ENVIRONMENT CANADA CONSERVATION AND PROTECTION ENVIRONMENTAL PROTECTION PACIFIC AND YUKON REGION NORTH VANCOUVER, B.C.

\$

el '3011342 C

1987 CINOLA PROJECT BASELINE STUDIES

Regional Program Report No. 90 - 01

BY

G. DERKSEN

January 1990 ENVIRONMENT CANADA CONSERVATION AND PROTECTION PACIFIC REGION

ABSTRACT

- i -

A monitoring program was conducted in September/October 1987 to further establish the baseline conditions of water and sediment quality in streams adjacent to a proposed gold mine. The sediment results are discussed in the context of trend monitoring considerations.

RESUME

Un programme de surveillance a été mené en september/october 1987 pour mieux évaluer les conditions de base de la qualité de l'eau et des sédiments dans les cours d'eau adjacents à la mine d'or projettée. Les résultats des analyses de sédiments sont discutées dans le contexte d'une surveillance des tendances des données.

- iii -

TABLE OF CONTENTS

PAGE

ABST	TRACT	••••••••••••••••••••	i
RESU	JME	• • • • • • • • • • • • • • • • • • • •	ii
TABI	EOF	CONTENTS	iii
	List	of Figures	iv
	List	of Tables	v
1.0	INTR	DDUCTION	1
2.0	STUD	Y AREA	2
	2.1	Sample Sites	2
		2.1.1 Surface Water	2
		2.1.2 Sediment	2
3.0	MATE	RIALS AND METHODS	5
	3.1	Surface Water Quality	5
	3.2	Sediment	5
4.0	RESU	LTS	10
	4.1	Surface Water Quality	10
	4.2	Sediment Quality	10
5.0	DISC	JSSION	11
	5.1	Sediment Trend Monitoring	11
		5.1.1 Sample Size Considerations	11
		5.1.2 Sample Method Considerations	11
REFE	RENCES	5	15
ACKN	OWLEDO	GEMENTS	16
APPE	NDIX A	A WATER QUALITY	
		(i) Non Metals	
		(ii) Metals	
APPE	NDIX I	B SEDIMENT QUALITY	
		(i) Non Metals	
		(ii) Metals	
		(iii) Reference Sediment	

-

- iv -

LIST OF FIGURES

FIGURE		PAGE
1	YAKOUN RIVER AND SURFACE WATER SAMPLE SITES - 1987	3
2	YAKOUN RIVER AND SEDIMENT SAMPLE SITES - 1987	4
3	BARBIE CREEK AND YAKOUN RIVER - TUKEY'S MULTIPLE COMPARISON FOR (a) MEAN MERCURY AND (b) MEAN COPPER CONCENTRATIONS FOR SYRINGE SAMPLES	12
4	BARBIE CREEK AND YAKOUN RIVER - TUKEY'S MULTIPLE COMPARISON FOR SYRINGE AND CORE TUBE SAMPLES - Hg, Cu, AL, AND SVR	14

.

LIST OF TABLES

TABLE		PAGE
1	SURFACE WATER SAMPLE CONTAINERS AND TREATMENT	6
2	SURFACE WATER SAMPLE ANALYTICAL METHODS	7
3	SEDIMENT ANALYSES AND ANALYTICAL METHODS	9
4	ESTIMATED SAMPLE SIZE TO MEASURE A SPECIFIED LEVEL OF CHANGE IN BARBIE CREEK (B3) SEDIMENT COPPER CONCENTRATIONS	13
5	CORRELATION MATRIX	13

•

1.0 INTRODUCTION

In June 1988, City Resources (Canada) Limited submitted a Stage II Report to the Provincial Mine Development Steering Committee (City Resources, 1988). The report outlined the proposed development of an open pit gold mine (Cinola Gold Project) on Graham Island, Queen Charlotte Islands, British Columbia. The mine would be located within the Yakoun River drainage which has significant fishery resources (Brown and Musgrave, 1979).

As part of a Cinola Gold Project pre-development data collection program, Environment Canada (Environmental Protection), undertook a monitoring program in September 1987. The program focused on further establishing baseline conditions of sediment quality from which to assess any potential changes in sediment quality resulting from mining activity. In addition, two sediment sampling techniques were used in order to evaluate differences in collection methodology. Surface water samples were also collected to characterize the study streams. 2.0 STUDY AREA

The Yakoun River drains an area of approximately 477 square kilometers. The Yakoun River flows in a northerly direction and drains into Masset Inlet near Port Clements, B.C. (Figure 1).

The tributary streams that could be potentially impacted most by the Cinola Project include Barbie Creek and Florence Creek (Figure 1). Barbie Creek drains the area surrounding the ore body (open pit) and is proposed to receive various mine related discharges (settling ponds, treated acid mine water). Upper Florence Creek has been identified as the location for the tailings impoundment. Barbie Creek drains into the Yakoun River approximately 29km upstream of Yakoun Bay. Florence Creek drains into the Yakoun Bay estuary.

2.1 Sample Sites

2.1.1 <u>Surface Water</u>. Water samples were collected on October 2,1987 from sites (1,2,4,6) as described in earlier surveys (Derksen 1983, Derksen 1985a). Sample sites are shown on Figure 1.

2.1.2 <u>Sediment</u>. Sediment samples were collected from three sites on Barbie Creek on September 30, 1987. Two of the Barbie Creek sites (B1 and B3) were located per earlier surveys (Derksen 1985). A new site (soft sediment) was sampled at the downstream end of the Barbie Creek wetland (B4) approximately 15 meters upstream of the Branch 40 road crossing (Figure 2). Two sites were sampled on Florence Creek on October 1, 1987. One site was located per earlier surveys (F1) and an additional site (F2) was sampled further upstream (approximately 200 meters downstream of the Branch 4 bridge crossing). The two sites (sampled on October 1, 1987) on the Yakoun River (Y1 and Y2) were located per previous surveys. Sample sites are shown on Figure 2.

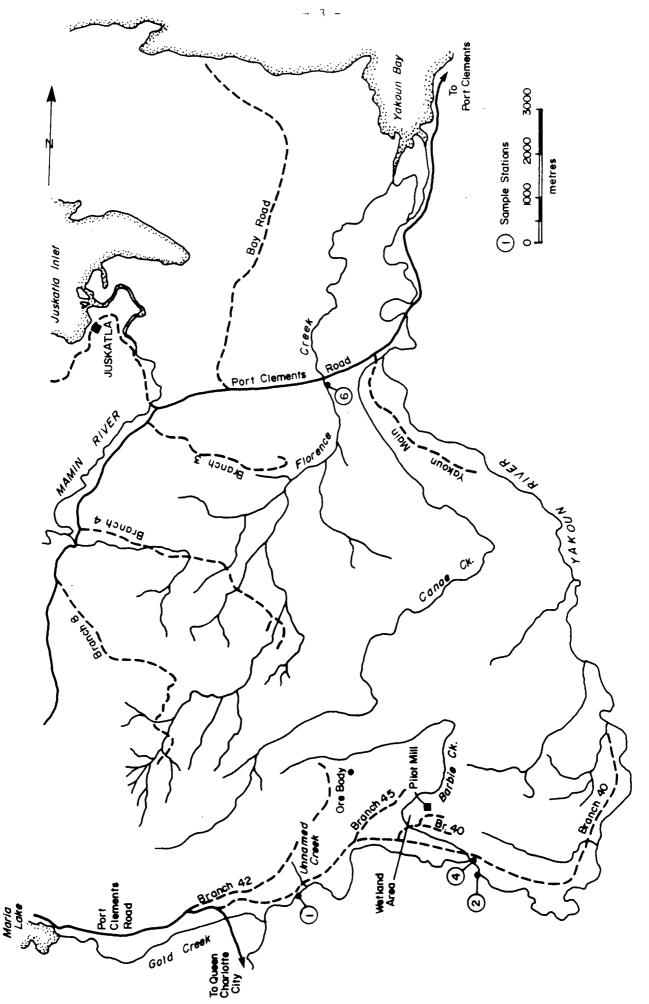
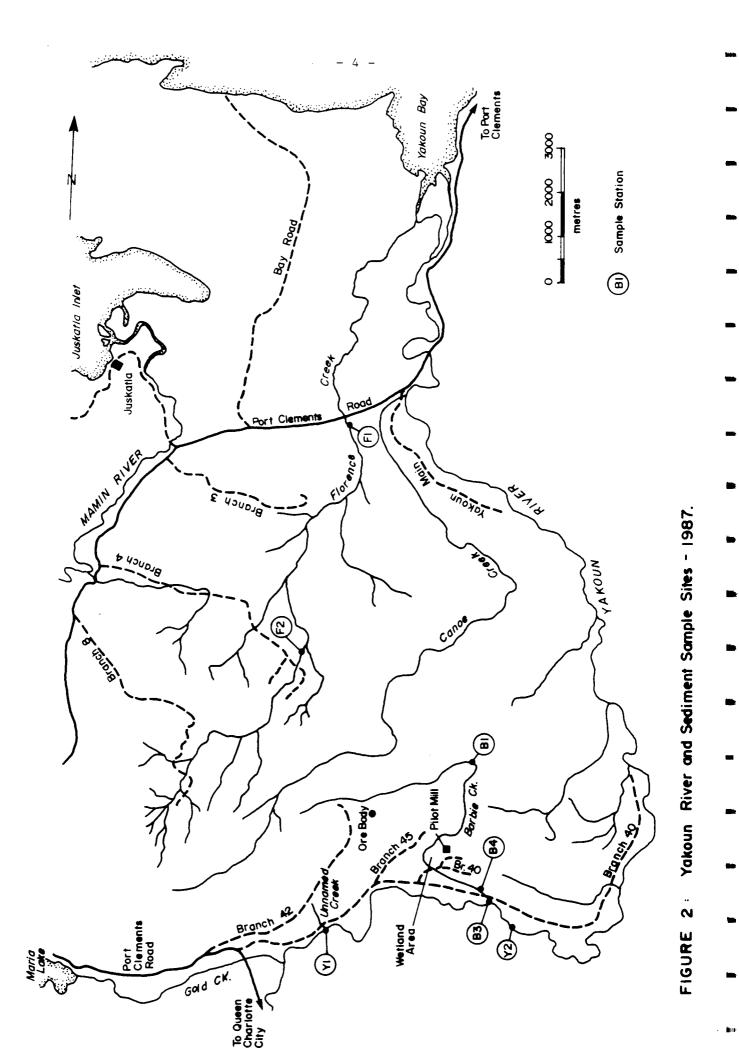



FIGURE I · Yakoun River and Surface Water Sample Sites - 1987.

3.0 MATERIALS AND METHODS

3.1 Surface Water Quality

Grab samples were collected in clean sample bottles and treated as described in Table 1. Triplicate samples were collected in all cases except for phosphorus. Distilled water blanks were also collected for metal analysis quality assurance.

Dissolved total phosphorus samples were filtered through 0.45um distilled water soaked and rinsed cellulose acetate membrane filters. Dissolved metal samples were filtered through 0.45um cellulose nitrate membrane filters. Phosphorus samples were filtered immediately in the field. Metal samples were filtered into clean sample bottles within six hours of collection.

Samples were shipped in coolers with ice to the Environment Canada, West Vancouver Chemistry Laboratory.

Analytical methods are summarized in Table 2 (Environment Canada, 1989).

3.2 Sediment

Sediment samples at stations B1,B2,F1,F2,Y1, and Y2 were collected with a stainless steel syringe per earlier surveys. In addition, for comparative purposes, at stations B1 and F1 samples were also collected with a 3.5mm ID acrylic core tube. At station B4 (soft sediment, wetland area) only the core tube was used and a wooden dowl with a rubber bung fixed to the end of it was used to extrude the sample.

Five composite sediment samples were collected at each site for metal and volatile residue analyses (<0.15mm fraction). The syringe samples were treated per earlier surveys except that the samples were left to settle overnight in the 2L polyethylene sample bottle rather than one hour settling in an Imhoff cone. Samples were placed in Kraft sediment bags and were kept cold

TABLE 1: SURFACE WATER SAMPLE CONTAINERS AND TREATMENT

ANALYSIS	SAMPLE BOTTLE & PRESERVATION
Immediates	
alkalinity acidity pH	- 200ml poly, cold
chloride sulfate residue(non-filterable) (total volatile) (total residue)	- 1000ml poly, cold
total organic carbon	- 100ml glass, cold
nitrogen(ammonia) (nitrite/nitrate)	- 200ml poly, cold
phosphorus (total) (dissolved)	- 60ml glass - 60ml glass
Metals	
(total and dissolved)	 100ml acid washed poly, 0.5ml nitric acid
mercury (total)	 100ml acid washed poly, 5ml potassium dichromate nitric acid

116

TABLE 2: SURFACE WATER SAMPLE ANALYTICAL METHODS

PARAMETER (detection limit)

METHOD

Immediates

alkalinity(1mg/L)	- Potentiometric titration with sulfric
	acid to pH 4.5.
acidity(1mg/L)	 Potentiometric titration with standard alkali to pH 8.3.
pH(0.1)	- Potentiometric, pH meter.
chloride(0.05mg/L)	- Colourimetric, mercuric
	thiocyanate-ferric nitrate combined
	reagent.
sulfate(1mg/L)	- Colourimetric, methylthymol blue.
residues(5mg/L)	obloarimetric, methylthymol blact
(non-filterable)	- Gravimetric, Whatman GFC filtered and
(non-rifterabie)	dried at 105C for one hour.
(total volatile)	- Gravimetric, evaporated at 75C overnight
(total volatile)	and then dried at 105C for one hour, loss
	on ignition at 550C.
(total)	- Gravimetric, evaporated at 75C overnight
(total)	and then dried at 105C for one hour.
total organic	and then dired at 1000 for one nodi.
carbon(1mg/L)	- Combustion, infra-red.
phosphorus(2ug/L)	- total and dissolved. Colourimetric
phosphorus(zug/L)	persulphate-autoclave digest,
nitrogen	molybdate-ascorbic acid reduction.
nittogen	 ammonia(5ug/L). Colourimetric, phenolhypochlorite. nitrite/nitrate(5ug/L). Colourimetric,
	cadium/copper reduction.
motals(total and dis	ssolved). Total metal samples (except
	autoclave digested with 3:1 nitric:
	acid for two hours. Mercury samples are
	he addition of 2:1 sulfuric:nitric acid,
	persulfate and heated for one hour at 105 C.
- Ag(0.1 ug/L)	graphite furnace atomic absorption
- Cd(0.1ug/L)	
- Cu(0.1ug/L) - Cu(0.5ug/L)	graphite furnace atomic absorption
- Pb(0.5ug/L)	graphite furnace atomic absorption
- As(0.5ug/L)	graphite furnace atomic absorption
- Se(0.5ug/L)	ICP emission spectrometry-hydride
= 3e(0.5 dg/L) = A1(0.05 mg/L)	ICP emission spectrometry-hydride
- Ca(0.1mg/L)	ICP emission spectrometry
- Fe(5ug/L)	ICP emission spectrometry
- Mg(0.1mg/L)	ICP emission spectrometry
- Mn(lug/L)	ICP emission spectrometry
- Si(0.05mg/L)	
- Zn(2ug/L)	ICP emission spectrometry
- Hg(0.05ug/L)	
– naroness(mg/	(L) - calculated from dissolved metal sample

during transit and then frozen until preparation for analysis.

Sediment sample analyses and analytical methods are summarized in Table 3. The samples were analyzed at the Environment Canada, West Vancouver Laboratory. The sediment samples in this study were digested using a microwave oven procedure whereas previously, a hot block digestion was used. Millward and Kluckner, 1989 reported that there was a significant time saving using the microwave procedure and that there were no significant differences in the results from the two procedures. Sediment reference samples NBS 1645 and NBS 1646 were used to determine metal recovery.

TABLE 3: SEDIMENT ANALYSES AND ANALYTICAL METHODS

Metals - Samples are oven dried at 40 C, sieved to <0.15mm. and then rolled to homogenize. The sample is then weighted (0.3g) into a Teflon digestion vessel and digested with 4.5ml HNO3 and 1.5ml HCl and 1ml deionized water in a microwave oven (720 joules/sec) for 15 minutes. The sample is cooled, volumized, and settled overnight. The decant is analyzed.

<pre>- Ag(2ug/g)*,</pre>	ICP emission spectrometry
- Al(8ug/g),	ICP emission spectrometry
- As(8ug/g),	ICP emission spectrometry
- Ba(0.2ug/g),	ICP emission spectrometry
- Ca(20ug/g),	ICP emission spectrometry
- Cd(0.8ug/g),	ICP emission spectrometry
- Cr(0.8ug/g),	ICP emission spectrometry
- Cu(0.8ug/g),	ICP emission spectrometry
- Fe($8ug/g$),	ICP emission spectrometry
- Hg(0.008ug/g),	cold vapour atomic absorption
- Hg(0.008ug/g),	cold vapour atomic absorption
<pre>- Hg(0.008ug/g), - Mg(20ug/g),</pre>	cold vapour atomic absorption ICP emission spectrometry
<pre>- Hg(0.008ug/g), - Mg(20ug/g), - Mn(0.2ug/g),</pre>	cold vapour atomic absorption ICP emission spectrometry ICP emission spectrometry
<pre>- Hg(0.008ug/g), - Mg(20ug/g), - Mn(0.2ug/g), - Ni(3ug/g),</pre>	cold vapour atomic absorption ICP emission spectrometry ICP emission spectrometry ICP emission spectrometry
<pre>- Hg(0.008ug/g), - Mg(20ug/g), - Mn(0.2ug/g), - Ni(3ug/g), - Pb(8ug/g),</pre>	cold vapour atomic absorption ICP emission spectrometry ICP emission spectrometry ICP emission spectrometry ICP emission spectrometry
<pre>- Hg(0.008ug/g), - Mg(20ug/g), - Mn(0.2ug/g), - Ni(3ug/g), - Pb(8ug/g), - Si(8ug/g),</pre>	cold vapour atomic absorption ICP emission spectrometry ICP emission spectrometry ICP emission spectrometry ICP emission spectrometry ICP emission spectrometry

* detection limit for 0.3g dried sample

4.0 RESULTS

4.1 Surface Water Quality

Water quality results for non metal and metal fractions are reported in Appendix A(i) and Appendix A(ii) respectively.

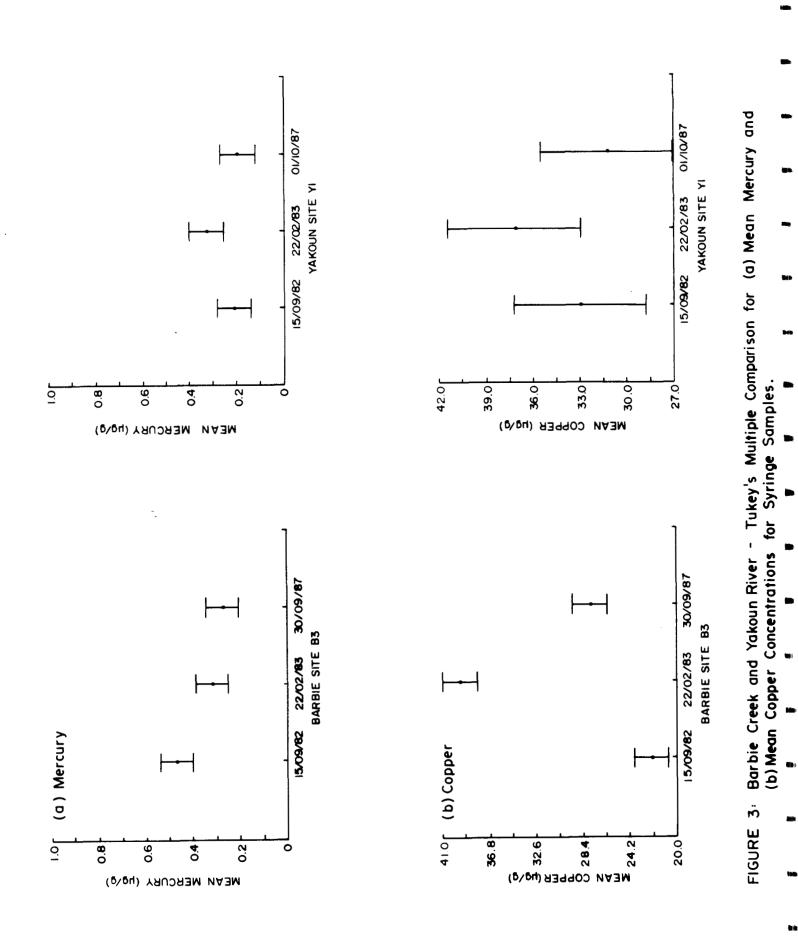
4.2 Sediment Quality

The sediment quality results are reported in Appendix B(i) (non metals) and Appendix B(ii) (metals). The reference sediment results are reported in Appendix B(iii).

ili ing

5.0 DISCUSSION

5.1 Sediment Trend Monitoring


5.1.1 <u>Sample Size Considerations</u>. The sediment data collected in this study and from an earlier study represents a baseline for future comparisons. As examples, mercury and copper levels have been assessed to estimate sample size requirements. Analysis of variance were followed by multiple comparisons using Tukey's test (Zar, 1984). In this case, due to unequal sample sizes, the statistical program uses the harmonic mean. All tests for significance were made at the 95% level.

As shown in Figure 3, for the same station, significant differences in metal content can occur between samples collected on different months and between samples collected on the same month but different years. For example, Barbie Creek mean copper levels in September 1982 were significantly lower than on February 1983 and September 1987 (Figure 3b).

For future impact assessment studies, 'contamination' might be defined as increases in sediment levels that are statistically significantly greater than baseline levels (assuming the baseline estimate adequately reflects the population variance). The number of samples required to measure a specified increase in mean metal content (e.g. copper) can be estimated (Table 4). In order to measure a two standard deviation increase in mean sediment copper levels, in the order of 5-6 samples are required. However, in order to detect a one standard deviation increase, then an estimated 13 samples would be required.

5.1.2 Sample Method Considerations

To determine whether different sample methods might result in different estimates of sediment metal levels, both syringe and core tube samples were collected at two sites. As shown in Figure 4, significant differences in mean estimates of sediment quality can result from different sample methods. The

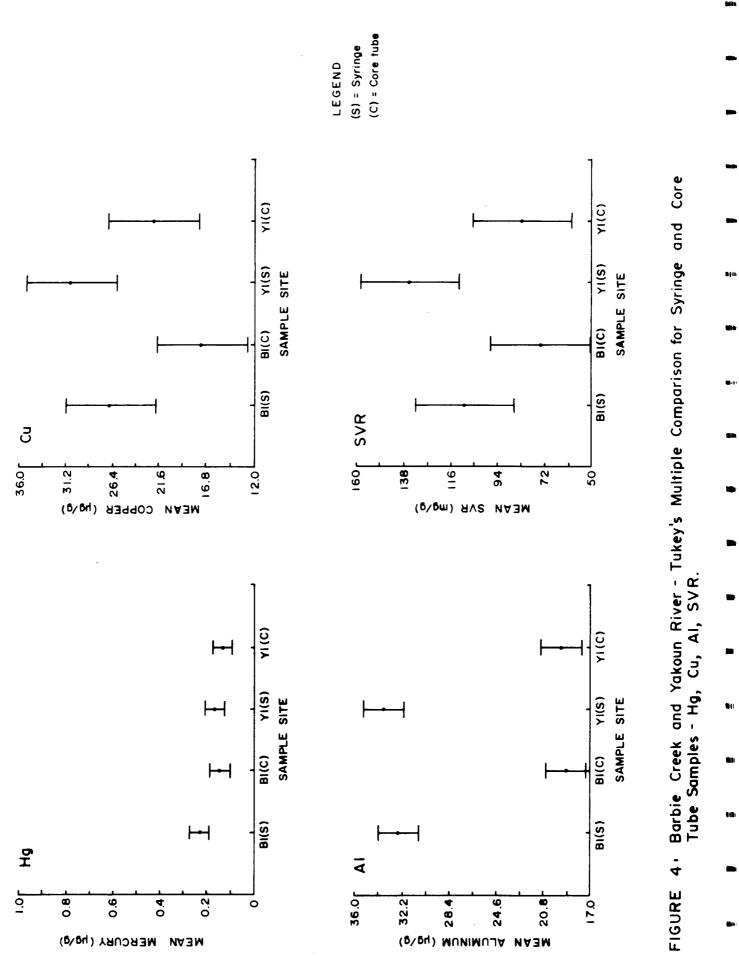
- 12 -

-

Background Information	Percent Chance	Specified Change	Estimated n*
mean = 30.3 ugCu/g sd = 7.5	(i) 90%	15 ugCu/g	5-6
var = 56.7 n = 14	(ii) 90%	7.5 ugCu/g	13

higher mercury, copper, and aluminium levels in the syringe samples can be attributed to the higher organic content of those samples (Table 5). Barbie Creek and the Yakoun River to a lesser degree are both highly organic in nature (Appendix A(i)). Copper, mercury, and aluminium form stable complexes with humic (organic) material (Petersen, 1987). Maintaining continuity in sample methods is an important factor in trend assessments.

TABLE 5: CORRELATION MATRIX


	Cu	<u>A1</u>	SVR
Hg Cu Al	0.24	0.48* 0.68*	0.50* 0.56* 0.70*

* p=0.05, reject hypothesis (r = 0) that variables are independent

LEVEL OF CHANGE IN BARBIE CREEK (B3) SEDIMENT

TABLE 4: ESTIMATED SAMPLE SIZE TO MEASURE A SPECIFIED

COPPER CONCENTRATIONS

i4 --

- 15 -

REFERENCES

- Brown, R.F., and M.M. Musgrave. 1979. Preliminary Catalogue of Salmon Spawning and Spawning Escapements of Statistical Area 1 - Queen Charlotte Islands. Fisheries and Marine Service Data Report No. 132. Fisheries and Oceans.
- City Resources. 1988. Cinola Gold Project Stage II Report. Volumes I VI. Prepared For City Resources (Canada) Limited by Norecol Environmental Consultants Ltd. June 1988.
- Derksen, G. 1983. Yakoun River and Tributary Streams Water Quality Data Collected by the Environmental Protection Service Over June 1981 to March 1982. Regional Program Report No. 83-13. Department of the Environment, Pacific Region.
- Derksen, G. 1985. Heavy Metals in Clastic Stream Sediments of the Yakoun River Drainage and Other B.C. Streams. Regional Program Report No. 83-05. Department of the Environment, Pacific Region.
- Derksen, G. 1985a. Yakoun River, Tributary Streams and Mamin River Data Report on Water Quality Samples Collected by the Environmental Protection Service November 1983 and February 1984. Regional Program Report No. 85-13. Department of the Environment, Pacific Region.
- Environment Canada. 1989. Laboratory Manual. West Vancouver Laboratory. (in prep.).
- Millward, C., and P.D. Kluckner. 1989. Microwave Digestion Technique for the Extraction of Minerals from Environmental Marine Sediments for the Analysis by Inductively Coupled Plasma Atomic Emission - Spectrometry and Atomic Absorption Spectrometry. Journal of Analytical Atomic Spectrometry 4: in press.
- Petersen, R.C. 1987. The Biological Importance of Humic Material in Acidified Waters. The National Swedish Environmental Protection Board. Research Secretariat, Solna, Sweden.
- Zar, J.H., 1984. Biostatistical Analysis. Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632.

ACKNOWLEDGEMENTS

The analytical services provided by the staff of the Environment Canada, West Vancouver Laboratory are greatfully acknowledged. Thanks are extended to B. Godin for his help in the collection of the field samples.

APPENDIX A - WATER QUALITY (i) NON METALS

- Acidity, Alkalinity, Hardness, pH, Sulphite and Chloride
- TOC, TR, NFR, TVR, Nitrite+Nitrate-N, Ammonia-N and total and Dissolved Phosphorus

		Barbie	Florence		
Parameter*		Creek	Creek	Vakou	n River
	(stn)	(4)	(6)	(1)	(2)
Acidity		10.9	8.8	2.1	2.1
(mg/l CaC03)		10.9	8.8	2.1	2.1
		10.9	8.4	2.1	1.7
Alkalinity		3.1	4.6	10.2	11.2
(mg/l CaCO3)		3.1	4.6	9.7	9.7
		3.1	4.6	9.2	10.2
Hardness(Ca&Mg))	12.4	8.26	11.6	11.8
(mg/l CaCO3)		12.5	8.02	11.5	11.6
		13.0	8.37	11.6	12.0
Hardness(Total))	18.4	13.7	12.7	12.9
(mg/l CaCO3)		18.5	13.2	12.7	12.8
		19.0	13.8	12.7	13.1
рН		5.4	5.6	6.9	6.9
		5.4	5.6	6.9	6.9
		5.4	5.6	6.9	6.9
Sulphate(mg/L)		15	12	10	9
		16	12	10	9
		16	13	10	9
Chloride(mg/L)		7.5	7.0	4.4	4.3
		7.7	7.1	4.4	4.4
		7.6	7.0	4.4	4.0
					cont'd
					cont'a

APPENDIX A - WATER QUALITY (i) NON METALS Date : October 2 1987

Parameter*	Barbie Creek	Florence Creek	Yak Ri	oun ver
(stn)	(4)	(6)	(1)	(2)
 FOC(mg/l)	27	31	10	10
	27	30	7	8
	23	29	11	10
CR(mg/L)	101	103	46	42
	99	102	46	46
	94	99	46	51
IFR(mg/L)	<5	<5	<5	<5
	<5	<5 1	<5	<5
	<5	<5	<5	<5
CVR(mg/L)	72	79	28	22
	75	81	28	28
	69	78	24	24
itrite+Nitrate-N	<5	<5	16	16
(ug/L)	<5	<5	16	17
	<5	<5	16	17
mmonia-N(ug/L)	15	18	<5	<5
	21	19	5	<5
	14	19	<5	<5
PhosP(ug/L)	30	26	17	13
DPhosP(ug/L)	25	27	8	11

APPENDIX A - WATER QUALITY (i) NON METALS (Continued) Date : October 2 1987

* 3 replicates except phosphorus

APPENDIX A - WATER QUALITY (ii) METALS

ék et h

- Al, As, Cd, Cu, Fe, Pb, Mn, Hg, and Zn

APPENDIX A - WATER QUALITY (ii) METALS Date : October 2 1987

Parameter		arbie Creek		orence reek			koun iver	
(station)		4		6		[2
	T	D	T	D	T	D	T	D
Al(mg/L)	0.63 0.61 0.66	0.53 0.55 0.54	0.60 0.62 0.67	0.58 0.56 0.58	0.37 0.39 0.39	0.13 0.16 0.13	0.40 0.37 0.38	0.13 0.14 0.14
As(ug/L)	2.0 1.9 2.0	1.5 1.4 1.6	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5
Cd(ug/L)	$0.1 \\ 0.1 \\ 0.1$	<0.1 <0.1 <0.1	0.1 0.1	<0.1 <0.1 <0.1	0.1 0.2 <0.1	<0.1 <0.1 <0.1	0.1 0.2 0.2	<0.1 <0.1 <0.1
Cu(ug/L)	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5
Fe(mg/L)	1.89 1.88 1.96	1.42 1.40 1.42	1.30 1.31 1.30	1.16 1.12 1.18	0.44 0.44 0.44	0.19 0.19 0.19	0.48 0.55 0.42	0.19 0.19 0.19
Pb(ug/L)	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 <0.5 <0.5	<0.5 _ 0.9	<0.5 <0.5 <0.5
Mn(mg/L)	0.229	0.221 0.216 0.219	0.045	0.043	0.024	0.009 0.010 0.009	0.023	0.012 0.010 0.011
Hg(ug/L)	<0.05 <0.05 <0.05	- -	<0.05 <0.05 <0.05	5 -	<0.05 <0.05 <0.05	5 -	0.12 <0.05 <0.05	- - -
Zn(ug/L)	8 9 7	9 9 8	<2 <2 <2	2 2 4	<2 <2 <2	<2 <2 <2	4 <2 6	<2 <2 3
* 3 replica	ates							

APPENDIX B - SEDIMENT QUALITY (i) NON METAL

– SVR

APPENBIX B(i) - SVR

	LOWER Barbii		DDLE	VR Lov Floi		<0.15mm) UPPER FLORENCE	YA	KOUN
(1987)	B3(S)	B1(S)	B1(C)	F1(S)	F1(C)	F2(S)	¥1(S)	¥2(S
SEP 30	11.5 11.7 10.2 13.1 29.4	10.2 18.2 9.9 8.1 8.5	6.6	13.6 15.2	7.1 7.4 10.0 8.0 9.0	11.2 10.6 13.1 10.8 11.9	8.7 8.6 10.1 8.3	6.6 6.8 6.5 6.6
MEAN SD n rsd(%)	15.2 7.2 5 47	11.0 3.7 5 34	7.4 1.9 5 26	13.6	8.3 1.1 5 13	11.5 0.9 5 8	8.9 0.7 4 8	6.6 0.1 4 2
(1987)	LOWER BARBII B4(C)							
SEP 30	39.2 27.2 23.6 27.6 28.7	-						
MEAN SD n	29.3 5.3 5 18							

APPENDIX B - SEDIMENT QUALITY (ii) METALS

- As, Cd and Cr
 Cu and Hg
 Ni, Pb and Zn
 Al and Fe
 Ca, Mg and Mn
- Barbie Wetland Site B4

60

APPENDIX B(ii) - As, Cd, and Cr

	LOWER Barbie		ARS DDLE RBIE	LOW		(<0.15mm) UPPER FLORENCE	۲¥	KOUN
(1987)	B3(S)	B1(S)	B1(C)	F1(S)	F1(C)	F2(S)	Y1(8)	¥2(S)
SEP 30	20 23 10	28 30 31	28 <	8	21 31	< 8 < < 8	< 8 < 8 40	41 27 27
	23 88 <	10 : 8	73 < 60 <	8		< 8 < 8	30	35
MEAN	33	21		8		< 8	21	33
SD	28	10	18	0	4	0	14	6
n	5	5	5	5	5	5	4	4
rsd(%)	85	48	34	0	15	0	65 	18
	LOWER Barbie		CAD DLE BIE	MIUM LOW FLOR		(<0.15mm) UPPER FLORENCE	* Y A	far KOUN
(1987)	B3(S)	B1(S)	B1(C)	F1(S)	F1(C)	F2(S)	Y1(S)	¥2(S
SEP 30			< < <	0.8 0.8 0.8 0.8 0.8 0.8				
MEAN SD n rsd(%)			<	0.8 0 5 0				
* value:	LOWER Barbie	MID BAR	CHR DLE BIE	OMIUM LOW FLOR	(ug/g) ER ENCE	FLORENCE	YA	KOUN
	LOWER BARBIE B3(S)	MID BAR B1(S)	CHR DLE BIE B1(C)	OMIUM LOW FLOR F1(S)	(ug/g) /ER /ENCE F1(C)	(<0.15mm) UPPER FLORENCE F2(S)	YA Y1(S)	KOUN Y2(S
(1987)	LOWER BARBIE B3(S)	MID BAR B1(S)	CHR DLE BIE B1(C)	OMIUM LOW FLOR F1(S)	(ug/g) ER ENCE F1(C)	(<0.15mm) UPPER FLORENCE	YA Y1(S)	KOUN Y2(S
(1987)	LOWER BARBIE B3(S) 51.6 47.1	MID BAR B1(S) 61.9 52.8	CHR DLE BIE B1(C) 24.5 24.1	OMIUM LOW FLOR F1(S) 41.8 36.8	(ug/g) ER ENCE F1(C) 23.3 20.3	(<0.15mm) UPPER FLORENCE F2(S) 34.7 38.8	Y1(S) 55.4 53.0	XOUN Y2(S 56.9 60.1
(1987)	LOWER BARBIE B3(S) 51.6 47.1 50.5	MID BAR B1(S) 61.9 52.8 65.3	CHR DLE BIE B1(C) 24.5 24.1 24.3	OMIUM LOW FLOR F1(S) 41.8 36.8 39.2	(ug/g) ER ENCE F1(C) 23.3 20.3 21.9	(<0.15mm) UPPER FLORENCE F2(S) 34.7 38.8 41.2	YA Y1(S) 55.4 53.0 50.3	KOUN Y2(S 56.9 60.1 64.6
(1987)	LOWER BARBIE B3(S) 51.6 47.1 50.5 50.6 42.9	MID BAR B1(S) 61.9 52.8 65.3 70.5 66.9	CHR DLE BIE BI(C) 24.5 24.1 24.3 29.0 26.8	OMIUM LOW FLOR F1(S) 41.8 36.8 39.2 44.8 47.0	(ug/g) /ER ENCE F1(C) 23.3 20.3 21.9 21.8 21.3	(<0.15mm) UPPER FLORENCE F2(S) 34.7 38.8 41.2 41.6 39.5	YA Y1(S) 55.4 53.0 50.3 62.9	XOUN Y2(S 56.9 60.1 64.6 71.7
(1987) SEP 30 Mean	LOWER BARBIE B3(S) 51.6 47.1 50.5 50.6 42.9 48.5	MID BAR B1(S) 61.9 52.8 65.3 70.5 66.9 63.5	CHR DLE BIE B1(C) 24.5 24.1 24.3 29.0 26.8 25.7	OMIUM LOW FLOR F1(S) 41.8 36.8 39.2 44.8 47.0 41.9	(ug/g) ER ENCE F1(C) 23.3 20.3 21.9 21.8 21.3 21.7	(<0.15mm) UPPER FLORENCE F2(S) 34.7 38.8 41.2 41.6 39.5 39.2	YA Y1(S) 55.4 53.0 50.3 62.9 55.4	KOUN Y2(S 56.9 60.1 64.6 71.7 63.3
(1987) SEP 30 MEAN SD	LOWER BARBIE B3(S) 51.6 47.1 50.5 50.6 42.9 48.5 3.2	MID BAR B1(S) 61.9 52.8 65.3 70.5 66.9 63.5 6.0	CHR DLE BIE B1(C) 24.5 24.1 24.3 29.0 26.8 25.7 1.9	OMIUM LOW FLOR F1(S) 41.8 36.8 39.2 44.8 47.0 41.9 3.7	(ug/g) ER ENCE F1(C) 23.3 20.3 21.9 21.8 21.3 21.7 1.0	(<0.15mm) UPPER FLORENCE F2(S) 34.7 38.8 41.2 41.6 39.5 39.2 2.5	YA Y1(S) 55.4 53.0 50.3 62.9 55.4 4.7	KOUN Y2(S 56.9 60.1 64.6 71.7 63.3 5.6
(1987) SEP 30 MEAN SD	LOWER BARBIE B3(S) 51.6 47.1 50.5 50.6 42.9 48.5	MID BAR B1(S) 61.9 52.8 65.3 70.5 66.9 63.5 6.0	CHR DLE BIE B1(C) 24.5 24.1 24.3 29.0 26.8 25.7 1.9	OMIUM LOW FLOR F1(S) 41.8 36.8 39.2 44.8 47.0 41.9	(ug/g) ER ENCE F1(C) 23.3 20.3 21.9 21.8 21.3 21.7 1.0	(<0.15mm) UPPER FLORENCE F2(S) 34.7 38.8 41.2 41.6 39.5 39.2 2.5	YA Y1(S) 55.4 53.0 50.3 62.9 55.4	KOUN Y2(S 56.9 60.1 64.6 71.7 63.3 5.6 4

æ

-

ø

•

-

APPENDIX B(ii) - Cu and Hg

	LOWER BARBII	-	DDLE	LO	(ug/g) WER RENCE	(<0.15mm) UPPER FLORENCE	Y	AKOUN
(1987)	B3(S)	B1(S)	B1(C)	F1(S)	F1(C)	F2(S)	Y1(S)	¥2(S)
SEP 30	27.5 27.7 26.2 26.6	27.7 31.7 30.7 23.0	19.2 15.0 14.0 19.8	36.2 25.3 25.6 25.9	20.3 20.6 20.2 19.1	38.1 38.0 38.3 36.5	33.9 35.1 29.4 26.7	29.5 30.5 30.0 29.8
	30.2	19.8	18.3	39.8		35.9		
MEAN SD n	27.6 1.4 5	26.6 4.5 5	17.3 2.3 5	30.6 6.2 5	22.2 4.3 5	37.4 1.0 5	31.3 3.4 4	30.0 0.4 4
rsd(%)	5	17	13	20	20	3		1
			ME	RCURY	(ug/g)	(<0.15mm)		

	LOWER BARBII		DDLE RBIE		(ug/g) WER RENCE	(<0.15mm) UPPER FLORENCE	Y	AKOUN
(1987)	B3(S)	B1(S)	B1(C)		F1(C)	F2(S)	Y1(S)	¥2(6)
SEP 30	0.24 0.24 0.21 0.25 0.43	0.25 0.25 0.25 0.15 0.27	0.12 0.11 0.23 0.15 0.12	0.19 0.18 0.17 0.18 0.11	0.13 0.09 0.19 0.08 0.18	0.18 0.14 0.19 0.14 0.15	0.19 0.20 0.19 0.20	0.19 0.18 0.21 0.23
MEAN SD n rsd(%)	0.27 0.08 5 29	0.23 0.04 5 18	0.15 0.04 5 30	<0.17 0.03 5 17	0.13 0.04 5 34	0.16 0.02 5 13	0.19 0.01 4 3	0.20 0.02 4 9

(S) = syringe sampler (C) = core sampler

.

1140

UIII

10-10-

APPENDIX B(ii) - Ni, Pb, and Zn

	LOWER BARBIE		DLE	LOW Flor	IER Rence		YA	KOUN
(1987)	B3(S)	B1(S)	B1(C)		F1(C)	F2(S)	Y1(S)	¥2(S
SEP 30	26	19	8	19	9	17	26	25
	24		10		9		22	
	30			18	9 8		22	
	33 34	19 21	10 10	21	8	20 18	28	34
MEAN	29	 19	9	 19	9	19	25	30
SD	4	1		1	0	1	3	3
n	5	5	5	5	5	5	4	4
rsd(%)	13	5	9	5	5	6	11	11
			LEA	ND.	(va/a)	(<0.15mm)		
	LOWER	MIC		LOW				
	BARBIE		RBIE			FLORENCE	YA	KOUN
(1987)	B3(S)	B1(S)	B1(C)	F1(S)		F2(S)	Y1(S)	¥2(S
SEP 3 <	8 <		18 <		24 <		8	28
<				8			8	26
<				8		< 8	31	
< <	8 < 8 <			: 8 : 8		< 8 < 8	24	22
MEAN <	<u>-</u>	8	18 <	8	21 <	< < 8	18	25
SD	0	0	4	0	3	0	10	2
n	5	5	5	5	5	5	4	4
rsd(%)	0	0	24	0	14	0	57 	9
	LOWER BARBIE		ZIN DLE BIE	IC LOW Flor	IER	(<0.15mm) UPPER FLORENCE	YA	KOUN
(1987)	B3(S)	Bl(S)	B1(C)	F1(S)	F1(C)	F2(S)	¥1(S)	¥2(S
SEP 30		182		82.7			220	111
		232		78.7	130	152	222	116
		212	106	81.2	121	168	203	119
		213 142		81.5	8 4 77		186	112
						144	208	115
MEAN	224	196	107	81	107			***
MEAN SD	60	31	3	1	22	15	15	3

-

APPENDIX B(ii) - Al and Fe

	LOWER BARBII	MII E BAI	DDLE	LO FLO	WER	(<0.15mm) UPPER FLORENCE	Y	KOUN
(1987)	B3(S)	B1(S)	B1(C)			F2(S)	¥1(S)	¥2(S)
SEP 30	39.4 37.7 38.1	32.8 33.9 34.6 28.3	16.3 20.2	30.8 34.7 35.3 33.4	19.8 20.2	35.1 36.5 37.2 35.4 34.0		25.5 26.7
SD n	38.7	32.5 2.2 5	19.0 1.4 5	33.7 1.6 5	1.1 5			0.5 4
			DDLE	LO	WER	(<0.15mm) UPPER FLORENCE	¥	AKOUN
(1987)	B3(S)	B1(S)	B1(C)	F1(S)	F1(C)	F2(S)	¥1(S)	¥2(S)
SEP 30	54.9 51.0	50.4 44.4	30.0 23.0	52.0	45.4	51.6 52.0 53.7 50.3	42.7	45.0 44.8

			44.1 42.6			50.3 51.6	43.4	44.6
MEAN						51.8		
n	5	5	5	5	5	1.1	4	4
rsd(%)	18	17	24	7	3	2	3	

-

-

(S) = syringe sampler (C) = core sampler

.

APPENDIX B(ii) - Ca, Mg and Mn

	LOWER BARBII		CA DDLE RBIE	LO	(mg/g) Wer Rence	(<0.15mm) UPPER FLORENCE	¥	AKOUN
(1987)	B3(S)	B1(S)	B1(C)	F1(S)	F1(C)	F2(S)	¥1(S)	¥2(S)
SEP 30	7.93 7.89 8.02 7.76 5.53	6.44 5.69 6.60 7.46 6.10	4.32 3.67 3.60 4.68 4.41	5.99 5.41 5.90 5.95 5.84	3.96 4.10 4.03 4.11 3.56	7.05 6.90 6.93 6.58 6.52	8.78 9.43 6.36 6.12	6.66 6.59 6.65 6.75
MEAN SD n rsd(%)	7.43 0.95 5 13	6.46 0.59 5 9	4.14 0.43 5 10	5.82 0.21 5 4	3.95 0.20 5 5	6.80 0.21 5 3	7.67 1.45 4 19	6.66 0.06 4 1

LOWER BARBIE		DDLE	LO	VER	(<0.15mm) UPPER FLORENCE	Y	AKOUN
B3(S)	B1(S)	B1(C)	F1(S)	F1(C)	F2(S)	¥1(S)	¥2(S)
4.57	3.28	2.58	3.79	3.95	5.84	6.28	5.79
4.80	3.55	3.07	4.47	3.96	6.17	6.29	5.39
4.71	3.25	2.92	4.03	4.00	6.07	6.92	5.39
4.61	3.65	3.04	4.28	4.20	5.76	6.36	6.02
5.35	3.20	3.16	3.76	3.92	5.96		
4.81	3.39	2.95	4.07	4.01	5.96	6.46	5.65
	0.18			0.10	0.15	0.27	0.27
	5	5	5	5	5	4	4
6	5	7	ž	3	2	4	5
	BARBIE B3(S) 4.57 4.80 4.71 4.61 5.35 4.81 0.28 5	BARBIE BAN B3(S) B1(S) 4.57 3.28 4.80 3.55 4.71 3.25 4.61 3.65 5.35 3.20 4.81 3.39 0.28 0.18 5 5	LOWER MIDDLE BARBIE BARBIE B3(S) B1(S) B1(C) 4.57 3.28 2.58 4.80 3.55 3.07 4.71 3.25 2.92 4.61 3.65 3.04 5.35 3.20 3.16 4.81 3.39 2.95 0.28 0.18 0.20 5 5 5	LOWER MIDDLE LOWER BARBIE BARBIE FLOR B3(S) B1(S) B1(C) F1(S) 4.57 3.28 2.58 3.79 4.80 3.55 3.07 4.47 4.71 3.25 2.92 4.03 4.61 3.65 3.04 4.28 5.35 3.20 3.16 3.76 4.81 3.39 2.95 4.07 0.28 0.18 0.20 0.28 5 5 5 5	BARBIE BARBIE FLORENCE B3(S) B1(S) B1(C) F1(S) F1(C) 4.57 3.28 2.58 3.79 3.95 4.80 3.55 3.07 4.47 3.96 4.71 3.25 2.92 4.03 4.00 4.61 3.65 3.04 4.28 4.20 5.35 3.20 3.16 3.76 3.92 4.81 3.39 2.95 4.07 4.01 0.28 0.18 0.20 0.28 0.10 5 5 5 5 5	LOWER MIDDLE LOWER UPPER BARBIE BARBIE FLORENCE FLORENCE B3(S) B1(S) B1(C) F1(S) F1(C) F2(S) 4.57 3.28 2.58 3.79 3.95 5.84 4.80 3.55 3.07 4.47 3.96 6.17 4.71 3.25 2.92 4.03 4.00 6.07 4.61 3.65 3.04 4.28 4.20 5.76 5.35 3.20 3.16 3.76 3.92 5.96 4.81 3.39 2.95 4.07 4.01 5.96 0.28 0.18 0.20 0.28 0.10 0.15 5 5 5 5 5 5	LOWER MIDDLE LOWER UPPER BARBIE BARBIE FLORENCE FLORENCE Y1 B3(S) B1(S) B1(C) F1(S) F1(C) F2(S) Y1(S) 4.57 3.28 2.58 3.79 3.95 5.84 6.28 4.80 3.55 3.07 4.47 3.96 6.17 6.29 4.71 3.25 2.92 4.03 4.00 6.07 6.92 4.61 3.65 3.04 4.28 4.20 5.76 6.36 5.35 3.20 3.16 3.76 3.92 5.96 4.81 3.39 2.95 4.07 4.01 5.96 6.46 0.28 0.18 0.20 0.28 0.10 0.15 0.27 5 5 5 5 5 5 4

MANGANESE (mg/g) (<0.15mm) LOWER MIDDLE LOWER UPPER BARBIE BARBIE FLORENCE FLOREN FLORENCE YAKOUN (1987) B3(S) B1(S) B1(C) F1(S) F1(C) F2(S) Y1(S) Y2(S) 3.171.242.472.511.291.771.111.154.362.620.912.751.641.791.031.144.360.670.412.581.852.451.091.14 SEP 30 1.76 4.23 0.86 2.19 2.44 1.82 1.17 1.10 4.63 0.46 2.09 1.39 1.84 2.10 _____ -----MEAN SD 5 5 12 66 5 4 4 14 5 2 n rsd(%) (S) = syringe sampler (C) = core sampler

APPENDIX B(ii) - Barbie Wetland Site B4 (core samples,<0.15mm)

DATE (1987)	As (ug/g)	Cr (uq/q)		Hg (ug/g)			ZN (ug/g)
SEP 30	 62 40	19.3 22.3	18.3	0.37	 7 10	20 19	147 246
	45 33	22.1 20.7	17.0 16.0	0.34 0.34	8 10	24 10	159 184
	4 6 	22.5	17.2	0.35	9	17 	167
MEAN SD		1.2	0.8		9 1 5	18 5	181 35
n rsd(%)	5 21	5 6 	5 5 	5 3 	5 13 	5 26	5 19
DATE (1987)				Mg (mg/g)	Mn (mg/g)		
SEP 30	25.6	30.5 30.1 29.6	3.38 3.04	4.09			
MEAN SD n rsd(%)		32.2 2.7 5 8	3.44 0.32 5 9	3.84 0.29 5 8	1.85 0.36 5 20		
				v 	2V 		

APPENDIX B - SEDIMENT QUALITY (iii) REFERENCE SEDIMENT

- Reference Sediment NBS1645
- Reference Sediment MBS1646

APPENDIX B(111) - REFERENCE SEDIMENT NBS 1645

(inte

METAL		VANCO BORATO				
(ug/g)		(11)		mean	sd	rsd (%)
MERCURY	0.840	0.832	0.788	0.820	0.023	3
ARSENIC	77	110	90	92	14	15
CADMIUM	16.9	11.0	6.5	11.5	4.3	37
CHROMIUM	32.1	29.8	25.7	29.2	2.6	9
(mg/g) COPPER	124.0	97.3	118.0	113.1	11.4	10
LEAD	703	692	612	669	41	6
MANGANESE	705	759	701	722	26	4
NICKEL	23	24	24	24	0	2
VANADIUM	16	23	23	21	3	16
ZINC	1670	1820	1640	1710	79	5
IRON (mg/g)	118	106	104	109	6	6

	NBS 1645		WEST VANCOUVER
METAL	CERTIFIED	VALUE	LABORATORY
(ug/g)	(+-95%lim	its)	(MEAN % RECOVERY)*
MERCURY	1.1	(0.6-1.6)	75
ARSENIC			
CADMIUM	10.2	(8.7-11.7)	
COPPER	109	(90-128)	104
LEAD	714	(686-742)	
MANGANESE	785	(688-882)	
NICKEL	45.8	(42.9-48.7)	
VANADIUM	23.5	(16.6-30.4)	
ZINC	1720	(1551-1889)	99
(mg/g)			
CHROMIUM	29.6	(26.8-32.4)	99
IRON	113	(101-125)	96

* based on mean certified value

METAL (ug/g)	LAE	VANCOU BORATOR 11)	RY	mean	sð	rsd (%)
MERCURY	0.085	0.081	0.073	0.080	0.005	6
ARSENIC	8	28	8	15	9	64
CADMIUM	2.3	1.0	0.8	1.4	0.7	49
CHROMIUM	46.7	51.0	41.0	46.2	4.1	9
COPPER	19.9	18.2	15.0	17.7	2.0	11
LEAD	20	34	8	21	11	51
MANGANESE	264	267	246	259	9	4
NICKEL	21	20	18	20	1	6
VANADIUM	54	53	49	52	2	4
ZINC	116	122	113	117	4	3
METAL (ug/g)	NBS16 Certif (+-95%			LABO	ANCOUV DRATORY & RECO	
MERCURY ARSENIC CADMIUM CHROMIUM	0.063 11.6 0.36 76	(0.051-0 10.3-12 0.29-0. 73-79)	.9)	127	
COPPER LEAD MANGANESE NICKEL	18 28.2 375 32	(((15-21) 26.4-30 355-395 29-35)		98	
VANADIUM ZINC	94 138		93-95) 132-1 44)	85	
(mg/g) Aluminium Calcium Iron Magnesium	62.5 8.3 33.5 10.9	(60.5-64 8-8.6) 32.5-34 10.1-11	.5)		

* based on mean certified value

.

-

۳

a 1

ø