ENVIRONMENT CANADA CONVERSATION AND PROTECTION ENVIRONMENTAL PROTECTION PACIFIC AND YUKON REGION

QUINSAM COAL DEVELOPMENT

A MONITORING REPORT ON THE EFFLUENT AND RECEIVING ENVIRONMENT - 1988/1989 -

Regional Program Report 89-05

Вy

A. Redenbach

SEPTEMBER 1989

LIBRARY ENVIRONMENT CANADA CONSERVATION AND PROTECTION PACIFIC REGION

ABSTRACT

Concerns expressed by the Commission of Inquiry (acid mine drainage, metals, sediment, nutrients and eutrophication) are addressed by monitoring receiving waters in the vicinity of the Quinsam Coal Mine and mine effluent. Receiving water quality is similar to the baseline data. All parameters are less than the Canadian Water Quality (CCME) Guidelines established to protect aquatic life. Periphyton is phosphorus limited throughout but becomes more pronounced with distance downstream of Middle Quinsam Lake. Periphytic biomass is generally low with the exception of Station 5A which exceeds the B.C. Water Quality Criterion for the protection of aesthetics and recreation. Current monitoring data is usually lower than QCC's baseline data.

Effluent monitoring of the Settling Pond 4 discharge indicates that dissolved zinc and total dissolved phosphorus occassionally exceed permitted levels, while iron exceeds the permit levels consistently. Settling Pond 4 discharges have significantly higher levels of dissolved aluminum and iron than the surface flows in the pond. At Middle Quinsam Lake Road, however several parameters (conductivity, sulphate, hardness, nitrate and dissolved zinc) occassionally exceeded the CCME guidelines or were elevated relative to baseline data and/or applicable CCME guidelines. Discharges from Settling Pond 4 which collects all surface drainage from the 2N open pit are less than 5% expected from precipitation data collected concurrently.

RESUME

Les soucis exprimés par la Commission d'Enquête (drainage minier acide, métaux, sédiments, éléments nutritifs, et eutrophication) ont été adressés par l'échantillonnage et la surveillance des eaux réceptrices près de la mine de charbon Quinsam et de son effluent. La qualité des eaux réceptrices est similaire aux données de base. Tout les paramètres sont moins élevées que les lignes directrices de Qualité des Eaux Canadiennes (CCME) établies pour la protection de la vie aquatique. Le périphyton est limité par le phosphore partout mais devient plus prononcé avec la distance en aval du lac Middle Quinsam. La biomasse périphytique est générallement basse, excepté pour la station 5A où le critère de qualité des eaux de la Colombie Britannique pour la protection de l'esthétique et récréation, est Les présentes données d'échantillonnage sont habituellement plus dépassé. basses que les données de base de la mine de charbon Quinsam.

échantillons d'effluent de l'étang Les de sédimentation #4. indiquent que le zinc dissous et le total du phosphore dissous sont occasionnellement au dessous des niveaux permis, tandis que le fer dépasse les limites constamment. L'étang de sédimentation #4 décharge des niveaux significativement plus élevés d'alumimium dissous et de fer que les taux de l'influent. À la route Middle Quinsam Lake, par contre, plusieurs paramètres dureté, (conductivité, sulphates, nitrates, et zinc dissous) occasionnellement dépasse les lignes directrices du CCME ou sont élevés relativement aux données de base et/ou applicables au CCME. Les décharges de l'étang #4, qui collecte toute les eaux de drainage superficielles de la carrière 2N, sont moins de 5% des prédictions de précipitation basées sur les données ramassées simultanément.

- iii -

TABLE OF CONTENTS

ABST	RACT		i
RESU	MB		ii
TABL	BOF	CONTENTS	iii
	List	of Figures	iv
	List	of Tables	v
1.0	INTR	DDUCTION	1
2.0	STUD	Y AREA	2
3.0	METH	ODS AND MATERIALS	5
4.0	RESU	LTS	8
	4.1	Detection Limits	8
	4.2	Receiving Water Quality	8
	4.3	Effluent Quality	14
	4.4	Periphyton	19
	4.5	Fall Lake Survey	24
5.0	DISC	USSION	27
	5.1	Comparison of EP Data on Effluent, Receiving Water	
		Quality and Biological Parameters (April 1988 -	
		March 1989)	27
	5.2	Comparison of Selected EP Monitoring Data (April 1988 -	
		March 1989) to QCC Baseline Data (1983 - 1984)	30
	5.3	Comparison of QCC Effluent Discharge Volumes and	
		Predicted Discharges from Settling Pond 4	
		(April 1988 - March 1989)	33
	5.4	Conclusion	35
REFE	RENCE	5	37
ACKNO	WLED	GEMENTS	38
APPE	NDIX	A - Quinsam Coal Corporation - Baseline Data (1983 - 1984)	
APPEI	NDIX I	B - Quinsam Coal Corporation - PE 7008 (Stage 1 Operation)	

- iv -

LIST OF FIGURES

FIGURE		PAGE
1	Quinsam Drainage Basin Stream Sampling Locations	3
2	Effluent and Receiving Water Monitoring Stations for the Quinsam Coal Development	4

LIST OF TABLES

v

TABLE		PAGE
1.	Summary of Parameters, Laboratory, Instruments and Sample Preservation	6
2	Heavy Metals in Water, at or Below the Detection Limits	7
3	Receiving Water Quality - Station 1 (Quinsam River 1 km u/s Middle Quinsam Lake)	9
4	Receiving Water Quality - Station 2 (Flume Creek 1 km u/s Middle Quinsam Lake)	10
5	Receiving Water Quality - Station 5 (Quinsam River 25 m d/s Middle Quinsam Lake)	11
6	Receiving Water Quality - Station 5a (Quinsam River .5 km d/s Middle Quinsam Lake)	12
7	Receiving Water Quality – Station 8 (Quinsam River 3 km d/s Middle Quinsam Lake)	13
8	Effluent Quality - 2N Pit Water	15
9	Effluent Quality - Settling Pond 4 - Inflow	16
10	Effluent Quality - Settling Pond 4 - Outflow	17
11	Effluent Quality - Settling Pond 4 - Middle Quinsam Lake Road Culvert	18
12	Periphyton - Station 1 (Quinsam River - 1 km u/s Middle Quinsam Lake)	20
13	Periphyton - Station 5 (Quinsam River 25 m d/s Middle Quinsam Lake)	21
14	Periphyton - Station 5a (Quinsam River .5 km d/s Middle Quinsam Lake)	22
15	Periphyton - Station 8 (Quinsam River 3 km d/s Middle Quinsam Lake)	. 23
16	Hydrolab (Surveyor II) Profile - Middle Quinsam Lake - Site 1 - (19 October, 1988)	25

- vi -

•

LIST OF TABLES

TABLE		PAGE
17	Receiving Water Quality and Phytoplankton - Middle Quinsam Lake (Site 1) Water Quality Profile (19 October, 1988)	26
18	Comparison of Selected Receiving Water and Effluent Data Means – (April 1988 – March 1989)	28
19	Comparison of Selected EP Monitoring Data Means (April 1988 – March 1989) and QCC Baseline Data (January 1983 – October 1984)	31
20	Comparison of Selected Parameters Showing Trends in the Effluent Stream (April 1988 – March 1989)	34

B

1.0 INTRODUCTION

Quinsam Coal Corporation (QCC) began construction of the 2N Pit and Settling Pond in the fall of 1987. Mining activities followed in December 1987, when the B.C. Ministry of Environment and Parks, Waste Management Branch (MOEP) issued a permit (PE 7008) for the release of coal mine effluent into the surface waters of the Quinsam drainage. The permit limits mining activities to the 2N and 3N pits and requires that the company regulate and monitor the effluent discharge and monitor the water quality of the receiving environment, both surface and groundwater. The permit is staged and requires an increase in monitoring activities as the mine expands in size.

Federal and provincial government agencies in December 1987, decided to monitor the effluent and receiving waters during the initial mining phases, to ensure that acid generation, release of heavy metals, nutrient enrichment and sedimentation did not adversely affect the Quinsam drainage. The information (effluent quality and quantity) would also be used to determine permit levels for discharges into more sensitive areas, i.e. Long Lake, that may be mined at some later date.

The Quinsam Technical Review Committee, established at the recommendation of the Inquiry Commission, requested Environmental Protection (EP), MOEP and QCC to report receiving water and effluent data for the initial phase of mining. This report presents effluent and receiving water quality and biological data collected by EP from April 1, 1988 to March 31, 1989. Data comparisons are made to baseline data collected by Quinsam Coal Corporation in the winters of 1982/83 and 1983/84.

2.0 STUDY AREA

The Quinsam drainage is located in the coastal-Douglas fir biogeoclimatic zone on the eastern slopes of Vancouver Island and covers an area of 210 km². The Quinsam River flows northeast, joining the Campbell River three km upstream of its estuary (Figure 1). The study area is located in the upper half of the Quinsam drainage at an elevation of 300m, approximately 20 km southwest of the Quinsam-Campbell confluence. The Quinsam drainage, having been logged in the 1950's, has a well established second growth. Annual precipitation is estimated at 100-150 cm and is concentrated in the fall and winter months (October to March).

Flows in the Quinsam River are regulated by two British Columbia Hydro dams located at the outlet of Upper Quinsam and Wokas lakes and diverted by a third dam 1.9 km upstream of Middle Quinsam Lake. Minimum flows of 0.3 and 1.7 cms are maintained upstream of Middle Quinsam Lake and at the outlet of Lower Quinsam Lake, respectively. The remaining flow is diverted via Gooseneck Lake into the Campbell system where it is used for hydroelectric generation. All other flows in the Quinsam drainage are not regulated.

Stream stations shown in Figures 1 and 2 were established prior to the start of mining. Water quality and biota were monitored at two control stations the Quinsam River (station 1) and Flume Creek (station 2), both upstream of the Quinsam Coal Development. Receiving water quality and biota were also monitored at two stations downstream of the development (Quinsam River - stations 5 and 8). In the summers of 1987, 88 and 89, an additional station, station 5A, was located 0.5 km downstream of Middle Quinsam Lake, primarily to monitor the response of periphytic growth.

Effluent was monitored before (2N Pit - sump and Settling Pond 4 - inflow) and after (Settling Pond 4 outflow and at Middle Quinsam Lake Road culvert) treatment in the settling pond. The point of compliance for the company's permit is the discharge from Settling Pond 4.

FIGURE 1 QUINSAM DRAINAGE BASIN - STREAM SAMPLING LOCATIONS

3.0 METHODS AND MATERIALS

Water and effluent samples were collected at approximately two week intervals from April 1988 to June 1988. Through the remainder of the summer and fall, sampling was at approximately 4 - 6 week intervals. During the winter, the efforts were further reduced to quarterly sampling. Prior to the fall overturn (18 October, 1988) a single survey was conducted on Middle Quinsam Lake at Site 1. Single grab water samples were collected from the surface and the top and bottom of the thermocline. Triplicate grab samples were collected at all stream and river stations. Effluent was sampled as a single grab sample, while triplicate samples of the receiving water were collected. Results are presented in the accompanying tables.

Temperature, pH, conductivity and dissolved oxygen were measured in situ with either a Hydrolab Model 4041 or a Surveyor II model. A summary of field methods, sample preparation and preservation, and parameters is presented in Table 1. Dissolved metal and phosphorus samples were filtered in the field. All samples were kept on ice and in the dark and delivered to the EP Laboratory in West Vancouver within 24 hours.

Periphyton samples were scraped from the leading and upper surfaces of 10 - 25 cm cobbles taken from depths ranging from 0.1 - 0.4 m. The only exception to this was at station 5A where samples were scraped directly from the sandstone bedrock at depths of less than 0.1 m. Each sample was a composite of scrapings from three separate cobbles. Samples were replicated 8 times at each station in order to reduce variability to acceptable levels. The samples were split three ways; species identification and enumeration, nitrogen and phosphorus ratios and total pigments. Total pigment samples were filtered and frozen while samples for N:P ratios were kept on ice and in the dark. Samples for species identification were preserved with Lugol's solution.

River flows were calculated from readings taken from existing staff guages at stations 1 and 5. In addition, flows were measured at Stations 1, 5 and 8 using a Marsh-McBirney Model II velocity meter.

- 5 -

	LABORATORY	FIELD PREPARATION
Temperature Dissolved Oxygen Conductivity pH Turbidity Alkalinity Residues Sulphate Nitrate Nitrate Ammonia Total Phosphorus Total Dissolved	Hydrolab 4041 Hydrolab 4041 Hydrolab 4041 Hydrolab 4041 EPS Lab EP Lab EP Lab EP Lab EP Lab EP Lab EP Lab EP Lab EP Lab EP Lab	 in situ measurement in situ measurement in situ measurement in situ measurement
Total Metals * Total Metals * Total Pigment	EP Lab EP Lab EP Lab	 acidify with conc HN03 filter through 0.45 u Sartorius cellulose nitrate filters then acidify with Conc HN03 filter through GFC glass fiber filters and freeze

TABLE 1SUMMARY OF PARAMETERS, LABORATORIES, INSTRUMENTS AND
SAMPLE PRESERVATION

* Metals are routinly analyzed by Inductively Coupled Argon Plasma techniques. To achieve lower detection limits for Al, Cd, Cu and Pb, these metals are analyzed by Graphite Furnace and Atomic Absorption methods.

> Sample dates were: 13 and 26 April 1988 11 and 26 May 1988 6 June 1988 18 July 1988 16 August 1988 18 October 1988 30 November 1988

13 March 1989

Several metals, consistently below the detection limit, are reported separately in Table 2.

TABLE 2 HEAVY METALS IN WATER AT OR BELOW THE DETECTION LIMITS

METAL	ICAP	DETECTION	LIMIT
Antimony (Sb)		0.05	
Beryllium (Be)		0.001	
Nickel (Ni)		0.02	
Selenium (Se)		0.05	
Vanadium (V)		0.005	

4.1 Detection Limits

Table 2Heavy Metals in Water, At or Below theDetection Limit

4.2 Receiving Water Quality

- a) Table 3 Station 1 Quinsam River 1 km u/s Middle Quinsam Lake
 - A Physical and Chemical
 - B Dissolved Metals
 - C Total Metals
- b) Table 4 Station 2 Flume Creek 1 km u/s Middle Quinsam Lake
 - A Physical and Chemical
 - B Dissolved Metals
 - C Total Metals
- c) Table 5 Station 5 Quinsam River 25 m d/s Middle Quinsam Lake A Physical and Chemical
 - B Dissolved Metals
 - C Total Metals

d) Table 6 - Station 5A - Quinsam River .5 km d/s Middle Quinsam Lake

- A Physical and Chemical
- B Dissolved Metals
- C Total Metals
- e) Table 7 Station 8 Quinsam River 3 km d/s Middle Quinsam Lake
 A Physical and Chemical
 - n inysical and onemica
 - B Dissolved Metals
 - C Total Metals

(QUTREAM RIVER - 1 km u/s MIDDLE QUTREAM LAKE)* STATION 1 RECEIVING WATER QUALITY

		EI.	NBLE 3	RECE	VING WY	TER QUN	E	STATIO		(QUINES	AM RIVE	<u> 8 - 1 ka</u>	u/s M	IDDLE O	UTINSAM	IAUCE)			
								A PHY	SICM.		Ę								
TIM	FLOW	deg (8	pHI rel u	uS/cm	NCI NCI	VIK	so4	MLTR	ä	f	JTURB	UNE	Si	301	â	ы. С	110 3	E E
	ļ	1			ŗ				ļ										
88/04/13	.4/	1.4	11.2	0 ' - r	43.7		19.8	0 I 7 7	0. v 0 v	5.25	27.2	 	19.2		<uz< td=""><td>. 200</td><td>150.</td><td>200.)</td><td><00.></td></uz<>	. 200	150.	200.)	<00.>
88/04/26	ç			0 u - r	τ. τ. τ.		P. 91		(). () ()	n	nc	÷	21.12	9.1 1.0		700.>	670.	<00. >	800.
11/cn/88	.4.	0.11	л. Л	n • - r	· · · ·	, , ,	1.02	- r • r				÷÷	0.12 C.12	0 U 1 7		700.	CTD.		
97/CN/88	e u	-	0 1 0	о о ~ г	40.4	0.1) 	5.12	· · ·		41.0	0.14 0.75	÷:	20.3	<u>.</u>	-004		110	cnn.>	cou. >
88/06/06	ñ,) - T	0.UL	× •	0.14	- - -	70.0	7.7	0.0	0. 65 1. 10	0.02	÷:	1.12	г.4	<	<	110.	c00.^	200. >
88/01/18	66.	18.8	8.8	2.7	40.0	0.1>	71.0	7.0	\$. 0.0	31./	31.1	.13	20.9	1.4	<.002	<.002	.014	۲00.>	<00.>
88/08/16	.59	17.4	8.8	7.8	45.7	<1.0	21.2	2.3	<5.0	32.3	32.3	<.10	22.8	1.5	<.002	.003	.020	<005	<.005
88/10/18	1.11	11.6	12.2	7.6	47.0	1.6	21.0	2.0	<5.0	33.7	33.7	<.10	20.8	1.4	<.002	<.002	.008	<.005	<.005
88/11/30	.67	5.3		7.6	41.8	1.2	18.5	2.0	<5.0	30.3	30.3	<.10	19.3	1.8	<.002	<.002	.026	<005	<.005
89/03/13	.62	3.0	12.8	7.5	42.5	1.9	18.2	2.0	<5.0	42.7	42.7	<.10	19.1	1.8	<.002	<.002	.049	<.005	.006
	;	:	L 6	r t		•	6	, ,	ļ			÷		ر بر					
GRAND MEAN	i i				1. cf		70.7	7. 7	0.0	34.2	34.2	i :	20.6	۹. ۱ ۱	700	700-	170-		900-
STU ERROR	-21	5.4	1.6		2.0	ų.	1.1	ŗ	•	4 -3	4.3	-03	1.2	ŗ	100-	100-	-013	•	.003
								8	ISSOLVI	KT2M (13	SI								
DATE	V	S	B	Ba	B	8	8	ð	Fe	£	£	£	Я	Sr	ŗ	2u	G	Mg	Na
5 L/ VU/ 80	900	20 1	10 、	100 ×	1000 /	1005	200	2000 /	200	100	5	10005	20 1	010	C00 /	C00 v	с Ч	٢	a
CT/40/00	070.			100.	1000				100.	100-	1 5.	. 0006		710.	700.	700.		. •	ņ
00/04/40	cTn-	5.		Tnn.	1000.	300		2000		100.	10.			710.	200.	*nn.	, , , ,	•••	. •
71/CN/88	010.			100.		200. /	200. 2	9000	<	100	10.	2000		710.	2005 2005	coo. ,	7.7	• r	י ר
07/CN/00	*TU.		5.5	100.				0000					5.0	710.		700.	. r	; r	: -
88/00/00 88/07/18	CCD.	5		100 \$	1000 /	500 \$	500.		500.	100	10.	5000	50.7	110	2002	200.7	, r , r		
88 /08 /16	760.	50.	55		1000	2002	005	0005	005	100	10	0005	50.		2000	2003		. •	. r
88/10/18	010.	.05	1 0. >	100.3	1000. >	<.005 <.005	<005	<.0005	.005	.001	.01	<.0005	<.05 <.05	.012	<002 <.002	.002	7.0	. «	1.0
88/11/30	.022	<.05	10.>	<.001	<.0001	<.005	<.005	.0006	<.005 <	.001	.01	<.0005	<.05	.011	<.002	<.002	7.0	. 89	1.0
89/03/13	.025	<.05	<.01	<.001	<.0001	<.005	<.005	<.0005	<.005 <	.001	<.01	<.0005	<.05	.011	<.002	.002	6.4	۲.	۲.
		1	1						1		1		1				i t		
	120.	<u>, u</u>	1 0.^	.001	<.0001	c00.>	<00.^	C000-	- <u> </u>	100-	Tn -	cuuu.>	.u.,	- 112	700.	700.	o	e, i	
STD ERHOR	600.	0	0	0	0	•	0	.0000	100-	0	5	0	0	100.	100.	100.	4	-	
								υ	TOTAL	METALS									
DATE	Y	As	B	B	8	8	ង	8	Fe	륲	£	ę.	5	Sr	Ŧ	8	5	튚	Ka
88/04/13	.077	<.05	10 ,)	<.001	<.0001	<.005	<.005	<.0005	.013	.001	<.01	<.0005	<.05	110.	<.002	<.002	6.3	۲.	۲.
88/04/26	.040	<.05	10.	<.001	<.0001	<.005	<.005		.033	.002	<.01	<.0005	<.05	.012	<.002	.002	6.8	8.	6.
88/05/11	.026	<.05	.01	<.001	<.0001	<.005	<005	.0007	.012	.001	<.01	<.0005	.05	.012	.003	<.002	7.0	. و	Ŀ.
88/05/26	.080	<.05	.01	·.001	<.0001	.008	<.005	.0012	.017	100.	.01	<.0005	<.05 21	.013	.006	<.002		r. (
88/06/06	.061	.05.05	10.>	100.	<pre><.0001</pre>	<.005	<.005	.0013	.014	.002		2000.>	, . , . ,	.012	<.002	<.002	4.1	æ. «	<u> </u>
88/01/18	700.		10.,	100.>	T000 ·	cnn.>		9000.	710.	100.	5.5	conn.,		710.	200.>	700.	•••	ē.	. •
88/08/10 90 /10 /10	c60.		10.	100.	T000 \	900.	c00. >	.0024	. 000	500.		. 0005	5.0	710.	500.	700.	o.,	ہ ن	<u>.</u> .
88/11/30	.045	50.5	10.2	100.	10001	<.005	<005	6000	. 110.	100.	10.	<.0005	<.05	110.	<.002	<.002	. 9 9		. «
89/03/13	.062	<.05	01	.001	<.0001	<.005	<.005	<.0005	.011	.001	.01	<.0005	<05	.011	<.002	.002	6.6	. 8.	
	1	ļ	ł			100	100					1000	70,				, ,	•	ŗ
		۰. ۲	1 0.,	TN().^	1000.>	505		0100-	010	100-	۲ ۵ ->		,	710.		<	. .	ю, -	•••
STU KKIAL	C7N.	2	2	2	5	100.	2	9000-	010.	TNN.	5	TAAA-	2	Ton-	TNN.	5	ņ	-:	

* (units - mg/l, except as noted; values expressed are means of triplicate samples)

- 9 -

OUTBEAM	
MIDDLE	
Ľs	1
٦	
1	
GEE	
Ĭ	
E	
-	
2	
翼	
Ĕ	
Ē,	
UNLITY	
0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
MATTR	
Ε	
ğ	
Я	
4	
TABLE	

		₽⁴╎	NBLE 4	REC	M DRIATS	no au	LTT.	STATIC	81 2	Berrial)		- 1 ka	u∕s M⊡	DCE OU	TINESAM L	- MG			
								A PHYS	SICAL 6		N								
EING		deg 0	8	pH rel u	us/cm		F	8	HF'R	£	f		HARD	Si	Ê	Ê	°.	MO 2	M
88/04/13		1.11	9.5	7.1	38.8	1.4	14.1	2.0 、	(5.0	27.7	27.7	.13	16.5	1.7	<.002	<.002	<.005	<005	<.005
88/04/26				7.2	42.2	1.2	18.5	2.0 4	(5.0	31.0	31.0	.20	19.0	1.5		<.002	.005	<.005	.005
88/05/11		13.3	6.4	, , , ,	52.1 16 E	ŭ	ot samp.	led	c u	- uc	5	00		•	600		200		010
90/90/00		1 4 1	ч г				40.4	7.7	n .c,	1.00	1.00	л <u>г</u> .	0.02	· · •	700.	700.5	000.	cnn••	ntn.
88/07/18		19.5	5.0	7.8	53.0	<1.0 II	າເອດຫຍູ 23.5	164 2.0 <	(5.0	39.3	39.3	.20	23.6	1.7	.004	.006	<.005	<.005	<.005
88/08/16		16.4			47.2	0.2	2.5			0.95	0.05	1.80	4.64	L	003	004	2001 ×	005	500.5
88/10/18		8.9		7.1	53.0	7.1	22.0	5.0	(5.0	41.3	41.3	.63	22.1	2.6	.002	.003	.010	<005	<.005
88/11/30		4.2	12.5	7.5	37.0	1.4	16.5	1.7	(5.0	30.3	30.3	.17	16.2	2.6	<.002	.002	.015	<.005	<.005
89/03/13		3.3	11.4	7.0	32.5	3.7	14.1	1.0	(5.0	27.0	27.0	.10	13.4	2.3	<.002	<.002	.030	<.005	<.005
CLAND MEAN		11.3	8.7	7.3	45.2	2.4	19.7	1.8	(5.0	33.9	33.9	.44	19.3	1.9	.003	.003	.010	<.005	-006
STD ERBOR		5.7	2.9	m.	7.3	2.1	4.4	•	0	5.6	5.6	.57	3.7	'n	-001	.002	.000	0	.002
								8	ISSOLVE	D NETN	য								•.
DATE	7	A5	8	æ	8	8	ង	ð	Fe	£	Ŷ	£	R	Sr	ïF	ų	5	Б¥.	Ma
88/04/13	600.	<.05	<.01	.004	<.0001	<.005	<.005	<.0005	.021	.002	.01	<.0005	<.05	.014	<.002	<.002	5.4	۲.	1.2
88/04/26	.005	<.05	<.01	.005	<.0001	<.005	<.005		.021	.007	<.01	<.0005	<.05	.015	<.002	.002	6.2	8.	1.0
88/05/26 88/05/26	600.	<.05	10.>	.005	<.0001	<.005	<.005	.0005	.046	.014	<.01	.0007	<.05	.016	.005	<.002	6.6	8.	1.0
88/06/06																			
88/07/18	.006	<.05	10. >	.005	<.0001	<.005	<.005	<.0005	.095	.010	<.01	<.0005	<.05	.019	<.002	<.002	7.7	6.	ō.
88/08/16	600.	<.05 <.05	.01	.005	.0001.0001	<.005	 .005 <li< td=""><td><.0005</td></li<>	<.0005	104	110.	.01	<.0005	<.05 <.05	.018	<.002	<.002	7.7 6 0	6.[6. [
88/11/30	500.	50.7	10.2	000	1000.	500.5	200.	5000.2	150.	002	10	<.0005	20. V	.013	<.002	2007		2.1	1.2
89/03/13	.051	<.05	<.01	.003	<0001	<.005	<.005	<.0005	.021	.003	.01	<.0005	<.05	.011	<.002	.002	4.2	. 9	1.0
(CLAID) NEAR	610.	<<	(0.)	.005	<.0001	.005	<.005	<.0005	860.	-012	.01	.0005	<.05	.016	.002	<.002	6.2		1.1
STD EDBOR	.021	0	•	.001	0	•	0	0	.143	-014	0	.0001	0	.003	-001	0	1.2	: .	r.
								υ	TOTAL	HETALS									
DATE	7	S S	8	2	3	8	5	ð	Pe	£	e l	£	8	Sr	F	2	5	Mg	g
88/04/13	.047	<.05 01	10.	.004	<.0001	<005	<.005	<.0005	.041	.003	.01	<.0005	<.05	.014	.002	.010	5.3	ø, 9	1.1
88/04/26 88/05/11	.042	cu.>	10.	cnn.	T000.>	cnn.,	cuu.>		700.	· • • • •	10.)	cuuu.>	cn.,	cTn.	<vuz< th=""><th>700.</th><th>۰ ۲</th><th>2</th><th>1.1</th></vuz<>	700.	۰ ۲	2	1.1
88/05/26	.069	<.05	<.01	.005	<.0001	900.	<.005	.0006	.180	.016	(.01	.0006	<.05	.018	.004	<.002	7.2	6.	1.1
88/06/06	610	10	5	100	.000	100	300	2000		610	5	2000	96	010			-	¢ •	
88/08/16 88/08/16	610	50°	10.5	con.	1000. >	c00. >	cou. >	c000.	202.	.015	10.7	<.0005	cn. >	020	<.002	2005	1.0	0.1	1.2
88/10/18	.019 019	.05	·.01	.007	<0001 <.	<005	<.005	<.0005	1.20	.046	10.	.0008	<05 <	.020	<.002	.002	7.1	1.0	1.3
88/11/30 89/03/13	.089	. 05 20.	<u>د</u> . و	.004	<pre>.0001</pre>	<.005 <.005	<.005 .005	.0008	.049	003	10.	<0005	<.05	.013 011	<.002 < 002	.002	5.2 4	8.1	1.1
14 172 170	112.	~~~	****	,,,,,	****			>>>>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	42.	****			1>>	4777.7			

* (units - mg/l, except as noted; values expressed are means of triplicate samples)

11

و، ٦

6.5 1.6

.003 .003

.00 01

.016

<.05 0

.0006 .0001

<.01 0

.013

.247

.0006 .0002

<..005 0

.005 .001

<..0001 0

.005 .001

<u>6</u>. 2.

<.05 0

.046 .025

GRAND MEAN

- 10 -

QUINSM	
MIDDLE	
ş	
M	l
25	l
Ŧ	
RIVER	
HVSNIINÖ)	
ŝ	
STATION	
MALLINU	
ATTER	
N DNIL	
RECEIV	
TABLE 5	

		14	NBLK 5	RECE	IVING WA	NUQ ART	E	STATIO	щ С	SILUQ)	AM RIVE	R - 25 -	d/s M	DDLE O	HNSHID	LAKE)			
	•							A PHY	SICAL 6	CHERT	R								
DATE	FLOW CIRS	de de de	8	pfi rel u	uS/cm	N	NIX	8 •	HFR.	ĩ	f	TURB	HARD	Si	đ.	F	ີ	що 5	۳ ۲
F 1/ 70/ 88	1 11		11 5	4 L	18.0	-	14.8		, S D	۲ CF	L (%	Ģ	15	0	C 00 7	600	C 5 0	200	900
88/04/26	•	•		7.5	41.0	1.3	16.2	9.0 8	<5.0 <5.0	27.0	27.0	.20	17.1	1.7	.005	.004	.010	<005 <.	.007
88/05/11	.55	12.9	10.0	7.3	42.5	1.3	18.0	2.7	<5.0	30.7	30.7	.20	18.1	1.6	<.002	.003	<.005	<.005	.018
88/05/26	1			7.4	43.8	1.1	18.8	2.0	<5.0	28.7	28.7	.20	17.8	1.3	<.002	.004	<.005	<.005	.006
88/06/06	67.	13.3	9.6	1.1	45.0	1.7	18.3	2.0	<5.0	36.7	36.7	.23	18.8	1.3	<.002	<.002	<.005	<.005	<.005
88/07/18	1.5	20.6	8.8	8. r	47.5	0.1. 0	21.0	. o . r	(5.0 (1)	32.3	32.3	.10	18.7	1.2	<.002	<.002	<.005	<.005	<.005
88/10/18 88/10/18	16.1	12.5	11.2	2.6	40.0	(1.5	21.0	0.0	<5.0	34.3	5.55 E.4E	<.10	22.4	1.5	<.002	, 002	600. 800.	<.005	900.
88/11/30	1.80	4.2		7.5	43.5	1.3	15.8		<5.0	36.3	36.3	.20	17.8	2.3	<002	.004	.041	<005	.011
89/03/13	3.90	2.3	12.7	7.2	40.5	2.6	13.6	4.0	<5.0	38.3	38.3	.10	14.9	2.3	<.002	.002	.067	<.005	.007
	1 41	y 11	10.6	7.6	43.7	1	17 9	2.6	(S. 0	0 88	0 22	15	18.3	y 1	00	500	010	< 005	008
STD ERBOR	1.08	6.5	1.4	n)	3.3	ŝ	2.8	۲.	0	3.6	3.6.	90.	2.5	4	-001	.001	.021	0	.004
								B	ISSOLVE		LIS I								
DATE	7	S	2	Ba	ខ	3	ង	5	8	£	£	£	R	Sr	Ţ	g	ซื	Ыq	Na
88/04/13	.034	<.05	<.01	.002	<.0001	<.005	<.005	<.0005	.019	.005	<.01	<.0005	<.05	.013	<.002	<.002	4.9	۲.	1.5
88/04/26	.015	<.05	<.01	.002	<.0001	<.005	<.005		010 .	.005	<.01	<.0005	<.05	.013	<.002	.004	5.6	8.	1.3
88/05/11	.010	<:05	<.01	.002	<.0001	<.005	<005	<.0005	.020	.003	<.01	<.0005	<.05	.014	<.002	.003	5.8	6.	1.6
88/05/26	.014	<.05	.01	100.	<.0001	<.005	<.005	<.0005	.015	.002	<.01 2	.0016	<.05	.013	.005	<.002	5.8 9	œ, e	1.2
88/06/06 88/07/18	.022	<.05 05 05	1 1	100.	.0001	<.005 2005	<.005 2005	2000.2	.027	007		<.0005	دں. د	.014 012	<.002	<.002 2002	6.3 A	ю́г	1.2
88/08/16	.017		.01	, 001	1000.	<005	<pre></pre>	<0005	, 110.	.001	.01	<.0005	<pre></pre>	.014	<.002	<002 <.002	2.5	. 6.	1.0
88/10/18	.006	<.05	.01	.001	<.0001	<.005	<.005	<.0005	.014	.004	<.01	<.0005	<.05	.013	<.002	<.002	7.0	8.	1.0
88/11/30	.051	<.05	01	.002	<.0001	<.005	<.005	.0006	.054	.012	<.01	<.0005	<.05	.014	<.002	<.002	5.6	8.	1.6
89/03/13	.058	<.05	<.01	.002	<.0001	<.005	<.005	<.0005	.033	.004	<.01	<.0005	<.05	.014	<.002	.002	4.6	8.	1.6
	.025	<05	10.>	.002	<.0001	<.005	<005	.0005	.022	-004	<.01	.0006	<.05	.013	.002	.002	6.0	•0	1.3
STD REPOR	.017	0	8.	000-	0	•	0	,0000	.013	.003	0	.0004	•	100.	100.	000.	6.	-	'n
								υ	TOTAL	SINTA									
DATE	R	ş	8	8	8	8	ង	5	Fe	£	£	£	8	Sr	ï	ų	5	Бн	N
88/04/13	.044	<.05	<.01	.002	<.0001	<.005	<.005	.0005	.101	.028	<.01	<.0005	<.05	.012	<.002	.004	5.0	8.	1.3
88/04/26	.080	<.05	.03	.002	<.0001	<.005	<.005		.045	.007	<.01	.0007	<.05	.013	<.002	.016	5.3	8.	1.5
88/05/11	.012	<.05	.02	.002	<.0001	<.005 205	<.005	7000.	.034	.004	.01	<.0005	<.05	.012	<.002	<.002 .002	5.4	<u>.</u>	
88/05/06	016		10.	100.	1000.>	cou.	<	.000.	.036	-005 -	10.,	<.0005	<. 05 20. >	.014	<.002	<.002	6.3 6.3	ب م	1.3
88/07/18	.023	<.05	.01	<.001	<.0001	<.005	<005	.0006	.038	.005	<.01	<.0005	<.05	.014	<.002	<.002	7.5	۰. ۱	1.1
88/08/16	.019	<.05	<.01	.002	.0004	900.	<005	.0012	.034	.006	·.01	.0017	<.05	.015	<.002	<.002	7.9	1.0	1.1
88/10/18 88/11/30	.008	<.05 55 55	10.)	, 001 002	<.0001 <.0001	<.005 <.005	<000.>	<000. >	.029	.016	10. >	<0000.>	<0. ^	.013	<.002	<.002 <.002	1.1	. 6	5.1 2.5
89/03/13	.074	<05	·.01	.002	<.0001	<.005	<.005	.0005	.048	.006	<.01	<.0005	د.05	.015	<.002	<.002	4.8	8.	1.7
	050.	<05	10.	.002	.0001	005	<.005	-0007	- 052	600	(-01	9000	<.05	014	002	004	6.1	8	1.3
STD ERBOR	.032	0	. 19	000	.0001	000	0	.0002	.026	800.	0	0004	•	001	.001	.004	1.1		

* (units - mg/l, except as noted; values expressed are means of triplicate samples)

- 11 -

		P	BLE 6	RECEIV	TING WAT	ER QUAL	E	STATION	5A ((UINSAN	RIVER	5 km	d/s MI	NO 31IC	TINSAN L				
SING		TRMP deg (8	pH relu	cont uS/cm	K CD	VIX	A PHY So ₄	SICAL		a e	TURB JTTU	HARD	Si	Ê	4	ŝ	MO ₂	E B
88/04/13 88/04/13 88/05/11 88/05/11 88/05/26 88/05/16 88/05/11 88/05/16 88/11/30 88/11/30 89/03/13		not : not : not : not : 21.5 19 21.5 10 not : not : not : not :	sampled sampled sampled sampled 8.6 sampled iampled iampled	routine routine routine routine 7.8 7.8 routine routine routine	14 14 14 14 14 14 14 14 14 14 14	<1.0 <1.0	20.0	2.0	<pre><5.0 <5.0</pre>	34.3	34.3	.10	20.3	1.1	.002	.002	.005.005	.005.005	.007
GRAND MEAN STD ERROR		20.3 1.8	8 .6	7.8 0	47.9 1.6	<1.0 0	20.9 1.3	2.0 0	<5.0 0	35.3 1.4	35.3 1.4	.12	20.9 .8	1.2 .0	<.002 0	.003	.005	<005 0	.006 .001
The	R	8	Ŕ	8	8	రి	ង	5 B B	VISSOLV	KD META	SIN	£	я	Sr	Ti		3	БW	Ka
88/04/13 88/04/26 88/05/26 88/05/26 88/05/26 88/07/18 88/07/18 88/10/18 88/10/18 88/10/18 88/10/18	.017	<.05 <.05	.01	.001.001	.0001	.005.005	.005.005	<.0005	0.08	100.	10.>	.0005.0005	<.05 <.05	.013	<002 <.002	<.002 <.002	7.0	۲. 6.	و م
CRAND NEAN STD ERBOR	.016 .001	<.05 0	4.01 0	<.001 0	<0001 0	<005 0	<005 0	<0005 0	.008 0	<001 0	<.01 0	<0005 0	<.05 0	-014 -001	<.002 0	<.002 0	1.7 1.	8. T.	°. 0
DATE	7	X	8	æ	ষ	გ	5	υ đ	Fo	Mn	9	£	8	Sr	ï	5	3	Б₩	Ma
88/04/13 88/05/11 88/05/11 88/05/26 88/05/26 88/07/18 88/10/18 88/10/18 88/11/30 88/11/30	.034	<.05 <.05	.01 01	.001	. 0005	.005.005	<pre><05</pre>	.0012	.043	. 007	.01	<0005 <.0005	<.05 <.05	.014	<002 <.002	. 004	7.7	ي م	1.1
geand hean Std erbor	.029 .007	<.05 0	4.01 0	<.001 0	. 0005 0	<005 0	<005 0	.0012 0	.036	.006	<.01 0	<0005 0	<.05 0	.015 .001	<.002 0	.00 4 0	7.8 .1	م ہ	1.1 0.

* (units - mg/l, except as noted; values expressed are means of triplicate samples)

- 12 -

,

,

.

•

		ຍ	'n
LAKE)		f	
QUINEAN		Ĵ	
EDDL8		Si	
H s/b		HARD	
iver - 3 k		TURB	PF,
IS HAR	ICAL	f	
ning)		£	
TON 8	HISICH	Ë	
INIS	A V	ଞ୍ଚ	P
E		M	
ER QUIN			
VING WAT			uS/cm
RECEI		뿬	rel u
NBLE 7		8	
P		8	2

DATE	FILOW CINS	deg (8	pH rel u	us/cm	Ð	ALK	S.		£	f	JTTU	HARD	Si	ã.	Ê	o. E	MO ₂	E.
88/04/13 88/04/26		not : not	sampled sampled	- inacc - inacc	essible essible														
88/05/11	.52	12.6	6.6	7.3	43.5	1.2	18.2	3.0	<5.0	28.7	28.7	.20	18.3	1.5	.002	.003	.011	<005	.017
88/05/26 88/06/06	8.7	12.2	5ammp10_0		45.5	F.	18.3	2.3	,5,0 ,	1 7 7	7 75	٥٤	18.3		< 00.2	002	510	< 005	< 005
88/07/18	- <u></u> -	23.2	7.9	7.8	47.2	<1.0 <1.0	20.3	5.3 •	(5.0	35.3	35.3	. 10	19.7	1.1	<.002	.002	.021	<005	<<
88/08/16	.79	19.0		7.7	47.2	1.2	21.8	2.0	(5.0	37.3	37.3	<.10	22.2	1.3	.002	.003	.037	<.005	<.005
88/10/18		11.5	12.5	7.5	48.0	1.7	21.0	2.0 4	<5.0	36.0	36.0	<.10	21.3	1.3	<.002	<.002	.010	<.005	.005
88/11/30		not :	sampled	- inacc	essible														
89/03/13		not	sampled	- inacc	essible														
CENED NEM	п.	15.7	10.1	7.6	46.3	1.2	19.9	2.3	c5.0	34.2	34.2	.16	20.0	1.3	<.002	.002	.019	<.005	800.
STU KROOK	.14	5.2	1.9	?	1.8	ņ.	1.6	4.	•	3.3	3.3	60-	1.8		.000	.001	110-	•	900-
								B DI	ISSOLVE	D META	ខ								
DATE	V	As	8	B	ខ	გ	IJ	5	P.e	đ	, ON	Pb B	5	Sr	ij	អ្ន	ซื	Mg	Na
88/04/13 88/04/26 88/05/11	, 00 v	20 V	10	00	1000.2	500-2	5005	50005	014	00	10	5000 2	50.7	014	002	002	с Г	o	بو ا
88/05/26	700.			700	1000.				ETO.	1	10.				700.	700.			-
88/06/06 88/07/18	.014	, 05 05	.02	.001	<.0001	<.005	<.005	.0010	.016 <	100	.01	.0014	<.05 05	.014	<.002	<.002	6.1 6.7	8. «	1.2
88/08/16	.014	.05	.01	.001	<.0001	<.005	<005	\$ 6000.	<pre><.005 <</pre>	.001	.01	<.0005	<.05	.014	<.002	<.002	7.4	. o.	1.0
88/10/18 88/11/30	.005	<.05	·.01	.001	<.0001	<005	< .005	<.0005	.015	.001	01	<.0005	<.05	.012	<.002	<.002	7.1	6.	1.1
89/03/13																			
CRAND NEAR	600 ⁻	<.05 0	10.00	.001	<.0001	<005	<005	-0007	- 011 <	001	, 01	-0007	<.05 0	- 013	<.002	<.002	9.9 6	••, -	1.2
		•	8	200	•	,	•			,	,)		•	•	?	!	!
DATE	V	As	-		8	ვ	ង	บ อี	For TOTAL	PIER PIER	윭	£	5	Sr	F	5	ປັ	Б¥	Ma
88/04/13											- - -								
88/05/11	.004	<.05	.02	.002	.000	<.005	<.005	<.0005	.038	.003	<.01	<.0005	<.05	.013	<.002	<.002	5.6	٠.	1.2
88/06/06	6 70.	<.05	<.01	.003	.0002	<.005	<.005	.0015	.107	.021	<.01	<.0005	<.05	.014	<.002	.003	6.1	6.	1.2
88/07/18	.034	<.05	<.01	.002	.0003	.005	<.005	.0006	.025	.004	<.01	<.0005	<.05	.014	<.002	<.002	7.1	6.	1.1
88/08/16	.035	<.05 .05		100.	<.0001	<.005	<.005	.0009	.025	500.	10.	<.0005	20.) 20.)	.016	<.002	.004	м	من	1.0
88/11/30 88/11/30 89/03/13	710.	60.9	10. 3	100.5	1000.3		600· Y	6100.	600.	6 00.	10.	coon. >	6 0. •	CT0.	700.	700. >	1./	n.	р -
CRAND HEAR	.033	<05	.01	.002	.0002	<005	<.005	1100.	.047	-007	<.01	<.0005	<.05	.014	<.002	.003	6.9	6,	1.1
stro ereder	.029	0	00.	.001	1000.	000	0	-0006	.034	.008	0	•	0	-001	0	100.	1.0	.1	Ŀ.

* (units - mg/l, except as noted)

- 13 -

4.3 Effluent Quality

- a) Table 8 2N Pit Water
 - A Physical and Chemical
 - B Dissolved Metals
 - C Total Metals
- b) Table 9 Settling Pond 4 Inflow
 - A Physical and Chemical
 - B Dissolved Metals
 - C Total Metals
- c) Table 10 Settling Pond 4 Outflow
 - A Physical and Chemical
 - B Dissolved Metals
 - C Total Metals
- d) Table 11 Settling Pond 4 Middle Quinsam Lake Road Culvert
 - A Physical and Chemical
 - B Dissolved Metals
 - C Total Metals

						8	8 F IE	IL AL	nd Lie	ALL'N	ZM PI	T WATER							
SING		deg deg	8 ၂	pfi rel u	CONT US/CIN	Ê,	ALK	N N So	YSICM.		Ti CM	JTURB	BARD	Si	Ĩ	Ê	B	2 Ma	Ē
88/04/13 88/04/26 88/05/11 88/05/11 88/05/26 88/07/18 88/07/18		not s not s not s not s not s not s 10.5	ampled ampled ampled ampled ampled ampled ampled	8	1750	L.2	103	630	5.0	1600	1600	3.80	579	1.6	<.002	. 004	9.11	.176	.491
88/11/30 89/03/13		2.9	0.6 8.6	8.3 8.3	2550	0.1> 8.9	140 140	1300	<5.0 <5.0	2310	2310	. 20	915	1.7	<.002<	200.	4.46 2.63	.015	16C.
nemi Stid dev		7.2	9.4 .6	8.2 .1	2050 436	4.2	132.3 26.4	916.7 345	<5.0 0	1807 438	1807 438	1.40 2.1	667 218	1.7 .2	<.002 0	.003 .001	6.328 4.9	.084 .083	.388
STAD	R	ş	B	R	ন্থ	8	ង	ő	DISSOLA	LISH ONA	Wo	£	8	Sr	Ŧ	S	ទី	Б₩	Ma
88/04/13 88/04/26 88/05/11 88/05/26 88/05/26 88/07/18 88/07/16	5 2 2	50	Ŭ.		, 000 1000		200 2	0058	500 [°]	44 84	20	5000	50 	5 I S	002	 002 	202	<u> </u>	316
88/11/30 89/03/13	.003	.05.05	.57	.030	.0001.0001		.005.005	.0079 9900.	.009	.233		<.0005	.05.05.05	2.18 3.61	<.002 .004	<.002<.002	174 309	16.9 33.8	251 323
MENI Stid Dev	.046 .071	<.05 0	.17 .17	.043 .024	<.0001 0	.006	<005 0	.0068	-006 -002	.153	 10.	<.0005 0	<.05 0	2.65 .834	.003	<002 0	228 71.2	22.6 9.7	297 39.7
DATE	7	2	æ	8	ଞ	8	ង	5	F.e	L METAL	S S	£	я	Sr	F	ន	J	Ł	
88/04/13 88/04/26 88/05/11 88/05/26 88/05/26 88/07/18 88/10/18 88/10/18 88/10/18	.410 .073	.05.05.05	- 47 56	.067 .030 .028		.005.005.005	.005.005	.0092 .0078	.519 .017 .085	.152 .240	10. 10.	.0043 .0005 .0005	.05.05.05	1.94 2.10 3.46	<.002 <.002 .025	 .002 .002 .002 	188 179 301	14.3 17.3 33.5	198 261 309
NEMI Stid Dev	-214	ć.05 0	.57 .11	.042 .022	<.0001 0	<.005 0	<.005 0	.0091 .0012	.207 .272	.156	<.01 0	.0018	<.05 0	2.500 .835	.010 .013	<.002 0	222.7 68.0	21.7 10.3	256 55.7

- 15 -

					5	9 F 18	EFFI	UDIT QU	ATTIN	SET	I DAILIT	080 4 -	MOTION	*					
1			1	I				FA V	ISICAL		ICAL			;	l	(ł	ł	ł
		deg C	8	p# rel u	us/cm			ร •ี	Ē	£	f		EVED	Si	Ê	F	ຄື	80 ²	m
88/04/13		9.5	9.2	T.T	600	<1.0	86.8	220	<5.0	447	447	5.70	185	3.8	.006	.010	.294	.038	.074
88/04/26		1	0 7	7.8 7	600 470	1.0	102	200	50	448	468	28.0	187	3.8	.017	.031	.169	.020	.085
88/05/26		6.01	0.1	0.1	075	not si not si	ampieci- amoleci-	- no flo	33										
88/06/06		15.6	8.6	7.5	660	not si	ampled -	- no flo	: 3										
88/07/18			·			not s	ampled -	- no flo	3										
88/08/16					100	not s	ampled -	- no flo	3			ţ		1					1
88/10/18			0 61	- - - -	325 1660	1.2 1	67.5	120	<5.0 ×	1,000	1700	.60	133	л. г	.002	.005	.013	<.005	.021
89/03/13		6.2	10.4	8.3	2150	6.8	130	1100	(5.0	2310	2310	06.	122 122	1.9	<.002	.004	2.20	.010	110.
					;														
nemi Stid dev		10.2 4.5	9.8 2.0	7.8 .3	915 69 8	2.9 3.4	103 26.6	480 4 30	8.0	1261 812	1265 807	9.04 11.28	352 261	3.2 9	,006 ,006	.011 .012	1.39	.023	.093 .070
·								æ	DISSOL		SIS.								
DATE	7	R	æ	ą	ខ	8	ង	5	84	£	2	£	Я	Sr	Ŧ	ສ	IJ	Б₩	Ma
88/04/13	.037	<.05	.20	.044	<.0001	<.005 -	<.005	.0021	.088	.602	<.01	<.0005	<.05	.608	<.002	.013	62.2	6.6	74.5
88/04/26	.017	<.05	.16	.036	<.0001	<.005	<.005	.0106	.095	.512	.01	<.0005	<.05	.564	<.002	.004	62.0	7.3	61.0
88/05/11 88/05/26 88/06/06																			
88/07/18 88/08/16																			
88/10/18 88/11/30	.021	<.05 05	۰.01 ۲۵.۶	.010	<.0001	<.005	<.005	.0012	<.005 <	(.001 637	<.01	<.0005	<.05 <05	.260 1 96	<.002	.007	39.4 170	8.6 199	26.5
89/03/13	.010	<.05	.48	.035	<0001	.005	<005	.0065	.205	.214	<.01 <.01	<.0005	<.05	2.77	.004	.026	243	27.1	254
MENN	.017	<.05	.24	.032	<.0001	.005	<.005	.0052	.207	.393	<.01	<.0005	<.05	1.23	.002	.028	117	13.9	123
VIIO CILS	.013	•	.18	.013	•	<u>80</u>	•	.0038	. 253	.275	0	0	•	1.08	-001	.035	89	9.2	98
STAD	N	Ş	æ	đ	3	8	ង	ð	TOTA Fe	L NETAL	а 2	£	5	Sr	i	3	ð	Ŋ	
88/04/13	210	, 05	02	044	000	005	005	000	975	573	10 2	0012	05	501	500	800	1 09	а У	73 0
88/04/26	.960	<.05	61.	.041	<0001	<.005	<005	.0122	1.82	.524	. 10	.0005	<05	.568	.040	.007	6.03	7.9	67.9
88/05/26 88/05/26 88/06/06																			
88/07/18 88/08/16																			
88/10/18	.021	<.05	<.01 15	.012	<,0001	<.005	<.005	.0014	.145	.001	•••10	<.0005	<.05 .05	. 26	<.002	<.002	38.3	8.2	20.8
89/03/13	160.	.05 .05	48.	.036	·.0001	200. v	<.005	1000.	.705	.215	10.>	<0005	<.05	1.0/ 2.81	900-	.023	164 251	28.2	261
	.285	<.05 0	.24	•034 510	<.0001	<.005	<005	.0052	1.12 Te	.394 375	<.01	.0006 2000	<05 0	1.22	.012	.026	611	14.3	102
	5	>	•		>	,	>		2	24.	,		>	•	***		5	;	1

.

* (units - mg/l, except as noted)

- 16 -

,	
-4	
PORT	
SETTLING	
ALTINDO	
REPLUCENT	
10	

- OUTFLON	
4	
POBUD	
SETTLING	CHERTCAL.
ATLINUO	PHYSTCAL, 5
RFFLUERT	
TABLE 10	

								A PH	ISICM		ICM								
ELVA		deg deg	8	per rel u	uS/cm -	Đ	¥¥	so.	Ë	£	f	BIR	HARD	Si	ê,	Ê	en e	2 R	F
88/04/13		13.1	9.5	7.4	200	1.3	31.0	67	<5.0	146	146	2.50	51.9	2.6	.008	.008	.006	<.005	.012
88/04/26				7.4	225	1.3	40.4	69	<5.0	162	162	1.00	59.9	2.4	.006	.013	<.005	<.005	<.005
88/05/11		18.1	6.1	7.9	235	1.3	38.0	60	<5.0	162	162	.80	62.7	2.4	.007	.012	<.005	<.005	.036
88/05/26			1	80 I	220		40.0	8	(5.0		1/1	01.	58.1	2.1	800.	120.	<.005	<.005	e10.
88/06/06		16.3	7.9 Lolar	1.7	240	4.0	47.5	58	5.0	174	174	1.30	64.4	2.3	.010	.020	<.005	<.005	<.005
88/08/16 88/08/16		not s	ampled		TOW .														
88/10/18		11.5		8.0	285	11.6	112	39	<5.0	1670	1670	3.30	84.4	3.3	.011	.028	<.005	<.005	.023
88/11/30		3.8	12.0	L.L	700	1.9	44.0	300	<5.0	340	340	9.30	216	3.1	.003	.014	.877	.017	.016
89/03/13		1.8	8.0	7.8	375	11.8	32.3	100	<5.0	272	272	6.00	106	2.8	<.002	600.	.093	<.005	.027
		10.8	1.6	5.5	310	4.3	48.2	03.0	65.0	387	387	3.11	88	2.6	C00_	-016	175	007	018
AND DEA		6.6	1.8		166	4.7	26.4	85.0	•	522	522.8	3.07	55	-	.003	-00.	.305	004	.011
								æ	DISSOLA		SIL.								
DATE	7	A5	æ	8	ខ	8	ដ	ð	84	₽	£	£	5	Sr	Ţ	ន	3	Mg	Ma
88/04/13	.092	<.05	.05	110.	<.0001	<005	<.005	1100.	1.22	.234	<.01	<.0005	<.05	660.	<.002	.032	14.8	2.9	22.6
88/04/26	960.	<.05	.04	.012	<.0001	<005	<.005	.0085	.857	.196	<.01	<.0005	<.05	.113	<.002	.111	17.7	3.2	21.1
88/05/11	.053	<.05	.08	.013	<.0001	<005	<.005	.0033	.940	.166	10.	<.0005	<.05	.123	<.002	660.	18.1	3.7	20.7
88/05/26	.188	<.05	.05	.013	<.0001	.015	<.005	.0020	1.18	.221	<.01	.0038	<.05	.114	.005	.046	16.7	3.2	21.9
88/06/06	.171	<.05	.05	.015	<.0001	900 -	<.005	.0036	1.15	.370	<.01	.0024	<.05	.123	<.002	.042	18.6	3.6	23.1
88/08/16 88/08/16																			
88/10/18	.153	<.05	<.01	.025	<.0001	<005	<.005	<.0005	2.55	.489	<.01	<.0005	<.05	.197	<.002	<.002	23.6	4.8	48.7
88/11/30	.150	<.05	90.	.031	<.0001	- 008	<.005	.0072	.780	. 255	<.01	<.0005	<.05	.719	.004	.034	70.9	8.7	70.5
89/03/13	.110	<.05	01	.015	<.0001	<005	<.005	<0005	.363	.186	<.01	<.0005	<.05	.33	.003	110.	34.1	4.8	32.7
HENE	.127	<.05	.04	.017	<.0001	.007	<.005	.0033	1.13	.265	(.01	.0012	<.05	-227	.003	.047	26.8	4.4	32.7
VID DEV	.046	•	.02	-007	•	- 003	0	.0030	.638	.110	•	.0013	•	.213	.001	.039	18.8	1.9	18
								υ	TOTAL	L NETAL	2								
SING	R	ŊS	æ	8	9	.8	5	8	Fe	£	Q N	£	8	Sr	Ŧ	ន	5	Б¥	2
88/04/13	.210	<.05	.05	110.	<.0001	.006	<.005	<.0005	1.57	.224	(.01	.0013	<.05	860.	.005	.033	14.2	2.9	23.6
88/04/26	.154	<.05	.06	.012	<.0001	<.005	<.005	.0058	1.20	.196	<.01	<.0005	<.05	.115	<.002	.120	17.0	3.5	26.3
88/05/11	660.	<.05	.05	.012	.0001	<005	<.005	.000	1.14	.160	<.01	<.0005	<.05	111.	<.002	860.	16.8	3.0	20.6
88/05/26	.225	<.05 25	.05	.014	.0002	.024	<.005	.0020	1.57	.247	<.01 22	<0005	<.05	.125	.010	.051	18.3	3.6	23.8
88/06/06 88/07/18	862.	50. >	5 0.	.018	1000*>	110.	.032	6100.	1.57	.400	10.>	<000.>	co.>	.124	.006	660.	18.4	3.6	23.0
88/08/16 88/10/18	162	, 05	10 ,	8 C U	, 000	1005	1005	0005	2 2 2 2	50.7	10 ,	10005	7 05	505	CU0 /	, 007	7 56		2 8 C
88/11/30	091	<pre></pre>	.02	.031	1000.	.006	<pre></pre>	6800 .	1.95	.260		<.0005	<pre></pre>	.628	.059	.036	71.5	8.7	6.07
89/03/13	.380	<.05	<.01	.016	<.0001	<005	<005	<.0005	.836	.187	·.01	<.0005	<.05	.328	.019	.007	34.9	4.9	32.5
	.210	<.05	.04	.018	.000	.008	.010	.0026	1.67	.272	(.01	.0006	<.05	.217	.013	.048	26.9	4.4	32.4
And and	160.	•	-02	.008	0000-	-007	.012	.0031	.815	.118	•	.0003	•	.183	610.	.041	19.2	1.9	17

* (units - mg/l, except as noted)

- 17 -

			HI	ABLE 11	8	LUBITLA	CLITIND	S	DNITIL	FOND	- MIDC	ALLO ALK	IN LAKE	BOAD O	ULVERT	*			
								A PHI	ISICAL		ICM								
HIN		deg C	8	pH rel u	uS/cm		¥¥	so.	N N N	Ê	ř	Hurb UTU	HARD	Si	Ê	Ê	ŝ	2 2	F
88/04/13		7.4	10.4	7.1	95	1.3	18.1	25	(5.0	67	67	.10	23.7	3.0	.002	.002	.050	<.005	<.005
88/04/26				7.1	93	1.7	21.2	22	(5.0	66	66	.20	25.1	3.2	.007	.004	.020	<.005	.005
88/05/11		8.6	7.1	8.1	103	1.3	31.0	22	<5.0	75	75	.10	27.9	3.5	.003	.004	.012	<.005	.025
88/05/26				7.4	128	1.3	20.0	40	<5.0	100	100	.10	31.6	3.4	.005	.004	<.005	<.005	<.005
88/06/06		0.6	8.7	7.4	125	4.0	20.0	31	<5.0	92	92	.10	27.1	3.1	.003	.005	.005	<.005	<.005
88/07/18		not s	ampled	- no fl	wo														
88/08/16		not s	ampled	- no fl	MO														
88/10/18		8.0		7.6	323	2.3	26.0	23	<5.0	<5.0	<5.0	<.10	34.7	4.6	.002	.005	<.005	<005	<.005
88/11/30		с. ч	13 6	9.6	445 235	1.9 4 1	25.0	850 61	0.0 0.0	333 178	333 178	.50	134 65 8	0.5 0	<.002	.003	.416	<.005	.008
CT/EU/60		•	0.61		667		7 - 47 - 1	10	n.c	0/7	1/0	00.	0.00	6.7	70073	· 004	C 0 0 •	con••	con•••
NEM		6.2	10.0	7.5	193	2.2	23.3	134	<5.0	115	115	.23	46	3.4	.003	.004	.072	<.005	.008
VII OIIS		3.4	2.8	n.	130	1.2	4.2	290	•	100	100	.21	8 M	ŝ	-002	.001	.141	•	-007
								 #1	VIOSSIO		SILS								
DATE	R	As	8	8	3	8	ង	5	Pe	£	£	£	я	Sr	ï	2	3	S.	R
88/04/13	.060	<.05	.03	.004	<.0001	<.005	<.005	<.0005	.035	<.001	.01	<.0005	<.05	.032	<.002	<.002	6.5	1.7	10.4
88/04/26	.139	<.05	.01	.004	<.0001	<005	<.005	.0049	.015	.002	<.01	<.0005	<.05	.032	<.002	.004	6.9	1.8	8.1
88/05/11	.062	<.05	.03	.005	<.0001	<005	<.005	.0031	.016	.001	<.01	<.0005	<.05	.036	<.002	<.002	7.6	2.1	10.4
88/05/26	.130	8.	.03	.007	<.0001	.013	.014	.0015	.018	.004	10.	.0039	<.05	.042	. 008	- 005	9 I 89 I	2.3	12.2
88/06/06 88/07/18	061.	cu.>	707	con.	1000.>	cou. >	cuu.>	.0040	8T0-	100.5	Tn.>	6700-	cn.)	. U30	~~nuz	200.3	Ċ,	۲.1	1.61
88/08/16			2					0000			•	1000	L.				L	•	c r t
88/10/18	080.	<u ,<="" td=""><td>10.,</td><td>900.</td><td>1000.></td><td>c00. ></td><td>c00.></td><td>2000.</td><td>, 0U8</td><td>100.</td><td>10.5</td><td>c000. ></td><td></td><td>C#N.</td><td>200.</td><td>500.</td><td>۰. ۲</td><td>0 ' V</td><td>5. / T</td></u>	10.,	900.	1000.>	c00. >	c00.>	2000.	, 0U8	100.	10.5	c000. >		C#N.	200.	500.	۰. ۲	0 ' V	5. / T
88/11/30 89/03/13	.075	<		.007	1000.>	005 (<005 <.005	· 1000. >	. 072.	.003	10.>	<.0005	.05	190.1	<.002	.002	21.2	3.0	20.2
	105	30	5	200	1000 /	300	900	CC00	030	500	10 ,	0012	, 05	790	200	ĘŲŲ	13 0	L (17
STD DEV	.039	9 9	50	- 005	0	. 003	.003	.0018	.023	- 001	0	.0014		.120	.002	.001	12.7	1.5	11
								U	TOTAL	L METAL	ų								
DATE	R	S	B	a	8	8	ង	5	Fe	£	Q.	£	8	Sr	F	2	3	5	M
88/04/13	.130	<.05	.03	.004	(,0001	<.005	<.005	<.0005	.040	.001	<.01	.0016	<.05	.031	<.002	<.002	6.3	1.8	10.4
88/04/26	.183	. 05 7	40.	.004	1000.	<00. >	<00.>	.0043	40. 40.	100.	10.)	<000. >	cu.>	.032	.002	900.	7 C	7.0	n. 21
88/05/26	een.	60.) EE.	20.	900.	1000.>	.024	<.005	.0015	. 006 1006	.002		<.0005	 05	.045	.005	.003	5.7 9.1	2.4	13.0
88/06/06	.219	<.05 <	<.01	.005	<.0001	<005	<.005	<.0005	.019	.004	<.01	<.0005	<.05	.038	.006	<.002	7.6	2.0	13.4
88/07/18 88/08/16																			
88/10/18	.140	.06	<.01	.005	<.0001	<.005	<.005	.0008	<.005 <	<.001	<.01	<.0005	<.05	.043	<.002	<.002	8.7	2.3	13.2
88/11/30 89/03/13	.150	<05 <.05	<.01 <.01	.019 .008	.0002 (.0001	<005 <.005	<.005 <.005	.0019 .0005	.111	.001 .006	<.01 <.01	<.0005	<.05 <.05	.34 .192	.005	.005 <.002	43.0 21.6	6.2 3.1	44.2 20.3
		1	:				100		l		ā	1000	Ľ				r	r 1	ţ
STD DEV	.039	10	. 10	-005	0000	.00.	cou.> 0	.0013	-05 -052	-002	TN .,	-0004	60°)	-04 	-002	- 002	12.9	1.5	17

^{* (}units - mg/l, except as noted)

4.4 Periphyton

a) Table 12 - Station 1 - Quinsam River 1 km u/s Middle Quinsam Lake

b) Table 13 - Station 5 - Quinsam River 25 m d/s Middle Quinsam Lake

c) Table 14 - Station 5A - Quinsam River .5 km d/s Middle Quinsam Lake

d) Table 15 - Station 8 - Quinsam River 3 km d/s Middle Quinsam Lake

TABLE 12 PERIPHYTON STATION 1

(QUINSAM RIVER - 1 km u/s MIDDLE QUINSAM LAKE)

DATE	REPL- ICATE	TOTAL NITRO	TOTAL PHOS	N/P	CHL a	PHAEO- PHYTON	TOTAL PIGMENT
		(g/m2)	(g/m2)	(at)	(mg/m2)	(mg/m2)	(mg/m2)
88/05/11	1	5.14	.333	34.1	7.3	12.0	19.4
	2	6.18	.366	37.3	6.3	11.6	17.8
	3	3.78	.538	15.5	7.9	12.4	20.2
	4	7.79	.313	55.0	10.3	12.0	22.3
	5	16.1	.200	178	7.7	12.3	20.0
	6	17.7	.271	144	3.8	9.2	13.0
	7	16.9	.265	141	5.6	9.5	15.1
	8	9.64	.496	43.0	10.2	16.6	26.8
	mean	10.4	.348	80.9	7.4	12.0	19.3
	std	5.7	.12	63	2.2	2.3	4.3
88/06/06	1	3.45	.217	35.2	5.1	2.2	7.3
	2	3.21	.165	43.1	6.9	•6	7.6
	3	3.13	.1/2	40.3	5.0	3.0	8.0
	4	4.02	.120	/3./	2.8	1.1	3.9
	5	4.66	.1/2	59.9	6.4	1.4	7.9
	6	3.69	.167	48.9	2.8	2.4	5.2
	7	3.21	.1/2	41.3	5.5	3.1	8.6
	8	2.81	.137	45.5	3.1	.6	3.7
	mean	3.5	.165	48.5	4.7	1.8	6.5
	std	•6	.03	13	1.6	1.0	1.9
88/07/18	1	3.78	.964	8.7	5.8	2.5	8.3
	2	10.4	.227	102	4.7	1.9	6.7
	3	8.03	.161	111	5.0	1.5	6.5
	4	4.34	.188	51.0	3.9	•8	4.7
	5	7.39	.212	77.0	6.3	1.1	7.4
	6	7.23	.264	60.5	5.8	2.7	8.4
	7	8.84	.238	82.1	5.6	1.6	7.2
	8	6.59	.259	56.1	4.5	1.0	5.5
	mean	7.1	.314	68.4	5.2	1.6	6.8
	std	2.2	.26	32	•8	./	1.3
88/08/16	1	4.50	.177	56.3	8.0	2.2	10.1
	2	2.73	.082	73.7	4.3	1.6	5.9
	3	4.34	.153	62.8	12.4	3.2	15.7
	4	4.37	.187	51.6	8.6	2.4	11.0
	5	3.21	.086	82.6	8.4	1.7	10.0
	6	3.78	.109	76.4	9.5	2.0	11.5
	7	4.02	.130	68.2	10.8	1.8	12.5
	8	3.86	.103	82.9	12.0	2.9	14.9
	mean	3.8	.128	69.3	9.2	2.2	11.5
	std	.6	.04	12	2.6	.6	3.1

(QUINSAM RIVER - 25 m d/s MIDDLE QUINSAM LAKE)

DATE	REPL- ICATE	TOTAL NITRO (g/m2)	TOTAL PHOS (g/m2)	N/P (at)	CHL a (mg/m2)	PHAEO- PHYTON (mg/m2)	TOTAL PIGMENT (mg/m2)
88/05/11	1	9.72	.161	134	6.2	9.2	15.4
	2	4.98	.129	85.6	7.3	10.3	17.6
	3	3.53	.096	81.0	5.0	7.7	12.7
	4	5.30	.104	112	2.8	5.8	8.6
	5	7.47	.271	60.8	5.8	9.2	15.0
	6	2.41	.088	60.3	' 2.0	3.2	5.2
	7	11.2	.451	55.2	44.3	63.1	107
	8	8.03	.129	138	3.6	5.4	9.0
	mean	6.59 3.1	.179	90.9 33	9.6 14	14.2	23.9 34
	stu	J.1	• 12	33	14	20	74
88/06/06	1	3.37	.153	48.9	4.5	1.6	6.1
	2	2.01	.003	10.8	5.5	1./	/.l 5 0
	5	2 41	.049	170	J.4 5 1	•4 1 0	5.0
	4 5	5 38	321	37 0	10 1	55	24.6
	6	3.78	.122	68.3	7.6	2.0	9.6
	7	2.17	.043	111	3.0	1.4	4.3
	8	7.15	.386	41.0	30.6	5.3	35.9
	mean	3.51	.146	79.9	10.1	2.4	12.5
	std	1.9	.14	4/	10	2	11
88/07/18	1	4.26	.177	53.2	4.5	1.4	5.9
	2	4.98	.137	80.6	5.0	1.2	6.2
	3	3.29	.078	93.4	2.8	.4	3.2
	4	5.14	.129	88.4	4.3	1.1	5.5
	5	6.91	.1/5	8/.2	5.0	1.2	6.2
	6	5.46	.233	51.8	3.2	1.0	4.2
	8	4.98 9.64	. 184	96.4	3.5 6.4	.8 2.0	4.3 8.4
	mean	5.58	.167	76.4	4.3	1.1	5.5
	std	1.9	.05	18	1	0	2
88/08/16	1	2.41	.072	73.7	4.7	1.9	6.7
	2	2.73	.078	77.5	8.4	2.3	10.7
	3	2.49	.070	78.7	7.6	2.1	9.6
	4	3.69	.102	80.0	9.5	2.6	12.0
	5	2.41	.104	51.0	2.6	1.2	3.8
	6	2.09	.078	59.2	3.9	1.0	4.8
	7	4.42	.321	30.4	4.3	3.1	7.4
	8	2.49	.118	46.6	2.8	1.1	3.9
	mean	2.84	.118	62.1	5.5	1.9	7.4

,

TABLE14PERIPHYTONSTATION5A

(QUINSAM RIVER - .5 km d/s MIDDLE QUINSAM LAKE)

DATE	REPL- ICATE	TOTAL NITRO (g/m2)	TOTAL PHOS (g/m2)	N/P (at)	CHL a (mg/m2)	PHAEO- PHYTON (mg/m2)	TOTAL PIGMENT (mg/m2)
00/07/10	1	20.0	610	75 6	77 1	20 1	07 2
00/0//10	2	14 5	200	107	90.0	20.1	102
	2	14.5	·270	50 0	90.0	10 5	40 2
	2	9.04	. 302	20.0	49.0	10.3	5 70
	4	0.00	.10/	09.2	2.3/	3.13	5.70
	S	8.84	• 312	62.7	51.4	1.23	28.6
	6	8.84	.307	63.6	32.2	1/.5	49./
	7	4.02	.112	78.9	10.8	7.15	17.9
	8	6.02	.191	69.6	22.1	14.7	36.8
	mean	9.82	.297	73.2	42.0	15.2	57.1
	std	5.5	.15	15	31	9.5	39
00/00/10	4	10 //	() 7	50.0	((7	00 F	00.3
88/08/18	1	10.44	.43/	22.8	66./	22.5	89.2
	2	12.85	.405	/0.2	23.4	/./1	31.1
	3	16.06	.297	119	88.4	28.9	117
	4	8.84	.217	90.0	28.0	5.14	33.1
	5	7.07	.217	72.0	18.7	4.74	23.5
	6	5.62	.182	68.1	25.5	5.30	30.8
	7	.803	.456	3.89	138	78.7	217
	8	8.84	.337	57.9	189	51.4	240
	mean	8.82	.319	66.8	72.2	25.6	97.7
	std	4.0	•11	22	60	21	0/

TABLE 15 PERIPHYTONSTATION 8

(QUINSAM RIVER - 3 km d/s MIDDLE QUINSAM LAKE)

DATE	REPL- ICATE	TOTAL NITRO	TOTAL PHOS	N/P	CHL a $(m\pi/m^2)$	PHAEO- PHYTON	TOTAL PIGMENT
		(8/112)	(g/ m2)	(at)	(mg/m2)	(mg/mz)	(mg/mz)
88/05/11	1	7.63	.137	124	.9	1.5	2.4
	2	7.07	.120	130	1.7	2.4	4.1
	3	6.59	.071	206	1.1	1.9	3.1
	4	7.15	.073	216	1.1	1.8	2.9
	5	8.03	.073	243	1.3	2.9	4.2
	6	5.94	.039	341	1.9	2.3	4.3
	7	7.71	.088	193	1.8	3.5	5.4
	8	1.77	.067	58.6	3.3	5.3	8.6
	mean	6.49	.083	189 86	1.6	2.7	4.4
	sta	2.0	.05	00	•0	1.2	2.0
88/06/06	1	2.17	.038	127	1.0	.7	1.8
	2	2.73	.044	137	1.4	2.2	3.5
	3	3.21	.071	99.3	1.9	.9	2.8
	4	1.45	.034	94.7	1.3	1.3	2.6
	5	1.29	.033	86.2	2.0	.2	2.2
	6	1.04	.035	66.8	2.0	1.8	3.9
	7	.80	.019	92.1	1.8	1.1	2.9
	mean	1.81	.039	100	1.6	1.2	2.8
	std	.9	.02	24	.4	.7	.7
88/07/18	1	7.63	.162	103.9	1.7	.8	2.5
	2	7.07	.088	177	1.0	.6	1.6
	3	6.59	.137	106.6	1.5	.6	2.2
	4	7.15	.129	123	1.3	.1	1.4
	5	8.03	.120	147	2.3	1.1	3.5
	6	5.94	.153	86.1	1.7	.8	2.5
	7	7.71	.129	132.6	.9	.2	1.0
	8	1.77	.129	30.4	1.0	1.4	2.5
	mean	6.49	.131	113	1.4	.7	2.1
	std	2.0	.02	44	.5	.5	.8
88/08/16	1	1.45	.060	53.0	2.3	.6	3.0
	2	1.45	.051	62.2	1.3	.5	1.8
	3	1.37	.057	52.9	2.3	1.4	3.7
	4	1.20	.053	50.2	1.3	.2	1.5
	5	.96	.064	33.2	1.0	.3	1.4
	6	1.77	.048	81.0	1.9	1.4	3.3
	7	1.45	.042	76.5	. 4	.8	1.2
	8	1.93	.061	69.8	2.8	1.3	4.1
	mean	1.45	.055	59.9	1.7	•8	2.5
	std	.3	.01	16	.8	.5	1.2

4.5 Fall Lake Survey

- a) Table 16 Hydrolab (Surveyor II) Profile Middle Quinsam Lake -Site 1 - 19 October, 1988
- b) Table 17 Receiving Water Quality and Phytoplankton -Middle Quinsam Lake - Site 1 - Water Quality Profile 19 October, 1988

TABLE 16 HYDROLAB (SURVEYOR II) PROFILE

MIDDLE QUINSAM LAKE - SITE 1 (19 OCT 1988)

חיייממ	трир	-1	DO	COND	ODD		CMT C C T ON
			(UKE		
(m)	(Deg C	(rel u)	(mg/1)	(us/cm)		(UE/m2/s)	(%)
0	12.4	6.6	8.8	57	228	281	100
1	12.4	6.6	8.8	57	225	116	41
2	12.4	6.7	8.7	57	221	73	26
3	12.4	6.7	8.6	57	224	39	14
4	12.4	6.7	8.2	57	228	30	11
5	12.4	6.7	8.1	57	226	20	5.0
6	12.4	6.7	8.1	57	225	14	3.6
7	12.2	6.7	7.7	57	225	10	3.2
8	12.0	6.7	8.0	57	224	8.9	1.4
9	12.0	6.7	7.9	57	224	3.9	.9
10 *	11.8	6.7	8.0	57	224	2.5	
11	11.7	6.7	7.8	57	225		
12	11.4	6.6	6.9	60	228		
13	10.3	6.3	2.5	69	239		
14	9.9	6.1	2.1	72	242		
15	9.8	6.1	2.1	72	242		

15.1 BOTTOM

+ MOE WASTE MANAGEMENT BRANCH

* SECCHI DEPTH (9.5 - 10 m)

WATER QUALITY SAMPLE DEPTHS: 1, 12 and 14 m PHYTOPLANKTON SAMPLE DEPTHS: 1, 4 and 9 m

4		
	88	
	r H	
	ð	
	7	
	Ħ	
	201	
	E F	
	5	
	8	
	Ĩ	
	9	
	7	
	Ē	
	2	
	Ş	
	2	
	륑	
	3	
	I	
	P	
		ļ
	201	
	E	
	ļ	
	È	
	5	
	g	
	Å	
	2	
	ä	
	PI2	
	2	
	9	
	BAH	
	-	

								A PHY	SICAL		ICM								
HTAND (W)		a bep	8	те Гел	us/cm	Q	ALK	so.	ĩ	Ê	f	TURB	HARD	si	10	â	NO ₃	100 ²	E.
F		12.4	8.8	7.8	48.0	1.5	22.5	2.0	<5.0	39	39	.10	21.2	1.4	<.002	.004	.010	<.005	.021
12		11.4	6.9	7.4	49.5	1.9	21.0	2.0	<5.0	34	34	.20	21.0	1.5	<.002	.004	.009	<.005	.017
14		6.6	2.1	6.7	63.0	L.L	19.5	3.0	<5.0	45	45	1.00	20.1	1.8	.003	.005	.038	<.005	111.
								8	ISSOLV		NIS								
(#)	দ	8	æ	톮	ন্ত	8	ង	5	P.	륲	ę.	£	я	Sr	Ŧ	ន	3	6	R.
H	900.	<.05	¢.01	<.001	<.0001	<.005	<.005	.0020	.012	.007	10.>	<.0005	<.05	.012	<.002	.003	7.1	8.	1.1
12	900.	<.05	<.01	<.001	<.0001	<.005	<.005	.0006	.024	.020	(.01	<.0005	<.05	.013	<.002	<.002	7.1	8.	1.6
14	. 002	<.05	01	.003	<.0001	<.005	<005	.0005	.038	.250	<.01	<.0005	<.05	.017	<.002	<.002	6.6	8.	4.8
								U_	TOTAL	HETAL	S								
	7	ą	£	R	ষ্ত	8	ង	5	Pe	£	£	£	8	Sr	ï	ន	IJ	5	Ra N
Ч	.013	<.05	<.01	<.001	<.0001	<.005	<.005	.0045	.037	.010	10.,	<.0005	<.05	.013	<.002	.004	7.2	8.	8.
12	.010	.06	<.01	.001	<.0001	<.005	<.005	.0022	.059	.023	<.01	<.0005	<.05	.013	<.002	<.002	7.1	8.	1.1
14	.016	.08	<.01	.004	<.0001	<.005	.012	.0036	.441	.274	·.01	<.0005	<.05	.018	<.002	<.002	6.8	8.	3.6
		UHA Q	WIGOLI	Id HOLD															

REPLICATE	[EL.DO	Î.		•
-	4	Phaeo		Phaeo	Chi a	Phaeo
	17/hm1	17/Am1	17/hn1	17/Km1	17/6-1	17/hn/
1	. .	6.	ŝ	.4	ŗ.	. .
2	2.1	ć.2	νį	. 4	'n	۳.
3	۲.2	1.1	8,	ć.2	ŝ	<.2
MEAN	6,	Ľ.	9.	ŗ,	4.	ŗ,
6	1.1	ŝ	ŋ.	Ļ		

* (units - mg/l, except as noted)

5.0 DISCUSSION

5.1 Comparison of Selected EP Data on Effluent, Receiving Water Quality and Biological Parameters (April 1988 - March 1989)

A comparison of seventeen parameters representing QCC permit requirements and Federal concerns that were expressed to the provincial Commission of Inquiry in 1983 are as follows:

> Acid Mine Drainage - pH, conductivity and sulphate Heavy Metals - dissolved Al, Cu, Fe, Pb and Zn Nutrients - phosphorus (total and dissolved), nitrate, nitrite and ammonia Sedimentation - non filterable residue and turbidity

In addition, alkalinity and hardness are compared in order to detect changes in the effluent and receiving water buffering capacities.

Comparisons are made between receiving water quality parameter means and Canadian Water Quality Guidelines, (CCREM) (Table 18) for freshwater aquatic life as well as between effluent parameter means and permitted levels. Student's t test is used to determine the level of significance of the respective changes in the selected parameters. The level of significance in this case is 0.05 (5%), a conventionally used biological statistic. To compute means, grand means, standard deviations and standard errors, all values that are less than the detection limit are assumed to equal the detection limit. As a result, increases are underestimated when compared to values consistently below the detection limit. Additionally, as standard deviations and errors reported are large relative to the mean and grand mean values and the number of samples collected is small, care must be used to interpret the data presented in this report.

Dissolved iron and zinc and total dissolved phosphorus in the SP4 discharge exceed PE7008 permit levels (Appendix B). Phosphorus and zinc marginally exceed the permitted levels by 10%, 1 of 8 times sampled, however,

	TABLE 18	COMPARISON	OF STRUE	D RECEIVIN	s vater an) effluent (ATA HEANS	مد		
			(APRI	L 1988 – M	(6861 EDay					
AREA OF	PARAMETER	INDO	ROLS			STATION RECIEVING		E A	11 ENF	MERCO MERCINE
NECNO		1 (n=10)	2 (n=8)	MOL. 1 (n=3)	5 (n=10)	5A (n=2)	8 (n=5)	SP4-0UT (n=8)	SP4-MOLR (n=8)	
ACID NINE DRATNACE	pH (Rel.U.) Conduct(uS/cm) Sulphate Alkalinity Hardness	7.7 45.4 2.3 20.2 20.6	7.3 45.2 1.8 19.7 19.3	7.3 53.3 2.3 20.7 20.7	7.6 * 43.7 2.6 17.9 18.3	7.8 47.9 2.0 20.9 20.9	7.6 46.3 2.0 19.9 20.0	7.7 310 94 88.0	7.5 193 134 23.3 46.0	6.5 - 9.0 - -
HEAVY METALS	Dissolved Al " Cu " Fe " Pb		.019 .0005 .096 .0005 .0005	.005 .0010 .025 .002 .000 .002 .002	.025 .0005 .0006 .0006 .0006	.016 .0005 .0005 .0005 .0005 .0005	.009 .007 .007 .007 .007	.127 .0033 1.130 .0012 .047	.101 .0022 .0012 .0012 .003	$\begin{array}{c} 0.1 \\ 0.002 \\ 0.3 \\ 0.001 \\ 0.03 \\ 0.03 \end{array}$
SINGLATION	Total Diss P Total P Nitrate Nitrite Ammonia	20. 20. 20. 20. 20. 20. 20. 20. 20. 20.	.003 .005 .005 .005 .005	.002 .005 .005 .005	.002 .003 .005 .005 .005			.007 105 125 125 100 100		- - 0.06 1.37 - 2.2 2
NOLLIVINGHUCHS	Non Filt. Res. Turbid (JTU)	6. 0 .13	ô.ô 4.	∕5.0 .43	6.0 15	6.0 .12	<5.0 .16	€.0 3.11	€.0 .23	11
BJTROPHICATION (periphyton & phytoplankton)	TN/TP (atomic) Total Pigments (mg/m ²)	67 11	, ,	_ 1.2 (mg/m ³)	13	70 78	115 3.0	1 1	1 1	1 1

* – 2

(units in mg/l, except as noted) @ hardness < 60 mg/l 2.2 @ pH 6.5 & Temp 10⁰C; 1.37 @ pH 8.0 & Temp 10⁰C

- 28 -

mean values are less than permitted. Iron exceeds the permit 8 of 8 times by an average of 3.8 times and is the only significantly elevated parameter in the effluent (0.5% probability). The remaining permitted parameters are consistently within the levels. Several non-permitted parameters used as indicators for acid mine drainage (conductivity, alkalinity, hardness and sulphate) increased significantly from the previous year.

In comparison, at the Middle Quinsam Lake Road culvert (MQLR), 3 of 12 parameters (dissolved aluminum, copper and lead) exceed the CCREM guidelines for freshwater aquatic life. These values vary from 1% to 20% higher than the guidelines and are considerably lower than the effluent discharged from SP4. Student's t tests indicate that the means are not significantly different from the guideline values.

Water quality at Middle Quinsam Lake (MQL), site 1 is similar to baseline studies conducted by QCC and EP. Single grab samples were collected at three depths (surface, bottom of epilimnion and hypolimnion). Dissolved iron and ammonia showed increases in the hypolimnion, but are not significant. These levels historically have occurred in the hypolimnion prior to the fall overturn (Redenbach <u>et al</u>, 1985; Redenbach <u>et al</u>, 1987). This is discussed in Section 5.2.

Receiving water quality at station 5 was very similar to control station 1 and 2. Although water quality was only monitored twice (July & August) at station 5A, .5 km downstream of MQL, all results are similar to the control stations and the monitoring station at the outlet of MQL. Water quality at station 8 is similar to the control stations. There are no significant differences between parameter means of the control stations when compared to the downstream receiving water quality monitoring stations (5, 5A and 8). All parameters in the receiving waters are within the guidelines set out in CCREM 87.

Atomic nitrogen:phosphorus ratios at the four stations monitored (Tables 12-15, 18) demonstrate that periphytic algal productivity is phosphorus limited (mean 82, range 50 - 190) during the growing season.

Phosphorus deficiency is least pronounced at the control station and increases with distance downstream. This suggests that phosphorus is possibly limiting periphytic algal growth in the receiving environment.

Periphyton and phytoplankton biomass (chlorophyll <u>a</u> and phaeopigtments) is low at all stations (mean 9.0 mg/m^2 , range $2.1 - 24 \text{ mg/m}^2$), with the exception of Station 5A, during the spring, summer and fall. At Station 5A, located immediately adjacent to and down slope from the eastern extremity of the 2N-Pit, the average pigment level is 78 mg/m². Periphyton pigment levels at Station 5A exceed the B.C. MOE Water Quality criterion for the protection of aesthetics and recreational values (50 mg/m²) and approach the criterion for the protection of aquatic life (100 mg/m²) during the summer months.

5.2 Comparison of Selected EP Monitoring Data (April 1988 - March 1989) to QCC Baseline Data (1983 - 1984)

Data collected from April 1988 to March 1989 by EP was compared to the QCC baseline data (1983 and 1984) to verify that there are no other factors influencing the receiving water quality subsequent to QCC's collection of baseline data (Table 19). As in Section 5.1 the same parameter means are compared using the same criteria, i.e. student's t test to determine if significant changes between baseline and operation monitoring have occurred.

EP operational monitoring and QCC baseline water quality data are very similar at both control stations. Two parameters differ significantly at station 1. Total phosphorus and dissolved iron, are 40% of the QCC baseline data. At station 2, one parameter mean differs, QCC baseline data for ammonia is significantly higher than the EP data. At both control stations the differences in the parameter means are likely due to analytical uncertainties, as the values are near the limit of detection. Small uneven data sets also reduce the ability to detect differences in the means with a similar degree of confidence in the significance of the change. COMPARISON OF SELECTED EP MONITORING DATA MEANS (APRIL 1988 - MARCH 1989) AND OCC BASELINE DATA MEANS

TABLE 19

.

(JAMUART 1983 - OCTOBER 1984) BIOLOGICAL MONITORIBE DATA ARE FROM CONDARABLE SEASONS

,

								STN	II OIL				
AREA OF	PARAMETER			ទ				RECIEV.				11111	Hi
CONCERN		1		2		MQL 1		ŝ		60		SP4-M	3
		20	Đ	ğ	Ø	200	Ci	8	¢3	8	ũ	5	â
		(n=22)	(n=10)	(n=4)	(n=8)	(u=6)	(n=3)	(n=22)	(n=10)	(n=13	(n=5)	(u=5)	(n=8)
	(II fod) ne	ŗ	r	0	r F	r	r F	ŕ	ч Г	ŗ	v F	с Г	u F
	(r : 1			· · ·	0.1	7.1			
DRADUACE	Cond (us/cm)	37.0	45.4	36.5	45.2	44.5	53.3	32.9	43.7	36.6	46.3	22.0	193
	Sulphate	1.8	2.3	<1.0	1.8	1.6	2.3	1.4	2.6	1.3	2.0	<1.0	134
	Alkalinity	24.9	20.2	25.9	19.7	24.7	21.0	22.9	17.9	24.9	19.9	19.4	23.3
	Hardness	20.0	20.6	19.8	19.3	19.0	20.7	16.4	18.3	19.0	20.0	12.0	46.0
HEAVT	Dissolved Al	.023	.021	.033	.019	.007	.005	.025	.025	.022	600-	.071	101.
SINTR	Dissolved Cu	<.0010	.0005	<.0010	<.0005	<.001	.001	.0023	.0005	<.0010	.000	<.0010	.0022
	Dissolved Fe	.012	.005	.048	860.	.027	.025	.028	.022	.094	.011	.032	.030
	Dissolved Pb	<.0010	<.0005	<.0010	.0005	<.001	<.0005	<.0010	.0006	<.0010	.000	<.0010	.0012
	Dissolved Zn	.002	<.002	.003	<.002	.001	.002	.002	.002	.002	<0.002	.001	.003
	Total Diss P	.003	.002	.004	.003	.002	.002	.003	.002	.002	<.002	.004	.003
	Total P	.005	.002	.006	.003	.004	.004	.005	.003	.004	.002	900.	.004
	Nitrate	.012	.013	.004	.010	<.005	010.	.007	010.	.ò20	.019	.013	.072
	Nitrite	<.001	<.005	<.001	<.005	<.001	<.005	<.001	<.005	<.001	<.005	<.001	<.005
	Amonia	600.	.006	.017	.006	<.010	.050	600.	.008	.011	.008	.012	.008
SED I MARKING	Non Filt. Res	1.3	<5.0	¢1.0	<5.0	2.6	<5.0	1.3	<5.0	1.5	<5.0	1.5	<5.0
	Turbidity	<1.0	.13	1.18	.44	<1.0	.43	(1.0	.15	1.1	.16	<1.0	.23
	(@cc=win;												
	EP=JTU)												
GUTHOPHICATION	I TW/TP (atomic)	55	67	I	I	ı	I	50	Ł	33	115	ı	ł
(periphyton E	Total Pigments	20	11	ı	ı	2.0	1.2	11	13	17	3.0	I	1
phytoplankton)	(<mark>1111,000,000)</mark>					(m 2/bar)	u /bu)	e e					

* (units in mg/l, except as noted)

- 31 -

EP receiving water quality monitoring data at stations 5 and 8 are similar to the QCC baseline data. At station 5, the only parameter to differ is nitrate, EP data are significantly higher than the QCC baseline data. Water quality at Middle Quinsam Lake, site 1, is similar to the QCC baseline data collected just prior to the fall overturn. Two parameters, nitrate and ammonia increased significantly, when compared to the QCC baseline data. These apparent increases, evident only in the hypolimnion, are the result of natural processes in stratified lakes or sampling at different depths. EP routinely samples from two zones (oxic and hypoxic) of the hypolimnion, when possible, while QCC sampled at one depth, usually in the oxic zone. The differences in the monitoring results for MQL site 1 reflect natural conditions in the hypoxic zone of the hypolimnion (Redenbach <u>et al</u>, 1985; Redenbach et al, 1987).

Station 8 had the least similar parameter means, dissolved aluminum and iron and turbidity differ significantly. EP values vary from 10 - 40% of the QCC baseline data. When comparing mean values, the trend is to a lower value in the EP data for receiving waters. There are several possible reasons; uneven and small data sets, different sampling locations and techniques and different laboratory analytical methods, are but a few.

Historically, QCC baseline monitoring data for periphytic nitrogen and phosphorus demonstrated that algal productivity is phosphorus limited at all stations during the spring and summer months. This has changed little at stations 1 and 5, however, phosphorus has become significantly more limited at Station 8. Periphyton and phytoplankton biomass (chlorophyll <u>a</u> and phaeopigments) data from 1988 are very similar to the QCC baseline data at stations 1, 5 and Middle Quinsam Lake - site 1. Similar to nutrient status, EP periphyton biomass data at Station 8 in 1988, is significantly less than the QCC baseline data when compared to data from the same season. As mentioned above there are several possible reasons for the differences.

EP water quality monitoring data and QCC baseline data are the least similar at the Middle Quinsam Lake Road culvert. Three parameters are significantly different, in all cases the EP monitoring results are higher. Conductivity, hardness and dissolved zinc are from 3 to 9 times higher. Although several other parameters increased well above historical levels, these changes are not significant because standard deviations exceeded mean values.

Several activities associated with mining such as the use of explosives, land clearing, exposure of soils, unweathered minerals and rock result in increased levels of the above mentioned parameters in mine effluent discharges. EP monitoring of the effluent stream from the sump in the 2N pit to the outlet of the settling pond shows elevated levels and three trends in the effluent concentration. Table 20 lists several parameters showing the three trends. Several dissolved metals (barium, calcium, copper, magnesium, sodium and strontium), alkalinity, conductivity, hardness, filterable residue and nitrogen consistently decrease in concentration with distance from the However, the dissolved metals (aluminum, iron pit. and manganese) phosphorus, turbidity and non filterable residue increase and peak at the settling pond. The concentration of sulphate is lowest at the outlet of the settling pond and then increases by 35% at the MQLR culvert. The reason(s) for this is not clear at present but it is suspected that groundwater discharges affect the effluent stream prior to the compliance point and downstream in the receiving environment.

5.3 <u>Comparison of QCC Effluent Discharge Volumes and Predicted</u> Discharges from Settling Pond 4 (April 1988 - March 1989)

QCC monitoring data indicates that the mean discharge from Settling Pond 4 is less than 1% of the allowable discharge stated in PE 7008 for the stage 1 operations. The maximum daily flow from the pond is 3% of the permitted discharge. Similarly, QCC precipitation monitoring data and calculated area of disturbance indicates that the discharge from the pond is approximately 5% of the expected flow. The majority of the precipitation, received from late fall to early spring when evaporation and transpiration is minimal, does not account for a significant portion of the annual water budget at the mine site. It appears that approximately 95% of the

- 33 -

		STAI	NOI	
PARAMETER	2N PIT	SP4-IN	SP4-OUT	MQLR-CULVERT
Al (dis)	.05	.02	.13	.11
Ba "	.04	.03	.02	.01
Ca "	230	120	26.8	13.9
Cu "	.0068	.0052	.0033	.0018
Fe =	.06	.21	1.13	.03
Mg "	22.6	13.9	4.4	2.7
" um	.15	.39	.27	.002
Na "	300	120	32.7	17.0
Sr "	2.65	1.23	.23	.10
Alkalinity	130	100	48	23
Ammonia	. 39	60.	.02	.007
Condutivity (uS/cm)	2100	920	310	190
Hardness	667	350	88	46
Nitrate	6.3	1.4	.13	.07
Nitrite	.08	.02	.01	<.005
Phosphorus (dis)	<.002	.006	.007	.003
" (tot)	.003	.011	.016	.004
Residue, Filt.	1810	1260	390	115
Residue, Non Filt.	<5 <5	8	<5 <5	<5
Sulphate	920	480	95	130
Turbidity (JTU)	1.4	0.0	3.1	.2

COMPARISON OF SELECTED PARAMETERS SHOWING TRENDS IN THE EFFLUENT STREAM (APRIL 1988 - MARCH 1989)

TABLE 20

*

* (units in mg/l, except as noted)

- 34 -

precipitation received on the minesite is not discharged from the treatment pond.

Questions regarding this issue should be addressed to determine:

- the reasons for such a large difference between the actual and predicted discharges from the treatment pond,
- where the discharge occurs, and
- if there are any potential impacts on the receiving environment beyond the monitoring that is required for PE 7008.

5.4 Conclusion

At the outlet of Settling Pond 4, three parameters exceeded permit levels as set out in PE7008. Two parameters exceeded permit levels 12% of the time while dissolved iron exceeded the permit level 100% of the time. The quality of the discharge into Settling Pond 4 however, does not show the same degree of contamination. Therefore the contaminants in the discharge from Settling Pond 4 must originate from at least two sources. The most likely source of the contamination is groundwater. To answer this and other questions related to this, groundwater quality, quantity and flow direction should be re-examined.

A comparison of the current receiving water quality to the historical baseline data indicates there is no impact at receiving water stations with the exception of Middle Quinsam Lake Road culvert. At MQLR approximately 30% of the parameters are significantly elevated relative to historical baseline data. Small data sets of unequal size, large standard deviations and intermittent flows make it difficult to determine differences with any degree of confidence.

Periphytic algae in the Quinsam River both up and down stream of the existing mine range from 2.1 to 24 mg/m^2 . These values are similar to the baseline data, however at Station 5A, immediately to the east and down gradient of the 2N pit, algal pigment concentrations exceed B.C. MOE water

quality criteria for periphyton. Mid-summer pigment levels range from 57 to 98 mg/m², exceeding the criteria for aesthetics (50 mg/m^2) and approaching levels set to protect aquatic life (100 mg/m^2) . The reason(s) for this anomally should be determined. As discussed in Section 5.3, a potential source for nutrients is groundwater.

REFERENCES

- Department of the Environment and Department of Fisheries and Oceans. October 1983. A Brief to the Qunisam Coal Public Inquiry, Campbell River, B.C.
- 2. Quinsam Coal Limited. January 1986. Baseline Monitoring Program.
- 3. Hillier, F.A., L. Edgeworth, and A.J. Lynch. Report to the Minister of Environment on the Public Inquiry into the Quinsam Coal Project, at Campbell River, B.C. (October 12 to November 25, 1983).
- Ministry of Environment and Parks, Waste Management Branch, Permit No. PE7008 issued December 23, 1987, to Quinsam Coal Ltd., #2000-1055 West Hastings Street, Vancouver, British Columbia. V6E 3V3.
- 5. Redenbach, A., B. Kelso, H. Sneddon and M. Jones. August 1985. Quinsam Coal Development - A Data Report on Receiving Water Quality - 1984, DR86-03.
- 6. Redenbach, A., B. Kelso, and M. Jones. January 1987. Quinsam Coal Development - A Data Report on Receiving Water Quality - 1985, DR87-01.
- 7. Redenbach, A. August 1988. Quinsam Coal Development A Monitoring Report on the Effluent and Receiving Water Quality - 1987/1988 DR88-07.
- 8. Task Force on Water Quality Guidelines of the Canadian Council of Resource and Environment Ministers. March 1987. Canadian Water Quality Guidelines.

ACKNOWLEDGEMENTS

The author wishes to acknowledge the assistance of staff from Environmental Protection, Pacific and Yukon Region; Paul Kluckner and laboratory staff for chemical analyses, Keith Ferguson and Greg Linton for field assistance, Bryan Kelson and Keith Ferguson for report editing and Heather Hindle and Bev Defehr for word processing and editing. Additionally, I would like to thank Barry Lawley (Department of Fisheries and Oceans, Habitat Management), John Deniseger (B.C. MOE, Waste Management) and Jack Cann (Quinsam Coal Corp.) for their assistance in the field.

APPENDIX A

.

QUINSAM COAL CORPORATION - BASELINE DATA (1983-1984)

Table Al	QCC Baseline Data - Station 1 (Quinsam River u/s Middle Quinsam Lake)
Table A2	QCC Baseline Data - Station 5 (Quinsam River d/s Middle Quinsam Lake)
Table A3	QCC Baseline Data - Station 8 (Quinsam River u/s Iron River)
Table A4	QCC Baseline Data - Station 2 (Flume Creet at Argonaut Road)
Table A5	QCC Baseline Data - Settling Pond 4 (Middle Quinsam Lake Road Culvert)

.

.

ۇل

IAK	
QUINSAN	
MIDOLE	
L∕s	
Ĩ	
7	
RIVER	
3	
(QUIRES	
TION 1	
STATION 1	
DATA STATION 1	
BASELINE DATA STATION 1	
QCC BASELINE DATA STATION 1	
AI QCC BASELINE DATA STATION 1	

						4	PHYSIC	NL & CHR	HICH							
DATE	PLOW CTRS	deq C	8	pH rel u	COMID US/CIII	ALK	BARD	ຮ້	Ë	MPR	1 URB	Ĩ	Ê	og M		Ĩ
				-							, ,					
83/02/25		3.5	12.8	8.2	35 7		18.4	(1.0 (1.0		(1.0 (1.0	.56	.008	600.	.005	<pre></pre>	.010.
83/03/22	.67	4.0	13.2	7.2	45		19.4	<1.0		1.6	.90	.004	.005	· 500. >	<.001	<.010
83/12/13	.52	4.0	12.2		35	26.4	19.7	2.0		<1.0	<1.00	.002	.003	.024	<.001	<.010
84/01/17	.56	1.5	13.6	7.4	26	26.4	22.9	2.0		<1.0	<1.00	.004	.005	.014	<.001	<.005
84/02/11	.41	4.0	12.4	7.2	24	24.2	23.3	2.0		<1.0	<1.00	.007	.008	.023	<.001	.007
84/03/12	.57	5.0	12.2	7.2	23	22.8	22.1	1.7		<1.0	<1.00	.002	.003	.015	<.001	.007
MENN	-54	3.4	12.7	7.4	31.7	25.0	20.7	2.1		1.1	67.	-005	.005	.014	<.001	.008
nio olis	09	1.2	9.	۲.	7.9	1.8	2.0	1.4		ŗ	.35	.003	.002	.008	000-	.002
			B DIS	solved me	SINT							C 1017	AL METN	ខ		
	EVO	R	5	Pe	£	쎫				DATE	Y	5	9 1	£	5	
	83/01/23	.015	.000	600.	<.001	100.				83/01/23	.016	.0017	.010	<.001	<.0005	

8	.001	.001	.001	.004	.004	.003	.001	.002	700-
2	<.001	<.001	<.001	<.001	<.001	<.001	100.>	<.001	,
2	600.	.007	600.	600.	.013	.008	.024	110.	
8	.000	<.0005	<.0005	<.0010	.0010	<.0010	<.0010	8000. 2000	7000 -
2	.015	.039	.024	.020	.046	.027	.020	.027	110-
	83/01/23	83/02/25	83/03/22	83/12/13	84/01/17	84/02/11	84/03/12	HEAN	

.0010 .0100 .0050 .0050 .0020

.031 .041 .017 .023 .042

<.0005
.0006
.0020
.0100
<.0010
<.0010</pre>

.068 .055 .025 .025 .025 .020

83/02/25 83/03/22 83/12/13 84/01/17 84/02/11 84/03/12

.003**8** .0033

.029 <.001 .013 0

.002**4** .0034

.052 .047

nemi Sto dev

- A1 -

* (units - mg/l, except as noted)

			TABLE A2	OCC BA	NG BUTDE	EA STA	2 HOLL	SHIINÖ)	AM RIVE	8 25 m d/s	MIDDLE	I MARSHIUQ	*			
													•			
						R	DISTH	IN & CH	MCM							
DATE	NOLI		8	뿬		ALK	HARD	So R	R	ALTR	TURB	acu	ĥ	с Года	80 ₂	Ĩ
	CINS	deg C		rel u	uS/cm			•			P.F.S					
83/01/23		2.0		7.2	25		13.0	<5.0		<1.0	<.10		<.005	<.005	<.002	.008
83/02/25		4.0	12.8	8.2	28		11.8	<1.0		1.2	.58	.006	.014	<.005	<.001	<.010
83/03/22		5.0	14.2	7.2	28	•	15.0	<1.0		<1.0	.60	.005	.018	.010	<.001	<.010
83/12/13	.832	3.5	13.0	6.7	35	23.1	17.8	<1.0	28	<1.0	<1.00	.003	.005	.016	<.001	.013
84/01/17	1.557	2.5	12.7	7.3	32	22.0	16.3	1.8	22	<1.0	<1.00	:003	.004	.022	<.001	<.005
84/02/11	3.110	4.0	12.1	7.2	28	20.2	16.5	<1.0	22	<1.0	<1.00	.005	900.	.022	<.001	<.005
84/03/12	1.390	5.0	12.2	7.3	32	20.9	17.2	1.5	24	<1.0	<1.00	.001	.002	.012	<.001	<.005
	1.722	3.7	12.8	7.3	29.7	21.6	15.4	1.8	24	1.0	<.75	.004	.008	.013	001	.008
STD DEV	976.	1.1	•0,	ŧ.	3.4	1.3	2.2	1.5	2.8		.35	-002	900.	.007	000.	.003
			B DISC	PI CINED M	SINT							B TOT	NL METN	រ		
		!	l	l	ł	ł					7	ć		f	2	
	SLIVE	z	3	2	2	9					8	3		2		
-	83/01/23	.021	.0005	.028	<.001	<.0005				83/01/23	.030	.0008	.043	(,001	<.0005	
-	83/02/25	.043	<.0005	.026	<.001	.001				83/02/25	.070	<.0005	.045	<.001	.0020	
-	83/03/22	.029	<.0005	.016	<.001	<.001				83/03/22	.045	<.0005	.043	<.001	.0020	
	83/12/13	.029	<.0010	.032	<.001	.002				83/12/13	.044	<.0010	.050	<.001	.0030	
-	84/01/17	.051	<.0010	.024	<.001	.003				84/01/17	.080	.0010	.050	<.001	.0030	
	84/02/11	.040	<.0010	.033	<.001	.004				84/02/11	.050	<.0010	.051	<.001	.0040	
	84/03/12	.023	<.0010	.054	<.001	.002				84/03/12	.031	<.0010	.092	<.001	.0040	
	MEAN	.034	<0008	.030	<.001	.002				MAXM	.050	<.000 8	.053	<.001	.0026	
	STD DEV	110.	.000	.012	•	.001				stid dev	.019	.0002	.017	•	.0012	

.

- A2 -

RIVER)	
TRONG	
s∕u	
Ř	
2	
2 2	
ULINSA	
S	
**	l
STATIO	
DATA	
BASELINE	
8	
2	ĺ
TABLE	

*

CHEMICAL
내
PHYSICAL
4

STAD	Titali deg C	8	pH rel u	comp uS/cm	ALK	HARD	so.	B.	MFR.	TURB JTU	đđi	Ê	ŝ	NO 2	۲
	•														
83/12/13	4.0	11.5	7.0	35	22.0	16.8	1.5		1.2	1.00	.003	.004	.073	.001	.017
84/02/09	4.0	12.1	7.1	31	27.5	18.3	<1.0		<1.0	1.80	.004	.005	.047	.001	.024
84/03/15	5.0	10.8	7.0	33	20.9	18.1	<1.0		<1.0	<1.00	.002	.003	.026	<.001	<.005
HEAR STD DEV	4.3 .6	11.5 .7	7.0 .1	33	23.5 3.5	17.7 .8	1.2 .3		1.1 1.	1.27 .46	.003 .001	.004 .001	.049 .024	<001 0	.010.

SINTS	
DISSOLVED	

60

DATE AI Cu Fe	83/12/13 .076 <.001 .160 < 84/02/09 .190 <.001 .160 < 84/03/15 .030 <.001 .150 <	NEAN .099 <.001 .157 < STD DEV .082 0 .006
5	.001 .003 .001	.002
윤	100.> 100.>	0 0
9	.100 .083 .140	.108 .029
đ	<pre>(.001 (.001 (.001))</pre>	<.001 0
7	.048 .063 .022	.0 44 .021
DATE	83/12/13 84/02/09 84/03/15	HEAN STD DEV

.003 .003 .003

ន

B TOTAL METALS

.003 0

* (units - mg/l, except as note)

- A3 -

TABLE A4 QCC BASELINE DATA STATION 2 (FILME CREEK AT ARGONANT ROAD)

DICU
PHYSICAL
4

DATE		TICIE deg C	8	pH. rel u	CORED US/CIII	ALK	EARD	so	Ľ	NFR	F 13	TURB TU		Ê	MO ₃	NO 2	19
83/11/15		8.0	10.0	6.8	28	20.0	15.5	<1.0		<1.0		00.1	.006	.010	.004	<.001	.023
84/02/11		5.0	11.6	6.9	33	28.6	19.4	<1.0		<1.0	~	00	.004	.004	.005	<.001	.023
MCAN		6.5	10.8	6.8	30.5	24.3	17.5	¢1.0		(1.0	~	.00	.005	.007	.005	<.001	.023
STD DEV		2.1	1.1	1 :	3.5	6.1	2.8	0		0	•	-	100-	-004	100.	0	•
			B DIS	SOLVED ME.	SINT								C TOTA	T NELVI	Ŋ		
1	DATE	R	5	e 4	£	ង				BLVD		R	5	Pe	£	5	

BUNG	2	5	e H	£	ន	SLIVE	2	8
83/11/15 84/02/11	.070	<001 <.001	.029 .028	<pre>100.></pre>	.002 .002	83/11/15 84/02/11	.110 .052	100.> 100.>
NEAN Stid DEV	740. 013	<.001 0	.029 .001	100.> 0	.002 0	MEANT Stid Deev	.081 .041	<.001 0
	-							

.003

.061 <.001 .042 <.001 .004 .001

.052 <.001 .013 0

* (units - mg/l, except as noted)

TARLE A5 QCC BASELINE DATA SETTLING POND 4 - MIDDLE QUINSAM LAKE BOAD CULVERY

CHEMICAL
PHYSICAL

					V	PHYSIC	AL & CHE	DICAL							
DATE	TKNPP deg C	8	рН rei u	CORTD U.S./cm	¥	HARD	so.	£	Ĕ.		Ĩ	F	а З	140 ²	.
83/02/25	4.0	12.6	8.2	21		8.8	<1.0		<1.0	.15	.004	.008	.006	(.001	<.010
83/11/15	7.8	12.6	6.8	23	16.0	11.5	<1.0		<1.0	< 1.00	.007	.009	<.005	<.001	<.020
84/02/07	1.0	13.4	6.8	22	20.9	13.2	<1.0		<1.0	< 1.00	.004	900.	.040	.001	.006
MEAN STD DEV	4 .3 3.4	12.9 .5	7.3 .8	22 1	18.5 3.5	11.2 2.2	<1.0 0		<1.0 0	.72.49	.005	.008	.017	(.001 0	<.012 .007

8LVC	R	5	F.	£	5	DATE	V	5	Pe	£	ង
83/02/25 83/11/15 84/02/07	.081 .130 .099	<.0005 <.0010 <.0010	.021 .026 .050	<pre><.001 <.001 <.001</pre>	.001 .002 .001	83/02/25 83/11/15 84/02/07	.085 .170 .100	<pre><.0005 <.0010 <.0010</pre>	.023 .033 .051	<pre><.001 <.001 <.001</pre>	.001 .004 .001

.001 .004 .001

.002 .002

.036 <.001 .014 0

<.0008 .0003

.045

nemi Sto dev

100[.]

<.001 0

.032 .016

.0008.0003

.103

HEMI Stid dev

- A5 -

C TOTAL METALS

B DISSOLVED METALS

APPENDIX B

H

J

QUINSAM COAL CORPORATION - PE 7008 (STAGE 1 OPERATION)

TABLE B1QCC Permitted Parameter Limits for PE 7008- Stage 1 Operation

TABLE B1 QCC PERMITTED PARAMETER LIMITS FOR PE 7008 - STAGE 1 OPERATION

	ALLOWABLE LEVELS
PARAMETER	AT SP 4 OUTLET

A) Physical/Chemical (mg/l)

Flow (CMS)0.54Non Filterable Residue25 daily compositepH (rel. units)6.0 - 8.0Ammonia1.0Total Dissolved Phosphorus0.01

B) Dissolved Metals (mg/l)

Aluminum	
Copper	
Iron	
Lead	
Zinc	

C) Biota Monitoring (Quinsam River)*

Periphyton (mg/m^2) 50

50 aesthetics 100 aquatic life

0.5

0.02

0.3

0.05

0.1

* B.C. MOE W/Q Criteria for Nutrients & Algae