determined % Recovery % Recovery Compound Batch 2844 Batch 251: SPM 214 | SPM 251

0.027

- 189 -

APPENDIX 4.2 QUALITY ASSURANCE AND QUALITY CONTROL - Biota Samples (ng/g wet weight)

	Naptha- Iene	Acenaph- thylene	Aconaph- thene	Anthra- cene	Phonan- threne	Fluorene	Total LMW PAHs	Fluor- anthene	Pyrene	Chrysene	Bena(a)an- thracene	Benzofluor- anthenes	Benzo(a)- B	ienzo(ghi)- perylene a	Dibenz(ah)	ndeno(123- E cdjpyrene	Benzo(e)- P pyrene	• eryterne	Total HMNV PAHs	Total PAHs
External Blind Du	uplicates																			
Laboratory 1																				
Batch 342:																				
Original Blind	8 8	40.1 40.3	- 0	NDR(0.1) <1	n 🕅	2 8:0	9 <mark>0</mark>	8.0 1	2 2	<0.2 0.7	6.3 4.0	<0.3 <0.7	<0.5 <0.7	7 <0.6	€.0 40.3	₹ 8	€.0×	40.6 40.7	- 11	e :
Batch 1171:																				
Original Blind	8 2	19 NDR(2.1)	4 4	32 7.8	31	27	188 92.8	32 NDR(6.8)	33 NDR(6.0)	25 NDR(1.8)	29 <0.1	36 <1.1	38 40.5	48 4.0>	37 ⊲0. 4	30 2.0-	¢0.7	35 4.0	381 ND	569 92.8
Original Blind	<11 6.2	<0.6 <1.0	42.6 1.2	<1.8 1.2	<10 <8.0	27 31	ND 8.6	<8.5 5.3	<6.5 8	-3.7 2.4	3.5 2	<5.8 NDR(5.1)	20 33	<4.0 <1.8	<1.8 <1.2	3.8 2.2	<2.9 NDR(2.4)	6.15 0.15	0 8	ND 27.6
Original Blind	9 15	<0.5 <0.7	2.3 NDR(4.5)	<1.0 <0.9	<u>6</u> 43	2.0 2.1	11.3 15	<1.7 2.3	<1.2 1.5	8.0> 8.0>	40.7 1.0>	8.8	60.6 40.7	6.0× 8.0×	4.0 1.1	<0.4 <1.0	<0.4 <0.5	4:0×	N N	11.3 15
Original Blind Lab duplicate	6.08.44.4	<0.5 <0.8 <0.7	5 E I	7.5 6.9 7.4	130 150	15 16	185.5 193.7 168.8	360 380 330	180 200 170	63 67 55	25 21 21	444	6.3 NDR(5.5) NDR(5.5)	3.3 NDR(3.4) NDR(2.6)	413 416 410	4 NDR(4.0) NDR(3.3)	22 25	5.4 NDR(4.7) NDR(1.8)	716 748 ND	881.5 916.8 168.8
Batch 2820:	:	!	:		:	5	ŝ		:				EC	N V		NDR(2 1)	22	NDR(0.7)	28.3	48.4
Original Blind	6.8 8.6	1.7 NDR(1.6)	1.7	3 NDR(1.0)	9.6 1	3.3	19.3	7.4	1.5	9:0>	(c.c) 9:0>	9:0>	¢.0	9. tv	NDR(1.7)	12	9 .0≽	<0.7	2.5	21.8
Original Blind	5.6 270	12	8.1 1.6	1.8 1.8	3.1	1.2 1.4	14.3 279.1	NDR(3.3) 6.3	5 8.8	NDR(1.8) 4.5	NDR(1.1) NDR (3.1)	5.5 NDR (5.1)	2 NDR (1.8)	23	<0.6 NDR (1.8)	NDR(1.4) NDR (2.0)	2.3 NDR (3.1)	NDR (0.5) NDR (1.2)	14.8 21.7	29.1 300.8
Original Blind	37 48	1.9 2.1	30	7.8 8	5 8 58	15 19	133.7 173.1	83 110	40	5 2 50	18 NDR(21)	38 85	11	5.6 6.7	NDR(2.4) NDR(2.1)	NDR(6.9) 8.5	18	NDR(4.7) 5.3	256.6 321.5	360.3
Laboratory 2																				
Batch 426:																		1	i	1
Original Lab duplicate Blind	¢ 6 a	\$ \$ \$	450	ų • ν	2 2 2 6	£ 0a 0a	85 83 89	110 130 96	5 8 8	844	r- v3 0a	8 t t	8 8 8	8 8 8	8 <i>8 8</i>	8 8 8	4 4 4 N N N	\$\$\$•	5 82 E	346 280 5

-

1

- 200 -

381

tina

100

1++1

\$:#

ł

Ideno(123- Dibenz(ah)- Benzo(ghi)-cd)pyrene anthracene perylene 4.7 2.6 2.6 4.7 4.7 4.0 6 0.6 40.6 40.6 40.8 41.3 41.3 6.3 6.3 6.6 <0.98 <1.8 <0.3 0000 440 <0.4 <0.8 <0.8 <1.7 NDR (0.9) 0.5 0.5 4 <1.9 <0.4 £ 5 0 4 4 4 <2.4 <0.6 0.0 4.0 8.0 8.0 8.0 Benz(a)an- Chrysene Benzofluor- Benzo(e)- Benzo(a)- Perylene thracene anthenes pyrene pyrene <0.1 <0.5 <0.6 NDR (0.3) 41.660.260.2 ¢.0 <0.1 <0.5 <0.6 NDR (0.3) 1 <u>6</u>.03 0 0 0 4 0 0 £ <0.98 0 0 0 0 0 0 0 0 0 0 0 0 $\begin{array}{c} & 0 \\ & 0 \\ & 0 \\ & 0 \end{array}$ 0.05 4.05 0.05 0.05 0.05 <0.1 <0.4 <0.5 NDR (0.7) <0.93 000 1000 1000 1000 3.50.6 NDR(0.1) <0.3 NDR (0.4) NDR (0.3) <2.6 <0.4 <0.61 2.2.5 <0.1 <0.3 NDR (0.2) NDR (0.3) 6.08 1.00 1.00 1.00 1.00 1.00 <0.64 42.4 40.2 <0.2
<0.2
<0.3
NDR (0.3)
0.6
0.3
NDR (0.4)
0.3 Pyrene QUALITY ASSURANCE AND QUALITY CONTROL - Blota Samples (ng/g wet weight) <0.28 0.0 0.5 4.0 3.6 2.1 2.1 1.2 6.8 6.8 6.8 6.8 6.8 6.8 <2.3</pre> Fluor-anthene <0.24 <u>60.7</u> 0.3 <0.2 <0.5 0.3 NDR (0.5) Anthra-cene €0.07 60.06 <0.45 0.6 1.1 1.1 1.1 1.1 1.1 1.1 2.0 0.0 0.0 0.0 0.0 0.0 0.0 \$0.8 4.0 NDR (0.63 <3.3 NDR(1.3) Naptha- Acenaph- Acenaph- Fluorene Phenan-lene thylene thene threne 3 60.5 60.5 3.8 0.9 0.9 0.8 60.08 €0.1 <u>دا</u> 4.160.6 0.4 1.3 1.3 4.5 3.8 3.8 1.1 1.1 1.5 1.0 4.0 2.5 6.0 7 0.0 7.0 8 0.0 7.0 0.1 6 0.1 <0.81 **0** 0 0 **4** 0 0 ć0.3 10 0 0 1 1 0 0 0 1 <0.2 NDR (0.4) 0.2 NDR (1.1) 6.1
 6.08
 6.3 <0.51 1.3 2.3 2.3 2.3 2.3 1.3 6.6 4.0 6.4 6.3 0.5 0.5 **Tissue Procedural Blanks** <1.0 NDR (0.7) NDR (1.0) 2.3 N 11 5.8 5.8 5.8 5.8 7.2 2.6 7.2 2.8 NDR(1.5) 41.1 <3.3 NDR(1.6) <0.49 900 Blank # 128 129 134 134 136 136 136 138 138 149 Laboratory 1 **APPENDIX 4.2** Batch 1171: Batch 1187: Batch 342: Batch 2820 Batch 2844 BLK# 141 142 おおさ 361 408 417 506 BLK 554

- 201 -

APPENDIX 4.2 QUALITY ASSURANCE AND QUALITY CONTROL - Biota Samples (ng/g wet weight)

Benz(a)an- Chrysene Benzofiuor- Benzo(a)- Benzo(a)- Perylene Ideno(123- Dibenz(ah)- Benzo(ghi)-thracene anthrees pyrene pyrene cd)pyrene anthracene perylene ŝ ŝ ŝ ŝ ŝ Method blanks contained background levels of naphthalene. Background amounts were consistent and were subtracted from any positive values detected in the samples. ŝ ŝ ů ŝ Pyrene ŝ Fluor-anthene ŝ Naptha- Acenaph- Acenaph- Fiuorene Phenan- Anthra-lene thylene thene cene ŝ ŝ ŝ ŝ ŝ ŝ Laboratory 2 Method Blank Batch 425: Batch 251:

-

- 202 -

10

88

1-18

hili

1-**16**

<u>اند ا</u>
APPENDIX 4.2 QUALITY ASSURANCE AND QUALITY CONTROL - Biota Samples

Surrogate Recoveries

Tissue Procedural Blanks (% Recoveries)

	Naphtha łene D-8	Acenap- thaiene D-10	Phenan- threne D-10	Pyrene D-10	Chyrsene D-12	Perylene D-12	Dibenz(a,h)- anthra- cene D-14	Benzo(g,h,i)- perylene D-12	
Laboratory 1									
Batch 1171 Blank #									
128	11	26	37	41	31	31	19	28	
129	12	27	53	64	58	55	27	51	
131	22	36	49	66	59	63	52	60	
134	55	64	86	84	89	85	89	86	
135	60	69	89	86	90	83	85	87	
136	14	24	59	72	81	72	75	40	
138	28	44	78	78	83	74	75	75	
139	35	50	87	86	86	81	84	85	
140	36	52	81	79	73	71	68	79	
141	10	36	62	71	75	70	71	76	
142	29	40	67	80	82	74	72	81	
149	43	50	63	74	54	61	43	55	
	Naphtha Iene D-8	Acenap- thaiene D-10	Phenan- threne D-10	Pyrene D-10	Chyrsene D-12	Perylene D-12	Dibenz(a,h)- anthra- cene D-14	Benzo(g,h,i)- perylene D-12	Benzo(a) pyrene D-12
Batch 2820									
#361	39	53	65	84	78	82	56	74	83
#408	36	44	55	78	83	80	37	79	82
#417	24	46	86	110	98	82	46	26	81
#506	26	39	63	80	100	66	59	69	70
Batch 2844									
#554	29	34	56	92	91	80	72	100	72
Spike Reference Tis	sue Recoveries	(% Recoverie	es)						
	Naphtha-	Acenaph-	Phenan-	Pyrene	Chrysene	Perylene	Dibenz(ah)-	Benzo(ghi)-	

	lene a-s	thene d-10	threne a-10	Q-10	u-12	U~12	d-14	d-12	
Laboratory 1									
Batch 1171									
77	39	70	85	75	66	69	100	110	
2	30	41	52	42	31	44	87	41	
3	34	51	65	54	40	57	53	53	
16	32	56	79	76	63	72	57	61	
23	23	62	88	80	71	84	65	63	
24	24	62	82	76	64	74	70	73	
25	33	55	69	64	57	66	52	50	
26	25	52	75	69	61	63	58	59	
29	39	58	68	65	63	65	78	76	
30	36	59	69	70	72	66	70	64	
35	43	55	58	69	78	66	84	58	
	Naphtha- Ien e d-8	Acenaph- thene d-10	Phenan- threne d-10	Pyrene d-10	Chrysene d-12	Perylene d-12	Dibenz(ah)- anthracene d-12	Benzo(ghi)- perylene d-12	Benzo(a) pyrene d-12
Batch 2820							0-12	0-12	4-14
#126	54	76	67	82	90	69	104	46	69
#168	51	67	81	90	92	78	85	80	82
#175	63	70	89	100	140	110	72	53	80
#214	35	62	77	77	110	56	74	69	58
Batch 2844									
#251	44	65	86	100	96	83	59	72	81

APPENDIX 4.2 QUAL	TY ASSURANCE AND QUALITY	CONTROL - Biota Samples
-------------------	--------------------------	-------------------------

Samples (% Recoveries)

	Naptha- lene d-8	Acenaph- thene d-10	Phenan- threne d-10	Pyrene d-10	Chrysene d-12	Perylene d-12	Dibenz(ah)- anthracene d-14	Benzo(ghi)- perylene d-12
Laboratory 1								
Batch 342 No information available								
Batch 1171 Vict. Hbr. Trawl SWT-3.								
D. crab - muscle	30	45	60	58	56	55	47	51
D. crab - hepato.	46	81	83	86	110	99	130	96
Eng. sole - w. body	41	59	78	62	48	62	57	57
Shrimp - w. body	61	74	89	82	87	80	86	90
Vict. Hbr; Stn. SS1 Clams - soft tissue	52	67	84	77	79	80	92	86
Vict Hhr. Stn. SS2								
Clame - colt tissue	44	63	88	80	82	79	89	84
(Lab duplicate)	62	75	92	85	87	81	91	84
Vict. Hbr., Stn. C2								
D. crab - muscle	29	39	44	45	36	35	1/	32
(Lab duplicate)	13	40	51	54	39	37	21	32
D. crab - hepato.	51	54	//	70	52	~	100	100
(Blind duplicate)	67	74	80	04	100	90	120	100
Vict. Hbr., Trawl UHT-1								
E. sole - w. body (Lab duplicate)	36 24	46 46	54 54	48 52	35 40	42 42	31 25	37 35
Vict. Hbr., Stn C3 & Trawl IHT-1								
D, crab - muscle	19	32	34	38	35	35	28	32
D, crab - hepato.	44	57	68	56	40	57	57	39
Vict. Hbr., Trawl IHT-1								
E, sole - w. body	33	54	63	57	45	56	45	47
(Blind duplicate)	63	75	95	84	85	92	95	88
Shrimp - tail	39	50	75	83	93	82	87	81
(Lab duplicate)	49	61	83	84	90	85	92	86
(Blind duplicate)	23	43	68	65	60	55	40	51
Vict. Hbr., Stn. SS3								
B. clams - soft tissue	27	55	78	77	73	59	32	46
Vict. Hbr., Stn. SS4								
B. clams - soft tissue	30	60	87	86	95	83	79	73
Esq. Hbr., Con. Cove,Stn. C1								
D. crab - muscle	34	51	59	66	49	55	44	55
(Lab duplicate)	36	57	80	74	74	74	72	76
D. crab - hepato.	41	60	64	64	54	64	42	38
Esq. Hbr. Con. Cove, Trawl CCT-1								
E. sole - w. body	42	61	80	66	46	67	63	62
Shrimp - tails	36	61	83	77	79	72	70	69
(Lab duplicate)	18	51	78	/4	/2	70	65	53
Esq. Hbr. Con. Cove, Stn. M2 Mussels - soft tissue	44	69	86	80	84	85	120	110
Csy. nor., P. Day, Irawi PBI-1,2,3	c10	19	50	62	56	40	59	53
(Lab duplicate)	14	35	48	57	50	49	55	55
D crab - benato	6	68	82	80	82	88	110	99
E sole - w body	60	69	87	79	83	86	78	71
Shrimp - tails	33	55	80	76	76	70	68	62
Esg. Hbr., P. Bay, Stris, M1 M2								
Mussels - soft tissue	46	67	87	76	77	75	67	63
(Lab duplicate)	50	73	90	79	78	74	69	66
(Blind duplicate)	26	52	77	70	68	62	55	54
(Lab duplicate)	20	44	70	68	69	62	61	59
Eso Hbr. P. Bay Str. SS5								
M. clams - soft tissue	48	56	70	74	70	67	75	78
Fee Hor Dallas Bank Stn SSS					-		-	
M. clams - soft tissue	23	47	61	64	50	48	45	53

64

it:ite

1:0

.

APPENDIX 4.2 QUALITY ASSURANCE AND QUALITY CONTROL - Biota Samples

<u>Batch 1187</u>	Naptha- lene d-8	Acenaph- thene d-10	Phenan- threne d-10	Pyrene d-10	Chrysene d-12	Perylene d-12	Dibenz(ah)- anthracene d-14	Benzo(ghl}- perylene d-12
Esq. Hbr. P. Bay, Trawl PBT-1,2,3 D. crab - hepato.	6	68	82	80	82	88	110	99
Burrard I., Bayshore, Stn. 3,7,9,10 Mussels - soft tissue	27	65	88	80	82	81	100	92
False Creek at Market, Stn. 3,4,5 Mussels - soft tissue	21	50	59	71	67	66	75	70
RVYC, Stn. 2,3,8 Mussels - soft tissue (Lab duplicate)	25 36	61 68	87 91	79 85	82 91	75 83	86 92	76 81

	Naptha- lene d-8	Acenaph- thene d-10	Phenan- threne d-10	Pyrene d-10	Chrysene d-12	Perylene d-12	Dibenz(ah)- anthracene d-14	Benzo(ghi)- perylene <u>d-12</u>	Benzo pyrene d-12
Vancouver Wharves, Stn. M1,M2									
Mussels - soft tissue	49	71	83	93	95	78	74	79	
(Lab duplicate)	56	74	78	89	91	79	77	79	
L&K Lumber, Stn M1									
Mussels - soft tissue	50	72	80	88	89	78	74	79	
Versatile Pacific, Stn. M2									
Mussels - soft tissue	46	65	74	84	76	70	59	64	
Seaboard Terminals, Stn. M1									
Mussels - soft tissue	54	72	80	87	83	71	62	69	
Lynnterm, Stn. M2									
Mussels - soft tissue	62	64	68	76	110	65	54	61	
(Blind duplicate)	93	87	93	100	130	85	80	86	9
Canada Place, Stn. M1									
Mussels - soft tissue	60	78	80	110	93	82	86	89	ı
Bayshore Inn, Stn. 5,8,10,11									
Mussels - soft tissue	77	80	66	75	73	69	53	60	7
False Creek Market, Stn. 3,4,5									
Mussels - soft tissue	77	82	74	82	72	77	65	75	7
False Creek, East Basin, FCT-1									
D. crab - muscle	43	66	96	110	110	99	80	60	1
(Lab duplicate)	29	58	83	100	120	87	83	94	8
(Blind duplicate)	28	47	64	74	89	54	43	55	:
D. crab - hepato.	27	27	21	35	88	48	52	37	
E. sole - w. body	52	68	88	89	130	81	88	77	ł
(Blind duplicate)	28	47	64	74	89	67	54	43	:
False Creek, Monk McQ., FCT-2									
E. sole - whole body	61	81	80	80	110	72	87	90	7
River's Inlet									
Pink Shrimp - tail	23	46	61	74	90	60	52	61	e
Q.C.I., Delkatla Slough - RF-9									
D. crab - hepato.	43	76	82	89	120	86	100	110	ç
vict. Hbr., West Bay, Stn. C4									
D. crab - hepato.	61	85	51	77	83	47	30	27	
Lab duplicate)	63	86	56	98	101	62	38	33	7
Crescent Beach, Trawl CBT-1									
Rock sole - whole body	51	78	85	90	120	74	94	100	7

APPENDIX 4.2 QUALITY ASSURANCE AND QUALITY CONTROL - Biota Samples

	Naptha- lene d-8	Acenaph- thene d-10	Phenan- threne d-10	Pyrene d-10	Chrysene <u>d-12</u>	Perylene <u>d-12</u>	Dibenz(ah)- anthracene d-14	Benzo(ghl)- perylene <u>d-12</u>	Benzo(a) pyrene d-12
Batch 2468									
Fraser R., BC Cleanwood Preser.									
Starry flounder - whole body	54	57	69	86	75	56	35	45	57
Sculpin - whole body	40	58	69	83	55	52	38	52	54
(Lab duplicate)	43	61	69	92	84	69	43	54	66
Fraser R., Princeton Wood Preser.									
Starry flounder - whole body	65	67	80	110	110	84	69	77	83
Fraser R., Koppers Int'l									
Starry flounder - whole body	43	58	73	98	96	79	51	64	79
Sculpin - whole body	44	54	75	99	100	80	61	76	81

۱**۵**

-

فتكث

-

Hit

Laboratory 2

Batch 425

All samples were spiked with 2 ug of each of 3 surrogate PAH compounds.

	Naphthalene -d8	2-Fluoro- biphenyi	Terpheny! -d14
% Recovery	69	95	90
Standard deviation	31	25	6

APPENDIX 5

ENVIRONMENTAL CONCENTRATIONS OF PAH COMPOUNDS

PA H CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ngg dry weight) APPENDIX 6.1

																						1
		Naptha- Ione	Acenaph- thyiene	Acenaph- thene	Anthra- cene	Phenan- threne	Fluorene	Total LMW PAHs	Fluor- arthene	Pyrene	Chrysene B	enz(a)an-Benzo hracene anth	fluor-Benz enes pyre	o(a)- Benzo((ne peryle	ghi)-Dibenz(a ne anthrace	h) Indeno(123 ne_cd)pyrene	- Benzo(e)- pyrene	Perylene	Total HMW PAHs	Total PAHs	ê E	No. No.
Site No.	Date	Location																				
	FRASER RIV	VER																				
MS-4		Fraser est.	Jary 0.6 kn	n from lon.	a Sewage	Treatment	Plant															
	31-Jul-85	200 29%	۲	₹ı	100 14 %	• 1	¥ i	300 43%	200 29%	۶ı	¥ I	NN I	6 x	<u>₹</u> o #	¥ I	۶ı	۶ı	¥ 1	400 57%	200	8	383
MS-3		lona Island	i sevane fi	reatment n	te et																	
	20 Int 02	Station 1	ų	۲	1	ç	ų	:	5	5	:	:	:		1	I		:				
	19-10-07	8% 8% (Lab dunlie:	9 % F	9 B	0 2	Q 🔮	9 2	22%	10%	12 %	91 10%	13 7% 14	e ¥ 20 ∓	5 V	\$ \$	- 4	≨ ı	8 X	149 78%	5	2	425
		±*	₹ ₹	\$\$	\$ \$	8	5 2%	8 4 23 %	25 12%	24 12%	18 8%	13 8% 8	e ¥ 7 €	2% = *	78	8 \$	₹ı	33 16%	158 77%	200	7	425
FR-16		Koppers In	Mernationa	7																		
	26-Sep-90	Station 1 1300 21%	5 K	300	290 5%	880 14%	280 4%	3043 50%	920 15%	600 10%	370 6%	280 45 5% 7	8 X 7 X	0 1%	5 3	52	5 ¥	8 🕇	3089 50%	6132	-	2820
		(Lab duplic. 2000 26%	ate) 12 0%	380 5%	330 **	1300	320	4322 58%	1200 18%	770 10%	340 4%	270 34 4% 5	2 X 2 X	6 4 6 2	14 24	8 🏅	8 X	5 ž	3356 44%	7678	-	2820
	26-Sep-90	Station 2 1800 32%	9.5 %0	280 5%	55 25	920 16%	220 **	3438.5 61%	830 15%	510 8%	230 234	5 5 7 7 7 8 7 8 7 7 7 7 7 7 7 7 7 7 7 7	23	5 s	₽ %	25	65 1 % 5	¢\$	2240 38%	5679.5	-	2820
	28-Sep-90	Station 3 4300 26%	5 S	1700 10%	720	3800 24%	%9 088	11834 71%	1800	1400 %	430 3%	420 3%	5× 2::	57 57	5 £	88	<u>6</u> ž	r 8	4815 20%	16449	-	2820
	28-Sep-90	Station 4 1300 7%	47	830 5%	3700 19%	3400	2000	11377 57%	3000	1800 8%	1100 6%	780 787 8	£ 28	4 120 120	37	5×	260	150	8457 43%	19834	-	2820
FR-17		Dorntar Wo Station 1	od Preser	E14V																		
	24-Sep-90	5 ¥	3.9 X0	5 X	300 8%	620 20%	170 5%	1176.9 37%	730 23%	440 242	200 6%	180 2. 6% 7	~ % 9 x	- *	9 £	5 <u>7</u>	8 🕺	<u> 북 첫</u>	1998 63%	3174.8	-	1171
	24-Sep-90	Station 2 22 3%	9.4 9 X	2¥ 2	17 2%	110 13%	32 4%	196.4 23%	200 23%	140 18%	99 % 9	46 8 5% 10	8.75 26 0	α× 2,52	5 S	5 K	8 8	₽ %	005 77%	861.4	*	1171
	24-Sep-90	Station 3 37 4%	11	18	37	170 16%	\$ \$	308.7 30%	170	160 15%	08 %8	8 4 8 9 9 9 9 9 9	56 05	8 K	NDR(5.1	X 2	នភ្លំ	÷\$	735 70%	1043.7	-	1171
	24-Sep-90	Station 4 75 7%	5.7	8 Å	34	150 15%	64 % %	338.7 33%	210 20%	150 15%	9 8 2	5% 5%	n n a x	\$¤	NDR(2.5	5 ž	3 % 3 %	4 2	685 67%	1024.7	-	1171
		(Lab duplic 89 11%	(¶ 	8 \$	27 3%	150 10%	49 5%	369 40%	130 14%	110	55 8%	5 % 5 %	0¥	8 Å	NDR(3.	4	3 8	÷ Ş	562 80%	831	-	1171

- 208 -

PAH CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ng/g dry weight) APPENDIX 6.1

	Acenaph- / thylene	Acenaph- thene	Anthra- cene	Phonan- threne	Fluorene	Totat LMW PAHs a	Fluor- P	yrene C	hrysene Be	enz(a)an-Be hracene a	inthenes	ienzo(a)- Be pyreme p	nzo(ghi)-Di erylene an	benz(ah) tru thracene c	deno(123- E d)pyrene	enzo(e)- P. pyrene	erylene	Total HMW PAHs	Total PAHs	No. B	atch No.
erpool Site 1 4.4 0% 1%	- 1×		8.9 7	84 X :	7.5 2%	75.7 18%	81 20%	77 19%	30	22 5%	37 8%	51 %	3 % 3 %	5 8 8	4DR(5.6) -	5 Z	41 * 0	330 81%	405.7	-	1211
4 5 7	vi N		18 5 %	39	8 2 %	89.8 28%	58 17%	12% *	58 74 78	21 8%	30 8%	7.8 2%	7.7 2%	0% 0%	NDR(4.D)	= ¥	43 12%	252.6 72%	352.4	-	1171
2 Z Z	- 1	ei X	12 3%	42	7 2%	72.7 21%	79 23%	61 17%	26 7%	5 8 2 %	30 8%	9.6 3%	5.8 2%	8.5	NDR(2.5) -	5 X	35 10%	277.4 79%	350.1	-	121
8: %	v 0	8. %	NDR(1.2) -	1.8 25%	≤0.8 0%	1.8 25%	2 28%	1.7 24%	6.0≻ \$0	<1.D 0%	8.0≻ %0	6.0≻ %0	1:P %	0 ,≰0	1.1 28	<0.7 0%	1.7 24%	5.4 75%	7.2	-	1/11
ate) <0.4 0%	• -	2.0	NDR(1.4) -	1.8 26%	40.9 8,0	1.8 26%	2.1 28%	1.8 24%	€.0> %0	€.0 %0	<1.0 19%	<1.3 0%	4.1≜ 0%	0% 0%	415 0%	0.15 120	1.6 22%	5.5 74%	4.7	-	1211
Wood Preserv <0.8 0%	Ę	0% 1	NDR(2.5)	23 16%	9.6 7.%	38.7 28%	22 18%	16 11%	5 ²	8 2,4	11	NDR(3.9) 1	4DR(5.2)	4DR(2.2) -	3.7 345	NDR(3.8)	32 23%	101.1 72%	139.8	-	1173
ate) <1.1 0%	• -	2.7	NDR(2.2) 	21 19%	7.1 8%	34 31%	18 16%	12 11%	5.8 5%	5.2 5%	0 26 26	8. 2	6.45 29	38	4.8 X0	NDR(4.0) -	26 23%	77.1 69%	111.1	-	1/11
1.20%		07 S	2.3	23 16%	6.8 5%	40.1 27%	27 18%	21 14%	8.8 %	6.7 5%	16 11%	57 87	8.45 8.60	∛ 8	¥	NDR(8.3) -	28 19%	107.3 73%	147.4	-	1171
NDR(2.6) -		3% 3%	9.8 2%	61 15%	22 5%	127.8 31%	89 22%	57 14%	25 8%	14 3%	37 8%	NDR(18) -	د بر	NDR(3.8) -	NDR(14) -	NDR(16) -	42 10%	279 69%	406.8	-	1171
, 1 1		∾ ‡	NDR(3.6) 	26 12%	6.6 %	52.2 24%	27 12%	8 <mark>1</mark>	= %	8.8 %	18 8%	8.2 4%	8.8 X X	NDR(2.7) -	NDR(6.4)	3%	48 23%	104.4 76%	216.6	-	1171
ate) 3.2 2%		58	NDR(3.4) _	25 13%	7.7 4%	50.8 27%	26 14%	22 12 %	9.2 5%	8 4	17 8%	NDR(5.4) -	5.8 3.8	57 37 37	NDR(4.6) -	-4	45 24%	140.1 73%	101	-	1171

1.00

₩ı

- 208 -

NBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ngig dry weight)	
PA H CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND I	
IDIX 6.1	

APPEND	NX 6.1	PAH CON	CENTRATI	ONS IN SEL	DIMENTS F	FROM BRITI	SH COLUMB	IA AND PERCEN	T CONTRIBU	TION OF I	I TRIDIAL F	AH COMPC	DUNDS TO T	OTAL PAH	CONCENTR	ATIONS (ng/	g dry weigh						
		Naptha- iene	Acenaph- thylene	Acenaph- thene	Anthra- cene	Phenan- threne	Fluorene	Total LMW PAHs	Fluor- anthene	Pyrene (Chrysene Br	enz(a)an-Be hracene a	enzofluor- B	enzo(a)- Bi pyrene	anzo(ghi)-Dil Serylene an	oenz(ah) Ind	eno(123- Be)pyrene p	nza(e)- Pe yrene	nylene	Total HMW PAHs	Total PAHs	f E	No.
Site No.	Date	Location																					
	FRASER RI	IVER cont.																					
FR-20		B.C. Clean	wood Pres	STevie:																			
	25-Sep-90	Station 1 5.5 7%	8.0 ¥0	4.6	2% 2%	11 18%	5.7	30.4 38%	11 18%	01 %51	3.5 4%	- * %	NDR(5.4) -	£17 8€	\$ 5 7	41.0 8.0	87 87 87 87	DR(2.3) -	14 18%	48.7 62%	79.1	-	1171
	26 G 20	Station 2		٤	ţ		ş	1		ş	;	ş	5	ę	;	: ;	é	ţ	ä				
	na-das-cz	5	16	r.	s K	24%	10%	49%	21%	<u> </u>	36	ŧ \$	× *	ž	2		(o:o)\un	÷₹	17	51%	7001	-	Ē
		(Lab duplic 50 6%	cate) NDR(1.9) -	57 7%	2 ² 5	180 23%	75 10%	377 48%	160 20%	100 13%	27	53	85 \$	3 -	8.3 1%	v 0;≸	DR(5.9) -	5 X	92 X	404.3 52%	781.3	-	1171
	25-Sep-90	Station 3 75 2%	5.2 0 %	55 X	4 <u>×</u>	360 10%	75 2%	588.2 16%	770 21%	570 16%	260 7 %	180 5%	440 12%	530 530	181 2,4	26 1 X	170 5%	180 5%	8 X	3055 84%	3643.2	-	1171
	25-Sep-90	Station 4 18	5.5 26	5 j	83	<u>6</u> 3	8 2	286.5 434	420	350	180 180	21	330	5 F	5 I	4DR(13)	ថ្ម ខ	ž 1	83	2042	2328.5	-	1171
		<u>e</u>	5	<u>r</u>	<u>e</u>	6	Ę	5	*	K	6	e	Ě	E	e	t	K D	r D	f	K 88			
	FALSE CR	EEK																					
5		Marina at I Station 2	Market																				
	12-Aug-88	8 ¥	8 X	8 x	440 336	1700	200 12 20	2568 16%	2600 16%	2700 16%	2300	1700	2000 12%	000 8%	510 3%	170 **	8 4	≨ i	78 78	13840 84%	16408	7	425
		(Lab duplic 160 1%	cate) 85 0%	85 2%	460 3%	1600 9%	160 1 %	2550 15%	2600 15%	2300 13%	2800 15%	1800 11%	2000 12%	1600 9%	69 \$	20 20	3 %	≨ :	280 28	14520 85%	17070	7	425
	:	Stations 3,	.4,5 (compo	site)			-							1		1	-	:	:				i
	25-Mar-91		22	8 ₹	§ %	1400 8%	270	2542	4000 23%	3000	0051 %8	00 %	11%	8 8 8	3%	<u>8</u> ¥	84	810 5%	8 *	86%	17572	-	212
		(Repeat ar 1100 3%	nalysis) 560 2%	<u>8</u> ž	530 2%	4900 14%	870 3%	8150 24%	6800 20%	5000 15%	2900 8%	1500 4%	4100	1700 5%	850 345	7 7 7	1200	<u>5</u> 5	370 1%	26130 76%	34280	-	2820
FC.4			ek midchar																				
	04-hin-01	Station 1	9		Ę	οųς.	2	LUB	270	UOL	121	ţ	UCC	5	T	۶	2	Ę	¥	1713	A157	-	UCAC
		22	3 %	ž	3 4	3	s M	26%	12%	17%	2%	6	*0	*	ş Ş	₹	\$	2 X	3	74%		-	1907
		(Lab duplik 150 At	cate) 52 1%	22	96 ¥	590	04 j	1198 30%	570	670 17 4	190 25	22	310	280	64 X	5 ¥	5 5 5	150	F X	2829	4027	*	2820
		(Replicate)	۽ : _		; ;		t :	2 966			t (ac				t (8)	<u> </u>			; ;		1361	•	
		2 %	3 %	8 ₹	3%		i K	21%	0eu 16%	18%	no 7	2	,	? *	n 4	ß₹	<u>5</u> 4	24	3 %	2000	1074	-	1797

- 210 -

APPENDIX 6.	_	PA H CONCENTR	VTIONS IN SI	EDIMENTS	FROM BRU	TISH COLUMB	A AND PERCENT	CONTRIBUT	ON OF INDIV	VIDUAL PAH C	OMPOUNDS T	D TOTAL P	NH CONCEN	TRATIONS (ng	(g dry weig	Ŷ					
		Naptha- Aconac Ione thyion	th-Acenaph- thene	- Anthra- cene	Phenan- threne	Fluorene	Total LMW PAHs	Fluor-	yrene Chŋ	/sene Benz(a) thrace	an-Benzofiuor Je anthenes	- Benzo(a)- pyrene	Benzo(ghi)-	Dibenz(ah) Ind anthracene co	eno(123- E	enzo(e)- P pyrene	erylene	Total HMW PAHs	Total PAHs		Ę e
Site No. Da	ş i	Location																			
LA LA	ILSE CRE	EK cont.																			
FC-5 04	-Jun-91	At Granville Ferris Stabon 1 280 140 3% 1%	5 2 2 2	380	820 8%	23	1843 18%	1400	1700 8 16% 8	10 930 3% 9%	1200	860 8%	\$ \$	80 X	480 5 % 3	580 5%	87 X	8710 82%	10653	-	20
		300 130 3% 1%	86 1%	330 3%	800 7 %	200	1848 17%	1500 14%	1800 9 17% 8	80 810 9% 8%	1300	820 8%	380	88 2 x 1	410 4 %	570 5%	250 25	8898 83%	10744	1 29	20
FC-6 04	- 10-nn-	Off Granville Islan Station 1 550 220 4% 2% Beniceta	d Hotel 140 1%	530 4 %	1400	380 3 %	3220 23%	1700	2200 8 16% 6	70 960 7% 7%	1400	1100	590	5 x	62 \$	720 5%	270	10570	13790	- 3	320
		650 380 4% 3% Blind duplicate)	120	480 3%	1300 8%	320 2%	3250 21%	2100	2500 9	90 910 ** 8*	1700	1200 8%	620 4%	160 1 %	620 4 X	780 5%	300	11880 79%	15130	1 26	320
		520 300 3% 2% Lab duplicate)	5 2 2	450 3%	1200 8%	370 2%	2870 18%	2000	2500 13 16% 8	300 1000 3% 7%	1800 12%	1300 8%	660 4%	NDR(230)	630 4 %	830 5%	320	12340 81%	15310	1 28	320
		580 250 5% 2%	98 1%	400 3%	22	240 2%	2478 20%	11%	1900 9 15% 8	70 950 3% 8%	1500	860 7%	540	57 24	640 5%	650 5%	240	6790 80%	12266	1 26	320
FC-7 04		Diff Monk McQueel Station 1 680 300 8% 3% 1ab duplicate) 750 260	: 8 ¥ 8	320 3 % 370	830 7% 810	250 24 230	2659 24% 2619	1400 13%	22200 8 20% 8 2200 8	00 55 00 00 00 00 00 00 00 00 00 00 00 0	11%	820 7% 880	470 4%	NDR(150) ~ 160	14 14	580 5% 730	2% 2%	8450 76%	11100		320
FC.8 04	3 18-unr	6% 2% Monk McQueer Nation 1 240 150 2% 1%	1% Visj near Can 71 1%	3% nble Bridgr 330	850 7%	38 39 38	20% 1871	1400	8 0000	× 22	12%	1200	8	2 × 2	5% 6650	20 B	₹¥. 8:	80%	12501		20 23
	-	Lab duplicate) 200 150 2% 1%	₩¥	3%	690 7%	170	1571 18%	1000	1600 7	50 750 %	8 <u>1</u>	800	5%	¥ 5¥	4 040 42	e 87	* **	8520 84%	10001	4 39	20
FC-9 04-	= 18-00f	nside Camble Bric Itation 1 40R(510) 540 - 3% .ab duplicate)	ige off dump 130 1%	sile 650 3%	1100	370 2%	2790	2800	3000 16	500 1600	2800	2200	1100	270 1 %	1100 5%	1300 8%	3% <u>8</u> 0	18270 87%	21060	- 24	025
		610 400 3% 2%	120 17	3%	1200 5%	340	3450 15%	2600 12%	2900 16 13% 8	500 2200	3000 13%	1900 8%	1100 5%	300	1400 8%	1300	2%	19000 85%	22450	-	320
FC-10 04-	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lortheast corner tation 1 2800 1300 6% 3%	340	34	2800 5 %	28 78	9200 19%	6800	5900 38 12% 8	800 S400	5200	3700 8%	2200 **	620	3100	2400 5%	830	40050 81%	49250	- 36	20

- 211 --

-

160

-

1:00

**

1

PA H CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ng/g dry weight) APPENDIX 6.1

		Naptha- Iene	Acenapt	- Acenaph- thene	- Anthra- cene	Phonam- threne	Fluorene	Total LMNV PAHs	Fluor- anthene	yrene C	thr.	z(a)an- Benzo acene anthe	fluor-Benzo mes pyre	(a)- Benzo(gh ne perylene)- Dibenz(ah) anthracene	ndeno(123- cd)pyrene	lenzo(e)- P. pyrene	erylene	Total HMV PAHs	PAHs	No. Ba	lo.
Site No.	Date	Location																				l
	FALSE CRI	EEK cont.																				
FC-11	04-Oct-88	East Basi Station 1 500 2%	5 ھ کھ	150 ¥	1100 *	1400	290	3537 13%	3900 15%	4700	3100 2	000 33(8% 13	8 x 5 2	0 5%	380	780 3%	1600 8%	480 2%	22840 87%	28377	- 3	5
		(Split sam 400 1%	uple) 270 1%	02 1 22	830 3%	1600 5%	290	3510 12%	4100	4700	3000 2 10%	(500 38) 8% 12	85	2000	700	1900 6%	≨ :	850 3%	26950 88%	30460	4	25
	BURRARD	INLET																				
BI-1		Vancouvi	er Outer H	arbour (Pac	sific Enviro	onment ins	ititute)															
	09/091991	Station 2 54 4%	51 X1	őž	3	130 9%	S 7	273	160	190 13%	0¥2 8%	110 7% 20	2 Q X	88	NDR(16)	8	85 %9	82 6%	1237 82%	1510	1 28	200
BI-2		Vancouv	er Wharve																			
	12-Sep-91	830 830 8%	88	970 8%	230	2900 25%	2300	7362	2200 19%	1100 8%	240	280	8.4	NDR(22	5 ₹	25 51	8 🕇	8 8	4309	11861	-	820
6-3		L&K Lum Station 24	þer																			
	12-Sep-91	140 140	5 K	110	390	950 8%	290 3%	1905 18%	2400 22%	1600 15%	% 8	800 11 7 % 10	8× 22	3%	78 1 %	380 3 %	490 5%	96 X	8949 82%	10854	- -	820
		(Lato dupi 170 2%	cate) 20 0%	<u>5</u> ¥	320	770 8%	260 3%	1640 18%	19%	1300	720 8%	690 6% 94	38	310	8 2	370	450 8, 4	3¥ 29	7380 82%	8020	-	\$20
BH		Vancouvi States 1	er Shipyai	da/Seaspai	-																	
	19-Aug-84	300	≨ 1	¥ 30	1000	• 1	400 5 %	2000 24%	2600 31%	2500 29%	400 5%	¥а • 1	38	ž I	¥ I	٤ı	۶ı	٤ı	65 00 76%	8500	n	287
	14-Sep-88	Station 3 750	7 Z	001	2600	7900	1100	13384	22000	11000	6800	130	200 410	2400	230	2900	3700	00 2	72230	85614	.	342
		(Split sam	pie)		2600	WC0		0474.4	unce.	0003		171								00011		
		1% 1%	26 A	X	£	13%	*	21%	***	*1	13%	10% 24	8 8	3%	28 2	X	Į١		%6L	00717	•	9
		006	62	820	2000	10000	1000	14802	17000	11000	0006	5500 04	00 650	3500	1200	3800	¥	1300	68200	83002	2	125
		(Ropeat a	an siskieu	Ing TIM)	ę	471	£	167		K CI	*	- -	£	ţ	ĸ	*	ı	×.	¥.78			
		NDR(450	₩ I	1500 3%	NDR(170	0 2000 8%	1900 3%	8400 15%	10000	5500 10%	5300 10%	5100 81 8% 15	8 8 8 8	5400 4 %	5 2 2 2	2500 5%	2400 4%	940 24	46170 85%	54570	-	342
	10 000 01	Station 4	;	ş			ç	1 0111	0001				-	9		:	;	ł		- 0311	•	
	A-dac-71	; ž	1	Υž	13%	18%	10%	10//L	24%		24	180 * *	2 X 2 K	• •	ייין אטאנוא	₽₹	6 X	R Ž	2380	415U.7	-	970

- 212 -

						NA AND PER	CENT CONTR	IBUTION OF	NDIVIDUA	L PAH COR	APOUNDS T(D TOTAL PA	H CONCEN	TRATIONS (40 6/6u			T ot al HMNV	Total	ta Bat	fi a	
APPENDIX 5.1	PAH CON	ICENTRATIONS IN SET	DIMENTS FF	ROM BRUTIS	H COLUM	Total	Fluor	- Pyrene	Chrysen	 Benz(a)at thracehi 	Benzofiuo anthenei	r- Benzo(a)-	Benzo(ghi)- perylene	- Dibenz(ah) anthracene	Indeno(123 cd)pyrene	- Benzo(e)-	Perylette	PAHs	PAHs	e de la companya de la compa	. 1	
	Naptha- Iene	Acenaph- Acenaph- thylene there	Anthra- ceire	Phonan- F throne	luorene	РАН	anthe	2														
Sile No. Date	Location	51													1	ž	ž	7300	0028	7	267	
BURF	ARD INLET C	ort	Varrows)					196	200	•	300	015 80	¥ I	≨ 1	¥ 1	1	1	10800	12100	2	1287	
BI-5 19-A	Versalt Station 1g-64 -	ie Pacific (was Burran 1.2 NA 200 - 2%	1400	• •	300	21%	57 A	55 38'	× 5×		200	-100 04 00	Ź I	¥ı ‡	¥ i ž	¥:¥	§ 1 Ž	69% 6400 91%	7000	7	1287	
,	(Lab del)	duplicate) NA - Iuplicate) 300 NA 300	11%	• • • •	1 1 <u>8</u> ¥	800 800		13% 32	3.8	s *	£8	8× 2,40	¥ı 8	<u></u>	1 22	1 200	540	37200	41321	-	342	
28	Jul-88 Stat	700 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	54	2600	380	4 9	2.2	24%	700 64 750	420 900	370	-1 % a g	5 6 4 8 8 8 8	* 5* 5 95	9975 - 5	2 9 5 8 5	22%	4064 79%	5151	-	2820	
÷	Sta P.Sep-91	1100 5 17 6 68 17 2 1% 0% 2	8 19 3 19	13% 13%	243	2 4	14	13%	1	*8	ŧ		360	0/1	22	210 3%	80 31 31 31	87 4	8 609 6	e 1	2820	
81-7	Sa Si 12-Sep-91	skatchewan Wheat Po Lation 1 50 3% 1%	18:1	10 14 15 16	° −	g ≭	18%	1000	16%	580 10%	600 10%	nca	*	%c 42	£ ž	ž	£ . ≨ :	- K	3 S	8	1287	
818	M 19-Aug-84	ieptune Terminals Station 2 800 NA 10% -	- 	1500	• 1	¥ :	2300 28%	2000	2500 30% 360	400 5%	- 1 - 500	900 320 10%	5 X 5 X	1 88	1.88	1 8 %	130	9 7 3 8	163 3 14%	99	1 2820	e
	12-Sep-91	Station 2a 8 280 8 8% 0%	NDR(69)	22	660 20%	180 5%	1203 36%	13%	11%	*8	*		ş	57	5	88	100	S ¥	2730 ³ 80%	400.6	1 36	43
6-18	14-Sep-88 12-Sep-81 5	Seaboard Terminals Station 1xb 14 0.6 0% 0% lation 1x+C377 28 22	82 22	25 35 55 55 55	450 13% 150 150	90 3% 3%	670.6 20% 254.7 25%	800 24% 19%	610 18% 140 14%	270 8% 7% 84	250 251 251 252 250 252 252 252 252 252 252 252 252	340 10% 89 10%	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	* 5* 8*	24 25 25 25 25 25 25 25 25 25 25 25 25 25	38 38	84 64	38 38	757.5 75% 788.1 74%	1012.2 1040.6		820
8+10	3-qe2-11	(Lab duplicatio) (Lab duplicatio) 32, 05, 33, 05, 14, 17, 05, 36, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	38 35 55 55	38 38 5 55 55 55 55 55 55 55 55 55 55 55 55	160 15% 110 12%	3% 3% 2% 2%	274.5 26% 191.4 21% 654.8 18%	1941 157 1587 1587 1587 1587 1587 1587 1587	2 0 0 X	8 8 3 7 8 8 3 7 8 8 4 0 8	8 × 0	1100	54 57 880 880	33.8	8.8 24 24 24	37 4% 220	37 4 * 160 5 *	22 22	726.6 76% 3057 82%	916 3711.8		2820
	,	•	24	-		1.0	-			-	- 213	4		8 €+ €	-	-	-	-	-		-	

PA H CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (noig dy weight) APPENDIX 6.1

Notion Index Note	1	Kantha-	Acenach- Ac	A -date	- extra	hened-	Huorene	Total LMW	Eluor.		e e e e e e e e e e e e e e e e e e e	lenz(a)an-Rei	atofice Re	noolah Ber	Control - Dit	anatah) Inde	0(123- Ren			Total	Total	4	4
	lene thylene	thylene	(~	-indene Line	cene -	threne		PAHs	anthene			thracene ar	thenes p	yrane pi	ryfene ant	benz(an) inder hracene cd)p	yrene pyr	zo(e)- ren		PAH s	PAHs		<u> </u>
	Location																						
1 1	NLET cont.																						
	Belaire Shipya Steiso 120776	DVa	ş																				
1 1	100 P	2	≤	<u>8</u> ;	800	•	<u>8</u> ;	1100	2400	2600	2500	•	2100	00 4	¥	YN.	\$	- ≶	ž	10000	11100	2	5
N 100	(Lab duplicate)	- 2	1	<u>e</u>	e	ı	<u>r</u>		4.77	4.57	4.57	i	KAL	f	1	1	1	1	1	*08			
0 1 2	11		× ۽	00 X	800 8%	• 1	<u>5</u> ž	1000	1800 19%	2000	2200	• 1	2300 24%	36	¥ ⊧	¥ I	∮ 1	- ≨ ı	∑ :	8600 80%	0096	2	83
101 100 <td>Allied Shipya Station 2</td> <td>Ę.</td> <td>ş</td> <td></td>	Allied Shipya Station 2	Ę.	ş																				
32 32<	280		5 <u>7</u>	5 ¥	2000	8%8	580	12520	20000 17%	8%	8%	21000 18%	21000 18%	9200 8%	4000 3%	84 84 8 8	- 	⊼ ≸ 1	- 800 2%	02360 89%	114880	N	125
2 3	Boulder Roci	2																					
No. 1 No. 1 No. 1 No. 1 No. 1 No. 1 No. No. </td <td>3%</td> <td></td> <td>28 7</td> <td>25 78</td> <td>11 15</td> <td>310 8%</td> <td>3 ž</td> <td>619 17%</td> <td>430</td> <td>500 14%</td> <td>340 8%</td> <td>260</td> <td>520 14%</td> <td>250 7%</td> <td>180 5%</td> <td>5 x</td> <td>8.8</td> <td>210</td> <td>110</td> <td>3045 83%</td> <td>3664</td> <td>7</td> <td>320b</td>	3%		28 7	25 78	11 15	310 8%	3 ž	619 17%	430	500 14%	340 8%	260	520 14%	250 7%	180 5%	5 x	8.8	210	110	3045 83%	3664	7	320b
N N	000																						
No. No. <td>Station 1</td> <td></td> <td>ş</td> <td>ų</td> <td>Ę</td> <td>780</td> <td>5</td> <td>30.81</td> <td>10001</td> <td>1000</td> <td>ç</td> <td></td> <td></td> <td>Ę</td> <td></td> <td></td> <td>5</td> <td></td> <td>ş</td> <td></td> <td></td> <td>i</td> <td></td>	Station 1		ş	ų	Ę	780	5	30.81	10001	1000	ç			Ę			5		ş			i	
1 1 1 1 1 1 2	6%	- 7	SX.	₽≰	18	8	ž	22%	12%	18%	3	-	<u>7</u>	2.2	2 2 2 2 2 3	- (76)		8 Z	3 %	78%	6518	₹ ≁	5
Model Model <th< td=""><td>320</td><td></td><td>26 X</td><td>± ž</td><td>150 3%</td><td>520 10%</td><td>84 78 84</td><td>1245 24%</td><td>640 12%</td><td>940 18%</td><td>54 50 84 50</td><td>NDR(260) </td><td>630 12%</td><td>330 8%</td><td>300</td><td>DR(45)</td><td>8.8</td><td>0</td><td>2 2</td><td>3670</td><td>5215</td><td>7</td><td>8206</td></th<>	320		26 X	± ž	150 3%	520 10%	84 78 84	1245 24%	640 12%	940 18%	54 50 84 50	NDR(260) 	630 12%	330 8%	300	DR(45)	8.8	0	2 2	3670	5215	7	8206
Mody Mody <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																							
4 72 30 1600 300 1600 300 1600 300 1600 300 1600 300 1600 300 1600 300 160 300 160 300 160 300 1600 300 160 300 160 300 160 300 160 300 160 300 160 300 150 40 220 300 150 400 150 400 150 400 150 100 300 100<	IOCO/Port M Station 2	2	Apoo																				
(N) (N) <td>280 5%</td> <td></td> <td>4 ×</td> <td>c ž</td> <td>8 ₹</td> <td>290 5%</td> <td>ឌ 🥇</td> <td>1003</td> <td>380 7%</td> <td>1900 33%</td> <td>300</td> <td>160 3%</td> <td>22 720</td> <td>30 5%</td> <td>\$<u>7</u></td> <td>4 분</td> <td>83</td> <td>87</td> <td>34</td> <td>4800 83%</td> <td>5803</td> <td>-</td> <td>342</td>	280 5%		4 ×	c ž	8 ₹	290 5 %	ឌ 🥇	1003	380 7%	1900 33%	300	160 3%	22 720	30 5%	\$ <u>7</u>	4 분	83	87	34	4800 83%	5803	-	342
1x 1x 5x 5x 10x 0x 5x 1x xx	(Blind duplica 200	8	() 8	8	250	320	8	971	470	1800	350	170	880	360	270	35	02	00	150	5055	6026	-	342
88 38 130 400 07 881 520 070 420 NOR(30) 640 320 270 NOR(53) 270 360 140 11 1 28200 4431 1 28200 430 1 2820 430 1 2820 430	* E		ž	ž	ź	5%	5 %	16%	8%	30%	8%	340	15%	*0	Ş	ž	*	ž	ž	84%			
88 38 130 400 17 B81 520 670 420 IOR(30) 640 320 270 NDR(37) 270 350 441 1 2320 2x 1x 3x xx 1xx 1xx 1xx 1xx 1xx 350 441 1 2320 2x 1x 1xx 1xx 1xx 1xx 1xx 1xx 1xx 350 441 1 2320 at Pool 1x 1xx 1xx 1xx 1xx 1xx 1xx 1xx 1xx 350 441 1 2320 1x 1x 1xx 1xx <t< td=""><td>Port Moody Station 1</td><td>~</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Port Moody Station 1	~																					
ut Pool 10 2.3 5.5 2.4 3.5 4.72 3.0 2.7 19 15 3.0 1.4 11 NDR(2.1) 13 13 43 2.16 2.832 1 2.820 14 12 2.3 5.5 2.4 3.5 4.72 3.0 2.7 19 15 3.0 1.4 11 NDR(2.1) 13 13 4.3 2.16 2.832 1 2.820 15 13 2.8 9.8 19.8 2.8 19.8 2.8 11% 10% 7% 9% 11% 5% 4% - 5% 9% 10% 2.16 2.832 1 2.820 00 2.3 5.3 2.10 4.0 3.32 3.00 3.10 2.80 180 3.40 150 100 NDR(2.3) 120 130 78 1958 2.40 1 2.8200	180		8 🕅	8 2	130 3%	0 4 %	5	881 20%	520 12%	670 15%	24 24 26	NDR(300)	640 14%	320	2/2	10R(52) -	22	8	140	3550 80%	4431	сі Г	8206
ur Pool 19 23 55 24 35 472 30 27 19 16 30 14 11 NDR(2.1) 13 13 43 216 2832 1 2820 1% 1% 2% 9% 1% 10% 7% 6% 11% 00% 7% 6% 4% - 5% 9% 10% 62% 82% out 10 23 53 210 40 382 300 310 280 180 340 150 100 NDR(23) 120 130 78 1868 2340 1 28200																		1					
18 2.3 5.5 2.4 3.5 4.7.2 3.0 2.7 18 18 30 1.4 11 NDR(2.1) 13 13 4.3 2.18 28.3 1 2020 14 14 25 65 2.4 35 4.7.2 30 2.7 19 18 115 55 4.5 - 55 5.4 105 253 1 2020 out 10 23 53 2.10 40 302 300 310 250 180 340 150 100 NDR(22) 120 130 78 1868 2340 1 23200	Alberta Whe Station 1	2	at Pool																				
ow 10 Z3 53 210 40 342 300 310 250 180 340 150 100 NDR(Z3) 120 130 76 1858 2340 1 28205	₽ \$		1.9	2.3 1%	5.5 2%	5 7	3.5	47.2 18%	8 1 8	27 10%	18 7	92 8 2	30 11 %	14 5 %	z = \$	DR(2.1) -	₽¥	5 % -	5 X	216 62%	263.2	-	1920
10 23 53 210 40 382 300 310 250 180 340 150 100 NDR(22) 120 130 78 1858 2340 1 28206	Central Harbo	ě	ž																				
	Station 1 46		ę	8	8	210	ę	382	300	310	250	180	340	150	ŝ	IDR(22)	8	061	78	1958	2340	-	820b

PA H CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (no/g dry weight) APPENDIX 6.1

		Naptha- Ac Iene ti	senaph- Ac hylene f	enaph- A hene	uthra- F	thenan- F	luorana	Total LMW PAHs	Fluor- I anthene	yrene Ch	rysene Benz thra	(a)an-Benz cene anti	offuar-Benz ienes pyr	o(a)- Benzo Ne peryl	(ghi)-Diben ene anthra	c(ah) Indeno(1) cene cd)pyrer	3- Benzo(e) e pyrene	- Perylene	Total HIMW PAHs	Total PAHs	ê E	No.
Site No. D	-	Location																				
۵	URRARD IN	NLET cont.																				
BI-20	_ ,,	Rivtow Station 1																				
ίΝ.	9-Jul-88	2000	95 0%	540 541	5400 5%	8200 8%	1500	17435 17%	22000	18%	9200 83	8×	2% 000 2% 46	8 × ž ÷	84 2÷	2500	3300 3%	1000 1 %	83840 83%	101375	-	342
BI-21		Sterling Ship Station 1	yards																			
14	0-Aug-84	800	0 2 2 2	80 7	4200	• 1	900 **	6900 27%	4700 19%	6000 24%	2200 8%	• •	900 8% 9	5 8 *	5	ž	£	8	18500 73%	25400	2	383
	-	(Lab ouplicati 200 1%	• 1 1 •	300 2%	2600 15%	• 1	300	3400 20%	4500 27%	5100 30%	700 **		8%	6 8 *	5	8	8	Š	13500 80%	16900	2	383
		(Split sample) 420 2%	_0960 \$60	<500 0%	3570 20%	• :	<500 0%	3990 23%	4590 26%	<200	2720 16 16% 8	300 *	740 18 8% 1	8× 52	8.	008 80	≨ ı	₹ I	13510 77%	17500	e	815
	- `	(Lao ouplicati 460 3%	000 × 0	<500 0%	3060 18%	• •	<\$00 ₩0	3520 20%	3800 22%	0% 2%	2790 2: 18% 1	24	500 ¥6	8 5	8. 95	008 80 90	YN I	۶ı	13810 80%	17430	e	915
		(carro ouprica 430 2%	000	\$00 \$	7300 35%	• 1	<500 0%	7730 37%	5890 28%	<500 0%	1860	× 10	920 4% 7	6 ×	8. 8.	000 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00 \$00	∑ I	۶ı	13410 63%	21140	e	915
	-	538	<800 €00 €00 €00 €00 €00 €00 €00 €00 €00	<500 0¥	3720 25%	• 1	<500 2%	4258 29%	2360 16%	\$200 \$	16% 1	22	210 2%	₩ 2 2 2	62 62 62	0065 24 0	ž i	¥∶	10370	14628	n	915
BI-22	-	B.C. Marine 5 Station 1	Shipbuilder	,																		
ENI.	0-Aug-84	NA - I ab duplicate	¥۱.	800 2%	5400	- 1	1500	7700 18%	13300 31%	31%	2300 5%	• •	5 4	z ' 8*	₹' ₹.	¥ I	¥ :	¥ I	34600 82%	42300	7	1287
		NA 	ž' ۽	1600 4%	5700 13%	• 1	₹ı	7300 17%	13800 31%	13300 30%	2500 8%	• •	00 36	z ' 8 *	z '	¥ :	¥ ı	¥ I	36800 83%	43900	3	1287
		ž I	¥ ا	2000	5500 20%	• 1	۶ I	7500 28%	9000 33%	37%	2% 5%	• 1	- 1	z ' < .	z '	¥ I	<u>≯</u> 1	٤ı	19800 72%	27100	~	1287
BI-22a	-	B.C. Marine/ Station 1	Sterling																			
	4-Sep-88	1100 0% (Lab dunlicate	÷	20000 5%	19000 5%	69000 17%	51000 13%	160270 40%	110000 27%	14%	17000 18 4%	~ 00 x	8 8 8	8¥ 8÷-	2 2 2	500 • • • • • •	6800 2¥	1800 7%	242260 60%	402530	-	342
		1600 0% Solit amole)	9 8 8	22000 8%	16000 4%	74000 20%	51000 14%	164760 45%	77000 21%	13%	15000 16 4%	- 00 X	5 T	8*	8× 55	3900	6800 2%	1700 0%	197500 55%	362260	-	342
		720 0% (Repeat analy	760 : 0% rels using T	29000 8%	12000 3%	101000 28%	30000 8%	173480 48%	81000 22%	13%	17000 17 5% 12		10 10 10 10 10 10 10	≈÷ 8*	8× 55	00 2900 4 1%	۶ı	1300 *0	187400 52%	360880	7	425
		810 1% (Lab duplicate	88	18%	¥¥ I	₩¥	48000 37%	72190 55%	I I	I I	10% 17	3%	000	5 79 7 79	830 83	0 2500 * 2%	4000 3%	50 X	58420 45%	130610	-	342
		580	₹ %	20000 15%	1 1 1 1	: YN	48000	68720 52%	- YN	¥¥ I	11%	2%	000 1× 2	7 <u>7</u> 9	80 8x	0 2500 * 2%	4800	1500	62650 48%	131370	-	342

∎=)#

لير

-

144

-

8 B

- 215 -

-

ikin

1:#**#**

Niž

PAH CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (nglg dry weight) APPENDIX 5.1

																					1
	Naptha- lene	- Acenu thyle	aph-Acenap ne thene	h- Anthra cene	- Phenan- threne	Fluorene	Total LMW PAHs	Fluor- anthene	Pyrene Ch	wysene Benz(a thrace)an-Benzofiuo ne anthenes	r- Benzo(a)- pyrene	Benzo(ghi)-C perylene a	Ybenz(ah) Ind nthracene cd	eno(123- Be pyrene p	nzo(e)- Peri yrene	ylene Tot PAI		No.	Batch No.	~
	Location	= 1	-																		I I
ŝ	D INLET cor	ź																			
9	Vanterm Station 2 1 35 1 ab dund	3 % •	÷	84 24	150	5 ¥	303 13%	310	360 16%	220 160 10% 7%	310	170 8%	5 \$	2 ž	110 5%	55	59 3% 19(5264	-	2820	_
	38	28	≍ ≵	9% 9	120 8%	ā ž	256 18%	190 13%	200 14%	130 91 9% 6%	200	32	84	5 ž	85 X	28 28 28 28	42 111 3% 82	× 143	-	2820	-
2	United G Station 1	Irain Gro	Sners 211				ago	ŝ		ļ	ł	ł	:	:	:	ł	:				
		° 8	28	38	004 %6	2%	1978 19	/90 16%	780 15%	9% 7%	13%	88 80	8 ¥	4 ž	5%	5%	10 2%	202 202 X	-	2820	_
	Centerm Station 1																				
ዋ	1 84 4% (Blind dur	18 19 Dilcate)	\$\$	3%	180 8%	28 23	430 21%	270 13%	300	170 130 8% 6%	13%	55 X 8	81	5 X	95 5 %	54 0	81 16 3% 79	× 206	-	2820	-
	57 345	82	5¥	85 K	5 X	8 🏅	314 15%	250 12%	280 13%	230 150 11%	340	150	84	22	2 2	51 X	56 171 35	× 211	-	2820	~
	Canada Station 2	Place (P 2	ier BC; NHB)	_																	
9	5 ¥	25	**	88	720	8 ž	1301 15%	1400 16%	15%	760 610 9% 7%	1200	95 76	23 7	86 1%	410 5%	574 575	28 28 28	90 80 80	-	2820	-
	Coal Harl	pour:																			
	Bayshor Stations	e Inn Ma 1,3,4 (co	irina mposite)																		
2	150 25 25 25 25 25 25 25 25 25 25 25 25 25	₽ 6 î	88	2 5	360 5 %	₽ <u>₹</u>	711 11%	1200	1100 17%	430 7% 7%	850 13 %	510 8%	360 54	NDR(63) -	8¥ X	8	26 26 26 26	80 %	-	1171	_
	11%		å s	120 2%	300 5%	4¥	578 10%	830 16%	940 16%	530 8% 35(960	380 8%	300	63 1%	340 8%	25	62 82 94 10 10	03 568 34	-	282(~
	17 1%		1 88 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	150 2%	630 8%	110 2%	1076 16%	1000 15%	1000 15%	650 350 10% 5%	1000	64 8	310 5%	5 X	330 5%	<u>8</u> .8	5 2 2 2	50 672	-	282(~

- 216 -

PA H CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ng/g dry weight) APPENDIX 6.1

		Naptha- lene	Acenaph- thylene	Acenaph- thene	Anthra- cene	Phenan- F threne	luorene	Total LMW PAHs	Fluor- P anthene	yrene Chry	sene Benz(a) thrace	ian-Benzofiuo ne anthenes	r- Benzo(a)- Pyrene	Benzo(ghi)- i peryiene z	Dibenz(ah) Ind inthracene cd	no(123- Be pyrene p	nzo(e)- Pery yrene	Total HMW PAHs	Total PAHs	Ko.	Batch No.	
Site No.	Date	Location																				
	BURRARDI	INLET cont.																				
		Coal Narbo	ur cont.:																			
CH-3		Royal Vank Station 1	touver Yac	int Club Ma	erit																	
	16-Mar-88	23	• 5	81 X	5	061 2	32	320	370	290 11	120	330	\$ \$	8	89	8	120	1782	2102	-	342	
		(Split sampl	(0)			2	t 4	2		6 T		* 0	e	R T	6	ţ						
		5 Z	* ×	5 ž	8 8	150 8%	18 24	233	280	250 21	150	250	170	5 2	53	110	¥ í	1001	1837	5	425	
		Statione 4 5	A from no			5	2	<u>t</u>		- -	R	R t	S	Ł	£	6	N 1	*/10 *				
	25-Mar-91	88	48	8	220	710	180	1282	1300	1500 81	30 590	1200	780	460	120	580	530 2	0582 0	8717	-	1171	
		1% (1 =h dualies	X 0	ž	2%	*8	2%	14%	14%	16% 7	* 8	13%	8%	5%	ž	×9	8%	86%		•		
		130	8	33	250	750	100	1313	1900	1900 10	00 750	1300	850	380	ŝ	440	570 1	0 0180	10403	-	1171	
		ž	2	% 0	2%	7%	*	13%	18%	18% 10	* *	12%	*6	\$	ž	4	5%	87%		-		
		(Repeat and	alysis) 53	2	064	470	83	996	0007			ļ	1		i	-						
		Ż	3 \$	5 ž	2 2			100						310	2	350		0 5734	6599	-	2820	
		(Lab duplica	ie)	<u>e</u>	ç	e	*	¥.51	15%	8 %/1	*	15%	*	5%	ž	54	6% 7	× 87.4				
		68	4	35	140	420	92	817	820	1100 5-	0 330	1100	410	300	NDR(73)	370	390	0 5510	6327	-	2820	
		ž	ž	ž	ž	*.	*	13%	13%	17% 8	¥ 5¥	17%	ž	5%	1	8%	8%	87%		•		
CH5		Menchion's	Shiovard																			
		Station 1																				
	20-Aug-84	M	500	٩N	2600	•	400	3500	7300	13000 34	•	4000	300					24900	28400	2	1287	
		I	ž	1	% 8	1	ş	12%	26%	46%	, *	*	ž	ž	5	ž	8	86%		F		
CH-6		Bavshore	lenchion's																			
		Station 3b																				
	14-Sep-88	120	8	98	550	890	180	1884	3200	3700 22	00 1300	4800	1600	1100	180	1200	1700 4	0 21420	23304	•	342	
		(Reneat and	176 Iveia hv Ti	5	r.	*	*	8%		16% 9	*	21%	*	54	ž	5%	7%	× 82%				
		120	72	110	590	810	180	1882	0066	4200 28	00 1800	1400	1600				-	00100	11082	•	5	
		*	\$	¥	3%	*	*	*8	15%	19% 12		15%	2	2%		3%	28		70817	-	200	
		(Split sampl.	•														•					
		ន្ត ៖	8	g :	680 201	2500	450	4240	3600	4200 41	00 2900	3200	1900	1200	220	1400	₹ ¥	0 23200	27440	~	425	
		(Lab duplica	(a)	<u>*</u>	5	*	4	15%	13%	15% 15	×:	12%	ž	¥ ¥	ž	5%	1	× 85%				
		410	8	190	620	2100	340	3750	3600	4300 25	00 1900	3200	1900	1100	260	1300	A M	05900 0.	74780	~	404	
		ž	*0	ž	3%	*8	1%	15%	15%	18% 10	% 8%	13%	8%	*	1	5%	- N	85%	***	1	ļ	

1 (1)

-217.

Nijir

--i enone TOTAL Ę PA H CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH APPENDIX 6.1

APPENDIX	5	PAH CONCI	ENTRATIC	DNS IN SE	DIMENTS	FROM BRIT	ISH COLUMBI	A AND PERCENT (ONTRIBUTI	ON OF IND	IVIDUAL PI	AH COMPOL	T OT SUNU	DTAL PAH	CONCENTR	ATIONS (ng/g	dry weigh	~					
		Naptha- A lono t	conaph- thylene	Acenaph- thene	Anthra- cene	Phonan- threne	Fluorene	Total LMW PAHs	Fluor. P	yrene Ch	rysene Ber th	12(a)an-Ben Tacene an	izofluor-Be thenes p	nzo(a)- Be yrene p	nzo(ghi)-Di	benz(ah) Inder thracene cd)p	o(123- Be yrene p	nzo(a)- Per rene	- 1 d	iotal IMMV AHs	Total PAHs	۳ ۴	Atch No.
Site No. D	3	Location										ļ											1
>	ICTORIA H	ARBOUR																					
	-	The Gorge :																					
7+1 1	1-Jul-80	Station SW 130 2%	7; off stom 43 1%	n drains ac 28 0%	ross from 120 2%	Aaron Pt 360 5%	28 X	741	15%	16%	450	400 *8	880 13%	590 9%	6 4 8	2 ×	8 *	\$¥	8 ×	80% 80%	6677	-	121
VH-2 1	1-Jul-80	Station SW-6 76 1%	8; off Gorg 33 0%	e Park 28 0%	210	410	62	820 9%	1400	1300	710 8%	620 7%	1200	890	580 6%	5 X	₹¥	0 3	5 G0	020	0688	-	121
		Selkirk Wate	ï																				
CH-3	7/20/1987	Station SW-1 130	b; off BCF	22 22	38	110	25	334	8	960	130	1 0	200	8	2	v		ž	60	574	1906	7	425
		*	*	ž	7%	% 9	ž	18%	5%	50%	*1	5%	10%	3%	Ś	8	¥	t	*	82%			l
4.4.4	-1ul-90	Station SW-2 470 3%	2 off old B	CFP/Fletch 1200 7%	ler Challen 520 3%	ge sawmill, 3100 17%	west side 1600 9%	6934 38%	3300	2300	1100	900 5%	1300	780	ŝX	88	8 4	570 3 %	<u>8 x</u>	1373	18307	-	171
	-	(Lab duplica) 440 3%	95 ×	1100	390	2600 16%	1300 8%	5880 36%	3200	2200	880 5%	780	1200 7%	710	390	78 0%	5 ¥	33	81	0556	16438	-	121
VH-5	1-Jul-90	station SW-3 270 4%	; off old B 27 0%	CFP/Fletch 390 5%	ter Challer 220 3%	ge sawmill, 850 9%	southwest sid 440 6%	1997 28%	1700	1300	380 5%	310	24	270	24	7 K	8*	338	28 <u>×</u>	5116 72%	7113	-	121
VH-6	1-Jul-90	Station SW-4 300 2%	t t X	e, midchan 170 1%	nel 1400 8%	1200 8%	500 3%	3004 23%	2400	12%	1100	1100	1800 12%	1100	z 88 *	DR(140) 5	8 *	750	98 ¥	1940	15604	-	121
VH-7	-Jul-90	station SW-5 620 4%	south en 81 1%	id of old BC 240 2%	CFP/Fletch 330 2%	er Challeng 2300 16%	e sawmill, off ic 490 3%	cation of old dip tai 4071 28%	nks 2800 19%	20%	830 84	700 5 %	1100 8%	610 **	38	8 x	4	\$ 10	8 ×	0438	14507	-	121
VH-8	-14-60	Station SW-8 480 3%	l; off storm 85 0%	drain sout 240 1%	th of sawm 300 2%	II site 1600 8%	450 3 %	3245 18%	3500 20%	19%	74	000	1800	1000 8%	730	1%	2*	9 8	52	4340	17585	-	121

-218-

PA H CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (noig dy weight) APPENDIX 6.1

	A Z	sptha- Ac	cenaph- A hylene	conaph- thene	Anthra- cene	Phenan- threne	Fluorene	Total LIMW PAHs	Fluor- anthene	yrene C	thrysene B	ienz(a)an-B	enzofluor-f anthenes	Benzo(a)- B pyrene	lenzo(ghi)- perylene	Dibenz(ah) In anthracene c	deno(123- d)pyrene	Benzo(e)- P pyrene	Perylene	Total HMW PAHs	Total PAH s	i i i	No. H
Pate	ľ	cation																					
VICTOR	NA HARI Upp	BOUR cor	년 : 월 5																				
11-Jul-9	Stat Stat	tion UH-1; 820 6%	Victoria N 140 1%	Aachinery (120 1%	Depot 360 3%	1200 8%	310 2%	2950 21%	2200 15%	2600 18%	880 7 %	800 %9	1500 10%	1000	24	130	580 **	740 5%	270	11440 79%	14380	-	1171
11-Jul-8	8 1 1 1 1 1	tion UH-2; 920 3%	Rock Bay 230 1%	800 2 %	850 3%	3800 14%	1100 4 %	7500 27%	3500 13%	4400 18%	1600 6%	1900	2800 10%	1900 7 %	1100	250	1200	5 100 100	380	20140 73%	27640	-	1171
11-Jul-9	Stat.	tion UH-3; 200 2%	head of F 73 1%	tock Bay 220 2%	320 3%	1700 13%	420 3%	2933 23%	2800 20%	1900 15%	670 5%	740	1200 8%	770 6%	830 4*	NDR(100) -	730	8 ¥	180 14	9790 77%	12723	-	1171
11-Jul-8	C. Stat	tion UH-4 450 2% Ib duplicat	; midchan 74 0%	nei trawi si 320 2%	ite 470 2%	1600 8%	500 3%	3414 17%	3200 18%	3000	1400	1400 7%	2800	1600 8%	770 **	180 1%	60 4 %	1000 5%	**	16490 83%	19904	-	1171
		270	38	5 X	410 2.K	1300	270 2%	2422 13%	2800 16%	2700 15%	1400 8%	1300	2700 15%	1500 8%	780	190 14	810 5%	000 7	37	15550 87%	17972	-	117
11-Jul-9	Star Star	ition UH-St 750 3%	b; off Point 73 0%	t Ellice (old 290 1%	d Smith Ce 570 2%	idar Produc 2000 8%	ts site) 470 2%	4153 18%	3700 16%	3900 17%	1900 8%	1300 6 %	3300 14%	1600	850	NDR(180) 	740	1300 8%	34 24	18930 82%	23083	-	1171
11-Jul-9	90 Staf	ition UH-6; 110 1% b duplicate	Site 1 8.1 0%	250 3%	330	1600 20%	490 6%	2788.1 35%	1400 18%	920 12%	770 10%	480 6%	600 8 %	350	150 2%	8	199 28	3% 250	12 14	5191 05%	7979.1	-	1171
		2 X	5.8	190 4 x	3%	1100	270 5%	1775.8 34%	1000 19%	720	290 8%	250 5%	390 8%	240 5%	27 X	27	130 3%	3%	23 2 5	338 9 66%	5164.9	-	1171
31/11/20	Stat 985 Stat (tab	Bon UH-62 + - b dualicate	NA 1	00 ¥	700	• 1	٤ı	800 11%	1200 17%	1500 21%	1200	• 1	1800 26%	500	∑ 1	¥ t	¥∶	¥:	¥:	6200 69%	2000	7	303
		3%	.¥⊧	0 X	600 10%	• 1	¥ :	900 18%	1100 19%	1400 24%	1100 19%	• 1	900 16%	8 4 X	≨ i	₹ı	¥ I	٤ı	ž i	4900 84%	5800	~	383
11-Jul-9	8 8	tion UH-7; 600 3%	Hope Ptv 160 1%	Standard C 200 1%	3% 3%	1600 9%	450 2%	3640 20%	NDR(3300) -	3500 19%	2000	1400 8%	2800 15%	1400 8%	810	200	1100 6%	1000 5%	8 K	14590 80%	18230	-	1171
11-Jul-B	Stat	liton UH-8; 330 2% b dunicati	Garbage 110 1%	DepoVStai 120 1%	ndard Oil 360 2%	1200	230 1%	2370 13%	3400 19%	2800 16%	1200 7%	1000 6%	2200 12%	1400	810 5%	170	1100 8%	1000 **	340 2%	15420 87%	17790	-	1171
		280	8 ž	8 7	470 3%	1200	250 2%	2360 14%	2300 14%	2700 16%	1100 7.4	1000 4%	2100 13%	1300 8%	830 5%	170	1300	970 8%	8	14070 86%	16430	-	1171

-219-

-

in...

(máx

i i i i

į PA H CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDIVAL PAN COMPOUNDS TO TOTAL PAN CONCENTRATIONS (INDIO APPENDIX 6.1

•

APPENDI	X 6.1	PAH CONC	ENTRATIO	IS IN SED	IMENTSF	ROM BRI	LISH COLUM	BIA AND PERCEN	T CONTRIBUT	TION OF IN	IDIVIDUAL PAH	COMPOUND	S TO TOTAL	PAH CONC	ENTRATIONS	(ng/g dry w	ight)					
		Naptha- J lene	Acenaph- Ac thylene	cenaph- thene	Anthra- cene	Phenan- threne	Fluorene	Total LMV PAHs	Fluor- anthene	Pyrene C	thrysene Benzi thrae	a)an-Benzofi Sene anther	uor-Benzo(; 195 pyren	l)- Benzo(gt) perylen	v)- Dibenz(ah) • anthracen) Indeno(123 cd)pyrene	Benzo(e)- pyrene	Penylene	Total HIMV PAHs	Total PAHs	Å. K	Batch No.
Site No.	Date	Location																				
	VICTORIA I	HARBOUR C	out.																			
		Upper Harb	our cont.:																			
VH-17	07/11/1985	Station UH-1 200 3%	9; Boatbuildi NA	ng Facility 200 3%	800	• •	۲	1200 18%	1500 22%	Z200	900 13 K	600	30	¥ I	¥ I	¥ :	≨ ı	¥ :	5500 82%	6700	2	363
	06-Mar-91	440 2% (Lab duolica	110 110 110	160	590 2%	1300 5%	290	2890	3700 16%	4300	1800 17 8% 7	00 3100 X 13 X	1900 8%	1100	250 1%	1200 5%	1300 5%	470 2%	20820 88%	23710	-	1711
		580 2%	120	170	850 2%	1500 6%	340 %1	3360 13%	4200	4700 18%	2000 20 8% 8	00 3400 13%	8%	100 *	240 1%	1300 5%	1300 5%	5	22680 87%	26040	-	1171
		Inner Harbo																				
VH-18	11-Jul-90	Station IH-1 170 3%	; off Songhei 25 0%	82 1%	130 3%	330	110 2%	827 18%	760	930 18%	390 8% 5	50 710 74%	35	210 24	ŝŢ	190 *	280 6%	<u>5</u> %	4213 84%	5040	-	1171
		(Blind duplic 330 5%	ate) 54 1 X	80 ¥	230 3%	580 8%	160 2%	1420 20%	1200	1300	550 45 8% 8	00 750 X 10X	450	260 4 X	5 ¥	¥ 58	350 5%	2% 2%	5782 80%	7202	-	1171
VH-19	11-34-90	Station IH-2 61 2%	West Coasi 36 1%	1. 19 1%	76 2%	240 8%	58 % 58	404 15%	430	460 14%	300 9% 6	8 450 14%	210	160 5%	8 1	190 6%	180 8%	100 3%	2706	3200	-	1171
		79 79 2%		8 x	28 78 80	230	3 %	507 15%	440 13%	500 15%	280 20 9%	8 X 7 4 50	210	170	37	190 8%	190 6%	110 3%	2777	3284	-	1171
VH-20	11-Jul-90	Station (H-3) 220 3%	: commercial 56 1%	l dock at ei 77 1%	ntrance lo 170 2%	James Ba 490 7%	y 170 271 271	1183 17%	1200	1200	550 8%	50 810 13%	52	260	19	320 5%	340 5%	120 2%	5811 83%	6694	-	1171
VH-21	11-Jul-90	Station IH-4; 550 3%	; Undersea (160 1%	Bardens 150 1%	460 3%	1300 8%	400 3%	3020 19%	2200	2800 18%	99 990 94	0 2100 X 13%	1200	650 4%	170	750	750 5%	32	12760	15780	-	1171
Vh-22	11-Jul-80	Station IH-5; 1200 4%	: B.C. Steam 120 0%	shipe 700 3%	1400 5%	4500	1100	9020 34%	3000	4300 16%	1400 16 5% 6	× 1800	0 2100 8%	870 **	28 14	1000 4%	1000 4%	2% 2%	17850 86%	26670	-	1211
VH-23	11-Jul-90	Station IH-6; 1500 5%	; bay beside 360 1%	B.C. Stear 540 2%	mships 1300 4%	3800	1200	8700 27%	4400	4800	2000 21 6% 7	3100	7%	1100 3 %	300	1400 4 %	1400 4%	510 2%	23310 73%	32010	-	1171
VH-23a	11-Jul-90	Station IH-7 270 4%	west side of 120 2%	f Laurel Pc 57 1%	aint 230 3%	660	180 2%	1517 21 %	1000	1300 18%	450 6% 67	0 820 X 11%	28	95 \$	2 5	330 5%	380 5%	5 %	5734 79%	7251	-	1171

- 220 -

PA H CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ng/g dry weight) APPENDIX 6.1

		Naptha Iene	Acenaph- thytene	- Acenaph- thene	- Anthra- cene	Phenan- threne	Fluorene	Total LMW PAHs	Fluor- anthene	Pyrene Ct	th th	inz(a)an-Bei iracene ar	nzofluor-Be Khenes p	nzo(a)-Ber yrene pe	rzo(ghi)- Di Hylene an	benz(ah) inde thracene cd);	no(123- Be yrene p:	nzo(e)- Pe yr a ne	nylene	Totai HMW PAHs	Total PAHs	- 18 8 8 1	ę te
Site No.	휆	Location																			:		
	VICTORIA	HARBOUR C	:ont.																				
		Inner Harbi	our cont.:																				
VH-24	11-Jul-90	Station IH-8 530 2%	8; Trobac N 170 1%	Marine 170 1%	3%	1700 8%	490 2%	3620 17%	2900	4000	2300	1200 6%	2800 13%	1200 8%	780	96 <u>1</u> 2	950 **	1100 5 %	320	17740 83%	21360	+	5
VH-25	11-Jul-90	Station IH-E 550 3%	9; Raymur 93 1%	- PoinVFisht 190 1%	eman's Wt. 350 2%	1arf 2100 13%	330 2%	3613 22%	3200 20%	3000 19%	1000 6%	830 5%	1400 9%	010 6%	570 4%	120	580	650 4 X	- - - -	12460 78%	16073	-	121
VH-28	11-Jul-80	Station IH-1 220 2%	10; betwee 32 0%	en Shoal Pc 120 1%	oint and Fis 430 5%	heman's M 1200 13%	Mharf 270 3%	2272 25%	1800 20%	1700 19%	580 6%	810	800 %4	500 5%	180 2%	39	180 2%	330	5 x	6839 75%	1119	-	121
VH-27	11-Jul-90	Station IH-1 300 3%	11; Centre 100 1%	: Channel tr 56 1%	awi site 240 2%	147	140	1576 15%	1500 14%	1800 17%	900 %8	830 8%	1200	850 8%	450 45	150 1%	430	740 7%	200	8050 85%	10626	-	121
		520 4%	,160 1%	140 141	400 3%	1100 9%	250 2%	2570 20%	2300 18%	2000 16%	830 7%	780 6%	1200 8%	810 7%	84 X	120 1%	650 5%	620 5%	22	10130 80%	12700	-	121
VH-28	11-Jul-80	Station IH-1 150 1%	12; south : 47 0%	side Songhi 150 1%	ees/old Sei 300 2%	aspan site 1900 12%	280	2827 17%	3200 20%	2600 16%	1000	960 8%	1900 12%	1200 7%	650 4%	140	88	730 5%	270 27	13340 83%	16187	- -	171
VH-29	11-Jul-80	Station IH-1 420 2%	13; south : 360 2%	side Songh 98 1%	ees/old Shi 430 2%	ell Oil site 1200 8%	250	2758 14%	2300 12%	3300 17%	1400 7%	1200 6%	2800 14%	1700 8%	980 5%	22	00 2 × 00	1200 6%	5×	16470 86%	19228	- -	171
VH-30	11-Jul-90	Station IH-1 60 2%	14; West E 13 1%	38y 14	48 2%	170	2 % 2	347 14%	430 17%	390 15%	200 8%	170	370 14%	220 8%	50 X	4DR(15) -	등축	150 6%	88 3 %	2209 86%	2556	-	121
24-33		Outer Harb	iour 2. of Oad																				
	11-Jul-80	450 450 2%	200 200 200 200 200 200 200 200 200 200	360	620 3%	2900 15%	750	5180 27%	3400 17%	3000 15%	1100 6%	1200 6%	1700 8%	1300 *7	630 3%	180 X	780	720	300	14290 73%	19470	-	121

....

-

Barr

- 221-

Whi

wp

۳

11 #

in a

PA H CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (1929 dry weight) APPENDIX 6.1

Introductional state and the part of the pa																							
My. Each Contractioner			Naptha- lene	Acenaph- thylene	Aconaph- thene	Anthra- cene	Phenan- threne	Fluorene	Total LIMW PAHs	Fluor- anthene	Pyrene d	Chrysene Benz(a)a thracen	n-Benzoffuo anthenes	r- Benzo(a)- pyrene	Benzo(ghi)-D perylene ar	lbenz(ah) Inder Mhracene cd)p	vo(123- Ber yrene py	izo(e)- Pery rene	iene To PAI	74 44 74	±E	4 . 6	
Interfact 14-bd 200 200 100 100 100 100 100 100 100 100	Site No.	Date	Location																				1
Protection State		ESQUIMAL	T HARROW																				
Index Control Index Control Index Control 1 value 2 value </td <td></td>																							
11-10 2000 <t< td=""><td></td><td></td><td>Constance</td><td>• Cove con</td><td>ij.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			Constance	• Cove con	ij.																		
Triated 270 371 270 370	EH-10		Station 3																				
Interfaction Interfaction<		11-Jul-90	220	37	23 23	510	1700	230	2817	3300	2900	1600 1500	3000	2000	1200	250 1;	200	300 45	50 187	00 216	112	-	5
11 210 510 520 2301 540 2301 540 2301 710 2305 710 71			(Lab duplic	tale)	2	ę	R O	£	K .CL	15%	13%	*1 *1	**	% 8	% 9	ž	ž	N N	87	· ·	-	-	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			210	5	240	720	2200	340	3761	5400	4300	2500 2800	4800	0066	1700			i					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ž	*0	¥	ž	*1	ž	1:*	16%	13%	7% 8%	14%	10%	2%	380		5 ¥	0 287	335	51	= -	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	EH-11		Station 4														2	•		e			
$ \begin{array}{{ccccccccccccccccccccccccccccccccccc$		11-Jul-90	180	38	150	320	1400	180	2269	0000	0000	1100	0007										
II-14 Sabori			ž	Ś	ž	% 2	*6	ž	15%	14%	15%	7%	12%		830	170	8 2	83	129	80 152	48	=	12
11-Jul-10 2700 7 10 100	5H-13		0.000														R	5	85	*			
2% 0% 1% 100	1	11-Jul-90	270	41	100	310	820	210	1767	1000													
I+13 Station 6 Station 7			×.	ž	ž	3%	*	2%	14%	13%	17%	8% 7%	84	000 %	560	5 2 2 2 2 2	83	20	101	90 122	47	=	121
11-Me0 370 56 420 910 340 594 530 500 210 210 200 100 1400 170 1400 170 1400 170 1400 170 1400 140 <th1< td=""><td>EH-13</td><td></td><td>Station 6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>	EH-13		Station 6														2						
14 11Jul-10 5440 270 100 2100		11-Jul-90	370	58	420	910	3400	890	SAAR	6100	6000	0010											
H-14 11-Jul-10 Staten 7 H-14 11-Jul-10 Staten 7 H-14 <			ž	*0	ž	3%	11%	×.	19%	18%	18%	7% 7%	10%	00LZ	88 8	220	8.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	244	30	78	=	12
140 78 160 250 150 240 270 120 120 100 80 90 90 90 1330 1556 1 2005 10 78 14 78 14 78 14 78 14 78 14 78 14 78 13 14 78 14 78 14 78 14 78 15 14 78 15 15 13 14 78 15 14 78 15 14 78 15 15 14 78 15 16 20 130 1556 1 2005 220 82 13 14 7 9 15 15 15 15 15 15 16 1556 1 2005 10 81 14 7 9 13 9 155 1 205 1 205 15 14 14	EH-14	11-Jul-90	Station 7												2	r 1	t			R			
1% 1% 1% 2% 1%<			140	79	160	250	1500	300	0420		0000	001											
Z0 62 190 340 140 380 2432 2200 2400 100 100 2200 1500 1600 100 200 1600 100 200 1600 100 200 1600 100 200 100 <th1< td=""><td></td><td></td><td>1% (Lab duntic:</td><td>1% (1%</td><td>ž</td><td>2%</td><td>10%</td><td>3%</td><td>16%</td><td>13%</td><td>11%</td><td>1% 6%</td><td>13%</td><td>8 2 3</td><td>840 5%</td><td>200 1% 0</td><td>5 ×</td><td>8 2</td><td>0 131: A49</td><td>30 155</td><td>8</td><td>1 29</td><td>902</td></th1<>			1% (Lab duntic:	1% (1%	ž	2%	10%	3%	16%	13%	11%	1% 6%	13%	8 2 3	840 5%	200 1 % 0	5 ×	8 2	0 131: A49	30 155	8	1 29	902
1% 1% 1% 1% 2% 8% 2% 10% 13% 14% 7% 8% 13% 9% 1500 890 210 990 1100 390 1360 16562 1 2006 (Blind duplicate) 2.0 180 340 1300 180 2270 2400 2500 1400 1100 3300 1500 850 1200 1200 410 16310 18580 1 2820 1 2820 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%			220	82	190	340	1400	190	7827														
(Blind duplicate) (Blind dupli			*	ž	*	2			1002	2200	7400	1000	2200	1500	890	210 8	6	00	0 139!	50 165		1	¥U
170 120 160 340 1300 180 2270 2400 2500 1400 1100 3300 1500 850 1300 1300 1200 410 16310 18580 1 2820 1% 1% 1% 1% 2% 7% 1% 12% 13% 13% 13% 8% 8% 18% 8% 5% 1% 7% 0% 2% 88%			(Blind dupli	cate)					*0	***	**	7% 8%	13%	*8	5%	<u>*</u>	*	×	843	*	•		3
1% 1% 1% 1% 2% 7% 1% 12% 13% 13% 13% 6% 6% 18% 8% 5% 1% 7% 6% 2% 2% 8% 5%			170	120	160	340	1300	180	2270	2400	2500	1400 1100	UULL	1600				:					
			ž	ž	ž	7 8	*	ž	12%	13%	13%	8% 6%	18%	8%	9.6 7	250 250 1%	2 ×	5 £	163	10 185	8	1 28	8

-

-

2

-23

PA H CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (1929 dry weight) APPENDIX 6.1

I

Vited

		Naptha- Ione	Acenaph- / thylene	cenaph- thene	Anthra- cene	Phenan- threne	Fluorene	Total LMW PAHs	Fluor- anthane	Pyrene 0	thrysene Benz(a thrac)an-Benzoflu ne anthen	or-Benzo(a) is pyrene)- Benzo(ghi perylene)- Dibenz(ah) Ir anthracene	ideno(123- cd)pyrene	Benzo(e)- pyrene	Perylene	Total HMW PAHs	Total PAHs	Lab No.	No.
Site No.	Date	-ocation																				
;																						
	LADYSMITH	HARBOUR																				
	S 01/20/1992	ite #29 8.7	50	ž		ş		ļ														
		ř.	38	ž	3 X	2°5	0 %	37.1 28%	21 16%	18 12%	9.4 7% 7% 5%	7.9 8%9	6.7 5%	7.8 6%	NDR(1.5) -	5.6	7.5	6 2 2	95.1	132.2	-	1187
	Ø	ite #30														•	:	t				
	01/20/1992	¢	NDR(1.0)	3.8	7.4	42	7.1	79.3	8	ŧ	19 17	*	ž			Ş		5				
		ž	I	ž	380	14%	*	27%	17%	12%	7% 6%	, č	2 %	1		2 4	c %	3% 3%	212.6	291.9	-	1187
	0	ite #31																:	2			
	01/20/1992	58	0.7	3.7	1.1	47	NDR(5.4)	84.5	ę	30	18 15	40	ţ	\$		ļ	;	:				
		10%	*	ž	3%	17%	I	31%	16%	11%	7% 6%	3	2 %	44	(8.7) YOM	1	• %	9 1	185 Rox	269.5	-	1187
	Ø	ite #32														;	2	2				
	01/20/1992	e	NDR(0.2)	0.7	NDR(1.2)	e	NDR(1.3)	9.7	1.1	5.2	2.6 2.4	4 0	10	76				:				
	ų	ab duolica	- 1	7.X	1	14%	1	22%	18%	12%	¥9 %9	11%	%	6	-	3	18	r - 2	33.5 78%	2.64	•	1187
		3.4	NDR(0.3)	0.6	11	93	18	a (t														
		*	1	*	5%	13%	38	28%	17%	12%	5% 8% 8%	• <u>*</u>	2.1 5%	7 9 9 9	NDR(0.5)	23	23	⊐¥	33.2	45.8	-	187
	ö	te #33															2	2				
	01/20/1892	<u>13</u>	6.1	8	48	210	46	460.1	150	160	110 78	120	81	Ę	10	ä	42					1
		*	5	e N	*	15%	¥.e	32%	10%	1%	8% 5%	% 8	*	5	i ž	5 \$	2		64% 64%	1433.1	-	181
	ΰ.	te #34																	:			
	01/20/1992	15 8	9.0 8	3.0	6.9 20,	q	8.3	76.7	48	35	19 14	27	16 1	15	NDR(1.8)	ŧ	16	5.0	210.2	787		101
		8	5	<u>r</u>	5	Kel	34	27%	17%	12%	7% 5%	% 6	8	25	1	÷	2 %	, Xe	×67	107	-	Ì
	Ø	te #36																				
	01/20/1992	÷]	38	4 8	8 .4	8	9.4	121.8	37	32	18 15	21	*	t1	NDR(2.0)	84	ŧ	8.7	1 001	2010	•	
			5	Ę	R	19.4	3%	*0*	12%	1%	6% 5%	ž	5%	ž	1	*	245	5 X			-	ò
	5	te #37																				
	01/20/1992	150	8.4 8.4	25	81	370	78	740.8	220	260	120 120	170	120	8	5	89	901	ş	CA11	a canc	•	101
		F	5	R n	ţ	18%	ž	38%	11%	12%	Xa Xa	8%	* 6	ţ	ž	1	2%	3 8	5 K K	0.7007	-	10/

- 224-

PAH CONCENTRATIONS IN SEDIMENTS FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (mog dy weight) APPENDIX 6.1

No.		thylene	thene	cene	threne	Fluorene	LMW PAHs a	riuor- r nthene	yrene cr	wysene Ben thr	z(a)an-Benz acene anti	oftuor-Ber Tenes py	zo(a)- Beni rene per	o(gni)- Uro yiene anth	racene cd	lpyrene	pyrene		PAHs	PAHs	No.	No.
Ì	Locat	<u>5</u>]																				
131	ERENCE SITE																					
	Cresci	Hrt Beach																				
18-1	Station Jun-91 NDR(1	11 1.4) <0.8 0%	<u>1</u> 2 2	NDR(1.1) -	3.5 33%	40.7 0%	3.5 33%	4.5 42%	2.7 N 25%	DR(2.2) ND -	R(1.6) ND -	R(4.7) ND -	R(1.0) ND	F(0.9)	1.30%	<1.0 %0	NDR(1.0) 1 _	4DR(1.2) -	7.2 67%	10.7	-	2820
2/90	Warm Station 3/1988 <3	Bay 11 0%	00 V	Ģ 6	8 ℃	6.0 8.0	28	5.4	\$0 \$	0.4	0.03 1.03	0.5 2	0.5 0	6. 8	€.3 2%	0°.2	0.2 0¥	60.3 9%	0.4 100%	4:	-	342
	(Split: 3 29	tample) 5 14%	8 8	8 F	23 %	5 14%	35 100%	\$ \$	\$ \$	\$ ₹	\$ ₹	% ≹	2 ₹	5.8	\$\$	\$\$	≸ i	\$ \$	25	35	7	425
	Gueen	I Charlotte Isl	:spue																			
07/2	1989 NDR('	tta Stough 1.6) <0.3 0%	<0.5 0%	NDR(0.7)	4.2 10%	0.7 2%	4.8 12%	8.5 21%	6.1 15%	6.1 15%	1.8	7 NC	R(0.5) -	1.2 3%	0.4 10	1.4 3%	с <mark>8</mark>	8 N	36.1 88%	ŧ	-	2820
	NDR(upicatu) 1.7) <0.7 0%	0.0 ₩0	NDR(1.0) -	7.7 ¥8	NDR(0.7)	7.7 8%	18 22%	13 16%	8.7 12%	5.8 7%	15 NC 18%	R(3.7) -	4	412 0%	2.6 3%	5.4 7	2.6 3%	75.3 01%	ន	-	2820
075	28/1989 Tow H 2 339	0.2 0.4	60.3 0%	NDR(0.3) -	- 1	NDR(0.8)	3 49%	0.7	N 4.0 7.4	DR(0.4) -	40.2 NG	R(0.4)	4-03 104	4.0 28	<1.0 8€	\$ \$	4.0 ¥	2 33%	3.1 51%	6.1	-	2820
	(Lab d 38%	upiicate) NDR(0.1, 6 –	() 0¥0	NDR(0.2) -	NDR(1.0)	0.3 6%	2.3 45%	0.8 N 16%	DR(0.4) -	¢.¢		6.7 % 0	0.8 0%	R(1.0) -	0 8 8	6.0⊳ %0	0.0 ¥0	2 39%	2.8 55%	5.1	-	2820

QX X NG . NF

Not detected Sample was not analzed for this compound Sample was not analzed for this compound Value represents a combination of anthracene and phenanthrene Value represents a combination of anthracene and phenanthrene Analysis was conducted by lotal ion method. All other samples analysed by select ion method.

Values have been blank corrected where required. NOTE

- 225 -

PA H CONCENTRATIONS IN AQUATIC BIOTA FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (nD/g win weight) APPENDIX 6.2

~

PA H CONCENTRATIONS IN AQUATIC BIOTA FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ng/g wet weight) APPENDIX 6.2

Total Me HMW Total Lab Bai PANs PANs No. N				234 260.8 1 3 80%	5.8) 276 344.1 1 1.	3 331.4 401.1 1 28		104 287 1 3 39%	1 24 29 1 3 1 83%	2 8 \$3 \$ 5		.3 7.2 25.9 1 2 6 28%	2 0.8 14.1 1 2 6 4%	.2 ND 200 1 2	0.7) 28.3 48.4 1 2 6 58%
Benzo(e)- Peryli pyrene				1 5 % 03	20 NDR(6% 03	5 ₹		≁ × ∨ 8	3 ⊽ 1× 5	3∨ 8⊽≸	₩\$ 62	60 8:05 8:05 8:05 8:05 8:05 8:05 8:05 8:0	0° ₹0 ₽	41.0 25 29	2.2 NDR
(h) Indeno(123- ne cd)pyrene				~ 2	2) NDR(9.4) 0%	8.7 7 8 .7		0 Z	⊽ ₹	5 ₹	2 \$	1.1 ₩	÷.	5) NDR(4.4) 0%	NDR(2.1) 0%
zo(ghi)- Dibenz(a rylene anthrace				3 1% 00%	13 NDR(7. 4% 0%	8.2 <1.0 2% 0%		542	3≮ 8	2 2 2 2 2	2 2 2 2	 <0.7 <0.4 0% 0% 	<0.4 <0.5 0% 0%	DR(2.5) NDR(3. 0% 0%	<1.8 0% 0%
· Benzo(a)- Ben pyrene pe				<u>م ک</u> ر ا	NDR(13) 0%	NDR (7.3) 0%		5 <u>x</u>	5.5	5 ₹	- 5	9.0> \$0	₹.0 ¥0	<1.3 NI	2.3 5%
jan- Benzofluor ne anthenes				20 8%	18) NDR(33) 0%	16) 33 8%		3%	5 17%	6 :0 ¥0	8	NDR(1.4) 0%	0.4) NDR(0.8)	3.5) NDR(4.5)	3.5) NDR(5.5) 0%
thrysene Bena(a) thrace				32 12 12% 5%	38 NDR() 11% 0%	65 NDR() 16% 0%		14 5% 5%	3 10% 0%	2 <1 15% 0%	8 8 4 8 4 8 4 8 8	1.2 0.9 5% 3%	0.6 NDR((4% 0%	<1.2 NDR(f 0% 0%	3.6 NDR(; 0% 0%
Pyrene C				50 18%	88 26%	82 20%		30 % 11	8 21%	3 23%	18 16%	2.6 10%	() NDR(1.7) 0%	1) NDR(5.1) 0%	11 23%
Fluor- anthen				100 38%	120 35%	120 30%		32	8 28%	3 23%	25 22%	2.5 10%	NDR(1 0%	NDR(15 0%	9.2 19%
Total orene LMW PAHs				4 28.9 2% 10%	7.3 85.1 2% 19%	7.4 69.7 2% 17%		28 163 10% 61%	2 5 7% 17%	3 5 23% 38%	5 42 4% 37%	2.8 18.7 10% 72%	1.8 13.5 13% 96%	28 200 14% 100%	1.9 20.1 4% 42%
Phenan- Flu threne					13%	* <u>*</u>		19	8 S	₽ %	7 8%	3.8 15%	11%	8	5.4
ph-Anthra- e cene			Ŧ	¥ .	8.3 2%	s <u>¥</u> 		ancreas 19 6 7%	2.2	5 S	10	6 0.9 3%	1 NDR(0.7)	ancreas) NDR(23) 6 0%	е ж В
Acenaph- Acena thylene then			i Marina at Marks	.5 (composite) large) - Soft tissue 0.8 3 0% 1%	iarge) - Soft Bssur 3.4 4.1 1% 1%	alysis) 3 3.7 0% 1%	Trawl EBT-1	is crab - Hepatopi 5 73 2% 279	is crab - Muscle <0.3 3 0% 109	∎te) <0.2 2 0% 159	ole - Whole body 5 15 4% 139	ss crab - Muscle 0.9 4.1 3% 169	ate) 0.8 3.6 6% 279	ss crab - Hepatop: 45 11 23% 559	ole - Whole body 1.7 1.7 4% 4%
Naptha- lene	Location	REEK	Faise Creek	Stations 3,4 Mussels (1 88 <13 0%	Mussels (1 81 NDR(8.3) 0%	(Repeat ana 6.6 2%	East Basin	Bungenes 88 19 7%	Bungenes 88 <5 0%	(Lab duplica <5 0%	English sc 88 <28 0%	Dungener 81 6.4 25%	(Lab duplica 5.8 40%	Dungene: 01 NDR(48) 0%	81 English sc 6.4 13%
	to. Date	FALSE C		12-Aug-	25-Mar-		-	04-Oct-	04-Oct-		04-Oct	04-Jun-		04-Jun-	04-Jun-
	Site N		FC-1				FCT-1								

- 227 -

PA H CONCENTRATIONS IN AQUATIC BIOTA FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (nD/2 weight) APPENDIX 6.2

-

e

-

	Batch No.				2820		342	342	426			342		342	2820			342	425		342
	£ €				-		-	-	~	•		-		-	-			-	3		-
	Total PAHs				991.6		4450	5830	4780			4389		5327	371.8			8 2	398		6.2
	Total HIMW PAHs				823.8 83%		3543 70%	4220	3014	82%		3003	68%	3704	300.1	81%		8 % 5	150 38%		4 85%
	Perylene				6.8 1%		31	: 8¥	3	8		23	ž	8 ¥	23	ž		0 8	\$ \$		9. 8
	Benzo(e)- pyrene				2 \$		210	6 <u>6</u> 2		Ś		180	ţ.	160 3 %	18	5%		8 ⊘	VIN XO		\$0.5 %0
wet weight)	Indeno(123- cd)pyrene				8.5 1%		88	5 R 1	4	ž		÷	ž :	₹ž	¥.6	ž		₩	8 S		₹ 0
TIONS (ng/g	Dibenz(ah) anthracene				2.5 0%		es de	5 <u>e</u> 2	5 8	8		\$	£	NDR(18) 0%	£	*		₽ 8	\$ \$		8 ⊘
CONCENTRA	Benzo(ghi)- perylene				a ¥		2 2	5	! v7	*0		59	ž :	9 ž	3.5	ž		8.⊖ ¥0	\$ \$		₹. \$0
TOTAL PAH	Benzo(a)- pyrene				17		84 ž	31	5	2%		78	ž i	5 %	7.9	X		8 2	\$ ₹		6.5 8%
POUNDS TO	Benzofluor- anthenes				97 10%		360 84		420	¥.8		450	10%	340	96	¥01		n X	<u> </u>		€.3 ¥0
AL PAH CON	Bena(a)an- thracene				50 52		310	00	340	*		170	ŧ :	5%	8	5%		8 %8	8 X		1 16%
IF INDIVIDU	Chrysene				110		490	390	680	14%		270	% 0		38	10%		8 7%	35 9%		- 1 6%
RIBUTION C	Pyrene				170 17%		740	830 15%	800	17%		660	15%	197 14	58	16%		е %	22 8%		\$\$
PERCENT CONT	Fluor- anthene				310 31%		1300	1900	1500	31%		1100	25%	30%	110	30%		9 11 %	53 13%		2 32%
UMBIA AND	Total LMW PAHs				167.8 17%		916 21 %	1410	866	18%		1386	32%	30%	71.7	19%		56 88%	248 62%		2.2 35%
ITISH COL	Fluorene				= 5		100	530	ŝ	ž		200	28	2%	7.3	2%		52 24 24 24 24 24 24 24 24 24 24 24 24 24	22		08
A FROM BR	Phenan- threne				130		370 8%	520 8%	430	% 6		660	15%	14%	38	10%		5 ž	120		9 ¥0
JATIC BIOT	Anthra- cene				Ξž		22	110	69	ž	ILLOWS)	110		3 %	5.2	ž	5	0 ¥	25 8%		8 ⊘
ONS IN AQL	Acenaph- thene				7.8 1%		osite) 180 4%	W) 300 8 %	150	3%	Burrard Y	230	K G	1 49	6.2	×2	patopancre	24 28%	58	Ą	32%
CENTRATI	Acenaph- thylene		-	¥	- Soft tissue 1.1 0%	r Shipyard	11,M2 (comp - Soft tissue 4 0%	T is the second	je) 14	ž	Pacific (was	- Soft tissue 6	2 0		12 - Soft tissue NDR(0.7)	6	ss crab - Hi	× 2	ole) 10 3%	.1 1 - Whole bo	0.2 3%
PA H CON	Naptha- lene	Location	NLET cont.	L&K Lumb	Station M1 Mussels 3.8 0%	Vancouve	Stations M Mussels 190 4%	(Repeat ar 250 4%	(Split samp 130	34	Versatile P	Station M1 Mussels 180	(TIM)	₽¥	Station M Mussels 15	ţ	Station C1 Dungene	£. ¥	(Split sam; 37 9%	Trawi VCT- Rock sole	5 23 28
(6.2		Date	BURRARD I		28-Oct-91		14-Sep-88					28-Jul-88			29-Oct-91			16-Sep-88			16-Sep-88
APPENDI)		Site No.		6-13		BI-4					81-5										

- 229 -

فتك

-

₿þ₽

-

ła

PA H CONCENTRATIONS IN AQUATIC BIOTA FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (nd/g we weight) APPENDIX 6.2

-

- 230 -

PA H CONCENTRATIONS IN AQUATIC BIOTA FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (170/2 wei weight) APPENDIX 6.2

Batch				251	251	251	251	251	251	342	261	251	251	342	251
1				2	7	7	7	5	5	-	7	3	7	-	3
Total				126	830	159	Q	Q	ę	45.2	Q	Q	Q	26	Ð
Total HIMV PAHa					210	2 2 2	5 8	9 8	9 8	0 * 83	Ū Š	Q Xo	9 Š	15 58%	₽8
erylene				ž	5 21	5 28	5 ₹	28	¥ 8	8.0 8.0	₹ 8	žŠ	28	80	28
Benzo(e)-				ž	5 28	ž	₹ 8	28	N 80	~ ž	**	¥ 8	žž	5 S	2 8
ieno(123- 1 Jipyrene				ê 5	5 8 X	s 99 ¥3	09> \$0	08 ₹0	§ \$	5 ⊈	09 ¥0	총 및	8 %	0.0 0%	88 ¥2
nz(ah) Ind acene co				8 4		. 8*	8*	8*	8 x	-*	8.4	o ,	• •	G	0.4
anthr				⊽ c	> ₹¢	0 20	₹6	42	₩2	v 5	\$ \$	\$ S	\$ S	₿ Ģ	₫8
Benzo(g				88 89	8 99 8	09> ₽	08∧ ¥0	09> %0	ê x	2 ₹	8 ₹	§ \$	88 ₹	€0.8 8,0	88
Benzo(a)- pyrene				₿ 2	5 5 X	88	S 33	8 Ş	88	ب ۲	8 8	8 ∛	5 S	5 7	88
Benzofluor- ardhenes				~20 *0	8 8	5 8 8	5 8 8	5 ₹	0 ² %	9 13%	0 %	8	8 8 8	5 ₹	8₹
3ena(a)an- thracene				8	S \$	0¥ 0¥	02 % 0	8	~50 • %	5 11%	8 8	5 S	S2 ₹0	4 15%	0 % 0
Chrysene 1				5 8	^20 **0	~20 *20	~30 *0	√20 0 %	07 ×0	5 1%	S %	8 8	<20 0%	4 15%	
Pyrene				8 \$	100 1 1 1	0% 0%	^20 0%	20 20 20 20 20 20 20 20 20 20 20 20 20 2	<20 0%	8 20%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	√20 √20	<20 0%	• 15%	0 % 0
Fluor- anthene				8 \$	110 12%	0 %	8 %	8 8 8	07×	24%	S 8	8	<20 0%	3 12%	0% %
155				. *		- *	(9)	20)	15)						
Tot LIM				(0) 126	720	150	Trace 0%	Trace (0%	Trace (0%	5.2 12%	ON XO	R S	D 8	11 42%	Q X
Filuore				0) Trace (1 0%	170 18%	28 18%	5 20 8	2 2 2	50 ¥0	~ *	^20 8%	<20 0%	05 ⁴ 20	\$ \$	303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030303030
Phenar threne				Trace (1 0%	270 29%	20	08 ∛ 3	8 8	3 30	8 8 8	S \$	8 8	³ 50 8	8 %	S 8 8
Anthra- cene				8 8 8	18 78 8%	a 28 20	8 3	^20 1%	~20 • %	ب ۲	°20 8	03 ₹ 0	0% S	8 35%	07 ¥0
h- Acenaph- e there			Iwa) Hepatopancrea 46 37%	Hepatopancrea 0) 180 19%	Hepatopancrea 0) 130 82%	Muscle) <20 0%	Auscle)) Trace (10) 0%	Auscle)) Trace (5) 0%	huscle 1 2%	kuscie <20 D%	Nscie <20 0%	uscie <20 0%	epatopancreas NDR 0%	<20 20
- Acenap thylen		ų	dyAoco Tr	NT (a,b, &c ess crab - <20 0%	ess crab - Trace (1 0%	ess crab -) Trace (1 D%	Trace (6 0%	ess crab - I Trace (16 0%	ss crab - I Trace (10 0%	ss crab - h 0.2 0%	sss crab - N <20	as crab - h <20 0%	ss crab - N <20 0%	ss crab - H 2 8% 8%	88
Naptha- lene	Location	NLET con	Port Moo	Traw PM Dungen 80 63%	Dungen 24 3%	Dungen Trace (10) 0%	Dungen 420	Dungen 420 0%	Dungent <20 0%	Dungene <7 0%	Dungens <20 0%	Dungene <20 0%	Dungene <20 0%	Dungene <7 0%	8 8
	Date	BURRARD 1		24-Sep-88	24-Sep-86	24-Sep-86	24-Sep-86	24-Sep-86	24-Sep-88	12-Oct-88	12-Oct-88	12-Oct-88	12-Oct-88	12-Och88	12-Oct-88
	Site No.		BI-17												

hó

داز

-182 -

APPENDIX	(6.2	PA H CONC	SENTRATION	AUDA NI SI	VTIC BIOTA	FROM BRIT	IISH COLUI	MBIA AND PER	CENT CONTRI	IBUTION O	F INDIVIDU	AL PAH COM	POUNDS TO	OTAL PAH	CONCENTRA	LIONS (ng/g \	vet weight)						
		Napitha- lene	Acenaph- A thylene	icenaph- thene	Authra- cene	Phonain- F threne	luorene	Total LMW PAHs	Fluor- anthene	Pyrene	Chrysene	Bena(a)an- thracene	Benzofluor- anthenes	Benzo(a)- E pyrene	Benzo(ghi)- perylene a	Dibenz(ah) li inthracene	ideno(123- cd)pyrene	Benzo(e)- F pyrene	erylene	Total HIMW PAHs	Total	an No the No the	ta o
Site No.	Date	Location																					
	BURRARD 1	INLET cont.																					
BI-17		Port Moody	Aoco Trawi	cont.																			
		Starry flou	Inder - Musch	•	Ę	5	ļ	9	,	,	ļ	ģ	4		1					1	-		
	20100-21	78	5	78	1	78	5	28	5	⊽ \$		38	50	5	j K	°.₹	8. X	- 	₩ 5 6	2 2	Q Z	-	342
		Starry flou	Inder - Liver			1	1																
	12-Uch88	5	1 X 0	*1*	3 70%	₹ \$	0 Z	10.4 69%	3	5 ₹	0.0 ¥	-*	9. 0 ¥0	0; X	Ç 9 8	6 Ş	9.9 8	0; ¥	⊽ 8	4.6 31%	15	-	342
		Starry flou	Inder - Whole	e body		,	:																
	12-Oct-88	8 8	6.9 8	⊽ %	⊽ 8	⊽ ₹	9. X	D X	5 ₹	⊽ ₹	0.7 84%	0.4 36%	6.8	<u>6</u> 8	°.₹	8 8 8	₹	ë: ₹	6 8	1.1 100%		-	342
		English sc	ole - Whole b	ody	ų	:		5		•	9	•	,					i			i		
	12-00-51	35%	9 ह	78	7 2	31%	, 10% 201	78%	11%	°₽	0 ž	\$ \$	₽ ₹	9 ₹	9 Z	7 ₹	₹ \$	× ×	v ₹	24 X 24 X	5	7	425
		(Split sampi <0	(e) €01	\$0.8	\$	\$	£	Q	7	2	e	₽		4 04	¢	a Us	4 U 4	0	10	*	2		542
		5	*0	ž	Ś	*	*	X	33%	33%	*1	ž	10%	×0	1	8	8	5	5	100	5	-	,
81-22		B.C. Marine	shipbuilde	rs/Sterling	Shipyards																		
		Station M1 Mussels -	soft fissues																				
	14-Sep-86	25	0.5 1%	n X	8 X	86 20	s 7	55.5 14%	130 34%	09 X91	49 13%	48 12%	38 10%	NDR(Z) 0%	NDR(2) 0%	9.0 8.00	۰ž	NDR(30) 0%	NDR(2) 0%	329 86%	384.5	-	342
		Trawl BCT-	2 1 1 1 1 1																				
	16-Sep-88		5:0 2:0		2	8	호	17.5 Tool	0 2	7	5	5	8. 9. ∂	0 7	8. 9. }	⊽ ₹	9.0° 1	81	⊽ 8	27	44.5	-	342
					t -			t 00	2	R	•	R 	5		5	5	5	5	5	R			
	16-Oct-88		<0.1 <0.1	40.5 40.5	₽	V	٤	Q	£	2	0.7	<0.3	4.0	40.2	€0.6	€.0>	€0.6	c13	40.2	2.7	2.7	-	342
		Ś	Š	8	Ś	8	ŧ	Š	2	***	28%	*	z	8	ŝ	8	*	5	Ś	100%			
BI-26		Canada Pla																					
		Station M1 Mussels -	soft tissues																				
	29-Oct-91	2×	28	8.7 1 %	9 ¥2	61 12%	9.7 2%	90.9 18%	140 28%	88 20%	53 26	8 \$	84 % %	2 %	54 24	5 X	¢ξ	88	5.5 1%	415.5 82%	506.4	-	2820

- 232 -

PA H CONCENTRATIONS IN AQUATIC BIOTA FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ng/g wei weight) APPENDIX 6.2

Lab Batch No. No.				1 342	1 1187	1 2820		1 342	2 425	1 1187	1 1187		2 251	2 251	2 251	2 251
Total PAHs				387	366.1	300.4		331.8	2724	228.8	273.6		Q	21	8	ñ
Total HIMW PAHs				317 82%	312 85%	287.4 89%		308 83%	1964 72%	196.3 85%	233.9 85%		28	9	5 28	Ş
Perytene				40.7 0%	NDR(10) D%	3.3 1%		n ¥	ta K	NDR(6.2) 0%	; %		28	ž	6 <i>28</i>	ž
Benzo(e)- pyrene				21 5%	31 8%	57 57		2 2	žž	5 5 X	28		28	ž	5 28	ž
ideno(123- cd)pyrene				n ¥	5 X	5 2		~ 2	t 5 \$	5 X	38		8 ¥	8	5 8 8	99 99
Dibenz(ah) Ir anthracene				2 .0⊳ 2.0⊳	NDR(2.7) 0%	3.5 1%		<u>م</u> کر	a 🕇	1:1 2	6 :0} ≸0		8 8 8	ê 5	5 8 8	; 8
Benzo(ghi)- peryfene	ļ			~ %	5 5	5 ž		8 ×	\$ \$	in É	27 SZ		08⊳ ¥0	69 j	588	99
Benzo(a)- pyrene				n ¥	NDR(8.5) 0%	8.8 38.6		5 \$	5 2	5.1 2%	NDR(6.0) 0%		8 8	5 a	5 88	ŝ
Benzofluor- arthenes				32 8%	5 11 x	39 13 %		45 14%	150 6%	9 X 2 X	23		8≴	8 8	5 88	8
Bena(a)an- thracene				= \$	NDR(17) 0%	14 5%		18 5%	8 8 8 8	NDR(10) 0%	NDR(12) 0%		8 8	8 8	5 8	ć 2
Chrysene				4 <u>5</u> 8	4 ž	53 18%		54 <u>5</u>	280 10%	27	33 12%		8 8	Ş ₹	5 8 8	20
Pyrene				88 22%	74 20%	48 15%		74 22%	520 19%	19%	53 19%		8 3	\$ ž	5 8 8	\$ <mark>0</mark>
Fluor- arthene				110 28%	97 26%	54 18%		74 22%	880 32%	80 35 %	96 35%		8 8	2 a	5 8 8	5 3
Total LMW PAHs				70 18%	54.1 15%	8 11		22.8	770 28%	33.8 15%	30.9 15%		P 8	21 21	20 3 20 3	33
Fluorene				- *2	0 ¥	28		n ¥	3% 3%	2.8	3.2 1%		0% 0%	<u>8</u> 5	5 88	Trace (10)
Phonan- threne				25 24	31 24	22		= \$	480 18%	23 10%	28 10%		S ₹	88	88	Trace (15)
Arthra- cene				2%	28	3.2 1%	Ţ	n <u>¥</u>	170	3.3	4.4 2%		20 8	5 5 5	\$ § \$	8
- Acenaph- thene			_	omposite) of tissue 1 0%	composite) off tissue 2.4 1%	5¥	cht Club Mari	soft tissue 2 1%	ite) of tissue 27 1%	te) 1.3	5. 1	-	husele <20 0%	lepatopancrei 21 100%	20	8
ptha- Acenapt ne thylene	tion	Harbour:	thore inn Marin	ons M3,7,9,10 (c ssels (large) - Si 13 1 1% 0%	ons M5,8,10,11 (ssels (large) - S 7,3 1.2 1% 0%	1.7 0.8 1.4 0.4	il Vancouv s r Ya	on SS-C5131 Inthose clams - 5 5 0.8	on 2,3.8 (compoi ssels (large) - Si 5 5 1% 0%	on 2,3,8 (compoi isels - Soft tissui 1,2 <0.7 % 0%	duplicate) 3 <0.7 * 0%	hion's Shipyar	on C1 ngeness crab - A 20 <20 36 0%	ngeness crab - F ple 1 <20 <20 % 0%	duplicate) 20 <20	nple 2 ■ (10) <20
Nar 10	Loca	Coal	Bays	Stati Mu 0 A	Static Static Mu 01 7 (Renu		Roya	88 Static 88 'Be 0	B9 Static Mu: 0	Static Static	4))	Menc	Static Dur C Our C			Tract
	Date			20-Mar-4	25-Mar-4			17-Mar-I	20-Mar-{	25-Mar-6			23-Sep-(23-Sep-{		
	Site No.		CH-1				CH3					CH-5				

-

like

- 233-

186

PA H CONCENTRATIONS IN AQUATIC BIOTA FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ng/g wai weight) APPENDIX 6.2

j f	1			5	\$	52	55	35		5	5	5	2		2	g	ũ	12
						*	*	¥		ñ	Ň	ě	ň	3	ž	ě	ě	4
1 32				e,	6					н	7	-	-	3	-	-	-	2
Tot				548	565	30	346	28(28	548	26	5	QN	27.3	60.4	66.2	102
Total HIMW PAHe				654 254	468 488	122	253	211 75%		Q	9 K	2 j	6 - i	5 28	5 1 8	41 78%	49.8 75%	52 51%
Perylene				n ž	볼 이 볼	5 V 8	8 8	• *		źź	28	Ş,	5 9	5 28	40 20	40.2 0%	NDR(18) 0%	8 %
Benzo(e)- Dyrene				18 %	5 <u>5 8</u>	N N N	VN N	VN XO		28	žő	\$0 \$	20°	5 28	÷\$	5 ₹12	NDR(6.8) 0%	N/N
ndeno(123- cd)pyrene				5 N	e X	₹ %	\$ \$	\$ \$		\$\$ \$	§ ₹	<u>9</u>	t ⊽≵	5 8 X	⊽ \$	- *	NDR(4) 0%	\$ \$
)ibenz(ah) Mihracene				8. 05 8. % 0	6.0 ¥0	∜ ≸	\$ \$	\$\$		87 *6	89 X	\$	⊽≵	5 9 X	0 g	8.0 ¥0	⊽ ≸	\$ \$
enzo(ghi)- E perylene a				8 M	е <mark>х</mark>	\$ \$	\$ ₹0	\$ \$		<u>8</u> 8	88 85	9.0×	⊽ \$	88	₩ 1	5	6.6 10%	\$ \$
Benzo(a)- B				+ ¥	ល ឆ្នី	\$ \$	\$ ₹	\$\$		8 8	8 \$	0.5 80	£.45	8 8	9:0≻ %0	3 5 %	4DR(75) 0%	5 \$
enzofluor-				38	8	85 X 2	t Ş	51 \$2		8 ₹	8 %	0.3 \$€	0, 8,0	88	₹.D \$0	DR(0.1) 0%	IDR(29) N	- *
ena(a)an- B hracene				23	24	- *2	s ≵	9 %		8 ₹	S 8	8% 8%	0.7	o¥ 50	75	S S S	7.5 h	5 5%
Chrysene B				\$\$ 8%	45 8%	35 11%	44 Xet	41 15%		5 [°] 2	<20 *0	8% 8%	0.3	0% 8	۲ ۲	8 10%	5.5 8%	~ *
Pyrene				110 20%	110 19%	53 17%	59 17%	48 16%		S <2	0% 0%	3 12%	\$ \$	85 \$6	7 26%	15 25%	14 21%	= *
Fluor- anthene				210 38%	220 39%	110 36%	130 38%	96 34%		02≻	<20 • %	3 12%	Ø ₹	5 S	5 18%	17 28%	10 24%	15 15%
Total LMW PAHs				85.8 17%	87.6 17%	85 28%	93 27%	69 25%		28 100%	548 100%	16 62%	33 97%	GN ≸0	11.3	13.4 22%	16.6 25%	50 49%
Fluorene				5% 10 5%	8 5%	10 3%	9 % %	9 % 3%		Trace (10) 0%	67 12%	5 5	\$ \$	8	5 ₹	1× 1%	4DR(4.6) 0%	~ *
Phenan- threne				73 XC1	75 13%	54 18%	61 18%	49 18%		3 Ş	5 8	\$ ₹	\$ \$	o¥ 0	\$ \$	•*	• č	*
Anthra- cene				۲×	۰ <u>۲</u>	\$ ₹	• ¥2	8 8		<20 •20	38 §3	15%	¢ 8	5% 50 50 50 50 50 50 50 50 50 50 50 50 50	5 \$	•*	7.5	5 %
- Aconaph- thene			S Cont.	iñ tissues 5 1%	5	+ ž	ہ 1	₽ ¥.		uscie 28 100%	spatopancre: 460 84%	atopancreas 11 42%	5 2 4	cie <20 0%	8 22 %	2 8 4 8	5.1 8	• ž
Aconaph thylone		ur cont.:	s Shipyard	(large) - So 0.6 0%	88	() } } }	ate) 8 & &	₹ \$	Le Trawl	14 crab - M 20 20	H - quanta a 000 800	crab - Hep. 1 4%	crab - Mus <0.2 0%	crab - Mus <20 0%	53 25	Whole bod	⊽ 8 ≂	5 \$
Naptha- Iene	Location	Coal Habo	Menchion"	Station M1 Mussels 0% (Lab dunlic	KO KO	17 17 6% (Lab duplic:	10 3% (Blind duplic	2¥ 2¥	Coal Harbo	CHT-1 Dungenei <20 0%	Dungener 21 4%	Dungeness <13 0%	Dungeness 33 B7%	Dungeness <20 0%	Shrimp - Tai 5 18%	Rock ede -	NDR(7.5) 0% Split sample	20 K
	Date			28-Jul-88						23-Sep-86	23-Sep-86	16-Sep-88	16-Sep-88	16-Sep-88	18-Sep-88	16-Sep-88	2	
	Site No.		CH-5						CH-7									

- 234 -

PA H CONCENTRATIONS IN AQUATIC BIOTA FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ng/g we weight) APPENDIX 6.2

		Kaptha- Iono	Aconaph- thylone	Acenaph- thene	Anthra- cene	Phonan- threne	Fluorene	Total LMW PAHs	Fluor- anthene	Pyrene	Chrysene	Bena(a)an- thracene	Benzofluor- I anthenes	Benzo(a)- B pyrene	lenzo(gtv)- perylene a	Nbenz(ah) k nthracene	ideno(123- E cd)pyrene	Benzo(e)- pyrene	• nytene	Total HMMV PAHs	PAHs		e e
Site No.	Date	Location																					
	VICTORIA H	HARBOUR																					
		Selkirk Wal	ters																				
SWC1	20-Jul-87	Station C1 Dungenet 47 0%	ss crab - m <0.3 0%	uscle <0.7 #VALUE!	\$.0> \$0	68	0.0 ₩0	0N %0	8 0> ¥0	5 ₹	0.4 100%	€.0> %0	40.5 0%	0.5 2	5 ₹		₹. •	<0.5 0%	€0.5 ¥0	0.4	9 .4	-	24
	20-Jul-87	Dungene: 11 23%	ss crab - h 0.9 2%	epatopancre 14 28%	8 4%	→ %	5 10%	30.9 77%	5 10%	↓ %	0.8 2%	- %	6.0> \$0	78	5 ₹	8:0≥ \$0	5 ₹	2 ₹	78	10.8 23%	1.74	-	77
SWT-1/2	20-Jul-87	Trawls SWI Starry flov 6 18%	T-1 and SV under - whi D.4 1%	VT-2 ble body 12%	- *6	+	2 8%	17.4 54%	6 19%	+ 12%	9% 8	- *	8 8	<0.5 0%	5 \$	5 ≴	5 ₹	₹.0 ¥0	9:0≥ \$0	15 48%	32.4	-	342
SWT-3	12-Jul-90	Trawi SWT- Dungene: <7.0	-3 •ss crab - m <1.0 0%	uscie <2.3 0%	<0.5 0%	<6.5 0%	2 2	N 25	\$ \$	Ø 8	<1.2 0%	NDR(1.4) 0%	¢0.9	613 0%	<1.6 0%	40.7 0%	41.6 0%	<1.0 0%	41.0 0%	P 8	Q	-	12
	12-Jul-90	Dungene: 15 22%	ss crab - h <2.0 0%	epatopancre 22 33%	147 7%	9 13%	16 24%	66.7 100%	NDR(14) 0%	NDR(9.0) 0%	NDR(5.3) 0%	€0. ¥0	57 50 57	¢1.8 0%	0 %	\$0. \$	20 8	<1.6 0%	₹1. ¥ 0	N 8	66.7	-	121
	10-Jul-90	English s <12 0%	iole - whole <1.0 0%	tbody <5.0 0%	<1.0 0%	<8.0 €	€:E> %0	Q %	3.5 51%	<4.2 0%	58	3.3 49%	5. 2 8. 3	35	23. 83 036	¢1.0	0% 0%	<1.7 80%	£:₹0	6.8 100%	8.8	-	17
	10-Jul-90	Shrimp - 1 NDR(5.0) 0%	t∎i 60.6 8 % (6	2 100%	61.5 0%	5 8 8	27.6 2%	2 100%	1.5	<1.8 0%	40.6 0¥0	40.7 ₩0	1.1	0% 1.17 1.2	\$1.3 0 %	5° 5	NDR(1.4) 0%	<1.3 0%	<1.3 0%	Q %	8	-	121
SW-SS1	11-Jul-90	Station SS1 Benthose 21 5%	1 (off old s; clams - so <2.1 0%	awmill site) A tissue 5.2 1%	5.7	26	0.1 2%	64 18%	100 25%	24%	5 N	NDR(22) 0%	43	5	5 ž	<4.2 0%	NDR(16) 0%	5 5	NDR(6.4) D%	333 84%	387	-	5
SW-SS2	13-Jul-90	Station SS2 Clams - so 27 5%	2 (beach al off tissue 1%	t Bamfield Pa 5.1 1%	ark) 8 2%	37	8	88.9 18%	130 26%	110	2 5	NDR(27) 0%	57 11%	26 5%	17	3.2	NDR(18) 0%	8 8	NDR(7.3) 0%	417.2 82%	506.1	-	12
		(Lab duplic 26 5%	ale) 2.3 0%	5.9 1%	10 2 %	36	7.1	87.3	130 25%	110	45 2%	NDR(29) 0%	62 12%	30	16 3 % 5	2.5 0%	NDR(19) 0%	31	NDR(8.3) 0%	426.5 83%	513.8	-	121

- 235 -

-

110

PA H CONCENTRATIONS IN AQUATIC BIOTA FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ng/g wet weight) APPENDIX 5.2

																							Į
		Naptha- Ione	Acenaph-	Aconaph- there	Anthra- cene	Phenan- threne	Fluorene	Total LINW FAHs	Fluor- anthene	Pyrene	Chrysene 1	Bena(a)an- thracene	Benzoffuor- anthenes	Benzo(a)- E pyrene	lenzo(ghi)- perylene a	Dibenz(ah) h inthracene	ndeno(123- cd)pyrene	Benzo(e)- P pyrene	•ryiene	Total HIMW PAHs	AHs N	8 <u>0</u>	5.0
Site No.	Date	Location											2										
	VICTORIA H	ARBOUR co	¥																				
		Upper Karb	ino																				
UH-C2	10-Jul-90	Station C2 Dungenes <8.0	1s crab - mu <1.5 0%	5de 0.5	₿.0 \$	38.5 28.5	3.5 0%	C X	\$; \$	2.5 0%	\$2.8 0 %	₹0.7	2.5	68	\$1. 10	\$.\$	5 S	6. 2 0	5 K	N K	QN	-	12
		(Lab duplica <7.5 0%	ate) <1.2 0%	42.6 0%	8.0> %0	0.5 ¥0	0.€> 0%	QN N	55 % 0	45.0 0%	<2.0 0 %	9.0≻ %0	<1.3 0%	0% 0%	6.15 8.0	5° 5	<1.9 8%	<1.5 0%	<1.5 0%	0 X	Q	-	5
	10-Jul-90	Dungenet 33 8%	ss crab - hei 19 3%	oatopancrea 46 8%	32 0%	38	27 5%	188 33%	32 6%	55 86	\$ 5	28 28	85 % 8	8 ž	64 %8	18 £	8 8	¢ ₹	35 6%	381 67%	569		121
		(Blind dupli 14 15%	cate) NDR(2.1) 0%	48 52%	7.8 8%	9 10%	14 15%	92.8 100%	NDR(8.8) 0%	NDR(8.0) 0%	NDR(1.6) 0%	<0.1 %0	4.1 80	<0.5 0%	€0.¥0	4 .0 ₩	0.5 ¥0	40.7 ₩0	¥.0 ¥.0	DN XO	92.8	-	121
UHT-1	10-Jul-80	Trawl UHT- English sc <13 0%	1 ble - whole t <0.6 0%	ody 4.0 0%	₹1.5 0%	8.50%	50 80 80	9 8	55.6 3 % 0	8.4> 8.4	0.5 20	2.3	<4.5 0%	2.5 0%	8. ¥0	5; 5 5	5 S	¢1.8	6.15 80	2.3 100%	2.3	÷	171
		(Lab ouplic <17 0%	0.0 20.6	3.45 ¥0	NDR(2.2) 0%	÷ 5	0. 20	NDR (2.2) 0%	<13 0%	8.6> ₩0	<8.7 0%	5.4 0%	<8.5 0%	2.2	S. № 20	5° 50	4.2 8%	3.5 28	€; ¥	5.4 100%	5.4	-	121
		Irmer Harbs	DUT																				
IT-C3/IHT-	1 10-Jul-90	Station C3 : Dungener <14 0%	and Trawl I) ss crab - mu <1.5 0%	11-1 Iscie ⊲3.9 0%	<2.5 0%	11 100%	22	11 100%	<5.0 800	<1.5 0%	3.7	60.6 0%	8. 5 8	0.4> %0	\$2.8 0%	<1.8 0%	65 8	58	1.5	0 X	÷	-	121
	10-Jul-90	Dungene: <15 0%	ss crab - he <1.5 0%	patopancrea 12 0%	s <1.6 0%	8:8 ¥0	68.2 2%	0X 80	<4.6 0%	\$3.5 0%	<2.5 0%	3.4 100%	63.5 0%	5.8	3.5	12	62.8 0%	<1.6 2%	<1.6 0%	3.4 100%	3.4	-	121
IHT-1	10-Jul-90	Trawi IHT-1 English a. <11 0% (Blind dupli 6.2	l ole - whole <0.6 0% <1.0	22.8 23.8 0%	<1.8 0%	<10 0% <8.0	25 QK	N N N N N N N N N N N N N N N N N N N	<0.5 0% 5.3	6.5 0 % 0	0% 2.4	28	<5.8 0% NDR(5.1)	3.3	0% 0%	41.8 0%	18 C	<2.8 0% NDR(2.4)	0,1.8 0,4 0,1.0	07 S 2	UN 8.72		<u> </u>
	10-Jul-90	22% Shrimp - 1 12	¥0 0 90	4 4 4	*	0%0 8.4>	¥0 €	31% 14.8	19%	41.5 41.5	\$	¥. 0⊽	5 7	*0	6 0	¥0.0>	5 9	\$0.5 \$	UN NDR(1.8)	CAN DE	14.9	-	121
		81% (Lab duplic. 80%	0% ● 0% 0%	10% 2.3 20%	0.15 0.15	¥0 €.≯0	20.50 0.50	100% 11.3 100%	×	¥ 7 8 7 8	8 9 9 8	20 20 20	5 5 5	8 9 8	¥ 60	6 9 6	5 95	5 , 5	5 ý 5	5 25	11.3	-	1211
		(Blind dupl) 15 100%	cata) <0.7 0%	NDR(4.5) 0%	6.05 X0	5 K	\$2.1 0%	15 100%	2.3 15%	1.5	€0.8 8.0	€0.7 8%	9 9	₹0.7 ₩0	6.8 ¥0	41.1 2%	<1.0 0%	5.0 ¥0	8.6 ¥0	N N	15	-	121

- 236 -

PA H CONCENTRATIONS IN AQUATIC BIOTA FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ng/g we weight) APPENDIX 6.2

Image was been and was and was and was and was been and		Site No. Dal	VICTO		11-Ju 11-Ju	1+-C4 09-Ju		IH-SS4 10-Ju	ESQUI		CC-C1 08-Ju		08-Ju	CCT-1 09-Ju	nr- 6 0		CC-M1
Manual barrier Table of the part of th	Naptha- Iene	 Location 	UA HARBOUR co	inner Karbo	Station SS3 -90 Benthose 40 3%	Station C4 (Dungenes -91 7.2 21%	(Lab duplica 8.2 21%	Station SS4 H90 Bentnose <8.5 0%	AALT HARBOUR	Constance	Station C1 -90 Dungenes <8.0 0%	(Lab duplica 3.8 3.2%	-90 Dungenes 24 25%	Trawt CCT-1 1-90 English sc 3.8 7%	-90 Shrimp - ti <8.2 0%	(Leb duplica <10 0%	Station M2
Mathematication Test from the second state Test from	Acenaph- A thylene		ţ	bur cont.	(Laurel Poin clams - soft 7 1%	West Bay) is crab - Hej 2.4 7%	ate) 2.9 7%	l (Hidden Hai clams - soft <0.8 0%		Cove	s crab - mus <0.3 0%	0%	is crab - hep 1.2 1%	1 Xe - whole b 2%	∎ 5,0	te) <1.0 0%	
Math. Table from the formed and from the forme	Iconaph- thene				ti) bssue 17 1%	patopancrei 7.1 21%	8.8 22%	rbour Marini tissue 6.5 2%			icle 1.2 18%	<1.7 8%	atopancrea 21 22%	ody 2.7 5%	55 5	5 5 5	
Three barries Total ba	Anthra- cene				28 2%	18 5.4 18%	6.8 17%	a) 5:0 2%			¢1.0 0%	0.0 %	s 5,1 5, 4	с, <mark>%</mark>	<1.0 0 %	0.15 2%	
Number lists The second lists The second list The second list The second list lis	Phenan- threne				120 8%	8.6 25%	9.1 23%	58 15%			2.8 38%	3.3 28%	18 19%	6.8 13%	0. \$	0.45 860	
Under I	Fluorene				X X	3.5 10%	3.5 %8	3% =			NDR(1.2) 0%	0¥ 0	= =	82 (B 22 (S	~2.0 0%	41.90%	
House Tende Bandomic Induction Bandomic Inductin Bandomic Induction <t< td=""><td>Total LMW PAHs</td><td></td><td></td><td></td><td>234</td><td>34.2 100%</td><td>39.3 100%</td><td>78.4 21%</td><td></td><td></td><td>4 55%</td><td>8 88%</td><td>80.3 %58</td><td>20 39%</td><td>QN \$6</td><td>0 X</td><td></td></t<>	Total LMW PAHs				234	34.2 100%	39.3 100%	78.4 21%			4 55%	8 88%	80.3 %58	20 39%	QN \$6	0 X	
ProteProtectionBarcointy <t< td=""><td>Fluor- anthene</td><td></td><td></td><td></td><td>260 19%</td><td>1.5</td><td>15 20</td><td>100 27%</td><td></td><td></td><td>2 27%</td><td>2.3 20%</td><td>NDR(32) 0%</td><td>NDR(11) 0%</td><td>4.12 20</td><td>1.7 35%</td><td></td></t<>	Fluor- anthene				260 19%	1.5	15 20	100 27%			2 27%	2.3 20%	NDR(32) 0%	NDR(11) 0%	4.12 20	1.7 35%	
Notify the functione Resultance Resultancc <	Pyrene				270 20%	!?<br *!?	5.1 26	71			NDR(2.1) 0%	12 <u>1</u> 2	NDR(24) 0%	12 23%	3.5 100%	3.1 65%	
Hotology for the state of the stat	Chrysene				100	4.50%	°\$. 80	5% 6%			1.3 18%	0.6 ¥0	7.3 8%	8.2 12%	0, 1,0	6.1° ₩0	
Martine line Antoni line Baracielli line </td <td>Bena(a)an- thracene</td> <td></td> <td></td> <td></td> <td>88 %</td> <td>3.8 2.8</td> <td><\$.7 0%</td> <td>17 5%</td> <td></td> <td></td> <td>NDR(1.4) 0%</td> <td>6.0≻ 8,0</td> <td>а <mark>%</mark>а</td> <td>6.2 12%</td> <td><1.0 0%</td> <td><1.0 0%</td> <td></td>	Bena(a)an- thracene				88 %	3.8 2.8	<\$.7 0%	17 5 %			NDR(1.4) 0%	6.0≻ 8,0	а <mark>%</mark> а	6.2 12%	<1.0 0%	<1.0 0%	
Monthine Exactive in the monolisity Evaluation Factor in the monolisity Evaluation Factor in the monolisity Factor	Benzoffuor- arthenes				150 11 %	NDR(2.0) 0%	NDR(1.9) 0%	33 84			NDR(1.1) 0%	8.0 8.0	NDR(11) 0%	NDR(8.5) 0%	2.5 0%	2.5 0%	
NUMBER Contraction Barrotech Participation Total Tot	Benzo(a)- pyrene				8 8	6.05 8.05	0-10 1-12	17 5 %			NDR(1.3) 0%	412 8%	NDR(4.1) 0%	NDR(4.8) 0%	1.12	0.1∧ 0%	
Districtions Color Total Total Total No. Authorscens Color Pressone Pressone Pressone Pressone Total No. Authorscens Color Pressone Pressone Pressone Pressone Pressone Pressone Pressone Pressone No. OR 23 1 7 1 110 1353 1 1 UDR(1.0) 23 51 15 10 10 10 1	Benzo(ghi)- perylene				9 4 0 38	9.9 8.9	£.0 ₹0	3 5 6			NDR(8.6) 0%	¶; ₹	NDR(2.8) 0%	NDR(3.6) 0%	58	58	
Indemotion Factor Fac	Dibenz(ah) anthracene				NDR(8.2) 0%	9.0 9.0 8.0	9.0 ₹0	NDR(1.6) 0%			0.15 8	₹. 5	NDR(1.8) 0%	2.3	25	0.7 0%	
Bartzole) Paryleres Total Haw Total Family Fami	Indeno(123- cd)pyrene				4 F	0.0≻ 8.0	6.0≻ %0	∷ ≸			NDR(1.7) 0%	41 28	NDR(2.5) 0%	NDR(3.0) 0%	4.4 8	4.1 2%	
Perviewe Haw Total Haw Total Fotal Lab Partie 1118 704ai Lab 114 83% 704ai Lab 114 83% 33% 1 0% 0% 34% 1 0% 0% 342 1 0% 36% 376.8 1 0% 35% 376.8 1 0% 333 7.3 1 0% 36% 376.8 1 0% 35% 376.8 1 0% 378 376.8 1 0% 378 376.8 1 0% 378 376.8 1 0% 378 376.8 1 0% 378 376.8 1 0% 378 378.8 1 0% 378 378.8 1 0% 31.117 1 1 0% 0% 31.3 <td< td=""><td>Benzo(e)- pyrene</td><td></td><td></td><td></td><td>72 5%</td><td>÷.</td><td>€.¥0</td><td># ž</td><td></td><td></td><td>NDR(1.7) D%</td><td>0; ¥0</td><td>NDR(4.4) 0%</td><td>8.4 %8</td><td>6.0> ₩0</td><td>6.0 ¥0</td><td></td></td<>	Benzo(e)- pyrene				72 5 %	÷.	€.¥0	# ž			NDR(1.7) D%	0; ¥0	NDR(4.4) 0%	8.4 %8	6.0> ₩0	6.0 ¥0	
Total Total Lab. PAHs Total Lab. Harw Total Lab. PAHs PAHs No. 1110 1353 1 03% 34.2 1 0% 34.2 1 0% 34.3 1 287.4 376.8 1 33.3 7.3 1 33.3 7.3 1 33.3 7.3 1 33.3 7.3 1 33.4 3.76.3 1 33.3 7.3 1 33.3 7.3 1 33.3 1.1.7 1 33.3 51.3 1 17% 86.8 1 17% 3.6 1 33.5 3.5 1 17% 3.6 1 17% 3.6 1 18% 3.5 1 100% 3.5 1 </td <td>Perylene</td> <td></td> <td></td> <td></td> <td>91 X</td> <td>0 5</td> <td>0. 1. 1.</td> <td>NDR(3.9) 0%</td> <td></td> <td></td> <td>6.5 ¥0</td> <td>ë.¥</td> <td>NDR(1.8) 0%</td> <td>NDR(2.5) 0%</td> <td>1.1</td> <td>0.7 ¥0</td> <td></td>	Perylene				91 X	0 5	0. 1. 1.	NDR(3.9) 0%			6.5 ¥0	ë.¥	NDR(1.8) 0%	NDR(2.5) 0%	1.1	0.7 ¥0	
Foldet Lab PAHs Lab 1353 1 34.2 1 34.2 1 34.2 1 34.3 1 376.8 1 376.8 1 31.3 1 31.3 1 51.3 1 51.3 1 51.3 1 51.3 1	Total HMNV PAHs				8111 8 58	0 % N	9 8	297.4 79%			8.8 878	3.7 32%	16.3 17%	31.3 61%	3.5 100%	4.8 100%	
	Total PAHs				1353	34.2	39.3	376.8			7.3	11.7	96.6	51.3	3.5	4. 4	
	B Å L				.	-	~	-			-	-	-	~	+	-	

- 237 -

I

1

940) I

Ú.

PAH CONCENTRATIONS IN AQUATIC BIOTA FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ng/g wei weight) APPENDIX 6.2

.

		Naptha- Iene	Acenaph- thylene	Acenaph- thene	Anthra- cene	Phonan- threne	Fluorene	Total LMW PAHs	Fluor- anthene	Pyrene (chrysene B	lena(a)an- E thracene	lenzofluor- 1 anthenes	Benzo(a)- B pyrene	enzo(ghi)- I perylene a)ibenz(ah) 1 nthracene	ndeno(123- cd)pyrene	Benzo(e)- pyrene	Perylene	Totai HIMW PAHs	Total P AHs	a 1 2	^말 한
Site No.	Date	Location																					1
	ESQUIMALT	T HARBOUR	cont.																				
		Plumper Ba	v																				
PBT-1,2,3	04-Mar-01	Traw PB1. Dungenes NG 0%	2,3 14 crab - mu 0%	14%	40.8 8.0>	3.2 20%	8.2 39%	11.7	2	1.4 9%	- *	9.0 ¥0	NDR(1.4) 0%	*. *	0.05 2.05	<1.6 0%	41.2 0%	€0.8 \$0	0.0÷		16.1	-	121
		<pre></pre>		1.9 32%	9.¥ 0	NDR(2.4) 0%	+ 88%	5.9 100%	NDR(1.4) N 0%	DR(1.1) 0%	NDR(0.7) 0%	6.5 ¥0	0.15 10	<1.6 0%	€0.6 \$60	1.7 0.6K	1.2 8%	0.1×0	1	9 8	5.8	-	121
	04-Mar-91	Dungenes NDR(46) 0%	is crab - he 1.2 3%	patopancrea 18 48%	a 3.7 10%	4.3	6.2 16%	33.4 80%	NDR(5.3) 0%	43	€0.7 0	8.0 \$0.0	NDR(1.6) 0%	6.0 \$	<u>1.</u> 48	9.0 ¥0	NDR(3.5) 0%	NDR(1.3)	1.2	3 I	37.7	-	187
	12-Jul-90	English so 6.2 53%	ole - whole <0.6 0%	body 2 17%	0.2 8	<7.5 0%	0.4> %0	6.2 69%	2.3 19%	13	<1.0 0%	<1.5 0%	¢1.0	÷8	8 8 8	÷.	41.2 0%	6.0≻ ¥0	9 (P	3.6 31%	11.8	-	121
	12-Jul-90 ESOUIMALT	Shrimp - ta <14 0% HARGOUR C	₩ 0.4	\$2.0 0.%	€0.6 \$0	2.5 100 %	412 9%	2.5 100%	<1.8 0%	<1.3 0%	₽.0 8	60.6 ¥0	€.05 ¥0	8.0° ¥0	0.6 2¥0	8.0- 8.2	40 ₩0	¢0.3 0%	<0.3 0%	0 % X 0	2.5	-	171
		Plumper Ba	y cont.																				
PB-M2,M3	06-1-00	Stations M1, Mussels - 1 <6.2	.M2 (adjace soft tissue <0.5	nt old sawm 12	ill site) 7	140	5	174	360	190	10	25	5	18		5		ų	:	* 50*			ł
		0% (Lab duplica)	() () ()	ž	ž	16%	ň	19%	40%	21%	*1	3%	2%	ž	Xo	8	ž		°.5	81%	J.108	-	5
		<0.0 0% (Blind duplic:	<0.5 0%, ate)	t 1	55	130 15%	15 2%	158 18%	360 41%	180 21%	55 X	3%	1 %	6.3 1%	3.3 0%	€.13 88	- 8	25 3 %	5.4 7 %	716 82%	\$74	-	121
		4.8 1% (Lab duplicat	60.6 0%	5 <u>x</u>	6.9 0%	150 16%	2% 2%	183.7 21%	380 40%	200 21%	67 7%	3%	- 9 5	NDR(5.5) 0%	NDR(3.4) 0%	<1.6 0%	NDR(4.0) 0%	24	NDR(4.7) 0%	748 79%	941.7	-	121
		**	6.0	2 ž	**0	130 18%	2¥ 2	168.8 21%	330	170 21%	22 24 24	21 3%	- *	UX UX UX	NDR(2.6) 0%	0.15 20	NDR(3.3) 0%	3, 23	NDR(1.8) D%	639 79%	807.8	-	121
	09-Jul-90	Station SS5 Macoma cl <6.0 0%	nos - smel 2.5 2%	lissue 2.2 2%	NDR(1.2) 0%	15 15%	3.5 3%	20.7	43 245	18 16%	10 10%	6.7	NDR(7.8) 1	4DR(3.0) 0%	NDR(3.1) 0%	NDR(3.4) 0%	818 818	NDR(3.7)	NDR(2.6) 0%	78.5	100.2	-	3
	_	Dallas Bank																					
PB-SS5	06-Inf-60	Station SS6 Macoma cl <6.0 0%	lams - soft 0.8 1%	15510 2.7 2.%	NDR(3.0)	24 18%	5\$	32.2 24%	49 37%	27	¢ X	VDR(8.0)	NDR(12)) 0%	4DR(5.2) 0%	3.7 3.6	** 8	NDR(2.7) 0%	6.2 5 %	NDR(2.2) 0%	88.3 76%	131.5	-	5

- 236 -
PA H CONCENTRATIONS IN AQUATIC BIOTA FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ng/g wei weight) APPENDIX 6.2

Lab Batch No. No.				1011 1	1 1187			9 1 1187		1 1187			-		1 1187		1 1187			
Total PAH:			2		13.8			109.8		52.6			<u>-</u>		81.7		9.7			
Total HMW PAHs			2	57 50 50	6.6	72%		100.5 92%		48.4	92%	500	¥08		7.17	199	QN	Š		
Penylene			ç	8	41.0	Š		ភ្ល		4,15	8		1011 Mar		0.0	ř	0.8	8%		
Benzo(e)- pyrene			5		<1.7	8		7.2 7.4		NDR(2.3)	\$		*		3.6	ţ	3.4	35%		
ndeno(123- cd)pyrene			ę	58	4.15	%0		3 ₹		53	*0		10 Mar		12	ŕ	1.3	13%		
Dibenz(ah) li anthracene				55	4.12	*0		6. 5 7		4.1	ž		(0:0)VIN		NDR(0.7)	5	NDR(0.6)	8		
Benzo(ghi)- perylene			1	2	112	×		22		42.0	*				NDR(1.0)	5	NDR(0.6)	8		
Benzo(a)- pyrene			;	88	<1.2	8		NDR(4.2) D%		3.0	ž		(e-7)404		23	ŗ	1.1	*:-		
Benzofluor- anthenes				NUK(4.0)	18	8		NDR(12) 0%		NDR(5.5)	Ś	Ş	2 %		80 j	Kot	8.2	85%		
Bena(a)an- thracene				3.8 15%	9.6	*		10 %8		•	8%	:	\$\$		Ţ	R 0	42	*5*		
Chrysene			:	1.4	0.45	*		13%		7.4	14%	\$	1.		7.8	Kat	7.3	15%		
Pyrene				8.1 24%	42	30%		54% 24%		ŝ	29%	:	30%		8		17	175%		
Fluor- arithene			\$	2 X 0	5.7	41%		38 36%		22	42%	5	32%		12	131	25	258%		
Total LMW PAHs			:	2 č	3.9	28%		8.3 %8		4.2	8%		10%		₽	% Z1	9.7	100%		
Fluorene				8. V	<1.7	*0		5 5 8		<1.8	% 0	:	<u> </u>		1.5	Ę	1.6	16%		
Phenan-			ļ	9.9 7	3.9	28%		22		4.2	8	2	*		6.2	2	9	62%		
Anthra- cene			:	:\$	1.15	*		9: ž		<1.1	*	•	- ¥		- 1	*	0.9	% 6		
Aconaph- thone			ļ	10 10 10	<0.7	8		<u>-</u> 8		€0.8	*0		s ž		0.9	<u>*</u>	8.0	8%		
Aconaph- J thylone			Soft lissue	88	ate) <0.4	8	Soft #ssue	¢.1		Soft tissue <0.4	*	Soft tissue	1	Soft lissue	4.0	*D (4	5.4	*	:	Soft Reality
Naptha- lene	Location	HARBOUR	Site #28 Mussels -	88	(Lab duplic. 2.5	8	Site #30 Mussels -	7 K	Site #31	Mussels - <2.9	*0	Site #32 Mussels -	38	Site #33 Mussels -	<2.6	0% (Lah dunlic:		ž	Site #38	Missele
	Date	LADYSMITH	1	28-UBC-02																
	Site No.	VI-14																		

-

- 239 -

COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (Indig wet weight) ŝ 2 PA H CO

APPENDIX	(6.2	PA H CON	CENTRATIO	NS IN AQ	VATIC BIOT	A FROM BF	UTISH COL	LUMBIA AND P	ERCENT CONT	RUTION C	DE INDIVIDU	AL PAH COM	POUNDS TO T	OTAL PAH C	ONCENTRAT	A D/Gu) SNOL	ret weight)						1
		Naptha- lene	Acenaph- thylene	Acenaph- thene	Anthra- cene	Phenan- threne	Fluorene	Total LMW PAHs	Fluor- anthene	Pyrene	Chrysene	Bena(a)an- thracene	Benzofluor- anthenes	Benzo(a)- E pyrene	ienzo(ghi)- E perylene a	libenz(ah) in nthracene o	deno(123- 1 sd)pyrene	Benzo(e)- P	erytene	Total HIMV PANs	Total	A S	ko.
Site No.	Date	Location																					
VI-13	NANAIMO H	HARBOUR																					
		South of L	Vanaimo Yac itteneck clan	cht Club ns - Soft tij	ansi																	,	
	20-Mar-91	8 8	5 2	5 \$	Q 0	8 7 97	2 5 %	8 21%	13 34%	9 24%	5 13%	3 8%	NDR(4) 0%	7 \$	⊽ ≵	₹ \$	⊽ 5	0 X	6 8	30 79%	8	-	1187
		North of R Manifa/L	Vanaimo Yac Meneck clan	the Chub ns - Soft E	anss									1					(f	;	•	
	20-Mar-91	5 ₹	5 2	3 9	3, 2	11	nţ	18 25%	31%	16 23%	11 15%	₹	NDR(4) 0%	0 %	6 ₹	V 2	⊽ ₹	8	0 Z	75 X	5	-	1911
		South of Municipality	Moby Dick M Meneck clar	liotei ns -Soft tis	autor.																		
	20-Mar-91	\$ ₹	₽ 8	- *	7 8	11 22%	~ \$	14 28%	18 36%	12 24%	+ %	n ž	NDR(2) 0%	5 ₹	6 2	V 8	⊽ 8	₹	⊽ 8	8	8	-	1187
		(Lab dupli	cate)	-		:			ġ	4	se	2	NDR(3)	v	Ţ	5	£	NDR(2)	Ŷ	88	55	-	1187
		8	1	- X	· \$	20%	, %	31%	35%	¥.22	*8	ž	Ś	*0	*0	*0	8	8	£	¥.69			
		Petro-Cal Manila/L	n Fuel Dock itteneck clar	ms - Soft B	ase																		
	20-Mar-91	₹ ₹	⊽ క	- ×	a K	34	3%	47 28%	44 28%	29 %	15 8	¤ ₹	16 8%	NDR(4) 0%	NDR(3) 0%	⊽ 8	NDR(4) 0%	8 % 2 %	NDR(Z)	<u>1</u> 2	169	-	1187
		North of J Manila/I	Air Rainbow itteneck clar	Be-Soft	0155																		
	20-Mar-91	8 8 8 8 8 8	78	~ ž	с ¥2	20 15%	ъ ¥ ¥	30 23%	35 27%	22	13 10%	0 ¥	18 12%	9 % 5	⊽ 8	78	⊽ \$	5 ₹	¢ ₹	102	132	-	1187
		South of Manile	Shaft Point clams/Littion	eck clams	- Soft Basue	_														;	;		
	20-Mar-91	8 8 -	5 \$	2 %	5 ₹	13%	8	8 19 %	9 29%	6 19%	* *et	е ¥01	е 1	¥	5 ₹	⊽ 8	5 ₹	⊽ ≵	5	22 81%	16	-	115/
		Oystera	- Soft fissue	ſ	2	¢	"	:	4	a	~	•	a	2	⊽	£	₽	•	Ţ	14	5	-	1187
	A-1944-07	8	1	ž	8	10%	5	18%	24%	16%	12%	*	16%	*0	*	%	Ś	*	z	81%			
		Newcast	te leland - ac - Soft tesue	cross from	n Unique Se	afoods														:	1		1
	20-Mar-91	₹ 8	5 ₹	5 \$	5 \$	90 X 02	5 121	12 48%	8 32%	5 20%	8 8	⊽ 8	⊽ \$	5 ₹	5 ₹	⊽ 8	5 ₹	0 S	5 ₹	13 52%	R	-	/911
	20-Mar-91	1 <26	1 - Soft Essue <1	5	4	0		ŝ	29	18	15	•	6	4	\$	⊽ :	V	-	41	8	E	-	1187
		* 0	1 0	28	*0	*8	34	***	26%	18%	14%	*	¥11	5	5	5	5	RD	5	R 00			
			licawy <1	2	2	8	•	15	52	11	2	- 1	19	43	43	⊽ ₹	QŞ	6 2	Q Ş	88 85	103	-	1187
		8	*0	2%	*0	% 8	ţ,	15%	24%	17%	**	*	187	5	5	5	R	RD	2	2 70			

- 340 -

PA H CONCENTRATIONS IN AQUATIC BIOTA FROM BRITISH COLUMBIA AND PERCENT CONTRIBUTION OF INDIVIDUAL PAH COMPOUNDS TO TOTAL PAH CONCENTRATIONS (ngig wel weight) APPENDIX 6.2

otal MW Total Lab Batch AHs PAHs No. No.					20 34 I 118/		23 30 1 1187 7%		2% 11 1 18/		17 22 1 1187 7%			ND 8.4 1 2820 3%		15 15 1 342 00%		211 211.4 1 342 00%		
Perylene H				Ţ		2	⊽ ₹	; ;	~ ₹		⊽∦			0¥0		6.0> ¥0		u K		
3- Benzo(e)- pyrene				;		2	⊽ 8		7 8		6 Ş			6 2 5		2 ⊻		16 28		
ih) Indeno(12 ne cd)pyren				7		2	5 ₹		⊽ ¥		⊽ 2			8. Q		0° 28		5 X		
ghi)- Dibenz(a me anthrace				7	, se	5	⊽ 8	1	7 8		⊽ 8			2 0		€. 5		78		
zo(a)- Benzo(ene peryle				;		5	⊽¥ ⊽¥		⊽ 5 ⊽ ₹		⊽₹			0.2 2.0		0.0 ¥0		₹5 24 24 24 24 24 24 24 24 24 24 24 24 24		
nnzoffuor- Ben inthenes pyr							NDR(2)				NDR(5)			5 5 5		2 4		41		
Bena(a)an- B thracene				·	, %		3 10%	,	1		6 N			40.2 %0		2 ₹		15 7 %		
Chrysene				u	15%		13%	•	- %		8 % 2			<0.2 0%		а 20%		28 14 %		
Pyrene				٢	21%		8 20%	•	36%		23%			5) <0.3 0%		4 27%		10 10 10		
Fluor- anthen				:	32%		10 33%	•	36%		36 % 36 %			NDR(0.1 0%		6 204		4 21%		
Total LMW PAHs				4	24%		7	,	18%		23%			8.4 100%		Q X		0.4 0%		
- Fluorer				ſ	. %		~ ž	?	78	,	8 7			8;0 ₩0		28		6.6 ¥0		
Phonar				•	12%		13%	,	18%		n <u>* 1</u>			1.1 13%		₽ 8		**		
Anthra- cene				1	Ś		⊽ 8	7	7 8		5 ₹			4 .0 ¥0		5 ₹		2 ₹		525
- Acenaph- thene			outh tip	r	• *		- *	7	58		5 ₹			ody <0.7 0%		• body <0.8 0%	7	40.8 2%		lepatopancr
Acenaph- thylene		cont.	e Island - Sc	Soft Basue	5	(cate)	⊽ 8	- Soft Essue	5 8	icate)	5 ₹		Beach	ye - Whole b <0.6 0%	nt's Bay	sole - Who 20.1 2%	non Channe	Shrimp - tail 0.4 0%	Channel	ess Crab - H
Naptha- Iene	Location	ARBOUR (Newcasti	Clams-	8	(Lab dup)	ð 8	Oysters	3 E	(Lab duph	58	= \$17E\$	Crescent	Rock sc 7.3 87%	St. Vince	Stender <19 0%	Agement	Striped <26 0%	Fortune C	Dungen
	Date	NANAMO H		20-Mar.01				20.141-01				REFERENCE		18-Jun-91		13-Feb-88		13-Feb-88		
	Site No.	VI-13											RF-1		RF-2		RF-3		RF-6	

- 241 -

Ö4:

APPENDIX	6.2	PA H CONC	ENTRATIO	NS IN AQUA	LTIC BIOTA	FROM BRI	TISH COLU	MBIA AND PER	CENT CONTRIE		F INDIVIDUA	AL PAH COMI	POUNDS TO T	OTAL PAH	CONCENTRA	D/DUS (nD/D	wet weight)						
		Naptha- iene	Aconapti- /	Aconaph- there	Anthra- cene	Phonan- threne	Fluorene	Total LMW PAHs	Fluor- F anthene	yrene (Chrysene E	Bena(a)an- thracene	Benzofluor- 1 arthenes	Benzo(a)- E pyrene	Senzo(ghi)- perylene	Dibenz(ah) Inthracene	ndeno(123- cd)pyrene	Benzo(e)- pyrene	Perylene	Total HMW PAHs	Total PAHs	No.	tch Vo.
Site No.	Date	Location												2 2 2									
	REFERENCE	E SITES con	÷																				
RF-8		Rivers Inlet	-																				
	26-Oct-89	Pink shrin NDR(9.1) 0%	ng-tan ≤0.5 8x0	8.8	₹. 8	2 61%	8. ₽. ¥0	2 61%	0.7 21%	0.8 18 %	NDR(0.4) 0%	€.0 \$0	£.05 %0	€.0> ¥0	₹ . 8	\$0 \$.0	\$0.5 \$0	€.0 ¥0	÷ 5	1.3 30%	3.3	-	920
RF-7		Larkin Islar	Ā																				
	23-Jun-88	Mussels (<10 0%	large) - Soft 0.3 0%	tissue ¢0.4	6 ₹	€ ₹	8.0≻ ¥0	0.3 %0	48 22%	40 18%	8	18 X8	ta 194	51 % 0	\$ \$	⊽ ≵	₽ %	1 2 2 2	- *	22	221.3	-	342
		(Lab duplic <11 0%	ate) <0.2 0%	<0.5 0%	ζ°	9⊱ %0	<0.5 0%	01 X 0	38 23%	32 19%	22 13%	4 4 8 4	31 18%	10 %	₹ 8	5 \$	8 2 X	=*	~ ž	169 100%	169	-	342
		Queen Cha	riotte Islanı	ä																			
RF-9	25-Jul-89	Delkatla Si Dungenei 54 45%	ough Is crab - Hey NDR(5:1) 0%	patopancrea 15 13%	5.6 5.6	23 19%	51 X	110.6 92%	NDR(12) 0%	9.4 8.4	NDR(0.9) 0%	NDR(8.6) 0%	NDR(3.7) 0%	5 K	1.30 1.30	3 5	¥;8	5° 88	8 S	4.8 7,8	120	-	2820

ND NDR NDR MIT

Not Detected Sample was not enalyzed for this compound. Sambwas detected but did not meet quantification criteria. Maximum value given in brackets. Analysis conducted by total ion method. All other samples analysed by select ion method.

NOTE: Values have been blank corrected where required.

- 242 -

LOCATION MAPS

•

Map 1 : Coal Harbour Sampling Locations (CH-1-CH-7)

Map 2 : False Creek (FC-1 to FC-11) Sampling Locations

Map 3: Lower Fraser River (Sites FR-16 to 20) and Mainland (Sites MS-3 and 4)

W E

Map 5: Burrard Inlet (Sites BI-2 to BI-5) - Sediment and Biota Stations

200 400 600 Meters 0

Map 6: Burrard Inlet (Sites BI-7, BI-8, and BI-9)

Map 7: Burrard Inlet (Sites BI-10, 11, 12 and 18)

- 250 -

Map 8 : Burrard Inlet (Sites BI-14 to BI-17)

Map 9: Burrard Inlet (Sites BI-19 to BI-26)

- 252 -

VH10 VH11 VH9 Upper Harbour **VH13** VH12 UHT-1 VH14 VH-14a VH17 VH15 **VH30** VH29 VH16 **SS4** Inner Harbour **VH18** VH19 IHT-1 VH26 0 C-3 Outer Hartour VH22 VH24 VH25 VH21 30 Ogden Pt. **VH31** KEY Sediment Shellfish Crabs Trawl Ф 200 0 200 400 Meters - 253 -

Map 10a : Victoria Harbour - Upper, Inner and Outer Harbour

Map 10b : Victoria Harbour (Selkirk and Gorge Waters)

Map 11: Esquimalt Harbour

- 256 -

0 8 16 24 32 40 Kilometers