Department of Environment Environmental Protection Service Pacific Region

DATA RECORD

Baseline Environmental Data Collected at Cape Lazo, Vancouver Island Prior to Installation of a Domestic Sewage Outfall

by

N. Holman, M. Pomeroy and G. Packman

Regional Program Report: 81-1

May, 1981

ABSTRACT

- j -

The Environmental Protection Service conducted a survey of water quality, sediment characteristics and benthic faunal communities in the Cape Lazo area in 1978, 1979 and 1980. The purpose was to collect baseline environmental data prior to installation of a combined domestic sewage outfall serving parts of the Regional District of Comox-Strathcona and CFB Comox.

Pisces IV submersible dives were done December 1, 1978, in two locations off Cape Lazo to visually assess the physical features of the bottom. The 1979 survey concentrated on the most favourable of the sites.

Data on water quality (salinity, temperature, dissolved oxygen and nutrients), sediment characteristics (particle size, organic carbon content, trace metals and infauna) and larger near-bottom fauna were collected November 5 and 6, 1979. Mercury concentrations in oyster tissue and intertidal sediments were examined November 28, 1980.

- iii -

TABLE OF CONTENTS

ABSTRACT		i
RESUME		ii
TABLE OF	CONTENTS ·	iii
	List of Figures	iv
	List of Tables	v
	List of Appendices	vi
1	INTRODUCTION	1
2	DESCRIPTION OF STUDY AREA	2
3	MATERIALS AND METHODS	4
3.1	Pisces IV Submersible	4
3.2	Oceanographic Sampling	4
3.3	Benthic Sampling	7
3.3.1	Sediments	7
3.3.2	Fauna	7
3.4	Intertidal Mercury Sampling	7
4	RESULTS	11
4.1	Summary of Results	11
4.2	Oceanographic Data	13
4.3	Benthic Study Data	16
4.3.1	Sediment Characteristics	16
4.3.2	Benthic Fauna	21
4.4	Intertidal Mercury Data	30

REFERENCES

12

LIST OF FIGURES

Figure Page LOCATION MAP AND STUDY AREA 3 1 PISCES DIVE TRACKS, DECEMBER 1, 1978 2 5 3 WATER QUALITY STATIONS AND TIDAL STATE DURING SAMPLING, NOVEMBER 5, 1979 6 BENTHIC STATIONS, NOVEMBER 6, 1979 8 4 OTTER TRAWL TRACKS 1 AND 2, NOVEMBER 6, 1979 5 9 INTERTIDAL STATIONS, NOVEMBER 28, 1980 6 10

- iv -

- v -

LIST OF TABLES

Table		Page
1	WATER QUALITY, NOVEMBER 5, 1979	14
2	DISSOLVED NUTRIENTS, NOVEMBER 5, 1979	15
3	VISUAL DESCRIPTION OF PETERSON GRAB SAMPLES NOVEMBER 6, 1979	17
4	SEDIMENT PARTICLE SIZE, NOVEMBER 6, 1979	18
5	SEDIMENT ORGANIC CARBON CONTENT, NOVEMBER 6, 1979	19
6	SEDIMENT TRACE METALS, NOVEMBER 6, 1979	20
7	OTTER TRAWL DATA, TRAWL #1, NOVEMBER 6, 1979	22
8	OTTER TRAWL DATA, TRAWL #2, NOVEMBER 6, 1979	24
9	INVERTEBRATES RECORDED FROM PETERSON GRAB SAMPLES, NOVEMBER 6, 1979	25
10	MERCURY CONCENTRATIONS IN OYSTERS AND INTERTIDAL SEDIMENTS, NOVEMBER 28, 1980	31

١,

LIST OF APPENDICES

Appendix		Page
I	STATION POSITIONS, NOVEMBER 5-6, 1979	32
II	PISCES IV DIVE REPORTS, DECEMBER 1, 1978	34

1 INTRODUCTION

The Regional District of Comox-Strathcona has proposed to establish a long, deep marine outfall off Cape Lazo, extending into the Strait of Georgia. The outfall would terminate in a diffuser 2750 m out from the low tide in 60 m of water. Effluent would be screened, cominuted and chlorinated with a maximum output of 18 500 m³ per day.

Direct visual observations of the physical condition of the bottom at two proposed outfall sites were made from the Pisces IV submersible on December 1, 1978. The subsequent 1979 survey centered on the site considered most favorable for outfall placement.

The research vessel CSS VECTOR was used for a baseline survey conducted November 5-6, 1979. Oceanographic water quality parameters of salinity, temperature, dissolved oxygen and nutrients were profiled at several stations. Substrate characteristics of particle size, organic carbon content, trace metals and infaunal invertebrate communities were examined. Bottom trawls were used to sample larger members of the benthic community.

2 DESCRIPTION OF STUDY AREA

Cape Lazo is located on the east side of Vancouver Island, approximately 130 km northwest of Vancouver, B.C. (Figure 1). The survey area covers about 2.59 sq. kilometers, the centre of which is located about 2.2 km east of Cape Lazo.

- 2 -

FIGURE I LOCATION MAP AND STUDY AREA

-

MATERIALS AND METHODS

3.1 Pisces IV Submersible

3

Two Pisces IV dives were made along the tracks indicated on Figure 2, December 1, 1978. During each of the dives, photographs were taken with a 70 mm Hasseblad still camera and a 16 mm Bolex cine camera. Observations were made on a tape recorder and later transcribed to dive reports.

3.2 Oceanographic Sampling

Coordinates of oceanographic, benthic and trawl stations occupied during the survey, as determined by radar from the CSS VECTOR, appear in Appendix I.

Station locations for oceanographic water quality sampling are presented in Figure 3. Samples were collected over a period of $l\frac{1}{2}$ hours prior to high slack water. NIO bottles, equipped with paired, protected, reversing thermometers, were used to collect water samples over depths of 0, 2, 5, 10 m etc.

Temperatures were recorded immediately after bottle recovery and calculated to the temperature at depth using the formula of Sverdrup et al. (1946).

Dissolved oxygen levels were measured using the azide modification of the Winkler method (Swingle and Davidson, 1979). The percent saturation of oxygen in seawater was calculated using the equation outlined in Gameson and Robertson (1955).

Salinity values were measured on a "Guildline" Salinometer (Autosal Model 8400).

Water samples collected for nutrient analyses were stored frozen. Nitrite, nitrate, ammonia and ortho-phosphate were determined as outlined by Swingle and Davidson (1979).

- 4 -

FIGURE 2 PISCES DIVE TRACKS, December 1, 1978

FIGURE 3

WATER QUALITY STATIONS AND TIDAL STATE DURING

3.3 Benthic Sampling

3.3.1 <u>Sediments</u>. Sediments samples were obtained with a Peterson grab sampler (0.17 m² in area) from stations indicated in Figure 4. After mixing until homogeneous, aliquots were drawn for analysis.

Sediment grain size was determined by wet sieving through three sizes of screens (0.5 mm, 0.25 mm and 0.0625 mm) with the fraction passing through the final screen estimated by calculation.

Organic carbon content was determined using the chromic acid-sulphuric acid digestion method described by Swingle and Davidson (1979).

Sediments for trace metal analyses were air dried at room temperature, disaggregated and sieved. Analysis was as outlined by Swingle and Davidson (1979).

3.3.2 <u>Fauna</u>. Benthic invertebrates were removed from grab samples by sieving through a 0.5 mm screen. Material retained was preserved in 10% formalin and, after three days, transferred to 50% propanol for storage. Identifications were made to species where possible.

Otter trawls were done over a distance of one nautical mile along the track shown in Figure 5. All organisms were identified and enumerated. In addition, flatfish caught were measured and weighed.

3.4 Intertidal Mercury Sampling

Surface sediments were collected November 28, 1980, on a +4.5 foot tide from Goose Spit and Point Holmes (Figure 6). Analysis was performed for mercury by the EPS chemistry laboratory.

FIGURE 4 BENTHIC STATIONS. November 6.1979

FIGURE 5 OTTER TRAWL TRACKS land 2, November 6, 1979

-

FIGURE 6 INTERTIDAL STATIONS, November 28, 1980

4 RESULTS

4.1 Summary of Results

Pisces IV dives made during December 1978 indicated the area off Cape Lazo, surveyed in 1979, as a preferred location for the sewage outfall (Appendix II). Sediments in this area were coarse and compact implying good water circulation. In addition, the slope was favourable for construction. The benthic environment in total appeared less sensitive compared to the other site examined further south (Figure 1).

Although the water column was slightly stratified nearshore with respect to salinity, temperature and dissolved oxygen, offshore stations were more mixed (Table 1). Concentrations of dissolved nutrients were comparable among stations at depths to 10 m (Table 2). Nitrate and ortho-phosphate increased considerably below this depth at offshore stations.

The substrate in the study area was composed primarily of fine to coarse sand (Table 3). Broken shell and polychaete tubes were common throughout. Sediment particle size was generally in the 0.25 to 0.0625 mm range (Table 4). An increase in coarser material (greater than 0.5 mm) was noted at the nearshore stations (CO-12, 14). Organic carbon content averaged 10 mg.gm⁻¹, increasing somewhat with distance from shore (17 mg.gm⁻¹ at CO-5) (Table 5). A similar situation existed for iron (Fe) with other trace metals having random or uniform distribution patterns (Table 6).

Benthic fauna captured in the otter trawls was dominated by flatfish (Pacific sanddab, Dover and rock sole) and shrimps (Tables 7 and 8). Polychaetes were abundant among the benthic invertebrates, making up the bulk of recorded species and biomass in grabs (Table 9).

Intertidal sediments and oysters at the two sites sampled were free of mercury contamination (Table 10).

- 11 -

REFERENCES

- Gameson, A.L.H., and K.J. Robertson. The Solubility of Oxygen in Pure Water and Seawater. J. Appl. Chem. 5:502 (1955).
- Sverdrup, H.V., M.W. Johnson and R.H. Fleming. The Oceans: Their Physics, Chemistry and General Biology. Prentice-Hall, New York, 1087 pp. (1946).
- Swingle, R.B., and J.W. Davidson. Environmental Laboratory Manual. Environmental Protection Service (1979).

4.2 Oceanographic Data

Tables 1 and 2

STATION	TIME (Hrs.PST)	DEPTH (m)	SALINITY (0/00)	TEMPERATURE (°C)	DISSOLVED OXYGEN (mg/1)	OXYGEN SATURATIO (%)
CO-2	1540	0 2 5 10 25 50 57 (BTM	28.00 28.18 28.39 28.69 29.11 29.45	10.12 10.03 10.05 9.90 9.57 9.32	7.70 7.75 7.75 7.20 6.40 6.00	83.30 84.27 84.43 78.33 69.29 64.72
CO-4	1610	0 2. 5 10 25 50 62 (BTM	28.08 28.20 28.35 28.67 29.21 29.44	10.07 9.99 9.99 9.92 9.48 9.32	7.55 7.70 7.60 7.30 6.25 6.00	82.12 83.67 82.65 79.43 67.56 64.72
CO-8	1630	0 2 5 10 25 40 47 (BTM	27.95 28.01 28.52 28.79 29.21 29.28	10.10 10.03 9.94 9.82 9.48 9.43	7.65 7.60 7.40 7.05 6.25 6.15	83.19 82.55 80.48 76.59 67.56 66.43
CO-12	1655	0 2 5 8 13(BTM	28.01 28.15 28.57 28.69	10.10 10.04 9.93 9.86	7.70 7.70 7.50 7.25	83.77 83.73 81.57 78.79
CO-14	1715	0 2 5 10 15(BTM	28.18 28.24 28.32 28.73	10.02 10.01 9.99 9.85	7.60 7.55 7.60 7.15	82.62 82.09 82.64 77.70

TABLE 1WATER QUALITY, NOVEMBER 5, 1979

aBottom

DISSOLVED NUTRIENTS, NOVEMBER 5, 1979

STATION	DEPTH (m)	NITRATE (mg/l)	NITRITE (mg/1)	AMMONIA (mg/l)	o-PHOSPHATE (mg/l)
CO-2	0 2 5 10 25 50 57 (BTM) ^a	0.288 0.289 0.289 0.306 0.339 0.358	0.012 0.012 0.012 0.012 0.011 0.009	0.0060 L0.0050 L0.0050 L0.0050 L0.0050 L0.0050	0.0685 0.0675 0.0665 0.0700 0.0773 0.0803
CO-4	0 2 5 10 25 50 62(BTM)	0.303 0.295 0.294 0.309 0.349 0.360	0.013 0.013 0.013 0.012 0.009 0.009	0.0072 L0.0050 L0.0050 L0.0050 L0.0050 L0.0050	0.0706 0.0693 0.0675 0.0693 0.0780 0.0795
CO-8	0 2 5 10 25 40 47 (BTM)	0.301 0.300 0.303 0.318 0.258 0.352	0.013 0.012 0.012 0.012 0.098 0.010	0.0057 0.0060 L0.0050 L0.0050 L0.0050 L0.0050	0.0685 0.0699 0.0696 0.0710 0.0777 0.0788
CO-12	0 2 5 8 13(BTM)	0.299 0.294 0.297 0.305	0.013 0.013 0.013 0.013	L0.0061 L0.0058 L0.0050 0.0054	0.0700 0.0695 0.0695 0.0706
CO-14	0 2 5 10 15(BTM)	0.302 0.289 0.298 0.309 -	0.013 0.013 0.013 0.013	0.0060 0.0074 0.0070 0.0052	0.0706 0.0706 0.0705 0.0706 -

L = less than ^aBottom

4.3 Benthic Study Data

.

1

đ

4.3.1 <u>Sediment Characteristcs</u>

Tables 3, 4, 5 and 6

TABLE 3VISUAL DESCRIPTION OF PETERSON GRAB SAMPLES, NOVEMBER 6, 1979

Station	Depth (m)	Volume Sieved (liters)	Description
CO-1	58	2.5	Mainly medium sand containing a small amount of coarse sand. Small broken shells. 3 x rocks approximately 2.5 cm in length.
CO-2	58	2.3	Mainly medium sand with some coarse sand. Small broken shells.
CO-3	64	3.5	Mainly medium sand with some coarse sand. Several (23 x) rocks approximately 2.5 to 4 cm in size.
C0-4	59	6.0	Mainly medium sand with some coarse sand. Broken shell material.
CO-5	68	6.0	Fine sand with broken shell material. 1 x piece of wood bark. 2 x holothurians.
CO-6	48	4.0	Fine sand with broken shell material. Some coarse sand. A few polychaete tubes.
CO-7	44	6.0	Medium and fine sand with broken shell material. Some polychaetes and bivalves.
CO-8	53	6.0	Medium and fine sand with broken shell material. Some gastropods, brittle stars, polychaetes. Empty polychaete tubes and bivalves.
CO-9	53	3.8	Fine sand with broken shell material. Some pieces of wood bark and polychaete tubes.
CO-10	55	5.0	Medium and fine sand with broken shell material. Some empty polychaete tubes and bivalves.
CO-11	20	3.0	Mainly coarse sand. A number of gastropods (<u>Olivella</u>) on the sand surface.
CO-12	14	3.0	Coarse and medium sand. A number of gastro- pods (<u>Olivella</u>) on the sand surface.
CO-13	13	2.0	Coarse and medium sand. A number of gastro- pods (<u>Olivella</u>) on the sand surface. Some broken shell material.
CO-14	16	1.0	Coarse and medium sand.
CO-15	18	2.0	Coarse and medium sand. Some polychaete tubes. Dead vegetation.

	Sedi	ment Size (%	retained or	Screen)
Station	G0.5mm	0.25mm	0.0625 mm	LO.0625 mm
CO-1	45.7	20.6	19.3	14.4
CO-2	1.1	6.4	89.3	3.2
CO-3	26.9	19.7	51.1	2.3
CO-4	0.0	2.9	92.7	4.3
CO-5	0.0	2.9	93.4	3.7
C0-6	0.0	1.6	95.0	3.4
CO-7	0.5	2.3	95.8	1.4
CO-8	0.2	4.3	93.9	1.6
CO-9	0.7	4.3	94.0	1.0
CO-10	2.1	20.3	76.4	1.2
CO-11	21.9	67.1	11.0	0.0
CO-12	15.9	49.4	34.6	0.0
CO-13	22.1	56.9	21.0	0.1
CO-14	39.5	51.6	8.9	0.0
CO-15	8.3	38.4	52.7	0.6

G = greater than L = less than

4

Ċ,

Station	Organic Carbon (mg/g)	Station	Oryanic Carbon (mg/g)
CO-1	11	CO-9	L10
CO-2	10	CO-10	L10
CO-3	11	CO-11	L10
CO-4	13	C0-12	L10
CO-5	17	CO-13	L10
CO-6	10	CO-14	L10
CO-7	L10	CO-15	L10
CO-8	L10		

TABLE 5SEDIMENT ORGANIC CARBON CONTENT,NOVEMBER 6, 1979

L = less than

۱

TABLE 6SEDIMENT TRACE METALS, NOVEMBER 6, 1979

STATION	Hg (ppm)	Cd (ppm)	Cr (ppm)	Cu (ppin)	Mn (ppm)	Ni (ppm)	Pb (ppm)	Zn (ppm)	Fe (ppm)
CO-1	0.161	L1.23	18.7	13.6	296.0	L9.85	L9.85	20.7	20 200
CO-2	L0.098	L1.24	18.4	14.4	241.0	L9.91	L9.91	39.6	21 100
CO-3	0.166	L1.24	20.3	14.9	322.0	L9.89	L9.89	28.5	23 900
C0-4	L0.099	L1.18	16.4	12.0	239.0	L9.44	L9.44	20.2	18 500
CO-5	0.271	L1.19	17.0	14.5	228.0	L9.49	L9.49	23.0	17 900
CO-6	0.164	L1.21	16.3	10.8	214.0	L9.72	L9.72	17.9	18 600
CO-7	L0.102	L1.19	17.3	9.95	220.0	L9.54	L9.54	21.0	20 500
CO-8	0.216	L1.22	18.2	10.4	239.0	L9.79	L9.79	20.3	20 800
CO-9	0.186	L1.20	15.4	8.39	208.0	L9.59	L9.59	16.7	18 100
CO-10	0.190	L1.23	20.3	11.2	245.0	L9.80	L9.80	22.7	25 800
CO-11	L0.096	L1.19	40.8	11.3	263.0	L9.57	10.20	17.5	56 500
CO-12	L0.100	L1.22	53.0	11.8	349.0	L9.76	L10.50	16.4	67 800
00-13	L0.099	L1.20	25.0	9.01	281.0	L9.56	L9.56	20.7	35 200
CO-14	L0.097	L1.23	26.7	9.97	291.0	L9.84	L9.84	24.2	38 900
0-15	L0.097	L1.23	17.7	8.51	240.0	L9.69	L9.69	14.9	23 100

L = less than

4.3.2 Benthic Fauna

Tables 7, 8 and 9

TABLE 7OTTER TRAWL DATA, TRAWL #1, NOVEMBER 6, 1979

Specimen	Number	Length 	Weight gms
<u>Citharichthys sordidus</u> (Pacific sanddab)	9	14.3 14.8 16.1 13.6 11.8 11.4 12.2 16.3 15.7	32 35 48 30 23 18 22 44 45
<u>Lepidopsetta bilineata</u> (Rock sole)	21	20.6 24.0 25.7 19.5 22.5 19.5 19.5 17.1 16.2 16.6 14.1 16.9 16.4 14.8 14.9 15.0 14.9 13.5 13.5 13.6 10.9	85 155 210 90 145 80 51 47 47 23 41 45 30 33 37 35 23 24 23 11
<u>Microstomus pacificus</u> (Dover sole)	3	17.8 13.7 13.4	41 22 24

ک

.

4

Specimen	Number	Length 	Weigh gms
Luidia foliolata Pycnopodia helianthoides Paracrangon echinata Crangon sp. Chorilia longipes Pandalus stenolepis Spirontocaris sp. Munida quadrispina Strongylocentrotus sp. Cadlina luteomarginata Triopha carpenteri Hermissenda sp. Ascidia paratropa Ophiuroidea Pycnogonidae Octopus (small) Large volume of algae, mostly Ulva	1 3 25 8 4 1 6 1 1 2 17 2 9 2 1		

TABLE 7OTTER TRAWL DATA, TRAWL #1, NOVEMBER 6, 1979 (continued)

- 23 -

100

-

۲

-

-

TABLE 8OTTER TRAWL DATA, TRAWL #2, NOVEMBER 6, 1979

Specimen	Number	Length 	Weight gms
<u>Lepidopsetta bilineata</u> (Rock sole)	9	13.8 14.1 15.7 17.8 18.4 22.0 28.9 23.7	20 32 36 56 60 120 310 155
<u>Microstomus pacificus</u> (Dover sole)	1	13.6	26
Pisaster ochraceus Paracrangon echinata Crangon sp. Ophiuroidea Ascidia paratropa Hermissenda sp. Dendronotus sp. Small shrimp - unidentified Scallop Cottidae Squid	1 13 2 9 4 4 1 1 1 4 1		

							S	TATI	ON (<u>CO-)</u>					
CLASSIFICATION	1	2	3	4	5_	6	7	8	9	10	11	12	13	14	<u>15</u> a
ANNELIDA Oligochaeta Polychaeta		,			1					1					
Aphroditoidae (unid.) ^b <u>Hormothoe</u> imbricata			1 1		1		1	4	2						3
Polyodontidae <u>Peisidice</u> aspera			1												
Phyllodocidae <u>Eteone</u> sp. <u>Phyllodoce</u> polynoides <u>Phyllodoce</u> sp.				2	2		1 1		1 1			1			1
Hesionidae (unid.)							1								
Syllidae <u>Autolytus cornutus</u> <u>Exogone</u> sp. <u>Exogone lourei</u> <u>Syllis</u> sp. Syllis heterochaeta	2	1 1	2			1		1	1 1						
Nephytidae <u>Nereis</u> sp. <u>Nephtys</u> sp.		5		10	10	5	4 2	5	2 3	1	1	2		2	3 1
Glyceridae <u>Glycera</u> sp. <u>Glycera capitata</u>		3	2	2	6	4	2	2	3	2	1	1	1		2.
Onuphidae Onuphis iridescens			2	2	1	2	3	2		3	1				
Lumbrineridae Lumbrineris sp. Lumbrineris inflata Lumbrineris S.Y. sp. Lumbrineris S.B. sp. Lumbrineris C sp.			1	1	4	2	2	1 1	1 4						3
Dorvilleidae (unid.)							1								

TABLE 9	INVERTEBRATES	RECORDED FROM	PETERSON	GRAB	SAMPLES,
	NOVEMBER 6, 1	979			

.../cont'd

- 25 -

ø

INVERTEBRATES RECORDED FROM PETERSON GRAB SAMPLES, ued) NOVEMBER 6, 1979

							S ⁻	TATI	ON (<u> co-)</u>)				
CLASSIFICATION	1	2	3	4	5	6	7	8	9	10	10	12	13	14	<u>15</u> ?
Orbiniidae (unid.) Orbinia felix Leitoscoloplos pugettens:	ic		1	1	3	2	1						1		
Scolopios sp. Scolopios acmeceps Scolopios armiger	<u> </u>				J	2	5		1				1 1		1
Paraidae <u>Aricidea</u> <u>neosuccica</u> <u>Aricidea</u> <u>succica</u>	2		1		3 1		1		1		2				
Spionidae (unid.) Laonice cirrata Malococeros glutaeus	1	2		12 1	8	17		2		1	1				2
<u>Prionospio</u> sp. <u>Prionospio steenstrupi</u> <u>Polydora</u> sp. <u>Spio</u> sp. <u>Spio</u> cirrifera					2	1	1 5 4	1	8			1			
<u>Spiophanes berkeleyorum</u> <u>Magelona</u> sp. Magelona longicornus	2			1			1			1					
Chaetopteridae (unid.)															1
Cirratulidae (unid.) <u>Tharyx</u> sp.				1	5										1
Ophellidae <u>Ammontrypane aulogaster</u> <u>Armandia brevis</u>						_		1			2	15	6	5	:
<u>Sternaspis</u> scutata <u>Travisia</u> sp. Travisia brevis	2			1	1 2	1			1	1					
Capitellidae (unid.) Capitella capitata				1	4										1 1
Notomastus sp.				T	۷									1	

······································							S	TATI	ON (CO-)					
CLASSIFICATION	1	2	3	4	_ 5	6	7	8	9	10	11	12	13	14	<u>15</u> a
Maldonidae (unid.) <u>Maldane glebifex</u> Myriochele aculata	1 1		1	2	1 2 2	1	9	2	1	5					1
Sabellidae	-			-	-		•	-	5	Ū					-
Pectinaridae Pectinaria granulata			1							1					2
Ampharetidae (unid.) <u>Amage anops</u> <u>Ampharete</u> sp. <u>Ampharete acutifrons</u> <u>Melinnampharete</u> sp.		2		1	3	1	1	2 1		1	1	2		1	1
Terebellidae (unid.) <u>Pista cristata</u> <u>Pista fasciata</u> <u>Terebellides</u> sp. Terebellides stroemi	1		1	1	1			1 2	1						
MOLLUSCA Gastropoda <u>Mytrella tubrulossa</u> <u>Odostomia sp.</u> <u>Olivella baetica</u> Nudibranchia		4		3	1		1	5 1	2	9 2	4	8	5		
Aglaja diomedia		1													,
Bivalvia <u>Acila</u> sp. <u>Astarte borealis</u> <u>Axinopsida ciliata</u> <u>Compsomyax subdiaphana</u> <u>Crenella divoricata</u> <u>Cyclocardia gouldi</u> <u>Nucula quirica</u> <u>Nucula tenuis</u>	1 2			2	6	-	8 1 1	9	11 6	6 1 1 3			1		

TABLE 9INVERTEBRATES RECORDED FROM PETERSON GRAB SAMPLES,
(continued)(continued)NOVEMBER 6, 1979

TABLE 9INVERTEBRATES RECORDED FROM PETERSON GRAB SAMPLES,
(continued)NOVEMBER 6, 1979

-

ŧ۵

							S	TATI	<u> N (</u>	<u>CO-)</u>					
CLASSIFICATION	1	2	3		5	6	7	8	9	10		12	13	14	<u>15</u> ª
<u>Nuculana minuta</u> Pandora <u>filosa</u> Psephidia lordi Spisula sp.		2		1 2	1		1	1	3	1 1 5		8		1 1	
<u>Thracia</u> sp. <u>Thyasira gouldi</u> <u>Transennella tontilla</u> <u>Truncacila castrensis</u> <u>Solen sicarius</u>						1 1	1	1		1		1			
ECHINODERMATA Ophuroidea (unid.)	1	1	2	1	3			3	1						1
Ostracoda <u>Cucumaria miniata</u>				1							,				
Holothuroidea <u>Parastichopus</u> <u>californiensis</u>	1		1												
ARTHROPODA										÷					
Crustacea Copepoda (unid.) Amphipoda											1				
Gammaridea (unid.) Caprellidae (unid.) <u>Caprella mendax</u>	1	6	6	5	7	3	2	9	6	3	1	2	4	2	6 1 1
Lupnausiacea (unid.)		T													÷
Caridea <u>Crangon franciscorum</u> <u>Heptacarpus taylori</u> <u>Spirontocaris prionata</u> Brachyura			1	1			1		1						
<u>Cancer productus</u> Anomura								1							
Pagurus sp. Pagurus samuelis								Ţ							1

				<u>-</u>			S	TATIO	ON (CO-)					<u> </u>
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	<u>15</u> a
SIPUNCULA (unid.)								1							1
NEMERTEA (unid.)							1						1		
NEMATODA (unid.)			1												

TABLE 9INVERTEBRATES RECORDED FROM PETERSON GRAB SAMPLES,
(continued)(continued)NOVEMBER 6, 1979

a see table 3 for volumes of sediment sieved at each station b unidentified

• 4.4 Intertidal Mercury Data

.

100

٦

November 28, 1980

		Mercu	ry (ppm)
Sample	Location	Dry Weight	Wet Weight
A. <u>Sediments</u>			
1	Goose Spit	L0.088	
2	ti	L0.094	
3	11	L0.097	
1	Point Holmes	L0.094	
2	14	L0.098	
3	11	L0.100	
B. <u>Tissue</u>			
1	Goose Spit	L0.099	L0.022
2	u ,	0.113	0.029
3	11	L0.095	L0.023
1	Point Holmes	L0.094	L0.021
2	и	L0.095	L0.023
3	14	L0.096	L0.023

-

TABLE 10MERCURY CONCENTRATIONS IN OYSTERSAND INTERTIDAL SEDIMENTS, NOVEMBER 28, 1980.

L = Less Than.

APPENDIX I

STATION POSITIONS, NOVEMBER 5-6, 1979

·

Station	Latitude	Longitude
CO-1	49° 43.1' N	124° 49.8' W
CO-2	49° 42.9' N	124° 49.7' W
CO-3	49° 42.7' N	124° 49.5' W
C0-4	49° 42.5' N	124° 49.35'W
CO-5	49° 42.3' N	124° 49.2' W
CO-6	49° 42.2' N	124° 49.55'W
CO-7	49° 42.4' N	124° 49.65'W
CO-8	49° 42.6' N	124° 49.9' W
CO-9	49° 42.8' N	124° 50.0' W
CO-10	49° 42.95'N	124° 50.1' W
CO-11	49° 42.85'N	124° 50.4' W
CO-12	49° 42.7' N	124° 50.3' W
CO-13	49° 42.5' N	124° 50.1' W
CO-14	49° 42.3' N	124° 50.0' W
CO-15	49° 42.1' N	124° 49.8' W
Trawl Track #1	Start 49° 42.65'N Stop 49° 42.2 'N	124° 49.9' w 124° 49.5' w
Trawl Track #2	Start 49° 42.74'N Stop 49° 42.18'N	124° 50.0' W 124° 49.66'W

.

APPENDIX I STATION POSITIONS, NOVEMBER 5-6, 1979

APPENDIX II

PISCES IV DIVE REPORTS DECEMBER 1, 1978

4

- 35 -

APPENDIX II SUMMARY OF PISCES DIVE REPORTS

The general conclusions from the dives were:

- The sediment characteristics at Track 1, northeast of Cape Lazo, appeared much coarser and more compacted than at Track 2, southwest of Cape Lazo. This observation implies better circulation at the Track 1 site, as well as cheaper installation costs due to the firm base to work on.
- 2. The slope at Track 1 appeared to be suitable for construction also the depths throughout most of the outfall's length are fairly shallow, thereby reducing construction costs relative to the Track 2 location.
- 3. The marine benthic environment at Track 1 was considered less sensitive, generally, than at Track 2.

DIVE REPORT - COMOX

- 36 -

- Holman

Water Column

The water column was very clear, with good visibility throughout most of the descent. Some detritus and zooplankton were encountered between 40 meters and the bottom (63 meters). The readings observed on the CTD unit are presented in Table 1.

TABLE 1

CTD READINGS

Depth	Temperature(°C)	Conductivity	Dissolved Oxygen (mg/l)
0 m	8.50	31.34	9.40
15 m	8.55	31.36	7.40
27 m	8.57	33.40	8.70
45 m	8.80	32.00	7.85
63 m (bottom)	9.00	32.50	6.40
53 m (bottom)	8.85	32.19	7.30
43 m (bottom)	8.80	32.14	7.00
20 m (bottom)	8.50	31.36	8.00
16 m (bottom)	8.50	31.36	7.50

Bottom Characteristics

Throughout the course of the dive the substrate was sandy in nature, with the grain size being smaller in the deeper portion of the dive. The substrate looked excellent for construction purposes with the slope not being a problem for a pipeline. The substrate was coarse enough that divers would not have a visibility problem arising from stirred up sediment. At the 20 meter depth rippling was apparent in the sandy substrate, presumably arising from wave surge.

Holes in the bottom arising from infaunal burrowers were not abundant at any time during the dive. Worm castings were noted on the surface of the sediment in the deeper portion of the dive.

Bottom Fauna

A summary of the benthic and bathypelagic epifauna noted during this dive is presented in Table 2. The fauna observed was typical of a sandy bottom community and changed with depth as the shore was approached. In the deeper area covered at the beginning of the dive the dominant faunal forms included small unidentified shrimp, thin white sea pens and Dover or lemon sole. Throughout the dive a diverse representation of starfish was noted. A band of different faunal forms was encountered between 30 and 25 meters of depth. In this area there occurred an abundance of burrowing anemones (<u>Pachycerianthus</u> sp.) scallops and small octopii. The dominant fish type throughout the dive was sole. TABLE 2

-

Ċ,

×.

<u>-</u>	TAXON	ABUNDANCE
Sponge	- unidentified	1 noted
Polychaeta	- Serpulida and/or Sabellide	Evenly spaced and fairly abundant below 40 meters
Anthozoa	- <u>Ptilosarcus</u> gurneyi	Approximately 3 noted
	- unidentified thin white sea pen	Approximately 29 noted in deeper portion of dive site
Actinaria	- Metridium senile	3 noted
	- <u>Pachycerianthus</u> sp.	Noted occasionally in deeper water. Between 30-25 meters there were 3-4 per square meter
	- unidentified Anemone	Noted occasionally
Gastropoda	- Nudibranchia (unidentified)	Occasionally noted
	- <u>Dirona</u> sp.	Occasionally noted
	- <u>Armina</u> sp.	Occasionally noted
	- Gastropteron pacificum	1 noted
Bilvalvia	 unidentified scallop 	Abundant - approximately one per square meter at the 28 meter depth
Cephalopoda	- <u>Octopus</u> sp.	Fairly common at 25 meters
	- unidentified Squid	Noted occasionally
Crustacea	- Pandalus platyceros	l noted
	- unidentified pink shrimp	Noted occasionally
	unidentified small pink shrimp	Lots at beginning of dive - approximately 5 per square meter. Numbers declined as depth decreased.
	- <u>Pagurus</u> sp.	Noted occasionally
	- <u>Pugettia</u> producta	2 noted

•

	TAXON	ABUNDANCE
Asteroidea	- <u>Solaster</u> sp.	Noted occasionally
	- <u>Mediaster</u> sp.	Noted occasionally
	- <u>Pycnopodia</u> sp.	Noted occasionally
	- <u>Evasterias</u> sp.	Fairly common
	- <u>Luidia</u> sp.	Noted occasionally
	- <u>Pteraster</u> sp.	Noted occasionally
	- <u>Pisaster</u> brevispinus	Fairly common
	- Dermasterias imbricata	Noted occasionally
	- Orthasterias koehleri	Noted occasionally
	- Unknown Asteroidea	Noted occasionally
Echinoideia	- <u>Strongylocentrotus</u> droebachiensis	l noted
Ascidiacea	- <u>Ascidia paratropa</u>	Fairly common around the 28 meter depth
Pisces	- Skate	3 noted
	- Clupeidae	1 noted
	- Embiotocidae (surf perch)	A school followed the boat around
	- Stichaeidae	Noted occasionally
	- Ophiodon elongatus	3 noted
	- Cottidae	Noted occasionally
	- <u>Scorpaenichthys</u> marmoratus	l noted
	- Agonidae	Noted occasionally
	- Sole (Lemon or Dover)	Fairly abundant
	 Psettichthys melanostictus (Sand Sole) 	Noted occasionally

.

.

.

.

٠

Conclusions

The bottom throughout this dive was composed of compacted sand. As a result, the epifauna, although being quite diverse, was not particularly abundant. The dominant fish type was sole. The bottom slope and material appeared to be ideal for the construction of a deep marine outfall. DIVE REPORT - COMOX

```
Pisces Dive #719
Comox
Track 2
December 1, 1978
Film exposed - 16 mm rolls 18, 19
- 70 mm Film #4 Frames 0-45
Observers: - Packman
- Holman
```

Water Column

Visibility was good throughout the water column with not too much detritus or zooplankton being present. A fair number of scyphozoans were observed in the upper reaches of the water column. Scyphozoans were also observed at greater depths but their numbers were decreased. Some siphonophores were noted at approximately 60 meters. The data obtained with the CTD probes are presented in Table 1.

TABLE 1

CTD READINGS

Dep	th	<u> </u>	Temperature(°C)	Conductivity	Dissolved Oxygen (mg/l)
40	ш		8.90	32.00	8.8
60	Ш		9.20	32.50	7.3
78	m	(bottom)	9.30	32.90	6.4
70	រា	(bottom)	9.18	32.50	6.5
43	m	(bottom)	9.12	32.39	6.6
23	m	(bottom)	9.00	33.20	7.2

Bottom Characteristics

The sediment type was markedly different from that observed on the Track 1 dive, that is, a soft clay mud substrate with a thin overlay of very light sediment. The visibility at or close to the bottom was very much reduced compared to the Track 1 dive location also, the sediment was much more readily disturbed and re-suspended by the submersible, hence further reducing visibility.

Bottom Fauna

A list of the fauna observed during the course of this track is presented in Table 2. During the first half of the dive the dominant epifaunal form was the thin white sea pen. There were also 5-10 infaunal holes per square meter and 1-2 pink shrimp per square meter.

During the second half of the dive, where the depth was shallower and the sediment coarser, the number of animals was reduced markedly. However, in this area very few sea pens and pink shrimp were apparent. There was still a stable, diverse and productive community present.

TABLE 2

	TAXON	ABUNDANCE
Actinaria	- <u>Metridium</u> sp.	Noted occasionally
	- Pachycerianthus sp.	Fairly common
	- Unknown	Noted occasionally
	- Thin white sea pens	5-10 per square meter during deeper portion of the dive; after ascending slope the numbers dropped off markedly
Gastropoda	- <u>Dirona</u> sp.	Quite abundant on coarser sediment in shallower water
	- Nudibranchia	Noted occasionally

۲

	TAXON	ABUNDANCE
Cephalopoda	- <u>Octopus</u> sp. (small) - squid	1 noted 1 noted
Crustacea	- pink shrimp	<pre>1-2 per square meter at the beginning of dive declining to very few in shallower portion of dive</pre>
	- <u>Pagurus</u> sp.	Noted occasionally - more frequently in shallower, sandy area
Asteroidea	- <u>Mediaster</u> sp.	Fairly common
	- Pisaster brevispinus	Noted occasionally
	- <u>Evasterias</u> sp.	Noted occasionally
	- Pyconopodia sp.	Noted occasionally
	- Unidentified	Noted occasionally
Pisces	- <u>Squalus</u> <u>acanthias</u>	1 noted
	- <u>Hydrolagus colliei</u>	l noted
	- <u>Gadus</u> macrocephalus	2 noted
	- Zoarcidae	Fairly common
	- Embiotocidae (surf perch)	2 schools noted
	- <u>Sebastes</u> sp.	2 noted
	- Ophiodon elongatus	1 noted
	- Cottidae	Noted occasionally
	- Agonidae	Common during first half of dive - predominant fish species during second half of dive
	- Pleuronectidae	Noted occasionally
	- <u>Psettichthys</u> <u>melanostrictus</u>	Noted occasionally

.

Conclusions

The bottom sediments in the deeper portion of this dive track were very fine indicating that currents were minimal. The bottom fauna, both epifauna and infauna, was quite abundant. Fauna could be adversely affected by the discharge of sewage, with specific reference to the accumulation of organic material in the sediments.

The fine sediment in this area would easily be stirred up by divers involved in submarine construction, reducing visibility and thereby increasing construction time and expense.