el 2054389 K

Environment Canada Conservation and Protection Environmental Protection Yukon Branch

PERFORMANCE EVALUATION OF THE CITY OF WHITEHORSE SEWAGE TREATMENT LAGOONS

PR 87-17

Regional Program Report No. 87-17

by R. B. Allan and Y. Jeffreys

September 1987

LIBRARY ENVIRONMENT CANADA CONSERVATION AND PROTECTION PACIFIC REGION

ł

ABSTRACT

An evaluation of the Whitehorse sewage lagoon treatment system was conducted by personnel of the Environmental Protection Service (Yukon Branch) from May 26 to June 8th, 1986. Sampling for bacteriological, chemical and toxicity analyses as well as a tracer dye retention study were conducted.

Chemical and bacteriological analyses results indicate a marked improvement in the water quality of the Whitehorse Sewage lagoon since the sludge removal project in September 1985. The percentage of reduction for BOD_5 , COD and NFR were 48, 31, and 87% respectively. The total and fecal coliform bacteria populations have been reduced by two orders of magnitude. In addition, the 96 hr. LC_{50} bioassay results indicated the samples were non-toxic.

Results from the Rhodamine WT tracer dye reveal that the retention times are approximately 60% of the theoretical retention time. There is evidence of short circuiting in all three of the cells studied. It is expected that the short circuiting is facilitated by the shape of the cells and the juxtaposition of the inlets to the outlets within each cell.

TABLE OF CONTENTS

2.0	SAMPLING AND ANALYTICAL METHODS	5
2.1	Water Quality	5
2.2	Tracer Dye Tests	6
3.0	RESULTS AND DISCUSSION	9
		_

3.1	Water Quality	9
3.2	Tracer Dye Tests	15

CONCLUSIONS

22

REFERENCES		24
APPENDIX I	FIELD AND LABORATORY METHODS	25
APPENDIX II	TRACER DYE WORKSHEET AND GRAPHS	30
APPENDIX III	UNPUBLISHED DATA BY W. RANDLE	38
APPENDIX IV	WATER CHEMISTRY DATA COLLECTED IN 1985	43

•

.

•

i

ii

iii

iv

۷

1

Figure		Page
1	WHITEHORSE AREA	2
2	CITY OF WHITEHORSE LAGOONS	3
3	LAGOON DEPTH PROFILE	10
4	LAGOON DISSOLVED OXYGEN PROFILE	11
5	LAGOON TEMPERATURE PROFILE	12
6	FLOW PATTERNS IN CELL 1	16
7	FLUCTUATIONS IN CELL DISCHARGE (CELL 1 & 2)	16
8	STN A DYE CONCENTRATION VS TIME	17
8	STN A CUMMULATIVE DYE RECOVERY	17
9	STN B DYE CONCENTRATION VS TIME	18
9	STN B CUMMULATIVE DYE RECOVERY	18
10	STN C DYE CONCENTRATION VS TIME	19
10	STN C CUMMULATIVE DYE RECOVERY	19

.

LIST OF TABLES

Table		Page
1	DYE INJECTION AND SAMPLING DATA	8
2	WATER QUALITY RESULTS	13
3	STATUS OF DYE AFTER FINAL SAMPLING	20
4	RESIDENCE TIMES OF LAGOON CELLS	20
5	RETENTION TIMES AND TRACER DYE CONCENTRATIONS	21

.

.

ACKNOWL ED GEMENTS

The authors would like to acknowledge the following persons for their contribution in the success of the project: Rob McCandless, EP - Whitehorse for initiation of the project; Dave Chapman and Wayne Randle, EP - Wastewater Technology Centre Burlington, for the technical review of the tracer dye data; Tom Tevendale, EP - Vancouver for his comments on the draft report; Ted Dillistone, City of Whitehorse for his cooperation throughout the project; Steve Nuttall, Stanley Engineering, for the constructive review of the draft report; Ken Wile, EP - Whitehorse, for review of the final draft report; and Betty Sutton and Lois Macara, EP - Whitehorse, for their contribution in preparing the report.

1 INTRODUCTION

The study area is situated in the south central portion of the Yukon Territory (Lat. $60^{\circ}43'N$, Long. $135^{\circ}03'W$). The climate of the area can be described as continental subarctic having a mean annual temperature of $-1.2^{\circ}C$.

The City of Whitehorse has a population of 17,250 (1986). The municipality has 3 wastewater treatment systems, all of these in the form of settling basins. The facility under study is known as the Whitehorse Sewage Lagoons. The areas of Whitehorse which are serviced by the Whitehorse Sewage lagoons are Downtown, Riverdale, Takhini, Hillcrest, and the Marwell Industrial area (Figure 1). The wastewater is predominantly domestic in origin from a contributing population of approximately 14,800 (T. Dillistone, pers. comm.). Two features unique to the Whitehorse wastewater are the extensive use of bleeders during periods of ground frost and the infiltration of ground water into the sewage collection system (T. Dillistone, pers. comm.). These conditions generate a relatively cold and dilute wastewater.

The Whitehorse sewage lagoons are comprised of four facultative cells which have been in operation since March, 1979. The configuration of the treatment facility is shown in Figure 2. Each cell is 6.1 m. deep and has an aqueous volume of 57,100 m³. The cells were designed with suitable depth to allow the addition of aeration at a later date (N. Nuttal, pers. comm.).

The sewage is collected at the Marwell Lift Station (Figure 1) where it is screened through a rotating bar screen and then pumped across the river for 2.5 km. to the lagoons. The lagoon system was presently operating in the parallel mode, but subsequent to October 1985, the valving and wiers were adjusted to allow a series operation in order to increase the residence time. During the fall of 1985, the municipality removed the sludge in cell 1 and 2 using a floating sludge pumping system (Mud Cat) combined with land disposal.

SAMPLING STATIONS ARE INDICATED:

Water Quality: 1(Effluent), 2(Influent) Retention Study: A (Cell #1 decant) B (Cell #2 decant) C (Cell #3 decant)

Typical Cell Dimensions: 124 x 124 x 6.1 m (1xwxd) Embankment Slope: 4:1 On April 3, 1986 the City of Whitehrose obtained a water licence pursuant to the <u>Northern Inland Waters Act</u> allowing them to discharge treated effluent into the Yukon River. In granting this licence, the Yukon Territory Water Board gave conditional approval subject to certain conditions being met. One important requirement is that the licencee must achieve a non-toxic (96 hr. LC_{50} Bioassay) effluent by January 1, 1989. Also the licencee must complete studies by January 1, 1987, on the feasibility of i) wastewater flow reduction, ii) heating the sewage iii) pretreating the sewage, and iv) increasing the retention times in the sewage lagoons.

Information collected by Environmental Protection in recent years, indicated that the effluent was toxic to fish (unpub. data in EPS regional files). In addition, studies completed by R. Allan in July 1985 indicated a short circuiting problem in the lagoons, and sludge accumulations of 7200 and 5700 m³ in cells 1 and 2 respectively. Based on these sludge accumulations, the sludge production rate was calculated to be 0.65 m³/day/1000 persons which is high compared to other communities (Bethell, 1981).

Subsequent to the 1985 summer's work by Environmental Protection and prior to the granting of the Water Licence, the City of Whitehorse attempted to improve the residence time in the lagoons by i) removing sludge and ii) altering flow patterns within the cells from parallel to series.

This report is an evaluation of the Whitehorse wastewater treatment system to 1) determine the cell retention times and flow characteristics, and 2) evaluate the effectiveness of the modifications to the sewage lagoon system.

This report presents the effluent quality data, sludge volumes and cell retention times.

٠.

2. SAMPLING AND ANALYTICAL METHODS

2.1 Water Quality

Samples for water chemistry analysis for the Whitehorse Sewage Lagoon facility were collected from two stations. The influent was collected from the Marwell Lift Station (Station 2) and the effluent, was collected from the final discharge point of the lagoon system (Station 1). Both stations utilized a 24 hour Isco composite sampler. Samples were collected and preserved in accordance with the procedures summarized in Appendix 1. Samples were shipped for analysis to the Environmental Protection laboratory in West Vancouver, B.C. Water samples for bioassay analysis were collected from the effluent discharge in 3 five gallon plastic jerry cans. The bioassay samples were sent to the Environmental Protection aquatic toxicity laboratory in North Vancouver in order to conduct a 96 hour LC_50 acute lethality bioassay.

Influent and effluent parameters measured in the field were pH, dissolved oxygen (DO), conductivity, and temperature. The pH was measured using a Fisher 1200 pH meter. The DO was measured using a YSI Model 57 dissolved oxygen meter and both temperature and conductivity measurements were taken using the YSI Model 33 conductivity meter.

Depth, temperature, conductivity and DO profiles were determined in situ for each of the 4 lagoon cells. Nine sampling points per cell were identified by grid stakes located on the berm perimeters. The sampling was performed from an inflatable boat. The conductivity, temperature and DO measurements were taken at depths 1, 3, and 5 m below the surface at 4 or 5 points per cell. Depth measurements were taken at all 9 sampling points using a hand-held Morrow fish ray DR-100 depth finder.

- 5 -

Parameters determined in the Whitehorse laboratory were biochemical oxygen demand (BOD_5) and fecal and total coliform counts (membrane filtration) (Department of Environment, 1979). The BOD_5 samples were collected from both the influent and effluent stations in plastic containers. Distilled water was used to make dilution concentrations of 5%, 7.5%, 10% and 12.5% for the influent and 7.5%, 10%, 12.5% and 15% for effluent. Three samples for each dilution were prepared along with three controls per station. The DO levels were measured initially and after five days of incubation at 20 C using the YSI Model 57 dissolved oxygen meter.

Coliform samples were collected at the influent and effluent stations in 6 oz. sterile jars. The influent samples were diluted to 10^{-30} , 10^{-4} , 10^{-5} the and effluent dilution factors were 10⁻⁵. 10-4. 10-6. and Tot al and fecal coliforms were analyzed using the membrane filtration technique. Total coliforms were analyzed on Difo M-ENDO agar after an incubation period of 24 hours at 35 +/- 0.5°C. Fecal coliform densities were analyzed on Difo M-FC Agar medium after incubation at $44.5 + - 0.2^{\circ}$ C for 24 hours. Both analyses were started within 6 hours of the sample collection. Only plates containing between 10 and 100 colonies were considered to accurately represent the sample.

Tracer Dye Tests

The lagoon influent flowrate is controlled by a pump at the Marwell Lift Station. During each pump cycle, the pump operates for about 15 minutes and rests for about 20 minutes. However, depending on sewage loading, these intervals vary throughout the day. Flow measurements were taken on May 30 using a Marsh-McBurney current meter. Measurements were taken from the centre of the decant pipe in the manhole at 2 minute intervals. Station A and Station B data was collected over 2 and 1 1/2 pump cycles respectively. Total discharge characteristics were calculated from the rate of flow data collected

- 6 -

and compared with the daily pumpage volumes recorded by the City at the Marwell lift station. The water level was also recorded at Station A during each velocity reading to determine if any fluctuations in water level occur during the pump cycle.

The characteristic retention times of the seage lagoon cells were determined using Rhodamine WT tracer dye. Rhodamine WT was the most suitable tracer dye for this study because it has a low photochemical decay rate and it is not appreciably absorbed by the soil particles. Samples were analyzed using a Model 10 Fluorometer calibrated with 100, 10 and 1 PPB standards. Wastewater collected at Station A prior to dye injection was used as the dilution water in the preparation of standards for Station A and B. New standards were prepared for the analysis of Station C data since dye from Stations A and B had penetrated into Cell 3. Dilution water was collected from Station C prior to injection.

A 500 ML slug of 100% Rhodamine WT dye was injected into each of the influent manholes of cells 1, 2, and 3 on May 26 (cells 1 and 2) and June 2nd (cell 3). The sampling stations, A, B, and C, were located at the decant manholes of cells 1, 2 and 3 respectively (Fig. 2). Programmable Isco wastewater samplers were set up at each station to collect samples on a predetermined sampling intervals. These intervals varied from 10 minutes to 4.5 hours depending on the station. Table 1 shows a summary of the dye injection and sampling intervals used at each station. No tracer data was collected for lagoon cell #4.

֥

TABLE 1 DYE INJECTION AND SAMPLING DATA

Station	Cell	Injection PT	Injection Time	Sample Interval
A	١	Influent manhole from Marwell lift	0920 hr. 86.5.26	0930 86.05.25 30 min 0900 86.05.28
				1000 86.05.28 60 min 0900 86.05.30
				1000 86.05.30 4 hrs. 0900 86.06.02
В	2	STN A	1133 hrs. 86.5.26	1200 86.05.26 30 min 0900 86.05.28
				1000 86.05.28 60 min 0900 86.05.30
				1000 86.05.30 4.5 hr 0900 86.06.02
с	3	STN B	1005 hrs. 86.06.03	1010 86.06.03 10 min 1540 86.06.03
				1600 86.06.03 50 min 0900 86.06.04
				1000 86.06.04 60 min 0900 86.06.05

- 8 -

•

3. RESULTS

3.1 Water Quality

Results of water depth determinations are shown in Figure 3. Although sludge has already begun accumulating in cell 1, the data indicates that the sludge removal project conducted in September 1985 was successful. In a survey conducted prior to sludge removal May 30, 1985; average water depths were as follows; Cell 1 - 4.7 m, Cell 2 - 5.0 m, Cell 3 and 4 - 5.8 m.

Dissolved oxygen levels in three of the cells are given in Figure 4. All measurments at the 1 meter depth and below are less than 1 mg/L dissolved oxygen, confirming that anaerobic conditions are present. It was noted that oxygen was abundant (< 5 mg/L) in the upper 0.5 m layer and abruptly decreased below this layer.

Figure 5 shows the temperature profiles for all the lagoon cells. The cells indicate a general trend of increasing temperatures throughout the lagoon system at the water surface due to solar radiation input. Each cell shows thermal stratification which is encouraged by the cubed shape of the cells and the juxtaposition of the decant points. The inlet and outlet for all cells are located at 4.0 m depth and approximately 60 m apart.

The results of the water quality analysis are presented in Table 2. The reduction of NFR, BOD_5 , and COD in the effluent is 87%, 48%, and 31% respectively. The total and fecal coliform bacteria populations have been reduced by 2 orders of magnitude. In addition, the 96 hr. LC_{50} bioassay results were non-toxic. All of this data indicates improved treatment in the sewage lagoon system. This may be due to the benefits of sludge removal and the operation of the cells in series fashion in combination with the time of the year.

Total Depth = 6.4m

Note: Dissolved oxygen was found in concentrations 5 mg/l in the upper 0.5 m layer.

Fig. 5 Lagoon Temperature Profile · .

- 12 -

PARAMETER	STN. 1	STN. 2	STN. 1	STN. 2
(mg/1 unless noted)	Influent	Effluent	Intiuent	Effluent
	May 20	May 20	Sept. 8	Sept. 8
Temperature °C	8.0	8.0	13.0	11.5
Dissolved Oxygen	4.0	1.4	2.3	3.3
pH Insttu	7.9	8.1	7.6	7.4
Lab			7.9	8.1
Cond. (umhos/cm)				1
Ins îtu	267	260	305	290
Lab	382	400	420	425
Color (units)	20	20	20	20
Turbidity (F.T.U.)	20	3.5	4.5	2.3
Nonfilterable Residue	53	7	26	14
Filterable Residue	185	211	235	229
Biolog. Oxygen Demand ₅	51	27	63	35
Chemical Oxygen Demand	133	92		
Total Organic Carbon	23	23	23.2	12.2
Total Inorganic Carbon	24	33	31.8	26.0
Total Alkalînîty	124	139	140	161
Total Hardness	115	112	126	131
Total Phosphate	2.55	1.7	2.38	2.32
Nitrite	<.005	.007	<.005	.007
Nitrate	<.005	.007	<.005	.007
Ammonia	8.1	6.8	6.93	8.59
Sulfate	40	30	34	23
Chloride	16.8	14.3	17.7	18.4
Surfactants	3.03	2.32	1.81	1.42
Phenols	.079	.079	.07	.02
Ofls and Greases	14.0	0.33	30.5	2.0
BIOassay 96 hr. LC ₅₀		Non toxic		Non toxic
Total Collforms				
(#/looml)	2.2×10 ⁶	2.0×104	4. ⁰ ×10 ⁴	$5,0 \times 10^{5}$
Fecal Collforms	-	1.	. .	
(#/i00mi)	6.6×10 ⁵	2.5×10 ⁴	6. ⁵ x10 ⁴	5.0×10^{3}

Table 2 WATER CHEMISTRY DATA COLLECTED AT THE WHITEHORSE SEWAGE LAGOONS, 1986

1	1			1
PARAMETER	STN. 1	STN. 2	STN. 1	STN. 2
(mg/l unless noted)	Influent	Effluent	Influent	Effluent
Extractable Metals	<u>May 20</u>	<u>May 20</u>	_Sept. 8	Sept. 8
	1	1 · · · · · · · · · · · · · · · · · · ·		
AL	.56	• • • • •	•19	•1
As	<.05 ²	<.05 ²	<.05	<.05
в	.089	•116	•12	.119
Ва	.058	•032	•042	•041
Be	<.001	<.001	<.001	<.001
Ca	25.4	25.2	28.0	29.7
Cd	<.002	•002	<.002	<.002
Co	<.005	<.005 ²	<.005	<.005
Cr	.011	<.005	<.005	<.005
Cu	.07	•042	•053	•03
Fe	.681	•333	•348	•384
Mg	11.4	11.4	13.2	13.5
Mn	.06	•071	•083	•106
Мо	.006	<.005	•008	<.005
Na	21.3	20.7	21.9	20.7
NI	<.02	<.02	<.02	<.02
Р	3.1	3.0	2.77	2.95
РЪ	.03	<.02	<.02	<.02
Sb	<.05	<.05	<.05	<.05
Se	<.05	<.05	<.05	<.05
ST	4.6	4.5	4.4	4.6
Sn	<.01	•03	•02	•02
Sr	162	•175	•204	•212
TÎ	.014	•018	.014	•007
V	<.005	<.005	<.005	<.005
Zn	.048	•029	•035	.016
	1			
	j			
	1]	
	j			
	j]			
].		1	
	1			

•

điĤ

田州

TABLE 2 WATER CHEMISTRY DATA COLLECTED AT THE WHITEHORSE SEWAGE LAGOONS, 1986

3.2 Tracer Dye

The flow measurements for cells 1 and 2 can be seen in figures 6 and 7 respectively. Figure 6 illustrates that the pulsating influent into cell 1 from the Marwell Lift Station has little effect on the discharge rate at the Stn A decant point. Figure 7 further shows that pump fluctuations are completely dampened out by station B and therefore a constant rate of flow was assumed for tracer dye calculations.

The tracer dye washout curves for cells 1, 2 and 3 are shown in figures 8, 9 and 10 respectively (for more detail see Appendix III). Each cell has a characteristic peak within approximately 10 - 30 minutes after injection followed by a sharp decrease, and then a steady levelling off. This suggests that short circuiting is present in all cells. The peak loadings varied considerably from 22 ppb in cell 1 to 300 and 120 ppb in cells 2 and 3, respectively. since the highest degree of short circuiting should occur in the cell with the highest solids loading, the major peak in cell 1 was probably missed by the sample sequence at Station A (W. Randall, prs. com.). The tracer concentrations were calculated from 2 days (cell 3) to 7 days (cells 1 and 2). The concentrations were then converted to cummulative "mls" recovered using the conversion factor, 1 ppb = $0.001 \text{ m}/\text{m}^3$. The background levels in Stations B and C were accounted for separately. The background in cell 2 was considered to be a percent of the volume of dye which had passed into B whereas the background in cell 3 as taken to be a constant of 4 ppb because it was studied four days after injections into cells 1 and 2.

The final volumetric dye balance is shown in Table 3. Recoveries of 96 and 99% were achieved in cells 2 and 3, respectively. In contrast, only 79% of the dye was recovered in cell 1. This, again is most likely due to a slug of dye escaping the cell undetected during the first hour after tracer injection.

The tracer residence times for the cells are shown in Table 4. The mean residence time corresponds to a 50% tracer dye recovery. The percent tracer was based on the total estimated percent recovery over the sampling time. Cell 1 has the highest mean residence time (5.3 days) and cell 2 has the lowest (3.8 days).

DYE RECOVERED (%)

- 18 -

STATION A: (7 DAYS AFTER INJECTION) TOTAL DYE ADDED = SLUG INJECTION TOTAL DYE RECOVERED DYE REMAINING IN CELL(2.2 PPB) TOTAL DYE ACCOUNTED FOR	(mL) 500 285 113 <u>392</u> 102 mL	(%) 100 57 22 79 21 %
STATION B: (6.75 DAYS AFTER INJECTION) TOTAL DYE IN = SLUG + DYE RECOVERED AT A TOTAL DYE RECOVERED DYE REMAINING IN CELL(4.5 PPB) TOTAL DYE ACCOUNTED FOR UNACCOUNTED DYE	(mL) 785 503 249 <u>752</u> 33 mL	(%) 64 32 <u>96</u> 4 %
STATION C: (1.95 DAYS AFTER INJECTION) TOTAL DYE IN = SLUG + BACKGROUND IN C (4PPB) TOTAL DYE RECOVERED DYE REMAINING IN CELL(8.4PPB) TOTAL DYE ACCOUNTED FOR UNACCOUNTED DYE	(mL) 726 246 474 720 6 mL	(%) 49 50 <u>99</u> T %

CELL VOLUMES: CONVERSION FACTOR: 1 PPB = 0.001 mL/M³ $A=53650 M^3$ B=55220 M³ C=56420 M³

TABLE 4: OBSERVED RESIDENCE TIMES OF LAGOON CELLS

、· • •

	CELL A	CELL B	CELL C
MINIMUM RESIDENCE TIME	40 MIN	87 MIN	60 MIN
10% EFFLUENT HAS RESIDENCE TIME LESS THAN	18 HRS	2.5 HRS	4.8 HRS
20%	1.5 DAYS	12 HRS	18 HRS
30%	2.5 DAYS	1.5 DAYS	1.6 DAYS
40%	3.8 DAYS	2.3 DAYS	2.5 DAYS
EFFLUENT MEAN RESIDENCE TIME (50%)	5.3 DAYS	3.8 DAYS	4 DAYS

.

TABLE 3: STATUS OF DYE AFTER FINAL SAMPLING

The longer retention period calculated for cell 1 relative to the other cells seems unlikely since cell 1 has the lowest aqueous volume due to the higher solids loading and sludge accummulation and the fluctuating influent flow rate will tend to transport the injected dye in the turbulent plume directly to the decant without thorough mixing (W. Randle, pers. comm.). It would therefore seem reasonable that the amount of dye observed at Station A was underestimated during the first sampling hour. This unrecorded slug of dye would result in overestimating the actual retention times.

In W. Randle's review of the data (Appendix III), he was able to correct the observed data to minimize the error caused by the infrequent sample period during the initial hour after dye injection. The estimated hydraulic retention times are shown in Table 5. The data indicates that the corrected retention times are about 60% of the theoretical hydraulic retention times. This demonstrates that the lagoons are not completely mixed and that short circuiting of wastewater treatment occurs.

TABLE 5: RETENTION TIMES AND TRACER CONCENTRATIONS

STN	Design	Observed	Corrected
	Retention	Retention	Ret ent i on
	(days)	(days)	(days)
А	5.1	5.3	3.03
В	5.3	3.8	3.19
С	5.4	4.0	3.40
D	-	-	<u>3.40</u> (estimated)
Tot a	1		13

- 21 -

CONCLUSIONS

The most important parameters for municipal sewage systems in northern communities are dissolved oxygen, toxicity and pathogenic bacterial contamination (Bethall, 1981). This study has revealed that the water quality of the Whitehorse sewage treatment facility is improved from last year, following the sludge removal project in September, 1980. Chemical analysis shows a larger percentage reduction in BOD5, COD, and NFR; bacteriological results indicate total and fecal coliform reductions by two orders of magnitude; the bioassay results showed a non-toxic effluent. The successful results are attributed to the conversion of the cell set up from parallel to series, the sludge removal project (cells 1 and 2) and the seasonal factor of increased biological activity during the spring and summer.

The flow rate measurements demonstrate that the frequent pumping cycles from the Marwell Lift station have a minimal effect on discharges between the cells. The tracer dye washout curves illustrate the major peak concentration to occur within 10-30 minutes after the slug injection. It is evident that the rate of sampling should be very frequent (ie. continuous) during the first two hours to record the major peak tracer concentration.

The duration of tracer dye monitoring varied between cells. Cell 1 and 2 were studied for 7 days whereas cell 3 was only studied for 2 days due to time constraints. All cells have demonstrated some short circuiting. The observed mean residence time for cells 1 and 2 were 5.3, and 3.8 days respectively. However, when the data is corrected to account for the dye escaping during the first hour of mixing, the corrected retention times are 3.03 days for cell 1, 3.19 days (cell 2), and 3.40 days (cell 3). The corrected mean retention times are 60% of the design hydraulic retention times and demonstrate that wastewater flow is short circuiting in the treatment cells. The high degree of short circuiting in all cells might be due to the configuration of the inlets and outlets. Short circuiting could be minimized through several ways such as the installation of submerged deflection baffles, altering the decant pipe elevations, or introducing mechanical mixing within the cells. Any combination of the above would increase the efficiency of the wastewater treatment facility possibly resulting in a reduction in maintenance costs through less frequent sludge removal and an improvement in the quality of the effluent being discharged into the environment.

REFERENCES

- Bethell, G. <u>Start-up Characteristics and Performance Evaluation of an</u> <u>Anaerobic Sewage Lagoon North of 60°</u>, EPS Regional Program Report No. 81-9, March 1981.
- Department of Environment, Department of Fisheries and Oceans, <u>Laboratory Manual</u>, Environmental Protection Service, Fisheries and Marine Service (1979).
- Dillistone Ted, Municipal Engineer, City of Whitehorse, June 4, 1986 (personal communication).
- Environment Canada, <u>Pollution Sampling Handbook</u>, Pacific Region Laboratory Services, Fisheries Operations and Environmental Protection Service (1976).
- Ferguson, K.D., <u>A Performance Evaluation of the Village of Lake</u> <u>Cowichan</u> Sewage Treatment lagoons EPS Regional Program Report; 78-4, June 1978.
- Griffin, M.L., Freeze, Nichols, <u>Model Studies of the Dead Storage</u> <u>Within Sediment Ponds</u>, 1983 symposium on Surface Mining, Hydrology, Sedimentology and Reclamation, Pg. 113 - 119.
- Metcalf & Eddy, <u>Wastewater Engineering: Treatment, Disposal and Reuse</u>, McGraw-Hill, Boston, 1979.
- Randle, Wayne, <u>Whitehorse Lagoon Tracer Studies</u>, Wastewater Technology Centre, Conservation and Protection, Burlington, Ontario Project #11 July 30, 1986 (unpublished).
- Stanley and Associates Engineering Ltd, <u>City of Whitehorse Wastewater</u> Treatment Project, Pre-Design Report, November, 1976.

APPENDIX I

- 25 -

.

FIELD AND LABORATORY METHODS

.

٠

WATER SAMPLE COLLECTION, PREPARATION AND ANALYSIS METHODS APPENDIX I TABLE 1

2

PARAMETER	DETECTION LIMIT	COLLECTION AND PREPARATION PROCEDURE ¹	ANALYTICAL PROCEDURE	METHOD SECTION ²
Temperature	0.1°C	In situ measurement.	YSI Model 33 Conductivity Meter	
Conduct [v] ty	0.2 umhos/cm	In situ measurement. Lab measure- ment was taken from the same sample as NH3 below.	YSI Model 33 Conduct[vity Meter Radiometer Conduct[vity Meter (CDMC)	044
Dissolved Oxygen	1.0 mg/1	In situ measurement. The Instru- ment was calibrated in the field under water saturated air condi- tions.	YSI Model 57 Dissolved Oxygen Meter	
Н		Small aliquots of sample were measured soon after collection. Instrument was calibrated using 7.0 buffering solution.	Potent lometric	080
Non-Filterable Residue (NFR)	5.0 mg/1	Sample was filtered through a pre- weighed glass fibre filter with a 1.5 um pore size.	Filtration, Drying And Weighing Of Residue On Filter	104
Filterabie Residue (FR)	10•0 mg/1	Same sample as NH ₃ .	Filtration, Drying And Weighing Of Filtrate	100

WATER SAMPLE COLLECTION, PREPARATION AND ANALYSIS METHODS (continued) TABLE 1 APPENDIX I

PARAMETER	DETECTION LIMIT	COLLECTION AND PRESERVATION PROCEDURE ¹	ANALYTICAL PROCEDURE	METHOD SECTION ²
Ammonia NH ₃ -N	0.005 mg/1	Single samples collected in 2 litre linear polyethylene containers. Each container was rinsed 3 times with sample before it was filled. No preservatives. Stored at 4°C.	Phenol Hypochlorite-Colori- metric-Automated	058
Colour	5 (colour units)	Same sample as NH ₃ .	Platinum-Cobalt Visual Compar- ison	040
Turbid1ty	0.1 (FTU)	Same sample as NH3.	Nephelometric Turbidity	130
Total Alkallnity	1.0 mg/l as CaCO ₃	Same sample as NH ₃ .	Potentiometric Titration	006
Total Phosphate T PO4-P	0.005 mg/ł	Same sample as NH3.	Acid-persuiphate, Autoclave Digestion	086
Nitrite NO ₂ -N	0.005 mg/l	Same sample as NH3.	Dlazotization-Colorimetric- Automated	070
N1trate N0 ₃ -N	0.01 mg/1	Same sample as NH3.	Cadmium Copper Reduction Colorimetric Automated	072
Sulphate S04	1.0 mg/1	Same sample as NH3.	Barlum Chloranilate -UV Spectrophotometric	122
Chloride Ci	0.5 mg/1	Same sample as NH3.	Thiocyanate-Combined Reagent- Colorimetric	024

- 27 -

METHOD SECT I ON² 300 Plasma (ICAP) combined with Optical Emission Spectrometer (OES) ANALYTICAL PROCEDURE Inductively Coupled Argon COLLECTION AND PRESERVATION Single samples collected in 200 ml linear polyethylene bottles. Each bottle was rinsed 3 times Preserved to a pH <1.5 using with sample before filling. 2.0 ml concentrated HNO3. PROCEDURE¹ DE TECT I ON LIMIT 0.005 0.005 0.005 0.10 0.001 0.002 0.005 0.002 ¶∕f 0.001 0.001 0.001 0.002 0.001 0.05 0.05 0.02 0.05 0**.**05 0.05 0.01 0.01 0.1 0.5 0.1 PARAMETER Extractable ۰. Metals

WATER SAMPLE COLLECTION, PREPARATION AND ANALYSIS METHODS (continued) TABLE 1 APPENDIX 1

WATER SAMPLE COLLECTION, PREPARATION AND ANALYSIS METHODS (continued) TABLE 1 APPENDIX 1

METHOD SECT I ON ²	350	330	340					
ANALYTICAL PROCEDURE	Hydrlde Generation - ICAP	Graphite Furnace Atomic Absorption Spectrophotometry	Flame Atomic Absorption Spectro- photometry	The sum of the ICAP results for Mg x 4.116 and Ca x 2.497 reported as mg/l CaCO ₃				
COLLECTION AND PRESERVATION PROCEDURE ¹	Same sample as metals.	Same as sample metals. Same sample as metals. Same sample as metals. Same sample as metals.	Same sample as metals.	Same sample as metals.	la (1976).	vironment (1979).		
DETECTION LIMIT	0.00050	0.0005 0.001 0.0005 0.0005	0.01 mg/1	0.030 mg/1 as CaC03	n Environment Canac	n Department of Env		
PARAMETER	As	P D C d	×	Total Hardness	1 As described i	2 As described I		

APPENDIX II

TRACER DYE WORKSHEET

AND RAW GRAPHS

.

AHITEHORSE SEWAGE LAGOON DYE RETENTION WORKSHEET

2

CUMM DYE RECOVERY #DYE-C MINUS BACKGROUND 5.502 5.962 6.269 7.007 7.745 8.233 8.483 8.483 8.748 8.748 9.041 9.305 9.570 9.835 10.085 10.615 10.879 11.590 11.952 0.000 0.003 0.007 0.007 0.008 0.014 0.348 1.964 2.995 3.928 4.834 11.144 11.771 12.105 12.258 12.398 12.607 #DYE-B 15.540 15.976 16.862 17.289 17.674 18.336 18.661 19.390 19.758 20.122 20.439 20.762 21.086 21.335 21.590 22.295 0.038 13.502 14.783 16.434 18.980 22.832 0.022 12.190 13.330 13.493 13.522 14.003 15.181 21.841 22.077 22.527 23.163 23.407 23.643 #DYE-A 0.000 2.219 2.513 2.878 3.172 3.247 3.486 3.574 3.855 4.166 4.468 4.753 5.026 5.299 5.592 5.886 6.171 6.456 6.750 7.035 7.942 8.260 8.588 **8.906** 9.225 9.544 9.855 0.165 1.142 1.445 . 854 7.321 7.631 0.484 0.840 CUNN DYE RECOVERY (2) #DYE -B 0.023 2.576 15.443 16.822 17.353 18.356 18.816 19.225 19.626 20.027 20.429 21.390 21.849 22.259 22.677 23.099 23.438 24.470 24.779 13.763 13.985 14.043 15.903 17.854 23.784 25.105 25.514 14.586 16.321 24.131 25.953 26.308 647 8.586 9.130 9.436 9.757 6.998 7.792 10.105 10.425 10.746 11.066 11.372 11.679 0.688 3.446 4.435 5.396 6.636 12.334 2.654 12.960 13.448 #DYE-A #DYE-C 0.006 0.033 0.064 0.124 0.180 0.237 0.298 2.360 6.121 13.211 13.685 13.894 4 103 4.298 4.590 20.829 17.872 19.277 23.766 25.129 26.493 27.961 29.429 30.856 32.282 36.603 38.155 39.708 11.302 12.938 16.126 50.825 52.419 4.390 5.858 6.235 17.431 55.177 14.532 17.720 19.273 57.223 0.000 4.636 9.271 11.096 54.202 55.712 CUMM DYE RECOVERY (ML) #DYE -B 77.215 91.779 94.078 96.125 06.949 109.247 0.113 0.196 68.816 69.819 69.923 70.216 72.932 79.514 81.603 84.111 86.764 89.272 00.137 02.143 04.651 11.295 13.385 115.495 117.188 18.922 20.656 22.349 123.895 25.525 27.572 29.766 31.542 33.235 52.881 98.131 47.181 48.783 50.524 52.126 53.728 55.330 58.395 61.668 63.270 45.649 60.066 22.177 26.982 34.992 38.962 42.932 56.862 64.802 66.056 67.240 69.469 1.799 30.604 33.181 0.167 0.620 0.898 1.184 1.491 3.441 17.231 58.424 71.489 #DYE-A #DYE-C 0.028 0.514 72.951 DYE RECOVERY PER TIME (ML) 1.468 1.468 1.42b 1.468 .426 .426 .636 0.000 0.378 .196 0.440 1.405 .510 1.426 1.363 1.363 .426 .552 .552 .594 .594 . 594 . 552 .510 4.636 1.636 468 .825 .468 . 594 . 552 .594 .825 #DYE -B 2.006 2.006 2.006 2.507 2.507 2.507 2.298 2.048 2.048 2.048 2.048 2.070 1.672 1.734 2.048 2.298 0.084 62.685 5.934 1.003 0.104 0.293 4.283 2.298 2.090 2.507 2.654 2.507 2.507 1.734 . 692 .546 0.113 2.716 . 630 2,048 . 194 . 692 171 4.945 1.806 3.622 2.577 3.970 3.970 2.716 1.532 1.602 .602 .602 . 602 1.532 .602 .975 #D/E-C 0.028 0.139 0.153 0.279 0.286 0.306 1.950 8.358 5.433 1.811 1.741 1.672 . 602 .532 . 254 .184 .184 .045 .045 1.463 STN C 3.4 (PPB) .00 0.05 0.06 0.08 0.08 0.08 0.08 0.08 0.07 0.08 0.10 0.11 0.11 0.11 0.13 0.15 0.15 0.15 0.19 0.16 0.17 0.19 0.20 0.22 0.01 0.04 0.21 DAYS C 300 28.4 0.5 13 20.5 12.7 9.8 9.6 9.6 9.6 9.8 8.3 8.3 8.1 7.4 9.8 4.8 1.4 12 10 11 12 2 12 2 8.1 0.5 Ξ 10.1 STN B (PPB) Ξ Ξ 0.10 0.16 0.19 0.23 0.27 0.29 0.33 0.35 0.37 0.37 0.44 0.48 0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.02 0.04 0.08 0.12 0.14 0.21 0.25 0.46 0.66 0.69 0.41 0.73 0.7 æ DAYS 1.8 5.7 2.1 6.7 6.5 6.8 6.8 6.8 6.8 7.6 7.6 7.6 7.2 6.8 6.5 2 7.4 7.6 ... 7.4 7.6 8.5 7.2 22.1 22.1 8.7 STN A 8.7 (PPB) DAYS A 0.15 0.17 0.19 0.03 0.05 0.07 0.09 0.22 0.24 0.26 0.28 0.32 0.36 0.40 0.47 0.49 0.51 0.55 0.57 0.59 0.63 0.65 0.67 0.01 0.11 0.13 0.44 0.61 0.69 .72

- 31 -

-

WHITEHDRSE SEWAGE LAGOON DYE RETENTION WORKSHEET

(%)

CUMM DYE RECOVERY #DYE-B #DYE-C 24.914 25.365 25.800 25.800 26.218 MINUS BACKGROUND 6.228 16.786 18,262 18,750 26.669 27.104 27,538 27.973 4.766 5.532 17.775 28,391 28.825 29.227 29.661 30.062 3, 373 4.069 27.302 27.518 27.756 27.988 26.154 26.615 26.852 27.076 28.210 29.093 29.306 29.519 30.385 24.512 25,100 25.302 25.497 25.930 26.373 28.660 28.877 29.730 29.944 30.166 30.625 30.850 31.308 24.895 25.704 28.431 31.082 31.538 24.291 24.691 23. 881 24. 081 #DYE-A 17.028 CUMM DYE RECOVERY (X). 14.960 15.262 16.042 16.315 16.558 16.793 17.255 17.490 17.729 17.964 11.747 12.049 12.397 13.878 14.150 14.423 14.687 15.787 IB. 190 18.417 IB. 652 19.130 19.373 19.617 19.864 20.099 12.707 3.001 13.311 3.605 8.891 20.334 20.582 20.825 #DYE -B 26.985 27.286 27.596 29.388 29.698 30.350 30.676 31.022 31.361 31.687 32.013 32.677 33.016 33.342 33.668 34.006 34.658 35.310 35.636 35.962 36.300 36.639 37.003 37.349 27.913 28.185 28.486 28.787 29.088 30.024 37.705 58.056 38.411 23.519 24.286 25.080 25.832 26.584 27.322 28.047 29.502 30.227 32.029 32.815 33.584 34.369 35.138 36.676 37.445 18.630 19.605 20.441 21.207 21.987 22.753 28.771 38.983 1.240 16.610 35.891 58.214 59.735 10.504 12.009 42.744 43.480 #DYE-A #DYE-C 5.635 72.115 74.800 77.695 78.933 80.212 81.576 82.792 85.142 87.449 88.645 89.819 101.671 60.243 61.984 63.536 55.005 66.557 68.025 69.389 70.752 73.437 83.967 86.274 90.952 92.085 93.259 94.455 00.496 76.311 96.867 98.084 99.321 04.125 58.733 95.651 CUMM DYE RECOVERY (ML) #DYE -B 150.118 151.748 155.112 161.652 165.079 168.338 179.810 185.013 139.566 142.429 145.438 146.942 148.488 153.378 58.434 163.386 166.709 174.920 178.180 81.502 83.195 86.747 88.523 36.432 37.978 140.924 43.933 156.804 160.064 170.031 171.661 176.550 90.278 192.054 173.291 34.927 147.512 175.692 78.175 83.051 87.926 93.150 98.025 02.204 106.035 09.936 113.766 117.597 121.428 25.398 129.159 132.920 136.612 140.233 143.855 151.134 154.686 160.146 164.075 167.919 171.847 179.453 183.381 87.226 91.071 194.916 198.677 202.521 206.199 210.044 217.399 213.721 #DYE -B #DYE-A #DYE-C DYE RECOVERY PER TIME (ML) .510 1.384 1.238 1.280 1.217 .175 . 133 .175 .196 .175 .196 . 552 .468 468 .363 .363 .363 .363 . 175 . 133 . 175 .196 .217 .217 .238 .510 .741 .552 .321 .175 .175 238 .546 1.630 l.630 1.692 .630 . 630 .588 1.692 . 630 .630 . 692 . 630 .630 . 630 .818 1.546 . 588 . 358 1.504 1.504 1.504 1.630 1.734 1.734 . 630 . 630 . 630 . 692 . 692 .776 . 755 . 504 . 734 . 504 #DYE-C 5.461 3.928 3.928 3.928 3.928 3.928 5.224 4.876 4.179 3.831 3.900 3.970 3.622 3.622 3.657 3.622 3.552 3.761 3.928 3.845 3.845 3.845 3.845 3.678 3.845 4.876 5.224 4.876 3,831 3.831 3.831 3.761 3.761 3.691 3.761 3.678 3.678 10.8 10.8 10.6 10.5 10.4 9.8 8.8 9.2 8.8 8.8 11.2 9.2 9.2 9.2 9.2 9.2 STN C 14 15 15 14 12 Ξ Ξ Ξ Ξ 11.4 10.4 9.4 9.4 9.2 9.4 9 (PPB) 0.28 0.32 0.35 0.39 0.42 0.52 0.59 0.63 0.66 0.77 0.77 0.77 0.84 0.84 0.87 0.91 0.94 0.45 0.49 0.56 1.04 . 08 1.12 16 25 25 25 23 33 37 45 50 . 62 DAYS C .41 -54 8.1 7.8 7.6 8.3 7.6 7.2 7.2 7.4 7.8 7.8 7.8 8.3 7.8 7.8 8.1 7.8 7.8 7.8 7.8 7.8 B.1 7.2 8.1 8.7 8.3 8.5 STN B (PPB) 0.96 0.98 0.77 0.79 0.85 0.85 0.87 0.87 0.87 0.94 1.00 1.02 1.04 0.91 1.39 .46 . 48 DAYS B . 41 . 44 5.9 6.5 6.5 5. 9 6.5 6.6 5.9 5.8 5.6 5.8 5.8 7.27.28.3 6.3 7.2 6.5 5.6 5.6 5.7 5.7 5.6 5.9 7.4 7.4 6.1 5.6 5.7 5.6 5.4 5.4 5.4 STN A (PPB) 1.07 æ 0.76 0.78 0.80 0.82 0.84 0.88 0.90 0.92 0.94 0.97 0.99 1.03 1.05 1.13 1.19 1.22 1.28 1.28 1.28 1.30 1.32 1.40 1.42 1.01 1.38 .17 . 44 1.47 DAYS

WHITEHDRSE SEWAGE LAGODN DYE RETENTION WORKSHEET

...

3																																					
RECOVERY Ckground	#DYE-C	30.881	31.283	31.684	32.068	32.436	32.820	33.188	33.556																												
NINUS BA	#DYE-B	31.765	31.984	32.198	32,422	32.631	32,839	33.039	33.242	33.441	33.646	33.846	34.044	34.237	34.422	34.596	34.773	34.953	35, 133	35.166	35.556	35.950	36.349	36.748	37.138	37.508	37.884	38.259	38.629	38.997	39.356	39.701	40.051	40.401	40.747	41.097	41.432
(X) (X)	#DYE-A	21.068	21.307	21.551	21.794	22.042	22.289	22.541	22.788	23.053	23.292	23.531	23.770	24.009	24.248	24.487	24.735	24.982	25.234	25.524	25.809	26.069	26.316	26.535	27.076	27.445	27.814	28.183	28.544	28.905	29.257	29.610	29.954	30.289	30.625	30.961	31.296
YE RECOVE	#DYE -B	38.766	39.113	39.456	39.811	40.154	40.488	40.814	41.144	41.470	41.804	42.134	42.464	42.790	43.108	43,426	43.747	44.065	44.378	44.688	45,315	45.950	46.593	47.237	47.872	48.482	49.101	49.719	50.329	50.940	51.541	52,126	52.720	53.313	53.907	54.500	55,077
CUMM D	#DYE-C	44.232	44.967	45.703	46.422	47.124	47.843	48.545	49.247																												
RY (NL)	#DYE-A	105.341	106.537	107.754	108.970	110.208	111.445	112.704	113.942	115.263	116.459	117.654	118.850	120.046	121.241	122.437	123.674	124.912	126.171	127.618	129.044	130.345	131.582	132.673	135.379	137.225	139.071	140.917	142.721	144.525	146.287	148.049	149.769	151.447	153, 125	154.803	156.481
YE RECOVE	#DYE -B	193.830	195.565	197.278	199.054	200.768	202.439	204.069	205.720	207.349	209.021	210.672	212.322	213.952	215.540	217.128	218.737	220.325	221.892	223.439	226.573	229.749	232.967	236.185	239.361	242.411	245.504	248.596	251.647	254.698	257.706	260.632	263.599	266.566	269.533	272.500	275.384
CUNN D	#DYE-C	221.160	224.837	228.515	232.109	235.619	239.213	242.723	246.234																												
TINE (ML)	#DYE-A	1.217	1.196	1.217	1.217	1.238	1.238	1.259	1.238	1.321	1.196	1.196	1.196	1.196	1.196	1.196	1.238	1.238	1.259	1.447	1.426	1.301	1.238	1.091	2.706	1.846	1.846	1.846	1.804	1.804	1.762	1.762	1.720	1.678	1.678	1.678	1.678
VERY PER	#DYE -B	1.776	1.734	1.713	1.776	1.713	1.672	1.630	1.651	1.630	1.672	1.651	1.651	1.630	1.588	1.588	1.609	1.588	1.567	1.546	3, 134	3.176	3,218	3.218	3,176	3, 051	3.092	3.092	3,051	3.051	3,009	2.925	2.967	2.967	2.967	2.967	2.884
DYE RECO	#DYE-C	3.761	3.678	3, 678	3.594	3.510	3,594	3.510	3,510			•																									
STN C	(PPB)	6	8.8	8.8	8.6	8.4	8.6	8,4	8.4																												
	DAYS C	1.66	1.70	1.75	1.79	1.83	1.87	1.91	1.95	-4																											
STN B	(PPB)	8.5	8.3	8.2	8.5	8.2	80	7.8	7.9	7.8	69	7.9	7.9	7.8	7.6	7.6	7.7	7.6	7.5	7.4	7.5	7.6	7.7	7.7	7.6	7.3	7.4	7.4	7.3	7.3	7.2	7	7.1	7.1	7.1	7.1	6.9
	DAYS B	1.52	1.54	1.56	1.58	1.60	1.62	1.64	1.66	1.69	1.71	1.73	1.75	1.77	1.79	1.81	1.83	1.85	1.87	1.89	1.94	1.98	2.02	2.06	2.10	2.14	2.19	2.23	2.27	2.31	2.35	2.39	2.44	2.48	2.52	2.56	2.60
STN A	(PPB)	5.8	5.7	5.8	5.8	5.9	5.9	9	5.9	6.3	5.7	5.7	5.7	5.7	5.7	5.7	5.9	5.9	9	6.9	6.8	6.2	5.9	5.2	4.3	4.4	4,4	4.4	4.3	4.3	4.2	4.2	4.1	*	*	4	4
	DAVS A	1.51	1,53	1.55	1.57	1.59	1.61	1.63	1.65	1.67	1.69	1.72	1.74	1.76	1.78	1.80	1.82	1.84	1.86	1.88	1.90	1.92	1.94	1.97	2.03	2.07	2.11	2.15	2.19	2.24	2,28	2.32	2.36	2.40	2.44	2.49	2.53

- 33 -

WORKSHEET
RETENTION
DYE
LAGOON
SEWAGE
WHI TEHORSE

10 31.959 14 32.295 14 32.613 12 33.251 12 33.251 12 33.570	31.959 31.959 32.295 32.932 33.570 33.570 33.570 34.199 34.199 35.374 35.374	0 31.959 5 32.295 2 32.613 2 32.570 2 33.570 3 34.199 3 34.199 7 34.501 7 34.501 7 35.574 5 35.080 5 35.080 5 35.080 6 35.944 7 36.523 8 35.337 9 37.337	31. 959 32. 295 32. 295 32. 295 33. 570 33. 570 34. 595 35. 944 35. 597 35. 597 35. 597 35. 597 37. 59
	727675271538132		2222 2222 2222 2222 2222 2222 2222 2222 2222
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5	55.23 56.81 56.81 57.38 57.38 59.62 59.62 59.67 59.67 59.67 59.67 59.67 59.67 59.67 59.67 59.67 59.67 59.67 59.67 59.51 59.67 59.51 50.510		55. 239 55. 235 55. 23
281.171 151.175 284.076 161.473 286.918 163.067 289.759 164.662 289.759 164.662 292.559 167.856 295.359 167.850	281.151 151.473 284.076 161.473 289.759 164.662 292.559 164.662 292.559 167.850 298.117 169.402 298.117 169.402 300.792 170.996 500.792 170.996 505.974 173.975 505.574 173.975 505.574 173.975 505.574 173.401 511.114 176.870	281.151 151.473 284.076 161.473 289.759 164.662 292.5559 164.662 292.5559 164.662 292.5559 167.850 298.117 169.402 500.792 170.996 503.383 172.507 505.974 173.975 505.974 173.975 505.573 172.401 511.114 176.870 505.574 173.775 508.553 172.401 511.112 178.296 513.621 178.296 518.636 181.191 521.102 182.617 528.499 186.686	281.151 151 151 177.775 154.662 289.759 164.662 289.759 164.662 292.5539 167.850 298.117 169.402 295.359 167.850 505.974 175.975 505.974 175.975 505.974 175.975 505.974 175.975 505.974 175.975 505.974 175.975 505.974 175.946 151.114 176.870 505.974 175.254 179.722 515.545 190.182.545 190.182 555.645 190.287 555 192.055 545 190.287 195.065 545 190.714 555 545 190.555 545 190.555 545 190.714 555 545 190.714 555 545 190.555 555 545 190.555 555 555 555 555 555 555 555 555 55
1.678 2.84 1.594 2.86 1.594 2.86 1.594 2.97 1.594 2.97	1.678 2.84 1.594 2.89 1.594 2.86 1.594 2.99 1.594 2.99 1.510 3.00 1.468 3.00 1.468 3.01 1.426 3.01 1.426 3.01 1.426 3.01 1.426 3.01 1.426 3.01 1.426 3.01	1. 678 2.84 1. 594 2.89 1. 594 2.89 1. 594 2.89 1. 594 2.89 1. 594 2.89 1. 510 3.00 1. 426 3.01 1. 542 3.01 1. 553	1. 578 1. 579 1. 426 1. 426 3.00 1. 572 1. 572
2.842 2.842 2.842 2.800 1.5 2.800 1.5	2.842 2.842 2.842 2.849 2.571 2.571 2.571 2.571 2.571 2.571 2.571 1.5 2.571 2.571 1.5 2.571 2.571 1.5 2.571 1.5 2.571 1.5 2.571 2.571 1.5 2.571 2.571 2.575 2.571 2.5755 2.5755 2.5755 2.5755 2.5755 2.5755 2.5755 2.5755 2.5755 2.5755 2.	22 22 25 25 25 25 25 25 25 25	No. N
6.7 6.7		55555555555555555555555555555555555555	รรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรรร
	6.2 6.2 6 7 6 7 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7		
2	2.74 0.6 2.98 6.4 3.02 6.2 3.10 6.1 3.19 6.2	2.98 2.98 3.19 3.23 3.23 3.44 3.35 3.44 3.44 3.44 3.44	22.22 24.22 25.66 26.65 27.45

.

- 34 -

WHITEHORSE SEMABE LABOON DYE RETENTION WORKSHEET

(%)			_																
RECOVERY	CKGROUND	#DYE-C	: : : : :																
UMN DYE I	MINUS BA	#DYE-B	55,179	56.249	57.244	58,154	58.966	59.757	60.761	61.573	62.378	63.164	63.942						
J	RY (X)	#DYE-A	43.630	44.771	45.912	47.053	48.127	49.134	50.107	51.047	51.853	52.759	53.631	54.437	55.209	55.981	56.719	57.457	58.162
	YE RECOVE	#DVE -B	82,290	84.434	86.465	88.308	90.076	91.806	93.837	95.567	97.297	98.990	100.682						
	CUMM D	#DYE-C																	
	(NL) Y	#DYE-A	218,150	223.856	229.561	235.267	240.637	245.671	250.537	255.236	259.263	263.794	268.157	272.185	276.044	279.904	283.596	287.287	290.811
	<i>IE RECOVER</i>	#DYE -B	411.452	422.171	432.326	441.541	450.379	459.030	469.185	477.835	486.486	494.948	503.411						
	CUMM DY	#DYE-C																	
	(INE (ML)	#DYE-A	5.538	5.705	5.705	5.705	5.370	5.034	4.866	4.699	4.027	4.531	4.363	4.027	3.860	3.860	3.692	3.692	3.524
	VERY PER 1	#DYE -B	10,907	10.719	10.155	9.215	8.839	8.651	10.155	8.651	8.651	8.462	8.462						
	DYE RECO	#DYE-C																	
	STN C	(PPB)																	
		DAYS C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																
	STN B	(PPB)	5,8	5.7	5.4	4.9	4.7	4.6	5.4	4.6	4.6	4.5	4.5						
		DAYS B	4.87	5.06	5.25	5.44	5.62	. 5.81	6.00	6.19	6.37	6.56	6.75			÷.			
	STN A	(PPB)	3.3	3.4	3.4	3.4	3.2	M	2.9	2.8	2.4	2.7	2.6	2.4	2.3	2.3	2.2	2.2	2.1
		DAYS A	4.32	4.49	4.65	4.82	4.99	5.15	5.32	5.49	5,65	5.82	5.99	6.15	6.32	6.49	6.65	6.82	6.99

•

٠

- 35 -

DYE CONCENTRATION (ppb)

DYE CONCENTRATION (ppb)

0

0

APPENDIX III

UNPUBLISHED DATA BY W. RANDLE, WASTEWATER TECHNOLOGY CENTRE, BURLINGTON, ONTARIO

,

•

.

WHITEHORSE LAGOON TRACER STUDIES:

1. STUDY METHODOLOGY:

The tracer washout curves for cells #1, #2, and #3 (figs. 8 to 10), show evidence of short-circuiting for each of the cells. Since the highest degree of short circuiting is expected for the cell with the highest solids loading, you may have missed the major peak at Station A occurring between 10 minutes and 40 minutes after injection into the influent of cell #1. Therefore, a sampling interval of perhaps 5 to 10 minutes for the first 30 minutes may have been warranted.

The data for cell #3 indicates that station C was sampled for 2 days. A mean residence time of 4 days was predicted by extrapolating from the plot of %Recovery verses time (fig.10). This method is valid only if you assume that the residence time characteristics of cell #3 are the same as either #1 or #2. A longer sampling period at station C would have avoided the need to extrapolate the data.

No tracer data for the effluent of cell lagoon #4 was collected. Obtaining tracer data for cell #4 would have been useful as it would have given an indication of the overall treatment performance of the 4 lagoons in series.

For future studies, if possible, a tracer study should be implemented on all 4 lagoons by first injecting a slug of tracer at the influent to cell #1 and sampling at 5 to 10 minute intervals for the one to two hours to ensure detection of shortcircuiting tracer at the effluent of cell #4. Consequently, samples should be collected for about 2 theorectical HRT's. (approximately 11 days). This ensures that no truncation error will result in the washout curve due to early termination of the sampling program. In any case, at the end of 2 HRT's the concentration of tracer in the samples will likely be nearing the sensitivity limit of the detection technique.

2. DATA ANALYSIS

Table 1 summarizes the results obtained from analysis of the tracer data for Whitehorse.

STN.	theoretical HRT (days)	%Tr	%Tr*	estimated HRT (days)	Cmax theory (ppb)	Cmax measured (ppb)	
A	5.1	46	73.4	3.03	11.1	22.1	
В	5.3	43	95.5	3.19	16.9	300	
С	5.4	21	77.9	3.40	15.3	120	
NOTE :	q(mean flow)	= 7.3	m3/min				

The theorectical HRT was estimated by dividing the volume of the cell by the mean flow through the cell.

Tracer recovery estimates were calculated in two ways. The estimates %Tr were based on the area under the tracer washout curves as calculated using the trapezoidal rule. In addition, as a major problem with estimates for tracer recovery is that they vary with the length of time of sampling, tracer recovery estimates, %Tr*, were made which included truncation error estimates. (Terminating the sampling program results the in truncation of the tracer distribution curve and, consequently, lower values for %Recovery.) Truncation error estimates were calculated by fitting a mathematical model to the "tail" of the tracer washout curves, and estimating the areas under the tail from the time of truncation to infinity. The equation is of the form:

A(trunc)=Co*(HRT)*exp[-t(trunc)/HRT]

where the model parameters HRT, and Co are estimated from the slope and intercept, respectively, of the washout curve tail from time "t" to time "t(trunc)".

Calculation of mean hydraulic retention times was based on the method in your paper (ie., from the plot of %Recovery versus time). However, instead of of assuming 100% tracer recovery to develop the plots, the %Tr* values (which included estimates of the truncation errors) were used. As a result, the estimates in Table 1, above, are lower than the mean HRT estimates reported in your paper.

The mean retention time for cell #3 was calculated using the ...model parameters HRT and Co in the general tracer wash-out curve

٠.

equation :

$C=Co^*exp(-t/HRT)$

Predicted concentrations were calculated from t=1.95 days to t=6.99 days. The concentrations were converted to cumulative "mls" recovered using your conversion factor (lppb=.001ml/m3), and then to % tracer recovered based on the total estimated %Recovery over infinite time (ie. %Tr* values). The mean retention time, as reported in Table 1, was the time corresponding to 50% tracer recovery.

Assuming a total working volume for cell #1 of 53 650 m^3 , 500 ml injection of Rhodamine WT, and complete mixing, the expected maximum tracer concentration was calculated as follows:

Cmax(theory)=Tm/V

where, Tm=mass of tracer injected, micro grams(ug)

V=total working volume of lagoon, litres(1)

(Note : specific gravity of Rhodamine WT dye=1.19)

 $Cmax(theory) = \frac{500m1 \times 100\% \times 1.19 \times 10^{6}}{53\ 650\ m3 \times 1000\ l/m3} ug/g$

Cmax(theory)=11.1 ug/1 or 11.1 ppb

In Table 1, the values for Cmax(theory), as calculated above, are compared to the values for Cmax(meas), the maximum measured concentrations from the tracer washout curves.

DISCUSSION:

The estimated mean retention times in Table 1 are about 60% of the the theoretical cell residence times, demonstrating that the lagoons are not completely mixed. Comparisons of Cmax(theory) to Cmax(meas) indicate that short-circuiting of tracer is taking place in all three cells. Further, the results indicate that cell #1 exhibits a lower degree of short-circuiting than cells #2 and #3 (i.e. for $\#1 \, \text{Cmax(meas)/Cmax(theory)=2}$, for #2 Cmax(meas)/Cmax(theory)=18, for #3 Cmax(meas)/Cmax(theory)=8). However, this doesn't make sense as cell #1 has not only the highest solids loading but also the lowest estimated mean retention time. Therefore, as mentioned earlier, we suspect that a major peak in tracer concentration occurred at Station A between 10 minutes and 40 minutes following tracer injection.

The incomplete tracer recovery estimates for cells #1 and #3 may be due to several factors: (a) poor flow estimates, (b) inaccurate estimates of the amount of tracer injected, or (c) poor fluorometer calibration. Incomplete tracer recoveries are the rule rather than the exception in tracer studies.

The high degree of short-circuiting in all cells might be due to the configuration of the inlets and outlets (ref. fig.2 of your report). For example, the flow in Cell #1 probably follows the path shown in fig. A, below.

The incoming flow will proceed along a path of least resistance, that is, directly from inlet to outlet as outlined by the dotted lines in figure A. A configuration such as that shown in figures B or C would lower the degree of short-circuiting by ensuring greater distribution of flow throughout the cell before exiting through the outlet to cell #2. Although only suggestions, the addition of some baffling is worth considering in view of the high degree of short-circuiting in all cells.

Finally, a short comment on pulsating influent flows. In our opinion this type of flow would tend to increase the degree of short-circuiting within the lagoon. The non-uniformity of the flow would probably transport the tracer directly to the effluent without adequate mixing.

APPENDIX IV

WATER CHEMISTRY DATA COLLECTED IN 1985

Table I WATER CHEMISTRY DATA COLLECTED AT THE WHITEHORSE SEWAGE LAGOONS, 1985

PARAMETER	STN . 1	STN. 1	STN. 4	STN. 2	STN
(mg/l unless noted)	Influent	Influent	Effluent	Effluent	Efflu
			All cells	NE cell	NW CE
	March 20	July 17	March 20	July 17	July
Temperature °C	6.0	13.5	1.0	13.0	
Dissolved Oxygen	4.2	9.2	1.6	0.6	
	7.65	7.8	7.1	7.6	
tab	7.5	7.57	7.1	7.07	, <i>1</i>
Cond. (umbos/cm)	,		, • •	,,	1
insitu	240	290	240	320	50
Lab	440	425	385	145	1
Color (units)	40	425	20	40	, т-т- , л
Turbidity (E.T.U.)	31	2.8	15	+0	4 1
Nonfilterable Residue	49	39	4	15	I I
Filterable Residue	277	400	200	300	80
Biolog. Oxygen Demands	75	18	43	38	44
Chemical Oxygen Demand	150	115	50	150	15
Total Organic Carbon	30.7	33.4	9.9	37.2	34
Total Inorganic Carbon	47.4	39.5	39.4	47.9	49
Total Alkalinity	156	140	144	152	15
Total Hardness	105		106	131	• -
Total Phosphate	3.6	1.4	2.0	2.5	2
Nitrite	•005	•075	<.007	.016	•0
Nitrate	<.01	•014	<.01	<.005	<.0
Ammonia	12.9	7.4	9.18	9.2	9
Sulfate	35	34	31	34	34
Chloride	12.6	19.6	12.5	21.1	20
Surfactants		•11		•79	
Phenols	.039	.016	•056	•035	•
Oils and Greases	23	4	5.	<20	4
Bioassay 96 hr. LC ₅₀			67.4%		
Total Coliforms					
(#/looml)	2.9×106		1.2x10 ⁵		~
Fecal Coliforms					
(#/100m1)	8.8×10 ⁶		2.6x10 ⁵		

•,

PARAMETER	STN. 1	STN. 4	
(mg/l unless noted)	INFLUENT	EFFLUENT	
Extractable Metals	March 20	March 20	
AI	•21	<.05	
As	<.05	<.05	ĺ
В	•005	•03	
Ba	•041	•03	
Be	<.001	<.001	
Ca	22•1	22.3	
Cd	<.002	<.002	
Co	<.005	<.005	
Cr	<.005	<.005	
Cu	•055	•025	
Fe	•276	•244	
Mg	11.7	12.0	
Mn	•089	.078	
Мо	•005	<.005	
Na	22.2	17.2	
NĪ	<.02	<.02	
Р	4.08	2.61	
Pb	•02	<.02	
Sb	<.05	<.05	
Se	<.05	<.05	·
SI	.9	• 8	
Sn	•02	<.01	
Sr	•151	• 154	
ТІ	•004	.008	
٧	<.005	<.005	
Zn	•059	•024	

TABLE 1 WATER CHEMISTRY DATA COLLECTED AT THE WHITEHORSE SEWAGE LAGOONS, 1985 (cont.)