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ABSTRACT

Water chemistry and biological indices did not indicate that
the domestic sewage effluent entering Lynx Lake through an unnamed creek
was having a detectable effect. It is theorized that nutrient regenera-
tion within this type of small lake is a natural occurrence and, as
evidenced in Erickson Lake, the control lake, can support algal blooms of
100 ug/1 chlorophyll-a.

Although blue-green algae made up a dominant portion of the
phytoplankton in both lakes, the overall variety of phytoplankton was
greater in Lynx Lake. Zooplankton standing crop was also greater in Lynx
Lake and this may be attributed to the more diverse phytoplankton flora.

It is felt that due to the naturally high productivity of these
lakes and the development of anoxic conditions during the late summer,
fish habitation would be restricted to the upper region of the water

column.
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RESUME

Selon les indices de la composition chimique et biologique de
1'eau, les effluents provenant des egouts et se deversant dans un
ruisseau puis dans le lac Lynx, n'ont pas d'effet notable sur ce dernier.
On admet que la regeneration des substances nutritives dans ce type de
lac aux dimensions réduites est un phenoméne naturel et, comme le montre
le lac Erickson, qui est un lac témoin, cette regénération explique
pourquoi 1a production d'algues peut atteindre 100 ug/1 de
chlorophylle-a.

Bien que le phytoplancton ait ete constitue en majeure partie
de cyanophycées dans les deux lacs, on en a relevé une plus grande
diversite dans le lac Lynx. On a d'autre part releve une plus grande
production de zooplancton dans ce méme lac Lynx, ce que 1'on peut
attribuer a la plus grande diversite de 1a flore phytoplanctonique.

La grande productivite naturelle de ces Tacs et 1'apparition a
la fin de 1'&te de conditions favorisant 1'anoxie ont pour effet de
reduire 1'habitat du poisson aux regions Supérieures de la nappe d'eau.
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SUMMARY AND CONCLUSIONS

The more eutrophic nature of Erickson Lake could be attributed
to its landlocked nature while the defined inflow/outflow of Lynx Lake
1ikely contributes to a 1es§ eutrophied system. The water quality of the
north end of Lynx Lake was similar to the south end even though chlorin-
ated secondary treated domestic sewage is discharged to the former.

Nutrient regeneration within the lakes sediment is theorized to
be a natural characteristic of this type of lake and is capable of sup-
porting algal blooms of 100 ug/1 chlorophyll-a.

It is surmised that fish habitat is restricted to the upper two
meters of the water column in the summer due to the low dissolved oxygen
saturation levels below those depths.

Blue-green algae were comnon to the phytoplankton population of
both lakes but even more so in Erickson Lake. The presence of Aphanizo-

menon in Erickson Lake during the summer period should be confirmed.

The larger standing crop of zooplankton in Lynx Lake could be
attributed to a more diverse phytoplankton population as many blue-greens
are not grazed upon, thus reducing the available food for zooplankton.

In general, for both lakes, the dominant cladoceran was Daphnia and the
dominant copepoda was Cyclops. The dipteran Chaeoborus was found in both
basins. The large portion of Daphnia compared to Bosmina is an indication
of low fish predation.

The fish population of these lakes has not been defined but
trout could at times be close to their upper physiological tolerance in
these types of 1lakes.



1 INTRODUCTION

‘Lynx Lake, located 39 km west of Prince George, British
Columbia, is the receiving water body for chlorinated secondary treated
domestic sewage effluent discharged into an unnamed creek from Canadian
Forces Base, Baldy Hughes.

In order to document the possible impact of the C.F.B. Baldy
Hughes Sewage Treatment Plant discharge on Lynx Lake, the Environmental
Protection Service conducted water quality assessment surveys on June 11,
1975, and August 12, 1975. Erickson Lake, which is the C.F.B. Baldy
Hughes water supply and is similar ih location and morphometry to Lynx
Lake but does not receive any form of discharge or recreational use, was

monitored as a control.
The scope of the study included the measurement of the standing

crop of phytoplankton and zooplankton and the chemical and physical water
chemistry of the lakes.



2 DESCRIPTION OF STUDY AREA

Lynx Lake and Erickson Lake are located approximately 39 km west
of Prince George in the Northern Interior Plateau limnological region of
British Columbia (Northcote and Larkin, 1956) (Figure 1). The region con-
sists mainly of sedimentary and volcanic rocks that are extensively glaci-
ated and with a mantle of lucustine silts in many areas. The topography
is mostly gently rolling uplands at elevations of 915 km to 1830 km.

Both lakes are humic in nature with a dark brown water colora-
tion and are typical of small lakes of the area. The areas of Lynx Lake
and Erickson Lake are approximately 24 ha and 28 ha respectively. The two
lakes are morphometrically similar and are shown in Figure 2 along with
the location of the sample stations. While Lynx Lake has a defined inflow
and outflow, Erickson Lake appeared to be landlocked. Four sample sta-
tions were established on Lynx Lake, one in the deepest basin (E), one at
an intermediate depth (D) and two at the shallow north end where an un-
named creek containihg sewage effluent discharged from the C.F.B. Baldy
Hughes secondary treatment p]ant enters the lake (B and C). Two stations
were established on Erickson Lake, one in the deepest basin (G) and one at
an intermediate depth (F).

Geff Chislet (personal communication, British Columbia, Fish and
Wildlife Branch) reports that rainbow trout and coarse fish (Cyprinidae
and Catostomidae) are thought to be resident in the small lakes such as
Lynx Lake in the Prince George area.
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3 METHODS AND MATERIALS

3.1 Physical and Chemical
Temperature profiles were taken with a YS1 tele-thermometer and
1ight penetration was measured with a standard Secchi disc.

Water samples were collected in 3 litre Van Dorn water bottles
at 1 meter, 3 meters and at either 5 meters or 8 meters depending on the
station. At each depth a 300 ml sample for dissolved oxygen was preserved
immediately with manganous sul fate and alkali-iodide-azide reagents and
titrated against a 0.025 N sodium thiosulphate solution within 8 hours. A
sample for conductivity, turbidity and pH was stored in a 500 ml polyethy-
lene sample bottle and was analyzed within 8 hours utilizing a Siebold
Model LTB conductivity meter, Hach Model 1860A turbidimeter and a Radio-
meter Model 29 pH meter, respectively. Samples for total organic carbon
(T.0.C.) and total inorganic carbon (T.I.C.) were stored in a 100 ml poly-
ethylene bottle while samples for total phosphate (TPO4), ammonia nitrogen
(NH3+NHg*), nitrate nitrogen (NO3-N) and hardness were stored in a 500 ml
polyethiene bottle. A sample for total dissolved phosphate was field fil-
tered through a distilled water washed 0.45 u cellulose acetate filter and
stored in a 125 ml polyethylene sample bottle. All samples were shipped
in ice coolers to the E.P.S. laboratory in West Vancouver. Analyses were
performed at the Fisheries and Environment Canada, Cypress Creek Labora-
tory (Anon., 1976).

3.2 Biological

Two one-litre samples and a 250 ml sample were collected at
depth intervals of 0, 1, 2, 3, 4 or 5, 8 and 10 meters where possible for
chlorophyll-a analysis, ash-free dry weight determination and algal iden-
tification and enumeration. The chlorophyll samples were kept in the dark
and filtered within 8 hours through a 0.45 u cellulose nitrate membrane
filter, treated with MgCO3 and frozen over dry-ice. The ash-free dry
weight samples were shipped in ice coolers to the E.P.S. - Fisheries
laboratory in West Vancouver for analysis (Anon., 1976).



The algal samples were preserved with Lugol's solution and
identification and enumerations were determined on samples from stations
B, E, G, and F. Samples from depths 0, 1, 2 and 3 meters were combined
into one composite except for the June 11, 1975, station B sample which
was made up of 0, 1 and 2 meter depths. The Utermohl inverted microscope
technique was used in the identification and enumeration and the counts
are the average of two fields extrapolated to cells per ml.

At each station three zooplankton samples were collected from a
total vertical water column with a 25 cm diameter Wisconsin #20 net (76 u
aperture). The samples were preserved with a 5% concentration of forma-
lin. Due to the high algal content of the water and cell lysing with pig-
ment release, it was necessary to wash all the samples on a #10 netting
(158 u aperture) to rémove some of the cloudiness. With the exception of
the larger Asplanchna, the smaller rotifera would be washed through the
netting thus, this group was excluded from the enumeration. The rotifera
did not seem to be an important constituent of the zooplankton community
in the two lakes, justifying to some extent their omission (A. Federenko,
personal communication).



4 RESULTS AND DISCUSSION
4.1 Water Chemistry
4.1.1 Physical and Chemical. Thermal profiles of the deep basins of

Lynx Lake (Stn. E) and Erickson Lake (Stn. G) show a summer thermal stra-
tification with temperatures of 4-6°C below 5 meters (Figure 3). For
shallower stations ( 4 m) in June, surface temperatures approximated 16°C
decreasing to about 8°C at 4 meters. In August these stations were gener-
ally weakly stratified.

Secchi disc readings for Lynx Lake were relatively fixed at
1.3 meters in both June and August (Figure 3)'while for Erickson Lake
the Secchi disc reading of 2 meters in June was reduced to approximately
1 meter in August, the result of a heavy blue-green algal bloom.

The vertical distribution of dissolved oxygen in both lakes
clearly shows that anoxic conditions develop (Figure 4). Oxic conditions
appear to exist in the upper 1-2 meters in both lakes. The dissolved oxy-
gen maxima (10.4-10.9 mg/1) at 1 meter in Erickson Lake in August coin-
cided with a heavy blue-green algal bloom. Barcia (1975a) and Ayles et
al. (1976) have reported that, prior to the collapse of an Aphanizomenon
bloom in some small eutrophic lakes of central Canada, the algal collapse
is preceded by a peak in chlorophyll-a and dissolved oxygen levels and is
followed by a rapid drop in dissolved oxygen and a considerable release of
toxic un-ionized ammonia. For Lynx Lake, the percent saturation of dis-

solved oxygen at 3 meters ranged between 0 to 43.8% and at 5-9 meters from
0 to 3.5%. For Erickson Lake, the percent saturation at 3 meters ranged
between 7.5 to  19.8% and at 4-9 meters 0 to 11.8%.

For both lakes, dissolved oxygen percent saturation reached lev-
els that are known to be stressful to trout (Davis, 1975). Low dissolved
oxygen levels (below 60% saturation) are reported to reduce blood satura-
tion with oxygen, reduce swimming speed and lower tolerance levels to sev-
eral chemical parameters including ammonia (Davis, 1975). For both lakes
in general, low oxygen levels would likely restrict fish inhabitation in
the summer to the upper two meters of the water column.
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With the exception of Erickson Lake in August, when the pH in-
creased to a high of 9.5 at 1 meter, both lakes had pH values ranging -
between 6.7 - 7.6 (Figure 4). The increased pH is attributed to a blue-
green algal bloom where the CO2 in the water is being assimilated into -
algal biomass at a rate faster than it can be replaced thus resulting in
a re-adjustment of the solid carbonate equilibria and an increase in pH -
(Goldman, 1971).
Conductivity, turbidity and hardness showed little dif- "
ferences between stations or lakes. Conductivity values ranged from 97
to 126 umhos/cm, turbidity from 1.6 to 12 JTU and hardness from 51 to 95
mg/1 (Table 1). Highest values of conductivity and hardness were re- "
ported in the deep basin of each lake (8 meters) and an increase in tur-
bidity in Erickson Lake occurred at the 1 meter depth in August, corres- o
ponding with a blue-green algal bloom.
-
4.1.2 Nutrients. Total inorganic carbon (TIC) concentrations were
similar for both lakes in June, with values generally within a range of -
26-35 mg/1 for Lynx Lake and 29-36 mg/1 for Erickson Lake. High values
of 84 mg/1 and 44 mg/1 for Lynx Lake and Erickson Lake, respectively,
were detected at the 9 meter depth. The TIC concentrations in August -
were reduced by approximately one-half throughout the water column of
both lakes (Figure 5). Total organic carbon (TOC) concentrations were b

also similar for both lakes in June with values ranging between 15-21
mg/1 in Lynx Lake and 15-18 mg/1 in Erickson Lake (Table 2). Total e
organic carbon concentrations in August were similar to the June levels
for Lynx Lake but levels in Erickson Lake increased slightly to 17-25

-
mg/1.
For the deeper basin of each lake, the thermocline remained
relatively fixed at the 3 meter depth (Figure 3). The mean total phos- -
phate concentration for the upper water column (surface to 3 meter depth)
in Lynx Lake and Erickson Lake, respectively, was 0.059 mg/1 and 0.032 v
mg/1 in June, and 0.041 mg/1 (excluding 0.180 mg/1 at 3 meter depth at
station E) and 0.037 mg/1 in August (Table 2). The mean total phosphate -
-



WATER CHEMISTRY - CONDUCTIVITY, TURBIDITY, HARDNESS, DISSOLVED OXYGEN AND pH

TABLE 1

% Saturation

pH

D.0. (mg/1)

Hardness
{mg/1)

Turbidity
JTu's

ivity

umhos/cm

Conduct

Depth
(m)

Parameter

.
.

Date (1975)

Aug.12 Jun.1ll Aug.12

Jun.1l Aug.12 Jun.1l Aug.12 Jun.1ll Aug.12 Jun.ll

Jun.11 Aug.12

Jun.1l Aug.l12

STATION

- 11 -

7.3 7.4 82.9 79.9
6.8

7.3

7.5

54
54
54
54
54
51

95 6.0 4.0
95
94

94
94

99
100

Lynx

20.8 43.5

7.2

4.3

2.1

3.0

4.5

Lake

6.7 7.2 7.4 87.3 74.1

7.7

4.0

3.4

98
102
102
106
114
102
100
126

5.3 7.0 7.2 45.5 57.5

4.5
8.1

4.0
4.0

5.6

2.5

.7 86.1
12.6

7.5

7.3
6.8

7.7

3.5
4.3
11.0

43.8

7.1

4.0

1.3
000

3.0

96
102

0.0
80.7

6.9 0.0
86.5

6.7

0.0

73

8.0

7.4 7.5

6.8

7.3
0.0
0.0

7.9

54
55

4.0
8.0
10.0

4.5

95
105

0.0

14.5

6.8

1.5
0.4

4.4
8.3

6.8 3.5 0.0

6.7

95

110

9.5 102.4 116.2

7.6
6.9

10.4

8.8

55

12.0

1.8
4.5

87

98
102
112

Erickson F
Lake

7.5
11.8
121.8

19.8

6.8

0.7

2.1

59
75
57

5.0

92
93
87

1.2 6.9 6.8 2.7
102.6

10.9

0.3

5.0

6.2

9.5

7.6

8.9

8.0

1.6
2.8

97
100
116

1.7 7.0 7.2 18.3 17.8
6.8

1.9
0.1

58
85

7.0

123
107

0.9 0.0

6.8

0.0

4.0

6.0

12.5 7.7 8.1

8.7

276 6.8 6.0

186

tUnnamed
Creek
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concentration for the bottom water column (below 3 meters) in Lynx Lake
and Erickson lake, respectively, was 0.305 img/1 and 0.195 mg/1 in June and
0.390 mg/1 and 0.065 mg/1 in August. Dissolved phosphate concentrations
reflected a similar pattern but concentrations were approximately one-half
that of total phosphate concentrations in the upper water column. The
mean dissolved phosphate concentrations for the upper water column in Lynx
Lake and Erickson Lake, respectively, was 0.024 mg/1 and 0.022 mg/1 in
June, and 0.020 mg/1 (excluding 0.150 mg/1 at 3 meter depth at station E)
and 0.015 mg/1 in August. For the lower water column, the mean dissolved
phosphate concentration for Lynx Lake and Erickson Lake, respectively, was
0.290 mg/1 and 0.100 mg/1 (one value) in June and 0.300 mg/1 and 0.045
mg/1 in August. The higher phosphate concentrations at the 3 meter depth
of Lynx Lake reflected water quality similar to the bottom samples.

Nitrate (NO3) concentrations were below the detection limit of
0.01 mg/1 throughout the water column of both lakes in both June and
August (Table 2). In June the ammonia (NH3+NH*) concentrations in the
upper 5 meters ranged between less than 0.01 to 0.03 mg/1 for Lynx Lake
and at 9 meters a value of 0.320 mg/1 was detected (Figure 6). Unlike
Lynx Lake, in June Erickson Lake had ammonia levels of less than 0.01 mg/1
at 1 meter increasing to 0.11 - 0.15 mg/1 at 3 meters and 0.55 - 0.68 mg/1
at 8 meters. In August ammonia levels in Lynx Lake remained relatively
unchanged in the upper 3 meters (0.009 - 0.018 g/1), with the exception
of the deep basin (station E, 3 meters) where the concentration increased
to 0.34 mg/1 reflecting water quality similar to the deeper samples. At
the 5 - 8 meter depths concentrations increased over June levels to 0.34 -
1.3 mg/1. Unlike Lynx Lake, for Erickson Lake in August the total ammonia
levels at the 1 meter depth appeared to increase (0.020 - 0.027 mg/1)
while at 3 - 4 meters, concentrations decreased substantially to 0.026 -
0.060 mg/1. Concentrations again increased at the 8 meter depth to
levels greater than in June (1.25 mg/1).

Stations B and C, at the north end of Lynx Lake, where the un-
named creek containing the secondary treated sewage enters, did not indi-
cate any appreciable difference from other areas of the lake with respect

i
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to water quality. In fact, dissolved oxygen levels were comparable at the
1 meter depth and were generally greater at 3 meters compared to other
areas of Lynx Lake.

The large increase in ammonia and phosphorus concentrations in
the lower portion of the water column of both lakes offers presumptive
evidence of nutrient regeneration within the lakes (Golterman, 1977;
Barica, 1975(b); Griffith et al., 1973; Austin and Lee, 1975; and Kamp-
Nielsen and Anderson, 1977). The high nutrient levels likely result pri-
marily from the decomposition of dead plankton that have settled. The high
levels of ammonia in particular would result from the continuous
accumulation of nitrogen in the lakes through its fixation by blue-green
algae. These lakes appear to be similar in nature to the shallower prairie
pothole type lake described by Barica, 1975(a).

4.2 Biological
4.2.1 Phytoplankton - Standing Crop. Chlorophyll-a levels in June were

quite comparable between lakes, with an overall photic zone (approx. 2.5 x
Secchi) mean of 11.1 ug/1 and 7.3 ug/1 for Lynx Lake and Erickson Lake,
respectively. An appreciable increase in chlorophyll-a occurred in both
lakes by August with Erickson Lake reporting very high levels. In August
the overall mean photic zone levels of chlorophyll-a were 18.6 ug/1

(max. 39.8 ug/1) and 68.1 ug/1 (max. 104 ug/1) for Lynx Lake and Erickson
Lake, respectively (Table 3, Figure 7). Chlorophyll-a levels at stations B
and C were comparable with other areas of Lynx Lake for both months. The
high cholorophyll-a levels are comparable to values reported by Barica,
1975 (c) for small pothole prairie lakes. Pheopigment.concentrations
(degradation product of chlorophyll) were greatest in the bottom of the
deep basins indicating the sedimenting of plankton cells.

Ash-free dry weight levels showed the same pattern as chloro-
phyll-a. A multiple linear regression analysis of the data gave a multiple
correlation coefficient of r= 0.83. Values at stations B and C were
comparable to other areas of Lynx Lake for both months. For Erickson Lake,
in August an algal bloom was recorded with a resulting increase in ash-free
dry weight.

e



STANDING CROP - CHLOROPHYLL AND ASH-FREE DRY WEIGHT

TABLE 3

Ash Free Weight (mg/1)

Pheopigments (ug/1)

11/06/75

Chlorophyl1-a (ug/1)

11/06/75

Parameter
Date

12/08/75

11/06/75

12/08/75

12/08/75

Depth
(m)

STATION

3.8
4.5

3.7 7.1 2.6
LO.2 L0.2

29.0

8.8

Lynx

2.4

25.7

9.6

Lake

i.9

2.4

6.4

L0.2

12.9

6.2
10.4

2.4

L0.2

o =
™.

28.5
0.7
L0.2

4.5 L0.2
28.8

31.1
13.6

9.3

4.6
2.1

2.5

L0.2

9.5
10.8

2.6

3.5

6.1
L0.2

- 17 -

3.0

0.8 3.9 2.6
39.8

10.7

2.6

2.8
2.8

2.8

5.9

9.5
LO.2

16.0

1.2

9.4

15.8

2.7

LO.2

14.4

1.9

6.5

9.4

1.9
2.4

1.3

6.7

wn

2.2

3.3
2.3

13.0

5.5
9.5
18.9

2.0

2.9

13.4

3.3

3.0

5.0

21.6

2.6

2.0
7.1

3.9

18.6

17.6

12.9

2.7

19.4

4.8
12.4

4.0

10

5.5

1.9

1.2
L0.2

6.8 35.4 L0.2

5.8
8.8

F

Erickson
Lake

5.6
11.1

1.7

LO.2

74.9

1.4
2.5

L0.2

LO.2

78.6

8.7

3.5 5.9
12.0

89.6

5.4

17.1

.9
1.8
1.9
2.3

L0.2
L0. 2

L0.2
L0.2

33.5
45.9
104.0

6.0
6.6

o W O e

14.3

95.1 LO.2 13.2

4.6
12.6

3.7

8.7 8.9

L0.2

21.8

3.7

4.3

0.2

1

13.4

3.9

4.8

L0.2

4,2

10

T = Tess than
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Chlorophyta (green algae) did not constitute a significant part
of the phytoplankton in Lynx Lake and were not recorded at all in Erickson
Lake (Appendix I). For Lynx Lake, in June the Cyanophyta (blue-green
algae) made up 53-97% of the total algae and this consisted of Anabaena
and Oscillatoria (Appendix I and III). The dominant Bacillariophyceae
(diatoms) were Synedra and Dinobryon. For Erickson Lake, in June the

blue-greens consisted of Aphanizomenon (unconfirmed), Anabaena and
Oscillatoria and the dominant diatom was Dinobryon. The dominant blue-

green in Lynx Lake for August was Anabaena and the dominant diatoms were
Asterionella and Nitzschia. Aphanizomenon (unconfirmed) was the only alga

identified in the August sample from Erickson Lake.

Nutrient levels indicate an ample source of phosphate and carbon
for algal growth but possibly a depleted nitrate pool (less than 0.0l mg/
liter). It appears that the phytoplankton population is favoured by typi-
cal nitrogen fixing forms of blue-greens such as Anabaena and possibly

Aphanizomenon. [t seems realistic that due to the weak stratification in

summer, nutrient rich deeper waters could be easily circulated within the
lakes to sustain a high level of primary production. For comparative pur-
poses several characteristics of Lynx Lake and Erickson Lake are compared
with two pothole lakes that form a partial thermocline (Barica, 1974) and
an experimental lake (Lake 227) of northwestern Ontario (Schindler, 1971).
The similarity of the eutrophic nature of these lakes is quite evident
(Table 4).

4,2.2 Zooplankton. Copepoda made up the greater portion of the zoo-
plankton for both lakes in June and for Erickson Lake in August. Cyclops
was the dominant genus in Lynx Lake while Diaptomus was for Erickson Lake
in June (Appendix II). Cladocera were present at all stations and Daphnia
was the dominant genus. Bosmina was present only in Lynx Lake for June.
Diptera (Chaeoborus) were present only at the deep basin (station E) in
Lynx Lake but were evident at both stations on Erickson Lake. For Lynx
Lake, in August the Cladocera generally increased in number and consisted

solely of Daphnia. Cyclops was still the dominant Copepoda and Chaeoborus
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was found at all stations with increased counts at station E. For Erick-
son Lake, in August the Cladocera greatly increased in numbers and Bosmina
was reported at station G. Cyclops made up the dominant portion of cope-
poda and the Diaptomus population declined. The number of Chaeoborus
declined slightly.

The rotifer Asplanchna was recorded in both lakes in June but
was not found in Erickson Lake in August. To the generic level there
appears to be be little difference in the zooplankton population of the
two lakes.

The total number of organisms per m3 was greater in June than in
August at all stations but G and values in Lynx Lake were greater than
those for Erickson Lake. Little difference in the zooplankton population
was noted at station B where the unnamed creek enters the lake, except in
June when the percent Cladocera was approximately 5 times greater than at
D and E (Appendix III).

The smaller zooplankton population in Erickson Lake can likely
be attributed to the fact blue-green algae make up a dominant portion of
the phytoplankton. As blue-greens are not grazed upon at all, this re-
duces the available food. Richardson, 1971, and Brooks, 1969, reported
that intense fish predation lowers the size and composition of the zoo-
plankton population, large Daphnia being replaced with smaller Bosmina.
Generally, the larger Daghnia have a greater feeding effectiveness thus
suppressing the population of sinaller Bosmina. Bosmina did not make up a

dominant portion of the zooplankton in either lake and was not reported at
all in Lynx Lake in August. This suggests a low rate of fish predation
for Lynx Lake and Erickson Lake. Most freshwater fish (excluding fresh-
water populations of anadromous marine species) are facultative plankti-
vores, they feed on zooplankton when large forms (especially Daphnia) are
plentiful, but switch to some other food source (small fish or benthic in-
vertebrates) when the supply of large zooplankters fails (Brooks, 1969).
In general, large zooplankters are preferred to small ones, Cladocera are
preferred to calanoid copepods of the same visual size, and cyclopoids are
an intermediate choice (Brooks, 1969).
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APPENDIX 1

PHYTOPLANKTON IDENTIF ICATION (# cells/ml)
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APPENDIX II

ZOOPLANKTON IDENTIFICATION
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APPENDIX III

PERCENT DISTRIBUTION OF MAJOR ORDERS -
PHYTOPLANKTON AND ZOOPLANKTON
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