el 1044647 H

ENVIRONMENT CANADA CONSERVATION AND PROTECTION ENVIRONMENTAL PROTECTION SERVICE PACIFIC AND YUKON REGION

۰.

RPR 81 01

PROGRESS REPORT NO. 4 - OCTOBER 1985

WATER QUALITY SAMPLING IN MYRA CREEK AT WESTMIN RESOURCES LTD. MINE ON VANCOUVER ISLAND

Regional Program Report 87-07

Вy

B. Godin

M. Jones

LIBRARY ENVIRONMENT CANADA CONSERVATION AND PROTECTION PACIFIC REGION

MAY 1987

ABSTRACT

The Environmental Protection Service conducted a monitoring program in October, 1985 to determine whether the relocation of the groundwater collection system at Westmin had resulted in improvement in Myra Creek water quality. Very high heavy metal concentrations were found in the creek during a high rainfall period (October 22 to October 24, 1985). Seepages from the tailings line road, built with waste rock, were characterized and recognized as a major contributor to the heavy metal loading in Myra Creek.

RÉSUMÉ

Le Service de Protection de l'Environnement a conduit un programme de surveillance en octobre 1985, pour déterminer si la relocation du système de collecte des eaux souterraines à la companie Westmin, s'est suivi d'une amélioration de la qualité de l'eau dans le ruisseau Myra. De très hautes concentrations de métaux lourds furent identifiées dans le ruisseau durant de fortes précipitations (22 octobre au 24 octobre 1985). Des suintements provenants d'une route construite de résidus miniers ont été caracterisés et reconnus comme des contributeurs majeurs au chargement le métaux lourds dans le ruisseau Myra.

TABLE OF CONTENTS

Page

	i
	ii
CONTENTS	iii
List of Figures	v
List of Tables	vi
INTRODUCTION	1
MATERIAL AND METHODS	3
RESULTS AND DISCUSSION	8
Water Chemistry Results	8
Aluminum	8
Calcium	12
Cadmium	12
Copper	12
Iron	13
Manganese	13
Strontium	14
Zinc	14
рН	16
Alkalinity	17
Conductivity	17
Tailings Line Road	17
Continuous Samplers	18
Loadings in Myra Creek	19
Gold River Bridge and Elk Falls	21
Water Quality Retrospective	21
	CONTENTS List of Figures List of Tables INTRODUCTION MATERIAL AND METHODS RESULTS AND DISCUSSION Water Chemistry Results Aluminum Calcium Cadmium Copper Iron Manganese Strontium Zinc pH Alkalinity Conductivity Tailings Line Road Continuous Samplers Loadings in Myra Creek Gold River Bridge and Elk Falls

۰.

•.

TABLE	OF	CONTENTS	(Continued)	

Page

4	CONCLUS	IONS			25
REFERENCE	S				26
APPENDIX	I	RECEI	VING WA	TER QUALITY DATA IN MYRA CREEK	28
	_				
		TABLE	1	TUESDAY OCTOBER 22, 1985	29
		TABLE	2	WEDNESDAY OCTOBER 23, 1985	32
		TABLE	3	THURSDAY OCTOBER 24, 1985	35
APPENDIX 1	<u>11</u>	OLD T	AILINGS	LINE ROAD SEEPAGES	38
		TABLE	1	TUESDAY OCTOBER 22, 1985	39
		TABLE	2	WEDNESDAY OCTOBER 23, 1985	41
		TABLE	3	THURSDAY OCTOBER 24, 1985	45
APPENDIX 1	<u>[]]</u>	CONTI	NUOUS SA	AMPLER DATA AT STATION 7 (M2) IN MYRA	
		CREEK			47
		TABLE	1	TUESDAY OCTOBER 22, 1985	48
		TABLE	2	WEDNESDAY OCTOBER 23, 1985	49
		TABLE	3	THURSDAY OCTOBER 24, 1985	50

LIST OF FIGURES

Figure		Page
1	LOCATION OF WESTMIN RESOURCES LTD. MINING OPERATION	2
2	LOCATION OF WATER SAMPLING STATIONS IN MYRA CREEK - OCTOBER 22 TO OCTOBER 24, 1985	4
3	STATION LOCATIONS OF SEEPAGES FROM THE OLD TAILINGS LINE ROAD INTO MYRA CREEK	5
4	LOCATION OF CAMPBELL RIVER SITES	6
5	TOTAL ZINC CONCENTRATIONS (mg/l) IN MYRA CREEK AT STATION 7 (M2)	23

- V -

•

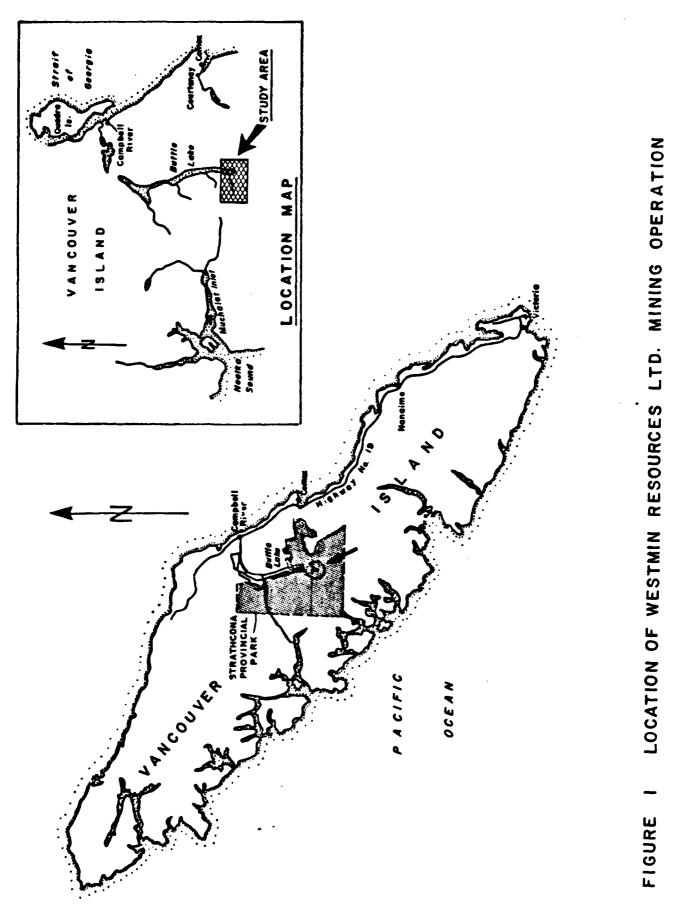
LIST OF TABLES

Table		Page
1	SUMMARY OF WESTMIN RESOURCES - MYRA CREEK MINE EFFLUENT QUALITY - OCTOBER 22, 1985	9
2	SUMMARY OF WESTMIN RESOURCES - MYRA CREEK MINE EFFLUENT QUALITY - OCTOBER 23, 1985	10
3	SUMMARY OF WESTMIN RESOURCES - MYRA CREEK MINE EFFLUENT QUALITY - OCTOBER 24, 1985	11
4	FLOW MEASUREMENT IN MYRA CREEK AND OLD TAILINGS LINE ROAD SEEPAGES (1/sec)	14
5	SUMMARY OF WESTMIN RESOURCES - MYRA CREEK MINE WASTE ROCK AND COLLECTION SYSTEM WATER QUALITY - OCTOBER 22 TO 24, 1985	15
6	COMPARISON BETWEEN THE SAMPLES TAKEN WITH THE REPLICATE SAMPLER AND CONTINUOUS SAMPLER AT STATION 7 (M2)	18
7	LOADINGS OF SELECTED CONTAMINANTS TO MYRA CREEK FROM EFFLUENTS AND SEEPAGES (kg/d) - OCTOBER 22-24, 1985	20
8	TOTAL ZINC AND COPPER CONCENTRATIONS AND LOADINGS AT M2	22

s ·

Tab1

- vi -


INTRODUCTION

1

In August, 1985, Westmin Resources Ltd., situated on Vancouver Island in Strathcona Park (Figure 1), completed the expansion of the surface and groundwater collection and treatment system for leachate and surface runoff. The extension of the tailings pond area was necessary due to the increased processing capacity of the mine.

The present study, fourth of a series of progress reports, focussed on the assessment of the water quality in Myra Creek as a result of the mine effluent discharges, groundwater seepages and surface runoff. The first survey done in December, 1982, was reported by Kelso and Jones, 1983. The second was conducted in May, 1983 and published by Ross and Jones, 1983, while the survey in September, 1983 was reported by Godin et al. (1985).

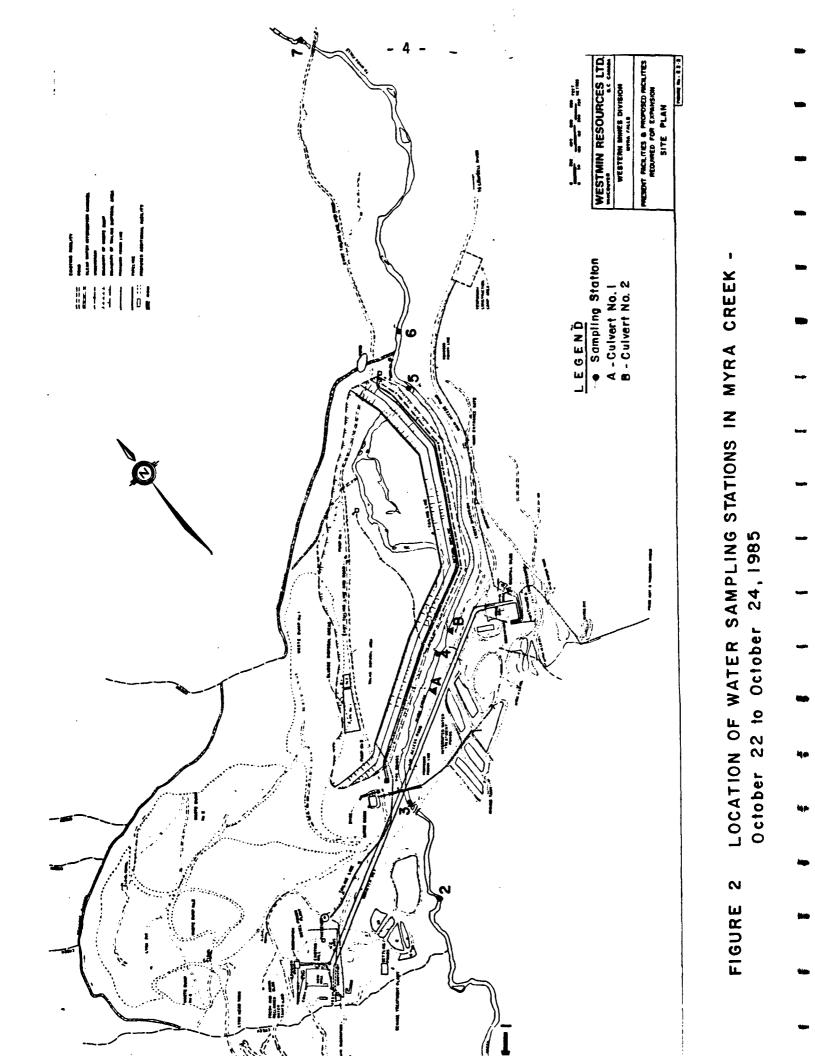
The survey consisted of three sampling days (October 22 to October 24, 1985) during significant precipitation. Seven stations along Myra Creek were sampled for heavy metals and immediates, road seepages and temporal variation at Station 7 (M2) were analysed.

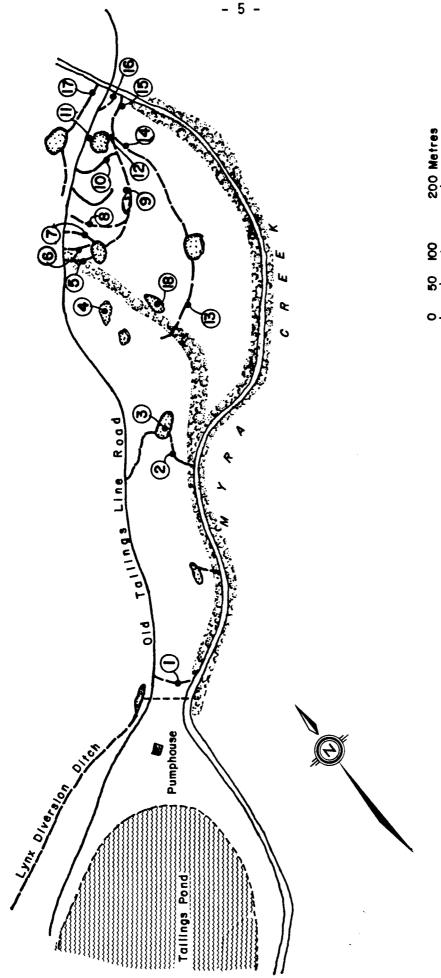
- 2 -

MATERIAL AND METHODS

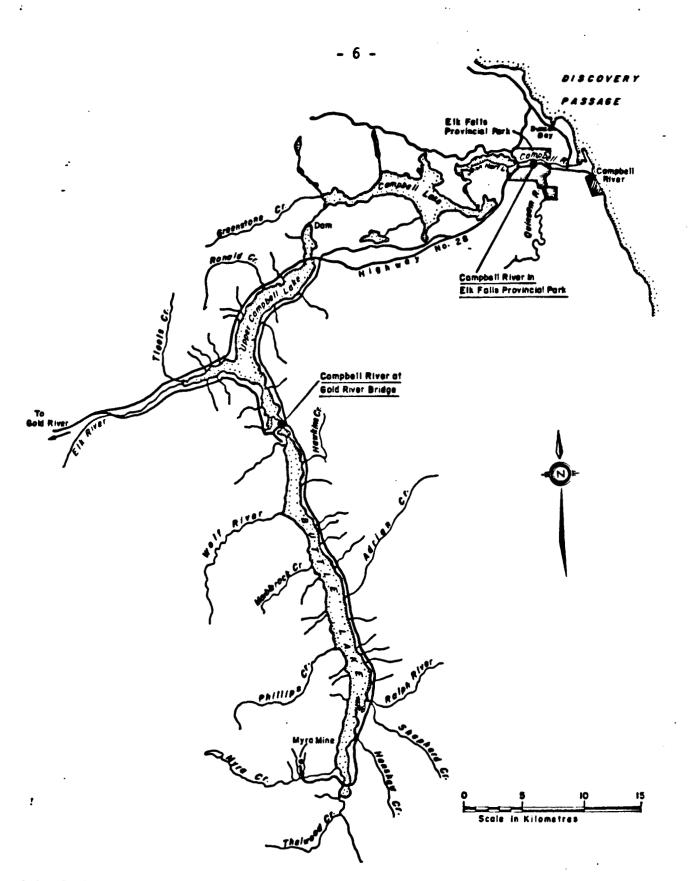
2

Water chemistry data were collected from October 24 to October 25, 1985. Seven sampling sites (Figure 2) were sampled in triplicate, once a day, for water chemistry. Conductivity and temperature were recorded with a Hydrolab digital 4041 indicator unit and 4021 sonde unit. Six, one litre samples (the sample bottles were rinsed three times) were collected simultaneously at each site. Three litres of the water were transferred to separate one litre bottles and analysed for conductivity, turbidity, total residue, non-filterable residue, sulfate, alkalinity, acidity, pH and hardness (referred to as "immediate analysis"). The remaining water was placed in three acid washed 100 ml bottles for total metals and three acid washed 250 ml bottles for dissolved metals. The filtration of dissolved metals was performed the same day in Campbell River away from potential contamination from the mine site, with a 0.45 micron cellulose nitrate filter and placed in acid washed 100 ml polyethylene bottles.


Grab samples were taken from seepages along the old tailings line road (Figure 3) for total and dissolved metals and immediates. No replication was taken due to the suspected high concentration of the elements. Flows from the seepages were taken when possible using an electronic current meter (Marsh-McBirney Model 201 Portable Water Current Meter).


A Sirco model #MK-7 automatic sampler was set at Station 7 (M2) to collect one sample per hour over a 24 hour period. Samples from three consecutive hours were combined, mixed and divided to provide three replicate samples for total metal analysis.

Replicated grab samples were collected from the Campbell River at the Gold River Bridge and the Elk Falls Provincial Park on October 25, 1985 (Figure 4).


All metal samples were preserved with 0.5 ml of HNO_3 and shipped to the Environmental Protection Service Laboratory in West Vancouver. The Inductively Coupled Argon Plasma (ICAP) was used for the total and dissolved metal analysis and gave results for 26 metals. Copper, lead and cadmium were rerun on the graphite furnace of the atomic absorption spectrophotometer to

- 3 -

THE OLD TAILINGS LINE STATION LOCATIONS OF SEEPAGES FROM INTO MYRA CREEK ROAD ю FIGURE

FIGURE 4 LOCATION OF CAMPBELL RIVER SITES

-

obtain a lower detection limit if the ICAP reading was below detection limit. For analytical methods details refer to the Environment Canada Pacific Region Environmental Laboratory Manual (Anon, 1979).

Comparisons between metals on a spatial basis were performed using the Student's t-test on log transformed data. The comparison between dates were carried out using a paired comparison test and verify the deviation from zero.

3 RESULTS AND DISCUSSION

3.1 Water Chemistry Results

The results of the water chemistry monitoring program are summarized here while all data can be found in the Appendices. Appendix I includes receiving water data in Myra Creek; Appendix II contains the old tailings line road seepages and Appendix III contains the continuous sampler data at Station 7 (M2) in Myra Creek.

3.1.1 <u>Aluminum</u>. The total aluminum concentrations showed significant differences (p < 0.05) between Station 7 and all the other stations on the three sampling days. There is about 0.20 mg/l increase at Station 7 from Station 6 for the three days while increases are more gradual from Station 1 to Station 6 (Appendix I, Tables 1-3). The influence of the road seepages contributed to the elevation of concentration at Station 7 in the form of total metal. The dissolved aluminum fraction might have precipitated from the seepage while entering Myra Creek, which had a higher pH, and therefore measured as total aluminum.

On October 22 and 23, 1985, the total values upstream (Stations 1 and 3) were lower than the values downstream (Stations 5, 6 and 7). The sources of aluminum input were from the Myra pond effluent, the Lynx diversion ditch and the old tailings line roads seepages which all had a measurable concentration of total aluminum. The high volume of effluent in the treatment system at the Myra and Lynx ponds did not allow enough retention time for the precipitation of all the aluminum hydroxide which would account for the difference between dissolved and total aluminum values. The difference between dissolved and total aluminum in the Lynx diversion ditch may be explained by erosional processes where water velocities were above 400 cm/sec.

The possibility of input from the tailings dam and/or waste rock seepages is not eliminated but the present survey data do not measure any input.

There was no difference between levels of aluminum for different dates (p > 0.05).

₩.

- 8 -

т	٨R	כו	1
		ᄂᄂ	L .
_	_		

SUMMARY OF WESTMIN RESOURCES - MYRA CREEK MINE EFFLUENT QUALITY - OCTOBER 22, 1985*

PARAMETER**	LYNX POND	CULVERT NO. 1	CULVERT NO. 2	MY RA PONDS	LYNX DIVERSION
	10.2	7 1	6.6	0.1	7.0
pH	10.2	7.1	6.6	9.1	7.8
NO3-N	6.5	-	-	1.15	-
NH3-N	4.4	-	-	0.257	-
T. SO4	410	44	56	530	1
NFR	17	< 5	< 5	< 5	< 5
TR	1100	130	120	990	40
T. A1k.	90.5	-	-	22.7	-
T. Hardness	601	93.5	89.9	683	42.5
Bioassay	NT	-	-	NT	-
D. As	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Cd	< 0.002	< 0.002	0.003	0.003	< 0.002
Cu	< 0.005	0.008	0.091	< 0.005	< 0.005
Ni	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Pb	0.07	< 0.02	< 0.02	< 0.02	< 0.02
Zn	0.033	0.17	1.01	0.047	0.005
Al	0.07	< 0.05	< 0.05	0.09	< 0.05
Fe	0.008	0.011	0.012	0.009	< 0.005
Mn	0.012	0.025	0.08	0.556	0.004
	0.012		0.00	0.330	0.004
T. As	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Cd	0.004	0.003	0.006	0.015	0.002
Cu	0.293	0.014	0.142	0.125	< 0.005
Ni	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Pb	0.18	< 0.02	< 0.02	< 0.02	< 0.02
Zn	0.697	0.232	1.32	2.4	0.004
A1	0.34	0.12	0.13	0.28	0.09
Fe	0.557	0.082	0.194	0.184	0.047
Mn	0.032	0.032	0.117	1.0	0.005
Flow	71.0	61.3	92.0	367	-

۰.

*Results provided by K. Ferguson (EPS)
**Units are mg/l except pH - pH units; bioassay - NT - non-toxic (Rainbow
trout 96 h-LT₅₀ on 100% effluent); flow - l/sec.

PARAMETER**	LYNX POND	CULVERT NO. 1	CULVERT NO. 2	MYRA PONDS	LYNX DIVERSION
рH	10.6	7.6	7.0	9.7	7.8
NO3-N	6.43	/.0	/.0	1.27	/.0
NH3-N	3.8			0.257	-
T. SO4	370	510	43	590	2
NFR	< 5	7	< 5	16	< 5
TR	120	900	120	1100	52
T. Alk.	61.9	900	120	17.2	52
T. Hardness	546	637	89.2	710	-
1. naruness	240	037	69.2	/10	47.6
Bfoassay	NT	-	-	NT	-
D. As	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Cd	< 0.002	< 0.002	0.008	0.01	< 0.002
Cu	< 0.005	0.007	0.169	< 0.051	< 0.005
Ni	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Pb	0.1	< 0.02	0.02	0.04	< 0.02
Zn	0.065	0.039	1.65	1.16	0.004
AT	< 0.05	0.11	< 0.05	0.24	< 0.05
Fe	0.007	0.009	0.01	0.142	< 0.005
Mn	< 0.001	0.004	0.154	0.79	0.002
T. As	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Cd	0.004	0.008	0.007	0.011	< 0.002
Cu	0.024	0.056	0.177	0.04	< 0.005
Ni	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Pb	0.16	< 0.02	< 0.02	< 0.02	< 0.02
Zn	0.878	1.09	1.67	1.13	0.004
A1	0.13	0.26	0.18	0.23	0.11
Fe	0.143	0.213	0.14	0.165	0.123
Mn	0.038	.534	0.177	0.797	0.003
Flow	trickle	44.7	36.8	361	3 87

SUMMARY OF WESTMIN RESOURCES - MYRA CREEK MINE EFFLUENT QUALITY TABLE 2 - OCTOBER 23, 1985*

*Results provided by K. Ferguson (EPS)
**Units are mg/l except pH - pH units; bioassay - NT - non-toxic (Rainbow
trout 96 h-LT₅₀ on 100% effluent); flow - l/sec.

TABLE 3

SUMMARY OF WESTMIN RESOURCES - MYRA CREEK MINE EFFLUENT QUALITY - OCTOBER 24, 1985*

PARAMETER**	LYNX POND	CULVERT NO. 1	CULVERT NO. 2	MYRA PONDS	LYNX DIVERSION
рH	9.4	7.6	7.0	7.1	8.0
N03-N	6.51	-	_	1.19	-
NH3-N	4	-	-	0.37	_
T. S04	360	43	33	410	1
NFR	15	9	6	15	< 5
TR	793	134	87	929	55
T. A1k.	-	-	-	-	_
T. Hardness	642	101	71	575	47.7
Bioassay	NT	-	-	NT	-
D. As	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Cd	< 0.002	< 0.002	0.004	0.013	< 0.002
Cu	< 0.005	0.031	0.146	0.007	< 0.005
Ni	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Pb	0.38	< 0.02	< 0.02	< 0.02	< 0.02
Zn	0.014	0.209	0.985	0.741	0.004
A1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fe	< 0.005	0.019	0.01	0.008	< 0.005
Mn	< 0.001	0.042	0.093	1.28	0.001
T. As	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Cd	< 0.002	0.002	0.008	0.029	< 0.002
Cu	0.111	0.069	0.307	0.227	< 0.005
Ni	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
РЬ	0.07	< 0.02	< 0.02	< 0.04	< 0.02
Zn	0.58	0.458	2.15	5.11	< 0.002
A1	0.25	0.11	0.72	0.59	0.12
Fe	0.163	0.162	0.696	0.412	0.099
Mn	0.025	0.079	0.202	2.53	0.007
Flow	29.2	56.4	49.7	361	383

*Results provided by K. Ferguson (EPS)

**Units are mg/l except pH - pH units; bioassay - NT - non-toxic (Rainbow trout 96 h-LT50 on 100% effluent); flow - l/sec.

.

3.1.2 <u>Calcium</u>. Calcium concentrations (total and dissolved) were significantly different (p < 0.05) from station to station on October 24, 1985 and at most stations on October 22 and 23. Changes were expected because of the Lynx effluent lime treatment. The most drastic change was between Stations 3 and 4 where at the latter the Lynx effluent was presumed completely mixed with Myra Creek. No changes in water quality were found between surveys as observed by calcium concentrations.

3.1.3 <u>Cadmium</u>. Cadmium concentrations were not detectable above the Myra pond effluent both days but were detectable at Stations 5, 6 and 7 with average total concentrations ranging from 0.0009 to 0.0037 mg/l (Appendix I, Tables 1-3). The level found at Stations 5, 6 and 7 were above the recommended surface freshwater quality objective for protection of the aquatic life set at 0.0002 mg/l total cadmium (Reeder, 1979). The effluent from the Myra ponds and the seepages from the old tailings line road were 5 to 40 times more concentrated than the creek and contributed to elevating the level of cadmium above the safe level for aquatic life.

The cadmium 7-day LC_{50} for rainbow trout was 0.008 to 0.01 mg/l (Ball, 1967) and the 10-day LC_{50} was similar at 0.005 to 0.007 mg/l. While Roch and McCarter (1984) found that the combined toxicity of metal in a mixture of cadmium, copper and zinc (ratio 1:20:400 respectively) was additive to rainbow trout, Eaton (1973) determined that a lethal threshold was attained in a mixture when each metal was present at a concentration of 0.4 or less of its individual lethal threshold for fathead minnows.

The reduction or elimination of these sources of contaminant should have a definite positive effect on the cadmium level in Myra Creek.

3.1.4 <u>Copper</u>. Further changes in water quality in Myra Creek were evident by the increase of copper concentrations as one progressed downstream. The total and dissolved values were similar between Stations 1 and 2 and also between Stations 3 and 4 (Appendix I, Tables 1-3). Dissolved copper was not different between Stations 5, 6 and 7 on October 22, while on October 23 the concentration at Station 6 was significantly less than the concentration at Station 5 (p < 0.05). This reduction may be related to the input of uncontaminated stormwater from the Lynx diversion ditch (Table 3).

The copper concentration in Myra Creek on October 22 and 23 were similar but both were significantly higher (p < 0.05) than reported for October 24, 1985, for both total and dissolved. The reduction of runoff, as expressed as a reduction of flow in Myra Creek (Table 4), caused an increase in concentration in the creek on October 24, 1985, as the concentrations in the seepages did not significantly change. The concentration levels of total copper varied from 0.011 mg/l to 0.459 mg/l at Station 7 (M2) (Appendix III, Table 1-3) during the three days of sampling.

The 96 h-LC₅₀ for rainbow trout was 0.102 mgCu/l in water of hardness of 200 mg/l as CaCO₃ (Fogels and Sprague, 1977) and with steelhead trout the 96 h-LC₅₀ was 0.020 mg/l in water hardness of 20-25 mg/l as CaCO₃. In a mixture there seemed to be a more than additive effect at higher concentrations of zinc and copper but with low concentrations, the toxicity appeared to be less additive (Demayo and Taylor, 1981).

3.1.5 <u>Iron</u>. No specific pattern of iron distribution along Myra Creek was evident. However, differences were evident for total and dissolved iron which ranged from 0.019 to 0.757 mg/l and 0.006 to 0.137 mg/l respectively.

The creek conditions changed on October 24 from the previous day for total iron but not for dissolved iron; the concentrations were significantly reduced (p < 0.05) by an average of 0.13 mg/l.

3.1.6 <u>Manganese</u>. On October 22, the total and dissolved manganese levels were significantly different between Stations 2 and 3; Station 2 levels being higher than Station 3. This decrease of manganese concentration could not be explained by the present set of data.

On October 23, total manganese concentrations at Station 7 were found to be significantly reduced (p < 0.05) when compared to Stations 5 and 6. The introduction of manganese from the Myra pond effluent could only explain 14% of the concentration at Station 5, based on dilution ratio of 1:30 in the creek at that time. The other source of total manganese may be from groundwater seepages (Table 5).

STATION	OCTOBER 22	OCTOBER 23	OCTOBER 24
Myra Creek Station 7	15 000	12 200	7 800
01d Tailings Line Road 1 2 5 7 8 9 10 12 13 14 15		14 24 3.8 4.8 14.9 20.0 0.5 9.0 2.2 13.1 54.1	- - - - - - - - - - - - - - - - - - -
16 17	-	3.7 0.2	-

 TABLE 4
 FLOW MEASURMENTS IN MYRA CREEK AND THE OLD TAILINGS LINE ROAD

 SEEPAGE (1/sec.)

3.1.7 <u>Strontium</u>. On October 23, the same distribution pattern was found for total strontium as with total manganese described above. In addition the creek's strontium concentrations were found to be significantly higher (p < 0.05) on October 23 (ranging from 0.012 to 0.167 mg/l total Sr) than on October 22 and October 24, 1985 (ranging from 0.009 to 0.05 mg/l total Sr).

3.1.8 Zinc. On October 22, 1985, all levels were significantly different (p < 0.05) between stations for total zinc. On October 23 and 24 both Stations 1 and 2 were similar while significant differences were found between the other stations. The total zinc concentration in the creek varies between < 0.022 mg/l to 0.711 mg/l.

Seepages from the tailings dam and/or waste rock were suspected at Station 5. The total and dissolved values were very similar suggesting no particulate fraction; consistent with a groundwater rather than surface water source. The dilution of Myra effluent, with a concentration of 1.16 mg Zn/l

WASTE ROCK AND COLLECTION SYSTEM WATER MYRA CREEK MINE 1 OF WESTMIN RESOURCES - OCTOBER 22-24, 1985* SUMMARY QUAL I TY S TABLE

6.8 160 23.4 0.76 0.76 0.11 0.76 0.014 0.033 0.038 0.038 0.038 0.033 0.033 0.038 0.033 0.038 0.028 0.02 24, 1985 PUMP NO. **OCTOBER** PUMP NO. 2 6.2 160 1 15.8 15.8 15.8 1.16 0.018 0.23 0.247 0.247 0.247 0.247 0.23 0.247 0.23 0.247 0.23 0.247 0.23 0.145 0.02 0.155 0.155 0.155 0.155 0.155 0.155 23, 1985 4 PUMP NO. **DCTOBER** PUMP NO. 2 rumr NO. 4 (downstream) 6.0 180 31.5 2.08 56.0 0.23 69.9 0.191 0.057 0.057 0.057 0.057 0.057 0.191 0.057 0.151 0.159 0.150 0.150 0.120 0.120 0.120 0.120 OCTOBER 22, 1985 PUMP NO. 2 (upstream) 4.3 Ni1 252 252 25.3 17.7 17.7 0.076 4.4 7.7 1.08 61 1.08 61 1.08 61 1.08 61 1.08 61 1.08 61 1.08 61 1.08 61 0.342 0.342 0.342 0.342 6.2 180 14.9 14.9 14.9 67.2 67.2 67.2 67.2 67.2 0.002 6.2 0.004 5.4 0.005 6.2 0.004 5.4 0.005 0.115 0.002 0.0146 0.015 0.005 0.005 SUPER-NATANT 3.8 1300 8 kil 397 35.7 35.7 257 0.305 0.25 0.25 12.6 10.0 12.6 12.6 12.6 12.6 10.0 11 0.17 0.17 0.11 0.18 0.17 0.392 0.392 0.392 0.392 WASTE ROCK PARAMETER Acid. A1k. V H Sol-

*Results provided by K. Ferguson (EPS)

and a flow of 0.361 m³/sec. on October 23, in Myra Creek would result in a concentration of about 0.11 mg/l dissolved zinc at Station 5, based on a dilution ratio of 1:30 in the creek. The actual value was 0.493 mg/l of dissolved zinc in the creek at that station. Thermography recordings showed the Myra effluent run tightly along the east side of the creek (K. Ferguson, personal communication).

Water concentrations sampled in the creek at pumphouse No. 4 at the end of the ground water collection system, showed an average of 3.5 mg/l and 2.5 mg/l total and dissolved zinc, which were high enough to substantially increase the concentrations at Station 5 (Table 5).

On October 23, 1985 at Stations 4 and 5, the total zinc did not show the same range of values (0.35 to 0.501 mg/l and 0.487 to 0.497 mg/l respectively) but were not significantly different due to the high standard deviation.

Seepages from the tailings line road significantly increased the zinc concentrations at Station 7 (0.769 mg/l total zinc average). The high concentrations found in the seepages, the proximity of the source and the sampling point and the high background level (Station 6, 0.446 mg/l total zinc average) were all factors contributing to the elevation of zinc at Station 7.

According to Bradley and Sprague (1985) the acute lethality of dissolved zinc for rainbow trout is 0.11 mg/l at a pH 6.97 (\pm .1), alkalinity 10.8 mg/l as CaCO₃ (+ 1.0) and hardness of 31.3 mg/l as CaCO₃ (+ 1.9).

Temporal variation of zinc in the creek was different for the total and dissolved zinc. Total values in the creek on October 23 were significantly higher than that on October 22 (0.13 mg/l higher in average) and 24 (0.28 mg/l higher in average) while the dissolved values were higher (0.14 mg/l on average) on October 22 compared to October 24.

3.1.9 <u>pH</u>. On October 22 no significant differences of pH between the stations could be found. However, the levels on that day were the lowest found in the creek during the survey and were significantly different from the two other days. On October 23 Station 1 pH was higher (7.1) than most stations except 2 and 6 while Station 7 was significantly lower than all

- 16 -

stations. On October 24, Stations 4 and 7 were significantly lower from Stations 1, 2 and 6. The general pH of the creek was rising during those three days of sampling from a range of 6.4 to 6.9; to 6.9 to 7.2 (Appendix I, Tables 1-3).

3.1.10 <u>Alkalinity</u>. Stations 4 and 6 were significantly higher than all other stations on October 22, (13.3 to 13.7 mg/l compared to 8.6 to 11.8 mg/l), while on October 23 Station 1 was significantly lower (12.5 mg/l) than all stations (13.3 to 16.5 mg/l). The alkalinity level seemed to increase at Station 5 and decrease by Station 7 along the creek. On Thursday October 24 only Station 6 (18 mg/l) was significantly higher than all other stations. Alkalinity at Station 7 (15.7 to 16.5 mg/l) was higher than Stations 1 and 2 (11.0 to 12.5 mg/l). The alkalinity level in Myra Creek was significantly lower on October 22 than on October 23 and 24.

3.1.11 <u>Conductivity</u>. Laboratory conductivity levels were similar between Station 1 and Stations 2 and 3 (ranging from 24.0 to 40.5 umhos/cm), as well as between Stations 5, 6 and 7 (ranging between 68 and 105 umhos/cm) on October 22. On October 23 and October 24 the conductivity levels were different with all stations, increasing downstream (from 28.5 to 140.0 umhos/cm), with Station 5 being higher (143.7 umhos/cm) than Stations 6 and 7 on October 23, and Station 4 being similar to all stations due to the high variability of the laboratory measurement on October 24. No significant difference was found between the three days surveyed.

3.2 Tailing Line Road

Results can be found in Appendix II, Tables 1-3. Figure 3 shows the relative position of seepages from the old tailings line road. Appendix II, Table 1 gives an idea of the seepage metal concentrations on October 22. Total copper concentrations range from 0.584 to 84.7 mg/l; total zinc from 2.760 to 301.0 mg/l.

Appendix II, Table 2 shows the metal concentrations and loadings on October 23. The major contributor of metal to Myra Creek is sample Site #15 with 23 kg/day of total copper and 291.6 kg/day of total zinc. A replicated sample was taken on October 24 at Site #15 evaluating the variability of the total metal since only grab samples were taken at the other sites. The coefficient of variation range from 0% to 8% for all metals analysed.

The metal loading on Thursday October 24 was greatly reduced compared to the previous day as both the metal concentrations and flow were lower.

The total copper and zinc concentrations permitted by the Metal Mining Liquid Effluent Regulations (MMLER) in a grab sample is 0.6 mg/l and 1.0 mg/l respectively. Only 3 samples were below the stipulated level for copper while all of them were above 1 mg/l for zinc.

DATE AND	METAL (total)	CONTI	NUOUS PLER		ICATE PLER	PROBABILITY OF EQUALITY
TIME	(mg/1)	x	S	x	S	x = 95%
October 22	Cu	0.123	0.001	0.138	0.004	p < 0.05
9:00	Zn	0.827	0.002	0.711	0.006	p < 0.05
October 23	Cu	0.113	0.001	0.131	0.001	p < 0.05
9:30	Zn	0.872	0.006	0.769	0.002	p < 0.05
October 24	Cu	0.040	0.018	0.079	0.008	p > 0.05
10:00	Zn	0.203	0.169	0.526	0.012	p > 0.05

TABLE 6COMPARISON BETWEEN THE SAMPLES TAKEN WITH THE REPLICATE SAMPLER
AND CONTINUOUS SAMPLER AT STATION 7 (M2)

3.3 Continuous Samplers

Replicated samples were (Appendix I, Tables 1-3) compared to the samples taken at the same time from the continuous sampler (Appendix III, Tables 1-3). This comparison between Sirco samples and replicated samples at Station 7 (M2) revealed significant differences for total copper and zinc (Table 6). The total copper concentration was higher in the replicated samples. On the contrary, the reverse was true for zinc on October 22 and 23. These variations tend to indicate different plumes of heavy metal concentration may occur in the creek.

Some variations during the day were found in the concentration of elements from the analysis of the Sirco samples. On October 22, the concentration of calcium, magnesium and manganese were showing an increase from the morning to the afternoon. The copper and iron were stable for the first part of the day and then decreased. All other metals were not showing differences during the first 18 hours of sampling. On October 24, calcium, magnesium and manganese were also increasing during the day. A sharp drop in concentration occurred at noon for those three metals and the increase resumed shortly after. A sharp total zinc increase was noticeable at Station 7 on October 24 between 4 and 6 a.m. with a sample average of 0.708 mg/l compared to an overall average of 0.354 mg/l (Appendix III, Table 3). All the other metals were not changing all day.

3.4 Loadings in Myra Creek

The creek discharge during the survey varied considerably on Tuesday October 22, the flow was 15,000 l/sec., the following day 12,200 l/sec., and the third day 7800 l/sec. (Table 4). These flows were recorded at Station 7 (M2) using the staff gauge reading and converted to flow rates using stage discharge curve 3 for Myra Creek as prepared by Norecol in 1982.

Table 7 presents loading data for effluents, seepage from the old tailings line road and Station 7. Zinc loading at Station 7 were considerably high compared to the previous study (Godin et al., 1985) since the water treatment system is in operation. On the other hand, the variability of the measurements across Station 7 was not evaluated. This would have given a better evaluation of Myra Creek metal loading. The analysis of zinc loadings on October 23, 1985 showed that 44.8 kg/d (6%) were due to the total effluents while the old tailings line road contributed 308.2 kg/d (38%). This latter input greatly contributed to the loading at Station 7. Fifty-five percent of the loading that cannot be explained by these inputs suggests either a significant contribution from the groundwater collection systems or a skewed distribution of the metal in the creek.

TABLE 7	LOADINGS OF SELECTED CONTAMINANTS TO MYRA CREEK FROM EFFLUENTS AND
	SEEPAGES (kg/d) - OCTOBER 22-24, 1985

	lynx Pond	CULVERT NO. 1	CULVERT NO. 2	MYRA PONDS	MYRA DIVERSION	effluent Total+	OLD TAILINGS LINE ROAD	STATION 7 (M2)
October 22								
Flow (1/s)	71.0	61.3	9 2.0	367	385*	976.3	-	15,000
D. Zn	0.20	0.90	8.0	1.5	0.17	0.17	-	9 53.4
T. Zn	4.3	1.2	10.5	76.1	0.13	0.13	-	-
D. Cu	< 0.03	0.04	0.72	0.16	< 0.17	< 0.17	-	115.3
T. Cu	1.8	0.07	1.1	4.0	< 0.17	< 0.17	-	178.4
October 23								
Flow (1/s)	Trickle	44.7	36. 8	361	387	829.5	95.9	12,200
D. Zn	NS	0.15	5.2	36.2	0.13	41.7	101.7	7 57 . 8
T. Zn	NS	4.2	5.3	35.2	0.13	44.8	308.2	810.2
D. Cu	NS	0.03	0.53	1.6	< 0.17	2.3	34.7	67. 8
T. Cu	NS	0.22	0.56	1.2	< 0.17	2.2	22.8	137.7
October 24								
Flow (1/s)	29.2	56.4	49. 7	361	3 83	879.3	38.8**	7800
D. Zn	0.035	1.02	4.23	23.1	0.13	28.5	48.2	296.6
T.Zn	1.46	2.23	9.23	159.4	< 0.07	172.4	57.1	354.6
D. Cu	< 0.01	0.15	0.63	0.22	< 0.16	1.17	10.5	26.5
T. Cu	0.28	0.34	1.32	7.1	< 0.16	9.2	12.8	53.5

+ Results from K. Ferguson (EPS)

* Flow assumed average of October 23 and 24 - 385 1/s

• •

** From the major seepage only (Site #15).

ND - not significant

-

•

•

3.5 Gold River Bridge and Elk Falls

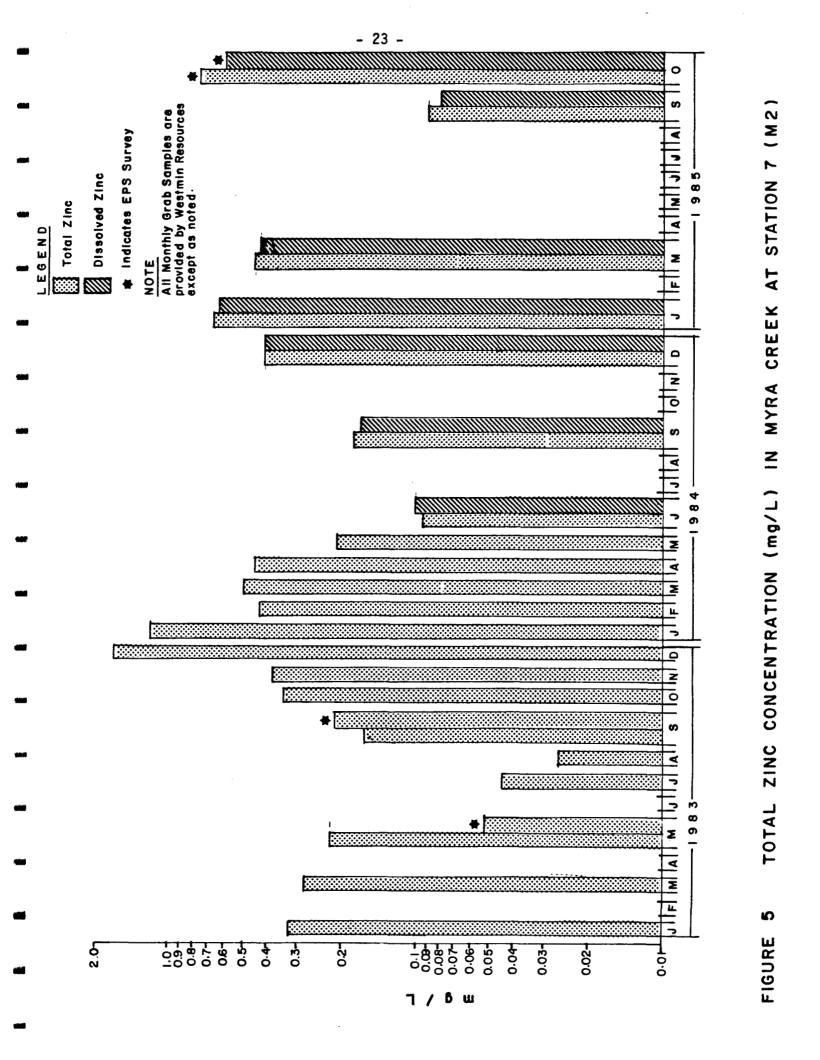
There is an improvement of the water quality at the discharge of Buttle Lake. The concentrations of sulfate were decreased at the Gold River Bridge and Elk Falls (4.0 mg/l and 3.0 mg/l) compared to previous data (4.5 and 4.0 mg/l) respectively (Godin, 1985), while total zinc decrease was only seen at Elk Falls Park (0.026 in 1983 and 0.019 mg/l in 1985). Copper, cadmium and lead levels were unchanged. An increase in pH was noticed as well as hardness, total aluminum and total iron.

3.6 Water Quality Retrospective

The Environmental Protection Service have published three progress reports on the Westmin operation. The main concerns at the time were seepages from the groundwater collection system, seepages from the old tailings line road and metal loadings in the creek.

In December, 1982, four months after the start-up of the collection system, some indications of groundwater collection system seepages were already identified (Kelso, 1983). In May, 1983 (Ross) no detectable seepages from the collection system were observed, but in September 1983 Godin (1985) showed that there was still a significant impact of the zinc concentration in the creek which was attributed to the groundwater during that low flow period.

In every progress report the indication of the tailings line road contamination was suggested. In December, 1982 the sampling survey indicated that 50% of the contamination was coming from the road. The company recognized in the Stage II Submission Addendum I (1982) that the zinc loading in the creek, after the implementation of the groundwater collection system, should mainly originated between groundwater pumps and Station 7 (M2). Significant runoff from the tailings line road was observed in May, 1983 (Ross, 1983) and an increase in metals at M2 was noted due to the tailings pipeline road runoff. In Progress Report No. 3 (Godin, 1985) definite increases were noticed between Stations 5 and 7 during the dry season.


The copper and zinc loading in Myra Creek in October, 1985 is comparable to that found in April, 1982 before the collection system was on line (Table 8). It was noted that the sampling survey occurred in the middle of a storm event but such precipitation is not uncommon in the area, and

TA	BL	Ε	8

E 8 TOTAL ZINC AND COPPER CONCENTRATIONS AND LOADINGS AT M2

METAL	Apr. 16 1982	Sept. 8 1982	Dec. 7 1982	May 1983	Sept. 1983	Spring 1985	Oct. 1985
Concentration (mg/1)		1					
Zn	1.90	I I START-	0.290	0.052	0.208	START- UP	0.669
Cu	0.217	UP OF	0.024	0.005	0.010	OF	0.116
		GROUND- WATER				GROUND- WATER	
Loadings		COLLEC- TION				COLLEC-	
(kg/day)		SYSTEM				SYSTEM	
Zn	502.3	1	101.5	29.83	41.91	 	695.4
Cu	57.4	1	8.4	2.87	2.08		123.1

-

therefore should not be considered unique. Observations of total zinc concentrations on a monthly basis at Station 7 (M2) showed a definite cycle of the values (Figure 5) which correspond to the general precipitation cycle in the region. It is therefore suspected that events like the survey in October 1985 and associated impairment of water quality will occur in the future if remedial actions are not taken.

•

CONCLUSIONS

4

Very high heavy metal concentrations were found in the creek during this survey from October 22 to October 24, 1985. The loading of copper and zinc varied from 53.5 to 178.4 kg/d and 354.7 to 921.5 kg/d respectively for the three sampling days at Station 7 (M2). Loadings were the highest surveyed since the groundwater collection system start-up in September 1982.

The sources of contaminants included the Lynx and Myra effluent, the old tailings road seepages and possibly groundwater collection system seepages.

Seepages from the old tailings line road were characterized and recognized as a major contributor to the heavy metal loading in Myra Creek.

However, sampling stations on the Campbell River showed the improvement on a long-term basis of the groundwater collection system over the pollution of the whole system.

Future surveys should focus on the characterization of groundwater collection system seepage. Improved control of tailings pipeline road seepage, groundwater collection system escapement and mine effluent should bring Myra Creek into an acceptable water quality for aquatic life.

REFERENCES

- Anon, 1979. Laboratory Manual. Department of the Environment, Environmental Protection Service; Department of Fisheries and Oceans (Pacific Region).
- Ball, I.R., 1967. The Toxicity of Cadmium to Rainbow Trout (<u>Salmo gairdneri</u> Richardson). Water Res., 1, pp. 805-806.
- Bradley, R.W. and J.B. Sprague, 1985. The Influence of pH, Water Hardness, and Alkalinity on the Acute Lethality of Zinc to Rainbow Trout (<u>Salmo</u> gairdneri). Can. J. Fish. Aquat. Sci., 42, pp. 731-736.
- Demayo, A. and M.C. Taylor, 1981. Guidelines for Surface Water Quality Vol. 1 Inorganic Substances - Copper. Inland Waters Directorate, Water Quality Branch, Ottawa, Canada.
- Eaton, J., 1973. Chronic Toxicity of a Copper, Cadmium and Zinc Mixture to the Fathead Minnow (<u>Pimephales</u> promelas Rafinesque) Water Res., <u>7</u>, pp. 1723-1736.
- Fogels, A. and J.B. Sprague, 1977. Comparative Short-Term Tolerance of Zebrafish, Flagfish and Rainbow Trout to Five Poisons Including Potential Reference Toxicants. Water Res., 11(9), pp. 811-817.
- Godin, B., M. Ross and M. Jones, 1985. Progress Report No. 3 September 1983 Water Quality Sampling in Myra Creek at Westmin Resources Ltd. Mine on Vancouver Island. Department of the Environment, Environmental Protection Service, Pacific Region, Regional Program Report 85-06.

- Kelso, B.W. and M. Jones, 1983. Progress Report on the December 7, 1982 Water Quality Sampling in Myra Creek After the Implementation of the Groundwater and Surface Collection and Treatment System at Westmin Resources Limited on Vancouver Island. Department of the Environment, Environmental Protection Service, Pacific Region, Regional Program Report 83-18.
- Reeder, S.W., 1979. Guidelines for Surface Water Quality Volume 1 Inorganic Chemical Substances - Preamble. Inland Waters Directorate, Water Quality Branch, Ottawa, Canada.
- Roch, M. and J.A. McCarter, 1984. Hepatic Metallothionein Production and Resistance to Heavy Metals by Rainbow Trout (<u>Salmo gairdneri</u>) - I. Exposed to an Artificial Mixture of Zinc, Copper and Cadmium. Comp. Biochem. Physiol., 77C(1), pp. 71-75.
- Ross, M. and M. Jones, 1983. Progress Report No. 2 May 1982 Water Quality Sampling in Myra Creek at Westmin Resources Ltd. Mines on Vancouver Island. Department of the Environment, Environmental Protection Service, Pacific Region, Regional Program Report 84-01.
- Westmin Resources Limited, 1982. Water Collection and Treatment Evaluation, Surface and Groundwater Collection, Myra Integrated Water Treatment System, Myra Creek Response. Stage II Submission, Addendum 1, 1982.

APPENDIX I

RECEIVING WATER QUALITY DATA IN MYRA CREEK

• ,

n Hyra Creek	
	1985
Data	
	ສ້
ity	
Quality	october
	•
Water	vesday
	5
eceivin	-
ě.	able
	2
APPENDIX	

NN DISICP LIG/ML	1991)	(. 80 1	0.001	I		0.011	0.011	0.011	6.011	0.000	0. MM	0.007	900	9. 607	8. 60 j		0. 0 31	0.032	0.030	0.031	0. 00 1	0, 156	8.154	0. 151	8.154	0. 90 3	0.124	. 125	8 .122	0. 124	8. 96 2	0.218	8. 156	6 . 121	0.165	8. 849	213.848
		(, 001	(, 1 81		I	0.014	0.014	0.013	0. 814	8. 00 1	0.000	9.999	9. 008	8.868	0.000		9. 9 .2	0. 835	6. 834	0. 017	9.001	6. 186	8. 161	e. 158	0. 168	8. 8 15	0. 141	6. 133	0 , 132	. 135	.	8. 173	0 .172	B. 17 B	8. 172	8. 60 2	222.480
M TOTICP UG/ML		0. 2	8 .2	0. 2	0 . 1		4	0 .3	8. 3	e. 1			9.3	0. 3	0.0		••	. .4	0. 4			1.1	1.1	1.1	1.1		1.1	1.1	1.1	1.1		1.6	1.2		1.3		1728.8 22
MG DISTCP UG/ML	~	ŝ	2	2	•	-		-	4		~		. 10	m			•	5	5	5		~	1.1	-	-	-	1.1	1	1.2	1		1.3	m	1.3	•		
MG TOTICP UG/ML		ø	¢	6	¢	-		ø	ø	¢	-	-		đ	e		•	•		•	¢					•					_		1.			Ð. Ð	1684.8
FE DISICP UG/ML	6.00	B. 008	8.010	6.003	8. 8 91	6.0 12	0.012	0.012	8, 8 12	8, 866	6. 85 8	0. 858	0. 04 I	8. 84 7	6. 8 65		610 .0	0. 0 <u>5</u> 1	0. 658	0. 658	8.001	6. 834	0.966	8. R38	0. 043	6. 6C9	8. 6 3 8	0. 075	0.032	A. 86 6	0. 830	6 . 628	0.115	8. 834	e. ecs	8. 64 9	76.464
FE TOTICP I UG/ML I	6.624	8.019	0. 037	0.027	ê. 809	8.048	8. 91 2	8.846	8. eM5	8° 883	6. 697	0.105	0.101	0, 101	8. ee 5		6. 16 2	8 . 1 8 8	0.107	e. 195	8. 84 3	6.22 1	0.356	0,429	0.381	0. 04 1	8.433	0.465	0.437	0.452	0.014	6. 731	0.757	0.730	0.742	0.013	961.632
CU FI DISBF TI UG/M, U	190 7)	(, 601	[89])		1	(. 861	ie:	(, 601	I		0. 60 6	6.665	8. 665	6. ee s	0.001		8, 868	6. 666	6. 807	8. 8 8 8	0.001	0. 650	9.954	e. rce	8. 6 51	8 . 88 2	8. 64 9	0. 0 48	0, 042	0.046	0. 804	8 , 127	8.064	8.642	8. 678	0. PMA	100.656
CU TOTOFF	(. 601	100 ")	199 .)			(, 601	(. 001	100 ')			8. (M)7	0. 200	0. 647	8. 807	0.001		0.010	0.010	8. 889	0.010	0. 00]	0. 09 <u>0</u>	6. 697	0.097	8, 897	0. 00 1	8. 899	8.868	0.079	8. 86 6	0.011	9 , 142	0, 136	0.135	8.138	9. 97t	178.416
DISSE 1	(, 6965	(, 8085	(. 6685			(, 6965	50001.)	(, 6005			(, 6005	(, 6665	(1. 6005				(; 000)	(, 0005	(" BOOD			0. PACE	0.0019	0.0021	8, 8629	0. 6001	0. 6019	0.0018	0.0018	e. (e18	0.0001		0.0030	8.0038	0. 0033	A. 0006	4.3200
CD: Totef UG/ML	9999	(, 800 6	(, 800K			(, 8866	(, 0006	(, 6066			9000 ((, 8086	(, 6666					9996 ')	9000 ")			0.0021	0.0022	0.0020	0.0021	0. 000 1	8, 6619	0.0023	0.0018	0. M20	6.0003	e. 6040	0, 8030	0. 6030	0. 8033	9. 0006	4.3280
CA DISICP UG/ML	3.6	3.5	3.5	3.5	9. 1	4 .8	5.1	4.9	6. 4	8 .2	6 19	5.9	5.6	5.8	9 .2	1	9.3	5.5	9 . 4	4 .	8. 1	13.5	13.5	13.1	13.4	9 ,2	14.6	14.8	14.6	14.7	0.1	13.8	13.6	13.5	13.6	8. 2	17668.8
CG TOTICP UG/M.	3.7	3.7	3.8	3.7		ດ ທີ	5.2	5.2	5.2	8.8	6 'S	5°3	5.9	5.3	0 .0		18.5	10.5	9.7	10.2	9 .5	14.3	13.9	13.5	13.9	6 .4	15.3	15.1	15.5	15.3	8 .2	14.1	14.2	E.41	14.2	0. I	18403.2
BH DISICP T NP T	8. 604	8. 694	0. 201	0. 201	8. 600	8. 885	9. 994	6. 60 5	Gene "B	8. 001	8. 805	8.865	8. 805	8. 885	9.99		9.908	0.000	0.008	0. e v9	8. 800	6000 °C	0.000	6,003	ê. 80 9	8. 000	0.00G	6. PMG	6. 60 0	0. eng	6. 666	e. evg	8.809	0.007	0. 808	9. MI	10.800
10 TOTICP B	8. 1955	0.004	0. 004	9.60 7	8. 881	B. 885	0. ees	0.005	8. 885	8.000	8, 866	8.805	8. (18 6	8. 006	906 '9		8. 663	6.00 .0	0.810	6 .0 63	8. 80 j	0.011	8.011	0.011	0.011	6. 999	8.011	8.012	0.811	0.011	8. 601	0.011	0.012	0.011	0.011	0.001	14.688
AL DISICP H	e. e6	0. 0C	0.07	6. 6 C	8. 8]	0.07	8.88 9	6. 8 7	6. 87	0.01	9. 98 9	e. e9	8. 07	9 . 98	6.81	:	9 90	9	0.07	8. BC	0.81	0.07	8° 93	(, e5	e. R	0.01	8 . 12	0.11	8. 88	0.18	0.02	6 . 66	0.11	(, 85	0.10	8. 8 2	123.12
101 101 102 102 102 103 103 103 103 103 103 103 103 103 103	8, 18	0. 18	8. 11	0, 10	0.81	0, 13	8. 12	0.12	8.12	0.01	0.11	8. 14	9 . 99	0.11	8° 83	:	6. 63	9.9	0. 00	9, 98	6.61	8. 27	0°53	e. 26	0.27	9 .62	6. 31	6. 33	6 .32	9 . 32	0.01	ê. 49	8. 49	8 .52	0.50	9.92	648. 88
Sample 1 Number U	-	പ	m	AVERAGE	å	4	در	9	AVERAGE	S. D.	7	40	6	AVERAGE	S. D.	:		11	2	RVERAGE	5° D.	13	1	15	AVERAGE	S. D.	16	17	18 1	RVERAGE	S. D.	27	R	R	AVERAGE	S. D.	Load, Kg/d
Station Number						N					m					•	•					ŝ					9					7					

- 29 -

ADPENDIX I Receiving Water Quality Data in Myra Table I Tuesday october 22, 1985

zn Distop UG/M.			1	1							0, 034	0.033	0, 072	0.033	0.001				101	0. 657	6. 96]	2 , 466	0.470	0.452	0.463	8. 10 9				1	0. 00 5			. 699	0, 470	9 , 662	0. 223	627.529
ZN TOTICO UG/M		3	9 8 .)	1							0. 638	0.037	0. 638	0. 038	. NI	2				0 , 063	.		0, 500	0, 496	0.501	9.98 9			944	0. 437	0, 007	8 , 709		6. 715	0.766	0.711	9 . 6	\$21.456
TI Disicp UG/AL		0, 011	0.018	0, 011	0, 007						9.86	9, 865	0.012	999 '9	Ĩ				0.013	e, e15	900		8, 883	0, 011	9. 2 60	9 . 90			0.005	900	8. 801				9, 662	0. BAJ	. 801	3.456
TI Totice UG/ML		0. R00	9. 1 9	0. M)	0, 601						1. e	0, 807	9.99	6. M 7	9. 6 60						9. 99 5	A. MC	0. MG	0.017	9.003	0. 00 7	Ĭ	0.00		0.011	0. 00 8	6.0 13			0.016	0.012	12.0	15.964
SR DISICP UG/M.		9 , 99 5	0. M	0, 006	0.01						0.014	0.014	0.013	R. 014	0.001				. 622	5		0. 633	0, 632	0. 031	0.02	B. BOI		A. R.Y.	0. 634	0. 034	0. 0 01	0.033			-	0. 830		38.448
SR TOTICP UG/M.		6.000	6.00 3	6.00 (6. 001						8,014	0,014	0.015	0.014	0, 001							0.025	0.834	0. 833	8, 834	f. 201	8.875	0.05		0.035	8. RM	6.62			0. 033	6.630		39.312
SI DISICP UG/ML	6. 6	9 .6	8 .6	6.6					6 G		9.6	9 .6	9 .6	9 .6	•	•			9.9	9.6	6 .	8.6	9.5	9.6	9 .6	•••		. .7	9.6	9 .6	0.1	9.7			6 .6	9 .6		829.8
SI TOTICP UG/ML	9 .6	9 .6	9 .6	9 .6	-	3.6					9 .6	0.6	6 .6	9 .6	•					9 6	•	6 .6	0.7	9 .6	8 .6	9		1-1		1.1	8.4	E.1			1.1	1.2	6 .1	1512.0
P8 Diser UG/AL		1	(. 86	1						1	(. en <u>.</u>	1 88 ')	. 991										(, 661	ie J			("00)		198	1	1				Ē	1		
PB Toter UG/AL	9.90		100 ")	1				ŝ	Ř		100')	1 9 1)	196 ')									(. 001	i w ')	1991)	l	1											1	
p DISICP UG/ML	59 .)	2	5		I	9					5	9.9	5	9. 92 10	I			B 1		I	ł	, 8	8 .)	59 ")	I	I	1	59.7	0.07	1	1	58 .)			8		1	
P TOTICD UG/ML	58")	5	19 1)	I	1	30.7					8.	8	5	1	I					I	I	90 .)	3	8.	I	I					ł	5 9 7)			5	I	ł	
NA DISICP UG/ML	6 .6	0.7	0.6	0.6	•	9.6					9 .8	0.8	8 .8	6.9								1.1		1.0	•••	. .1			1.0	1.0	9.9	0.1			1.8	•••		1296.0
NG TOTICP UG/M.	9 .6	9.6	9. 6	9.6		0 .6	9.6		9.6		9. 8	0.8	8.8	9.9	-	-						1.1	- 1.	1.0	•••	• -1	đ		1.0	8.9	9 .]	1.8			6 .9	9 .9		1209.6
Samole Number	-	~	m	AVERAGE	ප් ප්	•	- 617		CIVE ROCK	5. D.	~	•	6	AVERAGE	d v	9	: =	: :		HACINGS.	s. D.	13	41	5	PACENDE	S, D,	16	11	91	AVERAGE	S. D.	21	1	6 8	R	AVERAGE	S.D.	Load, Kg/d
Station Number						2					••					-	•					in					e	•										

APPENDIA I Receiving Water Quality Data in Myra Creek Table 1 Tuesday october 22, 1985

CONDUC. (F) TEMP. (F) umbos/cm C ດ. ມີ 5.2 5.2 5.7 5.7 2.8 3 18.9 128.5 127.8 8°.3 3**8.** 5 6 132.2 5.5 5.5 5.5 68.8 78.8 69.3 1.2 105.0 183.0 185.0 1.2 CONDUC. unthos/cm 24.0 24.0 24.1 5.5 40.5 8.8 96.0 100.0 99.3 99.3 48.5 40.5 40.5 163.0 163.0 183.0 183.0 ភេខ−ភេៈឆ លំលំកំលំខំ ALKALINITY HARDNESS ACIDITY NG/L NG/L NG/L 2.0 2.1 9.7 9.6 9.7 ∎ -- @ + u ని ^లి ని చి తి 000 00 00 00 00 - 00 - 00 00 - 00 - 00 17.8 17.8 16.4 16.9 46.3 46.9 4.6 4.6 5.9 10.8 10.7 10.9 10.9 18.8 19.7 19.8 19.8 8. 28. 1. 28. 1. 1. 43.8 42.7 41.6 42.7 1.1 8 4 9 M 9 6 6 6 8 6 9 18.2 13.3 13.3 13.3 14.4 13.3 9.8 9.8 19.2 1.1 8 4 9 M 9 11.0 11.8 10.7 8.5 0H units 5 - 9 - 1 - 9 - 9 - 1 311 1 0 0 0 1 6 6 7 1 1 20 00 00 0 00 00 0 00 00 6 6 9 9 1 6 6 6 6 9.9 5.5 = E E 2 ~ 27 27 24560 = = -- 1 ທຸກອ **** ***** TURBIDITY SOA FTU PPM 3 8 8 8 8 5 • • • • • • • ភិភិភិភិភិឌិ សុសុសុស ឆ 8 8 8 4 5 5 8 8 8 4 1 0.43 0.41 0.42 88868 9. 8 5 0001 000|| 0001 666 | 6661 666 | | 000|| NFR NG/L 67 67 68 83 19 8 ≌ ≅ & a ~ 1919 212 212 212 ~~~~ 8388" 83884 ж¥ 5 2 2 2 2 <u>ទ</u> ដ ដ ដ ក ~**** 8388 * ឧឧខន 13 14 15 RVERPGE S. D. ₩G/L RVERPGE S. D. Load, Kg/d عه **9** 1 2 16 13 18 588 AVERAGE S. D. AVERAGE S. D. AVERAGE S. D. AVEIDAGE S. D. AVERAGE S. D. Samole Number Station Number ۲ (<u>ک</u> - (SN) Q, m ŝ 9

- 31 -

Station S Number N	Samole Number	AL Tottop US/AL	AL DISICP UG/AL	ERA Tottcp LG/M.	BA DISICP UG/ML	CA TOTICP VG/M.	CA DISICP VG/AL	1010F	CD DISBF VG/M_	CU TOTOF UG/ML	CU DISOF UG/ML	FE Tottop UG/ML	FE DISICP UG/ML	MG TOTICP UG/ML	NG DISICP UG/M.	MI TOTICP UG/AL	NN DISICP UG/ML
_	-	0.13	9 .9	0.014					(. 0005		1997)						
(11)	~	8 . 12	(. 85	6. 76 0													
	•	6.69	8 . 8 2	8.912			4.2		2000 T				•				
-	PVERAGE	0.11	9. 6 2	0.011	0. 665		-					0.003					
	S. D.	6.62	l	8. 64 3			•			I		0, 029	. 80	•		9.601	1
~	-	0.67	83	912	-		;			ł					•		
	· ·	9.19		a al7										? .			
	, o	0.07		9. 099			5										
4	AVERAGE			0.010	6.00												-
0,	S. D.	1	I							I							
m		8° 98	9. 60	A. 015	A. OK	4 'Y	4								•		
	=	8. 89	. 65	0. 820		5.5	3	(. 00%	5000.)		-	-					
	2	8. 68	3	0.021	-					-	-						
u	PVERAGE	9 . 9	9.98	0.019	Ū	6.5				-		-				9.620	
	сі S	9. 8	l	0. 203						945	_	-	•	•		0.9	•
	~																
		9.9		ACA. A													
	. 5	6.69		0.030													
æ	AVERAGE	6.63	0.01	0. 629	-												
5	S. D.	6.81	0. 62	0. 601	6. 801					8. 601	_		•			0.002	
r	Ę	90.9		4 47 A	010						-						
	2 2			9.048													
		9. 70	96.9	8. CM7		20.6			0. M20		-						
æ	PVERAGE	. 8. 29	6. 66	8.647			20.3	-	0.0023			-	-	1.6	5	-	0.234
	S. D.	8. 81	9. 9	0. 201				-	8. reek			•	-	•	0.1	6. 903	-
9	16	6. 38	0.07	0.037	6.649	19.0	16.5	0.0030	0. 8629	0. ees	0.941	0, 309	0.063	1.3	1.2		0.143
	17	0.28	8.66	8. 836					B. 8628			-		1.3	1.2	0.373	-
	9	0.28	6.96	R. A36				-	0.0030	-	8. 638	-	-	1.3	1.2		-
4	AVERAGE	9 .23	9.96	8. A36	-		18.6		0. MU23	0, 690	6. 0 39	•		1.3	1.2		-
	S. D.	0.01	0.01	0. W I				8. 8496	8.0065	8. 64 2		8. 84B		•	•	0, 60 3	-
1	27	8.47	0. 07	6.0 12	0.011	19.9	20.0	0. mil	0. eA 30	0.131	0.066	0.574	0. 64 6	1.7	1.6	0.224	0.212
ର	58	8.47	С. ЭЗ С	-	8.011						1. NG2	•		1.8	1.6		-
	8	8.47	0.08	0. NI 2	-			6. M30		A. 131		-	0.076	1.8	1.6		-
4	PVE RAGE	0.47	e. re	e. ei 2	_		-	0. M33	B. BR 38			9 .500		1.8	1.6	0.224	Ū
	S. D.	9. 9	6. 8)	0. M				•						•			
	Land dald	101	-		•								•				

S is

- 32 -

APPENDIX I Receiving Water Quality Data in Myra Crtek Table 2 Wednesday october 23, 1985

6.735 8.739 9.794 9.719 9.719 0.916 757,884 e. ec5 e. e75 e. e15 9.9% 9.9% 0.431 0.423 0.423 0.423 0.423 6.484 6.497 6.496 6.493 9.666 9.666 ZN DISICP UG/ML 766
 778
 778
 779
 779
 769
 769
 769
 818.236 9. 445 9. 446 9. 446 9. 446 9. 446 9. 14. 19. 19. ZN TOTICP UG/M. 0.019 8. 867 8. 862 7. 827 6.014 6.008 6.013 6.013 e. e. e. e. e. 8. 864 9. 867 9. 867 0.01 0.002 8. 869 8. 862 B. 013 0.011 0. 007 0. 007 9.011 TI Disicp UG/ML 8.875 8.858 **8.** 859 **9.** 113 **9.** 128 **8.** 100 **9.** 836 0.007 0.003 7.379 8. 811 9. 864 8. 864 8. 854 8. 833 0.061 0.079 0.018 6. 653 6. 662 8. 812 6. 845 8. 827 8. 80 9. 80 9. 80 TI TOTICP UG/ML 0.010 8. 815 8. 801 0.022 9. 800 9. 900 9. 900 0.043 0.043 0.041 6. 648 6. 647 8.847 **9.64**7 **9.60**1 49.893 8.847 8.861 0. BH3 B. 842 8. 011 8. 011 8. 011 **8. 0**11 0.047 sr DISICP UG/M. 8.821 8.833 8.813 9.813 9.817 8.149 8.158 8.882 8. 847 8. 847 8. 878 8. 876 8. 882 **e**. 166 **e**. 165 0. 167 0. 166 0. 166 8. 847 8. 801 9. 893 0. 152 0. 158 SR TOTICP UG/ML <u>.</u> <u>.</u> **5551** <u>.</u> SN DISICP UG/ML 8.19 9.29 19.29 19.29 20.29 0.62 (.01 (.01 (.01 0.62 0.62 21.68 <u>.</u> <u>.</u> SN TOTICP UG/ML 9.6 9.6 6.4 1.6 6.9 99999 9999 SI DISICP UG/ML 0.6 0.5 မ မ မ မ မ မ မ မ မ မ မ မ ସ ଦେବ ସ ପ ସ କ କ କ କ -----SI TOTICP UG/ML <u>.</u> PB UISBF 8. 001 1. 405 3331 8881 83811 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 P8 Totef U6/AL 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.159.5 1.2 NA DISICP UG/ML * Sample contamination 1.1 1.1 1.1 1.1 8.8 6.6 1.3 1.3 NA TOTICP UG/ML 27 28 29 29 29 29 29 5.0 5.0 10 5.0 Station Number - 8 r (3

- 33 -

APPBOII 1 Receiving Mater Dwality Data in Myra Creek Table 2 Wednesday october 23, 1965

.

Station	Sample	٤i	e i		E i	Ē	TURBIDITY SOA	£		ALICALINITY HARDNESS		83	ACIDITY	CONDUC.	CONDUC. (F) TEIP. (F)) TEIP. (F
	Number			ł		El				5	ц Ш	9 	ج	unhos/cm	mhos/ca	.
-	-		21	21	U	~	0.13	1	7.1	12.	n	12.8	ດ	28.5	24.3	5.3
(11)	ť	2	13	13	6	5	6. 13	5	7.1	12.	5	12.9	1.5			
	~7		5	5	U	-	0.13	a	7.1	5	5	12.3	5.5			
	AVERAGE		9	16	1		0.13	N	I	12.5	in.	12.7	2.0	28.5		
	s. D.		-	*	I		9. 90	1	I	¢	•		5			
~	-		8	ង	U	-	0. 18	ŝ	7.1	14.	-	15.4	. 2	e. X	3	ف
	 ,		17	17	U		6. 18	. AI	5.9			15.9	1		-	-
			-	1	9		0.16	I 0.	~	•		15.2	1.5			
	RVERGEE		5	19	1		0, 18		1			15.5	2.7			
	5. D.		m	m	1		8	•	1	-	•	5	8 .6			
m	9	_	27	2	U	-		67	6.3	13.7	~	14.4	11	5.4	1.11	ari ari
	Ξ		18	8	e		197. 1 0	. 10	6.9	11.7		18.6	15	4		
	51	•	R	2	5	~	9 ° 39	m	6.9	Ц	1	18.7	3.1	5.4		
	RVEIDGE		8	8	1		0.37	P	I	13.7	2	18.6	3.1	5.4		
	S. D.		m	m	1		9. 6 5	•	ł	œ	•	9 , 2	3	1		
-	-	-	S.	Ş	Ð	~	6. 30	्य	9	16.5		27.6	4.1	73.0	78.4	
		_	14	14	e	~	8 . 38	13	6.9	16.5		27.2	1.4	1		
		5	7	£4	U	.	9 , 38	12	6.3	16.5		27.5	5.1	73.0		
	PVERAGE	-	\$	\$	1		9 . 38	12	1	16.5		27.4	4.4	~		
	S. D.		ŝ	Q,	1		8	-	I	đ		. 2	9 -6	1.2		
ŝ	13		5	5	U	-	5, 3 6	\$	9.9	14.9		6.8	5	145.0		6.4
	4	-	16	16	5	~	2. W	41	6.8	14.5		66.5	4.1	143.0		
	-	-	2	2	U		2.30	\$	6-9	16.5		66.6	4.1	143.0		
	RVENDE	-	8	8	I		2.30	7	I	15.3		66.3	4.4	143.7		
	сі S		4	4	1		. 8	-	1	-	-	••	9.9 9	1.2		
ya	16		r	R	U	~	2. 30	ħ	6.9	16.5	ŝ	60.7	3.1	128.0	139.9	1.1
	1		۶.	r	6	-	5. W	R	6.3	16.5		6e. 3	4 .1	128.0		
	18	~	2	78	ť	5	2.50	ŧ	6.9	16.		66.0	3.6			
	RVERAGE		4	7	1		2.37	R	I	16.5		60.3	3.6	-		
	s. D.		ຸ	2	1		0. 12	7	I	e	•	8. 4	9°.2	-		
٢	27	-	77	6	Ð	~	3, 86	32	6.7	13.7		69. 1	4.6	140.0	182.7	3.6
<u>8</u>	2		\$	\$	5	5	3. 88	8	6.7	13.3		69.9	4.6	-		
	R		ድ	£	U.	5	3. 3 8	£	6.7	13.		69.4	4.1	148.0		
	RVENDEE		87	87	ł		3.63	88	I	13.4		69.5	•	-		
	S. D.		σ	6	1		6 . 73	-	ł	œ	5	8 . 4	8. 3			
	Load, Kg/d	M8216	Į	91357	1		-	ARCES	ł							

44

6 HB

- 34 -

.

	Creex	
	Ayra	
	Ë	1001
	Data	90
)	Receiving Nater Quality Data in Myra Creek	Thursday antohom 24 (005
	Nater	ve bave
	DUTAT	ia 2 Th
	ž	~
	ΩĒ.	-

	đ							ŧ			i		;	ļ	ļ	į	į
Station Sample Number		DISICP UG/ML	P 101	ů 🚽	DISICF UG/ML	TOTICP UG/ML	DISICP	totef UG/ML	DISGF 1	toter UG/ML	DISGF UG/ML	te Toticp UG/ML	ne DISICP UG/ML	TOTICP UG/ML	DISICP UG/M.	1071CP UG/M	DISICP UG/ML
- 2	eiei N	0.13 0.69	- 	6.846 6.845	0.005 0.005	3.8 3.8	3.8	(. 0006. (. 0006.	(. 8665	1999 ') 1999 ')	198.) 198.)	0.054 0.954	8. 867 8. 667	ୟ ଅ କାର୍କ	9.5 9.5		199.)
	m		98 e 98 e	0. 865 255	0.005		3.7		,	100°')	(.001		6. 647				
HVENHOE S. D.		2.02	6.67 6.61	6. 640 0. 642	9. WI	9. 9. 9. 9.	3. / 9. 1					0.040 0.015	6. 000 6. 001			9-96 9-96 9-	
		9. 12	50°)	0, 046 1	6. 00 5	1.4	₩. ₩	. 9996	(, 8085	6, 602	(. 801		8. 886	9 . 3	9 .2		-
	ട്ട് നം		8 8 8 8		1995 - 19 19	6.4 ₽.5	0 4 4 4					0.019 0.027	9. eve 9. eve	0. m 6. d	0.0 6.6	9.993 9.993	9. 943 9. 945
AVERAGE S. D.			8	0. 046 0. 046	500 100 100		- 10 -										
			. .	100 *0	100.0		1 .1					500 °A	8. 696		9 2		
	eje ⊳ e	e.e3	0.07 0.07	8. 866 987 - 9	8. 801 8. 804	ດນຸດ ທີ່ທີ່	99 9 ທີ່ທີ່	- 1996	5000 T		9.9	6. 878 9. 978	0.042 0.42		9.9 9		
			9.97	9.90	6. 004	ง เมื่	9 69 5 µ3			6. 865	e es		9. 945 9. 945		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		6. 964 9. 964
AVERAGE c n		6.11 6.21	0.01 0.01	8. 805 999 999	6. 663 6. 043	ເບີຍ ເບີຍ	90 9 10 9			0. 805 200			8.842	- 20 C	~ €		
			10.0	1 00 "0	200	2.0	0.0				6.9	- 2	1 an 1 a		8		6° 600
			6.6	0.010	9.99C	9.7	8. 3 2 - 3	9000 °)		6. 664	0.004	6. 148	8. 647	4	.	6. 837	-
		6.13 41 4	9. 69 9. 97	6. 648	0.00	9.7				8. 847 9. 945		8.898 9.99	510 0 0 010		4 *	6.635	6. 633 6. 633
AVERAG			8	6. MB		0 0 6 0	9.9 9			1965 1965			6. 642 6. 642		~ 4	6, 633	
s.D.			0.01	9.995	6.601	9.6	6		I	9.962	6. 661	0.031	6.003			9 . 8 . 6	0.607
			6 . 18	8.812	6.060	12.1	12.2			0.014	0.010	0. 246	8. 845	9 .9	8.9	8 , 128	0.126
			9.99 9.99	8.611	6.00 9.00 9.00	12.6	12.1			6.8 12			8, 845 9, 245	•	60 C	_	
OUCDOC	ŋ)	8. 71 U		9 Y	9. Y			6. 614 0 617		1C3	8. 8.55 0. 0.47		5 0 5 0		
S.D.			3	6.00	9.96			1		6. 001			9. 99.				
	16 e.	e . 19 (e. ee	0.015	8.810	16.8	16.0	8.008	6 . 000 9	8. 8 31	8.013	0, 207	8. 839	1.2	1.1	0. 137	6.127
		_	88	0. 815 2 2 2 15	0.010	16.8	16. 0	9000 0	_	8. 838 8. 838	6.012 0.012	e e	6. 628 9. 0	1.2		9 .136	0. 128 1
AVERAG	0	e. 17		0.915 0.915	9.918 8.818	16.8	16.0 16.0	0. MAR	0. AMAG	0. 031 0. 031	8. 812 8. 812		0. 0.35 0. 0.35	1.2	::	e. 136 B. 136	
S.D.			6.01	8, 666	9.999		9.9			8.001	0.001		600		_	8. 991	0.002
7			0. 11	0.015	6. 812		20.1	8. 8658	8.8622	6, 608			0. e65	1.7	1.6	6. 221	
			0.10	0.016	0.012		28.8 28	æ	-			ø	0.079		1.6	œ	
	5		9 . 11	0.015	0.012		20.2						6. 678		1.6		
RMEHRIGE C D		5		CI9.9	8.015 9 000	21. 8		0. 0025 0. 0	8, 9668	6/8.8	8. 6.19	9. 367 9. 00 9. 00	199.9		9 e 9		91. C 10
u.u. Load,Kg∕d	ະ ຄ		71.88	10.333	8.087	141	13545.8	1.1	1.1	53. 464		న		1145.7	107	147.588	Ξ
Gald River		A 13	8	a. at 9	0. 017	0	9, P	(, MANG	Sound .)	0 , 013		8 , 119	6. 6 05		8.8 9.8	6, 667	0. NO2
Bridoe			8		0.016		5.6							i oo	8.8		
	N		g :	8.019	0.016		9.3				. 661		e. eec	e	6 .8		
AVERAGE		<u>د</u> ت	ł		8.016 9.016	-	60 M					0.135 0.035	ð. R ð6	6	60 F	0.007 0.001	9. 9 61 1981
้ำ		5		6. WI	e. 661	6. 1				6. Y.	-	0, 010	-	9.9 9	Q. 7		
Elk Falls		e. 12	9 2 :	8. 814	0.012			(. 0206	1, 0005	0. 202				0.1	6 6 6		6, 603 9, 503
	5 5 7 8		5 5	0.013 0.012	0.012 0.012	7.5	7.0			ළ, දුන්ද ම සංවි	(90)) (900)	6.042 0.057		6 8 8	0 00 9 99	8. 807 8. 807	
L AVERAGE	0		2	010-0	0.010					5.000					1		
		Į	;	0.03	0.012					9. M.			6.6.9		0.9		

1

- 35 -

Myra Creek.	
5	<u>18</u>
Data In	1
Quality	october
ing liater	Thursday (
Receiving	Table 3
RDPENDIX 1	

	Number	UG/M.	UG/ML	UG/ML	UG/ML	UG/M.	UG/M	UG/ML	UG/ML	UG/W	U6/#L	.ne/₩.	UG/ML	UG/ML	UG/AL
-	-	6.7	9 .6			0.7	9.7	3	10")	0.05	6.008	£00 °	(, 002	6.007	-
(III)		9.6 9.5		ž.	-		6.1	5		6.003	8. COB	0.003	(, 1942	0. 64 3	•
												9° 607	. 1992		N.
												6. Fel.			
	5	5								•	- Loo			2. 1 .	
~	-	0.6	9 .6	(. 601	(. 601	0.7	0.7	(0)	(.01	0. 00 73	9. 90	0.003	CW 7	0. 010	
	n	9 .6	6 .6	(1111111111111	8.5	9.7	1		5 0 0-1	6. MB	0. 620		0.007	0.0
	9	9 .6	0.6	0.002		e.5	9.6		-	6.003	0, 007	0.017	200 - U	0.010	•
	RVERAGE	9 .6	9 .6	1	I	9 .6	0.7	0.65		0. ees	0. eeg	0.013		6.003	
	S. D.		9.6	1	I		9.1	-	!	1. 693	199.8	6.00.0	I	9, 962	-
m		8.9	6	Ż				1		6.013	8. 60 3	0.017	28 9 9	6. 1 53	•
		9.4				17 1 19 1			-	0.011	6, 616 0 211	6.0 14		0.628	6. R22
			5												
	HVCIMBC C D														
	i n				!]				1		₽
-	10	1.0		0.001	(, 66)	6. 7	0.7	6.69	(0 .)	6. B24	0.016	0.023		0.63	-
	1	•		0.0						0.021	0.621	6.68			
	12			100.)		9.6	6.9	9.9		0.020	0.018			0. 046	0. 633
	AVERAGE	•						A. 87		600	8. 61A				
	2.0.2			1	ł							-			
															•
'n	13	1.1	1.1	9. M I	(. 6	9 .9	0.7	0.65	10")	0.628	8. 828	0.032	3 1 1	0.137	0.125
	1	1.1	1.1	1 8 -	(. 601	0 , 9	8.9	9.9	-	6. R 28	8. 6 28	0.014	30.5	8 , 146	B. 124
	13	1.1	1.1	100.)	ie '	9.9	9.9			0.027	6. 6 28	1.042	(, 602	0.132	0.118
	AVERAGE	1.1	1.1		1	9 "3		0.04		8. 828	8. 628	0.023		0.138	0 .122
	S. D.	0.0		1	ł		8 .1		1	1.001	0.400			6. 00 7	•
4	1	-	-				4			070				810 B	
D			::	į											
	: 5	: -								0.029				0.237	
	RVERAGE	1.1	-			6.9	9.9	9.6		0.039	0.036	0. 623		0.237	0.174
	S. D.	•••••••••••••••••••••••••••••••••••••••	0.1	ł	1			_	1	0.001	0.991	B. (N)2	1	0. M	•
•	1		•			•									•
- !	2	ک،! 2 :													
	8					.	1.2								
	R)					Ξ.	1.2							6. 513	
				1	I	· · ·					Ì		1		
	u li. Lord Ko la	0.0 0.76	8.6 875 1			5.0 1.75					21.674				
	a view toward		5					-							3
Gold River	ŧ	0.7	0.7	(, 001	1961)	6. 9	9 .9	8-8 6-8	9. 0	6.015	0.013	-	300 ')	0. 038	6. R
Bridge	ĨĒ	9.7	6.9	188.	1 98 ')	8.9	8	9 6 6	1	0.016	0.014	•	298) '	0.041	6 . K28
	24	0.7	6 .7	18 .'	ž'	6.9				0.016	6.013	-	6. M3	6.638	9.627
	AVERAGE	6.7	9 .7	1	ł	9.9 9		9.62	5 6.6 7	0.016	8.013	-		8. 8 39	9. 9. 1
	сi S	0.0		1	1	6 .9	9.9	0.61	9. 9 -		13.º	- R			
Flb Falle		4	3			-	-			912	0.010	0. 629	3	0. 620	0.017
						: -					0.0.0	9. N 1	9. M	0.019	0.41
	5 19			a						0.012	A. A. A.		(, 8%2	0.018	0.015
	AVERAGE									A. 012	0.0.0		•	0.013	0.016
	2							-							
	3. 0.			•	1	9		10 E		A. A.A.A				ž	

- 36 -

4 .	BPPE	Rece Table 3	and	., ater di , Data ji Thursday octob er 24, 1985	Data 📕	l Creek		-				9 11	-		
Station S Number N	Samole . Number I	TR MG/L	FR MG/L	NFR MG/L	TUR FTU	TURBIDITY SOA FTU PPM	dł pH units	ALX NEV	ALKALINITY HORDNESS MG/L MG/L		ACIDITY NG/L	CONDUC.	CONDUC. (F) TEMP. (F) umhos/cm C	C (E)	
-i	- ·		5	. 8 8	~-	0,16	 .~.	12:		III I	1.5				
(14)	u m	-	<u>ن</u> 8	9 6I		6. 18 6. 18		7.2	12.5	16.9		27.5			
4	AVERAGE		58	8	80	6 . 18	-	I	11.2	18.9	1.5		19.8	5.2	
C 2	. D.		1		1	6. 60		I	1.2	9°5	6				
N	-		83	ន	ہ م	8. 18	~	1.0	12.5	13.7	2.8	31.5			
	10 Y		2 6	= 8		0.16 9 10	ູ	0 ' '	2°5	12.7		31.5			
đ		-	j I	ಕ ನ	2	8.18 8.18	u a	2	12.2	13.2	32		24.7		
60	S.D.		1	m	1	6.60	•	I	4		9.6	6.9		5	
m	7	-	58	ន	C	8. 28	4	7.8	11.8	14.7	1.6	ж. В			
	æ		8	5	ŝ	8. 28	4	1.8	11.6	14.9	2.0	-			
		-	ŝ	ని స	c	10 I	•	6.9	13.3	15.1	ດ ີ.			1	
. 0	RVENHAE S. D.		11	n		9. 27 9. 92	- 6		8 2 2	14.9 0.9			31.7	រក កំ	
•				•		-	•		1	4					
4			8	4 5	~	8. 28	11	6.9	14.1	27.1	3	65.0	_		
	= :	-	9	78	6	e. 33	r ;	6.9	13.7	27.2	ູ້				
0	IC IC		•	9 3	e 0	5, 5 5, 6		<u>}</u>	C'2 ▼ 7				5.7	•	
מי .	5.D.		8 1	: 4	• 1	e. R3	: -	I	8.0	1.8	9.9			5	
r	5		F	2	٤	87 8	ē	0	5	a 92	a	¥			
,	2 ₹		5 K	4 24	2 2		2 2			2	52				
	: 12		ន	5 5	, m	6. 43	1 61	8.2	17.6	9.9 %	9 2				
ų	PVERAGE		3	8	80	6 . 39	19	I	14.2	37.4	1.7	~	107.1	w	
0)	. D.		1	1	ł	8. 6 5	69	I	2°3	1.2	9 .6				
و	16 16	-	Б	22	c	9° 38	ĸ	7.0	18.0	1.94	1.1	113.0			
	11	-	£	2	c	8. 98	ເວ	7.0	18.8	49.8	3.1				
1	18	-	40	69	C	9. 73	នេះ	7.0	18.8	48.6	ີ້	_	!	1	
- U	PVERPGE S. D.		11	2 5		e. 87 e. 13	đ		18. 8	6 N 8	8 T	113.0	139.3	5	
				,		1	•		•						
2	27	-	5	5	S	2, 30	\$	6.9	16.5	63.3	ດ .				
(7) (7)	R 8	- :	86	R 8	6	193, 19 ດັດ	× 8	6 0 0 4	15.7	6.3 3	ີ. ດັ່ງ				
đ	C) Everate	3		R 8	2	ອີ ອີ ບໍ່ ດໍ	0 19	3	16.0	3.23	ຍ 69 ປູ ດູ	143.0	183.5	\$	
. თ	s. D.		1	-	1		ور	1	9.5	8.3					
د	Load, Kg/d		1	63348	1	1	23587	1							
Gold River	笍		5	££	g	8. 35	ŝ	7.5	24.8	29.3	1.	63.0	_		
Bridge	æ		\$	æ	1	9 , 38	4	7.4	24.3	3 8.2	3	63.6	_		
	R R	~	2 4 5	37	6	6 , 35	-	4.7	5°.3	23.6	ຍ . ປີ			:	
- I	AVERAGE		\$	31	4		-	ł	5				_	81	
			1	N	1	e. e.s	-	1	ñ. J	°	5				
Elk Falls	33		¥e	£	11	8.30	•	7.3	28.4	23.9	6°2		_		
	あ り	-	¥	8 8	<u>6</u>	8. 28	m r	6.7 1.3	- 8	ຮູ້ເ	లు ని -	0 · 73.8			
c	C	-	[33	18 R	c :	87.98	. ,	<u>.</u>		2.25				C 05	
- 0	HVERHOC S. D.		F 1	y -	:	. 6	5 6 5		5 6	3 -		2			
									•						

- 37 -

APPENDIX II

OLD TAILINGS LINE ROAD SEEPAGES

	MI DISICP UG/ML	2.920		0.114	1.62	33.6	6. 339	15. 200	2,840	1. 140		17.200
	TUTICP UG/ML	6. 660	5.010	0. 121	1.000	49. 000	110 B	15.440	2.77	1.150	100 - T	29, 800
	DISICP UG/M.	13.9	9. 9 M	1.8	8 .9	2	3.3	19.4	17.7	8.9		25.3
	TELLO	3.9	9 .9	1.9	9,2	312.0	3.4	19.7	17.8	9.2	51.0	26.6
	DISICP 1	_	112.000	6. 172	4.200	199. 661	0.824	5.410	4.718	21, 100	233.000	6. 848
		37,200	118.000	7. 660	13.200	248.000	12.000	5, 578	11.500	49,600	317.000	7.289
		_	7. 050	8.444	4.818	78.000	9,77,0	0. 565	4.560	2.210	10.600	1.348
		2.370	8.758	0, 636	4.400	BA. 700	0. 907	8 .584	4.820	2.210	11.700	1.498
•		8, 073	0.410	998 °)	0.039	1.170	8. 867	0. 121	0. 051	. 162	1, 190	0, 202
		8. 128	0.390	8, 627	0.053	1. 600	0.839	6 . 122	0. 059	6. 163	0.970	8. 194
			0.170	9.012	0.002	8, 998	0, 016	8. 629	0. 083	0.039	9, 100	0.068
		0, 623	8.218	0.016	8. 663	1.210	0.015	0, 627	8, 698	0.036	0.110	0.071
		26°-3	43.8	10.8	21.8	168.0	16.9	ц. ч	8 .2	20.3	37.0	77.6
Salieo		26.7	4 6. 0	11.3	21.6	210.0	17.4	57.7	32.2	21.0	• *	8 2, 3
Road Seep ober 22, 1	DISICP 1 ULE/ML U	6, 639	0. 620	9° 965	8.015	9.629	8, 809	0. 201	0. 031	e. ees	0.620	6.871
lings Line uesday oct		8	0.068	8	e. e16	6, 638	8.818	6. 884	0.031	0.011	0.010	6, 075
01d Tai able 1 T			48. 20	9.6	8. 10	242.00	9.42	8.5	15.50	8. *	第 "%	16.70
APPENDIX II 01d Tailings Line Road Seep Table 1 Tuesday october 22, 1	R TOTICP UG/R	14.90	2 5.10	0.87	8. 4 6	38.9	1.33	8	15.80	4.63	7	17.38
æ	Station Station		•	80	σ	=	Ħ	13	5	16	1	18

Seepages	ŝ
Road	8
Line	and the second s
Tailings	Tuesday
PIO	lahla 1
Π	Ê
XIONGId	

11 11 11 11 11 11 11 11 11 11 11 11 11	5.868	37.76	2.560	18.400	240.000	3, 500 J	8.568	21.100	8.418	28. 28 29	14.500
ZN TOTICP UG/ML UK	27.6	45. 700	2.760	19.700	000.10	3,620	8, 498	21.800	8.628	27.600	15.600
_ 1		0. 9 M			~						
TI DISICO NG/NF		1.120									
TI Totico UB/AL		_	_		_		_		Ĩ	_	-
SR DISICP UG/M	9.9	8. 878	0.01	6. 8 3	9.48	9.8	6.63	6.96	9.9	90.0	6. 12
58 1011CP 16//M	0.128	0 , 190	0.014	8.834	0,500	8.823	6. e 93	8. 966	0.038	0.070	e. 138
SI DISICO UG/AL	2.9	9.9	1.3	3.3		1.5	6.6	5.1	9 -2	Ξ	12.8
1011CP	2,9	12.0	1.5	4.1	43.0	č. 3	7.0	6. 3	2.7	9 -9	13.8
11 112 112 112 112 112 112 112 112 112	8.004	8.808	(. 001	9.662	0. 837	. 99	0.002	8. 60 3	0.001	0.010	(* 661
	100 ')		100 ''	6.962	. 965	0.002	1001)	0. 901	0. 002 00	0.001	(. 601
DISICP F	8	(.5	<u>,</u>	<u>,</u>	6.5	5	9	5	19	1.48	8
	9. 'S	0 , 68		8	.5	<u>,</u> 8	2	. 85	0.53	S. 50	99.)
	38 ")	۲,2	3 2	8.83	9° - 20	3 2	8 9	8, 83	3 8	5.)	ĩ
	8	. .2	<u>,</u> 8	9 9	8 . 40	<u>୍</u> ଟି ଅ	9 9	0.03	9 9	5.)	9 9
	1.8	8 2	8 .8	1.0	9°7	8.8	ດ :	1.2	. 9	•••	2.5
	9 , 9	1.0	6 .8	6.9	0," 4	8.8	ດ ູ່	1.2	8.8	E	2.5
tation 16 Multer 16	1	4	æ	ď	=	11	51	2	9	11	9

	_	_	_	_	_	_	_	_	_	_	_
conduc. whos/ca	I C2	2		B	N2/4	<u>1</u>	3	ŝ		6 18	2
ACIDITY MG/L	7820	20	5			×	212	R		1110	ž
HPROVESS MB/L	Å	ē	8	152	ł	\$	F	昺	12	# 11	Ĩ
RLVALINITY H	Ę	nil	m	Į	nil	4 °2	lin	nil	lin	ll	lin
		•	ņ	5	6	•	ې.	+	5	2.9	
ii E E		m	5	~	CJ	5	•	m	6.0	e N	
1	2	I	R	2		8	2	2	5		
VIGE DE LA COM	8	e4	8	8	9	R	呙	8	8	Ĩ	R
	8	17	e	5	e	用	=	8	113	82	2
NGA NGA	5		5	¥	Ĩ	8	2	R		N2	26
FR MB/L					•						
TR MG/L	. 2	E.	ň	R	134	Ñ	¥	64	Ţ	2348	78
Station Number	-	•	•	Ð	1	11	13	2	35	11	18

APPEDDIX II Old Tailings Line Road Stepages Table 1 Tuesday october 22, 1985

•

•

.

			æ				B	8	8	8			2	2	ť	-		¥
Station Number	turico UG/ML	DISICP UG/ML	TOTICP UG/ML	DISTCP UG/ML	TOTICP UG/ML	DISICP UG/M	TOTICP UG/ML	DISICP UG/M.	TOTICP UG/ML	ê z	UG/ML I	DISICP UG/ML	UE/M	DISICP UG/ML	ê .	8 _	TOTICP UG/ML	DISICP UG/ML
Load, Kg/d		8.8 18.8	6. 036 6. 936		្រ ខ ស x	3.5	0.013 0.017	0.014 0.017	6 61 6 61 6 61 6 61 6 61 6 61 6 61 6 61	0.019 0.623	<mark>8</mark> 9		1.389	864.1 1.738	24 198 24 198	2. 660 2. 492	9.1	e i o'
2 Load, Kg/đ	d 18.79	3.83 6.44	8.019 9.049	9 6.015 0.622	31.1 66.1	29.8 52.3	0. 008 0. 017	0.009 0.019	9 0. 043 0 0. 091	0. 629 0. 643			4. 150 8. 821	0. 424 0. 901	6, 460 17, 981	2.640 3.611	5.5	रु बे
ы	3.73	1.71	6.0 16	5 0.0 13	29.5	28.3	6 00 '9	9 9 9 '8		0.014	500 °)	500°)	0 , 469	0. 389	4.488	1.798	5.5	4
•	8 2	51.60	0. 030	0.638	• • • •	58.0	8 . 188	9, 109	0.330	0° 340	99 ")	99')	1,920	B. 200	36. 300	3 5. 3 8	• ¥	31.
5 Load, Kŷ/đ	4 7.81 1.23	3.54 1.16		6 662	17.4	16.5 5.4	0. 672 0. 624	8.874 8.824	6. 129 6. 642	0. 031 0. 010		8	4, 240 1, 392	3.610 1.105	36.590 31.984	6.540 2.147	8-1 0-1	47
va	2.21	1.65	8. 84 3	3 B° 003	16. 6	17.8	0, 057	0. 6 50	1 C. 076	6 . 60 9	1986	900 ")	3, 130	2.72	21.400	1.280	•	~
7 Load, Kg/d	d 1.17	34 °S 78 °C	9, 980 9, 981	 	19.7 8.2	18.7 7.8	6. 846 6. 819	0, 948 0, 620	1 0.874 0.631	0. 809 1. 804	<u>8</u> 1	3	2.690 1.116	872 JAN	20. 100 6. 336	1.270	ୁକୁନ ଅଧି	ರ್ ನ
8 Load, Kg/d	d 0.67	8.87 8.12	6. 600 8. 014		11.5 19.8	1.11 1.9.1	0. 624 0. 6 41	0.011 0.019			0. 000 0. 014	<u>8</u> 1	0. 600 1. 034	0, 396 0, 682	6. 540 11. 266	0. <i>3</i> 77 0.649	1.8 3.1	**
9 Load, Kg/d	6.07 d 10.35	8. 03 16. 31	8. 85 4 9. 8 69	6.015 6.019	21.5 27.6	21.6 27.7	0. 804 0. 108	8, 883 8, 167	5 8. 663 7 8. 663	0. 027 0. 035	8. 019 9. 824	9	4, 18 5, 264	4. 26 0 5. 469	11, 700 15, 022	3.070 3.942	8.9 11.4	.
10 Load,Kg/d	4 0.15	9 9 9 9 9 9 9	0.016 0.001	6.015 0.001	5- 8 6 5-1	2.48 1.1	0, 839 0, 982	0, 037 0, 002		6. 010 0. 000	8	8	1.778	1.660 0.072	3.410 0.147	1.328	11 B	~ •
12 Load,Kg/d	61.1 1.53	6.17 6.13	8.821 0.016	1 8.010 5 8.008	18.1 14.0	17.6 13.7	8.821 8.815	9, 016 0, 012		998		8	9. 876 9. 689	0, 712 0, 552	11. 700 9. 078	0, 820 0, 636	5 r J	ന് പ്
13 Load, Kg/đ	d 1.58	7.87	6. 227 6. 643	9 8.868	36.1 18.5	35.7 10.6	0. 833 9. 996	8, 834 9, 866		9. 121 0. 623	0. 012 8. 982	9 1	0. 741 0. 141	6. 781 6. 149	5, 200 1, 000	5. 19 0 9. 991	17.2 3.3	-11 -
14 Load,Kg/d	d B.15	7. JA 16. 19	e. 864 6. 895	6. 643	27.9 31.6	28°.7 28.5	8. 854 9. 861	8. 846 8. 852		8. 817 8. 819		<u>8</u> 1	1.722	1, 710 1, 710	6, 638 8, 643	0, 038 0, 043	9. 9 2. 9	5° <u>6</u>
15 Load,Kg/d	14.50 d 67.76	14. 10 65. 89		5 8.632 7 8.158	32.3 151.0	31.8 148.6	0. 453	0.073 0.351		0, 145 0, 145	6. 019 6. 089	B	4. 970 23. 227	4, 138 19, 361	9, 859 46, 833	2.600 12.151	16.6 77.6	3
16 Load,Kg/d	12.E 17.E	347 1111		6.010 6.003	28 29 29	9 9 9	8.844 8.814	8.832 9.010		8. 844 8. 814	8. 867 6. 862		2. 320 0. 742	1. 898 8. 684	36. 500 11. 668	9,520 3,043	7.4	2.5
17 Load. Ka/d	48, 66 48, 60	45. 70 6. 70	8 8	8. 818 8. 688	9°57	42.0	0, 120 8 2003	9. 1 98	1.000	1.160	(1)	99°)	12, 500	12.500	333, 666	319, 000	• 6	8

- 41 -

APPENDIX II Old Tailings Line Road Seepages

Station Number			DISICD NE/NE	TOTICO UG/ML	DISICP UG/ML	1011CP UG/M	ni DISICP UG/ML	UG/M	DISICO UG/ML	toter UG/ML	DISHF UG/M	US/NL	DISICP UG/AL	us/AL	olsico UG/M	TOTICP UG/M.	DISICO DISICO	UE/W	DISICP UG/ML
· 	b/gX,beol	1.786	1.746	= '	53	5.) [3 I	31	<mark>8</mark>			31	B	1.2	9.5				
ິ	b/ g X,beal	1.598	1.538			8 9	9) 9)	B	<u>e</u>			8	B	a 1.4 a 4	รู้ 2	51	**		
m		1.390	1.340		9	39 ') 6	3	3	99 ')	Ĩ	.	9	99 ")	0 ನ	21	107			1
•		3.500	3.57	1.	ູ	6 (,2	(,2	5')	(:3	1. 00 1	100 ')	5)	5 7)	8	11.0	3	5	0.110	
ກ້	Load, Kg/d	0. 433 0. 142	0, 423 0, 139	6 9 9 6 7	e e	8 8	<u>8</u>]		<u>8</u>	<u>.</u>]		51	<u>8</u>	2 2 2	1.7 0.6	<u></u>	<u>.</u>	- 0,002	
9		6. 292	0, 267		.	9 6	3	3	3	6. 00 1	188 ')	5	3	8.2	1.0	10 1)	HJ	L 6.021	ے 1
۲ ۲	Lond, Kg/đ	6.248 6.276	0, 530 0, 220	5		83 5 4	<u>8</u>]	B	<u>8</u>	9	.	8	<u>8</u>	1.9 0.8	1.9 0.0	5	<u></u>	- 0°62	e e 51 e
ت o	b/gX,beeJ	6.301 6.301	0. 115 0. 198			8 9	<u>8</u> 1	<u>8</u> 1	<u>8</u>		<u>.</u>	8.	<u>8</u>	1. J 2. 2	1.3 2.2	44			
ຄີ	Load, Kg/đ	2.48	1. 030 1. 1.22	6-9 2-1	6-0 7-5 7-5		<u>ଞ୍ଚ</u> ା ଅଟ	8	<u>8</u>		ë	<u>8</u>	<u>8</u>	1 1 1 1	3 F 7 - 1	5 1	.	- 6 .110	
=	Load, Kg/đ	1. 000 1. 047	1. 040 0. 045			ନ କ	<u>8</u>]	<u>8</u>	<u>9</u>		* *	<u>8</u>	<u>8</u>	57 G	97 97	.51	<u>ड</u> ्		
2	Load, Kg/d	0, 406 0, 377	0, 333 0, 250			وب مع الح	8 8		<u>s</u>		.	0. 120 0. 093	B	1.5	1.5	51		- 0.036	17 B. B.
13	Load, Kg/d	33.500 6.337	16.200 3.093		• ↓ ನ ů		8 8 8	<u>8</u> 1	8	3		8	8	6.7	6.9	5 1	5		20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
۲ ۲	Load, Kg/d	2,100	1. 598 1. 000	1.1	1.4	3 3 4 4	ब स्ट हो	8	<u>8</u>	9	6. 81 6. 81	0, 000 0, 091	<u>8</u>	80 4 4 13	4 4	5 1	<u></u>	- 6 .111	11 6. 657 55 6. 655
ຊີ	Load, Kg/d	3. 25e	2.540	12 0	12	1 0.040	9 9	<u>8</u> 1	<u>8</u>			8, 800 8, 234	<u>8</u>	6 .8	ទី។ ភូមិ	5 1	5	- 0.533	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
۲ 19	Load, Kg/d	1.100	8. 918 8. 293			8 H	<u>8</u>]	0.153	<u>8</u>		0. 00% 0. 00%	8	81	9 2 2	1.7	5 1	9	- 0.651	1 0.03
1	Load, Kg/d	5, 740	5.530 0.096	е I	•••		5	1. 000 0. 017	1.700 0.0029	<u>.</u>	.	=	រូ រ	œ I	=	<u>ت</u> ا	31	6. 078 0. 601	e e

.

- 42 -

.

,

,									- 43	-						-		
1																		
I									,									
•																		
I																		
I																		
•																		
•																		
Ď																		
•	1965 1965	ZN Disicp Ug/ML	3. 609 3. 609	1.938 4.102	1.778	43.500	14.700 4.800	11.600	9, 090 3, 776	2.528 4.341	18.700 24.009	974 °6 984 °9	3.530 2.739	10. 100 1. 929	13.700 15.506	19, 500 91, 131	7. 696 2.267	30.540 0.527
_	: Road See; october 23,	ZN TOTICP I UG/ML L	1980 m 1980 m	2.270 4.825	2.010	43.600	16.500 5.417	13, 868	10. 100 4. 189	16. 600 28. 595	118.000 151.500	9.688 8.418	12.400 9.621	53, 100 10, 133	47.000 54.102	62.4 00 291.619	23.500	31.500 0.544
-	lings Line Jednesday o	TI 2 DISICP T UG/ML U	5.010 5.010	38 98	. 862	H.	38 3	200")	8	6, 012 6, 621	0, 010 0, 013	0. 804 0. 808 1. 808	0. 009 0. 007	999 1999 1999	0. 000 0. 009	0.011 0.651	0. 010 0. 003	6. 001 6. 001
	01d Tai ble 2 W	TI TOTICP D UG/ML U	6. 94 9. 94 9. 94 9. 94	6. 807 8. 815	8. 80 8	. 130	6, 012 6, 004	8° 888	9 8 9 8 9 9	6, 692 6, 156	0. 138 0. 177	8. 805 8. 801	8.813 8.818	0, 072 0, 014	0. 627 0. 631	0, 623 0, 167	0. 171 0. 605	8. 660 8. 901
	· · · · · · · · · · · · · · · · · · ·	3	-	70			P/E		P,	P/6	p/6	þ/6	p/6)	p/āj	p/fiy	p/6y	p/6)	
•	APPENDIX II 01d Tailings Line Road Seepages Table 2 Wednesday october 23, 1965	Station Number	1 Load, Kg/d	2 Load, Kg/d	m	*	5 Load, Kg/d	9	7 Load, Kg/đ	8 Load, Kg/d	9 Load, Kg/d	10 Load, Kg/d	12 Load, Kg/d	13 Load, Kg/d	14 Load, Kg/d	15 Load, Kg/d	16 Load, Kg/d	17 Load, Kg/d

	CONDUC. whos/cs	R	8	ß		R	ß		103	8 4		160	8	6	2	R	8822
	ACIDITY C	67.5	27.5	16.3	763	101	44-7	1.54	12.2	ž	41.7	21.4	196	8.3	1	911	1330
		212	149	130	829	8	134	EVI	181	3K	8	681	ŧ	S	6ME	ž	1961
	ALKALINITY HARDNESS NG/L NG/L	Į	16.5	0.0	II	lin	nil	4 ನ	nil	មា មាំ	13.3	4.7	lin	lin	4.7	lin	lin
	H wite	M	6-3	4.7	1.2	4.2	14	6.4	4-4	อา หวั	1.0	*	44	£.4	8 1	3.7	3.8
		8 9	2 2	6	ł	£ \$	R	8 ∓	R 8	<u>9</u> .5		R N	ñ 7		9 52 951	<u>8</u> 7	
manimum arrange con 1207	TURBEDETY SOA	\$	ន	ĸ	13	3	8	用	1	#	ສ	#	爲	6 , 13	13	5	24
	I I I	9 F	រ ទ	Ł	ß	2 8	\$	7 R	8	ឌ ស	10	ស នា	61	61	61 68	4 17	8
	HEAL NBA	5	18 IV	167	1610	R 8	21	<u>r</u> z	3 1		<u>8</u> •	6 R	13 8	1 8 51	54 54 54	N =	
	H V9	H R	622 ×4	161	1610	27 6	12	22	ર્ષ પ્રે	89 Ş	20 20 20 20 20 20 20 20 20 20 20 20 20 2	<u>x</u> 8	3 8	16 53	1122 1122	302 201	56 8 0
	Station Number	1 Load, Kg/d	2 Load, Kg/d	m	4	5 Load, K <u>a</u> /d	.	7 Daed, Kg/d	8 Ag/d	9 Load, Kg/d	18 Load, Kg/d	12 Load, Kg/d	13 Load, Kg/d	14 Load, Kg/d	15 Load, Kg/d	16 Load, Kg/d	11

- 44 -

APPENDIX II 01d Tailings Line Road Seepages Table 3 Thursday october 24, 1985

MG DISICP UG/ML	14.5	14.5	14.4	14.5	0.1	48.4
MG TOTICP DI UG/ML UG	15.3	15.4	15.7	15.5	8 .2	51.8
DISICO 16/AL	2. 660	2, 088	1.930	2.023	8. 84 9	6.774
TOTICP D	11. 208	11.700	12.200	11.733	8. 451	39, 283
	2,900	3.148	3.370	3. 137	0.235	10.502
DU TOTICP	3.486	3.900	4. 630	3.830	107 C	12.823
DISICP UG/ML	(, re c	(, 005	500.0			
CR TOTICP UG/ML	(, 885	(. 805	5995 ")			
CO DISICP UG/ML	0. 025	8.827	8.829	0.027	6, 662	8. 898
CO TOTICP UG/M.	0. 850	0.066	8. 059	0.058	8.608	e. 195
CD DISICP UG/ML	0.058	0. 859	0.065	0.061	9.84	0.203
CD TOTICP UG/ML	-	Ū	-	8. 864	-	•
CA DISICP UG/ML				30.8		-
CA TOTICP UG/ML				32.1		-
BA DISICP UG/ML	6. R23					
BA TOTICP UG/ML	6.629					
AL DISICP - UG/ML	11.9					
AL TOTICP UG/ML	12.6	1 12.6	12.8			
Sample Number	19	2	ភ	RVERAGE	S. D.	Load, Kg/d
Station Number	51					

۰.,

APPENDIX II 01d Tailings Line Road Seepages Table 3 Thursday october 24, 1985

		SICP	UG/ML		9. 6 51	0.953	8. 858	9 , 854	0. 204	8. 181
			UG/M° NG		8.866	8. 862	8. 863	8. 864	8. (182	8. 213
			JE/M DE		(, 01	(. 81	(. 0 1		ł	I
	-	-	UG/M, UG	Ċ	10")	10 ')	. 01	1	ł	ł
			UG/M UG		£.4	£.	4.5	4.4	9. 1	14.8
			ug/re ug/		4. 8	4.4	4 .5	4.6	6 .2	15.3
			JG/M_ UG/		8	. ec	5	I	1	
	•	TOTICP DIS			8	. e5	8 .)	ļ		
			UG/ML UG/	1	8. 00 2	0.002	9. (181	9, 862	0.001	8.006
					8. (182	8.001	8. C 01	e. ree	0. COI	B. POO
			L UG/R		. es	8	8	1	1	ł
	-	CD DISICO	-		B	8	8	I	1	1
			L UG/ML		8. 82	0.03	0.03	0. 83	8.01	8. 89
	-		-		0. 63	0. KI	9.63	0.03	9 .00	8. jè
1		CP 1011CP	9	I	1.1	1.1	1.1	1.1	8.8	3.7
			. UG/M		1.1	1.1	1.1	1.1		3.7
			. UG/ML		1.890	. 998	5. 1 40	2.007	1. 126	5-718
			- UG/NL		2.200					
	Ŧ		er UG/AL		19		5		S. D.	
			er Number					AVERI	5. D.	Load
		Stati	Number		15					

APPENDIX II 01d Tailings Line Road Seepages Table 3 Thursday october 24, 1985

zn Disicp Ug/ML	13.400	15.600	14.400	1.114	48.211	
ZN TOTICP UG/ML	16.000	17.760	17.467	0 . 323	57.139	
TI DISICP UG/ML	2 86 .)	2 A9				
TI Toticp UG/ML	8. 812 9. 812	6000 °0	0.010	0.002	ê. 633	
Samole Number	£1 8	ಕ ನ	AVERAGE	S. D.	Load, Kg/d	
Station Number	51					

Service	24, 1985
Tailings Line Road	hursday october
11 Old Tai	Table 3 T
XIQIGIdd	

. `

.

				not i the second family in the second								
Station Number	Sample Number	표 MBA	FR NG/L	NSA Nga	Turbedetty som FTU MG/L	V9N LL 800	at wits		ALUALINITY HANDNESS NG/L NG/L NG/L	HRMDMESS MG/L	ACIDITY NG/L	conduc. whos/co
2	61	121			8	, R	 , ≝	្ពំភ្ល	⁷) ž		
	8	124	,		ខ្ល	R	210	3.8	nil	5 2	50	2
	21	2		5	2	2	210	• •	nii	5		
	AVERAGE	IE4	1		S.		2003	3.6				
	้อร	•7		7	7		12					
	Load, Kg/d	Ŧ			¥		601					
								1				

APPENDIX III

CONTINUOUS SAMPLER DATA AT STATION 7 (M2) IN MYRA CREEK

~

APPENDIX III Continues Samuler Data at Station 7 (M2) in Myra Creek Table 1 Tuesday october 22, 1985

	Time Sample Interval (h) Number	10T1CP		1011CP		1011CP	1011CP	10110F				101107 101109			101105	
8:6		6+ °8	6 .0[3	14.3		0 , j24	8 .663		e. 176	6 .9	3. 2	6.9		0. 634	_	
•	IJ	9 4 9								6 .9	<u>କ</u>	6.4		_	-	
11:00	~7	6° 49									8°.	1.2			-	
	RVERAGE	84 .	8 . A13					1.3		-		•••	1	. 6.63	-	0.827
	പ് ഗ്	9. K2	e. 666	9 -1				-			1	6 .2	1	- B	Eeu '0	
12:00	4	8.47	0.012	15.8		-			_		3			_		
٠	n	8.46	0.012	15.7		0.128	0.617									
14100	9	0.47	0.012		9. 946	-	0.630				8				-	
	RVERAGE	8.47	6.012	-			0.627	1.4	8, 189		_	1.2		. 0.637	0.012	_
	3° D'	8.61	8.868	0. 3		-	0.011	_	_	-	1	9 .3	1		-	
15:00	*	8.47	0.012	17.6	P. P.	-	0. 591				-	1.2	-	-	1	_
1		0.44	0.012	17.2	0.003	0,116	0.587	1.5	0.192	1.1	38.)	1.2	10-3	9. e4	-	0.068
17:00	יש	9.47	0.015	17.3	0. 20 4	-	8. 652		Ī		-	1.2	-	-	Ī	•
	RVERAGE	e. 1 6	8. 013	17.4	9. 90 F	•	0.610		-	1.1		I.2	1	-	0. red	0.000
	പ്	5	9. tec	6 .2	0. 201	-	0. 036	-		•			1	8		5 C. 010
18:00	16	0.42	8.612	•		-				•		1.3			1 C. C.	. 637
•	11	8.43	0.012			Ī						1.6	•••		_	
20:00	12	0.45	0.012	17.9	8. MC		0.578	1.6	0, 207	1.1	<u>ଥ</u> ୁ ଅ	1.3	-		-	
	RVERAGE	R. 43	8. 812	17.8			0.570					I.	1	- B.M2	-	
	S.D.	9 . R2	8. ୧୯୫	9 .2			0. eeg	. .			1	8 .2	1		9 , 9 (5)	6 . e .
è1:00	13	6 .46	8. 613	16.6	. M 2	0. 111	e. 581	1.6		1.6		1.4		0. M2	0.01	
•	4	0. 43	8. A12	17.9	6. MG3		-				3	1.0	0.03		0. M	
23:00	1	6.43	P. 01 2	17.7	1. F.		_			1.0	ଅକ ଅ	1.3			0.014	
	AVERAGE	9.4	0,012	17.9	0.01	0.112	8 . 575	1.5	e. 204	1.	1	1.2		. 8.641	-	0.056
	ය හ්	9. R	0.001			e. <u>e</u> i	_	-		Ŭ.0	1	0.2	I	2	12.	
24:00	16	8.41	6.012	17.9	6. 005		_					1.0		0. 0 42	_	
•	17	0.44	0.012	18.3	9. NC		-	-		1.0	9 8	1.3		E.M.3		
2:00	18			18.4	0. M 2	R. 111	8. 595	1.6	0, 207			1.3	•		0.015	0.860
	AVERAGE	0.45			5 M 3		_			1.0	I	1.2		_		
										•						

2	10110					BC 0.872	
Ŧ	101102					6.662	
8			0. 84 6	8.846	8, 64 6	8. 846	0. CO
			1.6	1.6	1.6	1.6	8.9
			0.07	29.	8	I	1
			1.1	1.1	1.1	1.1	•
			9 .22	8 8	ಜ. ಕ	6 .23	9. 9
			1.7	1.7	1.7	1.7	.
-			8,548	8. 553	0.550	8 , 548	6. 607
			0.114	0.112	0.113	0.113	9. W I
			8. ees	(. 2 05	(. 805		
	D TOTICP		8.084	. 865	100	. 664	. 201
. 8	TOTICS	,				28.3 8	
7	401101 M/SI						
	10/107		6 0.012				
æ	TOTICP LIG/M		8.4 6	9 •	1 6 F	9.4	6. Č
	Sample Mumber		1	ري	•••	PVERGE	5 D
	Time Samole Interval (h) Number		BC:6	·	BC:11		

APPENDIX III Continous Sampler Data at Station 7 (M2) in Myra Creek Table 2 Wednesday october 23, 1985

.

GPDEMD11 III Continues Sampler Data at Station 7 (M2) in Mrra Dreek Table 3 Thursday october 24, 1985

0. 356 0. 357 0. 354 0. 355 0. 0. 342 0. 344 0. 344 0. 340 0. 340 0, 002 0, 173 0, 385 0, 285 0, 283 0, 169 6.313 6.313 6.314 6.312 6.312 6.982 ZN TOTICO UG/ML 1.62 8 5 ... 0. 026 0. 026 1.034 1.034 1.034 1.034 1.034 1.034 1.037 1.032 IIII 10 0.035 0.036 SR TUTICP LIG/AL 5511 9991 5 311 555|| 511 <u>555||</u> SH TOTICS UG/AL 2 :: Ξ -SI TUTICP UG/ML 22228 <u></u> <u>.</u> Pa TOTICP UG/M ~~~~~ 1.2 1.2 --------------1011CP US/M <u>8</u>88911 MG 1011CP UG/ML 0.00 19 19 19 19 19 10 10 10 0, 150 0, 147 0, 151 0, 149 0, 162 8 151 9 9 e, 168 e, 165 **8**, 168 **8**, 167 **8**, 982 . 12% . 12% . 12% . 12% 0, 139 0, 137 0, 000 e 151 e 151 e 161 e 161 e 161 0, 163 8, 164 8. 164 9. 164 9. 001 M 1011CP UG/M 5. U 2.0 23 2.2 ____ Ξ 33 MS TUTICO UG/ML 0.275 772 0.205 0.205 0.205 0.004 0.267 0.266 0.266 0.265 0.265 0. 239 0. 496 0. 224 0. 149 8, 245 8, 246 8, 246 0.278 0.268 0.268 0.273 0.273 0.255 0.255 0.266 0.267 0.267 0.267 1.255 1.275 1.255 1.255 1.255 0.230 0.236 FE TOTICP UG/M. 0.047 0.047 0.047 0.047 0.047 0.047 0. M3 0. 821 0. 826 0. 940 0. 918 0. M9 0. M9 0. M9 0. M9 0. M9 1. 0.19 0. 0.79 0. 0.79 e. e47 e. 459 e. 849 e. 185 e. 237 101109 16/M £ £ **§**|| 11 11 101 CD 101 CD 102 CD 0.0013 0.0013 0.0014 0.0014 6. 6613 6. 6612 6. 6612 8. 6612 6. 6612 0. MIZ 0. MIZ 0. MIZ 0. MIZ 0. MIZ 6. 6617 8. 6617 9. 6617 **N N** 8. 6012 8. 6012 8. 7012 8. 7013 8. 7013 8. 7013 žŽ e. mi 101 CD 101 CD 15.5 15.4 0.2 17.2 17.6 ***** <u>មើម មើម</u> ខេត្ត មើម 5 5 5 5 5 **6** સે સે સે સે 🗸 22 जे के के के क 62/W 62/W 9. 702 9. 905 9. 913 9. 913 6. 013 6. 013 6. 013 6. 013 8. 000 8. 813 6. 812 6. 812 8. 812 8. 812 **6.** 812 **0.** 812 6. 613 6. 812 0. 801 8. 611 8. 665 8. 669 8. 663 0.01) 0.011 0.011 6. 011 6. 000 0.014 0.011 0.011 0.012 0.012 0.012 0.011 0.011 0.011 0.011 0.011 UG/M 0.012 6.012 6.018 0.007 (. 601 6. 624 6. 619 6. 622 0. A30 0. A55 6. RC3 6. RC1 6. 614 8. 816 8. 692 8 i Ï ŝ ŝ Ë 3 B TUTICP US/ML ₹ ₹ £ ₹ ₹ 88 న న న న త త త త త త N N N N N N N N N N N 9.24 9.24 9.24 9.24 R. TOTICP 2 **2** 2 2 2 2 . = ≥ 9 L 9 ೯ ೫ ನ Time Sample Interval (h) Mumber AVERAGE S. D. rvernge S. d. RVERAGE S. D. RVETOGE S. D. AVENDEE S. D. AVERAGE S. D. RVERAGE S. D. AVERAGE S. D. 10:00 - 121 22:00 18100 19:00 21:00 24100 8.18 13100 151 16:00 ۱

- 50 -