21 3012552 C

ENVIRONMENT CANADA CONSERVATION AND PROTECTION ENVIRONMENTAL PROTECTION PACIFIC AND YUKON REGION

:

÷

BASELINE SEDIMENT AND TISSUE TRACE METALS IN BARKLEY SOUND, QUATSINO SOUND, SURF INLET AND LAREDO SOUND, BRITISH COLUMBIA

Regional Program Report 87-06

By

L. Harding M. Thomas

APRIL 1987 ENVIRONMENT CANADA CONSERVATION AND PROTECTION PACIFIC REGION

ABSTRACT

Marine sediments and biota samples were collected during March 1984 in Barkley Sound, Quatsino Sound, Surf Inlet and Laredo Sound for trace metal analysis. The purpose of this study was to measure natural variation of these parameters in nearshore coastal environments.

Considerable variation was found in several trace metals in sediments. Barkley Sound was noted for relatively higher levels of aluminum, cadmium, chromium, tin and zinc; Quatsino Sound for chromium, copper, magnesium, manganese, strontium, vanadium and titanium; Surf Inlet for arsenic, cadmium, and mercury; and Laredo for barium, mercury, and lead.

In biota, arsenic, cadmium, copper, mercury and lead — the only trace metals analysed in detail — showed significant differences between areas, but were not correlated with sediment concentrations. In bottom fish, cadmium tended to be higher in liver than in muscle tissue, while mercury concentrated more in muscle tissue. Overall there was very little bioaccumulation, i.e., trace metal levels in tissues were generally not higher than metal levels in sediments. Some exceptions were noted for cadmium and mercury in sole species.

Species composition of trawls showed diverse and variable epibenthic communities at all stations.

RESUMÉ

Des échantillons de sédiments et du biotope marins ont été prélevés en mars 1984 dans le détroit Barkley, le détroit Quatsino, l'inlet Surf et le détroit Laredo pour être soumis à l'analyse des métaux à l'état de traces. Ces endroits étaient considérés à ce temps comme représentatifs des conditions de base de d'un variété milieux prélittoraux.

On a relevé une grande variation dans les teneurs de plusieurs métaux à l'état de traces dans les sédiments. Le détroit Barkley était reconnu pour ses teneurs relativement élevées en aluminium, cadmium, chrome, étain et zinc; le détroit Quatsino, pour ses teneurs en chrome, cuivre, magnésium, manganèse, strontium, vanadium et titane; l'inlet Surf, pour ses teneurs en arsenic, cadmium et mercure; et le détroit Laredo, pour ses teneurs en baryum, mercure et plomb.

Dans le cas du biotope, les teneurs en arsenic, cadmium, cuivre, mercure et plomb, les seuls métaux à l'état de traces analysés en détail, variaient considérablement d'un endroit à l'autre, mais n'étaient pas corrélées aux concentrations pour les sédiments. Dans le cas des poissons de fond, la teneur en cadmium avait tendance à être plus élevée dans le foie que dans les tissus musculaires, tandis que les concentrations de mercure étaient supérieures dans les tissus musculaires. Dans l'ensemble, il n'y avait que très peu de bioaccumulation, c.-à-d. que les teneurs en métaux à l'état de traces dans les tissus n'étaient généralement pas supérieures aux teneurs dans les sédiments. Il y avait cependant quelques exceptions en ce qui a trait au cadmium et au mercure chez certaines espèces de soles.

La composition des espèces capturées par les chaluts indiquait que les communautés épibenthiques étaient diversifiées et variées à toutes les stations.

TABLE OF CONTENTS

ABSTRAC	Т	i
RÉSUMÉ		ii
TABLE OF	F CONTENTS	iii
	List of Tables	vi
	List of Figures	viii
1	INTRODUCTION	1
1.1	Purpose	1
1.2	Study Areas	1
2	MATERIALS AND METHODS	4
2.1	Sample Collection	4
2.1.1	Sediment	4
2.1.2	Tissues	4
2.2	Analytical Procedures	9
2.2.1	Sediment	9
2.2.2	Tissue	9
2.3	Quality Control	9
2.4	Statistical Analysis	10
2.4.1	Summary Statistics	10
2.4.2	Tests for Normality	10
2.4.3	Between Area Comparisons	11
2.4.4	Bioaccumulation	11
3	RESULTS	12
3.1	Sediment Trace Metals	12
3.1.1	Barkley Sound	12
3.1.2	Quatsino Sound	12
3.1.3	Surf Island	12

TABLE OF CONTENTS (Continued)

3.1.4	Laredo Sound	12
3.2	Tissue Trace Metals	14
3.2.1	Arsenic	14
3.2.2	Cadmium	15
3.2.3	Copper	18
3.2.4	Mercury	18
3.2.5	Lead	21
3.3	Bioaccumulation	21
3.3.1	Shrimp	21
3.3.2	Fish	23
3.4	Species Composition of Trawls	23
3.4.1	Barkley Sound	23
3.4.2	Quatsino Sound	24
3.4.3	Surf Inlet	24
3.4.4	Laredo Sound	24
4	DISCUSSION	25
4.1	Sediment Trace Metals	25
4.1.1	Variation by Time	25
4.1.2	Variation by Area	25
4.2	Biota	25
4.2.1	Variation by Time	20
4.2.2	Variation by Area	20
4.2.3	Differences between Tissues	20
		63
REFERENCE	S	31
ACKNOWLEDGEMENTS		34
TABLES		35

TABLE OF CONTENTS (Continued)

- v -

٠,

¢

•

4

.

APPENDIX I	STATION LOCATION COORDINATES	76
APPENDIX II	DESCRIPTIVE STATISTICS FOR: (a) SIDESTRIPE SHRIMP	
	(b) CRANGON SHRIMP	
	(c) PINK SHRIMP	
	(d) PRAWNS	78
APPENDIX III	TRACE METALS IN FISH TISSUES FROM BARKLEY SOUND,	
	MARCH, 1984	88
APPENDIX IV	TRACE METALS IN SHRIMP AND PRAWNS FROM BARKLEY	
	SOUND, MARCH, 1984	97
APPENDIX V	TRACE METALS IN FISH AND CLAMS FROM QUATSINO	
	SOUND, MARCH, 1984	107
APPENDIX VI	TRACE METALS IN SHRIMP FROM QUATSINO SOUND,	
	MARCH, 1984	112
APPENDIX VII	TRACE METALS IN FISH AND CLAMS FROM SURF INLET,	
	MARCH, 1984	116
APPENDIX VIII	TRACE METALS IN SHRIMP AND PRAWNS FROM SURF	
	INLET, MARCH, 1984	123
APPENDIX IX	TRACE METALS IN FISH AND SHRIMP FROM LAREDO	130
	SOUND, MARCH, 1984	
APPENDIX X	INTERSTATION DIFFERENCES IN TRAWL CATCHES FOR	

EACH SPECIES

133

LIST OF TABLES

Table 1 SEDIMENT TRACE METAL ANALYSIS - SURFACE GRABS, MARCH 1984 (a) BARKLEY SOUND 36 37 (b) QUATSINO SOUND (c) SURF INLET 38 (d) LAREDO SOUND 39 2 SEDIMENT TRACE METAL ANALYSIS - SEDIMENT CORES - QUATSINO SOUND, MARCH 1984 40 3 MEAN TRACE METALS IN SHRIMP AND PRAWNS FROM BARKLEY SOUND, MARCH 1984 41 4 MEAN TRACE METALS IN FISH FROM BARKLEY SOUND, MARCH 1984 44 5 MEAN TRACE METALS IN SHRIMP FROM QUATSINO SOUND, MARCH 1984 53 MEAN TRACE METALS IN FISH AND CLAMS FROM QUATSINO SOUND, 6 MARCH, 1984 55 7 MEAN TRACE METALS IN SHRIMP AND PRAWNS FROM SURF INLET, MARCH 1984 60 8 MEAN TRACE METALS IN MUSSELS, CLAMS AND FISH FROM SURF INLET, MARCH 1984 64

9 MEAN TRACE METALS IN SHRIMP AND FISH FROM LAREDO SOUND, MARCH 1984 71

Page

•

LIST OF TABLES

.

Table		Page
10	ANALYSIS OF VARIANCE (F-TEST) BETWEEN - STATION	
	DIFFERENCES FOR TRACE METALS IN PRAWINS AND SHRIMP	73
11	SEDIMENT CONCENTRATION AND BIOCONCENTRATION FACTORS	
	FOR CADMIUM IN SHRIMP	73
12	SEDIMENT CONCENTRATION AND BIOCONCENTRATION FACTORS	
	FOR MERCURY IN SHRIMP	74
13	CORRELATION BETWEEN SEDIMENT AND SHRIMP MUSCLE TRACE	
	METAL CONCENTRATIONS	74
14	BIOCONCENTRATION FACTORS FOR CADMIUM AND MERCURY	
	IN INDIVIDUAL SOLE AND FLOUNDER MUSCLE AND LIVER	
	TISSUE	75

.

.

. . . .

;;;

•

×.

.

LIST OF FIGURES

Figure		Page
1	LOCATIONS OF BASELINE SURVEYS ALONG THE COAST OF BRITISH	
	COLUMBIA	2
2	BARKLEY SOUND - SAMPLING STATIONS	5
3	QUATSINO SOUND - SAMPLING STATIONS	6
4	SURF INLET - SAMPLING STATIONS	7
5	LAREDO SOUND - SAMPLING STATIONS	8
6	CORE PROFILES OF SEDIMENT COPPER, ZINC, MANGANESE AND LEAD	13
7	MEAN ARSENIC (mg/kg) CONCENTRATIONS	
	(a) SHRIMP AND PRAWNS	
	(b) SOLE AND FLOUNDER MUSCLE	
	(c) SOLE AND FLOUNDER LIVER	16
8	MEAN CADMIUM CONCENTRATIONS (mg/kg)	
	(a) SHRIMP AND PRAWNS	
	(b) SOLE AND FLOUNDER MUSCLE	
	(c) SOLE AND FLOUNDER LIVER	17

٠

.

LIST OF FIGURES (Continued)

Figure		Page
9	MEAN COPPER CONCENTRATIONS (mg/kg)	
	(a) SHRIMP AND PRAWNS	
	(b) SOLE AND FLOUNDER MUSCLE	
	(c) SOLE AND FLOUNDER LIVER	19
10	MEAN MERCURY CONCENTRATIONS (mg/kg)	
	(a) SHRIMP AND PRAWNS	
	(b) SOLE AND FLOUNDER MUSCLE	
	(c) SOLE AND FLOUNDER LIVER	20
11	MEAN LEAD CONCENTRATIONS (mg/kg)	
	(a) SHRIMP AND PRAWNS	
	(b) SOLE AND FLOUNDER MUSCLE	
	(c) SOLE AND FLOUNDER LIVER	22
12	CADMIUM, COPPER, AND MERCURY CONCENTRATIONS IN SEDIMENTS	
	AS A FUNCTION OF ALUMINUM CONCENTRATION (MG/KG) IN	
	BARKLEY SOUND, QUATSINO SOUND, SURF INLET, LAREDO SOUND	
	AND HECATE STRAIT, MARCH 1984	27

,

1 INTRODUCTION

1.1 Purpose

One of the objectives of Environment Canada is to reduce releases of pollutants which are causing, or may cause, losses to fish habitat. Assessment of fish habitat losses, or threats to fish habitat, often involves detection of increases in chemicals associated with waste discharges. However, many of these chemicals also occur naturally. To interpret measurements of toxic chemicals in pollution studies, a knowledge of natural or background variations in chemicals of interest is essential (Beanlands and Duinker, 1983).

This study was undertaken to provide baseline trace metal concentrations in sediments and biota tissue in four, relatively unpolluted nearshore locations on the west coast of Canada: Quatsino Sound, Barkley Sound, Surf Inlet and Laredo Sound (Figure 1). The sampling program and statistical approach were designed to test the hypotheses:

- 1. There are no significant differences in trace metal levels in marine benthic animals tissues between the four study areas, and between sampling sites within some of the areas.
- 2. Any significant differences detected (i.e., Hypothesis 1 is rejected) are correlated with levels of trace metals in sediments.

1.2 Study Areas

Barkley Sound, located centrally on the west coast of Vancouver Island, includes part of Pacific Rim National Park. Trace metal contamination occurs in the head of Alberni Inlet associated with a pulp mill (Sullivan, 1982). Relatively high levels of cadmium (1-5 mg/kg) have also been measured in deep sediment cores from Trevor Channel and Ucluelet Inlet (Brothers and Nelson, unpubl.), apparently due to natural mineralization in the area.

Quatsino Sound is located on the northern west coast of Vancouver Island. From it branch three major inlets: Neroutsos to the south, and

- 1 -

FIGURE I LOCATION OF BASELINE SURVEYS ALONG THE COAST OF BRITISH COLUMBIA

Holberg and Rupert Inlets to the north. A copper mine is located on Rupert Inlet and a pulp mill on Neroutsos Inlet. Mine tailings from Island Copper mine have extended to the eastern end of Quatsino Sound (Harding, 1983) but the extent of contamination in the area sampled in this study was not known at the time of sampling. Although water quality impacts associated with the pulp mill have reached the eastern end of Quatsino Sound, trace metal contamination is limited to the immediate mill area (Pomeroy and Goyette, 1983). Goyette and Christie (1982) previously reported Quatsino Sound baseline fish and invertebrate trace metals from one of the same stations trawled in this study.

÷

Surf Inlet, located on Princess Royal Island, south of Kitimat, B.C., has no industrialization, and no previous studies of trace metals. A hydroelectric dam and shipping wharf serviced a gold mine on Bear Lake, at the head of Surf Inlet.

Laredo Sound, located just south of Surf Inlet, also has no industrialization. Fish and invertebrate tissue trace metal levels for 1981 are reported by Goyette and Christie (1982).

2 MATERIALS AND METHODS

Samples for this study were collected during March 1984, onboard the research vessel, CSS Vector. Sampling station positions were established using Loran C and the ship's radar. Station locations are shown in Figures 2-5 and their coordinates are given in Appendix I.

2.1 Sample Collection

2.1.1 Sediment. Sediment surface grabs were taken using a 0.1 m^2 stainless steel Smith-MacIntyre grab. The top two centimetres were retained for trace metal analysis. Cores were taken with a Benthos gravity corer equipped with a 60 kg weight, plastic tube and core catcher. The sediment core was extruded from the core tube by inserting a wooden plunger and pushing the sediment out onto a plastic collecting trough. Samples at 2 cm intervals, from the surface, were frozen onboard in heavy kraft paper bags provided by the laboratory for later trace metal analysis.

2.1.2 <u>Tissues</u>. Biota samples were collected using a small otter trawl which consisted of a 3.8 cm mesh net with a 5.8 metre throat. The trawl was towed with a 3:1 scope for approximately 0.9 km. Trawl catches were enumerated by species and lengths and weights were recorded. Tissue samples were taken from selected specimens using a stainless steel scalpel and forceps as follows:

- fish: dorsal muscle with skin removed, liver and gills.

- shrimp: tail muscle (composites of 2) and hepatopancreas (composites of 6).
- crab: leg and claw muscle and hepatopancrease (composites of 6).

All tissue samples were frozen individually (except composites) in whirlpac bags for later chemical trace metal analysis.

-4-

FIGURE 2 BARKLEY SOUND - LOCATION AND SAMPLING STATIONS

QUATSINO SOUND - LOCATION AND SAMPLING STATIONS М FIGURE i

FIGURE 4 SURF INLET - LOCATION AND SAMPLING STATIONS

FIGURE 5 LAREDO SOUND - LOCATION AND SAMPLING STATIONS

2.2 Analytical Procedures

2.2.1 <u>Sediment</u>. Frozen sediment samples were analysed by the West Vancouver Laboratory for trace metals according to the procedures outlined by Swingle and Davidson (1979). The samples were freeze-dried and sieved through a 100-mesh nylon sieve. They were then digested in a 4:1 nitric-hydrochloric acid mixture and analysed for trace metals using a Perkin-Elmer Inductively Coupled Argon Plasma (ICAP) Optical Emission Spectrometer. Low-level cadmium and lead levels were obtained using a Jarrel Ash 850 Atomic Absorption Spectrophotometer (AAS) with a FLA 100 graphite tube furnace.

2.2.2 <u>Tissue</u>. Tissue trace metals were analysed at the West Vancouver Laboratory according to procedures described by Swingle and Davidson (1979) as follows: tissue samples were thawed, blended, freeze-dried and oxidized in a low temperature asher. The ash containing the metallic salts was then dissolved in warm concentrated nitric acid. Samples were analysed on the Inductively Coupled Argon Plasma (ICAP) Optical Emission Spectrometer. Tissue levels that were below the ICAP detection limit for cadmium and lead were analysed by the Jarell Ash 850 Atomic Absorption Spectrometer (AAS) with a FLA 100 graphite tube furnace.

For mercury, the blended and freeze-dried samples were dissolved in a 4:1 sulfuric acid-water mixture. These solutions were further oxidized with 50% peroxide, heated, cooled and diluted with potassium permanganate. The resultant solutions were then analysed by "cold vapour" AAS with background correction. All results are reported as concentration in mg/kg dry weight unless otherwise stated. For comparison with Canadian Guidelines for Chemical Contaminants in Fish Protection (Fish Inspection Branch, 1983), the guideline values were converted from wet weight using a wet: dry weight ratio of 4.54 (Goyette and Christie, 1982). These guidelines apply to edible fish products for mercury and to fish protein for arsenic and lead. Measurements of trace metals in extractable fish protein are not directly comparable to measurements in edible tissues, however, the guidelines are useful as a reference for comparison.

2.3 Quality Control

Standard reference materials lobster tail (NRC), oyster tissue (NBS), bovine liver (NBS) and BCSS marine sediment (NRC), or MESS marine sediment (NRC), as appropriate, are analysed with each batch of samples

processed. Results are accepted if within 10% of certified values. If significant differences are observed between measured and certified values, methods and materials are checked and the samples re-run. Quality control results are recorded, and are available at the Environment Canada laboratory in West Vancouver.

2.4 Statistical Analysis

2.4.1 <u>Summary Statistics</u>. Summary statistics were prepared in "MultiPlan" electronic spreadsheets on a "DataPoint" minicomputer using standard functions for mean, standard deviation, maximum and minimum and user-supplied formulae for variation. For summary statistics all values less than chemical analytical detection limits were assigned the value of the detection limits. Advanced statistics were performed on an IBM PC microcomputer running "StatPro" (Penton Software, Inc., 1985) package programs. Significance was tested at the probability level of 5%. Data sets of n < 5 and values of x < detection limit were not included in the analyses.

2.4.2 Tests for Normality. Because the sample design called for detection of differences in tissue trace metals between areas by analysis of variance, which assumes a normal distribution, normality was tested for several of the larger shrimp data sets. The method used was a quantile-quantile (Q-Q) correlation which measures the correlation between the cumulative probability distribution of the raw data and the corresponding values of the standard normal distribution. Results were variable: A metal that was normally distributed in one data set was not necessarily normally distributed in the same species from a different location. Log transformations $(Z = \log (x+1))$ as suggested by Greene (1979) and others did not improve the normality. Zar (1984) notes that the validity of ANOVA is affected only slightly by even considerable deviation from normality if the distribution is very narrow (i.e. the kurtosis is high). Examination of descriptive statistics (Appendix II) for shrimp and prawns showed that while skewness was generally slight, positive kurtosis was often high. Therefore, for these data, even though assumptions of normality were frequently violated, parametric ANOVA could validly test for significant differences between groups.

2.4.3 <u>Between-Area Comparisons</u>. Differences in trace metal levels in shrimp between stations were tested for significance using one-way analysis of variance using a type A model for equal sample sizes. If unequal numbers of specimens of a particular species were analysed chemically, sample sizes were equalized by only using the first n samples submitted, where n = the minimum size data set for that species. Sample sizes in the range 12-24 were found to be suitable to determine the mean within 10% of the actual population mean, based on these data and formulae given by Zar (1984), although the number of variates needed was different from metal to metal. Sample sizes less than 5 were not included in the analysis. Results are reported at the 5% confidence level.

2.4.4 <u>Bioaccumulation</u>. Linear correlation was tested between mean levels of arsenic, cadmium, copper, mercury and lead in all shrimp and sole species with concentrations of these metals in surface sediments. The relationship between these metal levels in all three fish tissues, and with tail muscle in the shrimp species, was also tested by correlating the log of the sediment concentration with the log of the bioconcentration factor (Ray, et al., 1979). Linear correlation was also tested between sole muscle tissue and gill and liver tissue. Results are reported at the 95% confidence level.

3 RESULTS

ŧ

3.1 Sediment Trace Metals

3.1.1 <u>Barkley Sound</u>. From the two Barkley Sound grabs, station B-1 tended to have slightly higher trace metal levels, although levels from both stations are quite similar (Table 1). Relatively higher metals at Barkley Sound, compared to the other three areas, include aluminum (35,900 and 32,250 ug/g), cobalt (19.0 and 13.5), cadmium (1.3 ug/g), chromium (54.0 and 44.2 ug/g) and zinc (117 and 131 ug/g) at Bl and B2, respectively.

3.1.2 Quatsino Sound. Sediment trace metal levels from stations Q-2, Q-3, and Q-4 in Quatsino Sound are generally similar (Table 1). An exception was high copper concentrations at Q-4 (139.0 ug/g) which is located nearest to the mine. Other elevated metals in Quatsino Sound were manganese (415-594 ug/g), zinc (96.2-117.0 ug/g) and titanium (1,550-2,090 ug/g).

Figure 6 shows elevated surface metal concentrations for copper, manganese and lead at Q-4. Other metals showed a more even distribution throughout the core (Table 2). This may be due to drift of heavy metal contaminated sediments into Quatsino Sound from tailings deposited into Rupert Inlet by the Island Copper Mine. This drift has been shown to extend to near Q-4 by Goyette (unpublished data) and Island Copper Mine (1986). Cadmium levels were less in sediments closer to the surface, and were highest at a core depth of 50 cm.

3.1.3 <u>Surf Inlet</u>. The three Surf Inlet stations have similar trace metals levels to the other three areas (Table 1). Stations S-1 and S-3 have higher levels in several metals than those found at S-2. These include arsenic, mercury, titanium and vanadium. The Surf Inlet levels show relatively higher levels of mercury (0.092-0.150 ug/g), arsenic (22.0-28.0 ug/g) and barium (65.0-81.5 ug/g), compared to the other three areas sampled.

3.1.4 Laredo Sound. Table 1(d) provides results of duplicate sediment grabs collected in Laredo Sound. Values exhibit both higher (barium and mercury) and lower (manganese and arsenic) levels compared to the other locations.

FIGURE 6 CORE PROFILES OF SEDIMENT COPPER, ZINC, MANGANESE AND LEAD IN QUATSINO SOUND

3.2 Tissue Trace Metals

Chemical analysis was completed for 24 trace metals. Of these, only aluminum, arsenic, barium, cadmium, chromium, copper, iron, mercury, magnesium, manganese, molybdenum, nickel, lead and zinc are reported here. The others are archived on computer tape or disk.

Mean, sample size, standard deviation, variance and maximum/minimum ranges of the reported metals in all species are shown in Tables 3 to 9. Raw data are given in Appendices III to IX. Only arsenic, cadmium, copper, mercury and lead are examined in detail.

Results of between-area comparisons for sidestripe, crangon and pink shrimp and prawns are shown in Table 10. Results for each metal in shrimp and fish are discussed separately below.

Although mean trace metal values are discussed, in some cases for fish the concentration value is for a single specimen, as only one of that species was collected.

3.2.1 <u>Arsenic</u>. Arsenic in tail muscle tissue showed significant between-station differences for sidestripe and pink shrimp (Table 10). At one station in Barkley Sound (B-1), arsenic in sidestripe shrimp was lower than the other stations (mean of 42.6 mg/kg compared to means of approximately 60-70 mg/kg at the other stations) (Figure 7). In pink shrimp, arsenic was also lower (52.9 mg/kg) at B-1 than at the other stations (approximately 60-63 mg/kg). The relatively high levels of arsenic in prawns from Surf Inlet (Figure 7a) were not significantly different from Barkley Sound stations, possibly due to the small sample sizes (n = 5). Arsenic concentrations in shrimp and prawns hepatopancreas were higher in Surf Inlet (mean range of 196-306 mg/kg) than in Quatsino and Barkley Sound (mean range of 46-182 mg/kg).

In fish, arsenic in sole muscle ranged from 9.8 to over 200 mg/kg, with most values in the 50 to 100 mg/kg range (Figure 7b). There were no clear differences between species and between areas, and insufficient sample sizes to test statistically. Arsenic levels above 100 mg/kg occurred in flathead and English soles from Barkley Sound, petrale, English and Dover soles from Surf Inlet and Rex sole from Quatsino Sound. Almost all values were above the 15.9 mg/kg Canadian guideline for arsenic in fish protein.

Arsenic levels in sole livers were similar, generally ranging from 10.7 to 245 mg/kg (Figure 7c); however, one value of 558 mg/kg was recorded in a petrale sole from Surf Inlet -- the same individual that had an arsenic concentration of 148.0 mg/kg in its muscle tissue.

The Canadian guideline for arsenic in fish protein is 3.5 ppm wet weight (Fisheries and Oceans Canada, 1983), which corresponds to 15.9 mg/kg dry weight assuming a wet-dry ratio of 4.54:1 (Goyette and Christie, 1982). Clearly, the guideline is set well below these natural levels. Arsenic in seafood is predominantly in the form of non-toxic arseno-organic complexes that are readily excreted and do not pose a health hazard to consumers (Freeman et al., 1979).

3.2.2 <u>Cadmium</u>. Cadmium was significantly different between stations in both crangon shrimp and prawns (Table 10). In crangon shrimp the means ranged from a low of 0.116 mg/kg at Barkley-B2 to a high of 0.145 mg/kg at Barkley-B1 (Figure 8a). Prawns had cadmium concentrations from a mean of 0.107 mg/kg at both Barkley stations to 0.138 mg/kg at Surf (SI-2).

Cadmium in hepatopancreas varied considerably with respect to location and species (mean range of 0.2-63.8 mg/kg).

Cadmium in sole muscle was consistently below 0.2 mg/kg, except for a petrale sole from Surf Inlet with 2.3 mg/kg, English sole from Surf Inlet and Laredo Sound with 0.27 mg/kg and 0.22 mg/kg respectively (Figure 8b).

In sole liver the levels of cadmium were much higher, often exceeding 10 mg/kg (Figure 8c). Highest concentrations were found in Surf Inlet.

FIGURE 7 MEAN ARSENIC CONCENTRATIONS (mg/kg)

-16-

۰ ۲

FIGURE 8 MEAN CADMIUM CONCENTRATIONS (mg/kg)

- 17 -

3.2.3 <u>Copper</u>. Copper in crangon and pink shrimp and prawns had significant differences between stations (Table 10). In crangon shrimp, means ranged from a low of 12.2 mg/kg at Quatsino Sound-Q2 to a high of 36.0 at Barkley-B2 (Figure 9a). Barkley-B1 had the lowest copper concentration in prawn muscle of 14.0 mg/kg while Barkley-B2 had the highest mean (19.6 mg/kg). Pink shrimp mean copper levels ranged between 10.1 mg/kg at Barkley-B1 to 16.41 mg/kg at Barkley-B2. Generally, shrimp had greater copper concentrations in the hepatopancreas than prawns (respective mean ranges were 846-1586 mg/kg and 383-710 mg/kg).

In fish muscle, most copper levels were below 2.0 mg/kg; however, a level of 7.1 mg/kg was found in a petrale sole from Surf Inlet -- the same individual with high arsenic and cadmium levels (Figure 9b). There is no Canadian guideline for the concentration of copper in edible fish protein.

Copper was higher in sole livers than in their muscle, generally ranging from approximately 30 to 90 mg/kg (Figure 9c). Higher values were observed in a flathead sole from Barkley Sound (221 mg/kg), and an English sole from Surf Inlet (111 mg/kg).

3.2.4 <u>Mercury</u>. Mean mercury levels ranged between 0.034 mg/kg and 0.560 mg/kg for all shrimp (Figure 10a). Significant differences were in sidestripe (0.074 mg/kg at Laredo to 0.167 mg/kg at Quatsino-Q2) and crangon (0.034 mg/kg at Surf-S1 to 0.124 mg/kg at Barkley-B2) shrimp, and prawns (0.12 mg/kg at Surf-S2 to 0.147 mg/kg at Barkley-B2). The high value of 0.560 mg/kg in pink shrimp from Barkley Sound was not significantly different from other locations (Table 10), possibly due to small sample size. Mercury in hepatopancreas ranged between 0.08-0.84 mg/kg in shrimp and prawns.

Mercury in sole muscle was generally less than 0.5 mg/kg (Figure 10b). Higher values were observed in slender sole from Barkley Sound (mean of 0.66 mg/kg), a petrale sole from Surf and a slender sole from Surf Inlet (1.58 mg/kg). These values are all below the Canadian guideline for mercury in edible fish protein (2.3 mg/kg dry weight).

Mercury levels in sole livers (Figure 10c) generally ranged between 0.5 mg/kg and 1.0 mg/kg. The highest, in an English sole from Surf Inlet-S2, was 2.64 mg/kg.

FIGURE 9 MEAN COPPER CONCENTRATIONS (mg/kg)

*

FIGURE IO MEAN MERCURY CONCENTRATIONS (mg/kg)

-20-

3.2.5 Lead. Lead in shrimp tail muscle was not significantly different at any station (Table 10). Values ranged from approximately 0.6 to 1.2 mg/kg (Figure 11a), which is well below the Canadian guideline level of 2.3 mg/kg dry weight for edible fish protein. Higher lead levels in hepatopancreas were found in shrimp and prawns from Barkley Sound (0.72-1.26 mg/kg) compared to Surf Inlet and Laredo Sound (< 0.15 mg/kg).

In sole muscle tissue, lead varied from approximately 1.5 to 3.0 mg/kg, with no clear differences between areas or species (Figure 11b). Values exceeding the Canadian guideline were observed in slender sole from Barkley Sound (mean of 3.14 mg/kg), a petrale sole from Surf Inlet (2.86 mg/kg), an English sole for Surf Inlet and Dover sole from Quatsino Sound (mean of 2.85 mg/kg).

In liver tissue most levels were generally below 2.0 mg/kg (Figure 11c). One extreme value of 9.0 mg/kg was recorded in an English sole from Surf Inlet.

3.3 Bioaccumulation

Bioconcentration is the bioaccumulation of chemicals above the background concentration. Where the source of contamination is in sediments, bioconcentration is calculated as the level in tissue divided by the sediment concentration.

3.3.1 <u>Shrimp</u>. Bioconcentration factors for cadmium and mercury in three species of shrimp and prawn are shown in Tables 11 and 12, respectively. There was slight bioconcentration of cadmium in only one species (<u>Crangon communis</u>) at one location, Station B-2 in Barkley Sound. Significantly, this area is known to have relative high (> 1.0 mg/kg) levels of cadmium in sediments (Nelson and Brothers, EPS unpubl. data), apparently due to natural mineralization. There was no statistical correlation between the log of cadmium in sediments and the log of the bioconcentration factor, (Table 15) as was reported by Ray et al. (1983) for a polluted location in Atlantic Canada.

As expected, mercury was accumulated more than cadmium (Table 14). Bioconcentration factors for mercury in shrimp ranged from less than 1.0 to

5.1. At Barkley Sound-Bl and Surf Inlet-S2, there was slight bioconcentration in sidestripe and pink shrimp as well as prawns. At Laredo Sound, the bioconcentration factor was over 5 in sidestripe shrimp, the only species analysed. Although the correlations were stronger between the log of the sediment levels and the log of the bioconcentration factors, they were not statistically significant (Table 13).

Because of absence or very slight bioaccumulation of cadmium and mercury in shrimp and prawn tissues, bioconcentration factors of other trace metals were not calculated.

3.3.2 <u>Fish.</u> Bioconcentration factors for cadmium and mercury in sole and flounders are given in Table 16. Virtually no bioconcentration of cadmium occurred in fish muscle; in fish livers, cadmium bioconcentration was variable, with factors ranging from less than 1.0 (indicating no bioconcentration) to 26.7 in a petrale sole liver. Mercury, also highly variable, tended to concentrate more in muscle tissue than livers. Bioconcentration factors of mercury in fish muscle ranged from less than 1.0 to 14.2 (Dover sole), and in fish livers from less than 1.0 to 17.6 (Dover sole).

Too few fish of any species were obtained for statistical comparison of trace metal uptake between areas, or for correlation between sediment trace metals and tissue trace metals.

3.4 Species Composition of Trawls

Species composition for each station is given in Appendix X.

3.4.1 <u>Barkley Sound</u>. Barkley Sound had a diverse and moderately abundant shrimp community including sidestripes, pinks, spirontocaris, crangon and prawns. Fish caught included slender, Rex, flathead and English soles, hake, midshipman and ratfish. **3.4.2** <u>Quatsino Sound</u>. At Quatsino Sound the shallow (70-110 m), well flushed and oxygenated waters and sand/gravel bottom support a diverse epibenthic community. Brittle stars were numerous at Q2, but not at Q3. Sidestripe was the dominant shrimp at Q2, while pinks and prawns were more numerous at Q3. Dover sole and ratfish were the most numerous fish at Q2, while at Q3 the most abundant bottom fish was the slender sole.

3.4.3 <u>Surf Inlet</u>. Surf Inlet is deeper (175-280 m), with a soft mud bottom. The S2 trawl consisted mostly of sea cucumbers (<u>Molpadia</u> sp.). Heart urchins, sidestripe and pink shrimp, crangons and prawns made up the invertebrate catch. Slender sole, hake, and ratfish were the most numerous fish. Other fish present included petrale sole, English sole, black cod and red snapper. At S3 brittle stars, glass sponges, brachiopods and heart urchins comprised 80% of the catch, with numerous anemones, <u>Yoldia</u> spp. clams, and cniderians included. There were fewer shrimp at S3. Ratfish was the most abundant fish species at S3; others included slender sole, Dover sole and black cod.

3.4.4 <u>Laredo Sound</u>. Laredo Sound trawl catches were typical of relatively deep (220-250 m), soft-bottom communities. Few fish were caught, the dominant species being ratfish. English sole, halibut, sidestripe shrimp and shortfin eelpouts were also caught. The bulk of the trawl was heart urchins.

4 DISCUSSION

4.1 Sediment Trace Metals

4.1.1 <u>Variation by Time.</u> Of the four areas reported here, previous data were available only for Quatsino Sound, which had been sampled in 1978, 1979, and 1981, (Goyette, unpubl.). These earlier data sets showed no changes of trace metals in central or western Quatsino Sound which can be attributed to the copper mine in Rupert Inlet, although the 1981 data did show a moderate elevation of copper (from about 30 to 61.7 mg/kg) west of Drake Island, near Station Q-4 of this study. The present study shows a doubling of copper levels in that area (139.0 mg/kg) although stations further west are apparently not affected.

4.1.2 <u>Variation by Area.</u> Of the areas sampled in this study, Barkley Sound tended to have the highest overall metal levels, except for copper at Quatsino Sound as noted above. Trace metals in Hecate Strait sediments (Harding et al., 1986), by comparison, were generally lower than those in the four areas reported here.

Several factors work independently or together to cause natural variation in metals levels. These include sediment particle size, tidal activity, freshwater inflow, depth of bottom, organic content, and redox potential. Of these, particle size, or more particularly, the amount of clay, is the most consistent determinant of trace metal content in unpolluted sediments. Since most clays are primarily alumina-silicate, in which the aluminum content varies directly with the clay fraction, aluminum can be used to relate heavy metals to clay content using linear correlations (c.f. National Oceanic and Atomospheric Administration, 1987). It is therefore not surprising that Barkley Sound, which tended to have the highest overall metal levels, also had the highest aluminum levels (32000-35900 mg/kg), indicating a higher clay content. Similarly Hecate Strait, with lower aluminum levels (5030-10850 mg/kg: Harding et al. 1985), had generally lower trace metal levels.

For all the stations reported here and including Hecate Strait data referred to above, the logarithms of cadmium, chromium, copper and mercury were significantly correlated with the logarithm of aluminum (r=0.92, 0.52, 0.92 and 0.49 respectively; prob. @ 0.05=0.48); the log of lead, however, was not (r=-.15). Correlation with Arsenic could not be calculated because most values were below the detection limit of 8.0 mg/kg. Figure 12 shows the natural range of cadmium, copper and mercury according to the aluminum content, based on the data from these five locations.

4.2 Biota

4.2.1 <u>Variation by Time</u>. Summary results of 1978, 1979 and 1981 trawls have been reported by Goyette and Christie (1982) for Quatsino Sound and 1981 trawls for Laredo Sound. Laredo Sound trawls did not catch the same species, however, precluding comparisons for that location.

In Quatsino Sound, the 1981 trawl, which was used as a reference location for surveys of mine tailings in Rupert Inlet, was at the mouth of the Sound approximately 7 km seaward of Q-2. The 1978 and 1979 trawls were near Q-4, a sediment station that was not trawled in 1984. Whether differences of several km in trawls means that different populations were sampled is not known, but suggests caution in interpreting the following comparisions.

In Quatsino Sound, mean arsenic levels showed a generally increasing trend in the five species common to several years. Pink shrimp contained slightly less arsenic in this study (44.5 mg/kg at Q-2 and 58.4 mg/kg at Q-3) than in 1981 (65.0 mg/kg); however, these values were all above 22 mg/kg and 12 mg/kg observed in 1978 and 1979, respectively. The same trend was observed in sidestripe shrimp (28.0, 36.0, 40.0 and 62.9 mg/kg in 1978, 1979, 1981 and 1984, respectively). In the three sole species common to more than one year, all showed increases in arsenic: Dover sole arsenic in muscle tissue increased from 60 to 121.4 mg/kg from 1978 to 1984, slender sole showed a rise of 16 to 40 mg/kg in the same period, and Rex sole arsenic in muscle tissue went from 45.0 mg/kg in 1979 to 117.7 mg/kg in 1984. Riemer et al. (1985) found that although the Rupert-Holberg Inlet/Quatsino Sound system is characterized by a "normal" arsenic load, methylarsenicals and dissoved arsenic were

.•

ذ

*

FIGURE 12 CADMIUM, COPPER AND MERCURY CONCENTRATIONS AS A FUNCTION OF ALUMINUM CONCENTRATION (mg/kg)

highest in eastern Quatsino Sound, in the area of light tailings deposition. It is conceivable that progressive intrusion of mine tailings into Quatsino Sound provides arsenic for methylation and dissolution in interstitial waters, and hence increasing bioavailability, that does not occur in pure tailings where reduced biological activity would preclude diagenic processes. In any case, it is clear that no part of Quatsino Sound can qualify as a baseline or unpolluted reference area for arsenic in biota.

The 1978 lead and cadmium samples, which were analysed by ICAP, can not be compared to later surveys, in which low-level detection (".05 mg/kg) was provided by flameless AA/graphite furnace. Both metals seemed to increase during 1979-84, although the differences were slight and the ranges overlapped.

Copper apparently decreased in the two shrimp species (33.0 to 22.2 mg/kg from 1978 to 1984 in pink shrimp and 41.0 to 12.2 mg/kg for the same period in sidestripe shrimp. In fish, copper levels in muscle tissue were lower in this study than in all years reported by Goyette and Christie (op. cit.): for Dover sole, a mean of 1.6 mg/kg was found in 1984 compared to a high of 4.9 in a single specimen in 1979; and slender sole had a mean of 0.7 mg/kg versus a mean of 3.7 mg/kg in 1979. Reasons for the decline in copper are not known, but are clearly not related to sediment levels, which increased as noted above.

Mercury showed no changes between years in biota of Quatsino Sound.

4.2.2 <u>Variation by Area.</u> In shrimp, significant variation between areas occurred in most metals analysed statistically (lead excepted). Laboratory QA/QC results eliminate chemical analysis as a source of variation. Trace metals in tissue were not correlated with sediment trace metals, and no significant bioaccumulation occurred. The sources of variation, although unknown, are probably natural.

There may be differences between areas in trace metal uptake, or relationships between bottom fish and sediment metal concentrations, that would be revealed with higher sample numbers. An obvious source of variation is age of fish: although attempts were made to collect only "medium" size sole, larger or smaller ones were sampled if that was all in the trawl. With a maximum of seven specimens analysed, standard deviations were still occassionally in excess of 50% of the mean. Sample sizes of sole species would need to be at least 24 specimens/species/area to obtain an estimated mean within 10% of the actual population mean, based on these data and formulae given by Zar (1984). Unequal sample sizes further restricted the type of analysis that could be used. It is recommended for future studies of this type that a small number of target species be identified beforehand, that at least six of the target species be obtained and rigorously standardized to size; and that investigators concentrate more on obtaining the same number of specimens of each species from each station than sampling different species and different stations.

4.2.3 <u>Differences between Tissues</u>. In shrimp, hepatopancreas consistently had higher concentrations of most trace metals (lead excepted) than tail muscle tissue. However, the small size of this organ makes chemical analysis difficult, which may be a source of the wide variation in results (QA/QC results, which were run on a batch basis with other tissues, would not show analytical variations for a specific tissue). As well, few samples were obtained, making statistical comparisons impossible. If analytical precision and accuracy can be verified, hepatopancreas may be a good indicator of trace metal uptake.

Livers of sole clearly contained more arsenic, cadmium and copper than muscle tissue, and standard deviations were low enough to permit statistical comparisons, when sufficient numbers of specimens were analysed. Livers are good indicators of food chain effects, because they accumulate contaminants from dietary sources (Buckley et al., 1982; Saltes and Bailey 1984). Muscle tissue is also a good monitoring parameter because of the availability of explicit human health standards for comparison.

Gill tissue, however, was difficult to collect in sufficient quantity for analysis, and several samples were rejected by the laboratory. Gills accumulate trace metals, particularly zinc (Skidmore 1972), primarily from the aqueous phase, and results are difficult to interpret without data on dissolved metal concentrations (Saltes & Bailey 1984). Where analysed, the levels of the metals in gills were generally the same as those in muscle tissue, but much more variable (probably due to the analytical difficulties for very low tissue weights), providing no additional information on trace metal uptake. We recommend for future studies that gill tissue not be sampled unless objectives relate to short term uptake of trace metals from the liquid phase.

REFERENCES

- Beanlands, G.E. and P.N. Duinker, 1983. An Ecological Framework for Environmental Impact Assessment in Canada. Dalhousie University and the Federal Environmental Assessment Review Office.
- Brothers, D. and Nelson, H. Environment Canada, Conservation and Protection. Unpublished Report.
- Buckley, J.T., M. Roch, J.A. McCarter, C.A. Rendell and A.T. Matheson 1982. Chronic exposure of coho salmon to sublethal concentrations of copper 1. Effect of growth, on accumulation and distribution of copper, and on copper tolerance. Comp. Biochem. Physio 72C:15-19.
- Freeman, H.C., J.H. Uthe, R.G. Fleming, P.H. Odense, R.G. Ackman, G. Landry and C. Muscial, 1979. Clearance of Arsenic ingested by Man from Arenic contaminated fish. B.E.C. & T 22:224-229.
- Goyette, D. and P. Christie, 1982. Environmental Studies in Alice Arm and Hastings Arm, Part I: Baseline Studies Amax/Kitsault Mine -Sediment and Tissue Trace Metals from Two Abandoned Mine Sites -B.C. Molybdenum and Anyox, 1976-1980. EPS Regional Program Report 82-13.
- Goyette, D. Environment Canada, Conservation and Protection. Unpublished Data.
- Greene, R.H., 1979. Sampling Design and Statistical Methods for Environmental Biologists. John Wiley and Sons, New York, p 257. Fish Inspection Branch, 1983. Fish Inspectors' Manual. Fisheries and Oceans, Ottawa, Canada.
- Harding, L., 1983. Use of Fjords for Disposal of Mine Tailings. Proc. Third Symposium on Coastal and Ocean Management. ASCES/San Diego, California, June 1-4, 1983.

- Harding, L., M. Thomas and L. Grooms, 1985. Sediment and Tissue Trace Metals in Hecate Strait, British Columbia, March 1984. Environmental Protection Service Regional Data Report DR 86-01.
- Island Copper Mine, 1986. Annual Environmental Assessment Report for 1985. Volume I.
- National Oceanic and Atmospheric, 1987. National Status and Trends Program for Marine Environmental Quality Progress Report. U.S. Dept. of Commerce, NOAA Office of Oceanography and Marine Assessment. Rockville, M.D.
- Pomeroy, W. and D. Goyette, 1983. Western Forest Products Port Alice Pulpmill - A Review of Present Conditions in the Receiving Environment. Environmental Protection Service Manuscript Report.
- Ray, S., D.W. McLeese and D. Metcalfe, 1979. Heavy Metals in Sediments and in Invertebrates from Three Coastal Areas in New Brunswick, Canada, A Natural Bioassay. Marine Environmental Quality Committee, International Council for Exploration of the Sea.
- Reimer, K.J., J.E. Barwell-Clark, C.A. Rendell, D.A. Silver and P.A. Stobbart, 1985. Arsenic in Marine Sediments: Quatsino Sound/Rupert-Holberg Inlets 1981-83, Alice-Hastings Arm 1983. Internal Manuscript Series Report No. 85-6. Royal Roads Military College, Victoria.
- Saltes, J.G. and G.C. Bailey 1984. Use of Fish Gill and Liver Tissue to Monitor Zinc Pollution. Bull. Environ. Contam. Toxicol. 32:233-237.
- Skidmore, J.F. 1972. Toxic Effects of Zinc Sulfate on the Gills of Rainbow Trout. Water Res 67:174-182.

- Sullivan, D.L., 1982. Marine Environmental Surveillance Monitoring at B.C. South Coast Pulp Mills, 1981-1982. Environmental Protection Service Regional Program Report 83-17.
- Swingle, R.B. and J.W. Davidson, 1979. Environmental Laboratory Manual, Laboratory Services, Department of Environment and Department of Fisheries and Oceans.
- Zar, J.H., 1984. Biostatistical Analysis. Second Edition, Prentice Hall, Englewood Cliffs, N.J.

2

ACKNOWLEDGEMENTS

Chief Scientist for this cruise was Darcy Goyette. Peri Mehling assisted in sample collection. Special thanks to Captain Ray Mackenzie and officers and crew of the CSS Vector, whose good humour and cheerful support made the trip successful and enjoyable. Tracy Stevens prepared most of the data tables and Pam Wakeman, Tracey Wrubleski and Philippa Powers typed the manuscript. The authors would also like to extend their appreciation to Al Colodey for his helpful comments when editing this report. TABLES

•

.

.

,

SEDIMENT TRACE METAL ANALYSIS - SURFACE GRABS, MARCH 1984 BARKLEY SOUND TABLE 1a

.

.

۵ -

.

₽

БW	12200	11300	Zn	131.0	117.0
бH	0.10	0.09	>	0.66	0.66
ъ	38500	34000	ä	1760	1860
Cu	39.0	35.4	ß	96.6	136.0
ъ	54.0	44.2	Sn	6.0	8.0
8	19.0	13.5	Si	2070	1400
ଫ	1.3	1.3	đ	10.0	4.0
Ca	13900	21900	۵	1080	928
Ве	0.3	0.4	Ni	32.0	26.0
Ва	69.5	63.6	Na	13300	11300
As	10.0	8.0	<u>N</u>	1.0	0.8
АІ	35900	32250	W	362.0	394.0
DEPTH (m)	106	105	DEPTH (m)	106	105
STATION	B-1	B-2	STATION	B-1	B-2

1984	
MARCH	
SAMPLES,	
GRAB	
ł	
ANALYSIS	
METAL	
TRACE	CINDOS
SEDIMENT	QUATSINO
1b	1
TABLE	

βw	13500	13500	15900	Zn	101.0	96.2	117.0
ЬH	60.0	0.07	0.08	>	0.68	108.0	116.0
ъ Ч	30400	34600	37400	Tì	1550	2090	1590
5	54.7	68.8	139.0	Sr	460.0	231.0	172.0
c	44.2	43.1	55.5	Sn	5.0	6.0	4.0
3	13.5	14.8	13.6	Si	1050	1140	1370
3	1.2	6.0	6.0	qd	10.0	7.0	8.0
င္ရရ	77600	48600	30000	ሲ	1070	1000	1130
B	0.2	0.2	0.2	Nİ	30.0	25.0	27.0
Ba	44.9	41.3	40.7	Na	12800	0688	13900
As	0.0	8.0	8.0	Q X	0.8	0.8	0.8
AI	26000	26000	30600	ЧW	415.0	529.0	594.0
(m)	201	158	124	DEPTH (m)	201	158	124
STATION	Q-2	0-3 -3	\$	STATION	Q-2	Q-3	4

TAL ANALYSIS - GRAB SAMPLES, MARCH 1984	
SEDIMENT TRACE M	SURF INLET
TABLE 1c	

.

,

•

бw	0266	7290	11100	ć	5	74.6	60.9	82.3
Hg	0.150	0.092	0.149	:	>	71.0	53.0	73.0
Ре	22000	16900	22200	Ë	:	1520	822	1270
Cu	31.4	23.9	36.3	ł	ŭ	148.0	252.0	190.0
Cr	26.5	22.5	30.7	ć	lic	2.0	2.0	2.0
පි	4.8	10.6	9.4	ż	10	2250	2290	1930
ß	6.0	6.0	1.3	Ę	0	3.0	10.0	10.0
Ca	25300	50700	31500	ſ	л	1320	975	1240
Ве	0.2	0.2	0.2	M	TN	16.0	21.0	23.0
Ba	74.9	65.0	81.5	ž	Na	17000	15700	26000
As	28.0	8.0	22.0	È	Ê	0.8	0.8	0.8
Al	19200	15700	21400	ł	1114	357.0	219.0	255.0
(m)					(m)			
STATION	S-1	S-2	S-3		NOTIFIC	S-1	S-2	S3

SEDIMENT TRACE METAL ANALYSIS - GRAB SAMPLES, MARCH 1984 LAREDO SOUND TABLE 1d

,

ş

SADIMANI' TRACE MEINL ANNLYSIS - SADIMANI' CORES - QIMISINO SOND, MAKCH 1984 TNHLE 2

.

•

•

NOLIMIS	HIGHI	HIGH BHO	A	Ås	æ	ម	ყ	5	Ъ	ΕĦ	Εw	W	Ð	Ņ	£	Ł
	(m)	(uu)														
Ş	124	0-2	32000	16.0	46.8	1.4	59.6	140.0	38800	0.08	16200	601.0	0.8	32.0	13.0	122.0
		10-12	29200	14.0	43.4	1.5	51.0	51.1	33800	0.13	13700	364.0	0.3	34.0	6.0	104.0
		20-22	28250	8.0	41.6	1.6	49.8	39.6	33300	0.08	13200	354.0	0.8	34.0	4.0	96.5
		30-32	29200	12.0	41.9	2.4	52.1	39.0	34300	0.07	13600	360.0	0.8	36.0	5.0	101.0
		40-42	29100	8.0	40.3	2.2	52.9	38.2	33800	0.08	13700	360.0	0.8	37.0	3.0	9 8 .9

- 40 -

97.4

3.0

37.0

0.8

395.0

13800

0.06

36000

36.4

50.4

2.4

38.1

8**.**0

28300

20-23 20-23

ity wt.)
) 6/En
March 1984 (
FROM ENTRUEY SOLUD,
SHANG
I ONA
dwithes NI
MEINI
MENN TRACE
TNHLE 3

SIPILIC	7	AL	SV	F a	8	G	8	H	HG	W	W	Q	Ħ	Æ	R
CRANED	SHRIMP - Cra	nunco ucfu	nis – M.K	SCLE											
Ŧ	Menu(12) S.D. Var. Max. Min.	29.7 15.3 233.3 63.0 15.0	43.6 8.0 61.0 33.0	0.32 0.17 0.03 0.67 0.10	0.08	0.6 0.2 1.2 0.5	16.2 2.9 8.6 20.1	52.6 19.9 397.6 105.0 33.7	0.10 0.08 0.21 0.02	2075 428 182245 2790 1330	2.0 0.5 3.2 1.1	0.5 0.1 0.7 0.3	2.0 0.2 3.0 1.0	0.82 0.30 0.20 0.20	4 I S 8 8
NCENNARD	SHRIMP - Crar	ruinco radic	nis – H E	ONMODA	Skite										
ቿ	VALLE	54.0	174.0	0.40	40.30	1.6	1090.0	567.0		1240	14.5	3.2	17.0	1.40	236
SIDESIR	- GAUNE HU	Pendalops	is dispar	- Miba	E										
Ŧ	MEPN(37) S.D. VAR. MAX. MIN.	15.1 11.8 140.2 71.0 4.0	88.2 88.2 86.0 86.0 86.0	0.14 0.05 0.30 0.30	0.13 0.01 0.06 0.06	0.5 0.3 0.1 0.4	14.2 4.2 34.2 8.4	23.1 11.1 123.2 54.9 11.3	0.08 0.08 0.08 0.08	1580 571 325583 4770 1060	1.2 0.3 0.1 2.7 0.8	0.0 0.0 0.5 0.4	2.0 2.0 2.0 2.0	0.61 0.37 0.37 0.08	84 EI 86 EI 13 86 EI 88
SUPSIR	IPE SHRIMP -	Pendalops	is dispar	Dadeih	CHANCHER	50									
Ъ-	Menn (2) S.D. Mex. Min.	20.0 4.2 23.0 17.0	50.5 4.9 54.0 47.0	0.27 0.01 0.38 0.38	19.70 5.52 15.80 15.80	0.5 0.1 0.6 0.4	846.0 66.5 893.0 799.0	76.9 1.2 77.7 76.0	0.27 0.28 0.28 0.25	246 27 18 546 27	10.7 0.2 10.9 10.5	0.8 0.1 0.8 0.7	2.0 2.0 2.0	0.72 0.45 1.04 0.40	10 10 °C
HS MII	RIMP - Pandal	us boreal i	is - MBC	E											
Ŧ	MEPN(35) S.D. VPR. MRX. MIN.	16.9 14.9 220.6 65.0 4.0	52.9 12.5 157.2 83.0 30.0	0.17 0.15 0.02 0.73 0.08	0.15 0.02 0.03 0.07	0.5 0.0 1.3 0.4	10.6 1.9 3.6 14.9 6.9	30.9 34.1 1162.4 181.0 6.5	0.17 0.08 0.04 0.03	1646 177 31472 2060 1300	1.4 0.6 4.2 0.8	0.0 0.0 0.5 0.5	5.6 10.3 106.8 43.0 2.0	0.75 0.51 0.08 0.08	4 ,

	Z EH IN OW W		6.3 1.4 3.0 1.02 17		-02 0.4 7.4 0.68 4 -02 0.0 12.7 0.51 0.04 0.0 160.4 0.26 2 .22 0.4 36.0 1.37 5 .74 0.4 2.0 0.11 4		3.15 1.1 4.8 0.61 IC 2.65 0.7 2.6 0.38 3 2.04 0.4 6.7 0.14 131 2.0 2.1 9.0 1.10 14 1.20 2.1 9.0 1.10 14 1.20 2.1 9.0 1.10 14		7.33 0.5 2.0 0.61 5 5.40 0.1 0.0 0.61 2 6.41 0.0 0.1 0.0 0.61 2 6.41 0.0 0.0 0.61 2 2 6.41 0.0 0.0 0.61 2 2 6.41 0.0 0.61 1.58 10 7.94 0.4 2.0 0.037 83 9.4 0.4 2.0 0.037 82		.96 0.4 2.3 0.60 4 1.71 0.0 0.9 0.53 4 1.50 0.0 0.7 0.28 3
	Ð		4 1150 1		1 15081 0 1410 0 1410 0 1410 0 1410 0		479 E 169 2 28464 7 770 111 336 4		2 1492 7 1492 7 1 400768 29 2 2380 17 2 2380 17 2 2380 17		1568 1 214 0 1568 1 45781 0
	EE HG		302.0 0.84		21.1 0.L 10.8 0.00 116.5 0.00 38.4 0.28 7.6 0.00		396.9 256.7 643.0 843.0		81.9 58.5 3425.0 1183.0 183.0 0.4(183.0 0.4(20.4) 20.4		36.7 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
kley Sond	R		.8 1460.0		.5 14.1 .1 2.7 .0 7.2 .6 19.2		.6 458.8 .2 142.7 .0 2037.4 .9 571.0		.6 .0 .0 .9 .9 .9 .9 .4 .4 .4 .4 .4 .4		.5 16.2 .1 2.8 .0 7.9
aintis from Barl	8	Star	0.20 0		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		4.40 2.71 2.50 2.50 2.50 2.50 00 00 00 00 00 00 00 00 00 00 00 00 0	(IECLE	0.00 0.00 0.15 0.00 0.15 0.00 0.00 0.00	MBUE	0.00
String and Pr	AS BA	- HERMORANCH	99. 0 0.84	BUE	64.7 0.10 18.8 0.02 353.3 0.00 99.0 0.13 32.0 0.03	SERCINGOINE	45.6 0.24 15.2 0.12 230.3 0.01 63.0 0.40 23.0 0.08	Į.	36.0 0.34 15.3 0.24 232.8 0.06 59.0 0.84 17.0 0.09	s dispar -	60.8 0.16 7.4 0.08 55.0 0.01
d) d)	AL	silmond sulf	37.0	latyceros – M	0.0 8.8 8.0 0.0 0.0 0.0	latoeros – HB	7.0 3.0 11.0 4.0	angon comuni	44.6 31.9 99.0 7.0	- Pendalopsi:	22.0 9.3 86.9
Meen Tha (Continue	7	FRIMP - Pende	VALLE	- Pendalus pl	Mepn(12) S.D. Var. Max. Min.	- Pardalus pl	MEPAN (5) S.D. VAR. MEX. MIN.	70 - Guintes N	MEPN(16) S.D. VAR. MEX. MIN.	IRUPE SHRIMP	MERN(23) S.D. VAR.
TNHLE 3	SIPUIC	F XNIG	μ	- NMAH	ቿ	- NMAXA	F	CENNED	B-2	SILLES	B-2

CONTINUED...

- 42 -

. .

*

•

Table (3 Mean Tr. (Continu	ace Meta ued)	ls in SI	hrimp a	nd Prawn	ls From	Barkle	y Sound,	March,	1984.						
Statio	c	AL	AS	BA	ß	f	(ug/g d CU	ry wt.) FE	ЭН	MG	NIW	QW	IN	PB	ZN	
SIDEST	RIPE SHRIMP	- Pandal	o psis d:	ispar	HEPA	TOPANCI	REAS									
B-2	VALUE	38.0	92.0	0.25	31.80	0.4	1050.0	113.0		695	13.90	0.4	2.0	0.08	134.0	
PINK S	IRIMP -Panda	lus bore	alis		-MUSCI.	പ്പ										
B2	MEAN(17)	23.9	60.6	0.17	0.12	0.5	16.4 5 2	40.5	0.67	1858	2.21	0.4	2.0	0.80	52.0 2.2	
	S.U.	13.1	321.9	0.01	0.00	0.0	28.6 28.6	290.1	4.34 I	105 27762	0.49	0.0	0.0	0.33	9.2 83.7	
	MAX.	60.09	0.06	0.50	0.26	0.7	27.7	81.9	8.20	2490	3.60	0.5	2.0	1.66	62.5	
	MIN.	7.0	20.0	60.0	0.04	0.4	6.5	13.5	0.02	782	0.86	0.4	2.0	0.08	43 50.5	
PINK S	IRIMP Panda	lus bore	alis		-HEPAT	OPANCRI	EAS								-	
B-2	VALUE	59.0	182.0	0.93	34.20	6.0	2020.0	489.0		1320	25.80	1.8	3.0	1.31	189.0	
PRAMN -	-Pandalus pla	atyceros			-MUSCL	БĴ										
B-2	MEAN(7)	0.6	75.1	0.10	0.11	0.5	19.6	19.9	0.14	1636	1.35	0.4	2.0	0.72	49.3	
	S.D.	1.4	29.5	0.02	0.05	0.1	3.3	4.4	0,08	55	0.37	0.0	0.0	0.57	5.7	
	VAR.	2.0	870.1	0.00	0.00	0.0	11.1	19.4	10.0	3029	0.14	0.0	0.0	0.32	32.0	
	MAX.	11.0	119.0	0.13	0.15	0.6	24.8	25.6	0.28	1750	1.95	0.4	2.0	1.25	57.9	
	MIN.	7.0	42.0	0.08	0.04	0.4	15.1	13.4	0.03	1580	1.05	0.4	2.0	0.11	43.5	
- PRAWN	-Pandalus pla	atyceros			HEPAT	OPANCRI	EAS									
B-2	MEAN(5)	21.6	70.0	0.40	7.30	1.1	709.8	812.8		978	17.08	2.0	10.2	1.26	148.0	
	s.D.	9.5	21.3	0.19	1.90	0.2	178.8	308.6		441	5.19	1.2	4.4	0.67	35.4	
	VAR.	90.3	452.0	0.04	3.62	0.1	31968	95207	1	94120	26.93	1.4	19.7	0.44	.256.0	
	MAX.	30.0	92.0	0.60	10.50	1.4	865.0	1290.0		1620	25.30	3.4	15.0	1.90	207.0	
	MIN.	10.0	40.0	0.20	5.90	0.9	498.0	490.0		660	12.40	6.0	6.0	0.50	119.0	

ч

£

i

.

.1'ABLA	Mean ITace	Merar	S II S		DOLALO	'nince		1704.							
Station		AL	AS	BA	6	(ug, CR	/g đưy CU	wt.) FE	ĐH	Đ	NW	QW	IN	PB	ZN
						rex solj	E -Glyp	tocepha	ılus zac	hirus		-MUSCLE			
B-1	MEAN(3)	4.0	76.3	0.08	0.16	1.0	0.4	13.1	0.16	1270	0.82	0.4	2.0	1.89	14.9
	s.D.	0.0	20.4	0.00	0.02	0.2	0.0	1.6	0.07	60	0.16	0.0	0.0	0.11	1.0
	VAR.	0.0	416.3	0.00	0.00	0.0	0.0	2.5	0.00	3600	0.02	0.0	0.0	0.01	0.9
	MAX.	4.0	94.0	0.08	0.17	1.2	0.4	14.4	0.22	1330	0.99	0.4	2.0	2.00	15.9
	.NIM	4.0	54.0	0.08	0.13	0.8	0.4	11.3	60.0	1210	0.68	0.4	2.0	1.78	14.0
						FLAT HE	AD SOLE	Hippo	glossoi	des ell	asodon	-MUSCLE	[+]		
B-1	MEAN(6)	4.2	52.7	0.0	0.18	0.7	1.6	17.0	0.84	1258	0.87	0.4	2.0	2.00	18.6
	s.D.	0.4	13.7	0.02	0.06	0.1	6.0	9.4	0.32	8	0.73	0.0	0.0	0.00	1.5
	VAR.	0.2	187.9	0.00	0.00	0.0	0.9	0.68	0.10	9177	0.53	0.0	0.0	0.00	2.4
	MAX.	5.0	76.0	0.14	0.26	0.8	3.0	32.7	1.17	1380	2.34	0.4	2.0	2.00	21.7
	MIN.	4.0	40.0	0.08	0.12	0.5	0.5	7.1	0.40	1170	0.46	0.4	2.0	2.00	17.6
						FLAT HE	AD SOLE	Hippo	glossoi	des ell	asodon	-MUSCI I	[+]		
B-2	MEAN(2)	5.5	190.5	0.17	0.16	0.7	1.1	15.7	0.33	1405	1.81	0.4	2.0	2.00	20.7
	S.D.	2.1	44.5	0.13	0.01	0.3	0.5	2.0	0.08	21	1.04	0.0	0.0	0.00	2.1
	MAX.	7.0	222.0	0.26	0.17	0.9	1.4	17.1	0.39	1420	2.54	0.4	2.0	2.00	22.1
	MIN.	4.0	159.0	0.08	0.15	0.5	0.7	14.3	0.27	1390	1.07	0.4	2.0	2.00	19.2

March 1984. Barklev Sound. Matals in Fish From Ş E L L Mean TARLE 4

÷.,

•____

é

, ,

,

- 44 -

TABLE 4.	Mean Trace	Metals i	in Fish 1	From Bai	rkley Sc (Cont	ound, M tinued:	arch 19 Page :	84. 2)							
Station		AL	AS	BA	පි	CR	B	FE	Ю	MG	NW	QW	IN	PB	NZ
						FLAT H	EAD SOLI	E -Hippo	glosso:	ides el	lasodon	-L.IVER			
B-1	MEAN(5)	5.0	235.6	0.15	3.88	0.6	24.8	1618.4	0.37	621	3.40	0.4	2.0	1.21	118.2
	S.D.	1.4	145.2	0.16	1.36	0.2	30.4	1010.8	0.14	269	0.57	0.0	0.0	0.64	49.5
	VAR.	2.0	21096	0.02	1.85	0.0	924.4	1E+06	0.02	72368	0.33	0.0	0.0	0.40	2453.2
	MAX.	7.0	425.0	0.43	6.20	6.0	75.1	3390.0	0.55	921	3.91	0.4	2.0	2.00	183.0
	MIN.	4.0	75.0	0.08	2.90	0.4	3.6	957.0	0.19	293	2.45	0.4	2.0	0.52	61.0
					-	FLAT HE	AD SOLE	-Hippog	glossoi	des ell	asodon	-LIVER			- 45
B-2	MEAN(2)	10.0	127.0	0.09	2.65	0.6	221.0	622.0	0.42	901	7.50	0.5	2.0	1.88	172.0
	S.D.	8.5	24.0	0.01	10.1	0.1	80.6	746.8	0.24	17	1.00	0.1	0.0	0.17	25.5
	MAX.	16.0	144.0	0.0	4.00	0.7	278.0	1150.0	0.59	913	8.20	0.6	2.0	2.00	190.0
	.MIM.	4.0	110.0	0.08	1.30	0.5	164.0	93.9	0.25	688	6.79	0.4	2.0	1.76	154.0
					-	FLAT HE	AD SOLE	-Hippoc	jlossoi	des ell	asodon	-GILL			
B-1	MEAN(5)	257.2	11.0	1.57	0.28	1.9	3.4	536.0	0.11	1318	12.86	0.5	2.0	2.55	74.7
	s.D.	262.1	1.6	1.10	0.36	0.7	1.3	457.4	0.16	274	5.33	0.1	0.0	2.12	11.1
	VAR.	68690	2.5	1.22	0.13	0.4	1.8	209209	0.02	75170	28.44	0.0	0.0	4.50	122.9
	MAX.	680.0	13.0	3.39	0.00	2.9	5.1	1240.0	0.34	1730	18.70	0.5	2.0	6.00	82.5
	.NIM	44.0	0.0	0.60	0.02	1.4	1.7	123.0	0.02	960	7.40	0.4	2.0	0.53	57.3

45

÷

TABLE 4.	Mean Trace M	letals ir	n Fish l	From Baı	ckley Sc (Cont	und, Ma inued:	rrch 196 Page 3	34.							
Station		AL	AS	BA	ß	CR	B	FE	ÐH	MG	NW	QW	IN	PB	ZŊ
					ц	T.AT HEA	D SOLE	-Hippoç	glossoid	les ella	isodon	T119			
B-2	MEAN(2)	63.0	25.5	0.75	0.10	1.4	4.8	181.5	0.1	1195	22.85	0.5	3.0	0.85	77.9
	s.D.	15.6	19.1	0.64	0.07	0.3	1.8	61.5		318	15.20	0.0	1.4	0.92	15.0
	MAX.	74.0	39.0	1.20	0.15	1.6	6.0	225.0		1420	33.60	0.5	4.0	1.50	88.5
	•NIM	52.0	12.0	0.30	0.05	1.2	3.5	138.0		970	12.10	0.5	2.0	0.20	67.3
					ť	ILENDER	SOLE -I	yopsett	a exili	ຜູ	Т	MUSCLE			
B-1	MEAN(4)	4.0	9.8	0.14	0.15	0.9	0.8	18.0	0.34	1308	0.53	0.4	2.0	3.14	15.4
	s.D.	0.0	4.3	0.05	0.02	0.5	0.7	4.7	0.18	26	0.20	0.0	0.0	2.00	0.8
	VAR.	0.0	18.2	0.00	0.00	0.2	0.5	22.1	0.03	692	0.04	0.0	0.0	4.00	0.7
	MAX.	4.0	16.0	0.18	0.17	1.6	1.9	23.5	0.55	1330	0.80	0.4	2.0	6.00	16.0
	-NIM	4.0	7.0	0.08	0.12	0.6	0.4	13.3	0.12	1270	0.35	0.4	2.0	1.60	14.2
					£0	LENDER	SOLE -I	yopsett	a exili	S	Т	MUSCLE			
								1							
B-2	MEAN(2)	16.0	22.0	0.29	0.13	1.1	1.1	41.0	0.66	1395	3.98	0.4	2.0	2.04	20.3
	S.D.	5.7	17.0	0.27	0.03	0.2	0.6	32.5	0.71	49	3.79	0.0	0.0	0.05	0.0
	MAX.	20.0	34.0	0.48	0.15	1.2	1.5	63.9	1.16	1430	6.66	0.4	2.0	2.07	20.3
	. MIM.	12.0	10.0	0.10	0.11	0.9	0.6	18.0	0.15	1360	1.30	0.4	2.0	2.00	20.3

- 46 -

3

;

*

ł

÷

ł

					(Cont	tinued:	Page 4	4)							
Station		AL	AS	BA	8	CR	ß	FE	ÐH	MG	NW	Q	IN	РВ	NZ
						SL ENDER	SOLE -I	yopsett	a exili	S	Ĩ	LIVER			
B-1	MEAN(5)	4.0	22.4	0.08	0.59	0.8	15.6	815.2	0.16	979	3.08	0.4	7.2	1.76	98.6
	s.D.	0.0	16.8	0.00	0.59	0.5	5.2	364.7	0.07	227	0.70	0.0	11.6	0.23	10.1
	VAR.	0.0	283.3	0.00	0.35	0.3	27.3]	133023	0.00	51597	0.49	0.0	135.2	0.05	102.0
	MAX.	4.0	52.0	0.08	1.60	1.7	23.0]	1300.0	0.25	1350	3.86	0.4	28.0	2.00	110.0
	. NIM	4.0	10.0	0.08	0.11	0.5	10.7	385.0	0.10	764	2.07	0.4	2.0	1.48	83.5
					Ň			-		1		1110			
					- 4	NIAUNEIK		Jopsett	exili	ß	Ĩ	GILLI			-
B-1	MEAN(5)	29.2	6.2	3.93	0.04	4.9	2.5	141.0		1644	9.85	0.4	5.0	0.84	47 7. 08
	S.D.	2.9	1.9	2.02	0.01	6.9	0.4	49.6		196	2.52	0.1	6.7	0.43	1.9.7
	VAR.	8.7	3.7	4.06	0.00	47.1	0.2	2462.5		38330	6.33	0.0	45.0	0.18	61.9
	MAX.	32.0	0.0	7.27	0.05	17.2	2.9	227.0		1820	12.20	0.5	17.0	1.39	92.9
	.NIM.	25.0	4.0	2.05	0.04	1.7	1.9	101.0		1350	6.00	0.4	2.0	0.47	71.5
					F	nurre c	T.FMic		tiver a	מוייןי	Т	MICCLE			
					~						-				
B-2	MEAN(5)	5.0	68.2	0.08	0.16	0.6	0.6	16.5	0.15	1226	0.82	0.4	2.0	1.75	17.1
	s.D.	2.2	35.9	0.00	0.03	0.1	0.1	4.3	0.05	53	0.13	0.0	0.0	0.21	1.7
	VPAR.	5.0	1286.7	0.00	0.00	0.0	0.0	18.1	0.00	2830	0.02	0.0	0.0	0.05	2.8
	MAX.	0.6	125.0	0.08	0.21	0.8	0.8	22.3	0.23	1300	1.03	0.4	2.0	2.00	19.7
	.NIM	4.0	35.0	0.08	0.13	0.5	0.5	12.7	0.10	1170	0.69	0.4	2.0	1.41	15.2

1

:

ŝ

.

TABLE 4. Mean Trace Metals in Fish From Barkley Sound, March 1984.

TABLE 4.	Mean Trac	e Metals	in Fisl	n From E	àarkley (Co	Sound, ntinued	March I: Pag	1984. e 5)							
Station		AL	AS	BA	9	CR	8	FE	ЫG	MG	WN	Q	IN	PB	ZN
						DOVER	SOLE 1	Microsto	omus pac	ificus		-LIVER			
B-2	MEAN(3)	43.0	10.7	0.19	2.80	0.6	52.1	1310.3	0.28	604	6.59	0.5	4.0	1.64	164.3
	s.D.	63.2	7.4	0.18	2.02	0.3	3.7	808.3	0.25	173	4.76	0.1	3.5	0.62	36.0
	VAR.	3997.0	54.3	0.03	4.09	0.1	13.3	653410	0.06	29996	22.66	0.0	12.0	0.38 1	297.3
	MAX.	116.0	19.0	0.40	5.10	1.0	54.7	2200.0	0.46	718	11.90	0.5	8.0	2.00	189.0
	MIN.	6.0	5.0	0.08	1.30	0.4	47.9	621.0	0.10	405	2.70	0.4	2.0	0.93	123.0
						DOVER	SOLE ⊣	Microsto	amus pac	ificus		TII9-			
B-2	MEAN(4)	132.0	8.0	1.37	0.24	1.8	6.4	543.5		1455	15.18	0.6	2.3	1.14	- 48 7.08
	s.D.	64.8	0.8	0.00	0.13	0.3	2.5	316.2		331	3.90	0.1	0.5	0.54	18.61
	VAR.	4195.3	0.7	0.80	0.02	0.1	6.1	99988	Г	00260	15.22	0.0	0.3	0.29	345.5
	MAX.	194.0	0.6	2.57	0.34	2.2	9.2	1000.0		1910	20.10	0.8	3.0	1.60	108.0
	MIN.	67.0	7.0	0.40	0.05	1.6	4.0	274.0		1190	11.80	0.5	2.0	0.37	69.6
						ENGLIS	H SOLE	-Paropł	urys vet	sulus		-MUSCI F	មា		
B1	MEAN(7)	4.0	132.9	0.12	0.19	1.3	2.1	29.5	0.28	1229	0.92	0.4	2.0	1.86	21.7
	s.D.	0.0	80.0	0.10	0.07	1.3	6.0	22.8	0.18	74	1.02	0.0	0.0	0.21	2.4
	VAR.	0.0	6399.5	0.01	0.01	1.7	0.9	521.1	0.03	5448	1.04	0.0	0.0	0.04	5.9
	MAX.	4.0	277.0	0.34	0.33	4.2	3.2	72.1	0.63	1300	3.22	0.4	2.0	2.03	25.3
	. NIM	4.0	61.0	0.08	0.13	0.6	0.8	7.4	0.10	1080	0.34	0.4	2.0	1.49	19.4

•

•_

ŧ

•

ł

ŗ

.

					<u>S</u>	ntinue	l: Pag	e 6)						·	
Station		AL	AS	BA	8	CR	ß	J .4	HG	MG	NW	0W	IN	PB	ZN
						ENGLI	TIOS HS	Paropt	urys vei	tulus		MUSCL	ы		
B-2	VALUE	<4. 0	51.0	0.18	0.14	0.6	0.8	17.8	0.14	1150	1.43	<0.4	<2.0	1.76	17.6
						ENGLI	alos he	-Parop	rrys vei	tulus		L.IVER			
B-1	MEAN(5)	9.6	43.6	0.08	1.08	0.6	37.3	658.6	0.10	728	5.16	0.4	2.6	1.73	172.6
	s.D.	3.4	22.0	0.00	0.52	0.2	11.2	205.9	0.05	135	2.00	0.1	1.3	0.26	42.2
	VAR.	11.8	484.3	0.00	0.27	0.0	125.8	42401	0.00	18166	4.00	0.0	1.8	0.07	1777.3
	MAX.	13.0	72.0	0.08	1.60	0.8	48.5	896.0	0.18	996	8.52	0.5	5.0	2.00	238.0
	-NIM	4.0	15.0	0.08	0.21	0.4	19.9	433.0	0.06	635	3.51	0.4	2.0	1.46	120.06
					μ.	NGLISH	SOLE -	Parophry	<i>y</i> s vetu	lus	T	TII9			
B-1	MEAN(5)	94.4	10.8	0.65	0.14	0.9	3.5	297.3	0.04	1206	9.95	0.4	6.2	1.56	69.4
	s.D.	62.9	11.4	0.07	0.04	0.3	1.2	132.5	0.04	214	2.44	0.0	9.4	0.28	12.5
	VAR.	3955.3	129.7	0.01	0.00	0.1	1.4	17543	0.00	45687	5.95	0.0	88.2	0.08	156.9
	MAX.	182.0	31.0	0.74	0.17	1.2	4.5	454.0	0.10	1420	13.40	0.5	23.0	1.94	77.5
	.NIM	15.0	4.0	0.54	0.07	0.5	1.6	89.6	0.02	868	7.15	0.4	2.0	1.21	47.8

TABLE 4. Mean Trace Metals in Fish From Barkley Sound, March 1984.

. .

i.

:

ł

TABLE 4.	Mean Trace	Metals	in Fish	I From E	àrkley (Cc	Sound, ntinued	March] : Page	1984. e 7)							
Station		AL	AS	BA	9	CR	B	FE	ЭН	ŊW	Nīw	QW	IN	PB	NZ
					τ υ	STARRY F	LOUNDEI	<pre>4 -Plati</pre>	chthys	stellat	- sn	-MUSCLE			
B-1	VALUE	<4.0	28.0	0.10	0.19	0.5	2.8	11.6	0.20	1290	0.50	<0.4	<2.0	<2.00	15.7
					щ	ACIFIC	HAKE –	ler l ucci	us prod	luctus	ł	-MUSCLE			
B≁l	MEAN(5)	4.2	12.2	0.11	0.18	1.5	2.1	23.9	0.09	1430	0.69	0.4	2.0	1.86	14.8
	S.D.	0.4	4.4	0.05	0.03	2.0	0.8	21.5	0.07	8	0.18	0.0	0.0	0.15	1.0
	VAR.	0.2	19.7	0.00	00.00	4.2	0.7	464.3	0.00	6400	0.03	0.0	0.0	0.02	6.0
	MAX.	5.0	16.0	0.19	0.22	5.2	3.5	62.1	0.17	1530	1.00	0.4	2.0	1.99	16.2 1
	•NIM	4.0	5.0	0.08	0.14	0.5	1.5	9.6	0.03	1340	0.55	0.4	2.0	1.64	50 - 13 . 8
						PACIFI	c hake	-Merluc	cius pr	coductus	70	-MUSCL	[+]		
B-2	MEAN(3)	4.3	11.0	0.08	0.15	1.9	2.0	30.0	0.07	1600	1.13	0.4	2.0	2.00	17.3
	S.D.	0.6	1.0	0.00	0.02	2.0	0.6	19.4	0.05	82	0.24	0.0	0.0	0.00	2.0
	VAR.	0.3	1.0	0.00	0.00	4.1	0.3	375.4	0.00	6700	0.06	0.0	0.0	0.00	4.0
	MAX.	5.0	12.0	0.08	0.17	4.2	2.5	52.2	0.11	1690	1.40	0.4	2.0	2.00	18.7
	.NIM.	4.0	10.0	0.08	0.14	0.7	1.4	16.5	0.02	1530	0.97	0.4	2.0	2.00	15.0

\$

.,

ł

					(Cont	inued:	Page 8	(m							
Station		AL	AS	BA	8	CR	G	FE	HG	MG	NW	QW	IN	PB	ZN
					ц	ACIFIC	HAKE -1	fer lucci	us prod	luctus	ľ	LIVER			
B-1	MEAN(5)	4.0	13.2	0.08	0.35	0.4	14.3	232.6	0.06	255	69.69	0.4	7.6	0.50	67.7
	S.D.	0.0	6.7	0.00	0.15	0.0	8.6	110.8	0.02	117	3.59	0.0	11.4	0.29	24.9
	VAR.	0.0	45.2	0.00	0.02	0.0	74.0	12275	0.00	13763	12.87	0.0	130.8	0.08	621.4
	MAX.	4.0	24.0	0.08	0.50	0.4	28.4	387.0	0.10	411	12.70	0.4	28.0	0.86	101.0
	MIN.	4.0	6.0	0.08	0.10	0.4	5.8	79.0	0.05	107	3.23	0.4	2.0	0.20	37.1
					ц	ACIFIC	HAKE -1	/erlucci	us prod	luctus	I	LIVER			
B-2	MEAN(2)	4.0	12.0	0.08	0.70	0.4	25.0	229.0	0.05	243	7.80	0.4	2.0	0.80	88.2
	S.D.	4.0	14.0	0.08	0.95	0.4	32.1	411.0	0.08	387	12.50	0.5	16.0	0.99	143.6
	VAR.	0.0	2.8	00.0	0.35	0.0	10.0	257.4	0.04	203	6.65	0.1	19.8	0.27	78.3
	MAX.	4.0	16.0	0.08	1.20	0.4	39.1	593.0	0.10	530	17.20	0.6	30.0	1.18	199.0
	•NIM	4.0	12.0	0.08	0.70	0.4	25.0	229.0	0.05	243	7.80	0.4	2.0	0.80	88.2
					Н	ACIFIC	HAKE -	fer lucci	us proc	luctus	1	GILL			
B-1	MEAN(4)	231.0	6.0	1.18	0.16	1.2	5,5	584.3	0.02	1215	10.72	0.4	17.8	3.69	92.3
	S.D.	84.8	1.8	0.49	0.02	0.3	0.2	157.8	0.00	126	1.97	0.0	28.3	3.14	16.0
	VAR.	7192.7	3.3	0.24	00.0	0.1	0.0	24900	0.00	15833	3.89	0.0	798.9	9.85	254.5
	MAX.	342.0	8.0	1.92	0.18	1.6	5.7	746.0	0.03	1360	13.10	0.4	60.0	8.00	110.0
	.NIM	149.0	4.0	16.0	0.14	1.0	5.2	432.0	0.02	1100	8.54	0.4	2.0	1.08	72.0

- 51 -

ŧ

Ł

Mean Trace Metals in Fish From Barkley Sound, March 1984.

TABLE 4.

Station		AL	AS	BA	ß	CR	CU	Я	HG	MG	NW	QW	IN	ЪВ	ZN
					ц	ACIFIC	HAKE	fer lucci	us prod	uctus	I	-GILL			
B2	MEAN(2) S.D.	543.5 600.3	5.5 0.7	1.95 0.05	0.14 0.02	1.9 0.9	8.2] 1.9	L050.5 932.7	0.02 0.00	1545 318	24.85 14.50	0.4 0.0	2.0 0.0	1.19 0.06	116.5 19.1
	MAX. MIN.	968.0 119.0	6.0 5.0	1.98 1.91	0.15 0.12	2.5 1.2	9.5] 6.8	1710.0 391.0	0.02 0.02	1770 1320	35.10 14.60	0.4 0.4	2.0	1.23 1.14	130.0 103.0
					П	ONGNOSE	SKATE	-Raja r	hina		·	MUSCILE			
B-2	VALUE	0.6	137.0	0.71	0.11	0.7	8.4	31.2	0.69	1010	2.85	<0.4	<2.0	1.47	31.5
					U	REENSTR	LIPED RC	OCKFISH	-Sebast	es elo	ngatus -	MUSCLE			
B-2	VALUE	5.0	14.0	<0 . 08	0.11	2.9	1.4	46.5	0.48	1320	1.05	<0.4	<2.0	1.55	14.7
					0	REENSTR	UPED RC	CKFISH	-Sebast	es elo	ngatus -	-L.IVER			
B-2	VALUE	< 4. 0	10.0	<0 . 08	2.10	0.7	25.4	921.0	0.13	362	3.27	<0.4	<2.0	1.15	163.0
					0	REENSTR	UPED R	CKFISH	-Sebast	es elo	ngatus -	GILL			
B-2	VALUE	33.0	7.0	0.34	0.16	23.5	7.1	381.0		981	5.25	0.5	<2.0	1.82	94.4

TABLE 4. Mean Trace Metals in Fish From Barkley Sound, March 1984. (Continued: Page 9)

۰.

2

- 52 -

Table	5. Mean Tr	ace Met	als in	Shrimp]	From Qua	itsino	Sound, t	March 19	984.							
				4	aean val	UES (u	g/g đry	wt.)								
Stati	u	AL	AS	BA	₿	ß	B	FE	HG	MG	NW	QW	IN	PB	ZN	
					0	RANGON	SHRIMP	-Crango	on comm	mis	1	-MUSCLE				
6-2 6	MEAN(4)	16.3	44.0	0.35	0.39	0.7	20.0	34.3	60.0	1940	1.88	0.6	2.5	0.85	56.6	
	s.D.	7.0	29.5	0.31	0.18	0.2	10.5	12.3	0.09	1187	0.96	0.3	1.0	0.86	28.6	
	VAR.	48.3	867.3	· 0.10	0.03	0.1	109.3	150.9	0.01	1E+06	0.93	0.1	1.0	0.73	818.3	
	MAX.	24.0	70.0	0.80	0.66	1.0	35.0	46.2	0.15	3480	3.20	1.0	4.0	2.00	84.1	
	MIM.	0.0	18.0	0.11	0.27	0.5	12.4	20.8	0.02	789	0.89	0.4	2.0	0.10	24.4	
					Ø	IDESTR	IPE SHR	IMPPar	idalopsi	is dispa	י אַ	MUSCLE				
((• •				L C		L 4 6			5	Ċ	c c			-
0-7 0-7	MEAN(32)	12.4	62.9	0.11	0.12	c. 0	I2.3	24.5	0.17	1863	2.01	0.4	9 . 9	0.69	48.8	53
	S.D.	5.9	11.5	0.04	0.04	0.1	3.0	10.7	0.08	220	1.90	0.0	8.2	0.55	4.7	-
	VAR.	35.1	131.5	0.00	0.00	0.0	8.9	115.1	0.01	48422	3.60	0.0	67.4	0.30	21.8	
	MAX.	26.0	85.0	0.20	0.26	0.7	20.2	48.7	0.34	2320	11.50	0.5	45.0	1.57	58.0	
	.NIM	4.0	37.0	0.08	0.06	0.4	5.4	8.2	0.02	1540	0.64	0.4	2.0	0.08	36.9	
					U	TOROTO		ved GMT	ionoleh	c diena	۱ ۲	аотлаян.	ANTOFAC			
					L				SOLUTION	orienn ei	1			_		
Q-2	MEAN(3)	24.3	135.3	0.37	0.33	0.8	1586.0	145.9	0.37	1027	15.53	1.6	4.0	0.13	127.4	
	S.D.	14.2	62.1	0.16	0.00	0.2	676.9	74.7	0.15	472	6.76	0.6	1.7	0.07	57.3	
	VAR.	201.3	3861.3	0.02	0.00	0.0	458000 {	5582.5	0.02	222433	46	0.4	3.0	0.00	3287.1	
	MAX.	37.0	186.0	0.51	0.33	1.0	2040.0	190.0	0.47	1410	20.30	2.1	5.0	0.21	161.0	
	.NIM	0.0	66.0	0.20	0.33	0.7	808.0	59.6	0.26	500	7.80	0.9	2.0	0.08	61.2	

.

8

	Mean Trac	ce Metal	ls in St	ırimp Fr	om Quat: (Co	sino Sou ntinued:	und, Ma : Page	rch 198 2)	4 .						
		AL	AS	BA	8	CK	ß	FE	HG	MG	NW	Ŵ	IN	PB	ZN
					-	PINK SHR	a- gmi	andalus	boreal	ŝ	I	MUSCLE			
FAN(6)	~	20.7	44.5	0.23	0.43	3.7	22.2	60.5	0.15	1828	1.50	1.0	2.8	0.70	39.8
D		24.8	23.2	0.15	0.44	7.5	8.9	54.9	0.11	1009	1.20	1.0	1.6	0.47	24.1
AR.		6E+02	538.7	0.02	0.19	56.1	79.8	3E+03	0.01	1E+06	Ч	1.0	2.6	0.22	579.2
AX.		70.0	86.0	0.50	1.30	19.0	30.4	129	0.33	3390	3.6	3.0	6.0	1.29	83.5
IN.		5.0	25.0	0.10	0.13	0.5	9.5	6.6	0.07	700	0.40	0.5	2.0	0.10	18.4
					Н	NINK SHR	-Pa	andalus	boreali	S	ľ	MUSCLE			
EAN(20	6	22.9	58.4	0.17	0.12	0.5	10.2	50.3	0.21	1691	2.12	0.4	2.0	0,70	47.R
D.		13.7	21.6	0.06	0.05	0.2	2.3	35.6	0.14	363	1.16	0.0	0.2	0.54	8.8
AR.		186	465.0	0.00	0	0.0	ß	1E+03	0.02	1E+05	1.3	0.0	0.1	0.29	77.0
۲X.		52.0	102.0	0.30	0.28	1.1	15.5	142.0	0.78	2300	4.89	0.5	2.0	1.44	53.4
IN.		4.0	12.0	0.08	0.06	0.4	6.4	5.3	0.11	763	0.77	0.3	1.0	0.08	18.6

•

•

Ĵ

÷

- 54 -

	Table 6.	Mean Tr	race Meti	I ni sle	fish and	l Clams	From Q	uatsino	Sound,	March]	.984.				
Station		AL	AS	BA	ß	э Ю	رں مر	y wt.) FE	HG	MG	WW	QW	IN	РВ	NZ
					H	ALI SOLE	d -Glyp	tocepha.	lus zach	nirus	•	MUSCLE			
QS2	MEAN(3) c D	10.3	117.7 67 1	0.14	0.13	0.7		19.9 16.8	0.10	1380	1.44 0.42	4.0	2.0	1.57	17.2
	VAR.	102.3	4497.3	0.0	0.00	0.0	1.0	283.5	0.0	13300	0.17	0.0	0.0	0.16	0.0 0.8
	MAX.	22.0	183.0	0.17	0.14	0.8	2.3	39.3	0.11	1500	1.90	0.4	2.0	2.00	20.4
	MIN.	4.0	49.0	0.11	0.12	0.6	0.4	9.1	0.0	1270	1.09	0.4	2.0	1.22	14.5
					ц	EX SOLE	dl -Glyp	tocepha]	lus zad	nirus	·	-LIVER			
QS-2	VALUE	14.0	162.0	<0 . 08	0.80	0.7	5.7	352.0	0.12	852	5.97	<0.4	<2.0	<2.00	104.01
					П	TATHEAL	SOLE (-Hippog]	lossoide	es ellas	- uopos	MUSCLE			5 -
QS-2	VALUE	<4.0	42.0	0.10	0.14	0.7	1.1	16.8	0.39	1450	0.93	<0.4	<2.0	<2.00	18.9
					0)	SLENDER	SOLE -]	Lyopset1	ta exil:	is	1	MUSCLE			
QS2	MEAN(2) S.D.	5.5 2.1	40.0 5.7	0.0	0.12 0.00	0.6 0.1	0.7 0.2	24.9 22.6	0.17 0.03	1355 35	0.74 0.13	0.0 0.0	2.0 0.0	1.97 0.09	14.4 0.4
	MAX. MIN.	7.0 4.0	44. 0 36.0	0.09 0.08	0.12 0.12	0.7 0.5	0.8 0.5	40.8 8.9	0.19 0.15	1380 1330	0.83 0.65	0.4 0.4	2.0	2.03 1.90	14.6 14.1

÷

	Table 6.	Mean Tra	ace Meta	l ni sle	'ish and	Clams	From Q	atsino	Sound,	March	1984.				
Station		AL	AS	BA	₿	CR	ß	FE	ÐH	MG	NW	QW	IN	ΡB	ZN
					П	OVER SO	LE -Mio	crostom	ls pacif	ficus	Т	MUSCLE			
QS-2	MEAN(7)	4.0	121.4	0.17	0.15	0.6	1.6	11.3	0.22	1239	1.44	0.4	2.0	2.85	17.9
	S.D.	0.0	78.1	0.15	0.03	0.1	1.4	2.9	0.08	16	1.14	0.0	0.0	2.72	4.1
	VAR.	0.0	6100.0	0.02	0.00	0.0	2.1	8.5	0.01	8314	1.31	0.0	0.0	7.37	16.9
	MAX.	4.0	236.0	0.49	0.19	0.7	4.2	16.5	0.33	1360	3.70	0.4	2.0	9.00	26.9
	.NIM	4.0	38.0	0.08	0.11	0.4	0.4	8.4	0.13	1100	0.56	0.4	2.0	1.63	15.0
					<u>8</u>	JER SOLE	-Micro	ostomus	pacific	sus	-1.1	VER			- 56
QS2	MEAN(6)	6.2	21.7	0.10	2.28	0.6	30.9	492.3	0.17	603	4.08	0.4	2.3	1.91	174.2'
	S.D.	3.4	14.9	0.04	1.50	0.2	6.3	530.5	0.18	239	0.87	0.1	0.8	0.22	33.2
	VAR.	11.8	223.1	0.00	2.25	0.0	39.4	281465	0.03	57166	0.76	0.0	0.7	0.05]	102.2
	MAX.	13.0	43.0	0.17	3.90	0.8	35.4	2100.0	0.52	1070	5.57	0.5	4.0	2.00	227.0
	MIN.	4.0	0.6	0.08	0.40	0.4	18.7	624.0	0.07	400	3.06	0.4	2.0	1.47	140.0
					Ц	OVER SO	LE -Mio	rostom	ts pacit	ficus	Ť	GILL			
									I						
QS2	MEAN(6)	119.3	11.0	0.65	0.16	1.2	5.2	457.2	0.04	1603	15.75	0.6	3.5	1.02	69.5
	s.D.	77.0	4.1	0.23	0.02	0.3	0.9	199.8	0.02	249	4.75	0.2	1.9	0.24	10.8
	VAR.	5924.3	16.0	0.05	0.00	0.1	0.8	39924	0.00	62066	22.57	0.0	3.5	0.06	116.0
	MAX.	249.0	17.0	0.90	0.18	1.5	6.1	784.0	0.06	1870	21.80	6.0	7.0	1.40	83.5
	.NIM	39.0	7.0	0.30	0.14	0.8	4.2	247.0	0.03	1130	8.60	0.5	2.0	0.70	54.8

7

4 ē Ę

ž

a ir

•

						- 3	/ -							
	ZN		18.9		63.7		28.5		13.9		204.0		78.6	
	PB		1.60		1.24		<2.00		<2.00		1.53		1.24	
	IN		<2.0		<2.0		<2.0		<2.0		<2.0		<2.0	
	QW	MUSCLE	<0.4	TIIS	<0.4	MUSCLE	<0.4	MUSCLE	<0.4	LIVER	<0.4	GILL	<0.4	
.984.	MM	ı	1.24	'	10.80	icifica-	0.88	ı	0.61	'	5.65	,	4.04	
March]	MG		1210		842	psis pa	1800	luctus	1550	luctus	320	uctus	1450	
Sound,	HG	lliei	16.0	lliei	0.60	-Lycodo	0.20	us prod	0.23	us prod	0.04	us prod		
latsino ge 3)	EE	agus co	12.5	aqus co	272.0	ELPOUT	26.3	erlucci	10.6	erlucci	127.0	erlucci	366.0	
From Qu ed: Pa	B	-Hydrol	6.0	-Hvdrol	4.7	ILLIED E	1.4	HAKEM	2.3	Hake -M	25.7	Hake -m	5.0	
l Clams Continu	ß	ATFISH	6.0	ATFISH	0.5	LACK-BE	0.6	ACIFIC	0.7	ACIFIC	0.4	ACIFIC	0.9	
ish and)	8	Υ.	0.15	Ч	0.37	В	0.19	Ci	0.17	Ci	0.45	Сi	0.17	
ls in F	BA		0.08		0.11		5.02		<0.08		<0.08		0.13	
ice Meta	AS		54.0 <		21.0		45.0		0.6		7.0		7.0	
Mean Tra	AL		< 4. 0	,	<5.0		12.0		<4.0		<4.0		<5.0	
Table 6. 1			VALUE		VALUE		VALUE		VALUE		VALUE		VALUE	
	Station		QS-2		<u>0</u> 6-2		QS-2		QS2		QS-2		QS-2	

ł

:

•

	Table 6.	Mean Tr	ace Met	als in	Fish an	d Clams (Contin	From Q ued: P	uatsino age 4)	Sound,	March .	1984.				
Station		AL	AS	BA	Ð	CR	B	FE	HG	MG	NIW	Q	IN	PB	NZ
						LONGNOS	E SKATE	-Raja ı	rhina		ł	-MUSCLE			
QS-2	VALUE	<4. 0	182.0	*0. 08	0.16	0.5	0.9	15.1	0.64	1180	0.83	<0.4	<2.0	14.00	12.2
					1	LONG NO	se skati	E –Raja	rhina		I	-LIVER			
QS-2	VALUE	<4.0	82.0	<0.08	06.0	<0.4	27.5	341.0	60.0	216	2.76	<0.4	<2.0	0.93	38.4
					2	AAL LEYE	POLLOC	 Thera 	agra cha	ulcogram	- Com	MUSCLE			
QS-2	MEAN(2)	4. 0	54.0	0.15	0.35	0.6	1.4	13.9	0.27	1515	0.81	0.4	2.0	1.58	- ⁵⁸ 4.01
	s.D.	0.0	48.1	10.0	0.0	0.2	0.2	2.0	0.11	35	0.29	0.0	0.0	0.60	4.0'
	MAX.	4.0	88.0	0.15	0.35	0.7	1.5	15.3	0.34	1540	1.01	0.4	2.0	2.00	22.2
	·NIM	4.0	20.0	0.14	0.35	0.4	1.2	12.5	0.19	1490	0.60	0.4	2.0	1.15	16.6
					3	VALLEYE	POLLOCK	(-Thera	igra cha	lcogram	e un	LIVER			
QS-2	MEAN(2)	10.0	36.5	0.08	0.20	0.5	25.0	65.0	0.04	344	4.14	0.4	2.0	1.61	56.7
	S.D.	8.5	33.2	0.00	10.01	0.1	12.3	14.7	0.01	277	0.95	0.0	0.0	0.55	7.4
	MAX.	16.0	60.0	0.08	0.20	0.5	33.7	75.4	0.05	540	4.81	0.4	2.0	2.00	61.9
	MIN.	4.0	13.0	0.08	0.19	0.4	16.3	54.6	0.03	148	3.46	0.4	2.0	1.22	51.4

¢

4

л Т

•

٠

		ZN		99.5	117.7	112.0	87.0		- 241.0 -	112.6 1	12689	406.0	152.0
		PB		1.20	0.57	1.60	0.80		2.85	2.40	5.77	6.10	0.30
		IN		2.0	0.0	2.0	2.0		5.3	1.0	6.0	6.0	4.0
		Q	E	0.5	0.0	0.5	0.5	MUSCLE	1.3	0.5	0.2	2.0	1.0
984.		M	19	4.30	1.41	5.3	3.3	· 1	37.90	12.73	61.95	51.80	26.90
March 1		MG	ogramma	1455	742	1980	930		5153	1163	1E+06 1	6710	3960
sound,		ЫG	a chalo						0.41	0.10	0.01	0.47	0.26
atsino qe 5)	1	ЭH	Theragr	397.0	58.0	438.0	356.0	.dds	495.0	662.6	38967	0.080	570.0
From Qu ed: Pa		8	T XDOLLI	8.5	2.1	6.6	7.0	Yoldia	602.3 2	363.4	32057 4	921.0 3	102.0 1
l Clams Continu		CR	LEYE PO	6.0	0.0	0.9	0.9	USSEL -	2.6	0.5	0.2 1	3.0	2.0
'ish and)		9	WAL	0.17	0.05	0.20	0.13	Σ	0.60	0.00	0.00	0.60	0.60
ls in F		BA		0.85	0.92	1.50	0.20		10.08	4.53	20.55	16.60	6.10
ace Meta		AS		11.5	7.8	17.0	6.0		61.8	30.4	925.0	0.06	20.0
Mean Tra		AL		25.0	22.6	41.0	0.6		1382.5	324.0	104958	1650.0	980.0
Table 6.				MEAN(2)	S.D.	MAX.	. MIM		MEAN(4)	s.D.	VAR.	MAX.	-NIM
		Station		QS-2					QS-3				

.

.

*

r,

Table 7.	Mean Trace	Metals	in Shri	unp and	Prawns	from St	ırf Inle	et, Marc	ih 1984						
Station		AL	AS	BA	පි	(ug/ CR	∕g dry v CU	vt.) FE	HG	MG	NW	QW	IN	PB	NZ
				U	CRANGON	SHRIMP	-Crange	on commu	mis		·	MUSCLE			
SI-2	MEAN(3) S.D. VAR. MAX. MIN.	10.0 2.6 7.0 12.0 7.0	43.7 3.2 10.3 46.0 40.0	0.21 0.05 0.00 0.26 0.16	0.36 0.09 0.01 0.46 0.29	0.5 0.1 0.6 0.5	25.8 5.0 24.9 29.5 20.1	58.3 29.3 858.9 89.2 30.9	0.04 0.03 0.07 0.07	1693 100 1770 1580	1.21 0.19 0.04 1.41 1.03	0.0 0.0 4.0 4.0	2.0 2.0 2.0	1.24 0.19 0.03 1.39 1.03	52.0 3.6 12.7 55.9 48.9
SI-7	MF:AN(24)	6	67.1	0.18	SIDESTRI 0.14	PE SHR	IMPPau 16.4	ndalopsi 48.4	s disp. 0.11	ar 1379		-MUSCLE 0.4	2.0	1.19	52.3
7-10	S. D. VAR. MAX. MIN.	6.8 6.8 35.0 4.0	6.1 6.1 80.0 57.0	0.11 0.01 0.43 0.08	0.08 0.01 0.52 0.10 SIDESTRI	0.1 0.0 0.7 0.4	3.1 3.1 9.8 23.2 10.4 10.4	107.0 11450 535.0 13.1 ndalopsi	0.05 0.00 0.24 0.02 0.02 is disp	114 114 1640 1210 1210	0.14 0.02 1.38 0.75	0.0 0.0 0.4 0.4 0.4	2.0 0.0 2.0 2.0 2.0	0.15 0.02 1.54 0.98	3.4 3.4 11.8 61.8 61.8 47.1
SI-2	MEAN(3) S.D. VAR. MAX. MIN.	12.7 1.2 1.3 14.0 12.0	195.7 14.2 201.3 211.0 183.0	0.30 0.08 0.01 0.39 0.39	63.83 18.85 355.32 79.20 42.80	0.6 0.2 0.1 0.4	1373.3 212.2 45033 1520.0 1130.0	107.7 15.5 2338.8 123.0 92.1	0.18 0.14 0.02 0.29 0.03	677 33 1086 713 648	12.13 0.35 0.12 12.50 11.80	1.3 0.1 1.6 1.0	2.0 2.0 2.0	0.10 0.01 0.00 0.11 0.09	149.7 7.8 60.3 156.0 141.0

- 60 -

:

٠

•

ai.

.

Table 7.	Mean Trace	Metals	in Shri	timp and	Prawns (Cont	from Si inued:	urf Inl. Page :	et, Marc 2)	ch 1984.						
Station		AL	AS	BA	9	CR	B	FE	ЭH	MG	MM	OW	IN	PB	NZ
				51	SIDESTRI	PE SHR	IMP -Pai	ndalopsi	s dispa	ч	ī	MUSCLE			
SI=3	MEAN(24) S. D.	10.8	84.0 14.0	0.15	0.15	0.5	14.2 3.4	26.3 10.4	0.14	1483 183	1.65 0.74	0.4	2.0	1.22	50.1
	VAR.	22.5	197.3	0.00	0.00	0.0	11.2	107.3	0.00	33465	0.55	0.0	0.0	0.02	4.5
	MAX.	22.0	116.0	0.33	0.25	0.7	26.1	52.0	0.29	2010	4.43	0.4	2.0	1.64	56.5
	.NIM	4.0	67.0	0.08	0.12	0.4	6.6	10.7	0.04	1230	1.04	0.4	2.0	0.93	46.8
				92	SIDESTRI	PE SHR	[MP -Pai	ndalopsi	s dispa	ч	I	HEPATOPI	ANCREAS		
SI-3	MEAN(2) S.D.	44.5 26.2	306.0 128.7	2.25 2.34	45.75 14.21	0.9 0.6	1355.0 91.9	426.5 382.5		1327 655	17.85 4.88	2.2 0.5	5.0 2.8	0.18 0.04	172.5 - 51.6 ⁹
	MAX.	63.0	397.0	3.90	55.80	1.3	1420.0	697.0		1790	21.30	2.5	7.0	0.20	209.0
	. MIN.	26.0	215.0	0.59	35.70	0.5	1290.0	156.0		864	14.40	1.8	3.0	0.15	136.0
				1	SINK SHR	IMP -R	andalus	boreali	ŝ		I	-MUSCILE			
SI-2	MEAN(18) S.D.	5.9 2.8	62.3 7.9	0.10	0.13	0.6 0.3	11.0 2.0	15.4 4.0	0.13 0.03	1483 156	0.90	0.0	2.0 0.0	1.27	48.1 3.3
	VAR.	7.6	62.8	0.01	0.00	0.1	4.0	15.9	0.00	24480	0.02	0.0	0.0	60.0	11.2
	MAX.	15.0	76.0	0.42	0.20	1.2	14.3	23.9	0.19	1800	1.30	0.5	2.0	1.97	53.4
	.NIM	4.0	49.0	0.08	0.10	0.4	6.9	9.4	0.08	1150	0.73	0.4	2.0	0.85	39.9

.

	•							.	f -				•	3	••
Table 7.	Mean Trace	Metals	in Shr	imp and	l Prawns (Cont	from S tinued:	urf Inle Page	et, Marc 3)	h 1984						
Station		AL	AS	BA	8	ß	В	FE	HG	MG	NW	QW	IN	PB	ZN
					PINK SHI	RIMP - P	andalus	boreali	ຜ		ł	HEPATOP	ANCREAS		
SI-2	VALUE	27.0	198.0	1.48	41.20	0.7	1280.0	513.0		106	11.70	2.5	<2.0	0.12	152.0
					PINK SHI	RIMP -P	andalus	boreali	Ŋ		I	MUSCLE			
SI-3	MEAN(12)	26.0	96.8	0.71	0.53	0.6	12.0	56.2	0.17	1824	3.02	0.5	2.0	1.47	47.4
	S.D. VAR.	13.5 182.5	13.3 177.1	0.77 0.60	1.02 1.03	0.0	1.7 2.8	26.5 701.9	0.0 10.0	322 103627	0.67 0.44	0.0	0.0	0.54	5.7 32.0
	MAX.	58.0	132.0	3.10	3.75	0.8	15.5	126.0	0.21	2330	4.80	0.6	2.0	3.00	54.5
	.NIM	11.0	81.0	0.18	0.16	0.4	9.7	33.0	0.08	1340	2.20	0.4	2.0	1.00	34.9
					prawn1	Pandalu	s platy	ceros			I	MUSCLE			
SI-2	MEAN(4)	6.0	113.5	0.10	0.14	0.6	19.5	68.9	0.13	1343	0.82	0.5	2.0	1.25	52.9
	S.D.	3.4	24.4	0.04	0.02	0.2	3.3	87.2	0.08	221	0.27	0.1	0.0	0.24	6.3
	VAR.	11.3	593.7	00.00	0.00	0.1	10.8	7611.4	10.0	48892	0.07	0.0	0.0	0.06	39.4
	MAX.	11.0	143.0	0.16	0.15	6.0	23.8	198.0	0.25	1530	1.14	0.7	2.0	1.45	59.3
	.NIM	4.0	84.0	0.08	0.12	0.4	15.8	11.4	0.07	1030	0.53	0.4	2.0	0.94	46.0
					PRAWN -1	Pandalu	s platy	ceros			I	HEPATOP	ANCREAS		
SI-2		0.6	213.0	0.29	5.10	0.6	383.0	1640.0	0.08	556	9.74	2.6	6.0	0.15	120.0

- 62 -

*____
Table 7.	Mean Trace	Metals	in Shri	imp and	Prawns (Cont	from Su tinued:	ırf Inl€ Page 4	et, Marci 1)	h 1984.						
Station		AL	AS	BA	Ð	CR	ß	FE	HG	MG	NW	QW	IN	PB	NZ
				PR	4WN -Par	dalus g	platycei	SOS		M	SCLE				
SI-3	MEAN(4) S.D. VAR. MAX. MIN.	9.0 3.6 12.7 13.0 6.0	153.0 17.8 315.3 167.0 127.0	2.03 3.83 14.64 7.77 0.09	0.12 0.02 0.14 0.10 PRAWN -	0.5 0.1 0.0 0.6 0.4 Pandalu	15.4 5.4 28.9 21.5 9.1 9.1	16.0 13.0 170.0 35.1 7.6	0.12 0.06 0.00 0.17 0.04	1399 310 95940 1670 955	1.10 0.12 0.01 1.26 0.99	0.4 0.0 0.0 0.4 0.4 HEPATOPI	2.0 0.0 0.0 2.0 2.0	1.09 0.15 0.02 1.23 0.92	49.3 7.2 52.1 53.9 38.5
SI-3		10.0	268.0	3.97	18.80	0.8	556.0	660.0	0.12	786	14.70	2.8	9.0	0.11	153.0

- 63 -

Table £	1. Mean Tr	ace Metal	ls In M	ıssels,	Clams a	and Fist	1 From	Surf Inl	et, Mar	ch 1984	•				
Station		AL	AS	BA ((mg/g dr CD	:y weigt CR	at) CU	3.4	ЭH	ĐW	MM	QW	IN	PB	NZ
					щ	slute mus	SSEL -M	lytilus €	dulis		•	-MUSCLE			
Pilings	MEAN(10)	183.0	22.0	1.76	4.64	3.0	12.7	989.1	09.00	3228	14.65	I	¢.0>	9.21	99.6
1	s.d.	116.7	9.2	1.02	1.37	1.1	3.4	1493.4	0.72	484	8.20	I	I	4.88	17.6
	VAR.	1E+04	84.4	1.05	1.87	1.1	11.3	2E+06	0.52 2	233818	67.29	I	ł	23.77	311.3
	MAX.	490.0	40.0	3.70	8.10	5.0	18.0	5200.0	2.22	3800	28.60	3.0	6.0 >	20,00	129.0
	.NIM	80.0	10.0	0.80	3.00	2.0	8.0	350.0	0.10	2510	7.20	<1.0	<20.0	1.10	74.6
					щ	alue mux	SEL -	∳tilus ∈	dulis		·	MUSCLE			
Rocks	MEAN(10)	138.2	23.1	1.04	7.03	2.9	13.7	540.6	0.31	3498	10.15	€ . 0>	I	7.00	106.1
	s.D.	36.8	9.5	0.27	2.69	0.9	9.2	187.1	0.20	371	3.22	1	ı	5.62	24.4 -
	VAR.	1352.4	90.8	0.07	7.21	0.8	85.1	46+04	0.04	137907	10.39	I	I	31.61	594.0
	MAX.	200.0	40.0	1.60	11.30	4.0	36.0	836.0	0.63	4250	15.90	<3.0	10.0	20.00	150.0
	MIN.	0.06	10.0	0.60	3.20	2.0	6.0	311.0	<0 . 8	2960	6.10	<0.8	<4.0	0.50	86.8
					~	OLDIA -	-Yoldia	spp.			·	MUSCLE			
								4 2							
SI-2	MEAN(2)	1870.0	145.0	17.45	3.55	3.5	171.5	3460.0	0.07	4910	26.85	<1.5	<4.5	6.50	537.5
	MAX.	2420.0	190.0	25.10	4.70	4.0	263.0	3620.0	0.09	5230	27.60	<1.0	<5.0	7.00	874.0
	.NIM	1320.0	100.0	9.80	2.40	3.0	80.0	3300.0	0.05	4590	26.10	<2.0	<4.0	6.00	201.0

ţ

.

•_

								•							
					uo O	tinued:	Page	2)							
Station		AL	AS	BA	(mg/g đ CD	ry weigt CR	it) CU	汨고	HG	ЯG	MM	Q	IN	PB	NZ
					F.	- AIGIOY	-Yoldia	-dds			ſ	MUSCLE			
SI-3	MEAN(4) S.D. VAR. MAX. MIN.	1785.0 569.5 3E+05 2340.0 1020.0	165.8 15.8 249.6 188.0 151.0	18.38 5.66 31.98 21.50 9.90	1.58 0.23 0.05 1.90 1.36	3.3 0.8 0.6] 3.8 2.1	74.2 33.4 1115.8 122.0 48.7	3452.5 1044.5 1E+06 4310.0 1980.0	0.23 0.18 0.03 2 0.07	5328 497 247025 6050 4940	25.63 8.89 79.11 35.20 14.00	1.6 0.4 0.2 1.9 1.3	5.5 1.7 3.0 3.0	8.50 4.36 19.00 14.00 5.00	896.3 305.8 9E+04 210.0
						PETRALE	SOLE -	Eopsetta	jordan	u.	ſ	MUSCLE			
SI-2	VALUE	8.0	148.0	<0 . 08	2.30	0.5	7.1	222.0	1.28	1240	2.35	<0.4	<2.0	2.86	39.5
						PETRALE	SOLE -	Eopsetta	jordan	ii	T	GILL			
SI-2	VALUE	138.0	20.0	06.0	0.17	0.7	3.8	398.0	1.24	1140	5.50	<0.5	<2.0	1.80	112.0
						PETRALE	SOLE -	Eopsetta	jordan	'n	ľ	LIVER			
SI-2	VALUE	7.0	558.0	0.10	24.40	0.6	35.7	1330.0	0.41	620	3.90	<0.5	<2.0	2.00	189.0
						SLENDER	SOLE -	Lyopsett	a exili	ທຸ	Т	MUSCLE			
SI-3	VALUE	<4.0	59.0	<0.08	0.14	0.7	1.9	15.1	1.58	1350	0.52	<0 . 4	<2.0	1.72	17.1

÷

e .

ŧ

•

					(Cont	inued:	Page	3)							
Station		AL	AS	BA	cD CD	ry weigt CR	at) Q	L L	HG	MG	NW	QW	IN	PB	NZ
					SLE	NDER SC	olle -lly	opsetta	exilis		-LL	VER			
SI-3	VALUE	26.0	87.0	0.10	13.50	0.5	70.2	1280.0	1.07	830	5.90	<0.5	<2.0	1.90	217.0
					щ	OVER SC	olle -Mi	crostom	us pacif	icus	Т	MUSCLE			
SI-3	VALUE	<4.0	207.0	0.16	0.18	0.6	1.1	14.2	0.32	1230	0.63	<0.4	<2.0	1.96	16.2
					Γ	over s	olle -Mi	crostom	us pacif	icus	Ĩ	LIVER			
SI-3	VALUE	6.0	23.0	<0 . 08	12.50	0.5	0.6	830.0	2.64	489	3.69	<0.4	<2.0	1.87	198.0
					н	HSITIDN	SOLE -	Parophry	/s vetul	sn	Т	MUSCLE			
SI-2	VALUE	7.0	112.0	<0 . 08	0.27	0.6	1.0	56.0	0.05	1360	0.84	<0.4	<2.0	2.94	19.0
					ш	HSITISH	SOLE	Parophry	s vetul	sn	T	TIIS			
SI-2	VALUE	47.0	0.6	0.40	0.08	0.6	3.2	641.0	<0.02	1270	6.30	<0.5	<2.0	2.10	72.8
					щ	HSITEN	SOLE -	Parophry	s vetul	sn	Т	LIVER			
SI-2	VALUE	23.0	245.0	<0 . 08	9.30	0.7	111.0	1820.0	0.25	706	4.10	0.5	<3.0	9.00	287.0

é

0 ..

					(Cont	cinued:	Page	4)							
Station		AL	AS	BA	(mg/g đì CD	ry weigt CR	nt) CU	Ξđ	DH	MG	M	Q	IN	PB	NZ
					ш	JLACKOOI	don4- (lopoma	fimbria		I	AUSCLE			
SI-2	MEAN(2) MAX. MIN.	<4.0<0.4<0.4<0.4	14.5 17.0 12.0	- 0.09 80.05	0.29 0.30 0.27	0.8 0.8 0.7	3.2 4.4 1.9	28.8 33.2 24.4	- 0.20 <0.02	1525 1550 1500	0.86 1.00 0.71	<0.4 <0.4 <0.4	<2.0<2.0<2.0	5.71 8.00 3.41	18.0 18.8 17.2
					Е	MACKOOI) -Anop	lopoma	fimbria		·	MUSCLE			
SI-3	VALUE	<4.0	18.0	<0.08	0.23	0.5	2.3	22.3	<0.03	1580	0.79	<0.4	<2.0	2.09	23.8
					н	3LACKCOI	- Anop	lopoma	fimbria		ľ	TII9-			
SI-2	mean(2) max. min.	64.5 68.0 61.0	17.5 19.0 16.0	1.86 2.50 1.22	0.30 0.40 0.20	1.7 2.9 0.5	9.0 13.3 4.6	989.5 1650.0 329.0	0.09 0.14 0.03	795 1080 510	9.25 12.40 6.10	<0.5 <0.5 <0.4	- 5.0 <0.2	3.50 5.00 2.00	65.0 92.8 37.2
					ш	ILACKODI	-Anop	lopoma	fimbria		I	GILL			
SI-3	VALUE	39.0	6.0	0.93	0.20	0.4	2.9	225.0	<0.02	674	3.88	<0.4	<2.0	2.00	43.7
					щ	MACKCOL	- Anop	lopoma	fimbria		I	-LIVER			
SI-2	MEAN(2) MAX. MIN.	<4.0<4.0<4.0<4.0	13.0 16.0 10.0	<0.08 <0.08 <0.08	16.40 27.20 5.60	0.5 0.5 0.4	178.7 312.0 45.4	1837.5 2970.0 705.0	0.16 0.29 0.03	501 522 479	4.37 4.46 4.28	<0.4 <0.4 <0.4	<2.0 <2.0 <2.0	1.75 1.79 1.71	119.0 132.0 106.0

•

- 67 -

•

...

•

۲

Table	e 8. Mean Tr	ace Meta	ls In N	fussels,	Clams	and Fisl	r From	Surf Inl	let, Maı	ich 1984	_ .				
					(COL	tinued:	Page	5)							
Station	-	AL	AS	BA	çig∕gi CD	kry weigt CR	at) a	Æ	НС	MG	NW	QW	IN	Bg	ZN
					BI	ACKCOD -	-Anoplo	poma fin	nbria		-11	IVER			
SI-3	VALUE	<4. 0	28.0	0.08 1	09 •60	0	42.2	2090.0	0.17	776	5.07	<0.4	<2.0	2.18	162.0
						RATFISH	-Hydro	lagus cc	olliei		·	MUSCLE			
SI-2	MEAN(2)	19.0	98.5 127 0	0.13	0.19	0.7	2.1 2.1	63.4	0.87	1160	1.85	<0.4	<2.0	2.34	25.5
	MAX. MIN.	26.0 12.0	127.0 70.0	0.16	0.20 0.18	0.7 0.6	3.4 0.7	64.4 62.3	1.28 0.45	1180 1140	2.43 1.27	<0.4 <0.4	<2.0 <2.0	2.66 2.02	33.9 17.0
						RATFISH	Hydro	lagus cc	olliei		I	MUSCLE			
SI-3	MEAN(2) May	<4.0 <4.0	59.0 61 0	- 0	0.22	0.7	1.1	17.3 20 5	0.36	1195	1.23	<0.4 <0.4	<2.0 <2.0	7.19	15.7
	WIN.	<pre><4.0</pre>	57.0	<0.08	0.21	0.6	0.9	14.1	0.05	1180	1.15	*0.4 4	<2.0	2.38	15.3
						RATFISH	-Hydro	lagus cc	olliei		I	GILL			
SI-2	MEAN(2)	28.5	22.5	0.16	0.20	0.5	3.1	368.0	0.29	595	4.46	I	<2.0	2.16	45.7
	MAX.	40.0	28.0	0.20	0.20	0.5	4.0	490.0	0.49	750	5.32	3.7	<2.0	2.31	64.2
	MIN.	17.0	17.0	0.11	0.19	0.4	2.1	246.0	60.0	440	3.60	<0.4	<2.0	2.00	27.1

÷

.

•

4

*

					(Cont	inued:	Page (()							
Station		AL	AS	BA (mg/g dr CD	y weigh CR	G (H	HG	Ŵ	NW	Q	IN	РВ	ZN
					ſ		1								
					¥	HELTIN	rozp	lagus co	IIII		1	GILLI			
SI-3	MEAN(2)	71.5	57.0	0.52	0.30	0.4	4.8	131.5	0.32	914	6.56	<0.4	<2.0	2.00	63.5
	MAX.	118.0	91.0	0.61	0.30	0.4	5.4	150.0	0.36	941	6.85	<0.4	<2.0	2.00	64.3
	MIN.	25.0	23.0	0.42	0.30	0.4	4.1	113.0	0.28	886 886	6.27	<0.4	<2.0	2.00	62.7
					Ъ	ATFISH	-Hydrol	lagus co	lliei		1	LIVER			0,
SI-2	MEAN(2)	213.5	186.0	ł	0.80	0.5	6.7	428.5	I	72	0.91	<0.4	<2.0	2.00	10.0
	MAX.	400.0	299.0	0.17	06.0	0.6	7.0	513.0	ł	75	0.94	<0.4	<2.0	2.00	11.7
	.NIM.	27.0	73.0	<0 . 08	0.70	0.4	6.4	344.0	L	69	0.87	<0.4	<2.0	2.00	8.3
					R	ATFISH	-Hydrol	lagus co	lliei		ľ	LIVER			
SI-3	MEAN(2)	180.0	144.0	I	0.95	0.4	7.8	260.5	0.38	69	0.80	<0.4	<2.0	2.00	8.1
	MAX.	343.0	261.0	60 °0	1.30	0.4	9.2	385.0	1	76	0.88	<0.4	<2.0	2.00	8.9
	.NIM	17.0	27.0	<0 . 08	0.60	0.4	6.3	136.0	I	61	0.71	<0.4	<2.0	2.00	7.2
					Ц	ACIFIC I	HAKE -1	ler lucci	us prod	uctus	ſ	MUSCLE			
SI-2	MEAN(3)	15.7	44.7	0.18	0.27	0.5	2.8	65.5	0.43	1390	2.36	<0.4	<2.0	4.06	25.2
	S.D.	3.1	40.4	0.09	0.03	0.1	1.2	22.5	0.30	6 6	2.05	0.0	0.0	2.55	7.8
	VAR.	9.3	1630.3	0.01	0.00	0.0	1.5	508.4	0.09	4300	4.21	0.0	0.0	6.49	60.4
	MAX.	19.0	0.68	0.26	0.29	0.6	3.9	91.4	0.77	1450	4.73	<0.4	<2.0	7.00	31.2
	.NIM.	13.0	10.0	0.09	0.23	0.5	1.5	50.5	0.23	1320	1.10	<0.4	<2.0	2.48	16.4

•

¢,

:

					(Cont	tinued:	Page	()							
Station		AL	AS	BA ((mg/g dr CD	ry weigt CR	nt) CU	EE	HG	Đ	NIM	QW	IN	PB	ZN
					14	PACIFIC	HAKE -	Merlucci	ius proc	luctus	r	GILL			
SI-2	MEAN(3) S.D.	180.3 143.8	9.0 5.0	1.18 0.30	0.22 0.02	0.5 0.2	5.3 1.4	513.3 97.7	0.34 0.25	992 302	4.56 1.59	<0.5 -	<2.0	2.15 0.15	65.8 29.1
	VAR. MAX. MIN.	2E+04 332.0 46.0	25.0 14.0 4.0	0.09 1.51 0.92	0.00 0.24 0.20	0.0 0.7 0.4	1.9 6.2 3.7	9550.3 589.0 403.0	0.06 0.59 0.10	90946 1290 687	2.53 5.88 2.79	- <0.5 <0.4	- <2.0 <2.0	0.02 2.30 2.00	848.0 92.9 35.0
					ц	ACIFIC	HAKE -	Merlucci	ius pro	luctus	I	-LI VER			,0
SI-2	MEAN(3) S.D.	8.3 4.9	66.0 84.9	1 1	1.72 1.02	0.5	123.7 92.4	382.7 186.4	0.10 0.05	516 225	8.78 6.89	<0.4 -	<2.0 -	1.36 0.92	145.9 96.1
	VAR. MAX. MIN.	24.3 14.0 5.0	7204.0 164.0 16.0	- 0.09 60.08	1.04 2.80 0.77	0.0 0.5 0.4	3534.2 224.0 42.1	3E+04 579.0 208.0	0.00 0.14 0.05	50772 748 298	47.45 15.90 2.15	- <0.4 <0.4	- <2.0 <2.0	0.84 0.30	2337.6 233.0 42.8
					ц	LED SNAF	PER -S	ebastode	edur se	crimus	1	-MUSCLE			
SI-2	VALUE	<4. 0	46.0	<0.08	0.18	0.5	2.4	19.5	0.59	1500	0.44	<0.4	<2.0	1.56	19.2
					H	RED SNA	PER -S	ebastod	es rubei	rrimus	I	TID			
SI-2	VALUE	0.66	7.0	0.82	0.20	0.4	3.3	811.0	<0.02	1120	5.62	<0.4	<3.0	1.88	73.0
					¥4	RED SNAF	PER -S	ebastode	es rubei	crimus	I	-LIVER			
SI-2	VALUE	5.0	19.0	<0 . 08	5.70	0.7	11.1	185.0	0.45	680	4.09	<0.4	<2.0	1.27	123.0

٠

Table 8. Mean Trace Metals In Mussels, Clams and Fish From Surf Inlet, March 1984.

í

~

ŧ.

•

- 70 -

	Table 9.	Mean Tr	race Met	als In	Shrimp	and Fi£	sh From	ı Laredo	sound,	, March	1984.				
			(ł	ł	- (p 6/6n)	ry wt.)	-		į	ŝ	ļ	1	ļ
Station		AL	SA	BA	9	క	8	E	HG DH	MG	N.	Q N	IN	PB	ZN
				נט	IDESTRI	PE SHR	IMP -Pa	ndalops	is disf	Jar		-MUSCLE			
L-2	MEAN(12)	24.1	62.4	0.44	0.23	0.6	13.3	40.6	0.15	1929	1.63	0.4	2.0	1.01	52.8
	s.D.	13.2	5.5	0.18	0.12	0.1	5.5	18.5	0.06	270	0.50	0.1	0.0	0.22	4.4
	VAR.	173.2	30.4	0.03	0.01	0.0	29.9	341.9	0.00	72681	0.25	0.0	0.0	0.05	19.2
	MAX.	51.0	72.0	0.80	0.45	6.0	23.8	90.6	0.26	2380	2.42	0.5	2.0	1.35	60.8
	MIN.	14.0	55.0	0.20	0.13	0.4	7.3	23.3	0.11	1590	1.09	0.4	2.0	0.60	47.9
				н	HSITEN	i- Elos	arophr	ys vetu	ılus		·	-MUSCLE			
L-2	MEAN(2)	20.0	74.0	0.32	0.22	0.7	1.1	38.4		1205	1.34	0.4	2.0	1.27	26.8
	S.D.	17.0	4.2	0.18	0.01	0.0	0.9	25.1		21	0.77	0.0	0.0	0.11	10.01
	MAX.	32.0	77.0	0.45	0.22	0.7	1.7	56.1		1220	1.88	0.4	2.0	1.34	33.8'
	.NIM	8.0	71.0	0.19	0.21	0.7	0.4	20.6		1190	0.79	0.4	2.0	1.19	19.7
				ы	IALIBUT	-Hippo	glossus	stenol	epis			MUSCLE			
L-2	MEAN(2)	6.0	0.6	0.11	0.25	0.7	3.0	22.3		1780	0.70	0.4	2.0	1.37	18.8
	s.d.	1.4	0.0	0.01	0.02	0.1	3.0	1.1		240	0.07	0.0	0.0	0.37	0.2
	MAX.	7.0	0.6	0.11	0.26	0.8	5.1	23.0		1950	0.75	0.4	2.0	1.63	18.9
	MIN.	5.0	0.6	0.10	0.23	0.6	0.9	21.5		1610	0.65	0.4	2.0	1.10	18.6

¢t

e •

¥

	Table 9.	Mean Tr	ace Met	tals In	Shrimp (C	and Fis ontinue	ih From d: Pa	Laredo ge 2)	Sound,	March	1984.				
Station		AL	AS	BA	8	CR CR	ug/g đ	ry wt.) FE	ĐH	ÐW	MM	QW	IN	BB	ZN
					HALIBUT	-Hippog	lossus	stenole	pis			-LJVER			
L-2	VALVE	<4.0	32.0	0.08	15.80	<0.4	22.7	1400.0		682	4.26	<0.4	<2.0	1.35	100.0
					SHORTFIN	EELPOU	T -Lyc	odes bre	vipes			MUSCLE			
L-2	MEAN(3)	46.0	7.7	2.18	0.16	1.1	3.0	79.8		1973	7.45	0.4	2.0	3.04	74.2
	s.D.	25.9	0.6	0.34	0.04	0.1	1.4	23.3		242	1.69	0.0	0.0	1.66	10.3
	VAR.	669.0	0.3	0.12	0.00	0.0	2.1	542.1	u,	8633	2.86	0.0	0.0	2.75	106.6
	MAX.	74.0	8.0	2.48	0.19	1.2	4.7	106.0		2250	9.36	0.4	2.0	4.00	84.9
	MIN.	23.0	7.0	1.81	0.11	1.0	2.2	61.4		1800	6.14	0.4	2.0	1.13	64.3

۰.

.

٠

K,

- 72 -

TABLE 10 ANALYSIS OF VARIANCE (F-TEST) BETWEEN-STATION DIFFERENCES FOR TRACE METALS IN PRAVINS AND SHRIMP

SPECIES

æ

METAL	SIDESTRIPE	CRANGON	PINK	PRAWN
As	19.08*	1.41	19.2*	10.7
Cđ	0.88	8.33*	1.61	2.68
Cu	2.53	53.69*	15.2*	2.45
Hg	4.32*	5.22*	1.13	0.319
Pb	2.07	3.66	3.38	3.02
Critical Value	2.55	5.10	3.42	20.1
Stations Included In	Barkley Bl	Barkley Bl	Barkley Bl	Barkley Bl
Analysis	Barkley B2	Barkley B2	Barkley B2	Barkley B2
	Quatsino Q2		Surf Sl	Surf S2
	^S Surf S2		Surf S2	Surf S3
	Surf S3			
	Laredo Ll			

* significant between-station differences

 TABLE 11
 SEDIMENT CONCENTRATION AND BIOCONCENTRATION FACTORS FOR CADMIUM IN SHRIMP*

STATION	SEDIMENT (mg/kg)	SIDESTRIPE FACTOR	PRAWN FACTOR	CRANGON FACTOR	PINK FACTOR
B-1	1.3	0.10	0.08	0.15	0.11
B-2	1.3	0.08	0.08	1.2	0.08
Q-2	1.2	0.10	N.S.	N.S.	N.S.
S-1	0.9	N.S.	N.S.	0.40	N.S.
S-2	0.9	0.16	0.15	N.S.	0.14
S-3	1.3	0.12	0.09	N.S.	N.S.
L-1	1.0	0.24	N.S.	N.S.	N.S.

* N.S. = not sampled

TABLE 12	SEDIMENT CONCENTRATION	AND	BIOCONCENTRATION	FACTORS	FOR	MERCURY
	IN SHRIMP*					

STATION	SEDIMENT	SIDESTRIPE	PRAWN	CRANGON	PINK
	(mg/kg)	FACTOR	FACTOR	FACTOR	FACTOR
B-1	0.1	1.07	1.47	0.85	1.65
B-2	0.9	0.12	0.15	0.14	0.66
Q-2	0.09	1.86	N.S.	N.S.	N.S.
S-1	0.15	N.S.	N.S.	0.23	N.S.
S-2	0.09	1.25	1.45	N.S.	1.22
S-3	0.15	0.96	0.81	N.S.	N.S.
L-l	0.2	5.05	N.S.	N.S.	N.S.

* N.S. = not sampled

1

\$

TABLE 13 CORRELATION BETWEEN SEDIMENT AND SHRIMP MUSCLE TRACE METAL CONCENTRATIONS*

CORRELATION (r)*

SPECIES	CADMIUM	MERCURY
Sidestripe	.067	.403
Prawns	.136	.314
Crangon communis	.242	•058
Pink	•221	•082

* r = correlation between the log of the concentration in sediment and the log of the bioconcentration factor (Critical value @ p = 0.5, degrees of freedom = 0.754) for cadmium and mercury.

TABLE 14 BIOCONCENTRATION FACTORS* FOR CADMIUM AND MERCURY IN INDIVIDUAL SOLE AND FLOUNDER MUSCLE AND LIVER TISSUE

<u>`</u>_

e.

1

ş.

		ВІОСО	NCENTRA	ATION F.	ACTOR
SPECIES/S	TATION	Cd MUSCLE	Cd LIVER	Hg MUSCLE	Hg LIVER
Barkley	Sound				
Flathead	/ Bl	0.1231	2.0385	0.3667	0.4667
Flathead	/ B2	0.1385	2.9846	8.4000	3.7000
English	/ Bl	0.1462	0.8308	2.8000	1.0000
English	/ B2	0.1077	N.S.	0.1556	N.S.
Slender	/ Bl	0.1154	0.4538	3.4000	1.6000
Slender	/ B2	0.1000	N.S.	0.7333	N.S.
Starry Flou	inder/ Bl	0.1462	N.S.	2.0000	N.S.
Rex	/ Bl	0.1231	N.S.	1.6000	N.S.
Dover	/ В2	0.1231	2.1538	0.1667	0.8889
Quatsino	Sound				
Rex	/ Q2	0.1085	0.6667	1.1111	1.3333
Flathead	/ Q2	0.1167	N.S.	4.3333	N.S.
Slender	/ Q2	0.1000	N.S.	1.8889	N.S.
Dover	/ Q2	0.1250	1.9000	2.4444	1.8889
Surf Ir	let				
Petrale	/ S2	2.5556	26.6667	14.2222	4.5556
English	/ S2	0.3000	10.3333	0.5556	2.778
Slender	/ S2	0.1077	10.3846	10.5333	7.1333
Dover	/ S3	0.1385	9.6154	2.1333	17.6000
Laredo S	Sound				
English	/ L1	0.2200	N.S.	N.S.	N.S.

* Values greater than 1.0 indicate bioconcentration in fish tissues greater than ambient sediment concentration.

** N.S. = "Not Sampled"

- 75 -

APPENDIX I

STATION LOCATION COORDINATES

•

.

ŝ

STATION		COORDINATES (Latitude/Longitude)	DEPTH (m)
Barkley Sound	B-1	48°56.63'N / 125°10.91'W	106
	B-2	48°50.77'N / 125°09.2' W	105
Quatsino Sound	Q-2	50°28.30'N / 127°55.4' W	201
	Q-3	50°28.65'N / 127°47.75'W	158
	Q-4	50°30.27'N / 127°43.07'W	124

Surf Inlet	S-1	53°01.70'N / 128°55.2' W	137
	S-3	52°55.40'N / 129°01.7' W	208

Laredo Sound	L-2	52°33.7' N / 128°52.7' W	220

APPENDIX II

DESCRIPTIVE STATISTICS FOR:

(a) SIDESTRIPE SHRIMP

- (b) CRANGON SHRIMP
- (c) PINK SHRIMP
- (d) PRAWNS

3

ų,

APPENDIX II(a). DESCRIPTIVE STATISTICS FOR SIDESTRIPE SHRIMP

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	37	1577.0000	42.6216	488.1862	22.0949	3.6324
CD	37	4.9000	0.1324	0.0104	0.1020	0.0168
CU	37	526.8000	14.2378	17.4319	4.1751	0.6864
HG	37	3.9400	0.1065	3.1e-3	0.0552	9.3e-3
PB	37	23.3200	0.6303	0.3695	0.6079	0.0999
Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kurtosis
AS	37	0.51840	40.12067	1.04949	4.80826	26.95208
CD	37	0.76993	0.11595	2.9e-3	4.56092	25.60318
CU	37	0.29324	13.79651	0.36312	2.92414	15.25588
HG	37	0.51873	0.09094	2.0e-3	0.72088	3.46623
PB	37	0.96445	0.33792	4.9e-3	1.10472	4.64350

BARKLEY SOUND, STATION B-1

BARKLEY SOUND, STATION B-2

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	23	1399.0000	60.8261	54.9684	7.4141	1.5459
CD	23	2.4100	0.1048	1.4e-3	0.0379	8.0e-3
CU	23	371.9000	16.1696	7.8595	2.8035	0.5846
HG	23	2.3900	0.1039	5.3e-3	0.0729	0.0152
PB	23	13.8500	0.6022	0.2848	0.5337	0.1113
Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kurtosis
AS	23	0.12189	60.38792	2.60619	0.04004	2.77335
CD	23	0.36155	0.09822	4.0e-3	0.32266	1.86978
CU	23	0.17338	15.94011	0.68332	0.26542	1.76993
HG	23	0.70164	0.07878	2.4e-3	0.87595	3.16312
PB	23	0.88629	0.34237	8.5e-3	0.31655	1.42616

QUATSINO SOUND

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	32	2014.0000	62.9375	131.5444	11.4693	2.0275
CD	32	3.8300	0.1197	2.0e-3	0.0447	8.0e-3
CU	32	391.9000	12.2469	8.8445	2.9740	0.5257
HG	32	5.3500	0.1672	6.0e-3	0.0776	0.0137
PB	32	22.2700	0.6959	0.3041	0.5515	0.0975

Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kurtosis
AS	32	0.18223	61.83591	1.89477	-0.37393	2.66901
CD	32	0.37334	0.11204	3.2e-3	0.82763	4.00992
CU	32	0.24284	11.89118	0.35977	0.45763	3.55832
HG	32	0.46387	0.14643	3.6e-3	0.49740	3.01970
PB	32	0.79242	0394427	6.1e-3	0.02995	1.40726

SURF INLET, STATION S-2

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	24	1610.0000	67.0833	37.8188	6.1497	1.2553
CD	24	3.4300	0.1429	6.7e-3	0.0820	0.0167
CU	24	392.8000	16.3667	9.7945	3.1296	0.6388
HG	24	2.7500	0.1146	2.6e-3	0.0516	0.0105
PB	24	28.6100	1.1921	0.0235	0.1532	0.0313
Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kurtosis
AS	24	0.09167	66.81433	2.77279	0.17770	2.15089
CD	24	0.57347	0.13311	5.3e-3	4.29332	20.34466
CU	24	0.19122	16.07483	0.65729	0.21446	3.00222
HG	24	0.45017	0.10186	3.5e-3	0.48776	3.01985
PB	24	0.12849	1.18306	0.04893	0.69773	2.77609

SURF INLET, STATION S-3

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	24	2017.0000	84.0417	197.3460	14.0480	2.8675
CD	24	3.6000	0.1500	8.3e-4	0.0289	5.8e-3
CU	24	341.4000	14.2250	11.2341	3.3517	0.6842
HG	24	3.4200	0.1425	3.le-3	0.0559	0.0114
PB	24	29.2200	1.2175	0.0236	0.1537	0.0314
Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kurtosis
AS	24	0.16716	82.98176	3.41612	0.77509	2.90400
CD	24	0.19262	0.14773	6.0 e -3	1.81196	6.98438
CU	24	0.23562	13.91068	0.567840	1.89214	7.72817
HG	24	0.39222	0.13112	4.9e-3	0.55879	3.59690
PB	24	0.12628	1.20869	0.05001	0.93470	4.18330

-

.

.*

8

٠

:

1

4

÷

LAREDO SOUND

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	12	749.0000	62.4167	30.4470	5.5179	1.5929
CD	12	2.7500	0.2292	0.0134	0.1156	0.0334
CU	12	159.1000	13.2583	29.8681	5.4652	1.5777
HG	12	0.8900	0.0742	7.4e-3	0.0861	0.0248
PB	12	12.1600	0.0133	0.0473	0.2175	0.0628
Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kurtosis
AS	12	0.08840	62.19318	5.16419	0.09466	1.91888
CD	12	0.50426	0.20750	0.01595	1.02155	2.37241
CII			10 00700	0 05511	0 60007	2 02261
00	12	0.41221	12.29/38	0.95511	0.60097	2.03361
HG	12 12	0.41221 1.16052	12.29/38	0.95511	0.70665	2.56308

*

Field	Number	Sum	Mean	Variance	Deviation	Error
AS	16	576.000	36.0000	232.8000	15.2578	3.8144
CD	16	1.5900	0.0994	1.4e-3	0.0386	9.6e-3
CU	16	318.3000	19.8938	83.9020	9.1598	2.2900
HG	16	1.9800	0.1238	1.0111	0.1054	0.0264
PB	16	9.7100	0.6069	0.3677	0.6064	0.1516
Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kurtosis
Field AS	Number 16	Coeff. of Variation 0.42383	Geometric Mean 32.72050	Harmonic Mean 1.84774	Coeff. of Skewness 2.2e-3	Coeff. of Kurtosis 1.38934
Field AS CD	Number 16 16	Coeff. of Variation 0.42383 0.38794	Geometric Mean 32.72050 0.09194	Harmonic Mean 1.84774 5.2e-3	Coeff. of Skewness 2.2e-3 0.07066	Coeff. of Kurtosis 1.38934 1.46942
Field AS CD CU	Number 16 16 16	Coeff. of Variation 0.42383 0.38794 0.46044	Geometric Mean 32.72050 0.09194 17.79022	Harmonic Mean 1.84774 5.2e-3 0.98996	Coeff. of Skewness 2.2e-3 0.07066 0.06350	Coeff. of Kurtosis 1.38934 1.46942 1.24697
Field AS CD CU HG	Number 16 16 16 16	Coeff. of Variation 0.42383 0.38794 0.46044 0.85207	Geometric Mean 32.72050 0.09194 17.79022 0.08287	Harmonic Mean 1.84774 5.2e-3 0.98996 3.2e-3	Coeff. of Skewness 2.2e-3 0.07066 0.06350 1.16362	Coeff. of Kurtosis 1.38934 1.46942 1.24697 3.94834

BARKLEY SOUND, STATION B-2

BARKELY SOUND, STATION B-1

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	12	523.0000	43.5833	63.3561	7.9597	2.2978
CD	12	2.4300	0.2025	3.0e-3	0.0556	0.0161
CU	12	194.4000	16.2000	8.5855	2,9301	0.8458
HG	12	1.0200	0.0850	4.0e-3	0.0645	0.0186
PB	12	9.7900	0.8158	0.2955	0.5436	0.1569
Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kukrtosis
AS	12	0.18263	42.92881	3.52378	0.44229	3.07542
CD	12	0.27465	0.19295	0.01493	-0.76189	3.97136
CU	12	0.18087	15.92994	1.30272	-0.66054	2.42729
HG	12	0.75830			0.33295	2.28267
PB	12	0.66635	0.63587	0.04001	0.49923	2.29250

SURF INLET

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	3	131.0000	43.6667	10.3333	3.2146	1.8559
CD	3	1.0900	0.3633	7.6e-3	0.0874	0.0504
CU	3	77.3000	25.7667	24.8933	4.9893	2.8806
HG	3	0.1100	0.0367	8.3e-4	0.0289	0.0167
PB	3	3.7100	1.2367	0.0345	0.1858	0.1073

APPENDIX	II((b)).
----------	-----	-----	----

(Continued)

Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kurtosis
AS	3	0.07362	43.58564	14.50088	-0.63090	1.50000
CD	3	0.24046	0.35662	0.11678	0.45564	1.50000
CU	3	0.19363	25.41944	8.35069	-0.60498	1.50000
HG	3	0.78730	0.03037	8.7e-3	0.70711	1.50000
PB	3	0.15027	1.22691	0.40560	-0.48382	1.50000

,

,

•

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	35	1853.0000	52.9429	157.1731	12.5369	2.1191
CD	35	5.0900	0.1454	0.0153	0.1235	0.0209
CU	35	372.4000	10.6400	3.5719	1.8899	0.3195
HG	35	5.7600	0.1646	6.4e-3	0.0800	0.0135
PB	35	26.3900	0.7540	0.2648	0.5146	0.0870
Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kurtosis
AS	35	0.23680	51.62117	1.43979	0.98120	3.64888
CD	35	0.84945	0.12769	3.4e-3	5.04048	28.57333
CU	35	0.17763	10.47531	0.29453	0.21404	2.84319
HG	35	0.48641			1.23919	7.52447
PB	35	0.68253	0.48433	7.30-3	-0 14303	1.75283

BARKLEY SOUND, STATION B-1

BARKELY SOUND, STATION B-2

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	17	1030.0000	60,5882	321.8824	17.9411	4.3514
CD	17	1.9700	0.1159	3.2e-3	0.0568	0.0138
CU	17	278,9000	16.4059	28.6043	5.3483	1.2972
HG	17	10.1200	0.5953	3.8500	1.9621	0.4759
PB	17	13.5900	0.7994	0.3349	0.5787	0.1404
Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kukrtosis
AS	17	0.29611	57.38873	3.12764	-0.54154	2.94260
CD	17	0.49011	0.10323	5.3e-3	0.86354	3.61205
CU	17	0.32600	15.50725	0.85366	0.13341	2.69182
HG	17	3.29609			3.73410	14.98809
PB	17	0.72392	0.52829	0.01794	0.03128	1.47513

SURF INLET, STATION S-2

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	18	1112.0000	62.3333	62.8235	7.9261	1.8682
CD	18	2.3200	0.1289	6.le-4	0.0247	5.3e-3
CU	18	198.0000	11.0000	4.0294	2.0073	0.4731
HG	18	2.0200	0.1122	3.5e-3	0.0594	0.0140
PB	18	22.9100	1.2728	0.0876	0.2959	0.0697

-

.

--

Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kurtosis
AS	18	0.12716	61.85739	3.41013	0.16183	2.27147
CD	18	0.19170	0.12691	6.9e-3	1.40706	5.13458
CU	18	0.18249	10.80573	0.58831	-0.70418	2.54405
HG	18	0.52899			-0.93207	2,71815
PB	18	0.23249	1.24195	0.06738	0.67627	2.93750

APPENDIX II(c). (Continued)

SURF INLET, STATION S-3

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	12	1162.0000	96.8333	177.0606	13.3064	3.8412
CD	12	6.3500	0.5292	1.0322	1.0160	0.2933
CU	12	143.7000	11.9750	2.7948	1.6718	0.4826
HG	12	1.5600	0.1300	7.3e-3	0.0855	0.0247
PB	12	17.6800	1.4733	0.2950	0.5432	0.15681
Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kukrtosis
AS	12	0.13742	96.07641	7.94910	1.47236	5.18276
CD	12	1.91997	0.29065	0.02037	2.99747	10.02555
CU	12	0.13960	11.87051	0.98071	0.46370	2.77695
HG	12	0.65764			-0.74305	1.84228
PB	12	0.36866	1.40511	0.11283	1.96560	6.32901

:

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	12	776.0000	64.6667	353.3333	18.7972	5.4263
CD	12	1.2900	0.1075	2.5e-3	0.0503	0.0145
CU	12	169,0000	14.0833	7.1961	2.6825	0.7744
HG	12	1.4700	0.1225	6.4e-3	0.0804	0.0232
PB	12	8.1100	0.6758	0.2635	0.5134	0.1482
Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kurtosis
AS	12	0.29068	62.06903	4.94508	0.26490	2,54093
CD	12	0.46786	0.09397	6.6e-3	-0.40163	1.31255
CU	12	0.19048	13.85971	1.13734	0.57955	2.26596
HG	12	0.65595	0.09805	6.le-3	0.64971	2.00539
PB	12	0.75959	0.42839	0.02079	-0.05303	1.35618

BARKLEY SOUND, STATION B-1

BARKLEY SOUND, STATION B-2

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	7	526.0000	75.1429	870.1429	29.4982	11.1493
CD	7	0.7500	0.1071	2.6e-3	0.0512	0.0194
CU	7	137.5000	19.6429	11.1362	3.3371	1.2613
HG	7	0.9500	0.1357	6.2e-3	0.0793	0.0300
PB	7	5.0600	0.7229	0.3197	0.5654	0.2137
Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Cokeff. of Kurtosis
AS	7	0.39256	70,55885	9.50269	0.62567	1.84583
CD	7	0.47808	0.09427	0.01157	-0.36017	1.24770
CU	7	0.16989	19.39488	2.73479	-8.1e-3	2.10344
HG	7	0.58463	0.11365	0.01273	0.63692	2.78806
PB	7	0.78219	0.44130	0.03505	-0.27314	1.09680

SURF INLET, STATION S-2

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	4	454.0000	113.5000	593.6667	24.3653	12.1826
CD	4	0.5500	0.1375	2.2e-4	0.0150	7.5e-3
CU	4	78.1000	19.5250	10.7692	3.2816	1.6408
HG	4	0.5300	0.1325	6.4 e -3	0.0802	0.0401
PB	4	4,9800	1.2450	0.0588	0.2426	0.1213

1

•

Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Coeff. of Kurtosis
AS	4	0.21467	111.48873	27.36228	0.00000	1.91111
CD	4	0.10909	0.13688	0.03406	-0.21383	1.27984
CU	4	0.16807	19.32071	4.78001	0.28748	2.01785
HG	4	0.60495	0.11779	0.02675	0.99578	2.23127
PB	4	0.19482	1.22623	0.30167	-0.37869	1.49502

APPENDIX II(d).

SURF INLET, STATION S-3

Field	Number	Sum	Mean	Variance	Standard Deviation	Standard Error
AS	4	612.0000	153.0000	315.3333	17.7576	8.8788
CD	4	0.4700	0.1175	4.2e-4	0.0206	0.0103
CU	4	61.4000	15.3500	28.8567	5.3718	2.6859
HG	4	0.4800	0.1200	3.le-3	0.0560	0.0280
PB	4	4.3400	1.0850	0.0222	0.1489	0.0744
Field	Number	Coeff. of Variation	Geometric Mean	Harmonic Mean	Coeff. of Skewness	Cokeff. of Kurtosis
AS	4	0.11606	152.16834	37.81983	-0.98734	2.22778
CD	4	0.17545	0.11615	0.02871	0.11532	1.15225
CU	4	0.34996	14.60130	3.46048	-0.02503	1.60303
HG	4	0.46647	0.10547	0.02187	-0.82953	2.14486
PB	4	0.13722	1.07723	0.26736	-0.10496	1.22743

(Continued)

APPENDIX III

TRACE METALS IN FISH TISSUES FROM BARKLEY SOUND, MARCH, 1984

.

3

•

.

۰.

Appendix III.	Trac	e Metal	s In Fi	sh Tissu	ies Fron	n Barkl	ey Sour	id, Marc	ih, 1984	-				
Station	AL	AS	BA	Ð	CR (rc	J/g dry CU	· wt.) FE	DH	ÐW	NW	QW	IN	PB	NZ
				يىتىر ا	NEX SOLI	dlyp	tocepha	ilus zac	shirus					
B-1	<4.0 <4.0	54.0 94.0	<0.08 <0.08	0.17 0.17	1.2 1.0	<0.4 <0.4	14.4 11.3	0.22 0.16	1330 1270	0.79 0.99	<0.4 <0.4	<2.0 <2.0	1.78 1.90	14.8 15.9
	<4.0	81.0	<0.08	0.13	0.8	<0.4	13.5	0.0	1210	0.68	<0.4	<2.0	<2.00	14.0
				щ	T ATHEAI) SOLE	-Hippog	, lossoid	les ella	nobost				
B-1	<4.0	41.0	0.14	0.26	0.7	3.0	32.7	0.51	1380	0.70	<0.4	<2.0	<2.00	18.1
	<4.0	40.0	<0.08	0.24	0.6	2.0	16.6	0.84	1260	0.58	<0.4	<2.0	<2.00	17.6
	5.0	60.0	<0.08	0.12	0.5	1.5	22.4	0.40	1370	0.65	<0.4	<2.0	<2.00	18.0
	<4.0	53.0	<0.08	0.14	0.8	1.9	14.0	1.17	1170	2.34	<0.4	<2.0	<2.00	18.1
	<4.0	76.0	<0.08	0.15	0.6	0.6	9.1	1.01	1190	0.46	<0.4	<2.0	<2.00	18.0
	<4.0	46.0	<0.08	0.15	0.8	0.5	7.1	1.09	1180	0.47	<0.4	<2.0	1.93	21.7
				щ	TATHEAL	JUS (-Hippog	jlossoi d	les ella	noboar	-MUSCLE			
B-2	<4. 0	159.0	<0.08	0.15	0.5	0.7	14.3	0.39	1390	1.07	<0.4	<2.0	<2.00	19.2
	7.0	222.0	0.26	0.17	0.9	1.4	17.1	0.27	1420	2.54	<0.4	<2.0	<2.00	22.1
				H	TATHEA	SOLE	-Hippog	jlossoi ć	les ella	isodon	-LIVER			
B-1	<4. 0	271.0	<0.08	3.60	6.0	75.1	1330.0	0.40	866	3.91	<0.4	<2.0	<2.00	183.0
	<4.0	302.0	0.43	2.90	0.5	4.9	1420.0	0.42	577	3.68	<0.4	<2.0	0.78	97.0
	7.0	425.0	<0.08	6.20	0.7	32.1	3390.0	0.55	921	3.33	<0.4	<2.0	1.74	155.0
	<4.0	75.0	<0.08	2.90	<0.4	3.6	957.0	0.28	293	2.45	<0.4	33.0	0.52	61.0
	6.0	105.0	<0.08	3.80	<0.4	8.4	995.0	0.19	448	3.64	<0.4	<2.0	66.0	95.0

- 89 -

у ...

*_

٩

ppendix III	. Trac	e Metal	s In Fi:	sh Tissu (Cc	les Fron Intinued	n Barkl I: Pag	ey Sounc e 2)	1, March	1, 1984					
Station	AL	AS	BA	₿	CR (uc	رتا رتا رتا	wt.) FE	HG	ĐW	NIW	Q	IN	PB	ZN
				FLA	(THEAD S	SOLE -H	ippoglos	ssoides	ellaso	don -[.]	[VER			
B-2	<4.0 16.0	110.0 144.0	<0.08 0.09	1.30 4.00	0.5 0.7	278.0 164.0	93.9 1150.0	0.25 0.59	913 889	8.20 6.79	<0.4 0.6	<2.0 <2.0	<2.00 1.76	154.0 190.0
				щ	TATHEAU	SOLE (-Hippog	lossoide	es ella:	- uopos	TII5			
B-1	95.0	0.6	1.29	<0.05	1.4	2.6	235.0	<0.03	1300	00.6	0.5	<2.0	0.53	57.3
	680.0 126.0	13 . 0 12.0	1.70 0.60	0.28 0.15	2.3 1.4	3°1	1240.0 341.0	<0.02	1330 960	18.70 7.40	0.5	<2.0 <2.0	1.70	82.3 82.5
	341.0	10.0	0.85	<0.02	1.7	4.3	741.0	<0.03	1270	10.80	<0.4	<2.0	3.00	81.5
	44.0	11.0	3.39	06.0	2.9	1.7	123.0	0.34	1730	18.40	<0.4	<2.0	6.00	69.8
				μzų	TATHEAL	SOLE (-Hippog	lossoide	es ella	sodon	TII9-			
B-2	74.0 52.0	39.0 12.0	0.30 1.20	0.15 <0.05	1.6 1.2	3.5 6.0	225.0 138.0	0.12	970 1420	12.10 33.60	0.5 0.5	4. 0 <2.0	1.50 0.20	88.5 67.3
				03	LENDER	SOLE -	Lyopset	ta exil:	ŝ	·	MUSCLE			
B-1	<4.0	7.0	0.18	0.14	1.6	<0.4	23.5	0.28	1270	0.80	<0.4	<2.0	1.95	16.0
	<4.0	16.0 2 0	0.17	0.12	0.6	1.9	15.0	0.12	1320	0.55	4 . 0	<2.0	1.60	15.3
	0.4%	0.7	80.05	0.17	9.0 8	c.0 4.03	20.2	0.55	1330	دد.0 ۱۹۹	40.4 40.4	<pre><2.0</pre>	00 m	14.2 15 0
		0.0	CT		0				00001			0.7	3	

- 90 -

;

÷

Appendix III.	Trace	e Metal:	s In Fis	sh Tissu (CC	les From Intinued	n Barkl I: Pag	ey Soun e 3)	d, Marci	h, 1984					
Station	AL	AS	BA	€	<u>ਸ</u>) ਇ	1/9 đry CU	wt.) FE	ĐH	MG	N	Q	IN	PB	NZ
				01	SLENDER	- TIOS	Lyopset	ta exil	is	·	-MUSCLE			
B-2	20.0 12.0	10.0 34.0	0.10 0.48	0.15	1.2 0.9	0.6 1.5	63.9 18.0	0.15 1.16	1360 1430	1.30 6.66	<0.4 <0.4	<2.0 <2.0	2.07 <2.00	20.3 20.3
				10	SLENDER	SOLE -	Lyopset	ta exil	is	·	-L.IVER			
B-1	 <4.0 <4.0 <4.0 <4.0 <4.0 	10.0 52.0 18.0 17.0	 0.08 0.08 0.08 0.08 0.08 0.08 0.08 	0.39 0.60 0.11 0.24	0.5 0.7 1.7 1.7	18.8 11.3 10.7 23.0	525.0 385.0 1300.0 936.0	0.14 0.10 0.25 0.22	987 963 830 1350	2.07 3.10 3.86 3.57	 4.0 /ul>	 28.0 28.0 22.0 22.0 22.0 	<pre><2.00 <2.00 1.74 1.60 1.48</pre>	101.0 94.7 83.5 110.0
) 1		•	SLENDER	SOLE -	Lyopset	ta exil	is i	2) •	00.7 7	2. F
B-1	32.0 32.0 25.0 29.0 28.0	4.0 9.0 5.0 6.0 7.0	7.27 3.92 2.70 2.05 3.73	<pre><0.04 <0.05 <0.05 <0.05 <0.04 <0.04 </pre>	17.2 2.0 1.8 1.9 1.9	2.9 1.9 2.3 2.5 2.8	227.0 101.0 124.0 135.0 118.0	0.30	1820 1810 1560 1350 1680	12.20 8.76 6.00 10.70 11.60	0.40.50.50.40.40.4	17.0 <2.0 <2.0 <2.0 <2.0	1.20 1.39 0.60 0.52 0.47	79.2 92.9 71.5 81.2 77.2
				IJ	OVER SC	JLE –Mi	crostom	us paci	ficus	•	-MUSCLE			
B-2	 4.0 4.0 9.0 4.0 4.0 	64.0 41.0 35.0 125.0 76.0	 <0.08 <0.08 <0.08 <0.08 <0.08 <0.08 	0.17 0.21 0.13 0.14 0.16	0.6 0.8 0.6 0.6	0.5 0.5 0.8 0.8	19.8 14.4 22.3 12.7 13.5	0.12 0.10 0.16 0.15 0.23	1170 1300 1190 1260 1210	0.69 1.03 0.85 0.79 0.72	 0.4 0.4 0.4 0.4 0.4 	 <2.0 <2.0 <2.0 <2.0 <2.0 	1.77 1.77 1.41 1.81 <2.00	16.3 17.5 15.2 19.7 16.7

ė,.

Appendix III.	. Trac	e Metal:	s In Fi:	sh Tissı (Q	ues From ontinuec	ı Barkle I: Page	ey Sound e 4)	d, March	a, 1984	•				
Station	AL	AS	BA	6	ы. К	(/g dry CU	wt.) FE	ĐH	ĐW	NW	QW	IN	PB	NZ
					DOVER SC	LE -Mic	crostom	us pacit	ficus	·	-LIVER			
B-2	116.0	8.0	0.40	5.10	1.0	54.7 2	2200.0		690	11.90	0.5	8.0	<2.00	189.0
	7.0	19.0 5.0	0.09 0.08	2.00 1.30	0.5 0.4	47.9] 53.6	1110.0 621.0	0.46 0.10	718 405	5.18 2.70	0.5 <0.4	<2.0 <2.0	<2.00 0.93	181.0 123.0
				1	DOVER SC	JLE -Mic	crostom	us paci:	ficus	·	TII9-			
B-2	194.0	8.0	2.57	<0.05	1.8	4.0	423.0	<0.04	1910	16.50	0.5	<2.0	0.37	69.69
	181.0	0.0	1.30	0.27	1.6	4.6	477.0		1190	12.30	0.6	<2.0	1.40	70.3
	86.0	8.0	0.40	0.29	2.2	7.6]	1000.0		1490	20.10	0.8	3.0	1.60	108.0
	67.0	7.0	1.20	0.34	1.7	9.2	274.0		1230	11.80	0.6	<2.0	1.20	72.9
					HSITIDNE	SOLE -F	arophr	ys vetu	lus	·	MUSCLE			
B-1	<4.0	67.0	<0.08	0.13	0.7	1.5	32.8	0.30	1260	0.51	<0.4	<2.0	1.74	23.7
	<4.0	119.0	<0.08	0.33	4.2	1.6	45.8	0.10	1080	0.61	<0.4	<2.0	<2.00	19.4
	<4.0	61.0	<0.08	0.22	0.8	3.2	13.7	0.19	1200	0.72	<0.4	<2.0	<2.00	20.7
	<4.0	277.0	60 .0	0.16	6.0	3.0	18.3	0.40	1260	0.41	<0.4	<2.0	2.03	19.4
	<4.0	177.0	<0.08	0.14	0.7	1.7	16.4	0.63	1280	0.65	<0.4	<2.0	1.49	23.4
	<4. 0	166.0	<0.08	0.20	0.6	0.8	7.4	0.15	1220	0.34	<0.4	<2.0	<2.00	19.7
	<4.0	63.0	0.34	0.13	1.0	3.0	72.1	0.20	1300	3.22	<0.4	<2.0	1.74	25.3

- 92 -

;

:

4

•

	ZN		17.6		167.0	120.0	171.0	238.0	167.0		76.6	77.5	76.0	47.8	69.1		15.7
	PB		1.76		1.53	1.46	1.66	<2. 00	<2.00		1.21	1.38	1.62	1.94	1.67		<2.00
	IN		<2.0		<2.0	5.0	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0	23.0	<2.0		<2.0
	QW	MUSCLE	<0.4	-L.I VER	0.5	<0.4	<0.4	<0.4	0.5	GILL	<0.4	<0.4	<0.4	0.5	<0.4	MUSCLE	<0.4
	NW	·	1.43	I	4.00	3.51	5.38	8.52	4.39	·	13.40	7.15	10.90	10.10	8.18	- sn	0.50
ı, 1984.	Đ	sn	1150	sn	635	663	685	966	692	sn	1420	1350	1280	868	1080	stellat	1290
l, March	HG	rs vetul	0.14	rs vetul	0.07	0.18	0.10	0.11	0.06	rs vetul	0.10	<0.02	<0.02		<0.03	chthys	0.20
iy Sound	wt.) FE	arophry	17.8	arophry	781.0	730.0	896.0	433.0	453.0	arophry	454.0	300.0	296.0	89.6	347.0	(-Plati	11.6
ı Barkle I: Page	l/g ðry CU	SOLE -F	0.8	SOLE -F	33.5	19.9	40.0	48.5	44.6	SOLE -F	4.5	4.0	3.1	1.6	4.3	TOUNDER	2.8
es From ntinued	Gn) CK	HSITEN	0.6	HSITEN	0.7	0.6	0.4	0.7	0.8	HSITEN	1.2	1.0	1.1	0.5	6.0	TARRY F	0.5
h Tissu (Co	පි	I	0.14	ш	1.60	1.30	0.21	1.10	1.20	ы	0.14	0.15	0.16	0.07	0.17	ß	0.19
i In Fis	BA		0.18		<0.08	<0.08	<0.08	<0 . 08	<0 . 08		0.74	0.65	0.64	0.54	0.67		0.10
e Metals	AS		51.0		38.0	35.0	15.0	72.0	58.0		8.0	31.0	<4.0	<5.0	6.0		28.0
Trace	AL		<4.0		11.0	13.0	<4.0	11.0	0.6		182.0	57.0	106.0	15.0	112.0		<4.0
Appendix III.	Station		B-2		B-1					,	B-1						B-1

- 93 -

÷

\$

ар ...

•

	NZ		15.2 14.0	14.7	16.2	13.8		18.2	18.7	15.0		37.1	101.0	83.0	54.1	63.1	
	PB		1.98 1.64	1.77	1.93	1.99		<2.00	<2. 00	<2.00		0.67	0.86	0.22	0.55	0.20	
	IN		<2.0 <2.0	<2.0	<2.0	<2.0		<2.0	<2.0	<2.0		<2.0	<2.0	28.0	<2.0	4.0	
	Q	AUSCLE	<0.4 <0.4	<0.4	<0.4	<0.4	-MUSCLE	<0.4	<0.4	<0.4	-LIVER	<0.4	<0.4	<0.4	<0.4	<0.4	
	NW	I	0.57	0.64	1.00	0.55	·	0.97	1.40	1.01	·	6.63	12.70	5.81	5.08	3.23	
ı, 1984.	MG	luctus	1360 1340	1480	1530	1440	luctus	1530	1690	1580	luctus	321	411	189	245	107	
1, March	ÐH	ius prod	0.15 0.09	0.03	0.17	0.03	ius prod	0.11	0.08	0.02	ius proc	0.10	0.06	0.05	0.05	0.05	
ey Sound	wt.) FE	fer lucci	62.1 15.7	17.9	14.4	9.6	fer lucci	52.2	21.3	16.5	fer lucci	79.0	387.0	250.0	248.0	0.991	
n Barkle I: Page	1/g dry CU	HAKE	1.5 3.5	1.9	1.8	1.6	HAKE	2.5	2.1	1.4	HAKE -	5.8	28.4	9.6	12.7	14.8	
les From Intinued	CR (no	ACIFIC	5.2 0.6	0.5	0.8	0.6	PACIFIC	4.2	0.7	0.7	ACIFIC	<0.4	<0.4	<0.4	<0.4	<0.4	
th Tissu (Cc	පි	н	0.22	0.17	0.19	0.14	Е	0.17	0.14	0.15	4	0.10	0.50	0.33	0.40	0.40	
i In Fis	BA		<0.08 <0.08	60.0	0.19	60.0		<0.08	<0.08	<0.08		<0 . 08	<0.08	<0.08	<0.08	<0.08	
e Metals	AS		11.0 5.0	14.0	16.0	15.0		10.0	11.0	12.0		24.0	14.0	12.0	10.0	6.0	
Trace	AL		<4.0 <4.0	<4.0	5.0	<4. 0		<4. 0	5.0	<4.0		<4. 0	<4. 0	<4.0	<4.0	<4.0	
Appendix III.	Station		B-1					B-2				B-1					

- 94 -

.

;

,

	ZN		199.0 88.2		97.7	72.0	110.0	89.3		103.0	130.0		31.5
	PB		$1.18 \\ 0.80$		4.00	1.67	8.00	1.08		1.14	1.23		1.47
	IN		30.0 <2.0		60.0	<2.0	7.0	<2.0		<2.0	<2.0		<2.0
	QW	-LIVER	0.6 <0.4	TIIS	<0.4	<0.4	<0.4	<0.4	GILL	<0.4	<0.4	MUSCLE	<0.4
94.	W	·	17.20 7.80	•	8.54	9.83	13.10	11.40	1	14.60	35.10	1	2.85
rch, 19	MG	luctus	530 243	luctus	1120	1360	1280	1100	luctus	1320	1770		1010
und, Mau	HG	ius pro	0.10	ius proc	<0.02	<0.02	<0.03	<0.02	ius proc	<0.02	<0.02	china	0.69
kley So age 7)	ry wt.) FE	ver lucc:	593.0 229.0	verlucc:	692.0	467.0	746.0	432.0	fer lucc	391.0	1710.0	-Raja	31.2
com Barl led: Pa	(ug/g đì CU	HAKE -	39.1 25.0	HAKE	5.7	5.2	5.6	5.4	Hake -n	6.8	9.5	SKATE	8.4
ssues Fr Continu	ۍ بې	ACIFIC	<0.4 <0.4	ACIFIC	1.6	1.0	1.1	1.2	ACIFIC	1.2	2.5	ONGNOSE	0.7
ish Tis')	6	ц	1.20 0.70	ц	0.15	0.14	0.18	0.16	ц	0.12	0.15	Н	0.11
uls In F	BA		<0.08 <0.08		0.91	0.93	0.96	1.92		1.91	1.98		0.71
ace Meta	AS		16.0 12.0		<4.0	5.0	7.0	8.0		5.0	6.0		137.0
11. Tra	AL		<4.0 <4.0		249.0	184.0	342.0	149.0		119.0	968.0		0.6
Appendix I	Station		B-2		B-1					B-2			B-2

.

- 95 -

•

۰

	NZ		14.7		163.0		94.4	
	РВ		1.55		1.15		1.82	
	IN		<2.0		<2.0		<2.0	
	W	JSCLE	<0.4	-LIVER	<0.4	GILL	0.5	
	MM	atus –M	1.05	ıgatus -	3.27	ıgatus -	5.25	
ı, 1984.	Đ	: elonga	1320	es elor	362	es elor	186	
1, March	HG	sebastes	0.48	-Sebast	0.13	-Sebast		
ey Sound e 8)	wt.) FE	EISH -6	46.5	CKFISH	921.0	CKFISH	381.0	
n Barkle 1: Page	رتا رتا رتا	ED ROCK	1.4	UPED RC	25.4	UPED RC	7.1	
ues From Intinued	CR (rc	ENSTRIF	2.9	REENSTF	0.7	REENSTIF	23.5	
h Tissu (Cc	Ð	GRE	0.11	9	2.10	9	0.16	
: In Fis	BA		<0°08		<0.08		0.34	
Metals	AS		14.0		10.0		7.0	
Trace	AL		5.0		<4. 0		33.0	
Appendix III.	Station		B-2		B-2		B-2	

۰.

;

,

;

.

*

٠

APPENDIX IV

TRACE METALS IN SHRIMPS AND PRAWNS FROM BARKLEY SOUND, MARCH, 1984

	4					I			ı					
					Ŭ	ıp 6/6n	.y wt.)							
Station	AL	AS	BA	Ð	ų	8	FE	HG	MG	NW	QW	IN	PB	NZ
				0	RANGON	SHRIMP	-Crango	n comu	nis	I	AUSCLE			
B-1	22.0	47.0	0.38	0.07	0.5	18.1	40.6		1520	2.26	<0.3	<1.0	1.27	54.8
	17.0	33.0	0.25	0.23	0.6	16.6	38.5		2150	1.75	<0.4	<2.0	1.44	49.4
	30.0	43.0	0.40	0.20	<0.5	20.1	61.9	0.07	2500	2.50	<0.5	<2.0	1.00	59.5
	15.0	45.0	0.20	0.18	<0.5	17.1	62.9	0.07	2110	1.80	<0.5	<2.0	1.90	50.7
	28.0	48.0	0.30	0.19	<0.5	13.5	44.1	0.14	2180	1.90	<0.5	<2.0	1.00	31.1
	16.0	46.0	0.20	0.28	<0.5	16.1	39.8	0.12	2790	2.10	<0.5	<2.0	0.00	27.5
	16.0	38.0	0.10	0.18	<0.5	19.6	33.7	0.21	1590	1.30	<0.5	<2.0	0.80	23.3
	46.0	46.0	0.67	0.28	0.7	16.0	66.3	0.12	2430	2.29	<0.5	<2.0	0.27	59.8
	20.0	35.0	0.60	0.23	0.7	17.5	41.1	0.02	2320	2.00	<0.5	<2.0	0.30	56.7
	40.0	33.0	0.22	0.18	0.6	11.3	40.1	0.15	1330	1.16	<0.4	<2.0	0.22	30.9
	43.0	48.0	0.20	0.18	1.2	17.6	57.4	0.06	1930	2.00	<0.7	<3.0	0.20	59.9
	63.0	61.0	0.37	0.23	0.8	10.9	105.0	0.06	2050	3.25	<0.4	<2.0	0.49	42.1
				0	RANGON	SHRIMP	Crango	an commu	nis		HEPATOP	ANCREAS		
B-1	54.0	174.0	0.40	40.30	1.61	0.060	567.0		1240	14.50	3.5	17.0	1.40	236.0
4	•) • •			1))) •				
				S	IDESTRI	PE SHRI	MP -Pan	dalopsi	s dispa	ı H	MUSCLE			
B-1	31.0	56.0	0.14	0.17	0.4	14.0	54.9	0.10	1260	1.86	<0.4	<2.0	0.62	39.4
	17.0	32.0	0.14	0.15	0.5	14.2	26.9	0.22	1460	1.28	<0.4	<2.0	0.95	40.1
	13.0	34.0	0.17	0.13	0.4	10.4	24.0	0.21	1710	1.20	<0.4	<2.0	2.73	45.7
	7.0	33.0	0.10	0.13	0.6	15.5	11.4	0.12	1070	1.04	<0.4	<2.0	0.76	40.0
	8.0	35.0	0.25	0.15	0.5	14.7	12.7	0.18	1330	1.25	<0.4	<2.0	0.63	39.6
	10.0	28.0	0.13	0.13	0.6	12.0	15.6	0.10	1330	1.05	<0.4	<2.0	1.23	38.2

Appendix IV. Trace Metals In Shrimp and Prawns From Barkley Sound, March, 1984.

- 98 -
| | ZN | | 38.9 | 40.1 | 40.0 | 38.1 | 36.7 | 40.5 | 34.6 | 40.7 | 49.8 | 49.8 | 50.6 | 47.7 | 46.3 | 49.4 | 49.3 | 51.1 | 53.4 | 47.7 | 135.0 | 49.0 | 50.0 | 45.7 | 51.9 | 50.7 |
|---------|---------------|----------|------|-------|------|------|----------------|-------|------|------|------|------|------|----------------|------|------|------|------|------|------|-------|------|------|------|------|------|
| | PB | inued) | 1.14 | 1.22 | 1.23 | 0.95 | 1.05 | 1.45 | 0.91 | 1.25 | 1.05 | 1.08 | 1.25 | 0.99 | 0.98 | 0.11 | 0.14 | 0.12 | 0.11 | 0.11 | 0.14 | 0.08 | 0.08 | 0.08 | 0.08 | 0.09 |
| | IN | (Cont | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 | <2.0 |
| | QW | MUSCLE | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 | <0.4 |
| | NW | י
א | 0.95 | 0.85 | 1.04 | 0.97 | 0.90 | 0.92 | 1.04 | 1.12 | 1.17 | 1.30 | 1.21 | 1.26 | 1.18 | 1.14 | 1.13 | 1.51 | 1.11 | 1.21 | 2.74 | 1.32 | 1.27 | 1.10 | 1.28 | 1.32 |
| Page 2) | MG | is dispa | 1360 | 1340 | 1360 | 1350 | 1340 | 1410 | 1060 | 1390 | 1490 | 1370 | 1620 | 1400 | 1500 | 1680 | 1450 | 1710 | 1780 | 1460 | 4770 | 1530 | 1770 | 1410 | 1590 | 1620 |
| :penu: | ЭН | idalopsi | 0.07 | 0.07 | 0.02 | 0.03 | 0.10 | 0.07 | 0.10 | 0.08 | 0.12 | 0.09 | 0.07 | 0.06 | 0.07 | 0.12 | 0.12 | 60.0 | 0.02 | 0.12 | 0.06 | 0.15 | 0.02 | 0.15 | 0.14 | 0.12 |
| (Conti | ry wt.)
FE | (MP -Par | 13.6 | 16.9 | 19.1 | 14.9 | 11.3 | 12.0 | 16.3 | 19.0 | 24.3 | 22.0 | 27.2 | 16.9 | 38.8 | 27.0 | 18.0 | 47.0 | 35.5 | 19.7 | 52.1 | 33.3 | 36.2 | 14.4 | 28.9 | 23.6 |
| | ug/g đr
CU | PE SHRI | 13.0 | 13.5 | 12.0 | 11.5 | 11.3 | 11.4 | 11.9 | 15.4 | 18.0 | 17.9 | 12.6 | 17.7 | 13.4 | 12.6 | 16.9 | 14.7 | 8.6 | 15.6 | 34.2 | 15.5 | 15.3 | 11.8 | 16.3 | 11.5 |
| | ۍ
ع | IDESTRI | 0.6 | 0.4 | 0.5 | <0.4 | 0.4 | 0.4 | <0.4 | 0.4 | <0.4 | 0.6 | 0.4 | 0.5 | 0.6 | 0.5 | 0.5 | <0.4 | <0.4 | 0.5 | 2.0 | 0.4 | 0.5 | 0.4 | 0.5 | 0.6 |
| | 8 | 01 | 0.13 | 0.18 | 0.14 | 0.13 | 0.12 | 0.11 | 0.12 | 0.11 | 0.13 | 0.23 | 0.69 | 0.13 | 0.13 | 0.06 | 0.08 | 0.09 | 0.11 | 0.07 | 0.18 | 0.06 | 0.07 | 0.06 | 0.15 | 0.10 |
| | BA | | 0.10 | <0.08 | 0.12 | 0.16 | <0 . 08 | <0.08 | 0.11 | 0.12 | 0.12 | 0.11 | 0.14 | 0.14 | 0.14 | 0.10 | 0.11 | 0.16 | 0.15 | 0.12 | 0.25 | 0.30 | 0.18 | 0.09 | 0.17 | 0.15 |
| | AS | | 35.0 | 33.0 | 35.0 | 36.0 | 40.0 | 38.0 | 32.0 | 31.0 | 38.0 | 39.0 | 44.0 | 39.0 | 38.0 | 39.0 | 35.0 | 37.0 | 69.0 | 42.0 | 165.0 | 38.0 | 33.0 | 34.0 | 43.0 | 41.0 |
| | AL | | 7.0 | 4.0 | 0.6 | 0.0 | 7.0 | 7.0 | 10.0 | 11.0 | 12.0 | 11.0 | 15.0 | 14.0 | 19.0 | 17.0 | 7.0 | 22.0 | 18.0 | 20.0 | 23.0 | 34.0 | 18.0 | 7.0 | 71.0 | 15.0 |

Appendix IV. Trace Metals In Shrimp and Prawns From Barkley Sound, March, 1984.

B-1

Station

- 99 -

-

,e

•

.'

e

ŧ

•												ě_	, , 4
<u>Q</u>	endix IV	. Trace	Metals	In Shr	jım and	Prawns (Conti	Rrom Ba inued:	ırkley S Page 3)	sound, 1	March, 1	984.		
Ц	AS	BA	පි	IJ	დი დე	ry wt.) FE	HG	MG	MM	Q	IN	PB	ZN
			01	SIDESTR	UPE SHR	IMP -Par	ıdalopsi	is dispe	ar	MUSCLE	(Cont	:inued)	
6	0 41.0	0.26	0.15	0.4	15.0	15.2	0.14	1810	1.08	<0.4	<2.0	0.10	50.3
5	0 45.0	0.15	0.07	0.5	16.0	21.1	0.0	1660	1.17	<0.4	<2.0	0.08	55.6
ωġ	0 39.0	0.11	0.10	40.4	12.2	16.3	0.18	1480	1.14	<0.4	<2.0	0.10	47.8
യ്യ	0 47.0	0.14	0.11	0.6	8.4 11.4	15.0	0.14	1430	50.1	0.4 0.4	<pre><2.0</pre>	0.08	1.05
, vi	0 42.0	\$0.08	0.07	0.7	12.9	17.4	0.07	1820	96.0	0.5	<2.0	0.10	49.3
æ	0 56.0	0.10	0.10	0.4	17.5	16.7	0.07	1660	1.27	<0.4	<2.0	0.08	54.1
				SIDESTR	UPE SHR	IMP -Pat	ıdalopsi	is disp	ਸ਼	HEPATOP	ANCREAS	70	
17.	0 47.0	0.26	15.80	<0.4	0.99.0	76.0	0.25	572	10.50	0.8	<2.0	1.04	100.0
3.	0 54.0	0.28	23.60	0.6	893.0	T.T	0.29	546	10.90	0.7	<2.0	0.40	108.0
			4	HS XINI	IRIMP -P	andalus	boreali	S	·	-MUSCLE			
33.	0.79.0	0.18	0.15	0.6	10.6	69.69	0.19	1820	2.49	<0.4	<2.0	1.13	37.2
38.	0 55.0	0.11	0.18	0.5	11.1	76.2	0.20	1630	2.14	<0.4	<2.0	1.28	38.5
п.	0 45.0	0.26	0.13	<0.4	9.7	16.4	0.16	1530	1.13	<0.4	6.0	0.98	38.2
19.	0 65.0	0.11	0.15	0.4	11.7	33.3	0.22	1470	1.47	<0.4	<2.0	1.38	39.2
24.	0 58.0	0.12	0.83	<0.4	11.9	44.5	0.10	1520	1.62	<0.4	33.0	1.07	39.1
Ş.	0 59.0	0.20	0.14	0.4	12.1	68.8	0.0	1670	2.13	<0.4	<2.0	0.98	38.5
19.	0 64.0	0.13	0.14	0.5	12.2	30.4	0.10	1710	1.37	<0.4	<2.0	0.85	41.0
27.	0 83.0	0.13	0.17	0.5	13.2	45.2	0.22	1830	1.63	<0.4	<2.0	1.18	41.0
<u>.</u>	0 78.0	0.29	0.16	0.5	8.0	181.0	0.20	1830	4.23	<0.4	<2.0	1.15	40.1

1984.	
March,	
Sound,	
Barkley	
From]	I
Prawns	
and	
Shrimp	
In	
Metals	
Trace	
IV.	
Appendix	

(Continued: Page 4)

	NZ	
	PB	ontinued)
	IN	0
	Q	-MUSCLE
	M	
	Ð	lis
	HG	borea
lry wt.)	FE	Pandalus
9 6/6n)	ß	HRIMP
	អ	PINK S
	8	
	BA	
	AS	
	AL	
	Station	

B-1

1. 3

.

•

•

*

- 102 -

ส้

۰.

*

							(Conti	nued:	Page 6)					
Station	AL	AS	BA	₿	ų	(ug/g đì CU	ry wt.) FE	HG	MG	NW	QW	IN	PB	NZ
				0	RANGON	SHRIMP	Crango	N COMMIC	nis	I	-MUSCLE			
B-2	65.0	56.0	0.50	0.15	0.5	32.2	93.4	0.40	2190	7.56	<0.4	<2.0	1.58	67.1
	0.66	44.0	0.84	0.14	0.5	27.4	173.0	0.19	1980	13.90	<0.4	<2.0	1.43	69.69
	86.0	40.0	0.40	0.15	0.7	28.9	183.0	0.27	1770	11.10	<0.5	<2.0	1.30	74.1
	0.06	50.0	0.70	0.13	0.7	23.8	131.0	0.17	2340	17.60	<0.5	<2.0	1.50	64.4
	25.0	50.0	0.40	0.13	0.8	28.6	61.3	0.10	1690	6.60	<0.5	<2.0	06.0	0.68
	59.0	41.0	0.60	0.12	0.9	30.6	144.0	0.16	1820	17.40	<0.5	<2.0	1.00	104.0
	32.0	49.0	0.60	0.15	6.0	31.0	71.9	0.11	2380	10.00	<0.5	<2.0	1.00	107.0
	23.0	59.0	0.17	0.08	0.6	14.3	45.9	0.07	2020	1.94	<0.4	<2.0	0.08	52.6
	24.0	21.0	¢0.0>	0.05	<0.5	8.4	31.1	0.02	819	2.55	<0.5	<2.0	0.15	24.6
	14.0	21.0	¢0°0>	60.0	<0.5	11.0	20.4	0.02	697	2.40	<0.5	<2.0	0.12	25.1
	44.0	23.0	0.17	0.05	0.4	10.7	52.5	0.02	903	4.02	<0.4	<2.0	60.0	31.6
	0.68	46.0	0.28	60.0	0.4	25.0	168.0	0.20	1830	9.70	<0.4	<2.0	0.16	65.5
	16.0	17.0	0.23	0.05	<0.4	14.1	34.4	0.10	1020	3.76	<0.4	<2.0	0.11	30.9
	7.0	18.0	0.10	0.07	<0.4	12.3	24.1	0.04	586	2.43	<0.4	<2.0	0.09	27.1
	29.0	23.0	0.20	0.06	<0.5	9.5	54.1	0.09	970	4.00	<0.5	<2.0	0.10	27.6
	11.0	18.0	€0°0>	0.08	<0.4	10.5	21.7	0.02	849	2.38	<0.4	<2.0	0.10	25.2
				ť	IDESTR	LPE SHR	IMP -Par	ıdalopsi	s disp	י א	MUSCILE			
B-2	36.0	66.0	0.23	0.16	0.6	13.6	53.0	0.06	1530	4.84	<0.4	<2.0	0.95	41.0
	29.0	67.0	0.17	0.15	0.6	13.8	51.7	0.13	1700	2.58	*0.0	<2.0	1.56	50.7
	17.0	54.0	0.10	0.12	0.4	13.9	33.5	0.10	1320	1.62	<0.4	5.0	0.95	42.1
	21.0	64.0	0.20	0.15	<0.4	13.0	36.2	0.15	1460	1.90	<0.4	<2.0	0.83	43.9
	21.0	57.0	0.15	0.13	0.5	13.4	33.9	0.17	1440	1.75	<0.4	<2.0	0.87	41.2

Appendix IV. Trace Metals In Shrimp and Prawns From Barkley Sound, March, 1984.

11 2

ر

2

. .

•

-е ,

- 103 -

	NZ		41.4	39.4	41.4	43.1	40.8	54.0	51.5	55.2	51.6	54.1	48.2	51.7	51.1	49.7	52.1	56.2	51.1	53.3	
	PB	tinued)	1.26	1.37	1.19	1.17	1.07	1.15	0.18	0.23	0.08	0.08	0.11	0.16	0.11	0.11	0.11	0.13	0.09	0.09	
	IN	(Con	<2.0	<2.0	<2.0	5.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	ANCREAS
	OW	MUSCLE	<1.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.5	<0.4	<0.4	<0.4	HEPATOP
-	NW	י א	1.37	1.58	1.75	2.02	1.57	2.33	1.67	1.92	1.64	1.78	1.34	1.53	1.50	2.04	2.12	2.08	1.72	2.37	י א
Page 7	MG	is disp	1210	1520	1580	1680	1380	1980	1550	1720	1420	1490	1360	1620	1490	2110	1570	1850	1350	1730	is dispē
inued:	HG	ndalops	0.07	0.28	0.14	0.02	0.26	0.19	0.04	0.07	0.14	0.06	0.09	0.02	0.09	0.04	0.02	0.0	0.14	0.02	ıdalopsi
(Cont:	ry wt.) FE	IMP Par	27.4	33.7	33.4	32.3	32.0	65.2	35.7	26.4	38.5	35.3	21.5	26.0	23.6	38.1	33.8	40.5	33.4	35.8	(MPPar
ļ	ග ආ	IPE SHR	14.5	13.1	12.3	12.5	17.9	19.6	15.3	15.0	20.4	18.7	18.6	17.5	15.5	16.7	16.6	19.3	19.2	21.5	epe Shru
	CR	SIDESTR	0.5	0.5	0.6	<0.4	0.4	0.6	0.5	0.5	0.5	0.4	0.6	0.5	<0.4	0.6	0.6	0.6	0.6	0.5	SIDESTRI
	₿	03	0.14	0.15	0.18	0.11	0.10	0.13	0.07	0.07	0.06	0.09	0.05	0.10	0.07	0.06	0.10	0.08	0.07	0.07	10
	BA		0.10	0.17	0.13	0.23	0.11	0.22	0.12	0.11	0.10	0.12	<0.08	0.12	<0 . 08	0.19	0.11	0.26	0.14	0.46	
	AS		49.0	73.0	55.0	73.0	62.0	75.0	62.0	59.0	55.0	60.0	56.0	61.0	45.0	58.0	66.0	65.0	62.0	55.0	
	AL		17.0	20.0	18.0	21.0	20.0	52.0	23.0	18.0	19.0	16.0	14.0	11.0	<4.0	28.0	22.0	26.0	28.0	25.0	

Appendix IV. Trace Metals In Shrimp and Prawns From Barkley Sound, March, 1984.

1 .

`_

a .

Station

- 104 -

B--2

0.08 134.0

2.0

0.4

695 13.90

<0.4 1050.0 113.0

0.25 31.80

92.0

38.0

•

NZ		53.4	52.9	62.5	54.8	54.8	50.1	46.9	47.5	55.1	56.1	55.7	55.2	59.9	52.2	50.9	20.5	50.1			189.0
PB		1.17	1.07	1.15	1.42	1.42	1.56	0.92	0.78	1.04	1.53	0.40	0.22	0.17	0.14	0.16	0.12	0.08		70	1.31
IN		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		ANCREAS	3.0
QW	MUSCLE	<0.4	<0.5	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.5	<0.4	<0.4	<0.4	<0.4	<0.5	<0.4		HEPATOP	1.8
NW	I	2.27	2.41	2.46	<u>1</u> .86	3.60	2.25	2.11	2.38	2.20	1.48	2.60	1.1	3.29	1.80	2.94	0.86	1.92		1	25.80
SM	Ø	1920	1900	2060	1670	2210	2110	2160	1720	1650	1750	2490	1650	1830	1870	1950	782	1860		S	1320
Ю	boreali	0.20	0.07	0.12	0.17	0.16	8.20	0.25	0.31	0.25	0.20	0.06	0.02		0.02		0.02	0.07		boreali	
y wt.) FE	ndalus	38.2	31.3	31.7	29.8	81.9	43.1	35.5	41.9	32.2	43.6	60.8	29.8	69.3	35.8	48.4	13.5	21.4		ndalus	489.0
ug/g đr CU	ume Pa	18.9	17.1	20.8	27.7	16.7	11.1	10.2	12.5	19.5	23.2	15.4	21.2	17.3	10.1	16.2	6.5	14.5		IMP Pa	020.0
CR (INK SHR	0.5	0.5	0.6	<0.4	0.6	0.5	0.6	<0.4	0.5	0.5	0.7	0.5	<0.4	0.5	0.6	0.5	<0.4		NHX XHI	0.9 2
ß	<u>ц</u>	0.26	0.13	0.13	0.13	0.14	0.20	0.12	0.12	0.13	0.16	0.05	0.04	0.08	0.07	0.08	0.05	0.08		д	34.20
BA		0.13	0.19	0.14	0.10	0.50	0.13	0.12	0.23	0.10	0.10	0.20	0.10	0.37	0.10	0.26	60.0	60.0			0.93
AS		47.0	45.0	42.0	71.0	62.0	58.0	67.0	66.0	71.0	86.0	75.0	0.06	35.0	65.0	64.0	20.0	66.0			182.0
AL		21.0	17.0	18.0	20.0	60.0	25.0	18.0	21.0	21.0	8.0	38.0	22.0	30.0	29.0	41.0	7.0	11.0			59.0
	AL AS BA CD CR CU FE HG MG MN MO NI PB ZN	AL AS BA CD CR CU FE HG MG MN MO NI PB ZN PINK SHRIMP -Pandalus borealis -MUSCLE	AL AS BA CD CR CU FE HG MG NN PB ZN AL AS BA CD CR CU FE HG MG NN PB ZN PINK SHRIMP -Pandalus borealis -MUSCLE -MUSCLE -MISCLE -MISCLE 23.4	AL AS BA CD CR CU FE HG MG NN MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 <0.4	AL AS BA CD CR CU FE HG MG MI MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 <0.4	AL AS BA CD CR CU FE HG M MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 <0.4	AL AS BA CD CR CU FE HG MG MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 <0.4	AL AS BA CD CR CU FE HG MS MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 60.4 2.00 1.17 53.4 17.0 45.0 0.19 0.13 0.5 17.1 31.3 0.07 1900 2.41 6.05 2.01 107 52.9 18.0 42.0 0.19 0.13 0.6 20.8 31.7 0.12 2060 2.46 60.4 62.0 1.07 52.9 18.0 42.0 0.14 0.13 0.6 20.1 1670 1.86 60.4 62.0 1.17 53.4 20.0 71.0 21.1 21.3 0.17 1670 1.46 60.4 62.0 1.175 62.5 20.0 52.0 0.112 2060 2.46 60.4 62.0 1.175 62.5 20.0	AL AS BA CD CR CU FE HG MI MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 <0.4	AL AS BA CD CR CU FE HG MG MI MD NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 <0.4	AL AS BA CD CR CU FE HG M MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 6.04 2.00 1.17 53.4 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.41 6.05 50.0 17.1 31.3 0.07 1900 2.41 6.05 50.1 107 53.4 17.0 45.0 0.19 0.13 0.6 20.8 31.7 0.17 1670 1.86 6.04 2.00 1.17 53.4 20.0 71.0 0.13 0.6 20.8 31.7 0.17 1670 1.86 6.04 2.00 1.17 53.4 20.0 61.0 0.13 0.6 20.8 0.17 1670 1.86 6.04 2.00 1.17 54.4 21.0 0.13 </td <td>AL AS BA CD CR CU FE HG MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 17.0 45.0 0.13 0.26 0.5 18.9 38.2 0.20 1900 2.41 60.5 20.0 1.07 52.9 17.0 45.0 0.19 0.13 0.6 20.8 31.7 0.17 1670 1.46 60.4 2.00 1.07 52.9 18.0 42.0 0.14 0.13 0.6 20.8 31.7 0.17 1670 1.86 60.4 2.00 1.07 52.9 20.0 71.0 0.10 0.13 0.6 20.8 31.7 0.17 1670 1.86 60.4 2.00 1.107 53.4 21.0 61.0 0.11 131.3 0.07 1900 2.44 60.4 2.00 1.42 54.8 21.0</td> <td>AL AS BA CD CR CU FE H5 M MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 60.4 2.0 1.17 53.4 17.0 45.0 0.19 0.13 0.55 17.1 31.3 0.07 1900 2.41 60.5 2.0 1.17 52.9 17.0 45.0 0.19 0.13 0.65 17.1 31.3 0.07 1900 2.44 2.00 1.17 52.9 18.0 42.0 0.14 0.13 0.65 17.1 31.3 0.07 1900 2.44 2.00 1.17 52.9 18.0 62.0 0.14 0.13 0.66 16.7 81.9 0.17 1670 1.46 2.00 1.17 52.9 21.0 61.10 0.11 43.1 8.20 21.10 1.42 54.8</td> <td>AL AS BA CD CR CUG/g dry wt.) AL AS BA CD CR CU FE H5 M5 M0 N1 PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.41 60.5 2.0 1.17 53.4 17.0 45.0 0.19 0.13 0.5 17.1 31.3 0.07 1900 2.41 60.5 50.1 52.9 10.7 52.9 18.0 42.0 0.14 0.13 0.6 20.0 11.1 43.1 8.0 2.41 60.5 50.1 10.7 52.9 10.7 52.9 20.0 71.0 0.11 0.13 20.4 27.7 29.8 0.17 1670 1.96 62.0 1.42 54.8 21.0 61.0 0.11 43.1 8.20 21.16 2.20 1.42 54.8 54.8 25.0<!--</td--><td>AL AS BA CD CB GU FE HG MS MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 <0.4</td> <2.0</td> 1.17 53.4 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 <0.4	AL AS BA CD CR CU FE HG MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 17.0 45.0 0.13 0.26 0.5 18.9 38.2 0.20 1900 2.41 60.5 20.0 1.07 52.9 17.0 45.0 0.19 0.13 0.6 20.8 31.7 0.17 1670 1.46 60.4 2.00 1.07 52.9 18.0 42.0 0.14 0.13 0.6 20.8 31.7 0.17 1670 1.86 60.4 2.00 1.07 52.9 20.0 71.0 0.10 0.13 0.6 20.8 31.7 0.17 1670 1.86 60.4 2.00 1.107 53.4 21.0 61.0 0.11 131.3 0.07 1900 2.44 60.4 2.00 1.42 54.8 21.0	AL AS BA CD CR CU FE H5 M MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 60.4 2.0 1.17 53.4 17.0 45.0 0.19 0.13 0.55 17.1 31.3 0.07 1900 2.41 60.5 2.0 1.17 52.9 17.0 45.0 0.19 0.13 0.65 17.1 31.3 0.07 1900 2.44 2.00 1.17 52.9 18.0 42.0 0.14 0.13 0.65 17.1 31.3 0.07 1900 2.44 2.00 1.17 52.9 18.0 62.0 0.14 0.13 0.66 16.7 81.9 0.17 1670 1.46 2.00 1.17 52.9 21.0 61.10 0.11 43.1 8.20 21.10 1.42 54.8	AL AS BA CD CR CUG/g dry wt.) AL AS BA CD CR CU FE H5 M5 M0 N1 PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.41 60.5 2.0 1.17 53.4 17.0 45.0 0.19 0.13 0.5 17.1 31.3 0.07 1900 2.41 60.5 50.1 52.9 10.7 52.9 18.0 42.0 0.14 0.13 0.6 20.0 11.1 43.1 8.0 2.41 60.5 50.1 10.7 52.9 10.7 52.9 20.0 71.0 0.11 0.13 20.4 27.7 29.8 0.17 1670 1.96 62.0 1.42 54.8 21.0 61.0 0.11 43.1 8.20 21.16 2.20 1.42 54.8 54.8 25.0 </td <td>AL AS BA CD CB GU FE HG MS MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 <0.4</td> <2.0	AL AS BA CD CB GU FE HG MS MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 <0.4	AL AS BA CD CB CU FE HG MS MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.17 2.0 1.17 53.4 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.27 40.4 2.0 1.17 53.4 17.0 45.0 0.19 0.13 0.6 20.8 31.7 0.12 2060 2.46 40.4 2.0 1.17 53.4 20.0 71.0 0.10 0.13 0.6 20.8 0.17 1670 1.86 40.4 2.0 1.17 53.4 25.0 50.1 90.1 10.0 2.0 1.07 2.0 1.17 53.4 26.0 52.0 0.13 0.6 20.8 0.17 1670 1.86 4.4 2.0 1.42 54.8 26.0 52.0	AL AS BA CD CB CU FE HG MG MI PB ZM 21.0 47.0 0.13 0.26 CJ FE HG MG MI MI PB ZM 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.41 CD 7.00 1.17 53.4 17.0 45.0 0.19 0.13 0.5 17.1 31.3 0.07 1900 2.41 CD 52.9 18.0 42.0 0.13 0.5 17.1 31.3 0.07 1900 2.41 CD 72.0 1.17 53.4 17.0 0.10 0.13 0.6 20.6 1.46 62.6 1.17 53.4 18.0 62.0 0.14 2.0 18.0 2.10 1.42 54.4 54.4 18.0 61.1 43.1 8.20 2.25 0.44 2.00 1.42<	AL AS BA CD CR Ug/g dry wt.) 21.0 A7.0 0.13 0.26 C4 E H5 M5 M0 M1 PB ZM 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.2.7 <0.4	AL AS BA CD CU FE H3 MN MO NI PB ZN 21.0 47.0 0.13 0.26 CJ FE H3 MN MO NI PB ZN 21.0 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.27 60.4 2.0 1.17 52.9 117.0 45.0 0.13 0.65 17.1 31.3 0.07 1900 2.41 60.5 52.6 1.17 52.9 20.0 113 0.64 20.7 1990 2.41 60.7 6.4 2.00 1.17 52.9 20.0 113 0.64 20.7 12.9 0.17 160.7 2.06 1.47 53.4 21.0 65.0 0.13 0.65 10.1 43.1 60.1 60.6 54.4 50.1 1.47 54.8 21.0 11.0 0.11 43.1 <	AI AS BA CD CR Ug/g dry wt.) FIL AS BA CD CR CU FT H3 M3 M3	M. AS BA CD CB/4 WE. HG MG MI MD NI PB ZN 210 47.0 0.13 0.2 CR CU FE HG MI MD NI PB ZN 210 47.0 0.13 0.26 0.5 18.9 38.2 0.20 1920 2.44 6.04 2.01 1.07 25.9 210.0 45.0 0.13 0.5 17.1 31.3 0.07 1900 2.44 6.04 2.01 1.07 25.9 210.0 42.0 0.14 0.13 0.6 2.08 31.7 0.17 1670 1.86 6.04 2.01 1.07 25.9 210.0 62.0 0.13 0.6 2.08 31.7 0.11 6.01 1.44 2.00 1.44 2.01 1.47 54.8 210.0 62.0 0.13 0.6 2.17 31.3 0.07 1.46

Appendix IV. Trace Metals In Shrimp and Prawns From Barkley Sound, March, 1984. (Cruttinued: Dare R)

۰.

Station

- 105 -

B-2

ì

د

:

-

۶

÷

		NZ		44.9	43.5	49.0	44.1	50.6	57.9	55.3		149.0	119.0	122.0	207.0	143.0
		PB		1.19	1.25	1.13	1.13	0.12	0.11	0.13		1.50	0.50	1.90	1.80	0.60
984.		IN		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	ANCREAS	6.0	15.0	7.0	15.0	8.0
March,]		QW	MUSCLE	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	HEPATOP	1.0	0.9	3.0	3.4	1.5
Sound, 1	-	MM	·	1.95	1.17	1.15	1.11	1.05	1.20	1.82	I	15.80	12.40	13.30	25.30	18.60
arkley	Page 9	MG		1580	1650	1600	1620	1620	1630	1750		670	660	1620	1260	680
From B	inued:	HG	Seros	0.03	0.0	0.18	0.10	0.15	0.28	0.12	ceros				0.20	I
Prawns	(Cont:	ry wt.) FE	s platy	17.1	25.6	16.7	13.4	21.2	24.5	20.8	s platyc	642.0	290.0	490.0	920.0	722.0
imp and		(ug/g đ	Pandalu	19.0	20.5	24.8	15.1	15.9	21.4	20.8	Pandalus	858.0	498.0]	792.0	865.0	536.0
In Shr		ų	PRAMN -1	0.6	0.5	0.6	0.5	0.5	0.4	0.5	PRAMN -1	<1.0	1.4	<1.0	1.4	6.0
Metals		පි	-	0.14	0.15	0.15	0.15	0.05	0.07	0.04	Η	6.20	7.60	6.30	10.50	5.90
Trace		BA		0.13	0.08	<0.08	0.10	0.08	60.0	0.12		0.60	0.20	0.30	0.60	0.30
dix IV.		AS		119.0	57.0	57.0	42.0	73.0	113.0	65.0		60.0	70.0	40.0	88.0	92.0
Appen		AL		10.0	10.0	8.0	0.6	7.0	8.0	11.0		10.0	25.0	30.0	30.0	13.0

- 106 -

•

÷....

•

Å

Station

B-2

APPENDIX V

TRACE METALS IN FISH AND CLAMS FROM QUATSINO SOUND, MARCH, 1984

• _

.

Station														
	AL	AS	BA	ß	CR	B	(ug/g FE	dry wt. HG) MG	NW	QW	IN	PB	ZN
				ц	EX SOLE	: -Glypt	tocephal	lus zach	irus	ı	-MUSCLE			
08-2 08-	<4.0 <5.0 22.0	183.0 121.0 49.0	0.14 0.11 0.17	0.14 0.13 0.12	0.6 0.8 0.7	0.4 2.3 0.7	9.1 11.3 39.3	0.10 0.09 11.0	1500 1270 1370	1.09 1.33 1.90	<0.4<0.4<0.4	<2.0<2.0<2.0	1.48 <2.00 1.22	14.5 20.4 16.6
				ц	EX SOLE	: -Glypt	tocephal	us zach	irus	·	-LIVER			
QS-2	14.0	162.0	<0.08	0.80	0.7	5.7	352.0	0.12	852	5.97	<0.4	<2.0	<2.00	104.0
				Щ	TATHEAD	- JIOS (-Hippogl	ossoide	s ellas	- uopo	-MUSCLE			
QS-2	<4.0	42.0	0.10	0.14	0.7	1.1	16.8	0.39	1450	0.93	<0.4	<2.0	<2.00	18.9
				CO	I.ENDER	SOLEI	Jopsett	a exili	ß	·	MUSCLE			
QS-2	7.0 <4.0	36.0 44.0	0.0 €0.08	0.12 0.12	0.7 0.5	0.8 0.5	40.8 8.9	0.15 0.19	1380 1330	0.83 0.65	<0.4 <0.4	<2.0 <2.0	1.90 2.03	14.6 14.1
				Ц	OVER SC	LE -Mic	crostom	us pacif	icus	1	HUSCLE			
QS-2	< 4. 0	236.0	0.15	0.14	0.4	<0.4	9.6	0.22	1220	1.33	<0.4	<2.0	1.64	15.0
	<4.0 <4.0	168.0 47.0	0.09 •0.08	0.19	۲.0 ۲.0	0.6 1.6	16.5 9.6	0.29 0.14	1240 1100	0.90 0.66	<0.4 <0.4	<2.0 <2.0	1.71 <2.00	16.1 16.3
	<4.0	170.0	<0.08	0.11	0.6	0.5	8.4	0.17	1190	0.74	<0.4	<2.0	1.63	15.9
	<4.0	45.0	0.49	0.19	0.7	1.0	14.2	0.13	1360	3.70	<0.4	<2.0	<2.00	26.9
	<4.0 <4.0	38.0 146.0	0.19	0.15	0.5	2.9 4.2	10.3 10.6	0.33 0.23	1350 1210	2.20 0.56	<0.4 <0.4	<2.0 <2.0	<2.00 9.00	18.3 16.5

- 108 -

•

.

•____

á,

	NZ		160.0 191.0	143.0	184.0	227.0	140.0		80.5	64.0	68.3	54.8	83.5	65.6		18.9		63.7
	БВ		<2.00 <2.00	1.47	<2.00	<2.00	<2.00		0.90	1.40	1.10	0.70	0.90	1.10		1.60		1.24
	ÎN		<2.0 <2.0	<2.0	4.0	<2.0	<2.0		<2.0	<2.0	7.0	<3.0	<3.0	<4.0		<2.0		<2.0
1984.	QW	-LIVER	<0.4 <0.4	<0.4	<0.5	<0.5	<0.4	GILL	<0.5	<0.5	<0.5	<0.7	<0.7	¢0.9	TIDSUM	<0.4	GILL	<0.4
March,	NW	I	5.57 4.55	3.06	3.89	3.70	3.68	ţ	21.80	17.90	17.80	11.80	16.60	8.60	I	1.24	1	10.80
, Sound,	, MG	E i cus	596 1070	400	566	520	468	ficus	1670	1640	1700	1870	1610	1130		1210		842
Quatsinc e 2)	dry wt. HG	us pacif	0.20 0.52	0.09	0.08	0.08	0.07	us pacit	0.06	0.03	0.03				olliei	0.91	olliei	0.60
s From (d: Page	(ug/g FE	crostom	1570.0 2100.0	624.0	1910.0	1570.0	1180.0	crostom	247.0	784.0	378.0	610.0	341.0	383.0	lagus co	12.5	lagus cc	272.0
nd Clam ontinue	CU	JLE -Mio	35.0 18.7	31.3	30.9	35.4	34.2	oleMi	6.0	4.7	4.2	4.2	6.1	5.9	-Hydro	6.0	-Hydro	4.7
Fish au (C	ĸ	DOVER S	0.6 0.7	0.5	0.8	0.5	0.4	DOVER S	1.3	1.1	0.8	1.1	1.5	1.5	RATFISH	6.0	RATFISH	0.5
tals In	9	-	3.20 0.40	0.50	3.90	3.30	2.40		0.15	0.14	0.18	0.17	0.18	0.16	-	0.15	-	0.37
race Met	BA		<0.08 0.17	<0.08	<0.08	<0 . 08	<0 . 08		<0 . 08	<0.08	0.50	0.60	0.90	0.30		<0.08		0.11
х V. Т	AS		17.0 38.0	13.0	43.0	0.0	10.0		14.0	12.0	7.0	7.0	0.6	17.0		54.0		21.0
Appendi	AL		6.0 13.0	<4.0	<5.0	<5.0	<4.0		39.0	249.0	123.0	142.0	120.0	43.0		<4. 0		<5.0
	Station		QS-2						QS-2							QS-2		QS-2

•

,

.

Þ

۰,

	ZN		28.5		13.9		204.0		78.6		12.2		38.4	
	PB		<2.00		<2.00		1.53		1.24		14.00		0.93	
	IN		<2.0		<2.0		<2.0		<2.0		<2.0		<2.0	`
1984.	Q	MUSCLE	<0.4	MUSCLE	<0.4	LIVER	<0.4	GILL	<0.4	MUSCLE	<0.4	LIVER	<0.4	
March,	NW	cifica-	0.88	Т	0.61	T	5.65	т	4.04	Т	0.83	Т	2.76	
Sound, e 3)	WG	psis pa	1800	uctus	1550	uctus	320	uctus	1450		1180		216	
uatsino d: Pag	dry wt. HG	-Lycodo	0.20	us prod	0.23	us prod	0.04	us prod		hina	0.64	rhina	60.0	
: From C Continue	(ug/g FE	TUOQLE	26.3	ler lucci	10.6	ler lucci	127.0	erlucci	366.0	-Raja r	15.1	-Raja	341.0	
id Clams (C	B	ILLED E	1.4	HAKE	2.3	HAKE -	25.7	HAKE -	5.0	SKATE	0.9	se skate	27.5	
Fish an	ß	ILACK-BE	0.6	ACIFIC	0.7	ACIFIC	<0.4	ACIFIC	0.9	ONGNOSE	0.5	SON DNO	<0.4	
als In	8	ш	0.19	щ	0.17	н	0.45	ц	0.17	I	0.16	П	06.0	
race Met	BA		5.02		<0.08		<0.08		0.13		<0 . 08		<0.08	
Ę. , v	AS		45.0		0.6		7.0		7.0		182.0		82.0	
Appendiz	AL		12.0		<4.0		<4. 0		<5.0		<4.0		< 4. 0	
	Station		QS2		QS-2		QS-2		QS-2		QS-2		QS-2	

- 110 -

۶ •

-

٦,

,

	Appendi	х V. Т	race Met	tals In	Fish au	nd Clams (C	From Continue	Natsino d: Pag	sound, e 4)	March,	1984.			
Station	AL	AS	BA	8	CR	ß	(ug/g FE	dry wt. HG) MG	NW	QW	IN	PB	NZ
				>	VALLEYE	NOTIO	-Thera	igra cha	lcogram	T E	MUSCLE			
QS-2	<4.0 <4.0	20.0 88.0	0.14 0.15	0.35 0.35	0.7	1.5	15.3 12.5	0.19 0.34	1540 1490	1.01 0.60	<0.4 <0.4	<2.0 <2.0	<2.00 1.15	22.2 16.6
				4	WALLEYE	POLLOCK	-Thera	ıgra cha	lcogram		LIVER			
QS-2	<4.0 16.0	60.0 13.0	<0.08 <0.08	0.19 0.20	0.5 <0.4	16.3 33.7	54.6 75.4	0.05 0.03	540 148	4.81 3.46	<0.4 <0.4	<2.0 <2.0	1.22 <2.00	61.9 51.4
				~	VALLEYE	NOOLIOG	(-Thera	ıgra cha	lcogram	T 10	TIID			
QS-2	41.0 9.0	17.0 6.0	1.50 0.20	0.20 0.13	6°0	9.9 7.0	356.0 438.0		1980 930	5.30 3.30	<0.5 <0.5	<2.0 <2.0	1.60 0.80	112.0 87.0
				~	NUSSEL .	-Yoldia	•dds			M.	USCLE			
083 0	1650.0 1260.0 1640.0 980.0	60.0 77.0 90.0 20.0	8.90 8.70 6.10 16.60	0.60 0.80 2.00 0.60	3.0 2.5 3.0	811.0 3 102.0 2 575.0 2 921.0 1	080.0 490.0 840.0 570.0	0.46 0.47 0.26 0.44	4700 5240 6710 3960	51.80 26.90 45.60 27.30	<1.0 1.3 <2.0 <1.0	6.0 5.0 6.0 4.0	0.30 2.50 6.10 2.50	199.0 406.0 207.0 152.0

- 111 -

.

•

:

•

¥

۴

APPENDIX VI

TRACE METALS IN SHRIMP FROM QUATSINO SOUND, MARCH, 1984

APPANDIX VI TISSLE MEINL LEVELS QUESIND SOUD, MACH 1994

Ø.

Å

APPANIX VI (Critined)

SIPITON	M.	S Y	新	θ	g	9	H	SH	ЯG М	W	Ð	IN	æ	N
SIDESIRI	E SRIM	- Parotalic	psis dis	par – M.E	ME									
Q-2														
	17.0 18.0	50.0 50.0	0.15 0.19	0.0	0.6 0.6	14.8 13.2	41.9 48.7	0.27 0.14	1840 2020	2.23 2.23	0.4 4.0	<2.0 <2.0	0.08 0.08	55.6 56.3
	10.0	20.02	0.15	0.08	0.5	11.5	25.0	0.18	1760	2.62	0.4	2.0	0.0	48.1
	9.0 18.0	63.0 27.0	0.10	0.0	0.5	10.3 13.9	39.6 34.0	61.0 60.0	2170	2, 2 0 2, 8 2	0.0 4.0	0.0 0.0	0.08	2.1
	0.21	39.0	EL-0	0.06	0.5	12.5	24.1	0.2	1740	1.19	0.4	2.0	0.12	46.6
	0.8	5.0 0.6	\$ 9.8	800	ດ ເມ	0.6	0.1 1	0.14	84	1.43	0. 4	0.0	8.0	47.4
	16•0 4-0	0.0 7 7 7	10 10 10	000	0 C	14.0 13.0	14.9	500		91 - 1	4.0 4.4	0.0		4. 4. 4. 4.
	20.0	7.0	0.10	0.0	0.5	12.0	21.6	0.09	981	2.91	40.4	2.0	0.08	50.1
SUPERIN	THE SHRIME	- Pendalic	aif) eiag	par – HFF	MICHANC	SERVE					x			
5														
	27.0 9.0 37.0	154.0 66.0 186.0	0.40	0.33	0.8 0.7 1.0	1910.0 808.0 2040	188.0 59.6 190.0	0. % 0.47	11.70 500 1410	20.30 7.80 18.50	2.1 0.9 1.9	5.0 5.0	0.21 0.00	160.0 61.2 161.0
AHS MUID	MP – Pand	alus bore	M - silæ	UBCLE										
Q-2														
	<20.0	30.0	0:0	06.1	19.0	23.0	0.621		1360	2.10	3.0	6. 0	0.50	28.7
	11.0	46.0	0.20	0.15	<u></u> ،5	27.4	20.2	0.09	2280	1.10	0. 5	2.0	1.10	37.1
	5. 0	25.0	0 .10	0.31	ດ	6.21	6.6	0.33	8	0.40	0. 5	2.0	0.90	18.4
	12.0 20.0	88.0 8	0.15	0.36 0.35	0.5 1.4	30.4 29.7	101.0 98.4	0.07	88 88	1. 2 8 3.60	0.5 0.7	Q.0 Q.0	0.10	49.0 83.5
													CONTINUE	 D

*

•

4,

;

<u>,</u>1

(Contrinued)	
APPENDIX VI	

				4 2.0 1.36 40.1	4 2.0 1.36 40.1 4 2.0 1.05 38.0	4 2.0 1.36 40.1 4 2.0 1.05 38.0 4 2.0 0.71 34.9	4 2.0 1.36 40.1 4 2.0 1.05 38.0 4 2.0 0.71 34.9 4 2.0 0.71 34.9 5 2.0 0.71 34.9	4 2.0 1.36 40.1 4 2.0 1.05 38.0 4 2.0 1.05 38.0 4 2.0 0.71 34.9 4 2.0 0.91 34.4 4 2.0 1.05 35.4	4 2.0 1.36 40.1 4 2.0 1.05 38.0 4 2.0 0.71 34.9 4 2.0 0.91 34.4 4 2.0 1.06 35.4 5 2.0 1.05 35.4 5 2.0 1.37 37.7	4 2.0 1.36 40.1 4 2.0 1.05 38.0 4 2.0 0.71 34.9 4 2.0 0.91 34.4 4 2.0 1.05 35.4 4 2.0 1.05 35.4 5 2.0 1.37 37.7 4 2.0 0.25 18.6	4 2.0 1.36 40.1 4 2.0 1.05 38.0 4 2.0 0.71 34.9 4 2.0 0.91 34.4 4 2.0 1.05 36.0 4 2.0 0.91 34.3 5 2.0 1.05 35.4 4 2.0 1.37 37.7 5 2.0 1.37 37.7 5 2.0 1.37 37.7 5 2.0 1.37 37.7 5 2.0 1.37 37.7 6 0.25 1.37 37.7 7 2.0 1.37 37.7	4 2.0 1.36 40.1 4 2.0 1.05 38.0 4 2.0 0.71 34.9 4 2.0 0.91 34.4 4 2.0 0.91 34.9 4 2.0 0.105 35.4 5 2.0 1.05 35.4 4 2.0 1.37 37.7 5 2.0 1.37 37.7 6 2.0 1.37 37.7 7 2.0 0.25 18.6 7 2.0 0.78 39.4 8 2.0 0.78 39.4	4 2.0 1.36 40.1 4 2.0 1.05 38.0 4 2.0 0.71 34.9 5 2.0 0.91 34.4 5 2.0 1.05 34.3 4 2.0 0.91 34.9 5 2.0 1.05 34.4 6 2.0 1.37 37.7 4 2.0 0.25 18.6 4 2.0 0.28 37.7 4 2.0 0.28 37.7 4 2.0 0.28 38.4 5 0.20 1.37 37.7 6 2.0 0.28 18.6 7 2.0 1.37 37.3 7 2.0 1.38 35.2 8 50.3 50.3 50.3	4 2.0 1.36 40.1 4 2.0 1.05 38.0 4 2.0 0.71 34.9 5 2.0 0.91 34.4 4 2.0 0.91 34.9 5 2.0 1.05 35.4 4 2.0 1.37 37.7 4 2.0 0.25 18.6 4 2.0 1.37 37.7 4 2.0 1.37 37.7 5 2.0 1.37 37.7 4 2.0 1.37 37.7 5 2.0 1.37 37.7 4 2.0 1.37 37.7 5 2.0 1.37 37.7 6 2.0 1.37 37.7 7 2.0 1.37 37.7 3 1.0 1.38 30.3 3 1.0 1.28 30.3 3 1.44 48.1 48.1	4 2.0 1.36 40.1 4 2.0 1.36 40.1 4 2.0 0.71 34.9 5 2.0 0.91 34.4 4 2.0 1.05 35.4 4 2.0 0.91 34.9 5 2.0 1.05 35.4 4 2.0 1.37 37.7 4 2.0 1.37 37.7 4 2.0 1.37 37.7 5 2.0 1.37 37.7 4 2.0 1.37 37.7 3 4.0 0.05 18.6 5 30.4 1.33 37.7 3 4.0 1.38 35.3 3 4.0 1.28 35.3 3 4.0 1.33 35.3 4 2.0 1.38 35.3 5 1.31 48.1 48.1	4 2.0 1.36 40.1 4 2.0 1.05 38.0 4 2.0 0.71 34.9 4 2.0 0.91 34.4 4 2.0 0.91 34.4 4 2.0 0.91 34.4 4 2.0 1.05 35.4 4 2.0 1.37 37.7 4 2.0 1.37 37.7 5 2.0 1.37 37.7 5 2.0 1.37 37.7 5 2.0 1.37 37.7 5 2.0 1.38 35.2 5 2.0 1.38 35.2 5 2.0 1.38 35.2 5 2.0 1.38 35.2 5 2.0 1.38 35.2 5 2.0 1.38 35.2 5 2.0 1.38 35.2 5 3.4 3.5 35.2 6 1.38 35.2 35.2 7 1.3	4 2.0 1.36 40.1 4 2.0 1.05 34.9 4 2.0 0.21 34.9 5 2.0 0.21 34.9 4 2.0 0.21 34.9 5 2.0 0.21 34.9 4 2.0 1.05 34.4 4 2.0 1.37 37.7 4 2.0 1.37 37.7 4 2.0 1.37 37.7 5 2.0 1.37 37.7 3 1.0 1.37 37.7 3 1.0 1.38 36.5 3 1.0 1.38 36.3 5 2.0 0.30 51.2 5 2.0 0.30 51.2 6 0.13 46.5 55.3	4 2.0 1.36 40.1 4 2.0 1.05 34.9 4 2.0 0.71 34.9 4 2.0 0.71 34.9 5 2.0 1.05 34.4 4 2.0 1.05 34.4 4 2.0 1.37 34.3 4 2.0 1.37 34.4 4 2.0 1.37 34.4 4 2.0 1.37 34.4 4 2.0 1.37 34.4 5 2.0 1.37 34.4 5 2.0 1.37 34.4 6 2.0 1.38 35.2 5 2.0 1.38 36.3 5 2.0 1.38 36.3 6 2.0 1.38 36.5 7 2.0 0.13 46.5 6 0.13 46.5 35.5 7 0.38 52.5 52.5	4 2.0 1.36 40.1 4 2.0 1.05 38.0 4 2.0 0.71 34.9 5 2.0 0.71 34.9 4 2.0 0.71 34.9 4 2.0 0.71 34.9 4 2.0 1.05 34.4 4 2.0 1.37 34.3 4 2.0 1.37 34.3 4 2.0 1.37 34.3 4 2.0 1.37 34.3 5 2.0 1.38 35.2 5 2.0 1.38 35.2 6 1.31 48.5 35.2 6 0.131 48.5 35.2 7 0.08 53.5 35.5 6 0.08 53.5 51.2 7 0.08 55.5 52.5 8 0.08 52.5 52.5	4 2.0 1.36 40.1 4 2.0 1.36 40.1 4 2.0 0.71 34.9 4 2.0 0.71 34.9 4 2.0 0.71 34.9 4 2.0 0.71 34.9 4 2.0 0.71 34.9 4 2.0 0.71 34.9 4 2.0 0.28 34.4 4 2.0 0.28 34.4 4 2.0 0.28 34.4 4 2.0 0.28 35.2 4 2.0 0.28 35.2 4 2.0 0.30 35.2 5 2.0 0.38 35.2 4 2.0 0.30 35.2 5 2.0 0.38 35.2 6 2.0 0.38 35.2 7 2.0 0.38 35.2 8 2.0 0.38 35.2 8 2.0 0.38 35.2 8 3.3	4 20 1.36 40.1 4 20 1.36 40.1 4 20 0.21 33.0 4 20 0.21 34.9 4 20 0.21 34.9 4 20 0.21 34.9 4 20 0.21 34.9 4 20 0.23 34.4 4 20 0.28 34.4 4 20 0.28 34.4 4 20 0.28 34.4 4 20 0.28 35.2 4 20 0.38 35.2 4 20 0.38 35.2 4 20 0.38 35.2 4 20 0.38 35.2 5 20 0.38 35.2 4 20 0.38 35.2 5 20 0.38 35.2 4 20 0.38 35.2 5 20 0.38 35.2 6 36.6 36.5	4 2.0 1.36 40.1 4 2.0 1.36 40.1 4 2.0 0.91 34.9 4 2.0 0.91 34.9 4 2.0 0.91 34.9 4 2.0 0.91 34.9 4 2.0 0.25 1.37 37.7 4 2.0 0.28 1.37 37.7 4 2.0 0.28 1.37 37.7 4 2.0 0.28 1.37 37.7 4 2.0 0.138 35.3 37.7 4 2.0 0.138 35.3 37.7 4 2.0 0.138 35.3 35.3 4 2.0 0.138 35.3 35.5 4 2.0 0.030 51.2 50.2 5 2.0 0.038 51.2 50.2 5 2.0 0.038 51.2 50.2 6 2.0 0.038 52.5 50.2 7 0.038 50.2 <td< th=""></td<>
			.87 0.4		.01 0.4	10. 86 4. 4. 4. 4. 4.	0.86.85 4.00 8	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	10.0 10.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	99999999999999999999999999999999999999	99999955556869 9999999999999999999999999	999999757788698 999999999999999 19999999999999999	999999757889888 4449999999999988	999999779869889	9999997576869868698 44446999999999999999999999999	999999555588688888888888888888888888888	999995555886888888888888888888888888888	9999955558868889888888 44446999999999999999999999	999855558868888888888888888888888888888	999855668666666666666666666666666666666
			30 2.6		80 2.0	8 8 2 0	888 1400	8888 2.4.1.1	222000 24112 21212	8888888 99999988												
			6 158		1 1 1 1	1 2 1 2 1 2 1 2 1 2	1 2 0 1 2 2 1 2 0	99988 99888	9999999 999099	99988998 99988998	- X O = = & Ø	99999999999999999999999999999999999999	999233989 9923398989	22222222222222222222222222222222222222		- 2 0 1 1 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0	- 4 0 4 4 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- 4 9	- 4 9 4 4 8 8 9 7 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- A O J J A O O O O O O O O O O O O O O O	+ X O J J A Q Q A G A G A C A C A O O O	- A O J J A O O O O O O O O O O O O O O O
			0.1	Ċ	5	0.2	0.00	121200	0.0000	000000	10100000	0000000 000000000000000000000000000000	10000000000000000000000000000000000000	00000000000000000000000000000000000000		12122220000000000000000000000000000000	12100000000000000000000000000000000000	000000000000000000000000000000000000000	20000000000000000000000000000000000000	22222222222222222222222222222222222222		
1			69.2	5	たう	۳.5 ۲.5	5.3 19.9	5.3 19.9 9.1	5.3 5.3 9.1 61.4	5.3 5.3 9.1 61.4 18.9	5.3 9.1 18.9 18.9	2.3 9.1 18.9 11.9 12.2 8.9	2.3 9.1 12.2 12.2 16.8 16.8	2.3 9.1 9.1 9.1 9.1 9.1 12.0 12.0 12.0 12.0	2.3 9.1 9.1 12.2 12.2 142.0 142.0 8.48 64.8	2.3 5.3 9.1 9.1 9.1 9.1 1.2 2 8.9 1.1 3 1.1	20.3 19.9 19.9 19.9 19.0 19.9 19.9 19.9 19.9	20.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	2013 2013 2013 2013 2013 2013 2013 2013	2011 2012 2013 2013 2013 2013 2013 2013	2010 2010 2010 2010 2010 2010 2010 2010	2010 2010 2010 2010 2010 2010 2010 2010
			10.6			6.7	6.7 7.9	6.7 9.2	6.7 9.2 8.8	6.7 7.9 9.2 8.8 11.6	6.7 9.2 8.8 9.8 9.8	6.7 9.2 9.8 9.8 9.8 9.8 6.4	6.7 9.2 9.8 9.8 9.8 9.8 15.5	6.7 9.2 9.8 9.8 9.8 9.8 1.6 10.1	6.7 9.2 9.8 9.8 9.8 9.8 10.1 10.1	6.7 9.2 9.8 9.8 9.8 9.8 0.1 10.1 10.1 12.3	6.7 9.8 9.8 9.8 9.8 9.8 10.1 10.1 10.8 10.8 7.6	6.7 9.2 9.8 9.8 10.1 12.3 12.3 9.7 9.7	6.7 9.2 9.8 9.8 10.1 10.8 12.3 9.1 9.1	9.2 9.2 9.4 9.1 10.1 10.8 10.8 9.1 9.1 8.5 8.5	6.7 9.2 9.2 10.1 10.8 12.3 9.1 1.8 9.1 1.8 11.8	6.7 6.7 9.8 9.8 10.1 10.8 9.1 7.6 9.1 7.6 9.1 12.3 12.3
			0.6	0.4		0.4	0.4 0.4	0.0 4.0 4.4	0.0 4.0 5.0	0.0 0.5 0.5 0.5	4.0 0 0 0 0 4.4 4 7 0 4 0	4.0000000 4.0000000 4.4000000	4.000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	000000000000000 444004400000000	000000000000000 44000440000000100	0000000000000 4.0004.0000000 4.000000000	0 4 4 4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	UBCE		0.14	0.15		0.12	0.12 1.13	0.13 1.13 0.13	0.12 1.13 0.13	0.12 0.13 0.28	0.12 0.11 0.02 0.02 0.03 0.03	0.02 0.13 0.03 0.00 0.00	0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0.12 1.13 0.13 0.13 0.13 0.13 0.13	0.12 0.13 0.13 0.10 0.12 0.12 0.13 0.13	0.12 0.13 0.13 0.10 0.12 0.14 0.15 0.15 0.16	0.12 0.13 0.10 0.10 0.12 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00	0.12 0.13 0.13 0.14 0.14 0.15 0.16 0.10 0.10 0.10 0.10	0.12 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.12 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.12 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.12 0.13 0.13 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
	M - sila		0.23	0.18		\$ 8	0.LI 0.	0.11 0.11 0.08	0.0 0.1 1.0 1.0 1.0 1.0 0.0 1.0	0.11 0.12 0.14 0.12 0.13	0.08 0.14 0.12 0.12 0.11	0.08 0.00 0.01 0.02 0.02 0.02 0.02 0.02 0.02	0.11 0.12 0.11 0.12 0.12 0.12 0.12 0.12	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	00000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	00000000000000000000000000000000000000	0.000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000
1	alus bora		55.0	50.0		39.0	39.0 43.0	39.0 43.0 43.0	39.0 43.0 72.0	39.0 43.0 72.0	39.0 43.0 72.0 12.0 41.0	80.0 43.0 43.0 43.0 41.0 41.0 41.0	88.0 87.0 87.0 85.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0 9	88.0 68.0 69.0 69.0 69.0 69.0 69.0 69.0 69.0 69	88.0 87.0 88.0 88.0 88.0 88.0 88.0 88.0	88.0 88.0 88.0 89.0 89.0 80.0 80.0 80.0	8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	88.0 88.0 88.0 88.0 88.0 88.0 88.0 88.0	8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,	8, 67 67 77 77 77 77 77 77 77 77 77 77 77	8, 67 6, 77 77 77 77 77 77 77 77 77 77 77 77 77	8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
R	UMP - Pand		31.0	34.0		0.45	10.01	10.0 5.0	44.0 5.0 31.0	4.0 5.0 31.0 16.0	4.0 5.0 31.0 16.0	4.0 10.0 31.0 16.0 19.0	3.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	31.0 10.0 15.0 19.0 19.0 19.0 18.0	30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0	2000 2000 2000 2000 2000 2000 2000 200	200 200 200 200 200 200 200 200 200 200	20.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	800 800 800 800 800 800 800 800 800 800	80.0 80.0	2000 2000 2000 2000 2000 2000 2000 200	80.0 80.0
NDLINIS	HES YNIG	0 -3																				

- 115 -

APPENDIX VII

TRACE METALS IN FISH FROM SURF INLET, MARCH, 1984

à

Appendix	VII. Tr:	ace Meta	ls In (clams ar	d Fish	From S	urf Inl	et, Marc	zh, 198					
Station	AL	AS	BA	8	(mg/ CR	g đry v CU	wt.) FE	HG	MG	NW	Q	IN	РВ	ZN
				ш	alue mus	SEL	ytilus .	edulis		·	-MUSCLE			
Pilings	150.0	20.0	1.70	5.00	2.0	13.0	489.0	0.20	3530	13.80	<2.0	0.6>	1.10	98.2
	220.0	30.0	1.40	4.00	3.0	18.0	588.0	<0.05	3620	12.50	<3.0	<10.0	10.00	119.0
	120.0	20.0	1.00	4.30	2.0	10.0	350.0	0.10	2620	8.30	<2.0	<8.0	8.00	106.0
	490.0	40.0	3.20	5.00	5.0	18.0	1060.0	0.20	3570	27.10	<4.0	<20.0	20.00	129.0
	140.0	20.0	1.80	4.60	3.0	13.0	441.0	0.30	3660	11.20	2.0	<8.0	8.00	93.1
	170.0	30.0	3.70	3.00	4.0	14.0	405.0	2.22	3050	8.50	3.0	<10.0	10.00	100.0
	120.0	20.0	0.80	3.50	3.0	8.0	368.0	1.40	2670	7.20	<2.0	<7.0	8.00	74.6
	80.0	10.0	0.00	4.30	2.0	0.6	5200.0	0.30	2510	28.60	<1.0	<5.0	8.00	79.0
	120.0	20.0	0.80	8.10	4.0	12.0	497.0	0.40	3250	7.40	<2.0	<6.0	13.00	83.9
	220.0	10.0	2.30	4.60	2.0	12.0	493.0	0.30	3800	21.90	<1.0	<6. 0	6.00	113.0
				ш	slute mus	SEL	ytilus	edulis		•	MUSCLE			
							1							
Rocks	0.06	10.0	0.60	4.10	2.0	11.0	311.0	0.08	3310	10.20	<1.0	<4.0	0.50	92.8
	130.0	30.0	1.10	9.00	3.0	36.0	0.669	0.25	3510	15.90	<3.0	<10.0	10.00	112.0
	110.0	10.0	1.30	3.20	2.0	23.0	314.0	0.63	3300	15.40	<1.0	<4.0	4.00	150.0
	170.0	40.0	1.00	4.00	4.0	6.0	637.0	0.40	3340	9.40	<4.0	<20.0	20.00	104.0
	142.0	18.0	1.00	7.30	2.0	6.0	667.0	0.07	3750	8.20	<0.8	<3.0	1.50	88.4
	130.0	23.0	0.90	9.30	2.8	10.7	664.0	0.50	3760	7.60	<0.8	3.0	3.00	150.0
	200.0	30.0	1.60	11.30	4.0	12.0	836.0	0.20	4250	11.30	<2.0	<7.0	7.00	86.8
	180.0	30.0	1.10	8.00	4.0	14.0	405.0	0.48	2960	8.90	<3.0	10.0	10.00	94.0
	140.0	20.0	06.0	8.50	2.0	0.0	532.0	0.17	3140	8.50	<2.0	5.0	7.00	90.2
	0.06	20.0	0.00	5.60	3.0	0.0	341.0	<0.08	3660	6.10	<2.0	<7.0	7.00	92.3

- 117 -

٩

	ZN		874.0 201.0		695.0 .100.0	.210.0 580.0		39.5		112.0		189.0		17.1	
	РВ		6.00 7.00		10.00 5.00]	14.00] 5.00		2.86		1.80		2.00		1.72	
	IN		<4.0 <5.0		6.0 6.0	7.0 3.0		<2.0		<2.0		<2.0		<2.0	
	QW	AUSCLE	<2.0 <1.0	MUSCLE	<0.8 <0.8	1.3 1.9	MUSCLE	<0.4	GILL	<0.5	-LIVER	<0.5	MUSCLE	<0.4	
	NW	·	26.10 27.60	I	24.60 35.20	28.70 14.00	ł	2.35	·	5.50	•	3.90	I	0.52	
zh, 1984	Đ		5230 4590		4940 6050	5240 5080	'n	1240	ii	1140	'n	620	S	1350	
et, Marc	HG		0.09 0.05		<0.03 0.07	0.42 0.21	a jordar	1.28	a jordar	1.24	a jordar	0.41	ta exili	1.58	
urf Inle Page 2)	wt.) FE	•dds	3620.0 3300.0	•dds	3460.0 4310.0	4060.0 1980.0	Eopsetta	222.0	Eopsett	398.0	Eopsett	1330.0	Lyopset	15.1	
From Sinned:	رتا رتا	-Yoldia	80.0 263.0	-Yoldia	48.7	122.0 54.0	- JUS	7.1	- JUS	3.8	SOLE -	35.7	Sol.E -]	1.9	
nd Fish (Contin	(mg, CR	YOLDIA	4. 0 3.0	VOLDIA	3.6 3.5	3.8 2.1	PETRALE	0.5	PETRALE	0.7	PETRALE	0.6	SLENDER	0.7	
clams a	₿		2.40 4.70		1.50 1.56	1.90 1.36	—	2.30		0.17	-	24.40		0.14	
als In	BA		25.10 9.80		21.50 20.90	21.20 9.90		<0.08		06.0		0.10		<0.08	
ace Met	AS		190.0 100.0		160.0 151.0	188.0 164.0		148.0		20.0		558.0		59.0	
VII. Tr	AL		2420.0 1320.0		1720.0 2340.0	2060.0 1020.0		8.0		138.0		7.0		< 4. 0	
Appendix	Station		SI-2		SI-3			SI-2		SI-2		SI-2		SI-3	

- 118 -

:

J

:

.*

Э

	ZN		217.0		16.2		198.0		19.0		72.8		287.0		18.8 17.2
	ЪВ		1.90		1.96		1.87		2.94		2.10		00.6		3.41 8.00
	IN		<2.0		<2.0		<2.0		<2.0		<2.0		<3.0		<2.0 <2.0
	Q	LIVER	<0.5	MUSCLE	<0.4	-L.IVER	<0.4	MUSCLE	<0.4	GILL	<0.5	-LIVER	0.5	MUSCLE	<0.4 <0.4
:	NW	I	5.90	1	0.63	I	3.69	I	0.84	1	6.30	I	4.10	1	1.00 0.71
ħ, 1984	ĐW	ß	830	icus	1230	icus	489	sn	1360	SU	1270	SU	706		1550 1500
st, Marc	ŊH	a exili	1.07	us pacif	0.32	us pacif	2.64	s vetul	0.05	rs vetul	<0.02	s vetul	0.25	imbria	0.20 <0.02
urf Inle age 3)	た.) 昭	yopsett	280.0	or os tomu	14.2	crostom	830.0	arophry	56.0	Parophr	641.0	arophry	1820.0	lopoma 1	33.2 24.4
From Su tued: F	′g dry ∿ CU	SOLE -I	70.2	JLE -Mic	1.1	OLE -Mic	0.6	Sole –I	1.0	SOLE -I	3.2	SOLE -I	111.0) –Anopi	1.9 4.4
d Fish (Contir	(mg/ CR	SLENDER	0.5	DOVER SC	0.6	DOVER SC	0.5	HSTIDNE	0.6	HSITDNE	0.6	HSITISH	0.7	al ACKCOI	0.8 0.7
'lams ar	ß	10	13.50	Ц	0.18	П	12.50	Ц	0.27		0.08	Н	9.30	щ	0.30 0.27
ls In C	BA		0.10		0.16		<0 . 08		<0 . 08		0.40		<0 . 08		0.09 <0.08
ace Meta	SA		87.0		207.0		23.0		112.0		0.6		245.0		12.0 17.0
II. Tra	AL		26.0		<4. 0		6.0		7.0		47.0		23.0		<4.0 <4.0
Appendix V	Station		SI-3		SI-3		SI-3		SI-2		SI-2		SI-2		SI-2

" .

11

ı

8

- 119 -

	ZN		23.8		92.8 37.2		43.7		106.0 132.0		162.0		33.9 17.0	
	PB		2.09		5.00 2.00		2.00		1.71 1.79		2.18		2.66 2.02	
	IN		<2.0		5.0 <2.0		<2.0		<2.0 <2.0		<2.0		<2.0 <2.0	:
	Q	MUSCLE	<0.4	BILL	<0.4 <0.5	THE	<0.4	LIVER	<0.4 <0.4	LIVER	<0.4	NUSCLE	<0.4 <0.4	
	NW	Т	0.79	Ť	12.40 6.10	Ť	3.88	Т	4.28 4.46	Т	5.07	T	2.43 1.27	
n, 1984	ĐW		1580		1080 510		674		522 479		776		1180 1140	
t, Marcl	ĐH	imbria	<0.03	imbria	0.14 0.03	imbria	<0.02	imbria	0.03 0.29	imbria	0.17	lliei	1.28 0.45	
rf Inle age 4)	t.) FE	opoma f	22.3	opoma f	650.0 329.0	opoma f	225.0	opoma f	705.0 970.0	opoma f	0.060	agus co	62.3 64.4	
From Su ued: P	g dry w cu	-Anopl	2.3	-Anopl	13.3 1 4.6	-Anopl	2.9	-Anopl	312.0 45.4 2	-Anopl	42.2	-Hydrol	3.4 0.7	
d Fish (Contin	(mg/c CR	LACKCOD	0.5	LACKCOD	2.9 0.5	LACKCOD	0.4	LACKCOD	0.5	LACKCOD	0.6	ATFISH	0.6 0.7	
lams an	8	đ	0.23	đ	0.40	đ	0.20	В	5.60 27.20	B	19.60	æ	0.18 0.20	
ls In C	BA		<0 . 08		1.22 2.50		0.93		<0.08 <0.08		0.08		0.10 0.16	
ce Meta	AS		18.0		19.0 16.0		6.0		10.0 16.0		28.0		70.0 127.0	
I. Tra	AL		<4.0		68.0 61.0		39.0		«4. 0 «4. 0		<4.0		12.0 26.0	
Appendix VJ	Station		SI-3		SI-2		SI-3		SI-2		SI-3		SI-2	

- 120 -

۰.

† •

8

8

٠

:

3

Appendix	VII. Tr	ace Met	cals In (Clams ar	nd Fish (Contir	From S wed:	urf Inl Page 5)	et, Marc	zh, 1984	-				
Station	AL	AS	BA	ß	(mg/ CR	مں م	wt.) FE	ĐH	ĐW	NIW	Q	IN	PB	ZN
				ц	ATFISH	-Hydro	lagus c	olliei		·	MUSCLE			
SI-3	<4.0<4.0	57.0 61.0	<0.08 0.12	0.21 0.22	0.6	0.9 1.2	14.1 20.5	0.67 0.05	1180 1210	1.15 1.31	<0.4 <0.4	<2.0 <2.0	2.38 12.00	15.3 16.1
				14	RATFISH	-Hydro	lagus c	olliei		•	TII9-			
SI-2	17.0 40.0	17.0 28.0	0.11 0.20	0.19 0.20	0.4	4.0 2.1	246.0 490.0	0.09 0.49	750 440	5.32 3.60	<0.4 3.7	<2.0 <2.0	2.31 2.00	64.2 27.1
				Ц	RATFISH	-Hydro	lagus α	olliei		•	-GILL			
SI-3	25.0 118.0	23.0 91.0	0.61 0.42	0.30	0.4	4.1 5.4	150.0 113.0	0.28 0.36	941 886	6.85 6.27	<0.4 <0.4	<2.0 <2.0	2.00 2.00	64.3 62.7
				144	RATFISH	Hydro	lagus x	olliei		ť	-LIVER			
SI-2	27.0 400.0	73.0 299.0	<0.08 0.17	0.70 0.90	0.6	6.4 7.0	344.0 513.0		69 75	0.94 0.87	<0.4 <0.4	<2.0 <2.0	2.00 2.00	8.3 11.7
				μų	WIFISH	-Hydro	lagus c	olliei		ı	-LIVER			
SI-3	343.0 17.0	261.0 27.0	80.0≻ 0.09	1.30 0.60	0.4	9.2 6.3	385.0 136.0	0.38	76 61	0.88 0.71	<0.4 <0.4	<2.0 <2.0	2.00	8.9 7.2
				щ	PACIFIC	HAKE -	Merlucci	ius prod	luctus	I	MUSCLE			
SI-2	13.0 19.0 15.0	89.0 35.0 10.0	0.09 0.20 0.26	0.28 0.29 0.23	0.5 0.5 0.6	2.9 3.9 1.5	50.5 91.4 54.5	0.23 0.77 0.28	1400 1320 1450	4.73 1.26 1.10	 4.0.4 0.4 0.4 0.4 	<pre><2.0</pre> <pre><2.0</pre> <pre><2.0</pre>	7.00 2.70 2.48	31.2 27.9 16.4

- 121 -

5

р •

٠

•

4

	NZ		92.9	69.4 35.0		42.8	233.0			19.2		73.0		123.0
	ЪВ		2.30	2.15		0.30	1.87 1.90			1.56		1.88		1.27
	IN		<2.0	<2.0 <2.0		<2.0	<2.0 <2.0			<2.0		<3.0		<2.0
	QW	GILL	<0.5	<0.4 <0.5	-LIVER	<0.4	<0.4 <0.4		ALL SUR	<0.4	TII5	<0.4	LIVER	<0.4
•	NW	·	5.00	2.79 5.88	ſ	2.15	8.28 15.90		I	0.44	I	5.62	ſ	4.09
zh, 1984	ĐŴ	luctus	1290	1000 687	luctus	298	748 502	-	SUMIT	1500	rimus	1120	rimus	680
et, Marc	HG	ius prod	0.59	0.10	ius prod	0.14	0.05		ss ruber	0.59	s ruber	<0.02	ss ruber	0.45
urf Inle Page 6)	vt.) FE	Ver lucci	548 . 0	403.0 589.0	Aer lucci	208.0	361.0 579.0		edas tode	19.5	sbastode	811.0	sbastode	185.0
From Su ned:]	رت ملاح ملاح	HAKE -	6.0 0	6. 2 3.7	HAKE -1	105.0	224.0 42.1			2.4	PER -Se	3.3	PER -Se	11.1
nd Fish (Contin	(mg, CR	PACIFIC	0.5	0.7	PACIFIC	0.4	0.5		tell SNA	0.5	VED SNAL	0.4	red snaf	0.7
clams ar	€	I	0.24	0.20	Η	0.77	1.60 2.80	H	4	0.18	ц	0.20	124	5.70
ls In (BA		1.10	0.92 1.51		60.0	<0.08 <0.08	1		<0.08		0.82		<0 . 08
ace Meta	AS		0.6	4.0 14.0		16.0	164.0 18.0	I		46.0		7.0		19.0
711. The	AL		163.0	46. 0 332.0		14.0	6.0 5.0			<4.0		0.66		5.0
Appendix V	Station		SI-2			SI-2				SI-2		SI-2		SI-2

- 122 -

ţ

,

APPENDIX VIII

8

ä,

TRACE METALS IN SHRIMP AND PRAWNS FROM SURF INLET, MARCH, 1984

Appendix	. IIIV	Trace 1	Metals	In Shrin	ip and i	Prawns]	From Sui	cf Inlet	, March	ı, 1984.				
STATION	AL	AS	BA	පි	ĸ	(ug/g đì CU	ry wt.) FE	ЭН	MG	NW	QW	IN	PB Z	Z
			Ŭ	TRANGON	SHRIMP	Crange	on comm	sin		1	MUSCLE			
SI-2	7.0	45.0	0.16	0.29	0.6	20.1	30.9	0.02	1580	1.03	<0.4	<2.0 2.0	1.39	51.2 EE 0
	11.0	40.0	0.26	0.46	0.5	27.7	0.4.0 89.2	0.07	1770	1.41	*0.4 4.0	<2.0	1.03	48.9
			52	SIDESTRI	PE SHR	(MP -Pai	ndalops	is dispe	ц	ı	MUSCLE			
SI-2	4.0	68.0	0.17	0.12	0.4	20.8	26.4	0.02	1330	1.03	<0.4	<2.0	1.31	53.7
	8.0	73.0	0.20	0.11	0.5	15.0	42.0	0.08	1560	1.09	<0.4	<2.0	1.51	54.9
	4.0	70.0	60.0	0.16	0.5	15.2	15.5	0.12	1260	0.83	<0.4	<2.0	1.23	50.6
	10.0	62.0	0.40	0.13	0.6	17.2	25.6	0.10	1340	1.03	<0.4	<2.0	0.98	50.3
	12.0	63.0	0.15	0.14	0.7	12.2	26.7	0.09	1410	1.04	<0.5	<2.0	1.29	49.5
	8.0	71.0	0.39	0.14	0.7	14.1	18.0	0.09	1210	0.87	<0.4	<2.0	1.12	52.1
	15.0	74.0	0.12	0.52	0.5	18.2	25.5	0.10	1320	0.93	<0.4	<2.0	1.33	61.8
	18.0	65.0	0.22	0.12	0.7	16.5	147.0	0.04	1240	1.06	<0.4	<2.0	1.11	50.4
	5.0	58.0	<0.08	0.13	0.6	15.3	17.0	0.08	1270	0.83	<0.4	<2.0	1.14	48.3
	4.0	69.0	0.09	0.15	0.7	17.8	18.7	0.08	1270	0.79	<0.4	<2.0	1.54	50.7
	5.0	73.0	0.12	0.14	0.6	14.5	18.1	0.05	1450	0.85	<0.4	<2.0	1.32	54.0
	5.0	67.0	<0 . 08	0.13	0.5	15.5	13.1	0.08	1340	0.75	<0.4	<2.0	1.40	49.8
	15.0	74.0	0.17	0.13	<0.4	22.1	28.1	0.14	1550	1.01	<0.4	<2.0	1.06	56.7
	8.0	67.0	0.12	0.13	<0.4	17.9	16.6	0.09	1640	0.78	<0.4	<2.0	1.06	47.7
	<4.0	63.0	0.29	0.15	0.5	16.9	19.8	0.19	1390	0.96	<0.4	<2.0	1.11	51.6
	10.0	80.0	0.09	0.13	<0.4	18.5	13.1	0.14	1510	1.05	<0.4	<2.0	1.18	53.0
	5.0	61.0	0.18	0.14	0.7	15.1	19.9	0.12	1490	1.15	<0.4	<2.0	1.06	52.2
	0.6	76.0	0.13	0.12	<0.4	16.8	18.3	0.11	1330	0.91	<0.4	<2.0	1.16	56.9

3

٩,

,

,

- 124 -

Appendix	VIII.	Trace M	l etals	In Shrin (C	np and Continu	Prawns Ied: Pa	From Su ge 2)	rf Inlet	t, March	n, 1984.				
STATION	AL	AS	BA	Ð	Ŗ	(ug/g đ CU	lry wt.) FE	HG	MG	NW	QW	IN	PB 2	Ŋ
				SIDESTRI	(PE SHR	um -pa	ndalopsi	is disp	ž	1	MUSCLE)	bntinue	d)
	35.0	66.0	0.43	0.10	0.5	19.2	535.0	0.24	1330	1.38	<0.4	<2.0	1.02	55.3
	7.0	57.0	0.0	0.11	<0.4	10.4	32.5	0.19	1280	0.98	<0.4	<2.0	1.19	52.2
	6.0	59.0	0.09	0.10	0.4	14.4	15.2	0.18	1350	0.82	<0.4	<2.0	1.05	47.1
	13.0	62.0	0.30	0.11	<0.4	15.2	37.3	0.16	1530	1.01	<0.4	<2.0	66.0	50.5
	8.0	71.0	0.15	0.12	0.5	23.2	18.3	0.12	1340	1.03	<0.4	<2.0	1.20	55.9
	5.0	61.0	0.14	0.10	0.4	10.8	14.0	0.14	1350	0.94	<0.4	<2.0	1.25	49.0
			.,	SIDESTRI	(PE SHR	um -pa	ndalops	is disp	ar	·	HEPATOPI	ANCREAS		
SI-2	12.0	183.0	0.25	42.80	0.7	1130.0	92.1	0.23	648	11.80	1.6	<2.0	0.11	141.0
	12.0	211.0	0.39	79.20	0.6	1520.0	108.0	0.29	713	12.50	1.0	<2.0	60.0	156.0
	14.0	193.0	0.25	69.50	0.4	1470.0	123.0	0.03	671	12.10	1.2	<2.0	0.11	152.0
				SIDESTRI	(PE SHR	um -pa	ndalopsi	is disp	я	I	MUSCLE			
SI-3	10.0	86.0	0.12	0.15	0.5	14.0	25.5	0.10	1790	1.72	<0.4	<2.0	1.13	47.9
	6.0	72.0	0.13	0.12	<0.4	13.9	35.2	0.14	1460	1.36	<0.4	<2.0	1.64	52.9
	0.6	73.0	0.17	0.17	0.5	12.3	20.1	0.12	1310	1.43	<0.4	<2.0	1.07	51.3
	21.0	87.0	0.33	0.25	0.5	26.1	37.2	0.04	1480	2.75	<0.4	<2.0	1.07	52.5
	6.0	0.16	<0.08	0.15	0.5	14.1	17.0	0.15	1440	1.29	<0.4	<2.0	1.20	49.4
	14.0	68.0	0.18	0.13	0.6	15.9	36.1	0.10	1240	2.62	<0.4	<2.0	1.24	50.0
	6.0	101.0	0.10	0.19	0.5	11.9	11.2	0.20	1600	1.04	<0.4	<2.0	1.38	48.2
	7.0	115.0	0.13	0.17	0.6	11.9	15.6	0.21	1480	1.24	<0.4	<2.0	1.29	50.3
	8.0	80.0	0.17	0.15	0.6	14.1	26.3	0.05	1390	1.88	<0.4	<2.0	1.21	50.2
	12.0	81.0	0.18	0.18	0.6	10.9	25.2	0.11	1510	1.44	<0.4	<2.0	1.37	49.0
	22.0	0'16	0.31	0.16	<0.4	10.6	29.3	0.29	2010	1.80	<0.4	<2.0	1.20	46.8
	<4.0	74.0	0.11	0.15	0.5	14.0	10.7	0.23	1540	1.07	<0.4	<2.0	1.25	48.6
	16.0	84.0	0.18	0.15	0.4	16.9	30.6	0.17	1690	1.82	<0.4	<2.0	1.11	49.6

- 125 -

B		.21 50.2	.37 49.0	.20 46.8		0.04 02.	.23 40.0	.23 49.6 .11 49.6 .28 49.4	.23 49.0 .11 49.6 .28 49.4 .53 51.9	.23 49.6 .11 49.6 .28 49.4 .53 51.9 .07 47.8	.23 49.6 .11 49.6 .28 49.4 .53 51.9 .07 47.8 .18 50.3	.23 49.6 .11 49.6 .28 49.4 .53 51.9 .07 47.8 .18 50.3 .10 56.5	-23 40.0 -11 49.6 -28 49.4 -53 51.9 -07 47.8 -18 50.3 -10 56.5 -11 52.1	-23 49.6 -11 49.6 -28 49.4 -53 51.9 -07 47.8 -18 50.3 -10 56.5 -11 52.1	-23 40.0 -11 49.6 -53 51.9 -07 47.8 -18 50.3 -11 52.1 -16 50.3 -17 50.3 -17 50.3	-23 49.6 -11 49.6 -28 49.4 -53 51.9 -07 47.8 -18 50.3 -10 56.5 -11 52.1 -16 50.3 -17 50.2 -33 52.0	-23 40.0 -11 49.6 -53 51.9 -07 47.8 -18 50.3 -11 52.1 -17 50.3 -30 48.5 -32.0 -48.5
Id		.0 1.	.0 1	•0	.0		.0	.0	0.0.0	0.000	00000	0.0.0.0.0	0 0 0 0 0 0	00000000	0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	· · · · · · · · · · · · · · · · · · ·
IN	떡	t <2	1 <2	1 \$2	1 22		7~ +	+ + \$ \$	 2	 3	 3	* + + + + + + + + + + + + + + + + +	, , , , , , , , , , , , , , , , , , ,	* * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
Q	-MUSCI	<0°	<0.4	<0.4	<0.4	ç		*••• *•••	1.0 2.0 2.0			······································	······································				
NW		1.88	1.44	1.80	1.07	נמו		1.04	1.04	1.04 1.25 1.99	1.04 1.04 1.99 1.44	1.04 1.25 1.25 1.99 1.44 4.43	1.32 1.04 1.25 1.99 1.44 1.43 1.30	1.04 1.04 1.25 1.99 1.44 1.43 1.12	1.04 1.04 1.25 1.99 1.44 1.12 1.12 1.12	1.04 1.04 1.25 1.99 1.44 1.44 1.12 1.12 1.12 1.162	1.04 1.04 1.99 1.44 1.130 1.12 1.12 1.12 1.154
MG	ar	1390	1510	2010	1540	1690		1530	1530 1370	1530 1370 1290	1530 1370 1290 1340	1530 1370 1290 1340 1550	1530 1370 1290 1340 1550 1530	1530 1370 1290 1340 1550 1530	1530 1370 1290 1340 1550 1530 1530 1230	1530 1370 1290 1340 1550 1530 1530 1230 1390	1530 1370 1290 1340 1550 1530 1530 1230 1230 1230
HG	is disp	0.05	0.11	0.29	0.23	0.17		0.19	0.19 0.14	0.19 0.14 0.09	0.19 0.14 0.09 0.12	0.19 0.14 0.09 0.12 0.15	0.19 0.14 0.09 0.12 0.15 0.16	0.19 0.14 0.09 0.12 0.15 0.16 0.16	0.19 0.14 0.09 0.12 0.15 0.15 0.16 0.16	0.19 0.14 0.09 0.12 0.15 0.16 0.16 0.10 0.10	0.19 0.14 0.09 0.12 0.15 0.15 0.16 0.16 0.10 0.11
ry wt.) FE	lalopsi	26.3	25.2	29.3	10.7	30.6		17.7	17.7 16.6	17.7 16.6 25.0	17.7 16.6 25.0 21.8	17.7 16.6 25.0 21.8 28.0	17.7 16.6 25.0 21.8 28.0 38.8	17.7 16.6 25.0 21.8 28.0 38.8 38.8	17.7 16.6 25.0 21.8 21.8 38.8 38.8 21.0 26.1	17.7 16.6 25.0 21.8 21.8 38.8 38.8 38.8 21.0 21.0 52.0	17.7 16.6 25.0 21.8 28.0 38.8 38.8 38.8 38.8 28.1 26.1 52.0
ug/g đì CU	IMP -Par	14.1	10.9	10.6	14.0	16.9		11.5	11.5 13.8	11.5 13.8 16.8	11.5 13.8 16.8 11.3	11.5 13.8 16.8 11.3 19.3	11.5 13.8 16.8 11.3 19.3 14.3	11.5 13.8 16.8 11.3 19.3 14.3 14.2	11.5 13.8 16.8 11.3 19.3 14.2 14.2 15.2	11.5 13.8 16.8 11.3 19.3 14.3 14.2 15.2 13.9	11.5 13.8 16.8 11.3 19.3 14.3 14.2 13.9 13.9
5	(PE SHR)	0.6	0.6	<0.4	0.5	0.4		<0.4	<0.5 0.5	4.0.40.50.5	4.0.40.50.50.4	 4.0.4 0.5 0.5 0.4 0.7 	4.0.5 0.5 0.5 0.4 0.7	 4.0 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 	0.5 0.5 0.7 0.4 0.4 0.4 0.4	0.5 0.5 0.7 0.4 0.4 0.4 0.4 0.6	0.5 0.5 0.7 0.4 0.4 0.4 0.6 0.6
පි	SIDESTRI	0.15	0.18	0.16	0.15	0.15		0.17	0.17 0.14	0.17 0.14 0.13	0.17 0.14 0.13 0.13	0.17 0.14 0.13 0.13 0.13	0.17 0.14 0.13 0.13 0.13 0.13	0.17 0.14 0.13 0.13 0.13 0.14 0.14	0.17 0.14 0.13 0.13 0.13 0.13 0.13 0.14	0.17 0.14 0.13 0.13 0.13 0.14 0.14 0.13 0.13	0.17 0.14 0.13 0.13 0.13 0.13 0.14 0.14 0.12 0.12
BA		0.17	0.18	0.31	0.11	0.18		0.12	0.12 <0.08	0.12 <0.08 0.18	0.12 <0.08 0.18 <0.08	0.12 <0.08 0.18 <0.08 0.17	0.12 <0.08 0.18 <0.08 0.17 0.12	0.12 <0.08 0.18 <0.08 <0.08 0.17 0.12 0.11	0.12 <0.08 0.18 <0.08 0.17 0.17 0.12 0.11	0.12 <0.08 0.18 <0.08 <0.08 0.17 0.12 0.12 0.11	0.12 <0.08 0.18 <0.08 0.17 0.17 0.12 0.11 0.11 0.16
AS		80.0	81.0	0.16	74.0	84.0		116.0	116.0 100.0	116.0 100.0 68.0	116.0 100.0 68.0 71.0	116.0 100.0 68.0 71.0 90.0	116.0 100.0 68.0 71.0 90.0 75.0	116.0 100.0 68.0 71.0 90.0 75.0 88.0	116.0 100.0 68.0 71.0 90.0 75.0 88.0 94.0	116.0 100.0 68.0 71.0 90.0 88.0 94.0	116.0 100.0 68.0 71.0 90.0 88.0 88.0 94.0 77.0
AL		8.0	12.0	22.0	<4.0	16.0	•	0.6	9.0 <4.0	9.0 0.4 0.0	9.0 4.0 9.0 12.0	9.0 <4.0 9.0 12.0 14.0	9.0 44.0 9.0 12.0 14.0	9.0 44.0 9.0 12.0 14.0 14.0 8.0	9.0 44.0 9.0 12.0 14.0 8.0 15.0	9.0 44.0 9.0 12.0 14.0 15.0 15.0 9.0	9.0 44.0 9.0 14.0 14.0 8.0 15.0 13.0

Appendix VIII. Trace Metals In Shrimp and Prawns From Surf Inlet, March, 1984.

(Continued: Page 3)

STATION

4

;

- 126 -

SI-3

9	-	-	/ +·							
€	_	ng/g ar	Y WL./							
	£	ß	E	HG	MG	NW	Q	IN	PB Z	z
PINK SHE	ump -pa	ndalus	boreali	ຜູ		1	MUSCLE			
0.12	6.0	11.8	16.2	0.14	1520	0.90	<0.5	<2.0	1.60	49.8
0.11	0.4	12.4	14.1	0.14	1560	0.85	<0.4	<2.0	1.59	48.3
0.17	0.7	12.6	23.9	0.08	1700	1.30	<0.5	<2.0	1.70	48.5
0.13	0.4	10.1	12.5		1150	0.78	<0.4	<2.0	1.30	50.3
0.13	1.2	12.4	13.6	60.0	1250	0.86	<0.4	<2.0	1.22	53.4
0.13	0.5	8.0	9.7	0.10	1410	0.79	<0.4	<2.0	1.21	44.2
0.12	0.5	6.9	9.4	0.09	1560	0.73	<0.4	<2.0	1.41	46.0
0.14	0.5	11.4	19.5		1540	1.04	<0.4	<2.0	1.33	49.5
0.12	0.6	11.4	16.0		1480	1.05	<0.4	<2.0	1.97	48.7
0.10	<0.4	10.7	20.1	0.16	1570	0.85	<0.4	<2.0	0.90	39.9
0.10	<0.5	12.2	15.4	0.15	1800	1.01	<0.5	<2.0	66.0	44.7
0.14	1.2	11.8	12.8	0.17	1280	0.00	<0.5	<2.0	1.20	43.5
0.13	0.6	14.3	19.2	0.12	1500	0.94	<0.4	<2.0	1.28	47.8
0.14	<0.4	8.2	9.4	0.19	1600	0.73	<0.4	<2.0	1.26	50.0
0.12	0.4	7.9	19.1	0.14	1410	0.75	<0.4	<2.0	1.10	48.8
0.12	0.4	12.0	17.0	0.15	1510	0.89	<0.4	<2.0	0.98	51.6
0.10	0.5	11.2	13.8	0.16	1480	0.92	<0.5	<2.0	0.85	49.2
0.20	<0.4	12.7	15.9	0.14	1370	96.0	<0.4	<2.0	1.02	51.9
PINK SHE	ump Pa	ndalus	boreali	Ŋ		I	HEPATOP	ANCREAS		
		 SHRIMP -Pa 12 0.9 11 0.4 13 0.5 13 0.5 13 0.5 14 0.5 12 0.6 14 1.2 10 60.4 10 60.4 11 0.6 12 0.6 13 0.6 14 1.2 12 0.4 10 60.5 12 0.4 10 0.5 12 0.4 12 0.4 10 0.5 12 0.4 12 0.4 10 0.5 12 0.4 12 0.4 13 0.6 14 1.2 10 0.5 12 0.4 12 0.4 10 0.5 12 0.4 12 0.4 13 0.6 14 1.2 14 1.2 15 0.6 14 1.2 15 0.6 15 0.6 16 0.5 17 0.5 18 1.2 10 0.5 10 0.5 10 0.5 11 0.5 11 0.5 11 0.5 11 0.5 12 0.6 13 0.6 14 1.2 15 0.6 14 1.2 15 0.6 15 0.6 16 0.5 16 0.5 17 0.5 18 1.2 19 0.6 10 0.5 10 0.5 10 0.5 11 0.5 11 0.5 12 0.6 14 1.2 13 0.6 14 1.2 14 1.2 15 0.6 14 0.5 15 0.6 15 0.6 16 0.5 16 0.5 17 0.6 18 1.2 18 1.2 19 1.2 19 1.2 10 0.5 10 0.5 11 0.5 11 0.5 11 0.5 11 0.5 12 0.6 14 0.5 14 0.5 15 0.6 15 0.6 16 0.6 17 0.6 18 0.6 18 0.6 19 0.6 19 0.6 11 0.6 11 0.5 11 0.6 12 0.6 14 0.5 14 0.5 15 0.6 15 0.6 16 0.6 17 0.6 18 0.6 19 0.6 19 0.6 19 0.6 10 0.6 10 0.6 11 0.6 12 0.6 14 0.6 <l< td=""><td> SHRIMP -Pandalus 12 0.9 11.8 11 0.4 12.4 13 0.4 10.1 13 1.2 12.6 13 0.5 8.0 12 0.5 6.9 14 0.5 11.4 12 0.6 11.4 10 <0.5 11.4 10 <0.5 11.8 14 1.2 11.8 13 0.6 11.4 14 1.2 11.8 13 0.6 11.4 14 1.2 11.8 13 0.6 14.3 14 0.5 11.2 12 0.4 7.9 12 0.4 12.0 12 0.4 12.0 10 0.5 11.2 20 <0.4 12.0 10 0.5 11.2 20 <0.4 12.0 10 0.5 11.2 20 <0.4 12.0 11 20 0.5 11.2 20 <0.4 12.0 12 0.4 12.0 13 0.5 11.2 </td><td>K SHRIMP -Pandalus boreali 12 0.9 11.8 16.2 11 0.4 12.4 14.1 17 0.7 12.6 23.9 13 0.4 10.1 12.5 13 1.2 12.4 13.6 13 1.2 12.4 13.6 13 0.5 8.0 9.7 12 0.5 8.0 9.7 12 0.5 11.4 19.5 14 0.5 11.4 19.5 10 <0.4</td> 10.7 20.1 10 <0.5</l<>	 SHRIMP -Pandalus 12 0.9 11.8 11 0.4 12.4 13 0.4 10.1 13 1.2 12.6 13 0.5 8.0 12 0.5 6.9 14 0.5 11.4 12 0.6 11.4 10 <0.5 11.4 10 <0.5 11.8 14 1.2 11.8 13 0.6 11.4 14 1.2 11.8 13 0.6 11.4 14 1.2 11.8 13 0.6 14.3 14 0.5 11.2 12 0.4 7.9 12 0.4 12.0 12 0.4 12.0 10 0.5 11.2 20 <0.4 12.0 10 0.5 11.2 20 <0.4 12.0 10 0.5 11.2 20 <0.4 12.0 11 20 0.5 11.2 20 <0.4 12.0 12 0.4 12.0 13 0.5 11.2 	K SHRIMP -Pandalus boreali 12 0.9 11.8 16.2 11 0.4 12.4 14.1 17 0.7 12.6 23.9 13 0.4 10.1 12.5 13 1.2 12.4 13.6 13 1.2 12.4 13.6 13 0.5 8.0 9.7 12 0.5 8.0 9.7 12 0.5 11.4 19.5 14 0.5 11.4 19.5 10 <0.4	KHRIMP -Pandalus borealis 12 0.9 11.8 16.2 0.14 11 0.4 12.4 14.1 0.14 17 0.7 12.6 23.9 0.08 13 1.2 12.4 13.6 0.09 13 0.5 8.0 9.7 0.10 13 0.5 8.0 9.4 0.09 14 0.5 11.4 19.5 0.10 12 0.6 11.4 19.5 0.17 14 0.5 11.4 19.5 0.17 10 <0.4	C SHRIMP - Pandalus borealis 12 0.9 11.8 16.2 0.14 1520 11 0.4 12.4 14.1 0.14 1560 13 0.4 12.6 23.9 0.08 1700 13 0.4 10.1 12.5 1150 13 0.5 8.0 9.7 0.10 1410 13 0.5 8.0 9.4 0.09 1560 14 0.5 11.4 19.5 1540 12 0.14 19.5 1540 1540 14 0.5 11.4 19.5 1540 10 <0.6	CSTRIMP - Pandalusborealis12 0.9 11.8 16.2 0.14 1520 0.90 11 0.4 12.4 14.1 0.14 1560 0.85 17 0.7 12.6 23.9 0.08 1700 1.30 13 0.4 10.1 12.5 1150 0.78 13 0.4 10.1 12.5 0.09 1700 1.30 13 0.5 8.0 9.7 0.10 1410 0.79 13 0.5 6.9 9.4 0.09 1560 0.73 14 0.5 11.4 19.5 1480 1.06 12 0.6 11.4 19.5 1260 0.73 14 0.5 11.4 19.5 1260 0.73 15 0.6 11.4 19.5 1260 0.73 16 0.6 11.4 10.7 20.1 1480 1.05 17 0.6 11.4 10.7 20.1 0.16 0.73 18 0.6 11.4 10.7 20.1 0.16 0.73 19 0.6 11.4 10.7 1280 0.96 19 0.6 11.4 10.7 1280 0.96 10 40.4 8.2 9.4 0.17 1280 0.96 11 11.2 11.2 0.14 1210 0.73 12 0.6 11.4 0.16 0.16 10.6 13 0.6 14.3 $19.$	CSHRIMP - Pandalus Dorealis -MUSCLE 12 0.9 11.8 16.2 0.14 1520 0.90 <0.5	CSHRIMP -Pandalus Dorealis MISCLE 12 0.9 11.8 16.2 0.14 1520 0.90 <0.5	12 0.9 11.8 16.2 0.14 1520 0.90 (0.5 2.00 1.60 11 0.4 12.4 14.1 0.14 1560 0.85 <0.4

,

Appendix VIII. Trace Metals In Shrimp and Prawns From Surf Inlet, March, 1984.

27.0 198.0 1.48 41.20

0.12 152.0

<2.0

2.5

901 11.70

0.7 1280.0 513.0

,

Ŧ

SI-2

- 127 -

				2	ontinue	d: Pac	(c əb							
STATION	AL	AS	BA	មិ	<u>ب</u>	ug/g đì CU	ry wt.) FE	HG	MG	NW	QW	IN	PB Z	Z
			-	HIS XINI	ed- gwir	ndalus	boreali	S		1	MUSCLE			
SI-3	58.0	0.06	3.10	0.24	0.7	15.5	84.9	0.08	1620	4.80	<0.5	<2.0	3.00	42.6
	39.0	98.0	0.50	0.40	0.6	12.9	53.5		1700	3.06	<0.4	<2.0	1.63	48.8
	15.0	81.0	0.30	0.16	0.5	9.8	35.2	0.20	1340	2.20	<0.5	<2.0	1.10	34.9
	20.0	96.0	0.43	0.26	0.8	11.6	68.2	0.16	1680	3.23	<0.4	<2.0	1.16	47.8
	11.0	105.0	0.40	0.22	0.7	9.7	33.0	0.18	1520	2.80	<0.5	<2.0	1.80	43.0
	16.0	87.0	0.70	3.75	0.4	10.5	49.2		2010	2.34	<0.4	<2.0	1.62	43.0
	20.0	84.0	0.70	0.24	0.8	13.6	51.5	0.17	2330	3.10	<0.5	<2.0	1.50	54.5
	25.0	0.06	0.35	0.21	0.7	12.3	46.9		1710	2.43	0.6	<2.0	1.20	51.7
	38.0	100.0	0.70	0.24	0.5	12.9	126.0	0.21	2280	3.20	<0.5	<2.0	1.10	52.3
	16.0	132.0	0.18	0.24	<0.4	11.7	41.1	0.19	1530	3.23	<0.4	<2.0	1.37	48.8
	22.0	97.0	0.60	0.20	<0.5	10.8	34.3	0.16	2110	2.80	<0.5	<2.0	1.20	47.4
	32.0	102.0	0.52	0.19	<0.4	12.4	50.8	0.21	2060	3.00	<0.4	<2.0	1.00	53.5
			-	PRAWN -1	Pandalus	; platy	ceros			1	MUSCLE			
SI-2	5.0	84.0	0.09	0.15	0.9	23.8	198.0	0.07	1460	0.93	0.7	<2.0	1.43	56.9
	<4. 0	109.0	<0 . 08	0.12	0.4	15.8	11.4	0.11	1030	0.53	<0.4	<2.0	1.16	46.0
	<4.0	118.0	<0 . 08	0.13	<0.4	19.2	20.8	0.25	1350	0.69	<0.4	<2.0	0.94	49.2
	11.0	143.0	0.16	0.15	0.5	19.3	45.5	0.10	1530	1.14	<0.4	<2.0	1.45	59.3

Appendix VIII. Trace Metals In Shrimp and Prawns From Surf Inlet, March, 1984.

۰.

j

- 128 -

Appendiy	. VIII.	Trace	Metals	In Shrii ((mp and Continu	Prawns ed: Pa	From Sui ge 6)	rf Inlet	t, Marci	h, 1984	•			
STATION	AL	AS	BA	ß	చ	(ug/g đ: CU	ry wt.) FE	ÐH	MG	NW	Q	IN	PB	ZN
				PRAMN -	Pandalu	s platy	ceros			·	-HEPATOP	PANCREAS	70	
SI-2	0.6	213.0	0.29	5.10	0.6	383.0	1640.0	0.08	556	9.74	2.6	6.0	0.15	120.0
				PRAMN	Pandalu	s platy	ceros			•	-MUSCLE			
SI-3	11.0	127.0	7.77	0.10	0.6	17.6	35.1	0.04	1450	1.06	<0.4	<2.0	1.23	52.4
	6.0	160.0	0.13	0.10	0.6	9.1	7.6	0.13	955	1.08	<0.4	<2.0	0.92	38.5
	6.0	167.0	0.13	0.14	0.5	21.5	7.8	0.17	1520	0.99	<0.4	<2.0	1.19	52.3
	13.0	158.0	0.09	0.13	0.4	13.2	13.3	0.14	1670	1.26	<0.4	<2.0	1.00	53.9
				PRAWN1	Pandalu	s platy	ceros			·	HEPATOP	ANCREAS	-	
SI-3	10.0	268.0	3.97	18.80	0.8	556.0	660.0	0.12	786	14.70	2.8	0.6	0.11	153.0

•

- 129 -

, ,

ĩ

:

•

۰

APPENDIX IX

ł

,

4

-

ì

TRACE METALS IN FISH AND SHRIMP FROM LAREDO SOUND, MARCH, 1984

NZ		24 47.9	87 48.4	35 49.8	15 48.8	03 52.1	10 51.4	90 49.3	00 55.4	60 59.3	22 53.7	97 60.8	73 56.6		19 33.8	34 19.7	
PB		Γ.	0	Г.	-	1.(Г.	0	J.(0.0	Γ.	0	0		1.	1	
IN		<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0	<2.0	
QW	MUSCLE	<0.4	<0.4	<0.4	<0.4	<0.4	<0.5	<0.5	<0.5	<0.5	<0.4	<0.4	<0.5	MUSCLE	<0.4	<0.4	-MUSCLE
MW	л	1.33	1.09	1.31	1.16	2.38	1.60	1.10	1.50	2.30	2.42	1.91	1.40		1.88	0.79	
MG	is disp	1830	1590	2380	1860	2100	1600	1630	1750	2110	2340	2000	1960	lus	1190	1220	spis
HG	ıdalopsi							0.14	0.12	0.13	0.26	0.11	0.13	/s vetul			stenole
FE FE	[MP -Par	52.9	25.1	33.8	23.3	42.2	41.7	36.9	25.4	43.4	90.6	46.6	25.4	Parophry	56.1	20.6	glossus
	IPE SHR	8.6	11.4	8.1	7.3	18.3	23.8	9.3	14.9	19.7	8.6	17.7	11.4	SOLE -]	1.7	<0.4	-Hippo
ଞ	SIDESTR.	0.5	0.6	0.5	0.6	<0.4	<0.5	0.6	0.7	0.9	0.6	0.8	0.6	HSITISH	0.7	0.7	IALIBUT
Ð	01	0.14	0.13	0.19	0.14	0.20	0.23	0.17	0.41	0.38	0.15	0.45	0.16	-	0.21	0.22	Η
BA		0.46	0.21	0.51	0.29	0.61	0.50	0.20	0.50	0.80	0.36	0.58	0.26		0.45	0.19	
AS		66.0	66.0	72.0	61.0	57.0	64.0	55.0	64.0	56.0	69.0	56.0	63.0		71.0	77.0	
AL		48.0	14.0	15.0	26.0	26.0	14.0	15.0	16.0	31.0	18.0	51.0	15.0		32.0	8.0	

Appendix IX. Trace Metals In Fish and Shrimp From Laredo Sound, March, 1984.

41. -

•

ţ

- 131 -

18.9 18.6

1.63

<2.0 <2.0

<0.4 <0.4 <0.4

0.75 0.65

1610 1950

21.5 23.0

0.9 5.1

0.6 0.8

0.23 0.26

0.10

0.0 0.0

7.0 5.0 Appendix IX. Trace Metals In Fish and Shrimp From Laredo Sound, March, 1984. (Continued: Page 2)

•

NZ		100.0		73.4 64.3 84.9
PB		1.35		4.00 1.13 4.00
IN		<2.0		<2.0<2.0<2.0
Q	LIVER	<0.4	MUSCLE	<0.4<0.4<0.4<0.4
NW	١	4.26	I	6.14 9.36 6.86
MG	epis	682	cevipes	1800 2250 1870
HG	stenol		des br	
y wt.) FE	glossus	1400.0	JT -Lycc	61.4 106.0 72.1
ug/g dir CU	-Hippoo	22.7	I EELPO	4.7 2.2 2.2
ۍ ۲	IALIBUT	<0.4	HORTFIN	1.0 1.1 1.2
€	H	15.80		0.19 0.11 0.18
BA		0.08		1.81 2.48 2.24
AS		32.0		8.0 7.0 8.0
AL		< 4. 0		23.0 74.0 41.0

,×

APPENDIX X

į

\$

ť

INTERSTATION DIFFERENCES IN TRAWL CATCHES FOR EACH SPECIES

ES FOR EACH SPECIES	
TRAML CATCH	
CES IN 1	
DIFFEREN	
INTERSTATION	
XX	
APPENDI	

4

.

1

đ

				STAT) Thean nu	rons mber/trav	vl)		
SPECIES	COMMON NAME	S	S1-2	S1-3	QS2	QS-3	BS-1	BS-2
PORIFERA GORGANCEA BRANCHIOPODA				lots lots lots				
CNIDARIA - ANTHOZOA	anemones		I	20				
MOLLUSCA - GASTIROPODA	nudibranchs other			1		4		
- PELECYPODA	axe yoldia		4	11	m	13		
Yoldia spp.								
- CEPHALOPODA								
Loligo opalescens Octopus sp.	squid octopus		Н	1			I	
- CARIDEA								
Crangon communis Pandalopsis dispar Pandalus borealis Pandalus platyceros Spirontocaris spina Pasiphaea pacifica - ANOMERA	common crangon sidestripe shrimp pink shrimp (spiny) prawn glass shrimp	3 IB 5	16 294 271 4 33	48 42 8 4 20	19 81 11 2	29 22 12 22 22 22	165 1083 300 59 59	90 118 366 12
Munida quadrispina Pagurus sp.	squat lobster hermit crab		٢			40		

- 134 -

CONTINUED....
				STAI	SNOID			
SPBCIES	COMMON NAME	SI	S1-2	(mean nu Sl-3	unber/trav QS-2	м1) QS-3	BS-1	BS-2
- BRACHYURA								
Cancer magister Chiomeceter bairds Hyas Iyratus Cancer gracilis	dungeness crab tanner crab lyre crab rock crab			11				
BCH1NODERWATA								
- HOLOTHUROI DEA								
Parastichopus sp. Molpadia sp.	sea cucumber	2	æ	12		l		
- ECHINOIDEA								
Briastaer sp. Strongylocentrotus sp.	heart urchin red sea urchin	lots	104	lots	4	5 2	48	
- ASTEROIDEA								
Hippastena spinoser Luidia foliolata Pediaster aegralis Orthaderias sp.				I	7	4 4		
-OPHIUROIDEA								
Gorgonocephalus Chiridota sp.	basket star brittle star			lots	lots			
CHORDATA - PISCES - AGONIDAEE Agonus acipenserinus	sturgeon poacher					Γ	40	6
							CONTIN	UED

(Continued)

APPENDIX X

- 135 -

•

Ì

р Х

ø

ŧ

4

				STAT	SNOI			
SPECIES	COMMON NAME	SI	S12	(mean nu S1-3	mber/tra QS-2	wl) QS-3	BS-1	BS-2
- BATHRACHOIDIDAE	toad fish							
Porichthys motatus	midshipman					I	70	11
- CHIMAERIDAE	chimaeras							
Hydrolagus colliei	ratfish	15	16	8	10	с	63	12
- CULUPEIDAE								
Clupea harengus pallasi	pacific herring							
-CYCLOPTERIDAE	lumpfish			I				
- GADIDAE	cods							
Theragra chalocogramma	walleye pollock				7		l	
Anaplopoma fimbria Merluccius productus	blackcod pacific hake		1 16	I	l		134	19
- HEXAGRAMMIDAE								
Ophiodon elongatus	ling cod						I	
- PLEURONECTIDAE	soles							
Glyptocephalus zachirus	rex		2		ς,	1	59	
Hippoglossoides ellasocon Lycopsetta exilis	rlathead slender		13		-1	10	42 296	17
Microstomus pacifica Parophrys vetulus Hippoglossus stenolepis	cover english halibut		Ι				و	œ
- RAJIDAE	skates							
Raja rhina	longnose				l			

- 136 -

CONTINUED ...

-

(Continued)

APPENDIX X

3

.

ð

APPENDIX X (Continued)

				STAT	SNOL			
SPECIES	COMMON NAME	S I	S1-2	(mean nu S1-3	mber/tra QS-2	м1) QS-3	BS1	BS-2
Sebastes aleutianus Sebastes ruberrmus	rougheye rockfish red snapper	1	1	7	Г			
- ZOARCIDAE	eelpouts							
Lycodopsis pacfica Lycodes brevipes	blackbelly shortfin		Г	Γ	1		6	4
NB: IS = Laredo Sound SI = Surf Inlet QS = Quatsino Sound BS = Barkley Sound						,		

¥

4

1