el 300 1299 5

DEPARTMENT OF ENVIRONMENT ENVIRONMENTAL PROTECTION PACIFIC REGION YUKON BRANCH

ENVIRONMENTAL QUALITY OF RECEIVING WATERS AT UNITED KENO HILL MINES LTD. ELSA, YUKON

REGIONAL PROGRAM REPORT NO. 89-04

Prepared by

D. Davidge and G. Mackenzie-Grieve

September 1989

ENVIRONMENT CANADA CONSERVATION AND PROTECTION PACIFIC REGION

ABSTRACT

During summer 1985, a receiving environment monitoring study was undertaken by Environmental Protection in the streams potentially influenced by the mining and milling operations of United Keno Hill Mines in the Elsa/Keno area of Yukon.

Some parameters exceeded the water quality guidelines for drinking water and aquatic life at specific station locations. Zinc and manganese levels were noted to be excessively high relative to the guidelines at several station locations. The inputs of metals from mine adit water flow and tailings pond effluent can be detected in the South McQuesten River, Stations 4 and 9.

Sediment chemistry data at specific stations reflect metals input from tailings pond input and a tailings dam break in 1978. As well, elevated metals levels were detected at locations (Stations 2,7) which suggest an influence from mine adit water flows or from undocumented historical tailings releases in previously mined areas. Elevated sediment metal levels were detected in the South McQuesten River at Stations 4 and 9.

Benthic invertebrates were sampled and identified. Generally the populations show good abundance and diversity of species although one location (Station 9) showed a major dominance by one group (Simulium sp.). RÉSUMÉ

La Direction générale de la protection de l'environnement a entrepris, au cours de l'été 1985, une étude sur le contrôle des milieux récepteurs dans les cours d'eau susceptibles d'être influencés par les opérations d'extraction et de préparation de la <u>United Keno Hill Mines</u> dans la région de Elsa/Keno au Yukon.

A certains endroits bien précis, certains paramètres étaient plus élevés que les limites prévues dans les lignes directrices pour l'eau potable et la vie aquatique. Les concentrations de zinc et de manganèse étaient excessivement élevées à plusieurs endroits, comparativement aux limites prévues dans les lignes directrices. Les métaux provenant des eaux s'écoulant des galeries à flanc de coteau et des effluents des bassins à résidus peuvent être décelés aux stations 4 et 9 sur la rivière South McQuesten.

Les données sur la chimie des sédiments à différentes stations reflètent les rejets métalliques provenant des bassins à résidus et de la rupture, en 1978, d'un barrage retenant les eaux d'un bassin à résidus. De plus, on a décelé des concentrations élevées d'espèces métalliques à divers endroits (stations 2 et 7), ce qui traduit peut-être l'effet des eaux s'écoulant des galeries à flanc de coteau ou l'effet d'anciens rejets non documentés à partir de zones exlpoitées antérieurement. On a décalé des concentrations élevées de métaux dans les sédiments aux stations 4 et 9 sur la rivière South McQuesten.

On a prélevé et identifié des échantillons d'invertébrés benthiques. En général, l'abondance de ces populations sinsi que la diversité des espèces étaient bonnes, mais un groupe (<u>Simulium</u> sp.) était nettement dominant à un endroit (station 9).

ADDENDUM

On July 17, 1986 a follow-up water quality survey was conducted at selected locations in the study area to determine the origin of elevated metals found in Flat Creek in 1985 which did not appear to originate from the tailings pond decent (Station 5). The sites sampled included Station 5, Station 6, Station 7 and several small drainages found between these stations.

Among those locations sampled a diversion channel which diverts ground water around the tailings dam from the base of the valley wall on which the mill and town are located, was found to have higher levels of certain metals than the stations sampled. This seepage was not sampled in 1985.

The following table displays levels (mg/L ext.) of selected metals found at Station 5, Station 6, Station 7, the seepage channel and Galena Creek during the follow-up survey.

STATION	Ag	Cd	Fe	Zn
5	0.0009	<0.003	0.507	0.153
6	<0.0005	<0.002	0.080	0.004
7	<0.0005	0.003	0.208	0.228
seepage	0.0020	0.006	1.600	0.476
Galena Cr.	<0.0005	<0.002	0.840	0.122

Of the metals shown, Zn and Cd were the only metals at Station 7 to be in excess of the decant although the seepage showed the highest values overall for Ag and Fe.

The data clearly shows the seepage, and to a lesser degree, Galena Creek, contribute to the elevated Zn at Station 7. Other minor ground water seepages in the area were sampled but none showed elevated levels of the above metals. •

TABLE OF CONTENTS

PAGE

ABSTR	ACT	i
RESUM	E	ii
ADDEN	DUM	iii
TABLE	OF CONTENTS	iv
	LIST OF FIGURES	vi
	LIST OF TABLES	vii
	LIST OF APPENDICES	viii
1.0	INTRODUCTION	1
2.0	STUDY AREA	2
3.0	METHODS	4
	3.1 Water Quality and Quantity	6
	3.2 Sediments	8
	3.3 Bottom Fauna	9
	3.4 Laboratory Quality Control	10
4.0	RESULTS AND DISCUSSION	11
	4.1 Water Quality - Physical and Chemical Parameters	11
	4.1.1 Temperature	11
	4.1.2 Flow	11
	4.1.3 Dissolved Oxygen	12
	4.1.4 pH	12
	4.1.5 Conductivity	12
	4.1.6 Colour	15
	4.1.7 Turbidity	15
	4.1.8 Non-filterable Residue (NFR)	15
	4.1.9 Hardness and Alkalinity	15
	4.1.10 Sulfates	17
	4.1.11 Chlorides	17
	4.1.12 Phosphates	18
	4.1.13 Nitrite and Nitrates	18
	4.1.14 Total Ammonia	18

TABLE OF CONTENTS (Continued)

4.2	Water (Quality - Extractable Metals	19
	4.2.1	Silver (Ag)	21
	4.2.2	Cadmium (Cd)	21
	4.2.3	Copper (Cu)	23
	4.2.4	Iron (Fe)	24
	4.2.5	Manganese (Mn)	24
	4.2.6	Lead (Pb)	25
	4.2.7	Zinc (Zn)	25
4.3	Stream	Sediments	27
	4.3.1	Particle Size Distribution	27
	4.3.2	Sediment Metal Analysis	27
4.4	Stream	Benthic Fauna	29
	4.4.1	Taxonomic Features	29
	4.4.2	Percent Similarity Index	32
SUMMARY			34
REFERENCES			35
ACKNOVLEDGM	ENTS		36
APPENDICES			37

PAGE

- v -

- vi -

LIST OF FIGURES

FIGURE 1 1 LOCATION OF STUDY AREA 3 LOCATION OF SAMPLE STATIONS 2 5 IN SITU CONDUCTIVITY 3 13 MEAN ALKALINITY AND HARDNESS 4 13 5 MEAN EXTRACTABLE Mg IN WATER 20 MEANS OF SELECTED METALS IN SEDIMENTS 6 28

PAGE

- vii -

LIST OF TABLES

TABLE

PAGE

.

1	STATION DESCRIPTION	4
2	HISTORICAL COMPARISON OF ALKALINITY AND	
	HARDNESS LEVELS	16
3	HISTORICAL COMPARISON OF CADMIUM LEVELS IN WATER	22
4	HISTORICAL COMPARISON OF COPPER LEVELS IN WATER	23
5	HISTORICAL COMPARISON OF ZINC LEVELS IN WATER	26
6	INVERTEBRATE POPULATION PERCENT SIMILARITY FOR SOUTH	
	McQUESTEN RIVER STATIONS	33

.

- viii -

LIST OF APPENDICES

APPENDIX PAGE COLLECTION, PRESERVATION, ANALYSIS OR IDENTIFICATION Ι METHODS AND WATER QUALITY CRITERIA 38 WATER QUALITY DATA 50 II STREAM SEDIMENTS DATA 76 III IV BOTTOM FAUNA DATA 91

1.0 INTRODUCTION

An investigation of water quality, stream sediments and aquatic invertebrate populations was carried out by the Environmental Protection Service July 9-10 and August 21-22, 1985 in the South McQuesten River watershed in the vicinity of United Keno Hill Mine at Elsa, Yukon.

The purpose of the investigation was to determine if any significant impact from the mining and milling operations was detectable in the receiving waters, namely Flat Creek, Christal Creek and the South McQuesten River.

The information collected by this survey is compared with information from two previous surveys conducted by the Environmental Protection Service in 1974 - 1975 (Regional Program Report 78-14) and in 1980 (Regional Program Report 81-23). Further comparisons are made with water quality information available through the Northern Affairs Program, (1985), in Whitehorse, Yukon.

The parameters found, by the present study, to exceed recommended levels for drinking water or which are known to be toxic to freshwater invertebrates and fish are identified and discussed. Pollution trends which can be attributed to mine activities are also identified. - 2 -

2.0 STUDY AREA

United Keno Hill Mine is located at the town of Elsa, Yukon (63° 55' N, 135° 30' W) approximately 450 kilometres by road north of Whitehorse via the Klondike and the Silver Trail Highways (see Figure 1).

Prospectors first took interest in this area in 1906 when silver, lead and zinc ore deposits were discovered on Galena Hill where the town of Elsa is now situated. A "stampede" resulted when major silver deposits were discovered in 1919. Ore deposits were high-graded for more than 20 years until 1942 when World War II brought most mining activity in the area to a halt (Sinclair et al, 1976).

In 1946 the United Keno Hill Mine Ltd. began mining and milling operations and have operated almost continuously for the past 40 years. Ore from several nearby adits is transported to a crusher and flotation/ recovery mill located at Elsa where lead, zinc and silver concentrates are extracted. The mill is currently operating at 300 tons per day with mineral recovery per ton estimated at 20 oz. silver, 1.4% zinc and 3% lead. Ore concentrates are eventually shipped to smelters in southern Canada for complete recovery (Northern Affairs Program, 1985).

Mill tailings and mine water are discharged and contained within a series of three dam structures immediately below the Elsa townsite. The mill discharges approximately 280 tons of water and waste ore (2 to 1 ratio) per day which is then treated with hydrated lime to precipitate heavy metals. In 1984, 39,200 kilograms of lime were added to the tailings (Northern Affairs Program, 1985). Treated effluent is eventually released into Flat Creek which in turn joins the South McQuesten River approximately 10 kilometres downstream from the tailings pond decant. Christal Creek, which originates at Christal Lake 10 kilometres east of Elsa, flows into the South McQuesten River approximately 12 kilometres upstream of the Flat Creek confluence. Although this tributary is not directly associated with the receiving waters it is affected by drainage from several mine adits on the north slope of Galena Hill and the south slope of Keno Hill.

3.0 METHODS

A total of 11 sampling stations were established in the study area, some of which coincide with those established in the two previous investigations, (Environmental Protection Service 1978, Bethel and Soroka, 1981). Table 1 provides station descriptions and Figure 2 identifies station locations. All stations were accessed by road except for Stations 2, 3 and 4 which were accessed by helicopter.

TABLE 1 STATION DESCRIPTION

STATION

DESCRIPTION

Christal Creek, 5 meters d/s of culvert at Keno City Road 1 crossing. Christal Creek, 15 meters u/s of confluence with South 2 McOuesten River. South McQuesten River, 50 meters u/s of Christal Creek confluence. 3 South McQuesten River, 50 meters d/s of Christal Creek confluence. 4 Tailings pond decant. 5 6 Flat Creek, u/s of Mayo/Elsa Highway. Flat Creek, 600 meters u/s of confluence with South McQuesten River. 7 South McQuesten River, 50 meters u/s of Flat Creek confluence. 8 South McQuesten River, 50 meters d/s of Flat Creek confluence. 9 South McQuesten River, approximately 6 kilometers d/s of Flat Creek. 10 11 South McQuesten River at Bridge downstream of Haggart Creek.

- 4 -

During the July 9-10 sampling period, flow was not observed at the traditional tailings pond decant but water samples were collected from a pond immediately below the decant culvert. It was later determined that the tailing pond discharge was diverted to a second decant location, unknown to the field staff at the time of sampling.

During the August 21-22 sample period water samples were collected at the second decant location.

3.1 Water Quality and Quantity

In situ water quality measurements included temperature, conductivity, pH and dissolved oxygen. Temperature and conductivity were measured with a YSI Model 33 Temperature-Conductivity-Salinity Field Meter, pH was measured using a Fisher Scientific Model 640 Field Meter or Horiba Water Quality Checker and dissolved oxygen was measured with a YSI Model 57 Dissolved Oxygen Field Meter. The latter was calibrated using the water saturated air method as described in the YSI Manual. Readings were corrected for temperature, elevation and salinity. Percent saturation was calculated from oxygen saturation tables derived from APHA et al (1981). A full description of field equipment and measurements is given in Appendix I, Table 1.

Water quality samples, collected in triplicate at each station, included a 2 litre sample for nutrients analysis and a 100 ml sample for extractable metals analysis. Sample collection, preservation and analysis methods are shown in Appendix I, Table 1. The mean and standard deviation were calculated for each set of three samples collected. During sample collection in August, an attempt was made to characterize the channel cross section at stations on the South McQuesten River. One of each triplicate set was collected along the left bank, at mid stream and along the right bank of the river. Water quality data for each triplicate set in Appendix II, Table 2 is shown in this sequence (left bank, mid stream, right bank).

- 6 -

The parameters analysed in each nutrient sample are as follows:

рН	total phosphates
conductivity	nitrites
colour	nitrates
turbidity	ammonia
nonfilterable residue	sulfate
total alkalinity	chloride
total hardness	

The following parameters were analysed in each extractable metals sample:

aluminum (Al)	cobalt (Co)	silicon (Si)
antimony (Sb)	copper (Cu)	silver (Ag)
arsenic (As)	iron (Fe)	sodium (Na)
boron (B)	lead (Pb)	strontium (Sr)
barium (Ba)	magnesium (Mg)	tin (Sn)
beryllium (Be)	manganese (Mn)	titanium (Ti)
cadmium (Cd)	molybdenum (Mo)	vanadium (V)
calcium (Ca)	nickel (Ni)	zinc (Zn)
chromium (Cr)	selenium (Se)	

The analyses were completed at the Environmental Protection Service Laboratory, 4195 Marine Drive, West Vancouver, B.C.

Stream flow was measured at selected stations using a Marsh McBirney Electromagnetic Flow Meter. Ten velocity readings, in centimeters per second, were taken across the width of each South McQuesten River Station. On the narrower Christal and Flat Creek Stations usually four readings were taken. Stream flows were calculated by dividing the width of the stream into equal blocks, according to the number of readings taken, then the area of each block was determined (water depth X block width). This area was then multiplied by the stream velocity for each block giving a cubic meter per second value (m3/sec). All block flows were added together to arrive at a measured stream flow. In some cases where excessive stream depth and velocity made it hazardous for field staff to effectively measure stream flow, discharge was calculated as described below:

July 9-10, 1986

Station 4 = Station 2 + Station 3 Station 8 = Station 9 - Station 7

August 21-22, 1986

Station 3 = Station 4 - Station 2
Station 9 = Station 7 + Station 8

Discharge could not be accurately determined at Stations 5 and 6 in July and at Stations 1, 5 and 6 in August because stream velocities encountered were less than the minimum velocity required by the instrumentation used.

3.2 Sediments

Sediment samples were collected in triplicate at each station, except for Stations 5 and 6, on both visits to the study area. A stainless steel sediment corer device was used to reduce the loss of very fine sediments from samples collected in fast flowing water. In calm or slow moving waters an aluminum scoop shovel was used to collect a sample. The samples were placed in paper geochemical sampling bags, packaged in plastic bags and then frozen within 48 hours of collection. A description of the corer sampler, sediment collection, preparation and analysis methods is given in Appendix I, Table 2. Each sample was analysed for particle size composition and the following leachable metals:

aluminum (Al)	iron (Fe)	silicon (Si)
arsenic (As)	lead (Pb)	silver (Ag)
barium (Ba)	magnesium (Mg)	sodium (Na)
beryllium (Be)	manganese (Mn)	strontium (Sr)
cadmium (Cd)	mercury (Hg)	tin (Sn)
calcium (Ca)	molybdenum (Mo)	titanium (Ti)
chromium (Cr)	nickel (Ni)	vanadium (V)
cobalt (Co)	potassium (K)	zinc (Zn)
copper (Cu)	selenium (Se)	

Particle size analysis was carried out only on samples from Stations 7-11 inclusive. The sediment samples were analysed at the Environmental Protection Service Laboratory, 4195 Marine Drive, West Vancouver, B.C.

3.3 Bottom Fauna

Benthic invertebrate samples were collected at all stations except Stations 5 and 6. At each station sampled, 3 artificial substrate samplers were placed on the stream bed on July 9-10, 1985. The samplers used were cylindrical wire baskets (maximum volume = 0.0057 cubic meters) filled with local hand cleaned substrate material ranging from 2 cm to 6 cm in size. The samplers were placed in the stream where in situ measurements, water and sediment samples were collected. The samplers were left to be colonized for a period of 43 days. On August 21-22, 1985 the baskets were retrieved and immediately placed into a Wildco wash bucket with 0.5 mm mesh bottom. The bucket was held downstream during retrieval of the sampler in order to capture any escaping organisms. Large rock and wood debris was hand scrubbed in the wash bucket to remove invertebrates and then discarded. Invertebrates and fine debris from each basket were combined into a composite sample for each station. A 10% formalin solution was used to preserve the samples until sorting could be carried out. The invertebrate samplers placed at Station 10 were vandalized during the sample period and so the data presented for this station is a result of three samples collected August 21-22 using a Surber Sampler (0.09 m2).

Invertebrate identification and enumeration was carried out by Dr. C. Low, a consulting Invertebrate Biologist in Nanaimo, B.C.

Sorted invertebrate samples were later preserved with methanol and placed in storage at the Environmental Protection Service warehouse facility in Whitehorse.

3.4 Laboratory Quality Control

Systematic error and sample contamination during analysis at the EPS Laboratory are minimized through duplicate analysis, procedural blanks and the use of standard reference materials. Internal lab quality control is carried out routinely in all water and sediment analysis before results are released. 4.0 RESULTS AND DISCUSSION

4.1 Water Quality - Physical and Chemical Parameters

In situ measurement, nutrients and extractable metals results for both sample periods are presented in Appendix 11, Tables 1 and 2. Criteria recommended for drinking water and aquatic life are presented in Appendix 1, Table 4.

4.1.1 <u>Temperature</u>. In situ temperatures reflect seasonal changes. The South McQuesten River averaged 15°C on July 9-10 and 9°C on August 21-22. The tributaries surveyed were slightly cooler ranging from 7.5° C to 12.5°C in July and 4.0°C to 7.5°C in August.

4.1.2 Flow. Flow measurements were taken when possible during each visit to the study area except at Stations 4, 5, 6 and 8 on July 9-10 and Stations 3, 5, 6, 9 and 10 on August 21-22.

No discharge data was obtained for Station 5 on July 4-10 sampling period.

On August 21-22 a steady discharge from the tailings pond decant culvert was observed and was estimated by field staff at approximately 0.02 m^3 /sec. Accurate measurements could not be obtained because of the shallow nature and slow velocity of the decant.

No flows were obtained at Station 6, Flat Creek, because the irregular stream bed and low level of water made it impossible to accurately measure with the instrumentation available.

Flows measured at stations on the South McQuesten River on July 9-10 were considerably higher than flows measured during the August 21-22 sample period. In July they ranged from 5.9 m^3 /sec at Station 3, the furthest upstream station, to 9.7 m^3 /sec. at Station 11 which is located furthest

downstream. A similar degree of increase in flow in the South McQuesten River was also measured on August 21-22, ranging from 3.4 m^3 /sec at Station 4 to 6.7 m^3 /sec at Station 11 although total flow was much lower in August.

The flow at Station 7, Flat Creek, ranged from 0.07 m^3 /sec in July to 0.06 m^3 /sec in August.

Flows measured at Station 2, Christal Creek, showed no change between the sample periods.

4.1.3 <u>Dissolved Oxygen</u>. Percent dissolved oxygen saturation (%DO) was slightly higher on August 21-22 than on July 9-10. The South McQuesten River ranged from 82% to 97% during the July sample period. In August, %DO ranged from 95% to 104%.

%DO at Stations 1 and 2, Christal Creek and at Stations 6 and 7, Flat Creek, ranged from 80% to 99% over the two sample periods.

The high %DO at Station 5 on August 21-22 (119%) is a result of aeration occurring where the decant water discharges from the decant culvert into a small pool before flowing into Flat Creek.

4.1.4 <u>**pH**</u>. The slightly alkaline pH of waters in the study area are characteristic of this area (Environmental Protection Service, 1978). The South McQuesten River had a mean pH value of 8.15 (+/-0.16) in July and 7.89 (+/-0.18) in August. No significant change could be detected at Stations 4 and 9 immediately downstream of Christal Creek Flat Creek respectively. The lowest field pH recorded (7.65) on the South McQuesten River was at Station 9 on August 21-22 but this is not considered to be representative, as shown by the upstream pH of 7.90 at Station 8 and at Station 7, Flat Creek.

4.1.5 <u>Conductivity</u>. Conductivity measurements varied considerably throughout the study area. As Figure 3 demonstrates, conductivity in the receiving waters was elevated by decant from the tailing pond (Station 5). In situ values at Station 5 were 1190 umhos/cm on July 9-10 and 920 umhos/cm

- 12 -

FIGURE 4 MEAN ALKALINITY AND HARDNESS

on August 21-22. This high input can be traced downstream at Station 7 and to a lesser extent at Station 9. The dilution effect of the South McQuesten River is more prevalent in July, when flows were higher, than in August as shown by the difference in conductivity at Station 9 from the two sampling periods. Further downstream at Station 10 and 11 conductivity is similar to background levels of 240 umhos/cm found at Station 3.

High conductivity was also detected in Christal Creek during both sample periods as shown by Figure 3, Stations 1 and 2. These elevated levels are suspected to reflect the influence of drainage from the Galkeno 900 adit which enters upstream of Station 1 at Christal Lake.

Data from each triplicate sample collected in August at Station 4 and 9 show the presence of a plume immediately downstream of where Christal Creek and Flat Creek join the South McQuesten River. At Station 4, lab conductivity across the river decreased from 310 umhos/cm along the left bank to 255 umhos/cm along the right bank. Lab conductivity at Station 3 was 250 umhos/cm across the full width of the river. A similar plume was detected at Station 9, where lab conductivity decreased from 680 umhos/cm along the left bank to 310 umhos/cm along the right bank. Lab conductivity at Stations 8, 10 and 11 show no indications of lateral gradient in conductivity and are similar to background levels.

Historically the Environmental Protection Service (1978) reported lower conductivity in receiving waters. In July, 1974 and June and July of 1975 conductivity of decant from the tailings pond was 380, 360 and 950 umhos/cm, respectively. Conductivity of the South McQuesten River upstream of Christal Creek was very similar to that found by the present study. Bethel and Soroka (1981) reported results similar to the present report except at Station 8 where lab conductivity averaged 530 umhos/cm over a three day period in August, 1980.

- 14 -

4.1.6 <u>Colour</u>. During the July sample period, colour measured 20 Relative Units (RU) at most stations except Stations 1 and 2 where it was 10 RU. Values during the August sample period were slightly lower with most stations averaging 10 RU except Stations 1 and 2 which were 5 RU. The higher values in July at most stations no doubt reflects increased organic loading commonly associated with peak flow periods, as observed.

4.1.7 <u>Turbidity</u>. Turbidity readings at Station 1, 5, and 7 during the July sample period and at Station 7 during the August sample period were slightly elevated relative to background turbidity at Station 3. The highest turbidity reading was 2.50 FTU at Station 7 July 9-10. Turbidity at Station 7 during both sample periods exceeded that found at Station 5 suggesting the source is other than the tailings pond decant. Background turbidity at Station 3 during July and August was 0.45 and 0.16 FTU, respectively.

4.1.8 <u>Non-filterable Residue (NFR)</u>. NFR values were low or below the 5mg/L detection limit in most of the samples collected on both visits to the study area. The highest NFR level detected was 14 mg/L at Station 1 during the August sample period. NFR values in the 5 to 14 mg/L range were also detected at Station 1 on July 9-10 and at Stations 2, 4, 6, 7, 10 and 11 on August 21-22.

4.1.9 Hardness and Alkalinity. Water hardness changed little between the two sample periods but exceeded the 100 mg/L level recommended for drinking water at all stations. Elevated levels, ranging from 238 to 671 mg/L, were detected at Stations 1, 2, 5, 6 and 7. Background levels at Station 3 during July and August, 132 and 136 mg/L respectively, reflect the geology of the drainage area.

The elevated hardness found in Flat Creek, Station 7, can be detected at Station 9 on the South McQuesten River but, as Figure 4 shows, it returns to near background levels at Station 10 and 11. Water samples collected at Station 9 on August 21-22 show elevated hardness along the left bank indicating the presence of the Flat Creek plume. Changes in water hardness also show a direct correlation with the changes in conductivity recorded during both sample periods.

Figure 4 also shows high alkalinity in Flat Creek at Station 6 during both sample periods but it is not directly related to the increase in hardness. During July and August alkalinity was 85.7 and 86.0 mg/L, respectively, at Station 3 and, as Figure 4 shows, it returns to near background levels at Station 10 and 11 after only a slight increase at Station 9. Samples collected August 21-22 at Station 9 confirm the presence of the Flat Creek plume as shown by the higher alkalinity along the left bank of the South McQuesten River.

Results from Environmental Protection Service (1978) and Bethel and Soroka (1981) compared with results from the present study show hardness was similar in the South McQuesten River but generally lower in Flat Creek and Christal Creek in past years at corresponding locations, as shown by Table 2.

	E JULY	PS 1974	E JULY	PS 1975	EP *AUG.	S 1980	E JULY	PS 1985	EPS AUG.19	985
STATION	ALK.	HARD.	ALK.	HARD.	ALK.	HARD.	ALK.	HARD.	ALK. HA	ARD
1	N/A	160	79.2	260	N/A	N/A	82.9	432	103.3	468
2	N/A	190	10.4	210	N/A	N/A	110.7	313	120.3	326
3	N/A	100	73.3	100	N/A	N/A	85.7	132	86.0 1	136
4	N/A	N/A	N/A	N/A	N/A	N/A	86.2	141	89.6 1	154
5	N/A	440	80.2	440	52.1	739	93.0	591	92.6 6	671
6	N/A	820	N/A	N/A	N/A	N/A	168.3	238	187.3 2	254
7	N/A	240	117.8	220	130.0	342	143.3	494	163.0 5	509
8	N/A	110	78.2	110	118.0	255	89.7	140	100.6 1	156
9	N/A	290	86.1	120	85.0	126	92.1	158	119.7 2	260
10	N/A	N/A	N/A	N/A	N/A	N/A	93.0	148	106.0 1	170
11	N/A	N/A	N/A	N/A	N/A	N/A	96.6	155	108.7 1	168

TABLE 2 HISTORICAL COMPARISON OF ALKALINITY AND HARDNESS LEVELS(mg/L)

* Three day mean.

N/A - Not Available

In July, 1974 and July, 1975 hardness ranged from 160 to 260 mg/L at Stations 1 and 2 while in the present study hardness was consistently higher, averaging 313 and 468 mg/L at the same locations. Water hardness similarly has increased at Stations 5 and 7 over the past 11 years. Since 1974 levels have increased from 440 to 671 mg/L at Station 5 and from 240 to 509 mg/L at Station 7. Hardness at Station 6 was found by the present study to be lower than Stations 5 and 7 but in July, 1974 it reached 820 mg/L (Environmental Protection Service, 1978).

Historical comparison of water hardness at Station 3 shows little change, suggesting that sustained mining activity in the area may be associated with the increases observed in receiving waters.

Alkalinity has increased slightly at all comparable stations since 1975. In July, 1975 it ranged from 73.3 to 117.8 mg/L while in August, 1985 it ranged from 86 to 187 mg/L.

4.1.10 <u>Sulfates</u>. Sulfates remained well below the 500 mg/L level recommended for drinking water at all stations except Station 5. In the present study sulfates at Station 5 averaged 497 mg/L in July and 540 mg/L in August. Average background levels found at Station 3 ranged from 30 mg/L in July to 42 mg/L in August. Bethel and Soroka (1981) reported sulfates at each station sampled but exceeded 500 mg/L only at Station 5 (663 mg/L).

4.1.11 <u>Chlorides</u>. Chlorides were elevated at Station 5 as compared with levels found at other stations in the study area. They averaged 18.9 and 14.3 mg/L, respectively, during the July and August sample periods but were well below the 250 mg/L level recommended for drinking water. It is believed the elevated chlorides at Station 5 are residuals of the calcium hypochlorite reagent used in a cyanide flotation circuit previously used at the mill. Bethel and Soroka (1981) reported similar levels at Stations 5, 7, 8 and 9. At Station 3 chloride levels averaged 0.7 and 0.2 mg/L during the sample periods.

- 17 -

4.1.12 <u>Phosphates.</u> Total phosphate, which was detected at several locations, generally is not considered to be toxic to aquatic organisms but levels as low as 0.002 mg/L have promoted algae growth under controlled conditions (Bothewll, 1985). Although mean concentrations found during both sample periods ranged from <0.002 to 0.016 mg/L, unusually high values of 0.049 and 0.059 mg/L were found in individual samples at Station 8 and Station 9, respectively, August 21/22. Since these values are not comparable to other samples collected at the same time and locations, it is believed they are a result of sample contamination or analytical error.

4.1.13 <u>Nitrite and Nitrate</u>. Nitrite was below detection limit (0.005 mg/L) in the July and August sample periods of the present study. In comparison, levels ranging from 0.014 to 0.075 mg/L exceeded the 0.001 mg/L criteria recommended for drinking water in August, 1980 at Stations 5, 7 and 8 (Bethel and Soroka, 1981).

Nitrate ranged from 0.003 to 0.16 mg/L in the present study. These levels are well below the 10 mg/L limit recommended for drinking water and do not pose a threat to aquatic life from the perspective of stimulating algal growth.

Bethel and Soroka (1981) reported nitrate at Stations 5, 7 and 9 within the range found in the present study.

4.1.14 <u>Total Ammonia</u>. Toxicity of ammonia has been attributed primarily to the unionized portion of total ammonia present (Thurston et al, 1974). Unionized ammonia concentrations increase with increasing pH, temperature and total ammonia.

Levels of total ammonia in the present study ranged from (0.005 to 0.13 mg/L in July and (0.005 to 0.16 mg/L in August. The unionized portion calculated from the highest total ammonia value found (0.16 mg/L) was 0.0009 mg/L, well below the criteria recommended for drinking water (0.5 mg/L) and the protection of aquatic life (0.02 mg/L). Bethel and Soroka (1981) reported three day averages of 1.45, 0.450, 0.040 and 0.007 mg/L total

dissolved ammonia at Stations 5, 7, 8 and 9, respectively. The unionized portion of that found by Bethel and Soroka (1981) at Station 5 exceeded the 0.02 mg/L limit recommended for aquatic life.

4.2 Water Quality - Extractable Metals

Results of the extractable metals analysis for each sample is presented in Appendix II, Tables 1 and 2. Appendix I, Table 1 gives the detection limits for each parameter.

The following metals were below detection limits at all stations sampled July 9-10 and August 21-22:

July 9-10	August 21-22
arsenic (As)	arsenic (As)
beryllium (Be)	beryllium (Be)
chromium (Cr)	cobalt (Co)
antimony (Sb)	chromium (Cr)
selenium (Se)	antimony (Sb)
tin (Sn)	selenium (Se)
titanium (Ti)	titanium (Ti)
vanadium (V)	vanadium (V)

Boron (B), barium (Ba), calcium (Ca), molybdenum (Mo), nickel (Ni), phosphorous (P), silica (Si) and strontium (Sr) were detected in samples collected in July and August but were below the recommended levels for drinking water and aquatic life.

Magnesium (Mg), although not considered an environmental concern, was detected at all stations during both of the sample periods and graphically traces the tailings pond decant downstream of the point of discharge. As Figure 5 shows, the elevated levels discharged at Station 5 remain elevated at Station 7. At Station 9 the levels were higher during the August sample period because the South McQuesten River had less of a dilution affect than in July when flows were higher.

- 19 -

Plumes from Christal Creek and Flat Creek in the South McQuesten River were detected at Stations 4 and 9 respectively during the August sample period. This is shown by the higher levels of magnesium found along the left bank than what was found at midstream and near the right bank (see Appendix II, Table 2). Magnesium returned to near background levels downstream of Station 9.

4.2.1 <u>Silver (Ag)</u>. Silver averaged 0.0024 mg/L at Station 5, on July 9-10. The analysis for this period also shows levels decreasing from 0.0024 mg/L at Station 5, to 0.0007 mg/L at Station 7, to 0.0005 mg/L along the left bank at Station 9. In August, silver was 0.0010 mg/L at Station 5 and below detection limit (0.0005 mg/L) at stations further downstream.

In all cases, silver was below the criteria of 0.05 mg/L recommended for drinking water. However, all levels detected by this survey did exceed the criteria of 0.0001 mg/L recommended for the protection of aquatic life.

Environmental Protection Service (1978) reported silver to be less than the detection levels of 0.01 mg/L in June, 1975 and 0.03 mg/L in July, 1975 at all stations sampled.

4.2.2 <u>Cadmium (Cd)</u>. Table 3 compares cadmium levels from previous surveys with those found in the present study.

Cadmium has been detected at the present Station 5 on each visit shown except in August, 1980 where it was below the detection limit of 0.01 mg/L.

The results of the present study show cadmium higher in Christal and Flat Creek than in the South McQuesten River.

The elevated levels found in Christal Creek during the July sample period can be detected at Station 4 on the South McQuesten River. DIAND reported (pers. comm., 1985) high concentrations of heavy metals in drainage from an inactive adit, Galkeno 900, which flows into Christal lake. On July 17, 1985 cadmium was 0.012 mg/L at the adit and 0.003 mg/L in Christal Creek near Station 1. This clearly identifies one source of cadmium found at Station 1 and 2 of the present survey.

	EPS	EPS	EPS	*EPS	EPS	EPS
	JULY	JUNE	JULY	AUGUST	JULY 9-10	AUG. 21-22
	1974	1975	1975	1980	1985	1985
STATIO	N					
1	<0.01	<0.01	<0.01	N/A	0.0032	0.0016
2	<0.01	N/A	<0.01	N/A	0.0030	0.0020
3	<0.01	N/A	<0.01	N/A	0.0014	<0.0005
4	N/A	N/A	N/A	N/A	0.0018	<0.0005
5	0.06	0.03	0.05	<0.01	0.0024	0.0023
6	<0.01	N/A	N/A	N/A	0.0017	<0.0005
7	<0.01	0.01	<0.01	<0.01	0.0043	0.0018
8	<0.01	N/A	<0.01	<0.01	0.0019	<0.0005
9	<0.01	<0.01	<0.01	<0.01	0.0018	*0.0003
10	N/A	N/A	N/A	N/A	0.0019	<0.0005
11	N/A	N/A	N/A	N/A	0.0015	<0.0005

TABLE 3 HISTORICAL COMPARISON OF CADMIUM LEVELS IN WATER (mg/L)

* Three day mean. N/A - Not available

Cadmium was elevated at Station 5 during both sample periods but Station 7 on July 9-10 reflects an unusually high concentration which does not appear to originate from the tailings pond decant. The level found at Station 6 on the same day is lower than what was found in the decant, therefore this rules out the headwaters of Flat Creek as a potential source. There is insufficient information to determine the source but several small intermittent drainages entering Flat Creek between Station 5 and 7 are suspected.

Cadmium levels on August 21-22 show a well defined trend originating at the decant. Station 5 was 0.0023 mg/L, Station 7, Flat Creek, was 0.0018 mg/L and station 9, South McQuesten River, was 0.0008 mg/L along the left bank. Samples collected at midstream and along the right bank at Station 9 and at Station 10 and 11 were below the detection limit (0.0005 mg/L). All detectable levels of cadmium were below the 0.005 mg/L criteria recommended for drinking water but exceeded the 0.0002 mg/L criteria recommended for aquatic life.

4.2.3 <u>Copper (Cu)</u>. Table 4 compares copper levels reported by previous studies with that found by the present study.

	EPS JULY 1974	EPS JUNE 1975	EPS JULY 1975	*EPS AUGUST 1980	EPS JULY 9-10 1985	EPS AUG. 21-22. 1985
STATION						
1	<0.01	<0.01	<0.01	N/A	0.003	<0.001
2	<0.01	N/A	<0.01	N/A	0.002	0.003
3	<0.01	N/A	<0.01	N/A	0.003	<0.001
4	N/A	N/A	N/A	N/A	0.003	0.002
5	0.60	0.19	0.22	0.047	0.012	0.012
6	<0.01	N/A	N/A	N/A	0.004	<0.001
7	<0.01	0.20	<0.01	<0.010	0.006	0.005
8	<0.01	N/A	<0.01	<0.010	0.003	0.002
9	<0.01	<0.01	<0.01	<0.010	0.002	0.001
10	N/A	N/A	N/A	N/A	0.002	<0.001
11	N/A	N/A	N/A	N/A	0.003	<0.001

TABLE 4 HISTORICAL COMPARISON OF COPPER LEVELS IN WATER (mg/L)

* Three day mean. N/A - Not available

Environmental Protection Service (1978) and Bethel and Soroka (1981) both reported copper as less than the detection limit (0.01 mg/L) at most stations sampled except at Station 5, the tailings pond decant.

The present study detected copper at most stations during each of the sample periods due to improved detection limits. The mean levels ranged from (0.001 to 0.012 mg/L. The maximum mean (0.012 mg/L) was detected at Station 5 but levels decrease downstream at Station 7 and return to near background levels in the South McQuesten River at Stations 9, 10 and 11. All detected levels were below the criteria recommended for drinking water (1.0 mg/L). Station 7 on July 9-10 (0.006 mg/L) was the only station other than Station 5 where copper exceeded the criteria recommended for aquatic life (0.005 mg/L).

4.2.4 <u>Iron (Fe)</u>. The levels of iron detected by the present survey were similar to those reported by Environmental Protection Service (1978) and Bethel and Soroka (1981). They exceeded the criteria of 0.3 mg/L recommended for drinking water in the current study at Station 1 in July (0.39 mg/L) and at Stations 5 and 7 during both sample periods (ranging from 0.30 to 0.52 mg/L).

Iron levels found in samples collected at Stations 4 and 9 on August 21-22 were higher along the left bank than at midstream and the right bank indicating the presence of plumes from Christal and Flat Creek in the South McQuesten River.

4.2.5. <u>Manganese (Mn)</u>. Manganese detected by the present study ranged between 0.001 and 2.10 mg/L during the two sample periods. In July levels exceeded the 0.05 mg/L criteria recommended for aquatic life at most stations except Stations 3, 4 and 6. In August, levels decreased slightly and only exceed the 0.05 mg/L criteria at Stations 1, 2, 5 and 7.

Although elevated levels of manganese can be tolerated by some forms of freshwater aquatic life, available information suggests levels exceeding 0.1 mg/L may constitute an environmental hazard (Thurston et al, 1979). At Station 1, manganese ranged from 1.89 mg/L in July to 1.81 mg/L in August. DIAND conducted an adit survey July 16, 1985 (personal comm.), which detected 13.2 mg/l manganese in water draining from the Galkeno 900 adit upstream of Station 1. As well, elevated levels were detected at Station 7 in July (2.10 mg/L) and at Station 5 in August (1.04 mg/L). Since Station 5 was not sampled properly in July, it is unclear whether or not the high levels found at Station 7 originate from the tailings pond decant. Manganese was slightly elevated on both sample dates at Station 9 but returned to near background levels at Station 10 and 11.

- 24 -

Historically, manganese has been elevated in discharge from the mine tailings. In July of 1974 it was 16.0 mg/L (Environmental Protection Service, 1978) while in August, 1980 it averaged 1.95 mg/L over a three day period (Bethel and Soroka, 1981). The 1974 survey also reported elevated levels near Station 1 (6.1 mg/L).

4.2.6 During the July 9-10 sample period, lead was detected at Lead. stations with means ranging from 0.018 mg/L to 0.026 all mg/L. Nevertheless, one sample collected at Station 10 contained only 0.009 mg/L. These results were much higher than those found on August 21-22 and because there is no known reasons for the elevated levels, it is suspected that sample contamination or analytical error occurred. There is insufficient information available to suggest the levels found were characteristic of the study area during the month of July. Bethel and Soroka (1981), reported Pb levels as less than 0.08 mg/L in July 1978. However, Pb levels of up to 0.84 mg/L were observed at the decant in June 1975 (EPS, 1978). All mean levels were below the 0.05 mg/L criteria recommended for drinking but above the 0.01 mg/L criteria recommended for aquatic life.

On August 21-22, lead levels were at or below the detection limit of 0.001 mg/L at most stations except Stations 5 and 7 where they averaged 0.003 mg/L. In all cases in August, the levels present were well below the criteria recommended for drinking water and aquatic life.

4.2.7 <u>Zinc</u>. Table 5 compares results reported by previous surveys with that found in the present study.

Zinc at Station 5 has decreased over the period shown in Table 5. In July 1974, zinc was reported at 2.00 mg/L, whereas in the present survey, mean zinc levels were 0.22 mg/L in July and 0.09 mg/L in August.

Mean zinc exceeded the 0.03 mg/L criteria recommended for aquatic life at Stations 1, 2, 5, 7 and 9 during the July sample period and at Stations 1, 2, 4, 5, 7 and 9 during the August sample period. The highest mean levels detected, 0.928 mg/L in July and 0.825 mg/L in August at Station 1, exceeded the mine's water licence (Yukon Territory Water Board, 1985) requirement of 0.5 mg/L. The high zinc levels found at Station 1 originated at the Galkeno 900 adit where, on July 17, 1985 it was 25.8 mg/L (personal communication, 1985). Background mean levels at Station 3 were 0.008 mg/L in July and <0.002 mg/L in August.

	EPS JULY 1974	EPS JUNE 1975	EPS JULY 1975	*EPS AUGUST 1980	EPS JULY 9-10 1985	EPS AUG. 21-22. 1985
STATIC	ON				_, _,	
1	<0.17	0.28	0.22	N/A	0.928	0.825
2	N/A	N/A	0.16	N/A	0.327	0.433
3	0.01		0.01	N/A	0.008	<0.002
4	N/A	N/A	N/A	N/A	0.023	0.047
5	2.00	1.90	1.60	0.349	0.219	0.090
6	1.50	N/A	N/A	N/A	0.004	**0.003
7	0.73	0.77	0.60	0.349	0.231	0.215
8	0.02		0.07	0.244	0.019	0.028
9	0.59	0.74	0.09	0.052	0.029	0.065
10	N/A	N/A	N/A	N/A	0.022	0.027
11	N/A	N/A	N/A	N/A	0.016	0.017

TABLE 5 HISTORICAL COMPARISON OF ZINC LEVELS IN WATER (mg/L)

Three day mean.

** One of three samples contained 0.003 mg/L.

N/A - Not available

Although zinc was elevated at Station 5 during both sample periods, levels detected at Station 7 were higher, indicating, as have other parameters, that a source other than the tailings pond decant was influencing Flat Creek at the time of sampling. Levels at Station 6, upstream of Station 7, were well below that found at Stations 5 or 7.

During the August sample period, zinc levels were higher along the left bank of the South McQuesten River than at mid stream or along the right bank at Stations 4 and 9. This clearly identifies the plumes from Christal Creek and Flat Creek. The range at Station 4 was 0.084 to 0.003 mg/L, from left to right bank, while at Station 9, the range was 0.106 to 0.038 mg/L. - 27 -

4.3 Stream Sediments

Particle size distribution (%) and leachable metals results are presented in Appendix III, Tables 1 through 4. Size distribution data is available only for Stations 7 through 11. Particle size analysis was not carried out by the laboratory on samples from Station 1 through 4 due to misinterpreted instructions. Leachable metals analysis results are available for all stations sampled.

4.3.1 <u>Particle Size Distribution</u>. Overall the South McQuesten River sediments were observed to be comprised mainly of coarse material underlain with small amounts of sand and silt material. The particle size class most abundant in samples collected July 9-10 and August 21-22 was in the gravel size and larger (>2.0 mm) range. It was observed during sample collection that this range included material up to 40 mm in size, greatly influencing the overall weight distribution in each of the samples. Larger cobble material (>40mm) was present but was removed during sample collection. Sand material (<2.0 mm to >0.063 mm) represented from less than 1% to 16% of the composition of samples collected. The percentage of silt and clays (<0.063 mm) ranged from less than 1% to 6%.

Similar to South McQuesten River sediment samples, Flat Creek sediments at Station 7 were also comprised mainly of material in the >2.0 mm size range with small percentages of sand between 0.25 mm and 1.0 mm in size.

4.3.2 <u>Sediment Metal Analysis</u>. Significant changes in certain sediment metals were detected between the two tributaries sampled, Christal Creek and Flat Creek, and the South McQuesten River. Figure 6 show mean Cd, Cu, Pb, Zn and As concentrations to be much higher at Stations 2 and 7 as compared with Station 3. Changes in sediment metals downstream of the tributaries was also detected as shown by the increase of the above metals at Station 4, downstream of Christal Creek, and more so at Station 9, downstream of Flat Creek. This can be explained, in part, by a tailings dam failure in August of 1978 which resulted in the deposition of significant

FIGURE 6 MEANS OF SELECTED METALS IN SEDIMENTS

•

-

ŧŀ.

.

118

.

amounts of tailings material into Flat Creek and the South McQuesten River downstream of Flat Creek. (Environmental Protection Service - Environmental Emergencies Significant Events Reports, 1978). However, the reasons for high metal concentrations in stream sediments at Station 2, Christal Creek, are unknown. It is speculated that mining activity in the Keno City area prior to the development of United Keno Hill Mines may have contributed but this cannot be substantiated.

4.4 Stream Benthic Fauna

Appendix IV, Table 1 shows the taxonomic classifications and distribution of invertebrates identified from samples collected in the present study.

Most invertebrates were keyed to genus and species where possible, or to genus or family level only, if full identification was not possible. Some individuals of the Orders Acari, Coleoptera, Tricoptera, Arachnida, Suborder Cyclopoida and Phylum Nematoda were not possible to identify beyond the taxonomic level given. Genera or species shown in brackets indicate that the identification was tentative.

Resh and Rosenberg (1984) review the ecology of aquatic insects and identify the difficulty of making generalizations about the relationship between aquatic invertebrates and substrate composition and the difficulty of generalizing about the effects of heavy metal pollution on aquatic insects.

4.4.1 <u>Taxonomic Features</u>. A total of 4,098 individuals, comprised of 67 different taxa, were collected from nine stations. The majority of the invertebrates collected were of the Class Insecta although several Nematodes, Molluscs and Copepods were also found. The artificial substrate samplers placed at Station 10 were vandalized, so the invertebrate information presented was collected August 21-22 using a Surber sampler (0.93 m2). No samples were collected at Station 5, the tailings pond decant, or at Station 6 on Flat Creek.

- 29 -

The greatest number of individuals were found at Station 9 (1,492) on the South McQuesten River. A total of 25 different taxa were identified of which 21 were keyed to the genus or species level. The most abundant organism, <u>Simulium</u> sp. represented 91% of the total number of individuals collected. Genera and species of Orders Plecoptera, Tricoptera and Ephemeroptera were also found but in low numbers.

Invertebrate abundance at other stations on the South McQuesten River varied considerably, ranging from 140 to 683 in number, but were much lower than Station 9.

At Station 3 where 683 individuals were collected, 21 of the 26 different taxa identified were keyed to the genus or species level. The dominant invertebrate was a <u>Simulium</u> sp. larvae (51%) and pupae (25%), representing 76% of the sample collected. The remaining sample included small percentages of organisms from Orders Ephemeroptera, Plecoptera, Tricoptera and Gastropoda and Phylum Nematoda.

At Station 4, immediately downstream of Christal Creek, 206 individuals were collected. A total of 27 different taxa were identified, 22 of them to the genus or species level. The dominant invertebrates were several genera of the Order Plecoptera representing 65% of the sample collected. They included <u>Malenka</u> sp. (18%), <u>Acroneuria</u> sp. (16%), <u>Zapada</u> sp. (11%), <u>Alloperla</u> sp. (8%), <u>Utaperla</u> sp. (6%), and <u>Arcynopteryx</u> sp. (2%). The remaining sample was comprised of 2 genera of the Order Tricoptera (14%) and 5 genera of the Order Ephemeroptera (10%). <u>Simulium</u> sp. larvae and pupae, which were predominant at other South McQuesten River stations (except station 10), represented only 5% of the invertebrates collected at Station 4.

The lowest abundance was found at Station 8 where 140 individuals comprised of 20 different taxa were collected. Eighteen of the taxa were identified to the genus or species level. <u>Simulium</u> sp. of the Order Diptera was the most abundant, representing 31% of the sample. Members of

- 30 -

the Orders Ephemeroptera, Plecoptera and Tricoptera were also significant in numbers representing 16%, 26% and 23%, respectively, of the sample.

Since a different sampling method was required at Station 10 the results will not be compared with those found at other South McQuesten River stations. At Station 10, a total of 237 individuals were collected of which 16 of the 24 different taxa identified were identified to the genus or species level. Density was calculated at 850 individuals per square metre. The dominant invertebrate was of the Class Oligochaeta which represented 70% of the sample collected. The composition of the remaining sample was represented by invertebrates from the Orders Ephemeroptera, Plecoptera, Tricoptera, Diptera and the Phylum Nematoda.

At Station 11, <u>Simulium</u> sp. was the most abundant invertebrate found, making up 65% of the 500 individuals collected. The composition of the remaining sample was comprised of invertebrates from the Orders Plecoptera (23%), Ephemeroptera (5%) and Tricoptera (3%).

Invertebrate abundance varied considerably between the two stations on Christal Creek. At Station 1, 655 individuals were collected whereas at Station 2, only 90 were collected. The reason for this difference in abundance is suspected to be partly because of the finer substate found at Station 2 which provided a less suitable habitat for invertebrates than the This is based on observations of the larger material found at Station 1. sediment characteristics made during the first visit to the study area as there is no sediment particle size data for these two stations. At Station 1, 31 different taxa were identified, 23 to the species or genus level. The sample was dominated by several genera of the Order Diptera. Those found included Simulium sp. (36%), Cricotopus sp. (14%), Eukiefferiella sp. (6%) and Diplocladius sp. (9%). Chironomidae pupae represented 5% of the sample. Individuals from the Class Oligochaeta represented 12% of the sample collected. Similar composition was found at Station 2 but, as previously stated, in much lower numbers. Only 18 different taxa were identified, 11 to the species or genus level. The sample collected was dominated by

several genera of the Order Diptera including <u>Cricotopus</u> sp. (21%), <u>Heterotrissocladius</u> sp. (11%), <u>Cardiocladius</u> sp. (2%), <u>Brillia</u> sp. (17%) and Chironomidae pupae (10%).

At Station 7, 95 individuals were collected which were classified into 14 different taxa. Only 9 species or genera were identified. The dominant group was of the Order Diptera, representing 42% of the sample. The genera found included <u>Simulium</u> sp. (14%), <u>Cricotopus</u> sp. (14%), <u>Heterotrissocladius</u> sp. (5%), <u>Procladius</u> sp. 1%) and <u>Tipula</u> sp. (2%). Chironomidae pupae (6%) were also found. The most abundant genus, <u>Podmosta</u> sp., of the Order Plecoptera represented 34% of the sample. The genus Arctopsyche sp. of the order Tricoptera represented 11% of the sample.

The above results describe the aquatic invertebrate populations at the respective stations, and although there is a degree of similarity among the stations, it is not possible to isolate individual parameters as causes for population variation. <u>Simulium</u> sp. is noted as being present and very abundant at most stations. This genus is characteristic of clear, fast flowing water in riffle areas where it is successful as a filterer. The abundance of <u>Simulium</u> sp. at the various stations is also correlated with higher zinc (Zn) and cadmium (Cd) levels so it may be showing a tolerance to Zn and Cd which other organisms tolerate less readily. Similar tolerance to heavy metals is referred to by Wiederholm (1984). 1.8

4.4.2 <u>Percent Similarity Index</u>. The benthic invertebrate communities found at all South McQuesten River stations, except Station 10, were compared using a Percent Similarity Index (PSC) formula described by Brock (1977):

k

Psc = 100 - 0.5 | a-b |

where a and b are, for a given genus, percentages of the total samples A and B which that genus represents. The absolute value of their difference is summed over all genera, k. The PSC Index compares the percentage of genera present at two different locations but is not a comparison of total invertebrate abundance. The greatest similarity was found between stations 9 and 11 where the index was 71%. Similarity between Station 3 and Stations 4, 8, 9 and 11 ranged from 28% to 44%. Similarity comparisons between all other stations never exceeded 48%.

TABLE 6INVERTEBRATE POPULATION PERCENT SIMILARITY FOR
SOUTH MCQUESTEN RIVER STATIONS

	(110211 01011100	10)			
STATION	11	9	8	4	
3	42	32	44	28	
4 8	35 48	15 39	48		
9	71				

(EXCEPT STATION 10)

SUMMARY

The present survey shows an improvement in mine effluent water quality at Station 5 when compared with historical data previously reported by the Environmental Protection Service. Several events, such as changes in ore type, mill processes and improved mill tailings treatment have taken place in the past 12 years and undoubtedly have influenced effluent quality but the degree of influence cannot be determined by this report.

Results of the present survey have shown that mine drainage from the Galkeno 900 adit is the primary source of high metals concentrations found in Christal Creek. The highest extractable Zn concentration found in the study area on the dates sampled was at Station 1. This combined with other elevated metals concentrations exceed the standards recommended for drinking water and, in some cases, that recommended for the protection of aquatic life.

REFERENCES

- Bethel, G. and Soroka, I. 1981 <u>Compliance Evaluation of United Keno Hill</u> <u>Mines Ltd., Elsa, Yukon Territory</u>. Environmental Protection Service Regional Program Report 81 - 23, 41p.
- Bothwell, M. <u>Phosphorous Limitations of Lotic Periphyton Growth Rates: An</u> <u>Interesting Comparison Using Continuous Flow Troughs</u>. Limnology and Oceanography, Vol. 30 No. 3, May, 1985.
- Brock, D.A., 1977. Comparison of Community Similarity Indexes Journal -Water Pollution Control Federation, 49 (12), p. 2488-2494, Dec., 1977.
- Environmental Protection Service, 1978. Assessment of Water Quality and Biological Conditions in Watersheds surrounding the United Keno Hill Mine, Elsa, Yukon, During the Summers of 1974 and 1975. Environmental Protection Service Regional Program Report 79-14, 26p.
- Environmental Protection Service, 1978. Environmental Emergencies Significant Events Report File 4000.2-1/1, Volume 3.
- Northern Affairs Program, 1985. United Keno Hill Mines Ltd. Information Sheet for Water-Use Application. 15p.
- Personal Communication 1985. DIAND, Water Resources Division, Whitehorse, Yukon.
- Resh, Vincent H. and David M. Rosenberg ed. 1984. <u>The Ecology of Aquatic</u> Insects. Praeger Publ. N.Y. 265 pp.
- Thurston, R.V., R.C. Russo, C.M. Felterolf, T.A. Edsall and Y.M. Barber (ed). 1979 <u>A Review of the EPA Red Book: Quality Criteria for Water</u>. Water Quality Section, American Fisheries Society, Bethesda M.D., 313 p.
- Wiederholm, Torgny. 1984. <u>Responses of Aquatic Insects to Environmental</u> <u>Pollution</u> in Resh, V.H. and Rosenberg D.M. ed. (1984) The Ecology of <u>Aquatic Insects</u>. Praeger Publ. N.Y. 625 pp.
- Yukon Territory Water Board, 1985. United Keno Hill Mines Ltd. Water Licence Y1N85-02RL (Renewal of Industrial Licence Y2L3-20140 issued September 26, 1985.)

ACKNOWLEDGEMENTS

The authors would like to thank J. Cornell and L. Axbey for their field support, L. Macara and Linda Peters for manuscript preparation and B.W. Kelso for his technical review of this paper.

APPENDICES

.

- 37 -

APPENDIX I

COLLECTION, PRESERVATION, ANALYSIS OR IDENTIFICATION METHODS AND WATER QUALITY CRITERIA

	METHOD 2 SECTION 2	del 33	am was of the <u>nt</u>	r(in situ) & Orion	080	del 33 044 uctivity
N AND ANALYSIS METHODS	ANALYTICAL PROCEDURE	YSI Conductivity Meter Mo	Cross-section of the stre- measured and the velocity flow was calculated using standard Price-type curre- meter method.	YSI Dissolved Oxygen mete Orion model 701 pH meter O	Potentiometric	YSI Conductivity meter mo (in situ).Radiometer cond meter (CDM2D)(laboratory)
WATER SAMPLE COLLECTION, PRESERVATIO	COLLECTION AND PRESERVATION PROCEDURE 1	In situ temperature reading.	In situ flow measurments using a Marsh-McBirney electromagnetic current meter.	In situ measurement. The instru- ment was calibrated in the field under water-saturated air condition.	Small allquots of sample were taken and read soon after collection. No preservative. Instrument was cali- brated using 7.0 buffering solution.	In situ measurement. Laboratory measurement, specific conductivity at 25°C. No preservative. The measurement was taken from the same sample as NH ₃ below.
се 1	DETECTION LIMIT	0.1°C		1.00 mg/1	0.1 pH units	0.2 umhos/cm
APPENDIX I TAB	PARAMETER	Temperature	Flow	Dissolved Oxygen	Нq	Conductivity

(continued)
METHODS
ANALYSIS
AND
PRESERVATION
COLLECTION,
SAMPLE
WATER
TABLE 1

APPENDIX I

PARAMETER	DETECTION	COLLECTION AND PRESERVATION PROCEDURE 1	ANALYTICAL PROCEDURE	METHOD 2
Ammonia NH ₃ -N	0.005 mg/1	Single samples collected in 2 litre linear polyethylene containers. Each container was rinsed 3 times with sample before it was filled. No preservatives. Stored at 4°C.	Phenol hypochlorite-colori- metric-automated	058
Colour	5 (colour units)	Same sample as NH3.	Platinum-cobalt visual compar- ison	040
Turbibity	1.0 (FTU)	Same sample as NH3.	Nephelometric turbidity	130
Non-Filterable Residue (NFR)	5.0 mg/l	Same sample as NH ₃ .	Filtration, drying and weigh- ing of residue on filter	104
Filterable Residue (FR)	10.0 mg/l	Same sample as NH3.	Filtration, drying and weight- ing of filtrate	100
Total Alkalinity	1.0 mg/l as CaCO ₃	Same sample as NH3.	Potentiometric titration	006
rotal Phosphate r Po ₄ -P	0.005 mg/l	Same sample as NH3.	Ascorbic acid-persulphate, automated autoclave digestion	086
Vitrate WO ₂ -N	0.005 mg/1	Same sample as NH3.	Diazotization-colorimetric- automated	070

(Continued)
METHODS
ANALYSIS
AND
PRESERVATION
COLLECTION,
SAMPLE
WATER
ABLE 1
г
APPENDIX I

	DETECTION LIMIT	COLLECTION AND PRESERVATION PROCEDURE 1	ANALYTICAL PROCEDURE	METHOD SECTION ²
Nitrate NO ₃ -N	0.01 mg/l	Same sample as NH3 .	Cadmium-copper reduction- colorimetric-automated	072
Sulphate So ₄	1.0 mg/l	Same sample as NH3.	Automated methylthymol-blue colorimetric	122
Chloride Cl	0.5 mg/l	Same sample as NH ₃ .	Thiocyanate-combined reagent- colorimetric	024

WATER SAMPLE COLLECTION, PRESERVATION AND ANALYSIS METHODS	(Continued)
WATER SAMPLE COLLECTION, PRESERVATION AND ANALYSIS	METHODS
WATER SAMPLE COLLECTION, PRESERVATION AND	ANALYSIS
WATER SAMPLE COLLECTION, PRESERVATION	AND
WATER SAMPLE COLLECTION,	PRESERVATION
WATER SAMPLE	COLLECTION,
WATER	SAMPLE
	WATER

TABLE 1

APPENDIX I

METHOD SECTION ²	300
ANALYTICAL PROCEDURE	Inductively coupled argon plasma
COLLECTION AND PRESERVATION PROCEDURE 1	Single or triplicate samples collected in 125 ml linear polyethylene bottles. Each bottle was rinsed 3 times with sample before filling. Pre- served to a pH (1.5 using 1.0 ml concentrated HNO3. Dissolved metals were collected in 125 ml linear polyethylene bottles rinsed 3 times with sample before filling. Filtered in field using 0.45 um cellulose nitrate filters. Preserved to pH <1.5 using 1.0 ml concentrated HNO3
DETECTION LIMIT	1,24 0.05 0.001 0.001 0.001 0.005 0.005 0.005
PARAMETER	Extractable/Total/ Dissolved Metals Al As Be Ba Cd Cd Cd Cd Cd Cd Cd Cd

APPENDIX I	TABLE 1	WATER SAMPLE COLLECTION, PRESERVATI	CON AND ANALYSIS METHODS (Cont	inued)
PARAMETER	DETECTION LIMIT	COLLECTION AND PRESERVATION PROCEDURE 1	ANALYTICAL PROCEDURE	METHOD SECTION ²
Extractable/Tc	stal/ mg/l			
Dissolved Meta	ls			
(Continued)				
Fe	0.005			
Mg	0.10			
Mn	0.001			
Mo	0.005			
Na	0.2			
Ni	0.02			
Pb	0.04			
Sb	0.05			
Se	0.05			
Si	0.01			
Sn	0.01			
Sr	0.002			
Ti	0.002			
Δ	0.01			
Zn	0.002			

PARAMETER	DETECTION	COLLECTION AND PRESERVATION PROCEDURE ¹	ANALYTICAL PROCEDURE S	METHOD SECTION ²
පිටිසි	0.0005 0.001 0.001	Same as sample metals. Same sample as metals. Same sample as metals.	Graphite furnace-atomic absorptio spectrometry	ion 330
Ag	0.0005	Same sample as metals.	Graphite furnace—atomic absorptio spectrometry	<u>ion</u> 330
Total Hardness Actual Hardness =	0.030 mg/l 4.116Mg + 2.	Same sample as metals 497Ca + 1.142Sr + 1.792Fe + 5.564Al +	1.531Zn + 1.822Mn	
Ca/Mg Hardness =	4.116Mg + 2.	497Ca		
1 As described 2 As described	in Environment in Department	. Canada (1976). of Environment (1979).		

WATER SAMPLE COLLECTION, PRESERVATION AND ANALYSIS METHODS

TABLE 1

APPENDIX I

IDENTIFICATION METHODS	IDENTIFICATION AND ENUMERATION	Bottom fauna was sent to Dr. C. Low Consulting Invertebrate Biologist, Nanaimo, B.C. for identification to genus, species if possible, and enumeration.
NUNA COLLECTION, PRESERVATION AND	LABORATORY PROCEDURES	Bottom fauna was removed from other material in a labelled vial containing 70% methanol.
APPENDIX I TABLE 3 BOTTOM FA	FIELD COLLECTION, SAMPLING PROCEDURES AND PRESERVATION	Artificial Substrate Sampler: Stream benthic invertebrates were collected Using cylindrical wire baskets (17 cm dia x 25 cm) filled with local stream bed rock material at each station. The stream bed material ranged from 2 to 6 cm in diameter. Rocks were lightly scrubbed by hand and placed into the baskets until full. Three samplers were placed at each station, tethered to shore using polypropyleme rope and were allowed to colonize for about 43 days. When the samplers were retrieved they were quickly placed into a Wildco wash bucket with a 0.5 mm mesh bottom. All rock material was hont were bucket to remove invertebrates.

SUBSTANCE	RECOMMENDED LEVEL(S) FOR DRINKING WATER	REFERENCE (S)	RECOMMENDED LEVEL(S) FOR AQUATIC LIFE	REFERENCE(S)
Physical				
Colour (TCU)	< 15 	1		
Temperature (°C)	15			
Odour and taste	Inoffensive	1		
Turbidity NTU	< 5 <	-		
Coliform-Total	10	1	recreational water Total	
(count/100mL)			500-1000/100ml	6
-Fecal	0	1	200 /100mL	6
Chemical				
*Alkalinity mg/l	Not considered a public			
(Total)	health problem	4	>20	m
*Aluminum (Al) mg/l	Not considered a public		0.1 at pH > 6.5	
	health problem	L		ũ
Ammonia total	0.5	4	2.2 at pH 6.5 temp 10°C	
(NH3-N) mg/l			1.37 at pH 8.0 temp 10°C	10
Antimony (Sb) mg/l				
Arsenic (As) total mg/l	0.05	1	< 0.05	10
Barium (Ba) mg/l	1.0	1	5.0	7
Boron (B) mg/l	5.0	1		
*Cadmium (Cd) total	0.005	-1	0.0002 for hardness 0-60mg/l C	aC03
mg/l			0.0008 for hardness 60-120mg/1	CaC03
			0.0013 for hardness 120-180 Ca	C03
			0.0018 for hardness >180 CaC03	10
Calcium (Ca) mg/l	75-200	7		
Chloride (Cl) mg/l	<250 aesthetic objectives			
Chlorine (total residua	1) mg/l		0.002	
**Chromium (Cr) total	0.05	-1	0.02 to protect fish	
I/Jun			0.002 to protect aguatic life	10
Cobalt (Co) mg/l			1	
Conductivity @ 25°C	Depends on dissolved			
(umhos/cm)	salts	7	150-500	9

WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE

TABLE 4

APPENDIX I

- 46 -

TABLE 4 WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE (continued) APPENDIX I

-Copper (cu) total mg/l (1.0 aesthetic objectives 1 0.002 at hardmess 120-130mg/l CaC03 Cyanide (CN) mg/l 0.2 1 0.006 at hardmess 120-130mg/l CaC03 10 Dissolved oxygen Newr 100% 1 0.005 at hardmess 120-130mg/l CaC03 10 Dissolved oxygen Newr 100% 1 0.005 at hardmess 120-130mg/l CaC03 10 Tuoride (TBmg/l Newr 100% 1 0.005 at hardmess 100-100mg/l CaC03 10 Tuoride (TS) Newr 100% 1 1 1.5 7 Tuoride (TS) Newr 100% 1 1 7 7 Truncerstin Newr 100% 1 1 1.5 0.007 1.000/rt.cac03 10 Magnosium (Mg) mg/l 0.01 0.01 0.01 0.01 0.01 10 10 Magnosium (Mg) mg/l 0.01 0.01	SUBSTANCE	RECOMMENDED LEVEL(S) FOR DRINKING WATER	REFERENCE (S)	RECOMMENDED LEVEL(S) FOR AQUATIC LIFE	REFERENC	ធ
Cyanide (CX) mg/l 0.2 1 0.005 (free) 0.005 (free) 0.005 Dissolved oxygen Near 100% 1 0.005 (free) 0.005 0.007 0.005 Ritachees (rotal mg/l 1.5 1 1.5 7 7 Ritachees (rotal mg/l 0.05 msethetic objective 1 0.01 1.0 7 Ritachees (rotal mg/l 0.05 aesthetic objective 1 0.01 1.0 7 Ritachees (rotal mg/l 0.05 aesthetic objective 1 0.01 1.0 7 Rischees (rotal mg/l 0.001 0.001 0.001 1 0.001 7 Magnessium (Ng) mg/l 50 0.001 0.001 1 0.001 1 7 Magnesse (rotal mg/l 0.001 0.001 1 0.001 1 0 1 1 1 Magnesse (rotal mg/l 0.001 0.001 1 0.001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*Copper (Cu) total mg/l	4.0 aesthetic objectives	Ţ	0.002 at hardness 0-120mg/ 0.004 at hardness 120-180m 0.006 at hardness >180mg/1	1 CaC03 g/1 CaC03 CaC03	
(% saturation) Near 100% 1 >5.0 mg/L 10 (% saturation) 1.5 1.5 1.5 1.7 Tandness (rotal) 80-100 1.5 1.1 1.5 1.0 Irandness (rotal) 80-100 1.5 1.1 1.5 1.0 Irandness (rotal) 80-100 1 0.01 at hardness 0-60mg/l CaCO3 10 Iran (Pb) total mg/l 0.05 aesthetic objective 1 0.01 at hardness 120-180mg/l CaCO3 10 Magnesium (Mg) mg/l 50 0.001 1 0.001 at hardness 120-180mg/l CaCO3 10 Magnesium (Mg) mg/l 50 4 1.0 0.001 at hardness 120-180mg/l CaCO3 10 Manganese (Hm) mg/l 0.001 0.001 1 0.001 10 10 Manganese (MD) mg/l 0.001 1 0.001 1 10 10 10 Manganese (MD) mg/l 0.001 1 0.001 1 10 10 10 Manganese (MD) mg/l 0.001 0.001 1 0.001 1 10 10 10 </td <td>Cyanide (CN) mg/l</td> <td>0.2</td> <td>1</td> <td>0.005 (free)</td> <td></td> <td>10</td>	Cyanide (CN) mg/l	0.2	1	0.005 (free)		10
Fructions: (r) 1	<pre>blssolved oxygen (% saturation) </pre>	Near 100%	4.	>5.0 mg/L		ខ្ម
as mg/L CaC03 80-100 1 0.3 10.3 10.3 Iron (Fe) total mg/l 0.05 sesthetic objective 1 0.3 10.01 10 Ladd (Fb) total mg/l 0.05 aesthetic objective 1 0.001 at hardness 0-60mg/l CaC03 10 Magnesium (Mg) mg/l 0.05 aesthetic objective 1 0.001 at hardness 120-180mg/l CaC03 10 Magnesium (Mg) mg/l 50 0.001 at hardness 120-180mg/l CaC03 10 10 10 Manganese (Mn) mg/l 0.001 0.001 at hardness 120-180 caC03 10 10 10 Molychedum (Mo) mg/l 0.001 0.001 1 0.001 10 10 Mickel (Ni) total mg/l 0.001 0.001 1 0.001 10 10 Mittee (NO2-W) mg/l 0.25 8.5 0.011 at hardness 180 10 10 Mittee (NO2-W) mg/l 0.2 0.055 at hardness 100 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	Fluoride (F)mg/1 Hardness (Total)	1.0	-	5.1		-
Iron (Fe) total mg/l (0.3 0.001 at hardness 0-60mg/l CaC03 10 Lead (Pb) total mg/l 0.05 aesthetic objective 1 0.001 at hardness 0-60mg/l CaC03 10 Magnesium (Mg) mg/l 50 0.001 at hardness 100mg/l CaC03 10 7 7 Magnesium (Mg) mg/l 50 0.001 at hardness 130mg/l CaC03 10 7 7 Magnesium (Mg) mg/l 50 0.001 at hardness 130mg/l CaC03 10 7 7 Magnesium (Mg) mg/l 50 0.001 at hardness 120-180mg/l CaC03 10 7 7 Magnesium (Ms) mg/l 0.001 0.001 at hardness 120-180mg/l CaC03 10 10 10 Mickel (Ni) total mg/l 0.01 0.001 1 0.001 10 10 Mickel (Ni) total mg/l 0.25 0.01 1 0.001 10 10 Mickel (Ni) total mg/l 0.25 1 0.001 1 0.001 10 10 Mickel (Ni) total mg/l 0.01 0.025 at hardness 180 0.11 at hardness 120-180 CaC03 10 10 Mickel (Ni) total mg/l 0.25 0.001 0.001<	as mg/L CaC03	80-100	1			
Lead (Pb) total mg/l 0.05 1 0.001 at hardness 0-60mg/l Cac03 Magnesium (Mg) mg/l 50 0.007 at hardness 0-60mg/l Cac03 10 Magnesium (Mg) mg/l 50 0.007 at hardness 0-60mg/l Cac03 10 Magnesium (Mg) mg/l 50 0.001 at hardness 0-60mg/l Cac03 10 Magnesium (Mg) mg/l 50 0.001 at hardness 120-120mg/l Cac03 10 Mercury (Hg) total mg/l 0.001 1 0.001 at hardness 0-60mg/l Cac03 10 Molybdenum (Mo) mg/l 0.001 1 0.001 10 10 Nickel (Ni) total mg/l 0.25 0.05 sethetic objective 1 10 10 Nickel (Ni) total mg/l 0.25 0.011 at hardness 120-130 Cac03 10 10 Nitrate (NO2-N) mg/l 1.0 0.05 at hardness 60-120mg/l Cac03 10 10 Nitrate (NO2-N) mg/l 1.0 0.05 at hardness 100 Cac03 10 10 Nitrite (NO2-N) mg/l 1.0 0.05 at hardness 60-120mg/l Cac03 10 10 Nitrite (NO2-N) mg/l 1.0 0.05 at hardness 60-120mg/l Cac03 10 10 Phoposphate (PO4) mg/l 0.0	Iron (Fe) total mg/l	<pre><0.3 aesthetic objective</pre>	1	0.3		10
Magnesium (Mg) mg/l 50 0.004 at hardness 120-180mg/l CacO3 10 Manganese (Mn) mg/l 50 4 1.0 7 Manganese (Mn) mg/l 50 0.001 1 10 Manganese (Mn) mg/l 50 0.001 1 10 Manganese (Mn) mg/l 0.001 0.001 1 10 Marcury (Hg) total mg/l 0.001 1 0.001 1 10 Micrel (Ni) total mg/l 0.001 0.001 1 0.001 10 Nickel (Ni) total mg/l 0.25 2 0.055 at hardness 120-180 CacO3 10 Nitrite (NO3-N) mg/l 0.12 at hardness 120-180 CacO3 0.11 at hardness 120-180 CacO3 10 10 Nitrite (NO3-N) mg/l 1.0 0.15 at hardness 120-180 CacO3 10 10 Nitrite (NO3-N) mg/l 1.0 0.15 at hardness 120-180 CacO3 10 10 Nitrite (NO3-N) mg/l 1.0 0.05 1 0.05 10 10 Nitrite (NO3-N) mg/l 0.1 0.05 0.15 at hardness 120-180 CacO3 10 10 Pobloblautits 1.0 0.2	Lead (Pb) total mg/l	0.05	1	0.001 at hardness 0-60mg/1 0.002 at hardness 60-120mg	CaC03 /1 CaC03	
Msgnesium (Mg) mg/l504Manganese (Mn) mg/l0.00110Manganese (Mn) mg/l(0.05 aesthetic objective1Msrcury (Hg) total mg/l0.0010.001Msrcury (Hg) total mg/l0.0010.001Msirkel (Ni) total mg/l0.0010.001Mstrike (NO3-N) mg/l0.2520.025 at hardness 0-60mg/l CaC03Mstrike (NO3-N) mg/l0.2520.055 at hardness 120-180 CaC03Mitrite (NO2-N) mg/l1010110.06Nitrite (NO2-N) mg/l1.010.06Nitrite (NO2-N) mg/l0.15 at hardness 120-180 CaC0310Nitrite (NO2-N) mg/l1.010.06Nitrite (NO2-N) mg/l0.15 at hardness 120-180 CaC0310Nitrite (NO2-N) mg/l0.050.15 at hardness 120-180 CaC0310Nitrite (NO2-N) mg/l0.0510.061Nitrite (NO2-N) mg/l0.20.0610.06Nitrite (NO2-N) mg/l0.20.0510.06Nitrite (NO2-N) mg/l0.010.061Nitrite (NO2-N) mg/l0.20.0610.06Norsphate (P04) mg/l0.20.0610.06Norsphate (P04) mg/l0.20.050.061(Total)0.10.020.000.020.06(Total)0.10.20.000.020.06(Total)0.10.020.000.061(Total)0.10.020.00 <t< td=""><td></td><td></td><td></td><td>0.004 at hardness 120-180m 0.007 at hardness > 180mg/</td><td>g/l CaCO3 1 CaCO3</td><td>10</td></t<>				0.004 at hardness 120-180m 0.007 at hardness > 180mg/	g/l CaCO3 1 CaCO3	10
Marganese (Mm) mg/l (0.05 aesthetic objective 1 1.0 7 Mercury (Hg) total mg/l 0.001 1 0.001 10 Mercury (Hg) total mg/l 0.001 0.001 10 Molybdenum (No) mg/l 0.001 0.001 10 Nickel (Ni) total mg/l 0.25 2 0.055 at hardness 60-120mg/l CaC03 Nitrate (N03-N) mg/l 0.15 at hardness 120-180 CaC03 10 Nitrite (N02-N) mg/l 10 0.15 at hardness 120-180 CaC03 10 Nitrite (N02-N) mg/l 10 0.15 at hardness 120-180 CaC03 10 Nitrite (N02-N) mg/l 0.02 1 0.06 10 10 Nitrite (N02-N) mg/l 0.0 1 0.06 10 10 Nitrite (N02-N) mg/l 0.0 1 0.06 10 10 Nitrite (N02-N) mg/l 0.2 0.06 1 10 10 10 Nitrite (N02-N) mg/l 0.0 0.0 0.06 0.06 10 10 Phosphate (P04) mg/l 0.2 0.0 0.06 0.06 10 10 Phosphate (P04) m	Magnesium (Mg) mg/l	50	4	ĩ		
Mercury (Hg) total mg/l 0.001 1 0.0001 10 Molybdenum (Mo) mg/l 0.01 0.001 0.001 10 Molybdenum (Mo) mg/l 0.05 at hardness 0-60mg/l Cac03 0.055 at hardness 0-20mg/l Cac03 Nickel (Ni) total mg/l 0.25 0.055 at hardness 120-180 Cac03 10 Nitrate (NO3-N) mg/l 10 1 0.11 at hardness 120-180 Cac03 10 Nitrite (NO2-N) mg/l 10 1 0.06 10 10 Nitrite (NO2-N) mg/l 1.0 1 0.06 10 10 Phosphate (P04) mg/l 1.0 1 0.06 10 10 Phosphate (P04) mg/l 0.2 8 0.020 to prevent algae 5 Phosphate (P04) mg/l 0.2 8 0.020 to prevent algae 5 Phosphatus (P) mg/l 0.20 to prevent algae 5 5 9 0.020 to prevent algae 5 Potassium (N mg/l 70 - 400 with a maximum 70 - 400 with a maximum 6 6 6 Residue: Non-Filterable 6 10 70 - 400 with a maximum 6 6	Manganese (Mn) mg/l	<pre><0.05 aesthetic objective</pre>	•	1.0		7
MoiryDennum (Mo) mg/l 0.25 2 0.025 at hardness 0-60mg/l CaC03 Nickel (Ni) total mg/l 0.25 0.055 at hardness 120-180 CaC03 10 Nitrate (N03-N) mg/l 0.11 at hardness 120-180 CaC03 10 10 Nitrite (N03-N) mg/l 10 1 0.05 at hardness 120-180 CaC03 10 Nitrite (N03-N) mg/l 10 1 0.15 at hardness >180 10 Nitrite (N02-N) mg/l 10 1 0.05 at hardness >180 10 Nitrite (N02-N) mg/l 10 1 0.05 at hardness >180 10 Nitrite (N02-N) mg/l 10 1 0.06 10 10 Nitrite (N02-N) mg/l 0.0 1 0.06 10 10 10 Nitrite (N02-N) mg/l 0.0 1 0.06 10 10 10 10 Notation 6.5 - 8.5 8 0.020 to prevent algae 5	Mercury (Hg) total mg/l	0.001	4	0.0001		10
Nickel (Ni) total mg/l 0.25 2 0.025 at hardness 0-00mg/l cac03 Nitrate (N03-N) mg/l 0.05 at hardness 120-180 Cac03 0 Nitrite (N03-N) mg/l 10 1 0 Nitrite (N03-N) mg/l 10 1 0 Nitrite (N03-N) mg/l 10 1 0 Nitrite (N02-N) mg/l 1.0 1 0 Phosphate (P04) mg/l 1.0 1 0.06 10 Phosphorus (P) mg/l 0.2 8 0.020 to prevent algae 5 Phosphorus (P) mg/l 0.2 8 0.020 to prevent algae 5 Possium (K) mg/l 70 - 400 with a maximum 70 - 400 with a maximum 6 Residue: Filterable 500 aesthetic objective 4 70 - 400 with hkgd(100mg/l 8 6 Residue: Non-Filterable 4 6f 2000 66 6 6 6 Residue: Non-Filterable 0.053 0.053 above bkgd with 6 6 6 6 Residue: Non-Filterable 6.55 0.000 6 6 6 6 6 6 6 6 6 6	Molvbdenum (Mo) mg/l	:	4			
Nitrate (N03-N) mg/l 10 1 0.003 at naroness ou-120mg/l (4003) Nitrite (N03-N) mg/l 10 0.15 at hardness 120-180 CaC03 10 Nitrite (N02-N) mg/l 10 1 0 1 10 PH units 6.5 - 8.5 1 0.06 10 10 Phosphate (N02-N) mg/l 1.0 1 0.06 10 10 Phosphate (N04) mg/l 6.5 - 8.5 8 0.06 10 10 Phosphorus (P) mg/l 0.2 8 0.020 to prevent algae 5 5 Possium (K) mg/l 0.20 to prevent algae 5 5 6.5 - 9.0 10 10 Possium (K) mg/l 0.20 to prevent algae 5 6.5 - 9.0 0.020 to prevent algae 5 5 Residue: Filterable mg/l 70 - 400 with a maximum 70 - 400 with a maximum 6 7 7 7 7	Nickel (Ni) total mg/l	0.25	2	0.025 at hardness 0-60mg/l	cacu3	
Nitrate (N03-N) mg/l 10 1 0.15 at hardness >180 10 Nitrite (N02-N) mg/l 1.0 1 0 0.15 at hardness >180 10 Nitrite (N02-N) mg/l 1.0 1 0 0.15 at hardness >180 10 Phosphate (N03-N) mg/l 6.5 - 8.5 1 0 0.06 10 Phosphate (P04) mg/l 6.5 - 8.5 8 0.020 to prevent algae 5 *Phosphorus (P) mg/l 0.2 8 0.020 to prevent algae 5 *Phosphorus (P) mg/l 0.2 8 0.020 to prevent algae 5 *Possium (K) mg/l Residue: Filterable mg/l 70 - 400 with a maximum 6 Residue: Non-Filterable 500 aesthetic objective 4 70 - 400 with abgd(100mg/l % Residue: Non-Filterable 1753 1053 hord bigd with 10				0.065 at hardness 60-120mg 0 11 at hardnorr 120-180 c	/1 CaCU3	
Nitrate (N03-N) mg/l 10 1 0.06 10 Nitrite (N02-N) mg/l 1.0 1 0.06 10 PH units 6.5 - 8.5 1 0.06 10 Phosphate (N04) mg/l 6.5 - 8.5 1 0.06 10 Phosphate (P04) mg/l 0.2 8 0.020 to prevent algae 5 Phosphorus (P) mg/l 0.2 8 0.020 to prevent algae 5 Possium (K) mg/l 0.2 8 0.020 to prevent algae 5 Potasium (K) mg/l 70 - 400 with a maximum 6 6 Residue: Filterable mg/l 500 aesthetic objective 4 70 - 400 with bkgd(100mg/l % Residue: Non-Filterable 0.0750 aesthetic objective 4 10% above bkgd with (mg/) (TSS) 1750 mor/l 10% above bkgd with 10				0.15 at hardness >180		10
Nitrite (NO2-N) mg/l 1.0	Nitrate (NO3-N) mg/l	10				
pH units6.5 - 9.016.5 - 9.010Phosphate (P04) mg/l0.280.020 to prevent algae5*Phosphorus (P) mg/l0.280.020 to prevent algae5(Total)(Total)0.020 to prevent algae5(Total)70 - 400 with a maximum6Residue: Filterable mg/l70 - 400 with a maximum6(Total dissolved solids)<500 aesthetic objective	Nitrite (NO2-N) mg/l	1.0	-1	0.06		엵
Phosphate (P04) mg/l0.280.020 to prevent algae5*Phosphorus (P) mg/l(Total)0.020 to prevent algae5(Total)(Total)70 - 400 with a maximum6Potassium (K) mg/l70 - 400 with a maximum6(Total dissolved solids)<500 aesthetic objective	pH units	6.5 - 8.5	1	6.5 - 9.0		10
<pre>*Phosphorus (P) mg/l (Total) (Total) Potassium (K) mg/l Residue: Filterable mg/l (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 Residue: Non-Filterable (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved solids) <500 aesthetic objective 4 of 2000 (Total dissolved</pre>	Phosphate (P04) mg/l	0.2	83			
Potassium (K) mg/l Residue: Filterable mg/l (Total dissolved solids) <500 aesthetic objective 4 of 2000 of 2000 (Total dissolved solids) <500 aesthetic objective 4 increase of 10mg/l with bkgd<100mg/l 8 increase of 10% above bkgd with (mg/) (TSS) (mg/) (mg/) (TSS) (mg/)	*Phosphorus (P) mg/l (Total)			0.020 to prevent algae		ŝ
Residue: Filterable mg/l (Total dissolved solids) <500 aesthetic objective 4 of 2000 6 (Total dissolved solids) <500 aesthetic objective 4 of 2000 6 (Residue: Non-Filterable (10% distrobuted to a solid to a so	Potassium (K) mg/l					
Residue: Non-Filterable Section 10mg/l with bkgd<100mg/l 8 increase of 10mg/l with bkgd<100mg/l 8 increase of 10% above bkgd with bkgd vith bkgd 10 bk	Residue: Filterable mg/l /Total discolved solids)	<pre><500 aesthetic objective</pre>	4	/0 - 400 with a maximum of 2000		9
(mg/) (TSS) increase of 10% above bkgd with bkrat 100 0mm/10 10	Residue: Non-Filterable			increase of 10mg/l with bk	gd<100mg/1	8
	(ISS) (/SE)			increase of 10% above bkgd	with	9

SUBSTANCE	RECOMMENDED LEVEL(S) FOR DRINKING WATER	REFERENCE (S)	RECOMMENDED LEVEL(S) FOR AQUATIC LIFE	REFERENCE
**Selenium (Se)				
total mg/l	0.01	1	0.001	10
Silica (Si) mg/l				
*Silver (Ag) total mg/l		1	0.0001	10
Sodium (Na) mg/l		1		
Strontium (Sr) mg/l	10	1		
Sulphate (S04) mg/l	500	-1		
Sulphide (as H2S) mg/l	<0.05	-1		
Tin (Sn) mg/l	Not present in	7		
	natural waters			
Titanium (Ti) mg/l				
Total Inorganic Carbon				
(TIC)				
Total Organic Carbon				
(TOC)	5.0	5		
Uranium mg/l	0.02			10
Vanadium (V)				
Zinc (Zn) mg/l	<5.0 aesthetic objective	1	0.030	10
* Use graphite furnace	e analysis for the lab detect	tion limit to be	less than the recommended le	vels.

WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE (continued) TABLE 4 APPENDIX I

** Lab detection limit > recommended levels.

REFERENCES:

1. Health & Welfare Canada. 1987. Guidelines for Canadian Drinking Water Quality 1987, Supply and Services, Canada.

- 2. Inland Waters Directorate. 1980. Guidelines for Surface Water Quality, Vol. 1, Inorganic Chemical Substances. Environment Canada, Ottawa.
- Thurston, R.V., R.C. Russo, C.M. Fetteroff Jr., T.A. Edsall, and Y.M. Barber Jr. (Eds.). 1979. <u>A Review of the EPA Book: Quality Criteria for Water.</u> Water Quality Section, American Fisheries Society, Bethesda, MD, 313p.

APPENDIX I TABLE 4 WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE

ECOMMENDED LEVEL(S)	FOR AQUATIC LIFE REFERENCE(S	
RE	REFERENCE (S)	
RECOMMENDED LEVEL(S)	FOR DRINKING WATER	
	SUBSTANCE	

- 4. Anonymous 1977. <u>Guidelines for Establishing Water Quality Objectives for the Territorial Waters of the Yukon and Northwest Territories</u>. Report of the Working Group on Water Quality Objectives to the Chairmen, Water Boards, Yukon and Northwest Territories.
- 5. Ontario Ministry of the Environment. 1978. Water Management Goals, Policies, Objectives and Implementation Procedures of the Ministry of the Environment.
- 6. Environment Canada, 1976. Pollution Sampling Handbook. Pacific Region Laboratory Services, Fisheries Operations and Environmental Protection Service, West Vancouver, B.C.
- 7. California State Water Resources Control Board. 1963. Water Quality Criteria. Publication No. 3-A Second Edition By McKee and Wolf.
- Environment 8. Inland Waters Directorate. 1979. Water Qualilty Source Book a Guide to Water Quality Parameters. Canada, Water Quality Branch, Ottawa, Canada.
- 9. Health and Welfare Canada, 1983. Guidelines for Canadian Recreational Water Quality. Supply and Services Canada
- 10. CCREM. 1987. Canadian Water Quality Guidelines. Task Force on Water Quality Guidelines of the Canadian Council of Resource and Environment Ministers. Ottawa.

APPENDIX II

WATER QUALITY

đ,

4

1

STATION	SAMPLE NUMBER	AVG. DEPTH (m)	(WIDIM	FLOW (m3/s)	TEMP. (C)	D LI SNI	PH I LAB	(um)	cond. hos/cm) LAB	DISOLVE OXYGEN (mg/L)	9	ID %DO SATURA- TION
-4	m 7 H	0.2	1.8	0.065	10.1	7.91	7.8 7.9 7.9	457	750 750 750	7.6		66
	s.D.						7.9 0.1		750 0			
7	9' LÛ VO	0.4	4.5	0.12	9.5	8.23	8.2 8.2 8.1	348	550 550 550	10.2		6
	אן ג.D.						8.2 0.1		550 0			
m	L 8 9	0.4 1	12.8	5.9	16.0	8.40	0.8 0.8	170	240 240 240	8.3		86
	אן . ס.ָם						8.0 0		240 0			
4	10 11 12	N/A	N/A	* 0.9	16.0	8.30	8.0 8.1 8.1	180	250 255 250	8.6		96
	יס. מיט						8.1 0.1		252 3			

•

- 51 -

WATER QUALITY RESULTS FOR JULY 9 - 10, 1985 (continued) TABLE 1 APPENDIX II

STATION	SAMPLE NUMBER	AVG. DEPTH (m)	(m) HTCITW	FLOW (m3/s)	TEMP. (C)	d DTISNI	H LAB	COI (umbo: INSITU	ND. s/cm) LAB	DISOLVED OXYGEN (mg/L)	\$DO SATURA- TION	COLOR (FTU)
ν	13 14 15	N/A	1.0	N/A	15.0	7.21	7.9 7.8 8.0	1190	1200 1200 N/A	7.5	84	20 20 20
	אר מ.D.						7.9 0.1		1200 0.0			20 0
ە	16 17 18	0.1	1.1	N/A	7.5	8.05	8.2 8.3 8.3	223	420 415 420	10.6	86	20 20
	x s.D.	٦					8.2 0.1		418 3			20 0
F	19 20 21	0.3	1.7	0.07	12.5	7.80	8.1 7.9 8.0	600	880 880 880	8.4	80	20 20
	s.D.						8.0 0.1		880 0			20 0
ω	22 23 24	N/A	N/A	8.2 *	16.0	8.10	8.1 8.0 8.1	170	255 255 255	8.5	67	20 20 20
	د. ۲.D.			-			8.1 0.1		255 0			20 0
	* Det	termined from t	he differ	ence between	Station 9	and Statio	n 7.					

- 52 -

¥...*

COLOB	(FTU)	20 20 20	20 0	20 20 20	20 0	20 20	20 0
\$D0	TION	84		82		92	
DISOLVED	OXIGEN (mg/L)	8.0		9.3		£.9	
ê.	5/cm) LAB	335 255 255	255 46	270 270 270	270 0	275 275 280	270 0
8.	NTIZNI VIII (UNI	250		190		185	
	LAB	8.0 8.1 8.2	8.1	8.1 8.1 8.1	8.1 0.0	8.2 8.1 8.1	8.1 0.0
	PH UTISNI	8.06		7.95		8.10	
	TEMP. (C)	15.0		15.0		13.5	
	FLOW (m3/s)	8.3		8.1		۲.6	
	WIDTH (m)	15.0		19.9		30.0	
	AVG. DEPTH (m)	0.5		0.4		0.5	
	SAMPLE NUMBER	25 26 27	אן סיס.	28 29 30	× s.D.	31 32 33	s.D.
	STATION	6		10		11	

- 53 -

1

.

1985
9-10,
JULY
FOR
RESULTS
QUALITY
WATER
-1
TABLE
吕
PENDIX

APPENDIX	II TABLE 1	WATER Q	UALITY RESUL	rs For JULY 9	10, 1985						
STATION	SAMPLE NUMBER	TURB. (FTU)	T.ALK. (as CACO3) (mg/L)	T.HARD (as CaCO3) (mg/L)	SULFATE (mg/L)	CHLORIDE (mg/L)	PHOSPHATE (mg/L)	NITRITE (mg/L)	NITRATE (mg/L)	AMMONIA (mg/L)	NFR (mg/L)
	1	1.30	80.3	419	280	6.0	0.012	<0.005	0.037	0.011	6
	2	1.30	80.7	425	290	6.0	0.022	<0.005	0.037	0.008	6
	ñ	1.30	87.8	451	240	0.8	0.014	<0.005	0.035	0.009	ſ
		-			010			0 001	0.00	000 0	
	i × v	1.30	82.9	432	0/7	0.Y	0.016	ເບບ.ບ ເ	0.036	0.009	χ,
	s.D.	00.00	4.2	17	26	0.1	0.005	0.0	100.0	0.002	1
2	4	0.63	0.011	309	160	0.7	0.002	<0.005	0.018	0.005	<5
	ŝ	0.53	0.111	314	140	0.7	0.006	<0.005	0.017	0.005	ć5
	6	0.53	0.111	317	160	0.7	<0.002	<0.005	0.017	0.005	<5
	١×	0.56	110.7	313	153	0.7	<0.003	<0.005	0.017	0.000	<5
	s.D.	0.06	0.6	4	12	0.0	0,000	0.0	0.001	0.000	0
£	7	0.45	85.7	132	30	0.7	0.007	<0.005	110.0	0.009	<5
	80	0.43	85.7	132	30	0.8	0.007	<0.005	0.010	0.009	\$ S
	6	0.48	85.7	133	30	0.7	0.007	<0.005	0.010	0.010	ć5
	>	0.45	85 7	CE 1	07	F C	500 Q	×0.005	0.010		Ý
	s.D.	0.03	0.0	1	20	0.1	0.000	0.0	0.001	100.0	;•
-	с. -		r u	17.6	4	0 0		0,005			ų
r	07	0.40	1.00	141 143	40	•••	010 0			0.00	Û Ń
	1 1	0.45	86.4	139	8 8	o.0	0.008	<0.005 <0.005	010.0	0.008	ç, ç,
	١×	0.46	86.2	141	33	0.8	600.0	<0.005	0.010	0.008	(5
	s.D.	0.02	0.4	7	9	0.1	100.0	0.0	0.001	100.0	0

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	STATION	SAMPLE NUMBER	TURB. (FTU)	T.ALK. (as CACO3) (mg/L)	T.HARD (as CaCO3) (mg/L)	SULFATE (mg/L)	CHLORIDE (mg/L)	PHOSPATE (mg/L)	NITRITE (mg/L)	NITRATE (mg/L)	AMMONIA (mg/L)	NFR (mg/L)
14 2.30 92.8 583 510 18.9 0.005 0.065 0.065 0.136 \overline{x} 2.30 93.0 591 591 18.9 0.007 (0.065 0.165 0.136 \overline{x} 2.30 93.0 591 497 18.9 0.007 (0.065 0.063 0.165 0.135 \overline{x} 0.15 168.0 242 40 0.5 0.005 0.003 0.013 0.003 0.013 0.003 0.013 0.003 0.013 0.003 0.013 0.003	5	13	2.30	93.5	592	480	18.7	0.007	<0.005	0.060	0.126	< <u>5</u>
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14	2.30	92.8	583	510	19.0	0.006	<0.005	0.064	0.130	ŝ
\overline{X} 2.30 93.0 591 497 18.9 0.007 0.005 0.003 0.01		15	2.30	92.8	599	500	18.9	0.007	<0.005	0.065	0.136	\$ 5
5.D. 0.00 0.4 8 15 0.2 0.01 0.03 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013		 ×	2.30	93.0	591	497	18.9	0.007	<0.005	0.063	0.131	\$ \$
$ \begin{bmatrix} 6 & 16 & 0.15 & 168.0 & 242 & 40 & 0.5 & 0.005 & 0.005 & 0.073 & 0.005 \\ 18 & 0.15 & 168.0 & 237 & 50 & 0.7 & 0.005 & 0.071 & 0.005 \\ \hline & & & & & & & & & & & & & & & & & &$		s.D.	0.00	0.4	8	15	0.2	0.001	0.0	0.003	0.005	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	16	0.15	168.0	242	40	0.5	0.005	<0.005	0.070	0.005	\$
$ \begin{bmatrix} 8 & 0.15 & 169.0 & 236 & 50 & 0.7 & 0.005 & (0.005 & 0.071 & 0.005 \\ 5.D. & 0.015 & 168.3 & 238 & 47 & 0.7 & 0.005 & (0.005 & 0.011 & 0.000 \\ 5.D. & 0.000 & 0.0 & 0.0 & 0.002 & 0.001 & 0.001 \\ 210 & 2.50 & 146.0 & 492 & 300 & 5.1 & 0.004 & (0.005 & 0.087 & 0.013 \\ 210 & 2.80 & 142.0 & 499 & 310 & 4.7 & 0.004 & (0.005 & 0.088 & 0.013 \\ 211 & 2.80 & 142.0 & 499 & 310 & 4.7 & 0.004 & (0.005 & 0.088 & 0.013 \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		17	0.15	168.0	237	50	0.7	0.005	<0.005	0.073	0.005	\$ 5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		18	0.15	169.0	236	50	0.7	0.005	<0.005	0.071	0.005	ŝ
7 19 2.50 146.0 492 300 5.1 0.000 0.0 0.02 0.002 0.003 20 2.50 142.0 492 310 5.1 0.007 (0.005 0.087 0.013 21 2.80 142.0 490 310 5.1 0.007 (0.005 0.087 0.013 21 2.80 142.0 499 310 5.1 0.007 (0.005 0.088 0.013 21 2.80 143.3 494 307 5.0 0.005 0.088 0.013 25.D. 0.17 2.3 5 0.2 0.005 0.088 0.013 35.D. 0.17 2.3 5 0.2 0.005 0.088 0.013 8 22 1.30 99.0 140 40 0.7 0.005 0.016 0.013 8 23 1.00 89.0 140 30 0.7 0.005 0.016 0.013 7 0.55 90.0 140 30 0.7 0.005 </td <td></td> <td> *</td> <td>0.15</td> <td>168.3</td> <td>238</td> <td>47</td> <td>0.7</td> <td>0.005</td> <td><0.005</td> <td>0.071</td> <td>0.000</td> <td>\$ \$</td>		*	0.15	168.3	238	47	0.7	0.005	<0.005	0.071	0.000	\$ \$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		s.D.	0.00	9.0	£	9	0.1	0.000	0.0	0.002	0.000	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L	19	2.50	146.0	492	300	5.1	0.004	<0.005	0.087	0.013	ŝ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		20	2.50	142.0	490	310	5.1	0.007	<0.005	0.080	0.015	ŝ
\vec{x} 2.60 143.3 494 307 5.0 0.005 (0.005 0.0188 0.013 s.D. 0.17 2.3 5 6 0.2 0.002 0.0 0.01 0.003 8 22 1.30 99.0 140 40 0.7 0.007 <0.005		21	2.80	142.0	499	310	4.7	0.004	<0.005	0.088	0.010	ŝ
s.D. 0.17 2.3 5 6 0.2 0.002 0.0 0.011 0.001 <		 1×	2.60	143.3	494	307	5.0	0.005	<0.005	0.088	0.013	ŝ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		s.D.	0.17	2.3	ŝ	9	0.2	0.002	0.0	0.001	0.003	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	22	1.30	0.06	140	40	0.7	0.007	<0.005	0.016	0.011	ŝ
24 0.55 90.0 140 30 0.7 0.008 <0.005 0.013 0.012 X 0.95 89.7 140 37 0.7 0.008 <0.005 0.014 0.011		23	1.00	0.68	140	40	0.7	0.008	<0.005	0.013	0.011	ŝ
X 0.95 89.7 140 37 0.7 0.008 <0.005 0.014 0.011 2 2 2 6		24	0.55	0.06	140	30	0.7	0.008	<0.005	0.013	0.012	\$
		>	20 0	7 08	140	75	L 0	0 008	<0.005	0.014	110.0	- - -
		(~ (1.60				100.0		£10.0) c

- 55 -

NFR (mg/L)	<5	ŝ	\$\$	ŝ	0	<u>(5</u>	<5 5	\$	-	ŝ	0	ŝ	ŝ	(5	'	Û	0	ŝ	ŝ	\$	İ	<5	0
AMMONIA (mg/L)	0.126	0.130	0.136	0.131	0.005	0.005	0.005	0.005		000.0	0.000	0.013	0.015	010.0		5T0.0	0.003	0.011	0.011	0.012		0.011	0.001
NITRATE (mg/L)	090.0	0.064	0.065	0.063	0.003	0.070	0.073	0.071		0.071	0.002	0.087	0.080	0.088		0.088	0.001	0.016	0.013	0.013		0.014	0.002
NITRITE (mg/L)	<0.005	<0.005	<0.005	<0.05	0.0	<0.005	<0.005	<0.005		<0.005	0.0	<0.005	<0.005	<0.005		<00.0>	0.0	<0.005	<0.005	<0.005		<0.005	0.0
PHOSPATE (mg/L)	0.007	0.006	0.007	0.007	0.001	0.005	0.005	0.005		0.005	0.000	0.004	0.007	0.004		c00.0	0.002	0.007	0.008	0.008		0.008	0.001
CHLORIDE (mg/L)	18.7	19.0	18.9	18.9	0.2	0.5	0.7	0.7		0.7	0.1	5.1	5.1	4.7		0.0	0.2	0.7	0.7	0.7		0.7	0.0
SULFATE (mg/L)	480	510	500	497	15	40	50	50		47	9	300	310	310		30.7	9	40	40	30		37	9
T.HARD (as CaCO3) (mg/L)	592	583	599	165	8	242	237	236		238	ß	492	490	499		494	ß	140	140	140		140	0
T.ALK. (as CACO3) (mg/L)	93.5	92.8	92.8	93.0	0.4	168.0	168.0	169.0		168.3	0.6	146.0	142.0	142.0		143.3	2.3	90.06	0.08	0.06		89.7	0.6
TURB. (FTU)	2.30	2.30	2.30	2.30	0.00	0.15	0.15	0.15		0.15	0.00	2.50	2.50	2.80		2.60	0.17	1.30	1.00	0.55		0.95	0.38
SAMPLE NUMBER	13	14	15	×	s.D.	16	17	18		×	s.D.	19	20	21		×	s.D.	22	23	24		١×	S.D.
STATION	5					9						L						8					

- 56 -

-

STATION	SAMPLE NUMBER	TURB. (FTU)	T.ALK. (as CACO3) (mg/L)	T.HARD (as CaCO3) (mg/L)	SULFATE (mg/L)	CHLORIDE (mg/L)	PHOSPATE (mg/L)	NITRITE (mg/L)	NITRATE (mg/L)	AMMONIA (mg/L)	NFR (mg/L)
6	25 26	0.68 0.55	97.1 90.0	186 144	60 40	1.2 0.6	0.006 0.007	<0.005 <0.005	0.021 0.014	0.015	\$ 5
	72	0.48	89.3	143	20	0.5	0.007	<0.005	0.013	0.013	Ś
	I×	0.57	92.1	158	40	0.8	0.007	<0.005	0.016	0.014	<5
	s.D.	0.10	4.3	25	20	0.4	0.001	0.0	0.004	0.001	0.0
10	28	0.53	92.1	148	30	0.6	0.007	<0.005	0.015	0.012	<5
	29	0.53	93.5	148	30	0.9	0.007	<0.005	0.015	0.012	<5 S
	30	0.48	93.5	149	40	1.0	0.009	<0.005	0.015	0.013	(5
	×	0.51	93.0	148	33	0.8	0.008	<0.005	0.015	0.012	\$
	s.D.	0.03	0.8	I	9	0.2	0.001	0.0	000.	0.001	0.0
11	31	0.63	95.7	157	37	1.0	0.007	<0.005	0.017	0.010	<5
	32	0.68	95.7	153	38	1.0	0.007	<0.005	0.017	0.008	5
	33	0.65	98.5	156	36	1.1	0.009	<0.005	0.016	0.010	5
		0.65	96.6	155	37	1.0	0.008	<0.005	0.017	0.009	<5
	s.D.	0.03	1.6	2	I	0.1	0.001	0.0	0.001	0.001	0.0

1985
9-10,
7ULY
FOR
RESULTS
QUALITY
WATER
TABLE
H
APPENDIX

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	B (mg/L)	Ba (mg/L)	Be (mg/L)	Ca (mg/L)	cd (mg/L)	Co (mg/L)	Cr (mg/L)	Cu (mg/L)	Fe (mg/L)	Mg (mg/L)	Mn (Jl/gm)
2 3.D. 0.0 5.D. 0.0 0.0 5 6 0.0005 6 0.0005 0.0 3 7 0.0 3 7 0.0 3 7 0.0 3 7 0.0 4 0.0 0.0 5 0.0 0.0 5 0.0 0.0 5 0.0 0.0 5 0.0 0.0 5 0.0 0.0 5 0.0 0.0	<0.05 <0.05 <0.05	0.015 0.000 0.009	0.045 0.045 0.049	<pre><0.001 </pre> <pre></pre> <pre><pre><pre></pre><pre><pre></pre><pre><pre><pre></pre><pre><pre></pre><pre><pre></pre><pre><pre><pre></pre><pre><pre></pre><pre><pre><pre></pre><pre><pre></pre><pre><pre></pre><pre><pre><pre></pre><pre><pre></pre><pre><pre><pre></pre><pre><pre></pre><pre><pre></pre><pre><pre><pre></pre><pre><pre></pre><pre><pre><pre></pre><pre><pre></pre><pre><pre><pre></pre><pre><pre></pre><pre><pre><pre></pre><pre><pre></pre><pre><pre><pre><pre><pre><pre></pre><pre><pre></pre><pre><pre><pre><pre><pre><pre><pre><</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	134.0 136.0 144.0	0.0037 0.0031 0.0029	<pre><0.005 <0.005 <0.005</pre>	<pre><0.005 <0.005 <0.005</pre>	0.002 0.003 0.004	0.381 0.383 0.416	19.0 19.2 20.8	1.840 1.850 1.970
2 4 (0.0005 5 (0.0005 6 (0.0005 8 (0.0005 9 (0.0005 9 (0.0005 9 (0.0005 9 (0.0005 9 (0.0005 9 (0.0005 9 (0.0005 10 (0.0005)	<0.05 0.0	0.008 0.008	0.046 0.002	<0.001 0.0	138.0 5.3	0.0032 0.0004	<0.05 0.0	<0.005 0.0	0.003 0.001	0.393	19.7 1.0	1.887 0.072
x x 5.D. 0.0 3 7 (0.0005 9 (0.0005 9 (0.0005 9 (0.0005 5.D. 0.0 6 (0.0005	<pre><0.05 <0.05 <0.05 <0.05</pre>	0.006 0.011 0.014	0.043 0.044 0.044	<pre>{0.001 {0.001 {0.001 {0.001</pre>	95.0 96.9	0.0029 0.0031 0.0031	<pre><0.005 <0.005 <0.005 <0.005</pre>	<pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre>	0.002 0.002 0.002	0.089 0.091 0.086	17.4 17.8 18.0	0.087 0.086 0.086
3 7 <0.0005 9 <0.0005 9 <0.0005 <u>x</u> <0.0005 5.D. 0.0	<0.05 0.0	0.010	0.044	<0.00 0.0	96.0 1.0	0.0030 0.0001	<0.005 0.0	<0.005 0.0	0.002 0.000	0.089	17.7 0.3	0.086 0.001
x <0.0005 5.D. 0.0 4 10 <0.0005	<pre><0.05 <0.05 <0.05 <0.05</pre>	0.020 0.002 0.011	0.044 0.044 0.044	<pre>0.001 0</pre>	36.8 36.7 36.9	0.0018 0.0016 0.0009	<0.005 <0.005 <0.005	<pre><0.005 <0.005 <0.005 <0.005</pre>	0.003 0.003 0.002	0.182 0.228 0.186	9.6 9.9	0.030 0.050 0.030
4 10 <0.0005	<0.05 0.0	0.009	0.044	<0.001 0.0	36.8 0.1	0.0014 0.0005	<0.005 0.0	<0.005 0.0	0.003	0.199	9.7 0.1	0.07 0.012
12 <0.0005	<pre><0.05 <0.05 <0.05 <0.05</pre>	0.014 0.007 0.015	0.045 0.045 0.045	<pre>0.001 0</pre>	39.3 40.1 39.0	0.0020 0.0015 0.0018	<0.005 <0.005 <0.005	<pre><0.005 <0.005 <0.005</pre>	0.003 0.003 0.003	0.223 0.218 0.89	10.1 10.2 10.0	0.041 0.041 0.035
x <0.0005 5.D. 0.0	<0.05 0.0	0.012	0.045 0.000	<0.00 0.0	39.5 0.6	0.0018 0.0003	<0.005 0.0	<0.005 0.0	0.003	0.10 0.018	10.1 0.1	0.039

- 58 -

/

0.563 0.863 0.740 0.003 0.003 0.002 2.090 2.080 2.120 2.097 0.021 0.051 0.048 0.051 (T/6m) UM 0.722 0.003 0.050 Mg (mg/L) 33.7 0.5 45.8 44.6 46.3 45.6 0.9 12.8 12.5 12.2 12.5 0.3 33.6 33.3 34.2 10.2 10.2 10.3 10.2 0.1 Fe (mg/L) 0.384 0.652 0.529 0.522 0.134 0.070 0.069 0.066 0.068 0.002 0.300 0.295 0.305 0.300 2.209 0.206 0.219 0.211 Cu (mg/L) 0.012 0.013 0.012 0.006 0.006 0.005 0.003 0.002 0.012 0.001 0.003 0.003 0.005 0.006 0.005 0.002 0.003 0.004 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005</pre><0.005</pre><0.005</pre> <0.005</pre><0.005</pre><0.005</pre> <0.005 0.0 <0.005 0.0 <0.005 0.0 Cr (mg/L) <0.005 0.0 <0.005
0.007
<0.005</pre> <0.005</pre><0.005</pre><0.005</pre> <0.005</pre><0.005</pre><0.005</pre> <0.005</pre><0.005</pre><0.005</pre> Co (mg/L) <0.005 0.0 <0.005 0.0 <0.005 0.0 <0.007 0.0 0.0017 0.0030 0.0025 0.0017 0.0018 0.0016 0.0044 0.0043 0.0042 0.0018 0.0018 0.0020 0.0019 cd (mg/L) 0.0017 0.0043 0.0024 0.0007 Ca (mg/L) 161.0 158.0 163.0 140.0 139.0 142.0 38.9 0.2 75.8 74.2 74.0 140.3 1.5 160.7 2.5 74.7 1.0 38.9 39.1 38.8 `Be (mg∕L) <0.001
<0.001
<pre> 0.001 100.0> 100.0> 100.0> <0.001 0.0 <0.001
</pre> <0.001 0.0 <0.001 0.0 <0.001
<0.001
<0.001</pre> 0.026 0.028 0.027 0.075 0.074 0.072 0.032 0.050 0.0 0.027 0.074 0.002 0.032 0.050 0.050 0.050 Ba (mg/L) 0.033 B (17/5m) 0.026 0.028 0.027 0.027 0.075 0.027 0.012 0.038 0.031 0.013 0.000 0.015 0.006 0.012 0.015 0.001 AS (J/pm) <0.05</pre><0.05</pre><0.05</pre> <0.05</pre><0.05</pre><0.05</pre> <0.05 0.0 <0.05
<0.05
<0.05</pre> <0.05 0.0 <0.05</pre><0.05</pre><0.05</pre> <0.05 0.0 <0.05 0.0 <0.0005 <0.0005 <0.0005 <0.0005</pre><0.0005</pre><0.0005</pre> <0.0005 0.0 Ад (л_/2ш) 0.0022 0.0026 0.0023 <0.0005 0.00 0.0008 0.0006 0.0007 0.0024 0.0002 0.0007 s.b. s.p. s.D. s.b. SAMPLE NUMBER ١× 1× ١× ١× 13 14 112 21 23 23 23 24 ø 5 æ S STATION

.

Ë	Ag 9/L)	AS (mg/L)	B (mg/L)	Ba (mg/L)	Be (mg/L)	Ca (mg/L)	сd (шg/L)	Со (ш <u>г</u> Л.)	Cr (mg/L)	Cu (12/511)	Fe (mg/L)	(1/5m) 6w	Mn (J/en)
0.0005 <0 0.0005 <0 <0.0005 <0	<u> </u>	.05	0.019 0.009 0.020	0.051 0.050 0.050	<pre><0.001 <0.001 <0.001 </pre>	52.0 40.0 39.8	0.0019 0.0016 0.0019	<pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre>	<0.005 <0.005 <0.005	0.002 0.001 0.002	0.207 0.202 0.217	13.3 10.5 10.5	0.227 0.057 0.057
<0.0005 <0 0.0 0	\$ °	.05	0.016 0.006	0.050 0.001	<0.001 0.0	43.9	0.0018 0.0002	<0.005 0.0	<0.005 0.0	0.002 0.001	0.209 0.008	11.4 1.6	0.113 0.099
<pre><0.0005 <0.</pre> <pre><0.0005 <0.</pre> <pre><0.0005 <0.</pre>		05 05 05	0.030 0.018 0.000	0.052 0.052 0.052	<pre><0.001 <0.001 <0.001 <0.001</pre>	41.3 41.2 41.3	0.0019 0.0019 0.0020	<0.005 <0.005 <0.005	<pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre> <pre></pre>	0.002 0.002 0.002	0.202 0.202 0.202	10.9 10.9 10.9	0.067 0.067 0.065
<0.0005 <0. 0.0 0.	ô o	05	0.016 0.015	0.052	<0.001 0.0	41.3 0.1	0.0019	<0.005 0.0	<0.005 0.0	0.002 0.0	0.202 0.000	10.9 0.0	0.066
<pre><0.0005 <0.</pre> <pre><0.0005 <0.</pre> <pre><0.0005 <0.</pre>	ô ô ô	05 05	0.012 0.026 0.000	0.056 0.056 0.058	<pre><0.001 <0.001 </pre> <pre></pre>	43.2 42.3 43.2	0.0012 0.0016 0.0016	<pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre>	<pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre> <pre></pre>	0.002 0.003 0.003	0.226 0.269 0.240	11.6 11.4 11.4	0.071 0.072 0.078
<pre><0.0005 <0. 0.0 0.</pre>		05	0.013	0.057	<0.001 0.0	42.9 0.5	0.0015	<0.005 0.0	<0.005 0.0	0.03	0.245	11.5	0.074 0.004

-

444

i¶ja⊧

.....

STATION	SAMPLE NUMBER	(ц∕Бш) оМ	Na (mg/L)	Ni (mg/L)	- Бш)	Pb (mg/L)	sb (파g/L)	Se (mg/L)	si (mg/L)	(17∕5∎) ns		Sr 110/L)	Sr Ti mg/L) (mg/L)	Sr Ti V mg/L) (mg/L) (mg/L)
		<0.005	1.4	<0.02	0.09	0.028	<0.05	<0.05	2.1	10 03		0 188	0 188 (0 002	0 188 00 002 00 005
I	5	<0.05	1.4	<0.02	0.08	0.024	<0.05	<0.05	2.1	<0.01 (0.01		0.190	0.190 <0.002	0.190 <0.002 <0.005
	ε	<0.005	1.5	<0.02	0.08	0.020	<0.05	<0.05	2.1	<0.01		0.205	0.205 <0.002	0.205 <0.002 <0.005
	1×	<0.005	1.4	<0.02	0.08	0.024	<0.05	<0.05	2.1	<0.01		0.194	0.194 <0.002	0.194 <0.002 <0.005
	S.D.	0.0	0.0	.0	0.01	0.004	0.0	0.0	0.0	0.0		0.009	0.00 0.0	0.0 0.0 600.0
2	4	<0.005	1.3	<0.02	<0.05	0.019	<0.05	<0.05	2.1	<0.01		0.176	0.176 <0.002	0.176 <0.002 <0.005
	ιn v	<0.005	1.3	<0.02	<0.05	0.018	<0.05	<0.05	2.1	<0.01	-	0.178	0.178 <0.002	0.178 <0.002 <0.005
	٥	cuu.u>	L.4	20.02	cu.u>	610.0	cu.0>	<0.0>	7.1	10.0>	5	181.	.181 <0.002	.181 <0.002 <0.005
	I×	<0.005	1.3	<0.02	<0.05	0.019	<0.05	<0.05	2.1	<0.01	°	.178	.178 <0.002	.178 <0.002 <0.005
	s.D.	0.0	0.1	.0	0.0	0.001	0.0	0.0	0.0	0.0	0	003	0.0 0.0	003 0.0 0.0
m	7	<0.005	1.0	<0.02	<0.05	0.021	<0.05	<0.05	1.3	<0.01		143	143 <0.002	143 <0.002 <0.005
	80	<0.005	1.0	<0.02	<0.05	0.015	<0.05	<0.05	1.3	<0.01	<u>.</u>	146	146 <0.002	146 <0.002 <0.005
	6	<0.005	1.0	<0.02	<0.05	0.017	<0.05	<0.05	1.3	<0.01		145	145 <0.002	145 <0.002 <0.005
		<0.005	1.0	<0.02	<0.05	0:018	<0.05	<0.05	1.3	<0.01	6	145	145 <0.002	145 <0.002 <0.005
	S.D.	0.0	0.0	0.0	0.0	0.003	0.0	0.0	0.0	0.0		002	002 0.0	002 0.0 0.0
4	10	<0.005	1.0	<0.02	<0.05	0.023	<0.05	<0.05	1.3	<0.01		148	148 <0.002	148 <0.002 <0.005
	11	<0.005	1.0	<0.02	<0.05	0.017	<0.05	<0.05	1.3	<0.01	ö	150	150 <0.002	150 <0.002 <0.005
	12	<0.005	1.0	<0.02	<0.05	0.021	<0.05	<0.05	1.3	<0.01	ö	.145	.145 <0.002	.145 <0.002 <0.005
	I×	<0.005	1.0	<0.02	<0.05	0.020	<0.05	<0.05	1.3	<0.01	0	148	148 <0.002	148 <0.002 <0.005
	s.D.	0.0	0.0	0.0	0.0	0.003	0.0	0.0	0.0	0.0	0	003	0.0 0.0	0.0 0.0

ION	SAMPLE	Mo (mg/T.)	Na (mg/T.)	Ni (mg/L.)	P (mg/L)	Pb (ma/T.)	Sb (ma./1.)	Se (mc/T.)	Si (mg/L)	Sn (mc/T.)	Sr (mc/1.)	Ті (mg/I.)	ν (ma.T.)	2n (mg/T.)
													12 /5-11	
2	13	<0.005	57.8	<0.02	<0.05	0.020	<0.05	<0.05	0.4	<0.01	0.340	<0.002	<0.005	0.187
	14	<0.05	56.0	<0.02	<0.05	0.027	<0.05	<0.05	0.4	<0.01	0.334	<0.002	<0.005	0.247
	15	<0.005	58.7	<0.02	<0.05	0.024	<0.05	<0.05	0.4	<0.01	0.345	<0.002	<0.005	0.222
	>	200.0	5.7 S	(U U)	0.05	0 024	10.05	10.05	4 0	10 07	0 340	200.02	10,005	0 210
	- v	0.0	1.4	0.0	0.0	0000				10.0	900 0	0.0		01010
		2							2			,	2	0000
9	16	<0.005	1.0	<0.02	<0.05	0.026	<0.05	<0.05	2.1	<0.01	0.311	<0.002	<0.005	0.004
	17	<0.005	1.0	<0.02	<0.05	0.022	<0.05	<0.05	2.1	<0.01	0.306	<0.002	<0.005	0.004
	18	<0.005	1.0	<0.02	<0.05	0.015	<0.05	<0.05	2.1	<0.01	0.297	<0.002	<0.005	0.003
	1×	<0.005	1.0	<0.02	<0.05	0.021	<0.05	<0.05	2.1	<0.01	0.305	<0.002	<0.005	0.004
	S.D.	0.0	0.0	0.0	0.0	0.006	0.0	0.0	0.0	0.0	0.007	0.0	0.0	0.001
٢	19	0.006	12.0	<0.02	<0.05	0.023	<0.05	<0.05	1.7	<0.01	0.257	<0.002	<0.005	0.330
	20	0.006	11.9	<0.02	<0.05	0.022	<0.05	<0.05	1.7	<0.01	0.256	<0.002	<0.005	0.327
	21	<0.005	12.3	<0.02	<0.05	0.019	<0.05	<0.05	1.7	<0.01	0.263	<0.002	<0.005	0.335
	I×	<0.006	12.1	<0.02	<0.05	0.021	<0.05	<0.05	1.7	<0.01	0.259	<0.002	<0.005	0.331
	s.D.	0.0	0.2	0.0	0.0	0.002	0.0	0.0	0.0	0.0	0.004	0.0	0.0	0.004
8	22	<0.005	1.1	<0.02	<0.05	0.025	<0.05	<0.05	1.2	<0.01	0.146	<0.002	<0.005	0.019
	23	<0.005	1.1	<0.02	<0.05	0.027	<0.05	<0.05	1.2	<0.01	0.146	<0.002	<0.005	0.019
	24	0.007	1.1	<0.02	<0.05	0.027	<0.05	<0.05	1.2	<0.01	0.147	<0.002	<0.005	0.020
	1													
	x s.d.	<0.00/	1.1	<0.02	دں.0> 0.0	0.026	<0.0	دں.0 0.0	1.2	10.0)	0.146	<0.02	د0.0 cou	6T0.0
										,				

.,

APPENDIX II TABLE 1 WATER QUALITY RESULTS FOR JULY 9-10, 1985

2n 2n	0.049 0.020 0.019	0.029 0.017	0.024 0.022 0.021	0.022 0.002	0.016 0.015 0.018	0.016 0.002
(T∕₽ш)	<pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre> <pre></pre>	<0.05 0.0	<pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre>	<0.005 0.0	<pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre>	<0.005 0.0
Ті (mg/L)	<pre><0.002 <0.002 <0.002 <0.002</pre>	<0.002 0.0	<pre><0.002</pre> <pre><0.002</pre> <pre><0.002</pre> <pre></pre>	<0.002 0.0	<pre><0.002</pre> <pre><0.002</pre> <pre><0.002</pre> <pre><0.002</pre>	<0.002 0.0
Sr (mg/L)	0.160 0.148 0.148	0.152 0.007	0.152 0.152 0.152	0.152 0.000	0.164 0.161 0.160	0.162 0.002
Sn (mg/L)	<pre><0.01 <0.01 <0.01 <0.01</pre>	<0.01 0.0	0.01 0.05 0.01	<0.01 0.0	<pre>(0.01) (0.0) (0.0)</pre>	<0.01 0.0
Si (mg/L)	1.2 1.2 1.2	1.2 .0	1.4 1.4 1.4	1.4 0.0	2.0 1.7 1.6	1.8 0.2
Se (mg/L)	<pre><0.05 <0.05 <0.05 <0.05</pre>	<0.05 0.0	<pre><0.05 <0.05 <0.05 <0.05</pre>	<0.05 0.0	<pre><0.05 <0.05 <0.05 <0.05</pre>	<0.05 0.0
ds (л√рш)	<pre><0.05 <0.05 <0.05 <0.05</pre>	<0.05 0.0	<pre><0.05 <0.05 <0.05 <0.05</pre>	<0.05 0.0	<pre><0.05 <0.05 <0.05 <0.05</pre>	<0.05 0.0
d¶ dq	0.026 0.019 0.026	0.024 0.004	0.027 0.026 0.009	0.021	0.017 0.022 0.022	0.020 0.003
P (mg/L)	<0.05 <0.05 <0.05	<0.05 0.0	<pre><0.05 <0.05 <0.05 <0.05</pre>	<0.05 0.0	<pre><0.05 <0.05 <0.05 <0.05</pre>	<0.05 0.0
Ni (mg/L)	<pre><0.02 <0.02 <0.02 <0.02</pre>	¢0.02 0.0	<pre><0.02 <0.02 <0.02 <0.02</pre>	¢0.02 0.0	<pre><0.02 <0.02 <0.02 <0.02</pre>	¢0.02 0.0
Na (mg/L)	2.4 1.2 1.2	1.6 0.7	1.3 1.4 1.3	1.3 0.1	1.6 1.5 1.5	1.5
o₩	0.005 0.006 0.005	0.005 0.001	<0.005 0.009 <0.005	0.0	0.006 <0.005 0.009	<0.008 0.0
SAMPLE NUMBER	25 26 27	s.D.	28 29 30	× s.D.	31 32 33	s × I 5.D.
STATION	6		10		11	

- 63 -
| B | DIX II | н | TABL | Е
Е | | WA 3 | TER | DUALI | 2 | RESULTS | 5 | R AUG | UST | 21-22, | 1985 |
|---|--------|---------|------|--------|------|-------------|------|-------|-----|---------|----|-------|-----|--------|------|
| ä | Tril | plicate | Val | ues | for | each | stai | tion | are | shown | Ľ, | order | of | | |
| ц | bank , | midstr | eam | and | righ | t bar | ¥ | | | | | | | | |

APPENDIX I NOTE: Tri left bank,	II TAB iplicate Va midstream	LE 2 WA lues for each and right bar	TER QUALIT station a nk	Y RESULTS FOUR	R AUGUST 2 order of	:1-22, 1985						
STATION	SAMPLE NUMBER	AVG. DEPTH (m)	(WI) HLICI IM	FLOW (m3/s)	TEMP. (C)	d ALISNI	H LAB) UTISNI D	COND. Ss∕cm) LAB	DISOLVED OXYGEN (mg/L)	\$DO SATURA TION	COLOR (FTU)
1	3 7 F	N/A	N/A	N/A	6.5	7.60	7.4 7.5 6.9	500	800 800 800	10.4	68	സസസ
8	S 4 . D.	0.3	0.8	0.12	5.0	7.90	7.3 0.3 7.5 6.9 7.3	312	800 580 580 580	11.3	92	ທດ ທທທ
m	ا× ۵. ۲∞ ۵. D.	N/A	N/A	3.3 *	0.11	8.10	7.2 0.3 7.5 7.5	165	580 0 250 250 250	10.4	97	5 0 10 10 10
ব	s x 1 10 . D. 11 12	0.6	9.6	3.451	10.0	8.00	7.5 0.1 6.9 9.0	180	250 0 310 290 255	10.3	95	10 0 10 10
	s x 1 S . D .	minod from the	differen	a hatuaan C	a A A	nd Station	7.1 0.3		285 28			10 0

-

STATION	SAMPLE NUMBER	AVG. DEPTH (m)	(W) HJCIM	FLOW (m3/s)	TEMP. (C)	d DTISNI	0H LAB	CC (umbo INSITU	ND. Ss∕cma) LAB	DISOLVED OXYGEN (Ing/L)	\$DO SATURA- TION	COLOR (FTU)
Ω	13 14 15	N/A	N/A	N/A	12.6	7.90	7.4 7.3 7.1	920	1250 1250 1250	11.8	119	10 10
	s.D.						7.3 0.2		1250 0			10 0
Q	16 17 18	N/A	N/A	N/A	4.0	7.70	7.8 7.4 7.3	252	450 450 450	10.8	06	ບໍ ບໍ ບໍ
	к s.D.						7.5 0.3		450 0			ς, ο
٢	19 20 21	0.1	118	0.060	7.5	7.90	7.5 7.5 7.8	580	006 006	20.4	88	10 10
	s.D.						7.6 0.2		0 006			10
ω	22 23 24	0.5	15.8	3.0	9.3		7.3 7.9 7.5	195	285 285 285	22.0	101	10 10
	к s.D.						7.6 0.3		285 0			10

1.F. A											
•	VG. DEPTH (m)	(W)	FLOW (m3/s)	TEMP. (C)	d UTI2NI	H LAB	CO (umbo INSITU	ND. s/cm) LAB	DI SOLVED OXYGEN (mg/L)	\$DO SATURA- TION	COLOR (FTU)
	N/A	N/A	3.1 *	8.3	7.65	8.0 8.0 7.9	450	680 390 310	10.5	66	10 10
						8.0 0.1		460 195			10
	N/A	N/A	N/A	10.1	8.00	8.0 7.6 8.0	210	310 310 310	10.5	104	10 10
						7.9 0.2		310 0			10
	0.5	29.0	6.7	7.5	7.70	8.1 8.3 6	197	320 310 310	10.6	76	10 10
						8.0 0.4		313 6			10

* Determine from the sum of Station 7 and Station 8

.

- 66 -

STATION	SAMPLE NUMBER	TURB. (FTU)	T.ALK. (as CAC03) (mg/L)	T.HARD (as CaCO3) (mg/L)	SULFATE (mg/L)	CHLORIDE (mg/L)	PHOSPATE (mg/L)	NITRITE (mg/L)	NITRATE (mg/L)	ArmONIA (mg/L)	NFR (mg/L)
1	3 7 1	0.30 0.30 0.30	105.0 102.0 103.0	463 471 469	270 310 300	0.7 0.8 0.8	0.005 0.005 0.003	<pre><0.005 <0.005 <0.005 <0.005</pre>	0.075 0.077 0.077	0.020 0.012 0.011	14 7 <5
Ν	סטיד <i>י</i> מאן סיטידי מאן	0.30 0.00 0.40 0.40 0.40	103.3 1.5 119.0 121.0 121.0	468 4 325 326 326	293 21 170 160.0	0.1 0.6 0.5 0.5	0.004 0.001 <0.002 <0.002 <0.002	 (0.005 (0.005 (0.005 (0.005 (0.005 (0.005 	0.076 0.001 0.055 0.054 0.055	0.014 0.005 0.005 0.005 40.005	(11 0 10 5 6
m	1×νν Γ∞60	0.40 .00 0.15 0.15 0.18	120.3 1.2 86.2 85.7 86.2	326 1 135 135 136 136	163 6 53 37 36	0.0 0.0 0.5 0.5 0.5	<pre><0.002 0.000 </pre> <pre><0.002 <0.002 <0.002 <0.002</pre>	<pre>(0.005 (0.005 (0.005 (0.005 (0.005</pre>	0.055 0.001 0.008 0.005 0.005	(0.005 0.0 0.006 0.006 0.006	ட⊷ லிலில்
4	×۱ 11 : 0 : 0 ×۱ ×۱ ×۱ ×۱ ×۱ ×۱ ×۱ ×۱	0.16 0.02 0.23 0.23 0.15	86.0 0.3 91.3 91.3 86.2	136 1 169 157 136	42 10 56 52 37 48	0.5 0.5 0.5 0.6 6	<pre><0.000 </pre> <pre><0.000 </pre> <pre><0.002 </pre> <pre><0.002 </pre> <pre><0.002 </pre> <pre></pre> <pre><th><pre><0.002 <0.005 <0.005 <0.005 <0.005 <0.005</pre></th><th>0.008 0.012 0.012 0.008 0.005</th><th>0.006 0.0 0.007 0.003 0.008 (0.005</th><th>က်ဝက်စက် စိ</th></pre>	<pre><0.002 <0.005 <0.005 <0.005 <0.005 <0.005</pre>	0.008 0.012 0.012 0.008 0.005	0.006 0.0 0.007 0.003 0.008 (0.005	က်ဝက်စက် စိ
	s.D.	0.05	2.9	17	10	0.0	0.000	0.0	0.0	0.0	0

II XIQN	H	ABLE 2		TAW	ER	DUALI	AT I	RESULTS	FOI	AUG S	TSU	21-22,	1985
: Trig	plicate '	Values	for	each	stat	tion	are	shown	in	order	of		
bank,	midstre	am and	right	t ban	¥								

APPENDIX II NOTE: Trip left bank, 1	TABLE 2 licate Values midstream and	WATE for each s right bank	R QUALITY RE itation are s	SULTS FOR AUG hown in order	8UST 21-22 : of	, 1985					
STATION	SAMPLE NUMBER	TURB. (FTU)	T.ALK. (as CACO3) (mg/L)	T.HARD (as CaCO3) (mg/L)	SULFATE (mg/L)	CHLORIDE (mg/L)	PHOSPATE (mg/L)	NITRITE (mg/L)	NITRATE (mg/L)	AMMONIA (mg/L)	NFR (mg/L)
'n	13 14 15	0.63 0.58 0.68	92.8 93.1 91.9	663 680 671	530 550 540	14.3 14.2 14.4	0.003 0.002 0.004	<pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre>	0.074 0.078 0.079	0.074 0.078 0.079	ນ ທີ ທີ
ø	s.D. 17 18	0.63 0.05 (0.01 (0.01 (0.01	92.6 0.6 188.0 187.0 187.0	671 9 255 254 254	540 10 55 48 48	14.3 0.1 <0.5 <0.5 <0.5	0.003 0.001 (0.002 (0.002 (0.002	<pre><0.005 0.0 </pre> <pre><0.005 <0.005 <0.005 <0.005 <0.005</pre>	0.077 0.003 0.078 0.078 0.078	0.077 0.003 0.078 0.078 0.078	က်စ ကိုက်ကို
٢	хх 5.D. 219 213	 40.01 0.00 1.80 2.00 	187.3 0.6 163.0 163.0 163.0	254 1 507 508 511	50 4 300 300	0.0 0.0 6.6 6.9	<pre><0.002 0.000 0.006 0.006 0.004 </pre>	<pre><0.005 0.0 </pre> <pre><0.005 <0.005 <0.005 <0.005</pre>	0.078 0.001 0.160 0.160 0.160	0.078 0.001 0.160 0.160 0.160	ο ά ά δ ά δ
œ	s.b. 22 24	1.93 0.12 0.20 0.18 0.18	163.0 0.0 98.8 102.0 101.0	509 2 157 156 155	297 6 45 41	6.8 0.2 0.7 0.7	<pre><0.005 0.000 0.000 0.003 0.003 0.003</pre>	<pre><0.005 0.0 0.0 </pre> <pre><0.005 <0.005 <0.005 <0.005</pre>	0.160 0.000 0.016 0.008 0.053	0.160 0.000 0.016 0.008 0.053	ဗ် ဗ် စ် စ် စ် စ် စ် စ် စ် စ် စ် စ် စ် စ်
	s.D.	0.19 0.01	100.6 1.6	156 1	43 2	0.7	0.021 0.033	<0.005 0.0	0.026 0.024	0.026 0.024	ŝ

L)	225	20 0 20 20	
NFR (mg/			
AMMONIA (mg/L)	0.090 0.036 0.014	0.047 0.039 0.009 0.009 0.008	0.009 0.001 0.010 0.009 0.009 0.009
NITRATE (mg/L)	0.090 0.036 0.014	0.047 0.039 0.009 0.008 0.008	0.009 0.001 0.006 0.016 0.021
NITRATE (mg/L)	<pre><0.005 <0.005 <0.005 <0.005</pre>	<pre><0.005 <0.0 <0.0 <0.005 <0.005 <0.005 <0.005 <0.005</pre>	<pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre> <pre></pre> <p< td=""></p<>
PHOSPATE (mg/L)	<pre><0.002 <0.002 <0.002 0.049</pre>	 <0.049 0.000 0.006 0.003 0.003 	0.004 0.002 0.002 0.002 0.002 0.002
CHLORIDE (mg/L)	4.0 1.5 0.8	2.1 1.7 0.7 0.7	0.7 0.0 0.8 0.6 0.6
SULFATE (mg/L)	200 80 125	135 61 48 47 46	47 44 44 44
T.HARD (as CaCO3) (mg/L)	380 227 173	260 107 170 170 169	170 1 173 167 165 165
T.ALK. (as CAC03) (mg/L)	145.0 113.0 101.0	119.7 22.7 106.0 106.0 106.0	106.0 0.0 113.0 108.0 105.0
TURB. (FTU)	0.53 0.28 0.33	0.38 0.13 0.28 0.25 0.15	0.23 0.07 0.38 0.35 0.48
SAMPLE NUMBER	25 26 27	x 5. D. 30 30	×: 5.D.
STATION	6	10	п

Fe Mg M mg/L mg	0.188 20.3 1.7 0.204 20.7 1.8 0.199 20.6 1.8	0.197 20.5 1.8 0.008 0.2 0.0 0.145 18.0 0.2 0.154 18.1 0.2 0.154 18.1 0.2	0.149 18.1 0.2 0.005 0.1 0.0 0.101 10.3 0.0 0.107 10.4 0.0	0.103 10.4 0.0 0.002 0.1 0.0 0.149 11.8 0.0 0.118 11.3 0.0 0.107 10.5 0.0	0.125 11.2 0.0 0.022 0.7 0.0
Cu mg/L	<pre><0.001 <0.001 <0.001 </pre>	<pre>(0.001 0.0 0.0 </pre> <pre>(0.001 0.008 0.008</pre>	<pre><0.008 0.0 </pre> <pre><0.001 </pre> <pre><0.001 </pre> <pre><0.001</pre>	<pre><0.001 <0.0 0.0 0.001 <0.001 0.004 0.004</pre>	<0.002 0.0
Cr ₽g∕T	<0.005 <0.005 <0.005	<pre><0.005 0.0 </pre> <pre><0.005 <0.005 <0.005 <0.005 <0.005</pre>	<pre><0.005 0.0 </pre> <pre><0.005 <0.005 <0.005 <0.005 <0.005</pre>	<pre><0.005 0.0 </pre> <pre><0.005 <0.005 <0.005 <0.005</pre>	<0.005 0.0
Co mg/L	<0.005<0.005<0.005<0.005<0.005 0.005</p	<pre><0.005 0.0 </pre> <pre><0.005 <0.005 <0.005 <0.005</pre>	<pre><0.005 0.0 </pre> <pre><0.005 <0.005 <0.005 <0.005 </pre>	<pre><0.005 0.0 </pre> <pre><0.005 <0.005 <0.005 <0.005 </pre>	<0.005 0.0
cd mg/L	0.0017 0.0015 0.0015	0.0016 0.0001 0.0019 0.0021 0.0020	0.0020 0.0001 <0.0005 <0.0005 N/A	 <0.0005 0.0 0.0005 0.0005 0.0005 	0.0005
Ca ∎g∕L	150.0 152.0 152.0	151.3 1.2 99.7 101.0 100.0	100.2 0.7 36.6 37.1 36.9	36.9 0.3 47.7 44.0 37.1	42.9 5.4
Be mg∕L	<pre><0.001 <0.001 <0.001 <0.001</pre>	<pre><0.001 0.0 </pre> <pre></pre> <pre><pre><pre><pre><pre><pre><pre><</pre></pre></pre></pre></pre></pre></pre>	<pre><0.001 <0.0 </pre> <pre></pre> <pre><0.001 </pre> <pre><0.001 </pre> <pre><0.001 </pre> <pre></pre>	<pre><0.001 0.0 </pre> <pre></pre> <pre><0.001 </pre> <pre><0.001 </pre> <pre><0.001 </pre> <pre></pre>	<0.001 0.0
Ba mg/L	0.056 0.058 0.057	0.057 0.001 0.052 0.053 0.053	0.052 0.001 0.043 0.044 0.044	0.044 0.001 0.046 0.045 0.045	0.045 0.001
B mg/L	0.022 0.000 0.010	0.011 0.011 0.028 0.028 0.028	0.026 0.003 0.019 0.019 0.015	0.019 0.004 0.006 0.006 0.025	0.012 0.011
As Ing/L	<0.05 <0.05 <0.05	<pre><0.05 <0.0 </pre> <pre><0.05 <0.05 <0.05 <0.05 <0.05 <0.05 </pre>	<pre><0.05 0.0 </pre> <pre><0.05 <0.05 <0.05 <0.05 <0.05 </pre>	<pre><0.05 <0.0 </pre> <pre><0.05 <0.05 <0.05 <0.05 <0.05 <0.05</pre>	<0.05 0.0
Åg mg/L	<0.0005<0.0005<0.0005<0.0005	<pre><0.0005</pre> <pre><0.0005</pre> <pre><0.0005</pre> <pre><0.0005</pre> <pre><0.0005</pre>	 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 	<pre><0.0005 0.0 </pre> <pre><0.0005 <0.0005 <0.0005 </pre>	<0.0005 0.0
SAMPLE NUMBER	-1 C M	oor4- ox×1 D	хх г О. О.	× × s.b. 11 12	א נ ס. D.
 STATION		7	m	4	

0###2

€≈-∰

Ян Ян

۹H

TATION	SAMPLE NUMBER	Ag mg/L	As ng/L	B Bg/L	Ba mg/L	Be mg/L	Ca mg∕L	cd ng/L	Co Dg/L	Cr ng/L	Cu mg/L	Fe mg/L	Mg Mg/L	Mn MM
ŝ	13 14 15	<pre><0.0010 <0.0010 <0.0010 <0.0010</pre>	<0.05 <0.05 <0.05	0.019 0.032 0.013	0.017 0.017 0.017	<pre><0.001 <0.001 <0.001 <0.001</pre>	193.0 197.0 195.0	0.0024 0.0023 0.0023	<pre><0.005 <0.005 <0.005 <0.005</pre>	<pre><0.005 <0.005 <0.005 <0.005</pre>	0.013 0.012 0.012	0.466 0.441 0.442	43.0 44.6 43.8	1.050 1.050 1.030
	s.b.	<0.0010 0.0	<0.05 0.0	0.021	0.000 0.000	<0.001 0.0	195.0 2.0	0.0023 0.0001	<0.005 0.0	<0.005 0.0	0.012	0.443 0.022	43.8 0.8	1.043 0.012
6	16 17 18	<0.0005 <0.0005 <0.0005	<pre><0.05</pre> <pre><0.05</pre> <pre><0.05</pre>	0.025 0.014 0.000	0.079 0.080 0.081	<pre><0.001 <0.001 <0.001 <0.001</pre>	79.8 79.4 79.5	<pre><0.0005</pre> <pre><0.0005</pre> <pre></pre> <pre><td><pre><0.005</pre><pre><0.005</pre><pre><0.005</pre></td></pre>	<pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre>	<pre><0.005 <0.005 <0.005 <0.005</pre>	<pre><0.001 <0.001 <0.001 <0.001</pre>	0.030 0.028 0.032	13.3 13.4 13.4	0.002 0.001 0.001
r	z. D. 20 21 21	 <0.0005 0.0 <0.0005 <0.0005 <0.0005 	<pre><0.05 <0.05 <0.05 <0.05 <0.05 <0.05</pre>	0.013 0.013 0.014 0.001 0.001	0.080 0.001 0.027 0.026 0.026	<pre><0.001 <0.0 </pre> <pre></pre> <pre><pre><pre><pre><pre><pre><pre><</pre></pre></pre></pre></pre></pre></pre>	79.6 0.2 145.0 145.0 146.0	<pre><0.0005 0.00 0.00 0.0018 0.0018 0.0018 0.0017</pre>	<pre><0.005 <0.0 </pre> <pre><0.005 <0.005 <0.005 <0.005 <0.005</pre>	<pre><0.005 <0.0 </pre> <pre><0.005 <0.005 <0.005 <0.005 <0.005 </pre>	 0.001 0.0 0.005 0.005 0.004 	0.030 0.002 0.549 0.512 0.437	13.4 0.1 34.8 35.0 35.0	0.001 0.001 0.598 0.596 0.524
œ	x s.D. 22 23 24	 40.0005 40.0005 40.0005 40.0005 40.0005 	<pre><0.05</pre> <pre><0.05</pre> <pre><0.05</pre> <pre><0.05</pre> <pre><0.05</pre>	0.005 0.008 0.017 0.017 0.005	0.027 0.001 0.054 0.054 0.054	<pre><0.001 <0.00 <0.00 </pre> <pre></pre>	145.0 0.6 43.1 43.0 42.8	0.0018 0.0001 <0.0005 <0.0005	<pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre>	<pre><0.005 <0.005 <0.005 <0.005 <0.005 <0.005</pre>	0.005 0.001 0.006 0.006 <0.001	0.499 0.057 0.129 0.129 0.124	34.9 0.1 11.7 11.6 11.6	0.573 0.042 0.042 0.041 0.041
	s.D.	<0.0005 0.00	<0.05 0.0	0.013 007	0.054 0.000	<0.001 0.0	43.0 0.2	<0.0005 0.00	<0.005 0.0	<0.005 0.0	<0.006 0.0	0.126 0.003	11.6 0.1	0.041

- 71 -

STATION	SAMPLE NUMBER	Ag mg/L	As Ing/L	в те/Т	Ba mg/L	Be mg/L	Ca Bg/L	Cd mg/L	Co mg/L	Cr mg/L	Cu Bg/L	Fe Ing/L	1/5ш б₩	기/5년 년월
6	25 26 27	<pre><0.0005</pre> <pre><0.0005</pre> <pre><0.0005</pre>	<pre><0.05 <0.05 <0.05 <0.05</pre>	0.008 0.027 <0.001	0.060 0.056 0.055	40.00140.00140.00140.001	108.0 63.7 47.8	<pre><0.0005</pre> <pre><0.0005</pre> <pre><0.0005</pre>	<pre><0.005 <0.005 <0.005 <0.005</pre>	<pre><0.005 <0.005 <0.005 <0.005</pre>	0.002 0.001 <0.001	0.248 0.166 0.134	26.3 16.3 12.8	0.234 0.104 0.055
10	30 28 S. D. 30 28 30	 <0.0005 0.00 <0.0005 <0.0005 <0.0005 	<pre>(0.05) (0.0) (0.0) (0.05)</pre>	0.017 0.0 0.08 0.008 0.027 0.001	0.057 0.003 0.057 0.058 0.058	<pre><0.001 <0.0 <0.0 </pre> <pre><0.001 </pre> <pre><0.001 </pre> <pre><0.001 </pre> <pre></pre>	73.2 31.2 47.0 46.9	 <0.0005 0.00 <0.0005 <0.0005 <0.0005 <0.0005 	<pre><0.005 <0.0 </pre> <pre><0.005 <0.005 <0.005 <0.005</pre>	<pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre>	<pre><0.002 <0.0 0.0 0.001 0.001 0.001 0.001</pre>	0.183 0.059 0.163 0.167 0.156	18.5 7.0 12.5 12.6 12.6	0.055 0.055 0.048 0.048 0.049
11	33 31 S.D.	<pre><0.0005 <0.0005 <0.0005 <0.0005 <0.0005</pre>	<pre><0.05 <0.05 <0.05 <0.05 <0.05 </pre>	0.012 0.013 0.014 0.014 0.023	0.058 0.001 0.068 0.068 0.062 0.059	<pre>< 0.001 </pre> 0.0 0.0 (0.001 (0.001	47.0 0.1 47.8 45.7 45.1	 <0.0005 <0.00 <0.0005 <0.0005 <0.0005 	 <0.005 <0.005 <0.005 <0.005 	 	0.001 0.0 0.0 <0.001 <0.001 <0.001	0.162 0.006 0.269 0.225 0.214	12.6 0.1 12.7 12.7 12.7 12.6	0.048 0.001 0.055 0.055 0.038
	د د ا	<0.0005 0.00	<0.05 0.0	0.018	0.063	<0.001 0.0	46.2 1.4	<0.0005 0.00	<0.005 0.0	<0.05 0.0	<0.001 0.0	0.236 0.029	12.7	0.045 0.009

(init):

₩-t}ŀ

.

Way.

鎆

STATION	SAMPLE NUMBER	(J/gm)	Ма (то), то)	Ni (mg/L)	P (mg/L)	dg da	ds ds	Se (mg/L)	si (mg/L)	Sn (mg/Lt)	Sr (mg/L)	Ti (mg/L)	V (J/L)	Zn T	,
-	3 7 T	<pre><0.005 <0.005 <0.005 <0.005</pre>	1.5	0.02 0.02 (0.02	<0.05<0.05<0.05	<pre><0.001 <0.001 <0.001 0.001</pre>	<pre><0.05 <0.05 <0.05 <0.05</pre>	<pre><0.05 <0.05 <0.05 <0.05</pre>	3.2 3.4	<pre><0.01 <0.01 <0.01 </pre>	0.223 0.225 0.225	<pre><0.002 <0.002 <0.002 <0.002</pre>	<pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre> <pre><0.005</pre>	0.816 0.836 0.824	1
7	אר איר א ס. 4 טיס	 <ul< th=""><th>1.5 0.1 1.3 1.3</th><th> (0.02 (0.02 (0.02 (0.02 (0.02 </th><th><pre><0.05 <0.0 </pre><pre><0.05 <0.05 <0.05 <0.05 <0.06</pre></th><th><pre><0.001 <0.001 0.0 0.002 0.001 0.001</pre></th><th><pre><0.05 <0.0 </pre><pre><0.05 <0.05 <0.05 <0.05 <0.05</pre></th><th><pre><0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05</pre></th><th>3.3 9.1 3.0 2.9</th><th> <0.01 0.0 0.01 <0.01 <0.01 <0.01 <0.01 </th><th>0.224 0.001 0.192 0.194 0.192</th><th> <0.002 0.0 <0.002 <0.002 <0.002 </th><th> <0.005 <0.005 <0.005 <0.005 </th><th>0.825 0.010 0.429 0.436 0.436</th><th>1</th></ul<>	1.5 0.1 1.3 1.3	 (0.02 (0.02 (0.02 (0.02 (0.02 	<pre><0.05 <0.0 </pre> <pre><0.05 <0.05 <0.05 <0.05 <0.06</pre>	<pre><0.001 <0.001 0.0 0.002 0.001 0.001</pre>	<pre><0.05 <0.0 </pre> <pre><0.05 <0.05 <0.05 <0.05 <0.05</pre>	<pre><0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05</pre>	3.3 9.1 3.0 2.9	 <0.01 0.0 0.01 <0.01 <0.01 <0.01 <0.01 	0.224 0.001 0.192 0.194 0.192	 <0.002 0.0 <0.002 <0.002 <0.002 	 <0.005 <0.005 <0.005 <0.005 	0.825 0.010 0.429 0.436 0.436	1
м	×3 ∨ ∞9 .0.	 <0.005 0.0 <0.005 <0.005 <0.005 	1.3 0.0 1.2 1.2	 <0.02 0.0 <0.02 <0.02 <0.02 <0.02 	<pre><0.06 <0.0 </pre> <pre><0.05 <0.05 <0.05 <0.05 <0.05</pre>	0.001 0.001 0.002 0.001 0.001	0.05 0.0 <0.05 <0.05 <0.05	0.05 0.0 (0.05 (0.05 (0.05	3.0 0.1 1.8 1.6	<pre><0.01 <0.0 </pre>	0.193 0.001 0.151 0.153 0.153	<pre><0.002 0.0 </pre> <pre><0.002 </pre> <pre><0.002 </pre> <pre><0.002 </pre> <pre><0.002</pre>	<pre><0.005 0.0 </pre> <pre><0.005 </pre> <pre><0.005 </pre> <pre><0.005</pre>	0.433 0.004 <0.002 <0.002 <0.002	1
4	s.D. 10 11 12	 <0.005 <0.0 <0.005 <0.005 <0.005 <0.005 	1.2 0.0 1.3 1.3	<pre><0.02 <0.0 <0.0 <<pre><0.02 <0.02 <0.02 <0.02 <0.02</pre></pre>	<pre><0.05 <0.0 0.0 0.0 </pre>	0.001 0.001 0.001 0.001 0.001 ×0.001	<pre><0.05 <0.0 <0.0 <</pre> <pre><0.05 <0.05 <0.05 <0.05 <0.05</pre>	<pre><0.05 <0.0 </pre> <pre><0.05 <0.05 <0.05 <0.05 <0.05 <0.05</pre>	1.8 0.2 1.8 1.7 1.7	<pre><0.03 <0.03 0.0 </pre> <pre></pre> <pre><pre><pre><pre><pre><pre><pre><</pre></pre></pre></pre></pre></pre></pre>	0.152 0.001 0.162 0.158 0.153	<pre><0.002 0.0 </pre> <pre><0.002 <0.002 <0.002 <0.002 <0.002 <0.002</pre>	 <0.005 0.0 <0.005 <0.005 <0.005 <0.005 	<pre><0.002 0.0 0.0 0.084 0.053 0.003</pre>	1
	ς.D.	<0.005 0.0	1.3	<0.02 0.0	<0.05 0.0	<0.001 0.0	<0.05 0.0	<0.05 0.0	1.7 0.1	<0.01 0.0	0.158 0.005	<0.002 0.0	<0.005 0.0	0.047 0.041	1

.

,

3	I XIQ	н	TABL	Е 2		WAJ	TER	QUALJ	M	ESULT:	s FO	RA	JGUST	21-22,	1985
ü	Tri	plicate	Val	ues	for	each	sta	tion	are	shown	in	ord	er of		
ч	bank ,	midstr	еаш	and	righ	t bar	¥								

NOTE: Tripl left bank, mi	icate Valu idstream a	tes for eac ind right b	th statio	n are sh	own in c	order of	4	2			s.			
STATION	SAMPLE NUMBER	Mo Mo	Na (mg/L)	Ni (mg/L)	P (mg/L)	Pb da	sb (mg/L)	Se (mg/L)	Si (mg/L)	Sn (mg/L)	Sr (mg/L)	Ті (mg/L)	(Л/ра) Т	('T/ɓɯ) uz
ŝ	13 14 15	<pre><0.005 <0.005 <0.005 <0.005</pre>	44.3 46.5 45.5	<0.02 <0.02 <0.02	0.10 0.07 0.06	0.003 0.003 0.003	<0.05 <0.05 <0.05	<0.05 <0.05 <0.05	9.0 9.0 9.0	 40.01 40.01 40.01 40.01 	0.370 0.387 0.380	<pre><0.002</pre> <pre><0.002</pre> <pre><0.002</pre> <pre><0.002</pre>	<0.005 <0.005 <0.005	0.092 0.090 0.089
و	х s.D. 16	<0.005 0.0 <0.005	45.4 1.1 1.1	<0.02 0.0 <0.02	0.08 0.02 <0.05	0.003 0.000 0.002	<0.05 0.0 <0.05	<0.05 0.0 <0.05	0.9 0.0 2.5	<0.01 0.0 0.03	0.379 0.009 0.333	<0.02 0.0 <0.02	<0.005 0.0 <0.005	0.090 0.002 ¢0.002
	17 18	<0.005 <0.005	111	<0.02 <0.02	<0.05 <0.05	0.001	<0.05 <0.05	<0.05 <0.05	2.4 2.4	0.03	0.336 0.337	<0.002 <0.002	<0.005 <0.005	<0.002 0.003
L	x s.D. 19 20 21	 <0.005 0.0 <0.005 <0.005 	1.1 0.0 16.8 17.1 17.0	<pre><0.02 0.0 </pre> <pre><0.02 <0.02 <0.02 <0.02 </pre>	0.05 0.0 0.09 0.10	0.001 0.001 0.003 0.003 0.003	 <0.05 0.0 <0.05 <0.05 <0.05 	 (0.05) 0.0 (0.05) (0.05) (0.05) 	2.4 0.1 2.4 2.3 2.3	0.03 0.01 (0.01 (0.01 (0.01	0.335 0.002 0.290 0.292 0.292	 <0.002 0.0 <0.002 <0.002 <0.002 	 <0.005 0.0 <0.005 <0.005 <0.005 	<pre><0.003 0.0 0.218 0.215 0.212 0.212</pre>
œ	х s.D. 23 23	<pre><0.005 0.0 </pre> <pre><0.005 <0.005 <0.005 </pre>	17.0 0.2 1.3 1.3 1.3	<pre><0.02 0.0 </pre> <pre><0.02 <0.02 <0.02 <0.02 </pre>	0.08 0.02 0.06 0.07 <	0.003 0.001 0.001 0.001 0.001	<pre><0.05 0.0 </pre> <pre><0.05 <0.05 <0.05 <0.05 <0.05</pre>	<pre><0.05 0.0 </pre> <pre><0.05 <0.05 <0.05 <0.05 </pre>	2.3 0.1 1.6 1.6	<pre><0.01 0.0 </pre> <pre><0.01 </pre> <pre><0.01 </pre> <pre><0.01 </pre>	0.291 0.001 0.158 0.157 0.156	<pre><0.002 0.0 </pre> <pre><0.002 <0.002 <0.002 <0.002</pre>	<pre><0.005 0.0 <0.005 <0.005 <0.005 <0.005</pre>	0.215 0.003 0.031 0.028 0.026
	s.D.	<0.005 0.0	1.3 0.0	<0.02 0.0	0.06 <	0.0	<0.05 0.0	<0.05 0.0	1.6 0.0	<0.01 0.0	0.157 0.001	<0.002 0.0	<0.005 0.0	0.028 0.003

14

a.

				1										
	SAMPLE	Ŵ	Na	NÌ	A	qd	Sb	Se	Si	ß	Sr	E	Δ	Zn
STATION	NUMBER	(T/5m)	('T/5m)	(I/gm)	(T/5m)	(了)(5里)	(T/bur)	(T/5m)	('T/6m)	(T/6m)	(<u>ng/</u> r)	(丁/5里)	(T/5m)	(T/6m)
6	25	<0.005	9.8	<0.02	0.06	0.001	<0.05	<0.05	2.4	<0.01	0.236	<0.002	<0.05	0.052
	26	<0.005	4.0	<0.02	0.06	0.001	<0.05	<0.05	1.7	<0.01	0.182	<0.002	<0.005	0.052
	27	<0.005	1.9	<0.02	0.06	<0.001	<0.05	<0.05	1.7	0.02	0.165	<0.002	<0.005	0.038
	×	<00.0>	7.0	20.0 2	0.06	<0.001	<0.0>	<0.0>	1.9	<0.02	0.194	<0.002	<0.05	0.065
	s.D.	0.0	4.1	0.0	0.00	0.0	0.0	0.0	0.4	0.0	0.037	0.0	0.0	0.036
10	28	<0.005	1.7	<0.02	<0.05	<0.001	<0.05	<0.05	1.7	0.02	0.167	<0.002	<0.005	0.024
	29	<0.005	1.7	<0.02	<0.05	0.001	<0.05	<0.05	1.7	0.02	0.169	<0.002	<0.005	0.027
	30	<0.005	1.7	<0.02	<0.05	<0.001	<0.05	<0.05	1.7	<0.01	0.169	<0.002	<0.005	0.031
	1													
	×	<00.0>	1.1	<0.02	<0.0>	100.0>	<0.0>	<0.05	1.1	<0.02	0.168	<0.002	<0.005	0.027
	s.D.	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.001	0.0	0.0	0.004
11	31	<0.005	1.9	<0.02	<0.05	<0.001	<0.05	<0.05	1.9	<0.01	0.176	<0.002	<0.005	0.020
	32	<0.005	1.8	<0.02	<0.05	<0.001	<0.05	<0.05	2.5	0.01	0.183	<0.002	<0.005	0.016
	33	<0.005	1.8	<0.02	<0.05	<0.001	<0.05	<0.05	2.5	<0.01	0.184	<0.002	<0.005	0.014
	×	<0.005	1.8	<0.02	<0.05	<0.001	<0.05	<0.05	2.3	<0.01	0.181	<0.002	<0.005	0.017
	s.D.	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.004	0.0	0.0	0.003

`

APPENDIX III

STREAM SEDIMENTS DATA

.

-

1

-

APPENDIX III	TABLE 1	PERCENT SEDIMENT SIZE DISTRIBUTION FOR
		JULY 9-10, 1985
		NOTE: No Particle Size Results for Stations
		1, 2, 3 and 4.

				SIZE	RANGE (mm)			
STATION	SAMPLE NUMBER	>2.0	2.0-1.0	01.0-0.5	0.5-0.25	0.25-0.15	0.15-0.063	<0.06
7	1	89.0	5.7	3.4	1.3	0.2	0.2	0.2
	2	78.7	8.1	7.6	4.4	0.4	0.3	0.5
	3	59.2	8.6	20.5	10.7	0.4	0.3	0.3
	x	75.6	7.5	10.5	5.5	0.3	0.3	0.3
	S.D.	15.1	1.6	8.9	4.8	0.1	0.1	0.2
8	4	67.6	13.6	11.5	5.2	0.9	0.5	0.7
	5	72.9	14.1	9.3	2.5	0.3	0.3	0.6
	6	78.9	11.2	6.9	1.9	0.3	0.4	0.4
	x	73.1	13.0	9.2	3.2	0.5	0.4	0.6
	S.D.	5.7	1.6	2.3	1.8	0.3	0.1	0.2
9	7	78.0	4.5	6.5	6.1	1.1	1.6	2.2
	8	78.9	1.1	1.9	5.7	2.0	3.2	7.2
	9	78.9	1.1	1.9	5.7	2.0	3.2	7.2
	x	78.6	2.2	3.4	5.8	1.7	2.7	5.6
	S.D.	0.5	2.0	2.7	0.2	0.5	0.9	2.9
10	10	79.6	14.4	5.2	0.4	0.0	0.1	0.3
	11	82.0	12.9	3.8	0.5	0.2	0.2	0.4
	12	84.4	6.8	5.9	2.0	0.2	0.2	0.5
	x	82.0	11.4	5.0	1.0	0.1	0.2	0.4
	S.D.	2.4	4.0	1.1	0.9	0.1	0.1	0.1
11	13	82.0	6.1	5.5	5.4	0.5	0.3	0.2
	14	67.9	8.6	13.1	0.9	1.0	0.4	8.1
	15	77.8	6.8	8.4	5.1	1.0	0.5	0.4
	x	75.9	7.2	9.0	3.8	0.8	0.4	2.9
	S.D.	7.2	1.3	3.8	2.5	0.3	0.1	4.5

APPENDIX III	TABLE 2	PERCENT SEDIMENT SIZE DISTRIBUTION FOR
		AUGUST 21-22, 1985 (continued)
		NOTE: No Particle Size Results For Stations
		1, 2, 3 and 4.

				SIZE RA	NGE (mm)			
STATION	SAMPLE NUMBER	>2.0	2.0-1.0	01.0-0.5	0.5-0.25	0.25-0.15	0.15-0.063	<0.063
7	1	75.4	6.3	10.8	6.3	0.5	0.4	0.3
	2 3	55.8 59.5	6.7 4.5	20.5 19.0	14.6 14.1	1.0	0.6	0.8
	x	63.6	5.8	16.8	11.7	0.9	0.6	0.7
	S.D.	10.4	1.2	5.2	4.7	0.3	0.3	0.3
8	4	83.0	5.4	3.6	4.0	1.4	1.2	1.4
	5 6	0.3	4.4 5.7	3.5	2.8	2.4 1.7	4.3 1.6	4.4 1.8
<u> </u>	x	80.5	5.2	3.7	3.9	1.8	2.4	1.5
	S.D.	2.4	0.7	0.3	1.1	0.5	1.7	1.6
9	7	86.3	6.1	4.3	1.8	0.3	0.4	0.8
	8 9	85.0 87.8	5.6 5.3	5.2 3.5	3.1 2.1	0.4 0.3	0.4 0.4	0.3 0.6
		86.4	5.7	4.3	2.3	0.3	0.4	0.6
	S.D.	1.4	0.4	0.9	0.7	0.1	0.0	0.3
10	10	74.9	15.7	7.6	0.9	0.2	0.2	0.5
	11	76.5	15.0	7.0	0.6	0.2	0.3	0.4
	12	3.9			0.5		0.2	
	x	75.1	16.3	7.1	0.7	0.2	0.2	0.4
	S.D.	1.3	1.7	0.5	0.2	0.1	0.1	0.1
11	13	6 9.7	11.0	14.1	3.9	0.6	0.4	0.3
	14	69.1 75 4	14.1	9.9	4.9	0.7	0.6	0.7
			7.5	0.0	0.1	0.0	U.2	0.2
	x	71.4	11.5	10.7	5.0	0.6	0.4	0.4
	S.D.	3.5	2.3	3.1	1.1	0.1	0.2	0.3

100 C

4) k

1116

92.8

APPENDIX III TABLE 3 SEDIMENT METALS ANALYSIS FOR JULY 9-10, 1985

.

MBER	SAMPLE NUMBER	Al (mg/kg)	As (mg/kg)	Ba (mg/Kg)	Be (mg∕kg)	Cal (mg∕kg)	cd (mg∕kg)	co (mg/kg)	Cr (mg∕kg)	Cu (mg/kg)	Fe (mg/kg)	Mg (mg/kg)	Mn (mg/kg)
1	-	10100	72	467	<2	19700	14.1	16.9	60.1	42.2	30400	8520	2760
	2	8720	70	393	ç	18800	10.5	12.8	27.9	37.2	28400	8350	2990
	٣	9160	82	511	ç	16800	20.0	19.5	33.0	41.0	31400	8180	1990
	I×	9330	75	457	\$	18430	14.9	16.4	40.3	40.1	30100	8350	2580
	s.D.	705	9	60	٥	1480	4.8	3.4	17.3	2.6	1530	170	524
2	4	5500	1730	140	ć 2	7260	130	3.0	16.0	121	116000	5720	<0.2
	2	6480	1520	178	ć2	7440	123	7.2	17.7	112	102000	5660	<0.2
	9	5170	1900	126	¢	7300	124	7.8	16.3	126	125000	5880	<0.2
	×	5720	1720	148	\$	7330	126	6.0	16.7	120	114000	5750	<0.2
	s.D.	681	190	27	0	95	3.8	2.6	0.9	1.1	11600	114	0
m	L	10900	8>	199	ć2	12200	0.8	0.6	23.2	24.4	26300	8420	604
	8	10800	8 ×	202	ç,	13800	0.6	8.4	23.7	23.2	25400	9070	556
	6	11500	8 ×	215	ç	13600	0.4	7.8	25.4	26.6	26600	8880	594
	I×	11100	8>	205	\$	13200	0.6	8.4	24.1	24.7	26100	8790	585
	s.D.	379	0	6	0	872	0.2	0.6	1.2	1.7	624	334	25

- `

,

(continued)
1985
9-10,
JULY
FOR
ANALYSIS
METALS
SEDIMENT
TABLE 3
III
PENDIX

APPENDIX I	11	BLE 3	SEDIMENT	METALS AN	ALYSIS FOR	JULY 9-1	0, 1985	(continued	(1)				
STATION NUMBER	SAMPLE NUMBER	Al (mg/kg)	As (mg/kg)	Ba (mg/kg)	Be (mg/kg)	Ca (mg/kg)	Cd (mg/kg)	Co (mg/kg)	Cr (mg∕kg)	Сц (mg/kg)	Fe (mg/kg)	Mg (mg/kg)	Mn (mg/kg)
4	10	10200	174	216	<2 </td <td>15400</td> <td>24.8</td> <td>8.2</td> <td>23.4</td> <td>42.6</td> <td>34900</td> <td>0086</td> <td>3130</td>	15400	24.8	8.2	23.4	42.6	34900	0086	3130
	11 12	10800 9930	188 163	228 231	<u>â</u> â	10500 8670	28.3 27.4	9.3 14.4	24.6 25.0	44.5 64.4	36000 31600	6770 5640	3170
	I×	10310	175	225	ç	11500	26.8	10.6	24.3	50.5	34200	7400	3140
	s.D.	445	13	Ø	0	3480	1.8	3.3	0.8	12.1	2290	2150	26
٢	19	6510	242	331	ć.2	7010	84.6	14.7	22.8	136	45000	3990	<.2
	50	6940	267	309	<.2 <	8020	82.7	11.3	21.8	134	48800	4340	ć. 2
	21	4670	197	275	<2	5260	72.3	14.5	18.7	112	38300	2830	۰.2
	I×	6040	235	305	<.2 <.2	6760	6.97	13.5	21.1	127	44000	3720	<.2
	s.D.	1210	35	28	0	1400	6.6	1.9	2.1	13.3	5320	790	0
æ	22	9460	6	194	<.2 ,2	10700	5.2	8.4	26.3	29.6	22900	6110	1670
	23 24	8720 6100	51 22	284 186	\$.2 \$.2	10800 6640	14.7	12.3 9.0	24.6 24.0	33.1 22.6	24600 17300	6910 4710	2630 2340
	×	8100	27	221	<2	9380	9.1	6.9	25.0	28.4	21600	5910	2210
	s.D.	1760	22	54	0	2370	5.0	2.1	1.2	5.3	3820	1110	492

- 80 -

he: it

Heri **s**

-

1-1

€ (E

6.44

18

۱.

\$4t:

\$-ille

(continued)
1985
9–10,
JULY
FOR
ANALYSIS
METALS
SEDIMENT
TABLE 3
H
APPENDIX

UTUDEN NOTUDEN		(27,200)	Ba / mc // // /	(201 Jul)	(24) ym ((24)	(10 (10 (10 (10 (10))	Cr (ma /kr)	(<u>1</u> 27)	6.J	bw bw	(1) (1) (1)
	(frat/form)	(Fy/fur)	(5×/5m)	(6 y / 6m)	(5y/6m)	(5y/5m)	(6y / 5mr)	(5y/ferr)	(fry /fam)	(5x/5m)	(5x/bur)	(5x/5m)
9 25	6280	230	1560	<.2	8430	49.7	15.1	21.8	145.0	39800	4310	, ·
26	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
27	4870	275	346	ć.2	5720	63.6	7.4	19.7	156.0	45800	3620	488
1×	5575	253	953	<0.2	7080	56.7	11.3	20.8	151	42800	3965	<488
s.D.	١	1	I	١	ļ	1	1	1	ł		1	1
10 28	9500	F	365	<.2	10700	9.5	13.5	26.7	47.3	28200	7480	2670
29	8210	53	245	<.2	5770	6.6	6.9	27.1	36.5	24200	4780	2260
30	8540	61	226	ć.2	12500	13.2	9.5	35.6	32.6	24700	8340	2680
I ×	8750	0Ľ	279	<0.2	0996	9.8	11.0	29.8	38.8	25700	6870	2540
s.D.	670	14	75	0	3484	3.3	2.2	5.0	7.6	2180	1860	240
11 31	7330	89	105	<.2	3070	1.3	15.0	26.6	23.9	26700	3100	583
32	7310	86	95	<.2 ,	3150	0.3	16.0	29.4	22.3	30100	3150	509
33	7320	82	74	< 2	2650	0.5	16.4	23.7	22.8	27100	3030	465
×	7320	86	91	.2	2960	0.7	15.5	26.7	23	28000	3090	519
s.D.	10	4	16	0	269	0.5	0.9	2.9	0.8	1860	60	60

- 81 -

,

(continued
1985
9-10,
JULY
FOR
ANALYSIS
METALS
SEDIMENT
m 1-1
TABLI
III
APPENDIX

TATION	SAMPLE	Mo / /b_	Na / //~/	Ni (//	P (ma Ara)	Pb	Si (== 1,=)	Sn (ma Acc)	Sr (== 4=)	Ti ///	Δ	Zn Zn
Viden In	VEGLON	15×/5m)		(fry / fam)	15×15m1	(Fy/Fm)	(5×/5m)	(fry /fum)	(6y/5m)	(Fx/fam)	(fry / fan)	(fry / fair)
-	1	13.2	285	83	1520	204	60	\$	56.2	780	44.4	2190
	7	6.0	180	55	1220	178	60	ć 2	47.4	710	39.4	1730
	m	9.8	180	06	1120	260	60	ç	46.9	582	40.6	3580
	 ×	9.7	215	76	1290	214	60	\$	50.2	691	41	2500
	s.D.	3.6	61	19	208	42	0	0	5.2	100	m`	963
7	4	25.2	125	11	702	7160	70	¢	19.0	270	33.1	7860
	ъ	21.4	130	16	768	6300	80	ć 2	21.6	287	33.8	7640
	9	29.2	115	11	684	8220	60	ć2	18.9	248	33.4	7600
	×	25.3	123	13	718	7230	70	<2	19.8	268	33	7700
	s.D.	1.9	8	£	44	962	10	0	1.5	20	0	140
-	ſ	5.3	285	28	1050	78	60	7	40.2	692	46.0	169
	80	4.6	255	27	1060	19	70	¢2	42.1	740	45.4	144
	6	4.1	265	30	1120	19	60	7	44.0	770	48.2	155
	 ×	4.7	268	28	1080	25	63	<2	42.1	734	47	156
	s.D.	0.6	15	7	38	10	9	. 0	1.9	39	-	13

- 82 -

Ht

her-Br

an Ir

۹#

ħ

ÎR HB

t⊢ p

\$4

١i

APPENDIX III TABLE 3 SEDIMENT METALS ANALYSIS FOR JULY 9-10, 1985 (continued)

-													
Zn (mg∕kg	1600	1730	1670	65	5080	5070	4610	4920	269	390	798	419	536
V (mg∕kg)	39.3	42.7 38.1	40	2	28.2	31.4	22.7	27	4	49.6	39.1	26.9	30
Ti (mg/kg)	520	574 523	539	30	346	385	306	345	39	1200	813	568	860
Sr (mg/kg)	36.0	38.9 33.9	36.3	2.5	29.1	31.0	22.5	27.5	4.5	28.3	28.6	20.1	75.7
sn (mg/kg)	2	9 6	6	4	27	11	ß	14	12	83	ç	ø	Ģ
Si (mg/kg)	60	60 70	63	9	800	810	480	697	188	700	740	740	LCF
₽b (mg∕kg)	929	1090 1010	1010	81	4420	4350	3480	4080	524	258	424	228	E UE
Р (тад∕kg)	972	995 1010	992	19	505	549	388	481	83	672	776	554	533
Ni (mg/kg)	30	32 35	32	ñ	49	51	38	46	٢	25	24	20	5
Na (mg/kg)	220	215 190	208	16	180	170	120	157	32	340	230	170	546
Mo (mg/kg)	7.2	6.6 7.9	7.2	0.7	د.8	د.8	٤.۶	\$0.8	0	<8	<8 د.	د.8	a 0,
SAMPLE NUMBER	10	12	I×	s.D.	19	20	21	 ×	s.D.	22	23	24	,
STATION	4				٢					80			

- 83 -

1985
9-10,
JULY
FOR
ANALYSIS
METALS
SEDIMENT
m
TABLE
III
APPENDIX

85 85 160 180	22 501 9120 770 13 19.1 36 556 6920 665 <13 26.6	I/Par/Vem/ I/Par/Vem/Vem/Vem/Vem/Vem/ I/Par/Vem/Vem/Vem/V
	360 40 95	155 36 55 155 36 55 360 40 99

in (

÷-1

1...#:

1 - **B**

141

8.

#10e

- 84 -

APPENDIX III TABLE 4 SEDIMENT METALS ANALYSIS FOR AUGUST 21 - 22

Man /kg)	830	6 /U 760	060	645	230	7	163	133	114	612	456	424	497
Бел)	~ .		2										
Mg (mg/kg)	8190	8390	8160	246	5760	6040	6110	5970	185	7030	7550	7670	7420
Fe (mg/kg)	28700	31300	29600	1450	73500	78900	72400	74900	3480	31500	23900	23500	26300
Cu (mg∕kg)	40.9	40.4	43.1	4.3	90.8	95.4	94.0	93.4	2.4	25.8	21.4	24.6	23.9
Cr (mg/kg)	19.6	24.0	23.2	3.2	16.2	15.9	17.4	16.5	0.8	20.2	18.6	19.4	19.4
Co (mg/kg)	10.6	17.9	15.7	4.5	14.9	9.2	8.8	11.0	3.4	10.0	1.6	7.1	6.2
cd (mg/kg)	5.8	15.9	12.5	5.8	93.9	95.4	99.5	96.3	2.9	1.0	¢.3	0.9	0.6
Ca (mg∕kg)	17900	17100	17100	800	7440	7340	8260	7680	505	9390	9920	10100	9800
Be (mg/kg)	5 5	2.2	\$	0	ŝ	\$	ĉ	ŝ	0	ĉ	ŝ	ç	ŝ
Ba (mg/kg)	286	468 395	383	92	186	183	201	190	10	226	198	170	198
As (mg/kg)	49	60 61	99	15	1030	1040	963	1010	42	8>	8× 8	<8 8	8,
Al (mg/kg)	6860	7510	7170	326	7340	7640	8440	7810	569	10300	9570	9620	9830
SAMPLE #		ми	×	s.D.	4	ъ	9	 ×	s.D.	٢	8	6	×
STATION					7					m			

(continued)
22
1
21
AUGUST
FOR
ANALYSIS
METALS
SEDIMENT
4
TABLE
III
APPENDIX

ATION	SAMPLE	A	As	Ва	Be	Ca	P C	ů	ų	5	Fe	Mg	ų
	#	(ba∕/bar)	(53/6m)	(mg/kg)	(by/bm)	(mg/kg)	(ba∕/bur)	(bal∕ka)	(mg/k g)	(ba/∕bau)	(mg/kg)	(mg∕kg)	(mg/kg)
4	10	9190	126	177	<u> <2</u>	9190	14.3	8.3	18.9	33.1	30600	6760	3020
	11	10900	143	266	ć 2	10200	19.6	8.9	21.6	46.2	36400	7040	2900
	12	9630	27	225	ć2	11000	6.5	10.1	20.3	26.9	28300	7850	1730
	 ×	10100	66	223	\$2	10100	13.5	9.1	20.3	35.4	31800	7220	2550
	s.D.	692	63	45	0	907	6.6	1.9	1.4	6.6	4170	566	713
7	19	6170	291	376	<2	10200	6.99	16.4	21.8	156.0	49800	500	<.2 <
	20	5620	278	348	ć 2	7340	87.6	13.0	23.1	149.0	51900	3690	<.2
	21	7410	387	521	ć 2	10800	123.0	24.2	24.7	179.0	56200	4500	<.2
	×	6400	319	415	5 2	9450	104	17.9	23.2	161.3	52600	2900	<0.2
	s.D.	917	60	93	0	1850	18.0	5.7	1.5	15.7	3260	2120	0
80	22	7260	119	116	<2	10100	31.0	9.0	18.4	34.6	31600	6760	2 130
	23	7550	78	105	ć2	7100	29.6	8.1	17.7	36.5	22600	5050	2530
	24	7840	110	125	<2	8880	26.6	7.6	20.1	36.2	28600	6150	2400
	 ×	7550	102	115	<2	8690	29.1	8.2	18.7	35.8	27600	5990	2350
	s.b.	290	22	10	0	1510	C C	0 7	1 2	0	4580	RA7	204

•

1

•

8 - B

\$74

6-10

4 · 8

APPENDIX III TABLE 4 SEDIMENT METALS ANALYSIS FOR AUGUST 21 - 22 (continued)

.

,

Mn Mn	627 <.2 <.2	<pre><627 <627 0 2610 2520 2730</pre>	2620 105 505 503 503 503 214
Mg (mg/kg) (20200 3980 5360	9850 8990 6690 3510 5010	5070 1590 3120 3110 3177 107
Fe (mg/kg)	24700 35800 32900	31100 5750 38100 27600 30200	32000 5470 26700 29700 33300 33300 3310
Cu (mg/kg)	85.8 132.0 132.0	117 26.7 47.9 47.8 56.1	50.6 4.8 27.8 30.4 26.4 28.2 2.0
Cr (mg/kg)	23.9 28.6 26.6	26.4 2.4 34.7 23.0 34.1	30.6 6.6 34.2 32.4 30.5 5.0
Co (mg/kg)	18.8 13.2 23.2	18.4 5.0 11.7 9.6 9.0	10.1 1.4 1.4 1.3.2 9.8 9.8 10.8 2.1
cd (mg∕kg)	54.9 48.4 85.0	62.8 19.5 11.2 7.6 8.0	0.8 0.7 0.8 0.9 0.3 0.3
Ca (mg/kg)	33900 7740 10600	17400 14300 7830 4740 6620	6400 1560 1560 3560 3420 3310 320
Be (⊪g∕kg)	<u>6</u> 62	°o °°°	: ço ççç ço
Ba (mg/kg)	797 814 1080	897 159 392 333	338 52 123 129 93 115 115
As (mg/kg)	106 117 173	132 132 67 85 78	C 8 8 6 6 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Al (mg/kg)	7520 5070 8480	7020 1760 11100 6970 8810	8960 2070 7750 8330 7500 7500 426
SAMPLE #	25 26 27	s.D. 28 30	
STATION	6	10	:

-

(continued)	
22	
Т	
21	
AUGUST	
FOR	
ANALYSIS	
METALS	
SEDIMENT	
4	
TABLE	
111	
XI	
APPEND	

NOIL	SAMPLE #	Mo (mq/kg)	Na (mg/kg)	Ni (ma/kq)	P (mg/kg)	Pb (mg/kg)	Si (mg/kg)	Sn (ma/ka)	Sr (ma/ka)	Ti (ma Aca)		Zn (ma Aca)
									1 Eur /Eur	1 Evy /Emmi	I for /for)	(Ev /Em)
	- - -	<0.8	130	42	1160	68	460	ć 2	45.3	520	35.5	1180
	7	<0.8	140	69	1190	224	690	ć 2	47.5	506	34.1	2990
	m	<0.8	120	67	1050	154	0//	ć	48.8	500	33.8	2800
		8 0,	051	03	1120	140	640					
	د د ب		011	20 7 F	0011	149 70	161	ĥ,	41.2	60c	54.5 0	2320
	o.P.		2	1	14	8/	TOT	5	1.8	10	6.0	995
	4	<0.8	100	29	871	4090	800	<u>(</u> 2	24.1	234	32.9	5940
	5	<0.8	110	25	861	4320	520	<u></u>	24.0	247	34.4	5920
	9	<0.8	120	. 34	888	3710	660	(2	27.4	245	34.4	6430
	١×	<0.8	110	29	873	4040	660	\$	75.7	247	0 22	6100
	s.b.	0.0	10	'n	14	308	140	į	0		0.0	280
					1			•	-	-		607
	L	<0.8	210	31	1080	37	500	m	35.5	497	43.4	201
	8	<0.8	180	27	1110	14	460	\$	36.6	511	40.6	137
	6	<0.8	160	29	1090	20	230	ć 2	34.6	471	39.5	168
	>	8 07	183	ac	1000	5	105	;				
	s.D.	0.0	25	5 7	15	5 2	146	ç, ~	0.cc	20	41.2	69T

- 88 -

in i∎

lite

1

t- ti

8

t in

APPENDIX III TABLE 4 SEDIMENT METALS ANALYSIS FOR AUGUST 21 - 22

Zn (mg/kg)	1060	1480 633	1060	424	6010	5500	0608	6530	1370	1940	1820	1730	1020	105
V (mg/kg)	38.1	42./ 43.1	41.3	2.8	28.9	27.0	30.9	28.9	2.0	35.1	33.4	36.0	0 76	1.3 1.3
Ti (mg/kg)	396	533 533	442	79	338	278	284	300	33	753	636	660	603	62 62
Sr (mg/kg)	34.0	36.8	37.0	3.1	38.6	33.4	52.0	41.3	9.6	23.7	21.7	25.9	0 6 6	2.1
Sn (mg/kg)	ç (33	3	0	п	32	ſ	17	13	9	¢	11	•	n 40
Si (mg/kg)	350	460	447	16	890	800	1140	943	176	750	740	660	- F F	49
Pb dg∕kg)	538	2C/ 86	463	334	4810	4660	5720	5060	574	804	1010	816	L L 0	116
р Р С	1000	1130	1063	65	490	484	550	508	36	719	704	748		22
Ni (mg/kg)	30	9 0 9	32	m	56	48	79	61	16	20	18	25	5	47
Na (mg/kg)	160	170	173	15	140	120	180	147	31	180	180	190	691	9
Mo Mo	\$0.8 \$	8.0×	<0.8	0.0	<0.8	<0.8	<0.8	<0.8	0.0	<0.8	<0.8	<0.8	, c	0.0
SAMPLE #	10	11	×	s.D.	19	20	21	i×	s.D.	22	23	24	,	s.D.
STATION	4				7					8				

v zn (/kg) (mg/kg)	3110 3110	0.4 2750	16.2 4280	3.1 3380	2.9 800	18.0 764	0.7 522	14.0 639	7.6 642	6.7 121	9.2 105	17.1 151	14.8 93	7.0 116
Ti (mg/kg) (mç	538 3	556 3	534 3	543 3	12	552	360	621 4	511	135	509	573 3	721	601
Sr (mg/kg)	37.6	28.7	37.8	34.7	5.2	33.2	25.6	29.9	29.6	3.8	24.9	29	27.4	27.1
Sn (mg∕kg)	ø	34	16	61	13	25	27	25	26	1	6	16	9	10
si (mg∕kg)	006	600	750	750	150	1000	810	820	877	107	890	906	006	897
Pb dg∕kg)	2290	5270	3610	3720	1490	282	198	246	242	42	41	73	43	52
P (mg/kg)	683	507	717	636	113	1050	971	927	983	62	494	585	613	564
Ni (mg/kg)	61	58	82	67	13	53	41	43	46	9	30	30	26	29
Na (mg/kg)	210	150	190	183	31	230	210	230	223	12	220	180	180	193
Mo (mg/kg)	<0.8	<0.8	<0.8	<0.8	0.0	<0.8	<0.8	<0.8	<0.8	0.0	<0.8	<0.8	<0.8	<0.8
SAMPLE #	25	26	27	×	s.D.	28	29	30	×	s.D.	31	32	33	I ×
STATION	6					10					11			

APPENDIX III TABLE 4 SEDIMENT METALS ANALYSIS FOR AUGUST 21 - 22

- 90 -

ы

1-**1 b**

48

ł,

18

ł-

144

1-- 1

APPENDIX IV

BOTTOM FAUNA DATA

APPENDIX IV

- 92 -

NUMBER		INVERTEBRATE	-
1	Order:	Acari	
	Class:	Insecta	8 841 -
2	Family:	Aphididae, unid, nymph	-
3	Order:	Coleoptera, unid., larva	
4	Family:	Haliplidae, unid., adult	-
	Order:	Hymenoptera	
5	Family:	Formicidae	ini b
	Order:	Ephemeroptera	
	Family:	Baetidae	-
6		Baetis sp.	
	Family:	Heptageniidae	10-82
7		Rithrogena sp.	
8		Cinygmula sp.	
	Family:	Leptophlebiidae	11 06
	Family:	Ephemerellidae	
9		Ephemerella sp. unid., damaged	a:
10		Ephemerella (drunella)	
11		Ephemerella doddsi	1 01
12		Ephemerella infrequens	
	Family:	Siphlonuridae	¥r:
13		Ameletus sp.	
	Order:	Plecoptera	
	Family:	Pteronarcidae	H IE
14		Pteronarcys dorsate	
15		Pteronarcys californica	L F
16		Pteronarcys regularis	
	Family:	Perlidae	н 🖶
17		Acroneuria sp.	
	Family:	Perlodidae	
18		<u>Cultus</u> sp.	
19		Arcynopteryx (compacta)	
20		Isoperla sp.	⊳ր

•

1988

1-18

-

TABLE 1 TAXANOMIC LIST OF BOTTOM FAUNA

- 93 -

APPENDIX IV TABLE 1 TAXANOMIC LIST OF BOTTOM FAUNA

INVERTEBRATE

21	Family:	Chloroperlidae
		Alloperla sp.
22		<u>Utaperla</u> sp.
23	Family:	Capniidae, unid.
	Family:	Nemouridae
24		Zapada (oregonensis)
25		Podmosta sp.
26		Malenka sp.
	Order:	Trichoptera
27		Trichoptera pupa, unid.
	Family:	Hydropsychidae
28		Arctopsyche sp.
	Family:	Hydroptilidae
29		Oxyethira sp.
30		Hydroptila sp.
	Family:	Brachycentridae
31		Brachycentrus sp.
	Family:	Limnephilidae
32		(Clostoeca) sp.
33		Onocosmoecus sp.
34		Rhyaccophila (acropedes)
35		Rhyaccophila vaccua
	Order:	Diptera
	Family:	Simulidae
36	Family:	Simulidae, adult, dam.
37		Simulium sp. pupae
38		Simulium sp. larvae
39	Family:	Chironomidae, adult
40		Chironomidae pupae
	Subfamily:	Orthocladiinae

- 94 -

INVERTEBRATE

APPENDIX IV

NUMBER

TABLE 1

TAXANOMIC LIST OF BOTTOM FAUNA

41		<u>Cricotopus</u> sp.
42		Heterotrissocladius sp.
43		Cardiocladius sp.
44		Eukiefferiella sp.
45		Diplocladius sp.
46		Brillia sp.
	Subfamily:	Chironominae
47		Micropsectra sp.
48		Rheotanytarsus sp.
49		Stenochironomus sp.
	Subfamily:	Diamesinae
50		Diamesa sp.
51		Procladius sp.
	Family:	Tipulidae
52		Tipulidae pupae
53		Tipula sp.
	Family:	Psychodidae
54		Psychoda sp.
	Family:	Empididae
55		<u>Chelifera</u> sp.
56	Phylum:	Nematoda
	Phylum:	Annelida
	Class:	Oligochaeta
57	Family:	Enchytraeidae
58	Family:	Tubificidae, unid., uv.
59		Tubifex sp.
	Order:	Lumbriculida
	Family:	Lumbriculidae
60		Kincaidiana hexatheca

ŕ

###1

in D

-

whether

in-

-

le#

-

ŧ.

18

1

4

劇機

1ei D

APPENDIX IV TABLE 1 TAXANOMIC LIST OF BOTTOM FAUNA

- 95 -

INVERTEBRATE

NUMBER	
	Phylum

	Phylum:	Mollusca
	Order:	Gastropoda
	Family:	Lymnaeidae
61		<u>Stagnicola (kennicotti)</u>
	Family:	Valvatidae
62		Valvata <u>sincera</u>
	Family:	Coelenterata
63		Hydra sp.
	Phylum:	Copepoda
	Suborder:	Calanoida
64		<u>Diaptomus</u> sp.
65	Suborder:	Cyclopoida
	Order:	Amphipoda
	Suborder:	Haustoridae
66		Pontoporela sp.
67	Order:	Arachnida

- ⁻

~

•

				1								1	1
				s of		\$ of		₿ of		s of		\$ of	
NUMBER	~	INVERTEBRATE	STA.1	Total	STA.2	Total	STA.3	Total	STA.4	Total	STA.7	Total	
-	Order:	Acari	m	0.5		0.0		0.1		0.5		0.0	
2	Family:	Aphididae, unid, nymph		0.0		0.0		0.0		0.0	2	2.1	
٣	Order:	Coleoptera, unid., larva		0.0		0.0		0.0	4	1.9		0.0	
4	Family:	Haliplidae, unid., adult		0.0		0.0		0.0		0.0		0.0	
ŝ	Family:	Formicidae		0.0		1.1		0.0		0.0		0.0	
9		Baetis sp.	7	0.3		0.0	6	1.3	٢	3.4		0.0	
7		Rithrogena sp.		0.0		0.0	11	1.6	٦	0.5		0.0	
8		Cinygmula sp.		0.0		0.0	4	0.6	-1	0.5		0.0	
6		Ephemerella sp. unid., dam.		0.0		0.0		0.0		0.0		0.0	
10		Ephemerella (Drunella)		0.0		0.0		0.0	-1	0.5	1	1.1	
11		Ephemerella doddsi		0.0		0.0		0.0		0.0		0.0	
12		Ephemerella infrequens		0.0		0.0	80	1.2	11	5.3		0.0	
13		Ameletus sp.	m	0.5		0.0		0.0		0.0		0.0	
14		Pteronarcys dorsata		0.0		0.0		0.0	-	0.5		0.0	
15		Pteronarcys californica		0.0		0.0	S	0.7	ß	2.4		0.0	
16		Pteronarcys regularis		0.0		0.0		0.0	1	0.5		0.0	
17		Acroneuria sp.		0.0		0.0	26	3.8	32	15.5		0.0	
18		Cultus sp.		0.0		0.0	Ч	0.1		0.0		0.0	
19		Arcynopteryx (compacta)	4	0.6	m	3.3		0.0	4	1.9		0.0	
20		Isoperla sp.		0.0		0.0		0.0		0.0		0.0	
21	Family:	Alloperia sp.		0.0		0.0		0.0	16	7.8		0.0	
22		Utaperla sp.	Ч	0.2		0.0	m	0.4	13	6.3		0.0	
23	Family:	Capniidae, unid.	ŝ	0.8	2	7.8		0.0	-1	0.5	-	7.4	
24		Zapada (oregonensis)	49	7.5	m	3.3	20	2.9	53	11.2		0.0	
25		Podmosta sp.	7	1.1		0.0	-	0.1		0.0	32	33.7	
26		Malenka sp.		0.0		0.0	æ	1.2	38	18.4		0.0	
27		Trichoptera pupa, unid.	7	0.2		0.0		0.0		0.0		0.0	
26		Arctopsyche sp.	-	0.2		0.0	44	6.4	. 22	10.7	11	11.6	
29		Oxvethira sp.	-	0.2		0.0		0.0		0.0		0.0	
30		Hydroptila sp.		0.0		0.0		0.0		0.0		0.0	
15		Brachycentrus sp.	•	0.0		0.0		0.1		0.0		0.0	
32		(Clostoeca) sp.	4	0.6	7	2.2		0.0		0.0		0.0	
33		Onocosmoecus sp.		0.0		0.0		0.0		0.0		0.0	
34		Rhyaccophila (acropedes)	-	0.2		0.0	4	0.6	9	2.9		0.0	
35		Rhyaccophila vaccua	Ч	0.2		0.0		0.0		0.0		0.0	
36	Family:	Simulidae, adult, dam.		0.0		0.0		0.0		0.0		0.0	
37		Simulium sp. pupae	93	14.2	Ч	1.1	347	50.8	2	1.0	4	4.2	
38		Simulium sp. larvae	144	22.0	10	11.1	169	24.7	6	4.4	6	9.5	
39	Family:	Chironomidae, adult		0.0		0.0	-	0.1		0.0		0.0	
40		Chironomidae pupae	ñ	4.6	6	10.0		0 0	1	0.5	9	6.3	

i a

APPENDIX IV TABLE 2 INVERTEBRATE DISTRIBUTION

- 96 -

APPENDIX IV TABLE 2 INVERTEBRATE DISTRIBUTION

\$ of	Total	0.0	0.0	0.0	0.0	0.0	1.6	0.4	0.0	0.4	2.0	0.6	0.0	0.0	0.0	0.0	1.8	3.6	0.0	0.4	1.2	0.0	0.0	0.0	6.8	0.0	0.6	0.0	2.6	0.0	0.2	0.2	0.0	0.0	0.0	0.0	0.0	2.6	62.4	0.0	0.4
	STA.11						8	7		7	10	m					6	18		2	9	34			34		45		13		-							13	312		7
% of	Total	0.4	0.0	0.0	0.0	0.0	4.2	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.8	0.0	4.2	0.0	0.0	0.0	0.0	0.4	0.0	3.0	0.0	0.8	0.8	0.0	0.0	0.0	0.0	0.4	0.0	0.8	0.0	0.8
	STA.10						10				H							٦		7		10					-1		7		2	7					-1		2		7
\$ of	Total	0.0	0.0	0.0	0.1	0.0	0.3	0.1	0.0	0.0	0.2	0.0	0.8	0.0	0.7	0.0	0.8	0.8	0.0	0.3	0.0	0.1	0.0	0.0	0.1	0.1	0.3	0.0	2.4	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	1.0	90.3	0.1	0.2
	STA.9				-		4	Ч			ę		12		10		12	12		7		1			Ч	7	4		36				-		1			15	1347	1	£
% of	Total	0.0	0.0	0.0	0.0	0.0	5.7	3.6	0.0	0.0	2.9	0.0	3.6	0.0	3.6	0.0	2.9	15.0	0.0	1.4	0.0	0.0	0.0	0.0	0.0	0.0	2.9	0.0	21.4	0.0	0.0	0.0	0.0	0.7	0.7	0.0	0.0	0.7	30.0	0.0	0.7
	STA.8						œ	S			4		ŝ		ŝ		4	21		7							4		30						Ч			1	42		H
	INVERTEBRATE	Acari	Aphididae, unid, nymph	Coleoptera, unid., larva	Haliplidae, unid., adult	Formicidae	Baetis sp.	Rithrogena sp.	Cinygmula sp.	Ephemerella sp. unid., dam.	Ephemerella (Drunella)	Ephemerella doddsi	Ephemerella infrequens	Ameletus sp.	Pteronarcys dorsata	Pteronarcys californica	Pteronarcys regularis	Acroneuria sp.	Cultus sp.	Arcynopteryx (compacta)	Isoperia sp.	Alloperia sp.	Utaperla sp.	Capniidae, unid.	Zapada (oregonensis)	Podmosta sp.	Malenka sp.	Trichoptera pupa, unid.	Arctopsyche sp.	Oxyethira sp.	Hydroptila sp.	Brachycentrus sp.	(Clostoeca) sp.	Onocosmoecus sp.	Rhyaccophila (acropedes)	Rhyaccophila vaccua	Simulidae, adult, dam.	Simulium sp. pupae	Simulium sp. larvae	Chironomidae, adult	Chironomidae pupae
		Order:	Famíly:	Order:	Family:	Family:																															Family:	•		Family:	
	NUMBER		7	m	4	Ś	9	7	ø	6	10	11	12	13	14	15	16	17	18	61	20	71	77	53	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40

٠

* Station 10 samples collected with Surber Sampler.

HEER INVERTEBRATE Cricotopus sp. Cricotopus sp. Brillia sp. Euklefferiella sp. Brillia sp. Brillia sp. Brillia sp. Stenochironomus sp. Brillia sp. Procladius sp. Brillia sp. Brillia sp. Brillia sp. Brillia sp. Brillia sp. Brillia sp. Brillia sp. Brillia sp. Brochironomus sp. Stenochironomus sp. Brouladius sp. Procladius sp.	E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Total	STA.2	Total	STA.3	Total	STA.4	Total	STA.7	Total																																																																																																																																																																																																																																																																																														
Cricotopus sp. Heterotrissocladiu Bukiefferiella sp. Eukiefferiella sp. Brillia sp. Brindlae pupae Brylum: Providius sp. Phylum: Chelifera sp.	P																																																																																																																																																																																																																																																																																																							
Eukiefferiella sp. Eukiefferiella sp. Eukiefferiella sp. Eukiefferiella sp. Brillia sp. Brillia sp. Micropsectra sp. Rheotanytarsus sp. Procladius sp. <tr t<="" td=""><td>P</td><td>14.4</td><td>19</td><td>21.1</td><td>-</td><td>0.1</td><td>1</td><td>0.5</td><td>13</td><td>13.7</td></tr> <tr><td><pre>Cardiocladius sp. Eukiefferiella sp Diplocladius sp. Brillia sp. Brillia sp. Brinlia sp. Rheotarytarsus sp. Procladius sp. Procladius sp. Tipulidae pupae Sychoda sp. Chelifera sp. Phylum: Phylum: Phylum:</pre></td><td>بې ، ۲. ا ت سقت ه د</td><td>0.0</td><td>10</td><td>11.1</td><td></td><td>0.0</td><td>ч</td><td>0.5</td><td>ц</td><td>5.3</td></tr> <tr><td>Eukiefferiella sp Brillia sp. Brootanytarsus sp. Brootan sp.</td><td>•••••</td><td>0.3</td><td>2</td><td>2.2</td><td>Ч</td><td>0.1</td><td>2</td><td>1.0</td><td></td><td>0.0</td></tr> <tr><td><pre>biplocladius sp. Brillia sp. Brillia sp. Brillia sp. Micropsectra sp. Stenochironomus sp. Frocladius sp. Tipulia sp. Prylum: Psychoda sp. Chelifera sp. Phylum: Nematoda</pre></td><td>. ę.</td><td>6.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>Brillia sp. Brillia sp. Micropsectra sp. Rheotanytarsus sp. Stenochironomus s Stenochironomus sp. Procladius sp. Tipula sp. Phylum: Nematoda sp. Chelifera sp.</td><td>۳ <u>۲</u></td><td>9.3</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>Micropsectra sp. Rheotanytarsus sp. Rheotanytarsus sp. Stenochironomus si Diamesa sp. Procladius sp. Tipulidae pupae Sychoda sp. Chelifera sp.</td><td>ч. - -</td><td>0.5</td><td>15</td><td>16.7</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td><pre>8 Rheotanytarsus sp 9 Stenochironomus sp 9 Diamess sp. 9 Procladius sp. 7 ipulidae pupae 8 Phylum: Chelifera sp. 9 Phylum: Nematoda</pre></td><td>Р.</td><td>0.0</td><td></td><td>0.0</td><td>1</td><td>0.1</td><td>1</td><td>0.5</td><td></td><td>0.0</td></tr> <tr><td><pre>Bit Stenochironomus spontance s</pre></td><td>P. 13</td><td>0.0</td><td></td><td>0.0</td><td>-</td><td>0.1</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>Diamesa sp. Procladius sp. Tipula sp. Psychoda sp. Chelifera sp.</td><td>17</td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>Procladius sp. Tipulidae pupae <u>Tipula</u> sp. <u>Psychoda</u> sp. <u>Chelifera</u> sp.</td><td>11</td><td>1.8</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>Tipulidae pupae Tipula sp. Psychoda sp. Chelifera sp.</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td>-1</td><td>0.0</td></tr> <tr><td>Tipula sp. Psychoda sp. Chelifera sp. Phylum: Nematoda</td><td>1</td><td>0.2</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>Phylum: Pertoda sp. Chelifera sp. Phylum: Nematoda</td><td>L</td><td>1.1</td><td>г</td><td>1.1</td><td></td><td>0.0</td><td></td><td>0.0</td><td>7</td><td>2.1</td></tr> <tr><td>5 Chelifera sp. 5 Phylum: Nematoda</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>5 Phylum: Nematoda</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td></td><td>4</td><td>0.6</td><td>1</td><td>1.1</td><td>m</td><td>0.4</td><td>F</td><td>0.5</td><td></td><td>0.0</td></tr> <tr><td>/ ramity: Encrytraeldae</td><td>75</td><td>11.5</td><td>-</td><td>1.1</td><td>2</td><td>0.3</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>8 Family: Tubificidae, unid</td><td>., uv.</td><td>0.0</td><td>1</td><td>1.1</td><td>ŝ</td><td>0.7</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>9 Tubifex sp.</td><td></td><td>0.0</td><td>m</td><td>3.3</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>Nincaidiana hexat</td><td>heca 2</td><td>0.3</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>L Stagnicola (kenni</td><td>cotti)</td><td>0.0</td><td></td><td>0.0</td><td>9</td><td>0.9</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>2 Valvata sincera</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>B Hydra sp</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>1 Diaptomus sp.</td><td>£</td><td>0.5</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>5 Suborder: Cyclopoida</td><td>-</td><td>0.2</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td>Ч</td><td>1.1</td></tr> <tr><td>5 Pontoporeia sp.</td><td>ч</td><td>0.2</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td><td></td><td>0.0</td></tr> <tr><td>7 Order: Arachnida</td><td></td><td>0.0</td><td>H</td><td>1.1</td><td></td><td>0.0</td><td></td><td>0.0</td><td>Ч</td><td>1.11</td></tr>	P	14.4	19	21.1	-	0.1	1	0.5	13	13.7	<pre>Cardiocladius sp. Eukiefferiella sp Diplocladius sp. Brillia sp. Brillia sp. Brinlia sp. Rheotarytarsus sp. Procladius sp. Procladius sp. Tipulidae pupae Sychoda sp. Chelifera sp. Phylum: Phylum: Phylum:</pre>	بې ، ۲. ا ت سقت ه د	0.0	10	11.1		0.0	ч	0.5	ц	5.3	Eukiefferiella sp Brillia sp. Brootanytarsus sp. Brootan sp.	•••••	0.3	2	2.2	Ч	0.1	2	1.0		0.0	<pre>biplocladius sp. Brillia sp. Brillia sp. Brillia sp. Micropsectra sp. Stenochironomus sp. Frocladius sp. Tipulia sp. Prylum: Psychoda sp. Chelifera sp. Phylum: Nematoda</pre>	. ę.	6.0		0.0		0.0		0.0		0.0	Brillia sp. Brillia sp. Micropsectra sp. Rheotanytarsus sp. Stenochironomus s Stenochironomus sp. Procladius sp. Tipula sp. Phylum: Nematoda sp. Chelifera sp.	۳ <u>۲</u>	9.3		0.0		0.0		0.0		0.0	Micropsectra sp. Rheotanytarsus sp. Rheotanytarsus sp. Stenochironomus si Diamesa sp. Procladius sp. Tipulidae pupae Sychoda sp. Chelifera sp.	ч. - -	0.5	15	16.7		0.0		0.0		0.0	<pre>8 Rheotanytarsus sp 9 Stenochironomus sp 9 Diamess sp. 9 Procladius sp. 7 ipulidae pupae 8 Phylum: Chelifera sp. 9 Phylum: Nematoda</pre>	Р.	0.0		0.0	1	0.1	1	0.5		0.0	<pre>Bit Stenochironomus spontance s</pre>	P. 13	0.0		0.0	-	0.1		0.0		0.0	Diamesa sp. Procladius sp. Tipula sp. Psychoda sp. Chelifera sp.	17	0.0		0.0		0.0		0.0		0.0	Procladius sp. Tipulidae pupae <u>Tipula</u> sp. <u>Psychoda</u> sp. <u>Chelifera</u> sp.	11	1.8		0.0		0.0		0.0		0.0	Tipulidae pupae Tipula sp. Psychoda sp. Chelifera sp.		0.0		0.0		0.0		0.0	-1	0.0	Tipula sp. Psychoda sp. Chelifera sp. Phylum: Nematoda	1	0.2		0.0		0.0		0.0		0.0	Phylum: Pertoda sp. Chelifera sp. Phylum: Nematoda	L	1.1	г	1.1		0.0		0.0	7	2.1	5 Chelifera sp. 5 Phylum: Nematoda		0.0		0.0		0.0		0.0		0.0	5 Phylum: Nematoda		0.0		0.0		0.0		0.0		0.0		4	0.6	1	1.1	m	0.4	F	0.5		0.0	/ ramity: Encrytraeldae	75	11.5	-	1.1	2	0.3		0.0		0.0	8 Family: Tubificidae, unid	., uv.	0.0	1	1.1	ŝ	0.7		0.0		0.0	9 Tubifex sp.		0.0	m	3.3		0.0		0.0		0.0	Nincaidiana hexat	heca 2	0.3		0.0		0.0		0.0		0.0	L Stagnicola (kenni	cotti)	0.0		0.0	9	0.9		0.0		0.0	2 Valvata sincera		0.0		0.0		0.0		0.0		0.0	B Hydra sp		0.0		0.0		0.0		0.0		0.0	1 Diaptomus sp.	£	0.5		0.0		0.0		0.0		0.0	5 Suborder: Cyclopoida	-	0.2		0.0		0.0		0.0	Ч	1.1	5 Pontoporeia sp.	ч	0.2		0.0		0.0		0.0		0.0	7 Order: Arachnida		0.0	H	1.1		0.0		0.0	Ч	1.11
P	14.4	19	21.1	-	0.1	1	0.5	13	13.7																																																																																																																																																																																																																																																																																															
<pre>Cardiocladius sp. Eukiefferiella sp Diplocladius sp. Brillia sp. Brillia sp. Brinlia sp. Rheotarytarsus sp. Procladius sp. Procladius sp. Tipulidae pupae Sychoda sp. Chelifera sp. Phylum: Phylum: Phylum:</pre>	بې ، ۲. ا ت سقت ه د	0.0	10	11.1		0.0	ч	0.5	ц	5.3																																																																																																																																																																																																																																																																																														
Eukiefferiella sp Brillia sp. Brootanytarsus sp. Brootan sp.	•••••	0.3	2	2.2	Ч	0.1	2	1.0		0.0																																																																																																																																																																																																																																																																																														
<pre>biplocladius sp. Brillia sp. Brillia sp. Brillia sp. Micropsectra sp. Stenochironomus sp. Frocladius sp. Tipulia sp. Prylum: Psychoda sp. Chelifera sp. Phylum: Nematoda</pre>	. ę.	6.0		0.0		0.0		0.0		0.0																																																																																																																																																																																																																																																																																														
Brillia sp. Brillia sp. Micropsectra sp. Rheotanytarsus sp. Stenochironomus s Stenochironomus sp. Procladius sp. Tipula sp. Phylum: Nematoda sp. Chelifera sp.	۳ <u>۲</u>	9.3		0.0		0.0		0.0		0.0																																																																																																																																																																																																																																																																																														
Micropsectra sp. Rheotanytarsus sp. Rheotanytarsus sp. Stenochironomus si Diamesa sp. Procladius sp. Tipulidae pupae Sychoda sp. Chelifera sp.	ч. - -	0.5	15	16.7		0.0		0.0		0.0																																																																																																																																																																																																																																																																																														
<pre>8 Rheotanytarsus sp 9 Stenochironomus sp 9 Diamess sp. 9 Procladius sp. 7 ipulidae pupae 8 Phylum: Chelifera sp. 9 Phylum: Nematoda</pre>	Р.	0.0		0.0	1	0.1	1	0.5		0.0																																																																																																																																																																																																																																																																																														
<pre>Bit Stenochironomus spontance s</pre>	P. 13	0.0		0.0	-	0.1		0.0		0.0																																																																																																																																																																																																																																																																																														
Diamesa sp. Procladius sp. Tipula sp. Psychoda sp. Chelifera sp.	17	0.0		0.0		0.0		0.0		0.0																																																																																																																																																																																																																																																																																														
Procladius sp. Tipulidae pupae <u>Tipula</u> sp. <u>Psychoda</u> sp. <u>Chelifera</u> sp.	11	1.8		0.0		0.0		0.0		0.0																																																																																																																																																																																																																																																																																														
Tipulidae pupae Tipula sp. Psychoda sp. Chelifera sp.		0.0		0.0		0.0		0.0	-1	0.0																																																																																																																																																																																																																																																																																														
Tipula sp. Psychoda sp. Chelifera sp. Phylum: Nematoda	1	0.2		0.0		0.0		0.0		0.0																																																																																																																																																																																																																																																																																														
Phylum: Pertoda sp. Chelifera sp. Phylum: Nematoda	L	1.1	г	1.1		0.0		0.0	7	2.1																																																																																																																																																																																																																																																																																														
5 Chelifera sp. 5 Phylum: Nematoda		0.0		0.0		0.0		0.0		0.0																																																																																																																																																																																																																																																																																														
5 Phylum: Nematoda		0.0		0.0		0.0		0.0		0.0																																																																																																																																																																																																																																																																																														
	4	0.6	1	1.1	m	0.4	F	0.5		0.0																																																																																																																																																																																																																																																																																														
/ ramity: Encrytraeldae	75	11.5	-	1.1	2	0.3		0.0		0.0																																																																																																																																																																																																																																																																																														
8 Family: Tubificidae, unid	., uv.	0.0	1	1.1	ŝ	0.7		0.0		0.0																																																																																																																																																																																																																																																																																														
9 Tubifex sp.		0.0	m	3.3		0.0		0.0		0.0																																																																																																																																																																																																																																																																																														
Nincaidiana hexat	heca 2	0.3		0.0		0.0		0.0		0.0																																																																																																																																																																																																																																																																																														
L Stagnicola (kenni	cotti)	0.0		0.0	9	0.9		0.0		0.0																																																																																																																																																																																																																																																																																														
2 Valvata sincera		0.0		0.0		0.0		0.0		0.0																																																																																																																																																																																																																																																																																														
B Hydra sp		0.0		0.0		0.0		0.0		0.0																																																																																																																																																																																																																																																																																														
1 Diaptomus sp.	£	0.5		0.0		0.0		0.0		0.0																																																																																																																																																																																																																																																																																														
5 Suborder: Cyclopoida	-	0.2		0.0		0.0		0.0	Ч	1.1																																																																																																																																																																																																																																																																																														
5 Pontoporeia sp.	ч	0.2		0.0		0.0		0.0		0.0																																																																																																																																																																																																																																																																																														
7 Order: Arachnida		0.0	H	1.1		0.0		0.0	Ч	1.11																																																																																																																																																																																																																																																																																														

٦

APPENDIX IV TABLE 2 INVERTEBRATE DISTRIBUTION

- 98 -

-

APPENDIX IV TABLE 2 INVERTEBRATE DISTRIBUTION

ø

1

			¥ 01		\$ or		\$ 0I		* ot	
NUMBER	INVERTEBRATE	STA.8	Total	STA.9	Total	STA.10	Total	STA.11	Total	
41	Cricotopus sp.	1	0.7	9	0.4	6	3.8	2	0.4	
42	Heterotrissocladius sp.		0.0	80	0.5		0.0	7	0.4	
43	Cardiocladius sp.		0.0	4	0.3		0.0	-1	0.2	
44	Eukiefferiella sp.		0.0		0.0		0.0		0.0	
45	Diplocladius sp.		0.0		0.0		0.0		0.0	
46	Brillia sp.		0.0		0.0		0.0		0.0	
47	Micropsectra sp.	1	0.7		0.0	2	0.8		0.2	
48	Rheotanytarsus sp.		0.0		0.0		0.0		0.0	
49	Stenochironomus sp.		0.0		0.0	-1	0.4		0.0	
50	Diamesa sp.		0.0		0.0		0.0		0.0	
51	Procladius sp.		0.0		0.0		0.0		0.0	
52	Tipulidae pupae		0.0		0.0	-1	0.4		0.0	
53	Tipula sp.		0.0		0.0	7	0.8		0.0	
54	Psychoda sp.		0.0	H	0.1	-1	0.4	m	0.6	
55	Chelifera sp.		0.0		0.0	9	2.5		0.0	
56 Phyl	lum: Nematoda		0.0	2	0.1	ŝ	2.1	4	0.8	
57 Fami	ily: Enchytraeidae	-	0.7		0.0	165	9.69	4	0.8	
58 Fami	ily: Tubificidae, unid., uv.		0.0		0.0		0.0		0.0	
59	Tubifex sp.		0.0		0.0		0.0		0.0	
60	Kincaidiana hexatheca		0.0		0.0		0.0		0.0	
61	Stagnicola (kennicotti)	2	1.4		0.0		0.0		0.0	
62	Valvata sincera	н	0.7		0.0		0.0		0.0	
63	Hydra sp		0.0		0.0		0.0	1	0.2	
64	Diaptomus sp.		0.0		0.0		0.0		0.0	
65 Subor	rder: Cyclopoida		0.0		0.0		0.0		0.0	
66	Pontoporeia sp.		0.0		0.0		0.0		0.0	
67 OI	rder: Arachnida		0.0		0.0	1	0.4		0.0	
TOTAL NU	MBER PER STATION	140		1492	'	237		500		

-

*Station 10 samples collected with Surber Sampler.

;