EL1050005F

REF FPS PR95-08

ENVIRONMENT CANADA ENVIRONMENTAL PROTECTION BRANCH PACIFIC & YUKON REGION WHITEHORSE, YUKON

ENVIRONMENTAL QUALITY OF RECEIVING WATERS AT UNITED KENO HILL MINES LTD. ELSA, YUKON 1990

REGIONAL PROGRAM REPORT NO.95-08

Prepared by

Environmental Protection Yukon Division

November, 1995

ENVIRONMENT CANADA LIBRARY

REF	Environmental
EPS	quality of receiving
PR	waters at United
95-08	Keno Hill Mines Ltd,
c.1	Elsa, Yukon

.

•

· · ·

REF	Environmental
EPS	quality of receiving
PR	waters at United
95-08	Keno Hill Mines Ltd,
c.1	Elsa, Yukon

ABSTRACT

During the summer of 1990, a receiving environment monitoring study was undertaken by Environmental Protection in the streams potentially influenced by the tailings and adit drainages of United Keno Hill Mines in the Elsa/Keno area of the Yukon.

Based on the data collected from the water quality, sediments, and benthic surveys, it is apparent that Christal Creek influences the quality of the South McQuesten River. There is an increase in the metals in the water and in the sediments, downstream of the confluence of Christal Creek. Levels of most metals in water from the South McQuesten River stations remained within the recommended guidelines for the protection of aquatic life. The benthic community is altered below Christal Creek but recovers several kilometres downstream. The major source of contaminants in Christal Creek is Galkeno 900 adit, as evidenced by the water quality.

Several abandoned adits on Galena Hill seep metal-laden waters to several creeks draining this area. These creeks cross Highway No. 2 near Elsa and empty into swamps located between the highway and the South McQuesten River. The creek channels become undefined in the swamp area and there is no apparent change in water quality in the South McQuesten River where these waters would eventually seep to.

The sediment chemistry displays high levels of metals in Christal Creek and Flat Creek, with a significant increase in 1990 over 1985. Metals levels were highest in the sediments of Flat Creek, which drains the tailings area.

Benthic communities were generally diverse and dominated by Diptera and/or Plecoptera. However, it appears that the elevated levels of metals in sediments at Station 7, Flat Creek, had reduced the overall benthic habitat quality as diversity and abundance were very low at that site.

- i -

RÉSUMÉ

Durant l'été 1990, le Service de Protection de l'Environnement a conduit une étude environnementale de surveillance des eaux réceptrices influencées par les résidus miniers et le drainage des galeries d'accès de la mine United Keno Hill dans la région d'Elsa/Keno, au Yukon.

Basé sur les données recueillis de la qualité de l'eau, des sédiments et des études benthiques, il semble apparent que le ruisseau Cristal influence la qualité de l'eau de la Rivière South McQuesten. Il y a eu une augmentation des métaux dans l'eau et des sédiments en aval de la confluence avec le ruisseau Cristal. Les niveaux de la majorité des métaux dans l'eau de la rívière South McQuesten sont conforme aux lignes directrices pour la protection de la vie aquatique. La communauté benthique a été perturbée en aval du ruisseau Cristal, mais récupère plusieurs kilomètres plus loin. La source de contaminants du ruisseau Cristal est la galerie d'accès Galkeno 900, mis en évidence par la qualité de l'eau.

Plusieurs galeries d'accès abandonnées du mont Galena ruissellent vers plusieurs ruisseaux drainant cette région avec des eaux chargées de métaux. Ces ruisseaux traversent la route No.2 près d'Elsa et se déversent dans des marécages situés entre la route et la rivière South McQuesten. Le lit de ces ruisseaux se perds dans les marécages et il n'y a aucun changement dans la qualité de la de l'eau de la rivière South McQuesten où ces eaux ruissellent.

La chimie des sédiments indique des niveaux de métaux élevés dans les ruisseaux Cristal et Flat, avec une augmentation significative en 1990 en comparaison avec les niveaux de 1985. Les taux de métaux étaient plus élevés dans les sédiments du ruisseau Flat, celui-ci draine l'étang de résidus.

Les communautés benthiques étaient généralement diverses et dominés par le diptères et/où les plecoptères. Toutefois, il semble que l'élévation du niveau de métaux des sédiments à la station 7 (ruisseau Flat), a réduit la qualité globale du milieu aquatique, puisque la diversité et l'abondance des invertébrés étaient les plus basses. TABLE OF CONTENTS

- iii -

PAGE

ABST	RACT	· · · · · · · · · · · · · · · · · · ·	i
RESU	ME		ii
TABL	EOF	CONTENTS	iii
	LIST	OF FIGURES	v
	LIST	OF TABLES	vi
	LIST	OF APPENDICES	vii
1.0	INT	RODUCTION	1
2.0	STU	DY AREA	2
3.0	METI	HODS	7
	3.1	Water Quality	7
	3.2	Water Quantity	8
	3.3	Sediments	8
	3.4	Bottom Fauna	9
	3.5	Laboratory Quality Control	10
4.0	RESU	ULTS AND DISCUSSION	10
	4.1	Water Quality	10
		4.1.1 Temperature	11
			11
			11
		4.1.4 Dissolved Oxygen	12
			12
			12
			12
			12
			12
			13
			13
			13
			13` 12
			13
	,	4.1.15 Metals - Dissolved, Extractable and Total	13

TABLE OF CONTENTS (Continued)

4.2	Water	Quantity	17
4.3	Stream	n Sediments	18
	4.3.1	Particle Size Distribution	18
	4.3.2	Sediment Metal Analysis	19
4.4	Stream	n Benthic Fauna	22
	4.4.1	Taxonomic Features	22
	4.4.2	Tributary Stations	24
	4.4.3	South McQuesten River Stations	24
REFERENCES			38
ACKNOWLEDG	ements		30
APPENDICES		•••••••••••••••••••••••••••••••••••••••	31

LIST OF FIGURES

<u>F</u>	IGU	RE	<u>PAGE</u>
	1	LOCATION OF STUDY AREA	3
	2	LOCATION OF RECEIVING WATERS SAMPLE STATIONS	5
	3	LOCATION OF MINE AREA SAMPLE STATIONS	6
	4	HISTORICAL COMPARISONS OF ZINC AT CHRISTAL CREEK AND THE SOUTH MCQUESTEN RIVER	17
	5	SEDIMENT CADMIUM DATA FOR 1985 AND 1990	20
	6	SEDIMENT MANGANESE DATA FOR 1985 AND 1990	21
	7	STATION LOCATIONS FOR TABLE 5	23
	8	ABUNDANCE AND TAXONOMIC RICHNESS	25

- v -

LIST OF TABLES

TAB	LE	PAGE
1	STATION DESCRIPTIONS	4
2	HISTORICAL COMPARISONS OF ZINC LEVELS IN WATER (mg/L)	16
3	WATER FLOW MEASUREMENTS	18
4	COMPARISONS OF METALS IN SEDIMENTS FROM 1985 AND 1990	19
5	SUMMARY OF ABUNDANCE, TAXONOMIC RICHNESS AND DOMINANCE	23
6	HISTORIC SUMMARY OF BENTHIC ANALYSES FOR STATIONS 1,3,7,8 AND 9	26

- vi -

- vii -

LIST OF APPENDICES

<u>APPENDI</u>	<u>x</u>	PAGE
I	COLLECTION, PRESERVATION, ANALYSIS OR IDENTIFICATION	
	METHODS AND WATER QUALITY CRITERIA	31
II	WATER QUALITY DATA	42
III	STREAM SEDIMENTS DATA	57
IV	BOTTOM FAUNA DATA	62

1.0 <u>INTRODUCTION</u>

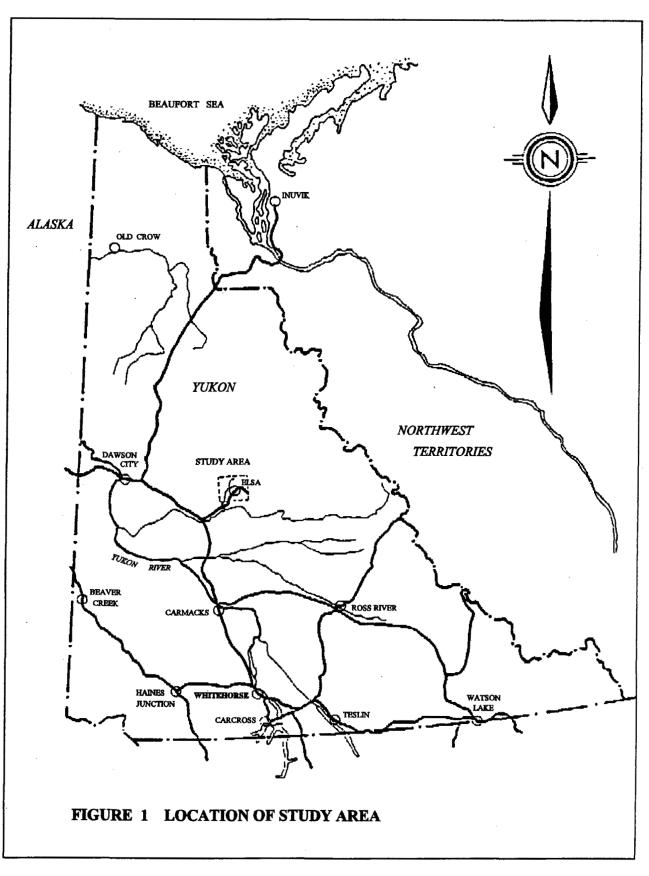
An investigation of water quality, water quantity, stream sediments and aquatic invertebrate populations was carried out by Environmental Protection July 24 to 26 and September 19 to 21, 1990 in the South McQuesten River watershed in the vicinity of United Keno Hill Mine at Elsa, Yukon.

The purpose of the investigation was to determine if any significant impact from the tailings and adit drainages was detectable in the receiving waters, namely Flat Creek, Christal Creek and the South McQuesten River.

The information collected by this survey is compared with information from previous surveys conducted by Environmental Protection. Further comparisons are made with invertebrate information collected by private consultants in conjunction with water licence biological monitoring.

2.0 STUDY AREA

United Keno Hill Mine is located at the town of Elsa, Yukon ($63^{\circ}55'$ N, $135^{\circ}30'$ W) approximately 450 km. by road north of Whitehorse (See Figure 1).


This area is underlain by graphitic and sericitic schist, phyllite and quartzite. The ore minerals are galena (PbS), sphalerite (ZnS), freibergite $((Cu, Fe, Zn, Ag)_{12}, (Sb, As)_4S_{13})$, and chalcopyrite (CuFeS₂). The gangue minerals are siderite (FeCO₃) and pyrite (FeS₂).

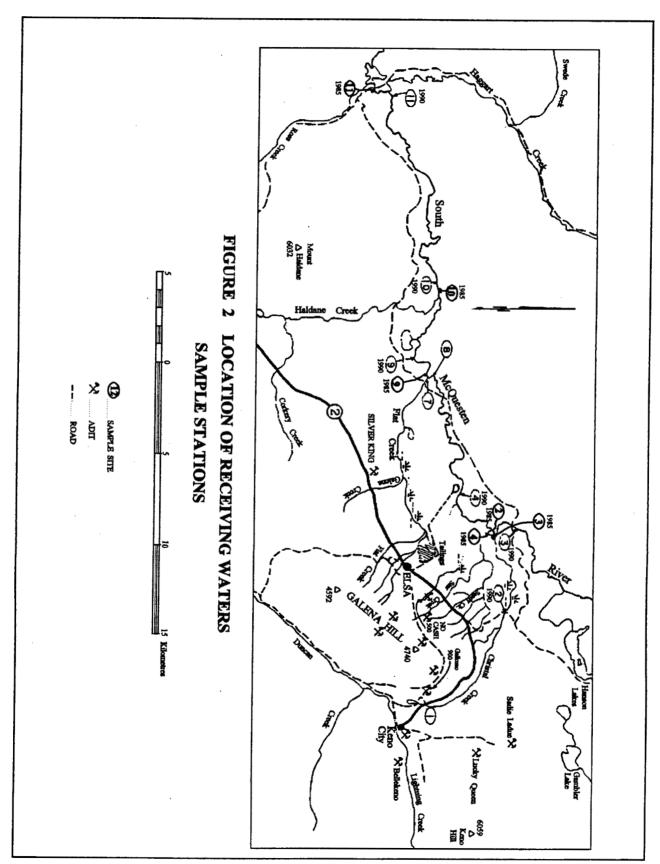
The first recorded discovery of silver-lead in the area was in 1903 on Galena Hill. Over the years this area has been mined for silver, lead, zinc, cadmium and some gold. In 1946, United Keno Hill Mine Ltd began mining and milling operations and have operated in the study area off and on until 1989.

The mine has not operated since January 6, 1989. In 1990, United Keno Hill Mines Ltd. submitted a permanent abandonment plan for the mine. At present the mine is under "care and maintenance" with some exploration ongoing.

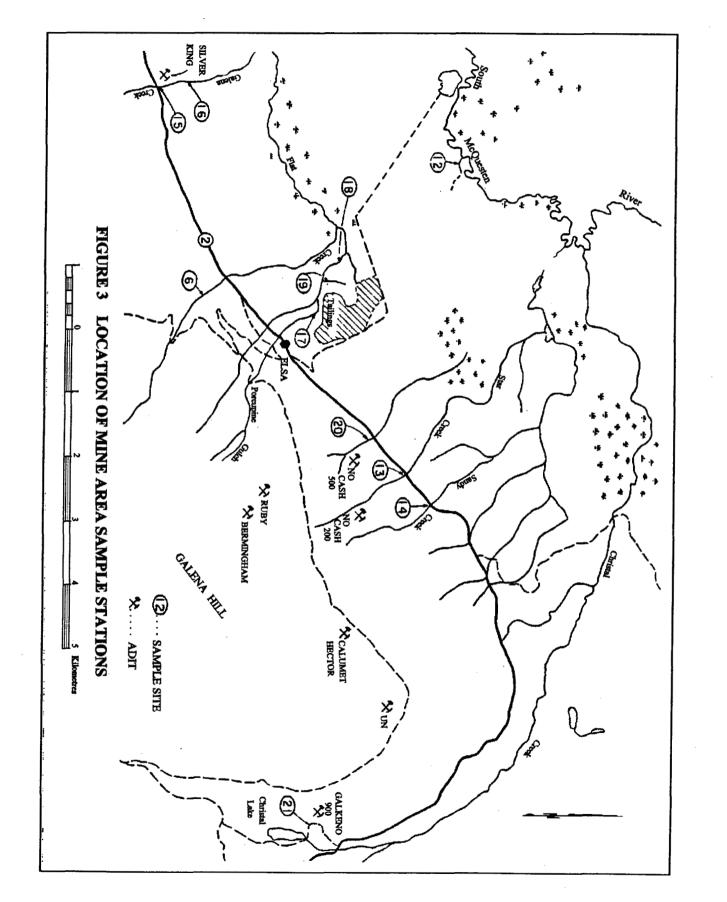
Although there was no actual decant from the final settling pond at the time of sampling, seepage from the pond was evident in Porcupine Gulch, which flows into Flat Creek. Flat Creek joins the South McQuesten River approximately 10 km from the tailings pond decant. Christal Creek, which originates at Christal Lake 10 km east of Elsa, flows into the South McQuesten River approximately 12 km upstream of the Flat Creek confluence. Although this tributary is not directly associated with the tailings effluent, it is affected by drainage from several abandoned mine adits on the north slope of Galena Hill and the south slope of Keno Hill.

A total of 20 sampling stations were established in the study area, some of which coincide with those established in past investigations conducted by Environment Canada and by private consultants. All sites were accessed by road or by foot. Table 1 provides station descriptions. Figure 2 identifies station locations of the receiving waters and Figure 3 shows the locations of the mine area sample sites.

TABLE 1 STATION DESCRIPTIONS


STATION

DESCRIPTION


1	Christal Creek immediately d/s of highway culvert
2*	Christal Creek immediately d/s of Hansen Lake Road bridge
3*	South McQuesten River approximately 1.5 kilometres u/s of
	confluence with Christal Creek
4*	South McQuesten River at domestic water supply pumphouse,
	approximately 6 kilometres d/s of Christal Creek confluence
6	Flat Creek approximately 70m u/s of the highway near small pumphouse
7	Flat Creek at old bridge crossing approximately 600m u/s of
	confluence with South McQuesten River
8	South McQuesten River approximately 15m u/s of Flat Creek confluence
9*	South McQuesten River approximately 2 kilometres d/s of Flat Creek
	confluence
10*	South McQuesten River approximately 9 kilometres d/s of Flat Creek
	confluence
11*	
	confluence, approximately 27 kilometres d/s of Flat Creek
12	An unnamed tributary of South McQuesten River approximately 1.5
	kilometres u/s of Station 4
13	Star Creek u/s of highway
14	Sandy Creek u/s of highway
15	Galena Creek d/s of highway culvert
16	Galena Creek d/s of adit drainage
17	Porcupine diversion u/s of tailings seepage
18	Porcupine diversion d/s of tailings seepage
19	Tailings seepage into Porcupine diversion
20	No Cash 500 adit drainage u/s of highway
21	Galkeno 900 adit flow
NOTE:	There is no Station 5.

* changes in location from 1985 survey as shown in Figure 2.

- 4 -

- 5 -

3.0 METHODS

Surveys were conducted in the study area on two occasions: July 24 to 26, 1990 and September 19 to 21, 1990. Surveys included water quality, water quantity, sediment and benthos sampling at all locations with the exception of Stations 6 and 12 to 21, where only water quality was collected.

3.1 <u>Water Quality</u>

In situ water quality measurements included temperature, conductivity, pH and dissolved oxygen. Temperature and conductivity were measured with a YSI Model 33 Temperature-Conductivity-Salinity Field Meter, pH was measured using a Hach Chemical pH meter, and dissolved oxygen was measured with a YSI Model 57 Dissolved Oxygen Field Meter. The latter was calibrated using the water saturated air method as described in the YSI Manual. Readings were corrected for temperature, elevation and salinity. Percent saturation was calculated from oxygen saturation tables derived from APHA et al (1981). A full description of field equipment and measurements is given in Appendix I, Table 1.

Water quality samples included a 2 litre plastic bottle for nutrients and physical measurements, a 125 mL plastic bottle for total and extractable metals and a 125 mL plastic bottle for dissolved metals. This last sample was filtered in the field prior to preservation. Sample collection, preservation and analysis methods are shown in Appendix I, Table 1.

The parameters analyzed in each nutrient sample are as follows:

pH conductivity colour turbidity non-filterable residue total alkalinity filterable residue total phosphorus
nitrites
nitrite + nitrate
ammonia
sulphate
chloride

The following parameters were analyzed in each of the dissolved, total and extractable metals sample:

aluminium (Al) copper (Cu) selenium (Se) antimony (Sb) iron (Fe) silicon (Si) arsenic (As) lead (Pb) silver (Ag) magnesium (Mg) sodium (Na) boron (B) manganese (Mn) barium (Ba) strontium (Sr) molybdenum (Mo) beryllium (Be) tin (Sn) cadmium (Cd) nickel (Ni) titanium (Ti) calcium (Ca) phosphorus (P) vanadium (V) chromium (Cr) potassium (K) zinc (Zn) cobalt (Co)

The analyses were completed at the Environmental Protection Laboratory, 4195 Marine Drive, West Vancouver, B.C.

3.2 <u>Water Quantity</u>

Stream flow was measured at selected stations using a Marsh McBirney Electromagnetic Flow Meter. Eleven or more velocity readings, in centimetres per second, were taken across the width of each South McQuesten River Station. On the narrower Christal and Flat Creek Stations five or more readings were taken. Stream flows were calculated by dividing the width of the stream into equal blocks, according to the number of readings taken, then the area of each block was determined (water depth X block width). This area was then multiplied by the stream velocity for each block giving a cubic meter per second value (m^3/sec) . All block flows were added together to arrive at a total discharge value.

Flows could not be measured at any of the South McQuesten River sites in September due to high water. The Mayo district had received over 250% of their normal precipitation totals for the month of September (Yukon Weather Centre, 1990).

3.3 Sediments

Sediment samples were collected in triplicate during the July sampling. A teflon scoop shovel was used to collect the samples. The samples were placed in paper geochemical sampling bags, packaged in plastic bags and then frozen within 48 hours of collection. A description of sediment collection, preparation and analysis methods is given in Appendix I, Table 2. Each sample was analyzed for particle size composition and the following metals:

aluminium (Al) arsenic (As) barium (Ba) beryllium (Be) cadmium (Cd) calcium (Ca) chromium (Cr) cobalt (Co) copper (Cu) iron (Fe) lead (Pb) magnesium (Mg) manganese (Mn) mercury (Hg) molybdenum (Mo) nickel (Ni) phosphorus(P) potassium(K) silicon (Si) silver (Ag) sodium (Na) strontium (Sr) tin (Sn) titanium (Ti) vanadium (V) zinc (Zn)

Particle size analysis was carried out by the Water Survey of Canada Laboratory in New Westminister, B.C. The sediment samples were analyzed for metals at the Environmental Protection Laboratory, 4195 Marine Drive, West Vancouver, B.C.

3.4 Bottom Fauna

Benthic invertebrate sampling was conducted using artificial substrate The samplers were cylindrical wire baskets (maximum volume = 0.0057samplers. cubic meters) filled with local substrate material ranging from 2 cm to 6 cm in size. The material was hand cleaned to remove organic debris and invertebrates. Three samplers per site were placed in the stream where in situ measurements, water and sediment samples were collected, on July 24 to 26, 1990. The samplers were left to be colonised for a period of approximately 8 weeks. On September 19 to 21, 1990 the baskets were retrieved and immediately placed into a Wildco wash bucket with 0.5 mm mesh bottom. The bucket was held downstream during retrieval of the sampler in order to capture any escaping organisms. Rock and large wood debris was hand scrubbed in the wash bucket to remove invertebrates and then discarded. Invertebrates and fine debris from each basket were combined into a composite sample for each station. A 10% formalin solution was used to preserve the samples until sorting could be carried out.

In the Whitehorse Environmental Protection lab, bottom fauna were removed from the other material and placed in a labelled vial containing 70% methanol. These vials were sent to Dr. Charles Low, a consulting Invertebrate Biologist in Victoria, B.C., for identification and enumeration of the invertebrates.

3.5 Laboratory Quality Control

Systematic error and sample contamination during analysis at the Environment Protection Laboratory are minimised through duplicate analysis, procedural blanks and the use of standard reference materials. Internal lab quality control is carried out routinely in all water and sediment analysis before results are released.

At the Whitehorse lab, prior to shipping out the invertebrates, the retained debris was randomly re-sorted to ensure all organisms had been removed.

4.0 RESULTS AND DISCUSSION

4.1 <u>Water Quality</u>

In situ measurement, nutrients and metals (dissolved, extractable and total) results for both sample periods are presented in Appendix II, Tables 1 and 2. Criteria recommended for drinking water and aquatic life are presented in Appendix I, Table 4.

In September, an additional seven stations were sampled to assist in determining possible sources of contaminants to the receiving waters of the study area.

Galena Creek (Stations 15 and 16) flows directly into Flat Creek. Stations 17 to 19 eventually flow or seep into Flat Creek. No Cash 500 adit (Station 20) flows across the highway into the swamp area. From the examination of airphotos (flown in 1987), no defined stream channels could be determined draining the swamp area. The waters either seep overland or underground to eventually enter Christal Creek and/or the South McQuesten River. In June 1991, a small creek was observed flowing into the South McQuesten River just downstream of the confluence with Christal Creek, by EP field staff. Water quality samples were collected and the results indicated clean water (Vic Enns, Personal communication). Stations 13 and 14 have the same fate as Station 20. Galkeno 900 adit (Station 21) flows into Christal Lake which is drained by Christal Creek.

These sites will not be discussed parameter by parameter (although all the data is included in Appendix II) but only as applicable where discussing the

various receiving stations' water quality.

Station 12, which is a small unnamed tributary of South McQuesten River approximately 1.5 km upstream of Station 4, was sampled in July and also in September as a possible source of overland drainage from the tailings area. There were very low levels of metals and the only anomaly was elevated levels of barium. The highest level of barium (0.119 mg/L) for the study area was recorded here. This is well below the recommended limit of 0.5 mg/L for the protection of aquatic life.

4.1.1 Temperature

In situ temperature readings reflected the seasonal changes. Generally, the South McQuesten River was warmer than the tributaries.

4.1.2 pH

In July, pH measurements were determined in the field. In September, the pH meter malfunctioned and samples for pH were analyzed in the Vancouver lab. All of the waters tested were slightly alkaline. This is characteristic of the area (Environmental Protection Service, 1978).

4.1.3 Conductivity

Conductivity was determined in the field as well as in the Vancouver lab. For ease of interpretation, the in situ measurements were used as there was a significant increase in the conductivity values by the time they were read in the lab. Conductivity levels were generally high throughout. September values were lower than July values. The levels in the South McQuesten River were fairly consistent from upstream to downstream. In July conductivity was approximately 250 μ mhos/cm and in September it was approximately 175 μ mhos/cm. The tributaries had higher conductivity values.

A very high value of conductivity (1290 μ mhos/cm) was recorded, during the september survey, at Galkeno 900 adit(station 21) and this is reflected in Christal Creek at Stations 1 and 2. High conductivity values, 468 to 850 μ mhos/cm, occurred at Stations 15 to 19 and this could be influencing the high value at Station 7, Flat Creek. Upstream on Flat Creek, Station 6, the conductivity was approximately 100 μ mhos/cm lower.

4.1.4 Dissolved Oxygen

All samples were well oxygenated ranging from 8.9 mg/L to 11.9 mg/L. Oxygen concentrations were at or near saturation although saturation levels were lower in September. The oxygen levels encountered in the study would not be limiting to aquatic life.

4.1.5 Colour

Colour values were generally low; 5 or 10 during July and 10 to 20 during September. Higher colour values were recorded at Station 13 in July and Station 19 in September.

4.1.6 Turbidity

Turbidity was low, 1 FTU or less, throughout the study area except at Stations 15, 40, 25 and 10 where the values were 15, 40, 25 and 10, respectively.

4.1.7 Alkalinity

Alkalinity values were similar between sampling periods. The tributaries had higher levels than the South McQuesten River.

4.1.8 Hardness

Hardness values generally reflected the conductivity levels due to concentrations of dissolved ions. There was little difference between total hardness and Ca+Mg hardness, indicating that the hardness levels were mainly attributed to the calcium and magnesium levels. The waters throughout the system are hard (121 to 180 mg/L as $CaCO_3$) to very hard (more than 180 mg/L as $CaCO_3$). The highest hardness value of 1190 mg/L as $CaCO_3$ occurred at Galkeno 900 adit (station 21) during the September, 1990 survey.

4.1.9 Sulphate

Sulphate levels were low in the South McQuesten River, 32 to 58 mg/L, but greatly elevated in the tributaries and adit flows. This is a result of oxidation of the sulphide rock associated with the ore bodies. The highest sulphate concentration was recorded at Galkeno 900, adit with a reading of 1090 mg/L.

4.1.10 Chlorides

Chlorides were generally low throughout, ranging from 0.5 mg/L in the South McQuesten River (Station 3) to 11.7 mg/L in the tailings seepage at Station 19.

4.1.11 Phosphorus

Total phosphorus values were low throughout the study area with one elevated level of 0.99mg/L at the tailings seepage (Station 19).

4.1.12 Ammonia

Ammonia is not considered a problem in the study area and all receiving waters were well below the guideline for the protection of aquatic life.

4.1.13 Filterable Residue

Filterable residue levels generally reflected the conductivity values.

4.1.14 Non-filterable Residue

NFR values were below the detection limit in the receiving waters but were elevated at Station 13 in July and Station 19 in September.

4.1.15 Metals - Dissolved, Extractable and Total

The following metals were not detected in the receiving waters (Stations 1 to 11): beryllium (Be), cobalt (Co), potassium (K), molybdenum (Mo), nickel (Ni), phosphorus (P), antimony (Sb), and vanadium (V).

Boron (B), barium (Ba), chromium (Cr), copper (Cu), sodium (Na), silicon (Si) and strontium (Sr) were detected in the receiving waters but were below the recommended maximum levels for drinking water and protection of aquatic life.

Silver (Ag) was detected in all the samples. The September values were not considered since results from 14 of the 21 samples reported Total Ag was less than Dissolved Ag. This suggested the dissolved metals samples were probably contaminated from the field filtering procedures. Only one sample (station 6) displayed the above trend during the July sampling. The guideline for the protection of aquatic life is 0.0001 mg/L and although all stations exceeded this level the recorded values were very low.

Aluminium (Al) was usually below detection at most stations. The guideline of 0.1 mg/L was exceeded in September in the total metals sample at Stations 3, 4, 8 and 9. Levels were nonetheless very low. The tailings seepage (Station 19) had an elevated level of 1.35 mg/L Aluminum but it was not detected in Flat Creek at Station 7.

Arsenic (As) was detected in July at Stations 3, 8 and 10. The recommended guideline for aquatic life is 0.05 mg/L. This was exceeded at all three sites although the highest concentration recorded was 0.07 mg/L.

Calcium (Ca) and magnesium (Mg) are components of the measure of hardness and their values reflect the hardness levels at the stations. Higher calcium and magnesium values could indicate influence from groundwater at those sites.

There was very little iron (Fe) in the dissolved state. A guideline of 0.3 mg/l total iron has been recommended for the protection of aquatic life. This was exceeded at the downstream site on the South McQuesten River at Station 11 in July. Iron values consistently increased as one progressed downstream on the South McQuesten River. Flat Creek at Station 7 had lower iron levels than in the river. Elevated levels of iron were recorded in the adit drainages and the tailings seepage. Iron is typically high in acid mine drainage (McNeely et al, 1979a). Orange staining was observed at some of these discharges. This indicates that iron hydroxides are precipitating from the water as the oxygen content (aeration) increases (Babb et al, 1985).

Manganese (Mn) seldom reaches concentrations of 1.0 mg/L in natural surface waters (CCREM 1987) and all the stations on the South McQuesten River were well below this. However, Christal Creek and the adit drainages had highly elevated levels, most of which were in the dissolved state. Galkeno 900 adit flow (Station 21) had a total concentration of 68.9 mg/L, contributing to the high levels recorded in Christal Creek. Stations 13 and 20 also had elevated levels (9.2 mg/L and 32.1 mg/L respectively) but there appears to be little impact on the South McQuesten River where eventually these waters would drain into. Manganese is often associated with subsurface and acid mine waters (McNeely et al, 1979b). In surface waters divalent manganese will be rapidly oxidised to manganese dioxide which will then undergo sedimentation when the waters contain high dissolved oxygen and are slightly alkaline (Stumm and Morgan, 1970). This could be the case experienced in the study area as there are elevated manganese levels in the sediments at Station 1, 2, 4 and 7 (see Section 4.3.2). So, although there are very low levels of manganese in the water at Stations 4 and 7, manganese seems to be precipitating out and settling in these areas.

The toxicity of cadmium (Cd), copper (Cu), and lead (Pb) varies with hardness, and different guidelines are recommended depending on the hardness of the water. As mentioned previously all the water in the study area was hard or very hard. The guidelines for these various metals were under the hardness category of >120 mg/L $CaCO_3$.

For the protection of aquatic life a guideline of 0.0013 mg/L of cadmium has been recommended. This was exceeded both in July and September at Stations 1, 2 and 7. All cadmium levels in the South McQuesten River were very low. The highest total cadmium value of 0.193 mg/L was recorded in July at Station 13, the corresponding dissolved cadmium value being 0.112 mg/L.

A guideline of 0.004 mg/L of copper has been set to protect aquatic life. Dissolved copper values were all higher than the extractable and total values and therefore were disregarded as contaminated. This guideline was not exceeded by total copper measurements at any of the receiving stations. The highest concentration of copper (0.132 mg/L) occurred at Station 13 in July.

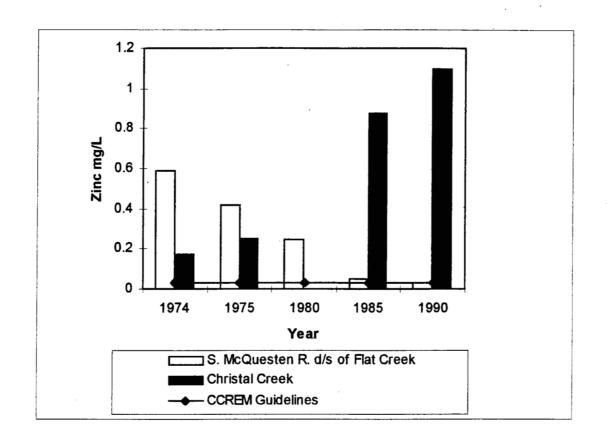
A lead concentration of 0.004 mg/L has been established as the recommended guideline for the support of aquatic life. This value was exceeded at Flat Creek (Station 7) in July and at Stations 1, 2, 7, 8, 9, 10 and 11 in September. The South McQuesten River Stations were slightly over the guideline. There were elevated levels of lead in the tailings area, Stations 16 to 19, at No Cash adit (Station 20) and at Station 13.

A guideline of 0.03 mg/L of zinc has been recommended for the protection of aquatic life. Values were generally low in the South McQuesten River but all total zinc concentrations exceeded this guideline in July. The guideline was exceeded in the South McQuesten River at one site only in September, Station 3, the upstream site. The guideline was exceeded on all occasions at the Christal Creek sites. Of the remaining sites, the guideline was met in July at Station 12 and in September at Stations 6, 12 and 15.

Zinc was very high at the adit drainage sites (Stations 13, 14, 20 and 21) but surprisingly low at the tailings seepage sites (Stations 17 to 19). The high concentrations of zinc found in the adit seep waters were associated with high concentrations of manganese and sulphate. High concentrations of sulphate increases the zinc carrying capacity and favours the solution phase. As the concentration of sulphate goes down the carrying capacity will correspondingly go down and zinc will enter the particulate phase (Babb et al, 1985). Sulphate levels decrease downstream on Christal Creek (Appendix II), but the concentration of zinc in the sediments is greater downstream at Station 2 than at Station 1 (See Section 4.3.2).

Table 2 presents historical data of zinc levels over the years reported in previous studies for Stations 1, 7, 8 and 9. Generally, zinc levels have increased at Christal Creek at Station 1, and decreased in the South McQuesten River downstream from Flat Creek at Station 9. This data has been summarised per year and is presented in Figure 4.

Station Description		EPS July 1974	EPS June 1975	EPS July 1975	EPS Angust 1980	EP July 1985	EP August 1985	EP July 1990	BURNS Angust 1990	EP Sept 1990
1.	1 Christal Creek d/s of highway culvert		0.23	0.22		0.93	0.825	1.18		1.01
7	Flat Creek at old bridge crossing	0.73	0.77	0.6	0.349	0.23	0.215	0.076	0.112	0.217
8 S. McQuesten River u/s of Flat Creek		0.02		0.07	0.055	0.02	0.028	0.015	0.019	0.05
9 S. McQuesten River d/s of Flat Creek		0.59	0.74	0.09	0.244	0.029	0.065	0.013	0.024	0.055


TABLE 2 HISTORICAL COMPARISON OF ZINC LEVELS IN WATER (mg/L)

Note: All zinc values are exctractable except Burns 1990, which is total.

- 16 -

FIGURE 4

HISTORICAL COMPARISON OF ZINC LEVELS AT CHRISTAL CREEK AND THE SOUTH MCQUESTEN RIVER

4.2 Water Quantity

Flow measurements were taken when possible during both visits at Stations 1, 2, 3, 4, 7, 8, 9, 10 and 11. This data is presented in Table 3. Flows had increased considerably by the September sampling and no flow measurements could be taken at any of the sites on the South McQuesten River due to high water.

- 17 -

Station	MEAN I		STREAM WIDTH (m)		MEAN V (m/s	BLOCITY Sec)	DISCHARGE (m ³ /sec)	
	July	Sept	July	Sept	July	Sept	July	Sept
1	0.10	0.11	1.4	1.55	0.37	0.45	0.06	0.09
2	0.10	0.2	2.3	1.8	0.21	0.46	0.08	0.24
3	0.33		11.5		0.49		2.20	
4	0.46		10.0		0.39		2.17	
7	0.08	0.29	1.4	1.8	0.23	0.46	0.03	0.30
8	0.39		17.5		0.23		1.93	
9	0.27		10.0		0.72		2.34	
10	0.28		13.6		0.54		2.56	
11	0.58		13.0		0.34		3.03	

TABLE 3 WATER FLOW MEASUREMENTS

4.3 <u>Stream Sediments</u>

4.3.1 Particle Size Distribution

Particle size distribution (%) results are presented in Appendix III Table 1. In general, the sediment samples were composed chiefly of material in the >2.0 mm size range, ranging from 64.5% at Station 1 (Christal Creek) to 83.6% at Station 11 (S. McQuesten River).

Station 1, Christal Creek just downstream of Christal Lake, had the greatest percentage of silt (2.9) of all the stations. It also had the highest amount of sands (grain size 0.063 to 1.0 mm).

The overall trend for the South McQuesten River was that the further downstream from the confluence with Christal Creek, the coarser the composition of the sediment.

Flat Creek sediments also, were comprised mainly of coarse sand and gravels.

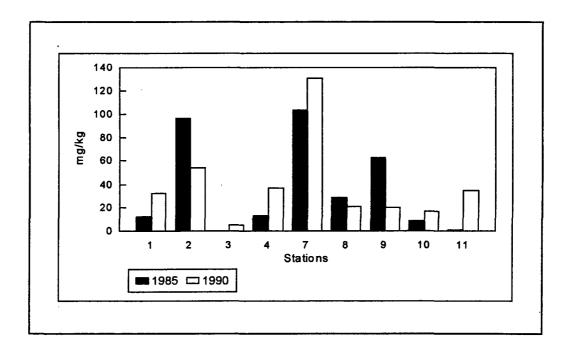
4.3.2 Sediment Metal Analysis

The metals results are presented in Appendix III Table 2. Of the metals analysed, cobalt, molybdenum and tin were not detected. Of the metals detected cadmium, copper, manganese, lead and zinc are discussed in further detail in this section. Sediment sampling was conducted in 1985 (Davidge and Mackenzie-Grieve, 1989) and comparisons have been made between this data and the 1990 data for the above selected metals (see Table 4). Stations 2, 3, 4, 9, 10 and 11 were relocated from that used in 1985 to take advantage of the existing access. Differences in sediment chemistry for these sites between 1985 and 1990 may be explained by this change.

	1985	1990	1985	199 0	1985	1990	1985	1 99 0	1985	1 99 0
STATION	Cđ	Cđ	Cu	Cu	Mn	Mn	Pb	Pb	Zn	Zn
NUMBER	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
1	12.5	32.2	43.1	39.6	2087	32133	149	<86	2323	8967
*2	96.3	53.9	93.4	50.5	133	36933	4040	**1088	6097	10400
*3	<0.7	5.7	23.9	22.3	497	1018	24	22	169	212
*4	13.5	36.5	35.4	46.3	2550	19800	463	1069	1058	2423
7	103.5	130.7	161.3	171.3	<0.2	**45233	5063	4580	6533	9247
8	29.1	21.4	35.8	40.1	2353	4947	877	791	1830	1220
*9	62.8	20.6	116.6	51.7	<209	6180	3723	1110	3380	1490
*10	8.9	17.0	50.6	48.2	2620	5087	242	493	642	1082
*11	0.8	34.5	28.2	31.3	628	1697	52	**180	116	316

TABLE 4 COMPARISONS OF METALS IN SEDIMENTS FROM 1985 AND 1990

Note: All values are the mean for triplicate samples.


* Exact Locations differ between 1985 and 1990.

** Significant differences (p < 0.05) between the two sampling surveys.

Cadmium, copper, manganese, lead and zinc were elevated in the sediments of the two streams draining the UKHM mining area (Christal Creek and Flat Creek) in 1985 and 1990. Except for copper, all the metals had higher concentrations in 1990 than in 1985 at the far downstream sites (Stations 10 and 11) on the South McQuesten River. The historical comparison of zinc shown on Table 2 indicates that increases in metal loading from the site may be responsible for higher metal concentrations in the sediments as the bedload gradually moves downstream.

Christal Creek showed an impact on the South McQuesten River sediments. The background station (Station 3) had very low metals values, but the levels were significantly higher at Station 4, downstream of Christal Creek. Flat Creek also exhibited an impact on the South McQuesten River sediments as levels were lower upstream than downstream. The influence of Flat Creek on South McQuesten sediments was less than that of Christal Creek, especially in 1990.

Cadmium levels were elevated in Christal Creek and in Flat Creek, although Flat Creek appeared to have no impact on the South McQuesten River sediments. There were increased levels of cadmium in 1990 at Station 11, the site furthest downstream on the South McQuesten River (See Figure 5). The average cadmium concentration at this site was 34.5 mg/kg. The average concentration of cadmium in the earth's crust is 0.2 mg/kg (Taylor, 1964). Cadmium is commonly found associated with zinc sulphide ore, particularly sphalerite, which is a common mineral in the study area.

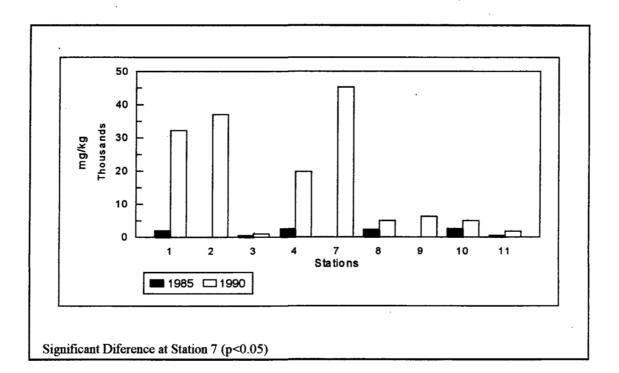


FIGURE 5 SEDIMENT CADMIUM DATA FOR 1985 AND 1990

Copper results were very similar for both years with the exception of the South McQuesten River just downstream of Flat Creek (Station 9) which was twice as high in 1985 as in 1990. This may be partly explained by the relocation of Station 9 further downstream of the confluence of Flat Creek in 1990.

Manganese levels were greatly elevated in 1990 at Flat Creek (Station 7). Although all the stations seem to show elevated manganese levels in 1990, the values were not significantly different (p>0.05) than the concentrations reported in 1985. Manganese is often present in zinc minerals and the same trend was observed with the zinc levels in the sediments.

FIGURE 6 SEDIMENT MANGANESE DATA FOR 1985 AND 1990

Lead levels were significantly lower in 1990 than in 1985 at Station 2 while being significantly higher at station 11 (See Table 4).

As previously mentioned, the concentrations of zinc in the sediments followed the same trend as for manganese. It would be expected that sediments of rivers draining mineralized areas would have elevated zinc levels. Sediments remove about 70% of water-borne zinc from rivers (Taylor, 1980). Several factors influence exchanges across the sediment-water interface. Although metals may be bound in sediment, physical or chemical changes such as a lowering of pH, could place them into solution making them available to aquatic life (Forstner, 1989).

4.4 Stream Benthic Fauna

Appendix IV, Table 1 shows the taxonomic list of the bottom fauna collected in the study area. Appendix IV, Table 2, shows the distribution of the invertebrates identified in the samples.

8-a

4 i (r.

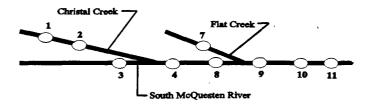
Invertebrates were keyed to species where possible, or to genus or family level only, if full identification was not possible. However, some invertebrates could only be keyed to the phylum level, such as nematodes. Genera or species shown in brackets indicate that the identification was tentative.

4.4.1 Taxonomic Features

A total of six phyla were found in the study area: arthropoda, nematoda, platyhelminthes, annelida, coelenterata, and mollusca. These phyla represent 161 different taxonomic groups, most of which were identified to the genus or species level. The vast majority of the invertebrates collected were of the Class Insecta (94.5%). A total of 16,580 individuals was collected from the nine stations sampled.

The greatest number of individuals (6876) was found at Station 3 on the South McQuesten River, which acts as a control station for this study as it is upstream of the mine influenced tributaries.

The lowest abundance (166) occurred at Station 7, Flat Creek, which is the station that receives the greatest influence from the tailings pond decant and seepages.


Taxonomic richness was determined for each site. All taxonomic groups were included from species up to phylum, with the presence of a taxon representing one count. Therefore if there were 16 different taxonomic groups in one sample, the taxonomic richness would be 16. The taxonomic richness ranged from a low of 24 at Station 7, Flat Creek, to a high of 82 at Station 11, the South McQuesten River 27 km downstream from Flat Creek. The summarized data is shown in Table 5.

- 22 -

The percent composition of the different orders was calculated for each station and based on this the dominant order for each site was determined. An order was considered dominant if it formed 25% or more of the total invertebrates at that station. Some sites had two dominant orders. These data are also presented in Table 5. Diptera was the dominant or co-dominant order at each of the stations except for Station 7, Flat Creek, where Homoptera was the dominant order. Homoptera are terrestrial and the family Aphididae, which was in abundance here, are aphids. There is a great deal of overhanging vegetation at the Flat Creek site and the aphids probably fell into the stream during the retrieval process. The dominant aquatic order was Plecoptera, with the genus Nemoura forming the majority. Nemoura has been shown to exhibit adaptation to various pollutants (Wiederholm, 1984). Plecoptera was also the dominant or co-dominant order at Stations 1,2,4 and 8.

FIGURE 7 STATIC

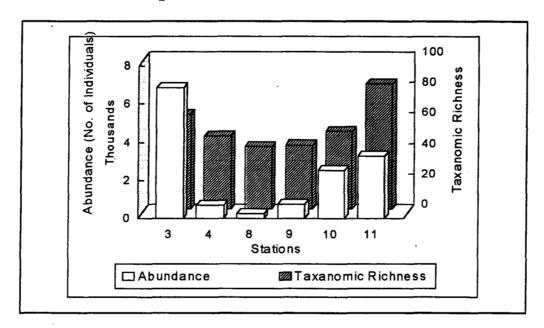
STATION LOCATIONS FOR TABLE 5

TABLE 5 SUMMARY OF ABUNDANCE, TAXANOMIC RICHNESS AND DOMINANCE

Station	l	2	3	4	7	8	9	10	11
Abundance (#/volume or surface)	496	1464	6876	706	166	285	755	2525	3307
Taxonomic Richness	41	30	62	48	24	41	42	51	82
Dominant Order (%)	D 40.78	D 48.1%	D 86.6%	P 38.5%	H 46.4%	D 28.4%	D 58.8%	D 79.6%	D 56.8¥
Subdominant Order %	P 34.7%	P 39.1%		D 27.5%	P 31.3%	P 26.3%			

4.4.2 Tributary Stations

Diptera and Plecoptera were the dominant orders at Christal Creek, Station 1. Simulidae (Black flies) was the dominant family within the order Diptera. Simulidae was also the dominant family in 1975 and 1985. The habitat is ideal for the larvae at this location as it is shallow and the current is swift. There were high levels of zinc in the water sampled on both dates, well over the recommended guideline for the protection of aquatic life. However, the most tolerant benthic organisms to heavy metals, have been found to be insect larvae (Spear, 1981).


At Christal Creek (Station 2), abundance had increased approximately three times but the taxanomic richness had decreased. Simulium was also one of the dominant genera.

Flat Creek, Station 7, had the lowest population and taxonomic richness of all the sites sampled. Zinc levels exceeded the recommended guideline at this site, ranging from 0.069 to 0.254 mg/L. Toxicity of zinc increases in the presence of other metals often producing an additive or synergistic effect (Taylor and DeMayo 1980, Nriagu, 1980). Lead levels were above the recommended guideline (CCREM, 1987) except for dissolved lead, both in July and September. However, both copper and cadmium levels were below the recommended limit. As levels of metals in the sediments were greater here than at any of the other stations (Appendix III, Table 2), this could have contributed to the low abundance and diversity of the benthic community.

4.4.3 South McQuesten River Stations

Abundance and taxonomic richness values for the stations on the South McQuesten River were plotted (See Figure 8). It appears from this graph that both abundance and diversity decrease after the confluence with Christal Creek. The sites start to recover downstream of Flat Creek and continue to improve downstream to Station 11. Due to high water in September some difficulty was encountered in retrieving the baskets from Stations 10 and 11. It is believed that some organisms were lost in this process and although abundance had continually increased downstream of Flat Creek, it can be assumed that there would be even greater abundance at Stations 10 and 11 than recorded. Generally, the downstream site Station 11 was similar in abundance and taxanomic richness to the upstream site Station 3, although species composition was different.

Diptera was the dominant order at all the sites. No one particular family displayed dominance but several taxa within the order Diptera were well represented at each station.

FIGURE 8 ABUNDANCE AND TAXANOMIC RICHNESS SOUTH MCQUESTEN RIVER STATIONS

The study area has been the subject of eight studies from 1975 to 1990. This historic data is summarised in Table 6.

- 26 -

Study & Year	EPS	EPS	N. BIOMES	N. BIOMES	Leverton	Burns	Burns	EPS
	1975	1985	1986	1987	1988	1989	1990	1990
STATION 1								
Total # of individuals	197	<u>65</u> 5						496
Total taxa	16	31						41_
Dominance and %	<u>D 77.7</u>	D 74.2						<u>p</u>
STATION 3		<u> </u>	L		<u> </u>			P
<u> Total # of Individuals</u>	357	683	ļ	ļ			ļ	6876
Total taxa	21	26						62
Dominance and %	D 81.8	D 76.3	 					D
STATION 7		<u></u>						
Total # of individuals	8	95	3343	1976	282	33	143	166
Total taxa	5	14	22	26	20	10	_12	24
Dominance and %	D 62.5	D 42.1	D 80.7	P 59.4	D 50.3	D	P	н
	<u> </u>	P 41.1		D 36.2	P 42.2	D		Р
STATION 8	<u> </u>	-						
Total #_of_individuals	1129	140	1370	1 <u>955</u>	<u>551</u>	996	3516	285
Total taxa	24	20	46	43	36	39	55	41
Dominance and %	D 87.9.	D_32.9	D 67.9	D 74.4	D 44.5	D	D	D
		P 25.7				Р	L	P
Station 9	ļ	 						
Total # of individuals	4390	1492	2056	775	740	636	841	755
Total taxa	15	_25	_34	37	35	20	45	42
Dominance and %	D 98.5	D 92.8	D 64.1	D 46.5	D_40.6		D	D
			E 21.2	E 22.2	E 27.7			

TABLE 6 HISTORIC SUMMARY OF BENTHIC ANALYSES FOR STATIONS 1,3,7,8 AND 9

Note: Total # of individuals data has been normalized to provide equivalent units.

D = Diptera

P = Plectopera

H = Homoptera

E = Ephermoptera

Invertebrate abundance has fluctuated over the years and this variance can be attributed to many factors such as climate, flow, life cycles of various organisms, timing and methods of sampling etc. At Station 9 the population decreased to approximately 800 individuals in 1987 and remained in that general range for the next three years until 1990. There has been a shift in dominance from Diptera to Diptera and Ephemoptera for several years and then back to Diptera. In general, most of the stations throughout the years were dominated by Dipterans. Species composition within the order Diptera was different between years.

It is difficult to interpret the McQuesten data collected under the terms of the water licence, as there was no station upstream of Christal Creek, which is a major source of zinc enrichment to the South McQuesten River. Neither the 1975 nor the 1985 EP data display clear trends in abundance and diversity at the three South McQuesten stations.

REFERENCES

APHA, AWWA, WPCF. 1981. <u>Standard Methods for the Examination of Water and</u> <u>Wastewater</u>. 15 Ed.

Babb, J.M., Enger, S.K. and G.K. Pagenkopf. 1985. <u>Chemical Changes in a</u> <u>Receiving Stream due to Oxygenation and Dilution of Mine Tailings Seep Waters</u>. Water, Air and Soil Pollution. Vol. 26 No 3. p. 219 - 224

Bethel, G. and Soroka, I. 1981 <u>Compliance Evaluation of United Keno Hill</u> <u>Mines Ltd., Elsa, Yukon Territory</u>. Environmental Protection Service Regional Program Report 81 - 23, 41p.

Burns, B.E. 1990. <u>Biological Monitoring Program at Flat Creek and South</u> <u>McOuesten River</u>, Elsa Yukon 1989. Prepared for United Keno Hill Mines Ltd.

Canadian Council of Resource and Environment Ministers (CCREM). 1987. <u>Canadian</u> <u>Water Guidelines</u>. Task Force of Water Quality Guidelines.

Davidge, D. and G. Mackenzie-Grieve. 1989. <u>Environmental Quality of Receiving</u> <u>Waters at United Keno Hill Mines Ltd.</u>, Elsa, Yukon. Environmental Protection Regional Program Report No. 89-04.

de id k

1018 :

48

Environmental Protection Service. 1978. <u>Assessment of Water Ouality and</u> <u>Biological Conditions in Watersheds surrounding the United Keno Hill Mine,</u> <u>Elsa, Yukon, During the Summers of 1974 and 1975</u>. Environmental Protection Service Regional Program Report 79-14, 26p.

Forstner, Ulrich. 1989. <u>Lecture Notes in Earth Sciences, Contaminated</u> <u>Sediments</u>. Springer-Verlag. Berlin Heidelberg. 157 p.

Laberge Environmental Services. 1991. <u>Biological Monitoring Program at Flat</u> <u>Creek and South McOuesten River, Elsa, Yukon Territory 1990</u>. Prepared for United Keno Hill Mines Ltd., by B.E. Burns.

Leverton and Associates. 1988. <u>Biological Monitoring Program, United Keno Hill</u> <u>Mine Site</u>. Prepared for United Keno Hill Mines Ltd.

McNeely, R.N., V.P. Pneumonias and L. Dwyer. 1979a. <u>Iron</u>. <u>In Water Ouality</u> <u>Source Book, A Guide to Water Ouality Parameters</u>. Water Quality Branch. Inland Water Directorate Environment Canada, Ottawa. p. 20.

McNeely, R.N., V.P. Neimanis and L. Dwyer. 1979b. <u>Manganese</u>. <u>In Water Quality</u> <u>Source Book, A Guide to Water Quality Parameters</u>. Water Quality Branch. Inland Water Directorate Environment Canada, Ottawa. p. 22-23.

Northern Biomes Ltd. 1986. <u>United Keno Hill Mines Ltd., 1986 Benthic Fauna</u> <u>Sampling Program, Flat Creek and South McOuesten River</u>. Prepared for United Keno Hill Mines Ltd., by D.L. Petkovich and E.G. Johnston.

Northern Biomes Ltd. 1987. <u>United Keno Hill Mines Ltd., 1987 Benthic</u> <u>FaunaSampling Program, Flat Creek and South McQuesten River</u>. Prepared for United Keno Hill Mines Ltd., by D.J. Petkovich and C.A. McEwen.

Nriagu, Jerome O. (editor) 1980. <u>Zinc in the Environment</u>. Canada Centre for Inland Waters, Burlington, Ontario. Canada. John Wiley and Sons. 453 pp.

Personal Communication. 1992. Vic Enns, Head, Pollution Abatement, Environmental Protection, Whitehorse, Y.T.

Spear, P.A. 1981. <u>Zinc in the Aquatic Environment</u>, <u>Chemistry</u>, <u>Distribution and</u> <u>Toxicology</u>. National Research Council Canada. NRCC No. 175889.

Stumm, W. and J.J. Morgan. 1970. <u>Aquatic Chemistry</u>. Wiley-Interscience, New York. 583 pp.

Taylor, Margaret C. and Adrian Demayo. 1980. <u>Guidelines for Surface Water</u> <u>Quality. Vol. Inorganic Substances, Zinc</u>. Inland Waters Directorate, Water Quality, Ottawa, Canada.

Taylor, S.R. 1964. <u>Abundance of Chemical Elements in the Continent Crust: A</u> <u>New Table</u>. Geochim. Cosmochim. Acta, 28:1273-1285.

Wiederholm, Torgny. 1984. <u>Responses of Aquatic Insects to Environmental</u> <u>Pollution in Resh</u>, V.H. and Rosenberg D.M. ed. (1984) The Ecology of Aquatic Insects. Praeger Publ. N.Y. 625 pp.

Yukon Weather Centre. 1990. <u>September 1990 Weather Summary Yukon</u>. Yukon Weather Office, Whitehorse, Yukon.

ACKNOWLEDGEMENTS

The Environmental Protection Branch would like to acknowledge the following people for their contributions towards the completion of this report: D. Davidge, S. Arrell and C. Osborne for field work and data compilation, D. Davidge, B. Burns (Laberge Environmental Services) and R. Snider for draft preparations and editing, and B. Godin for technical review.

8. m

APPENDIX I

COLLECTION, PRESERVATION, ANALYSIS OR IDENTIFICATION METHODS AND WATER QUALITY CRITERIA

APPENDIX 1	TABLE 1	WATER SAMPLE COLLECTION, PRESERVATION AND ANALYSIS METHODS	ON AND ANALYSIS METHODS	
PARAMETER	DETECTION LIMIT	COLLECTION AND PRESERVATION PROCEDURE	ANALYTICAL PROCEDURE	METHOD SECTION
Temperature	0.1°C	In situ temperature reading.	YSI Conductivity and Temperature Meter. Model 33.	
Elow		In situ flow measurements using a Frice-type current meter.	Cross-section of the stream was measured and the velocity of flow was calculated using the standard Price-type current meter method.	
Dissolved Oxygen	1.00 mg/L	In situ measurement. The instrument was calibrated in the field under wanter-saturated air condition.	<u>YSI Dissolved Oxvgen meter</u> (in situ) <u>Orion model 701 pH meter &</u> <u>Orion 0, electrode</u> (laboratory)	
Hd	0.1 pH units	Small aliquots of sample were taken and read soon after collection. No preservative. Instrument was cali- rated using 7.0 buffering solution.	Potentiometric	080
Conductivity	0.2 <u>umhos</u> cm	In situ measurement. Laboratory measurement, specific conductivity at 25+C. No preservative. The measurement was taken from the same sample as NH, below.	YSI Conductivity meter model 33 (in situ).Radiometer conductivity meter (CDM2D(laboratory).	044
Colour	5 (colour units)	Same sample as NH3.	Platinum-cobalt visual compar- , ison	040
Turbidity	0.1 (ETU)	Same sample as NH_3 .	Nephelometric turbidity	130
Non-Filterable Residue (NFR)	5.0 mg/L	Same sample as NH, .	Filtration, drying and weighing of filtrate	104
Filteràble Residue (FR)	10.0 mg/L	Same sample as NH_3 .	Filtration, drying and weighing of filtrate.	100
Total Alkalinity	1.0 mg/L as CaCO ₃	Same sample as NH, .	Potentiometric titration	006

ı

ŧ

caco,

	METHOD	058	070	072	086	122	024
ATION AND ANALYSIS METHODS	ANALYTICAL PROCEDURE	Phenol hypochlorimetric-automated	<u>Diazotization-colorimetric-</u> automated	<u>Cadmium-copper_reduction-</u> colorimetric-automated	<u>Ascorbic acid-persulphate.</u> automated autoclave digestion	<u>Automated methylthymol-blue</u> colorimetric	<u>Thiocvanate-combined reagent-</u> colorimetric
WATER SAMPLE COLLECTION, PRESERVATION AND ANALYSIS METHODS	COLLECTION AND PRESERVATION PROCEDURE	Single samples collected in 2 litre linear polyethylene containers. Each container was rinsed 3 times with sample before it was filled. No preservatives. Stored at 4°C.	Same sample as NH3.	Same sample as NH,	Same sample as NH,.	Same sample as NH3.	Same sample as NH3.
TABLE 1	DETECTION LIMIT	0.005 mg/L	0.005 mg/L	0.005 mg/L	0.002 mg/L	1 mg/L	0.5 mg/L
APPENDIX 1 TAB	PARAMETER .	Ammonia NH ₃ -N	Nitrate NO ₂ -N	Nitrate NO ₃ -N	Total Phosphate T PO4-P	Sulphate SO4	Chloride Cl

WATER SAMPLE COLLECTION, PRESERVATION AND ANALYSIS METHODS TABLE 1

APPENDIX 1

PARAMETER	DETECTION LIMIT	COLLECTION AND FRESERVATION PROCEDURE	ANALYTICAL PROCEDURE	METHOD SECTION
Extractable/Total Dissolved Metals	mg/L	Total/Extractable metals collected in 125 mL linear colvethylene	Inductively Coupled Agron	210/220
Ag		bottles. Each bottle was rinsed 3		
Al	0.05	times with sample before filling.		
As		Preserved to a pH <1.5 using 1.0 mL		
В	0.01	concentrated HNO.		
Ba	0.001	•		
Be	0.001	Dissolved metals were collected in		600
Ga	0.1	125 mL linear polvethelene bottles		603
Cd	0.005	rinsed 3 times with sample before		
S	0.005	filling. Filtered in field using		
Cr	0.005	0.45 um cellulose nitrate filters		
Cu	0.005	Preserved to pH <1.5 using 1.0 mL		
Ге	0.005	concentrated HNO.		
Mg	0.10	•		
Mn	0.001			
Mo	0.01			
Na	0.1			
Nİ	0.02			
Pb	0.05			
Sb	0.05			
Se	0.05			
si	0.05			
Sn	0.05			
Sr	0.001			
Ti	0.002			
~	0.01			
Zn	0.002			

PARAMETERDETECTIONCOLLECTION AND PRESERVATIONANALYTICAL PROCEDUREMETHODCdLIMITPROCEDURERECTIONSECTIONSECTIONCd0.001Same sample as metals.Graphite Furnace-Atomic330Cu0.0005Same sample as metals.Absorption Spectrometry330Pb0.0005Same sample as metals.Graphite Furnace-Atomic330Ag0.0005Same sample as metals.Absorption Spectrometry330Ag0.0005Same sample as metals.Graphite Furnace-Atomic330Ag0.0005Same sample as metals.Graphite Furnace-Atomic330Total Hardness0.03 mg/LSame sample as metals.Absorption Spectrometry330Total Hardness0.03 mg/LSame sample as metals.Absorption Spectrometry330Total Hardness = 4.116Mg + 2.497330Absorption Spectrometry330As described in Environment of Environment (1976).Absorption Spectrometry330As described in Devironment of Environment (1976).Absorption Spectrometry330As described in Devironment of Environment (1976).Absorption SpectrometryAbsorption Spectrometry </th <th>APPENDIX 1</th> <th>TABLE 1</th> <th>WATER SAMPLE COLLECTION,</th> <th>WATER SAMPLE COLLECTION, PRESERVATION AND ANALYSIS METHODS</th> <th></th>	APPENDIX 1	TABLE 1	WATER SAMPLE COLLECTION,	WATER SAMPLE COLLECTION, PRESERVATION AND ANALYSIS METHODS	
as metals. <u>Graphite Furnace-Atomic</u> as metals. <u>Absorption Spectrometry</u> as metals. <u>Graphite Furnace-Atomic</u> as metals. <u>Absorption Spectrometry</u> as metals.	PARAMETER	DETECTION LIMIT	COLLECTION AND PRESERVATION PROCEDURE	ANALYTICAL PROCEDURE	METHOD SECTION
as metals. as metals. as metals. Absorption Spectrometry as metals.	Cd	0.001	Same sample as metals.	<u>Graphite Furnace-Atomic</u> Absorption Spectrometry	330
as metals. as metals. Absorption Spectrometry as metals.	Cu	0.0005	Same sample as metals.		
as metals. <u>Graphite Furnace-Atomic</u> Absorption Spectrometry as metals.	qa	0.0005	Same sample as metals.		
Total Hardness 0.03 mg/L Same sample as metals. Ca/Mg Hardness = 4.116Mg + 2.497Ca 1 As described in Environment Canada (1976). 2 As described in Denartment of Environment (1979).	Ag	0.0005	Same sample as metals.	<u>Graphite Furnace-Atomic</u> Absorption Spectrometry	330
Ca/Mg Hardness = 4.116Mg + 2.497Ca 1 As described in Environment Canada (1976). 2 As described in Denartment of Environment (1979).	Total Hardness		Same sample as metals.		
¹ As described in Environment Canada (1976). ² As described in Denartment of Environment (1979).		1.116Mg + 2.4	97Ca		
	¹ As described in E ¹ ² As described in D	nvironment Ca	nada (1976). Frvironment (1979)		

.

•

e

SEDIMENT COLLECTION, PREPARATION AND ANALYSIS METHODS TABLE 2 APPENDIX 1

PARAMETER	PREPARATION	ANALYSIS	METHODS CODE ₁
All Parameters	Creek and River Stations: Sediment samples were collected using a Teflon scoop to scoop stream sediments into sample bag.		231
	Three samples were collected at each station and placed in geochemical paper sample bags. Each sample is then sealed in plastic bags and frozen or keep cool within 24 hours.		
Metals Al, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe,	Sample was oven-dried at 40°C to remove water. Sample was sieved through a size 100 mesh (.15mm) stainless steel sieve. The portion passing through was analyzed for leachable		236/238/ 242
Hg, Mo,		Inductively Coupled Argon	320
sb, si, sn, sr, Ti, V, Zn	sample was heated for 3 hours.	Plasma (ICAP)	
As	Same as other metals.	Hydride Generation ICAP	350
Ag	Same as other metals.	Flame Atomic Absorption	330
Particle Size	Sample was oven-dried.	Standard Sieving Operation	078

and Marine Service (1979).

IDENTIFICATION
AND II
BOTTOM FAUNA COLLECTION, PRESERVATION AND IDENTIFICAT
COLLECTION,
FAUNA
BOTTOM
TABLE 3
APPENDIX 1

METHODS

Bottom fauna samples were sent to IDENTIFICATION AND ENUMERATION Invertebrate Biologist, Nanaimo, B.C. for identification to genus and species if possible and enumeration of sample. Dr. C. Low, a Consulting Bottom fauna was sorted from other material and placed in a vial containing 708 methanol. LABORATORY PROCEDURES polypropylene rope and were allowed to colonize for about 57 days. collected using cylindrical wire baskets (17 cm dia x 25 cm) filled with local stream bed rock material at each station. The stream bed hand washed in the bucket to remove Wildco wash bucket with a 0.5 mm mesh bottom. All rock material was Stream benthic invertebrtaes were material ranged from 2 to 6 cm in scrubbed by hand and placed into the baskets until full. Three station, tethered to shore using FIELD COLLECTION, SAMPLING PROCEDURES AND PRESERVATION they were quickly placed into a When the samples were retrieved Artificial Substrate Sampler: Rocks were lightly samples were placed at each diameter.

invertebrates.

WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE TABLE 4 APPENDIX 1

BUBSTANCE RECOMMENDED LEVEL (s) FOR AQUATIC LIFE RECOMMENDED LEVEL (s) FOR AQUATIC LIFE REFERENCE (s) FOR AQUATIC LIFE REFERENCE (s) FOR AQUATIC LIFE PYytaal <15 1 560 AQUATIC LIFE 560 AQUATIC LIFE Phytical <15 1 560 AQUATIC LIFE 560 AQUATIC LIFE Phytical <15 1 560 AQUATIC LIFE 560 AQUATIC LIFE Calour (TCU) <15 1 50 -1000/100mL 50 -1000/100mL Coult And taste Trubility WQL <1 200 /100mL 200 Count /100mL <1 200 /100mL 200 /100mL Count /100mL <1 200 /100mL 200 /100mL Auminum (A1) mg/L <1 200 /100mL 20 20 Auminum (A2) mg/L <1 200 /100mL 20 20 Auminum (A2) mg/L <1 200 /100mL 20 20 Auminum (A2) mg/L <1 20 0.00 0.00 20 Auminum (A2) mg/L <1 20 0.00 20 Auminum (A2) mg/L 20 20 Auminum (A2) mg/L 20 20 Aumin					
<pre>(°C) 15 ste 15 ste 15 mL) 15 mL) 10 mL) 0 mL) 0 mL) 0 mL) 0 mL 10 mL/ Not considered a public mg/L Not considered a public 10 mg/L Not considered a public 11 mg/L Not considered a public 12 mg/L 0.05 mg/L 0.05 mg/L 0.05 mg/L 0.05 mg/L 0.05 mg/L 0.05 mg/L 0.05 mg/L 0.05 mg/L 0.005 mg/L 0.05 mg/L 0.005 mg/L 0.005 m</pre>	SUBSTANCE	RECOMMENDED LEVEL (S) FOR DRINKING WATER	REFERENCE (S)	RECOMMENDED LEVEL(S) FOR AQUATIC LIFE	REFERENCE (S)
<151(°C)15if <15 if <15 if <15 if <15 if <10 <55 1mL) <0 form <10 <50 $<1000/100mL$ form <10 mL) <0 <50 $<1000/100mL$ form <10 mo/L Not considered a public mo/L <0.1 at $pH > 6.5$ mo/L <0.05 mo/L <0.05 mo/L <0.05 mo/L <0.05 mo/L <0.05 <0.05 <0.008 <0.05 <0.008 <0.065 <0.008 <0.008 <0.013 <0.005 <0.003 <0.005 <0.003 <0.005 <0.003 <0.005 <0.003 <0.005 <0.003 <0.005 <0.003 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002 <0.005 <0.002	Physical				
(°C) 15 ste If offensive 1 al 10 (mn) form 0 1 form 0 1 (1) mg/L Not considered a public 4 (1) mg/L Not considered a public 4 (1) mg/L Not considered a public 4 (1) mg/L Not considered a public 7 (1) mg/L Not considered a public 7 (1) mg/L 0.1 at pH 6.5 temp 1 (1) mg/L 0.05 1 (1) mg/L 0.05 1 (1) mg/L 0.005 for hardness 0.0018 for		л t / v	F		
Tree (°C)15 it easte15 it offensive1 it offensive1 it recreational water T 500-1000/100mL-Total101200/100mL-Total101200/100mLcoliform01200/100mLcoliform01200/100mLcoliform01200/100mLcoliform01200/100mLm (Al) mg/LNot considered a public4>20m (Al) mg/LNot considered a public72.2 at pH 6.5 temp 1nmg/L0.510.513.7 at ph 8.0 temp(ad)0.510.008 for hardness0.0013 for hardness(ad)0.0510.002 for hardness0.0013 for hardnessmg/L1.010.002 for hardness0.0013 for hardness(cd)0.00510.002 for hardness0.0013 for hardnessmg/L1.010.002 for hardness0.0013 for hardness(cd)0.00510.002 for partness0.0013 for hardnessmg/L75.010.002 for partness(cd)0.0510.002 for partness0.0013 for hardnessmg/L75.010.002 for partness(cd)0.0510.002 for partness0.0013 for hardnessmg/L70.0510.002 for partnessmg/L70.0510.002 for partnessmg/L0.050.			+		
J tasteIf offensive1recreational water T7 wru < 5 $1000/100mL$ $< 500-1000/100mL$ $-70tal$ 10 $< 500-1000/100mL$ $700mL$ 0 1 $500-1000/100mL700mL01200/100mL100mL01200/100mL100mL01200/100mL100mLNot considered a public4>20100mLNot considered a public4>20100mLNot considered a public4>20100mLNot considered a public4>20100mLNot considered a public4>20100mL0.50.0080.0008100mL0.00510.0002100ML0.000510.0002100ML0.000510.0002100ML0.000510.0002100ML0.000510.00021000510.00020.0002100050.00050.00020.0002100050.00050.00020.0002100050.00050.00020.0002100050.00020.00020.0002100050.00050.00020.0002100050.00050.00020.0002100050.00050.00020.0002100050.0005$		15			
<pre>y NrU <5 1 Eccentional water T Total 10 1 Eccentional water T /100mL) 0 1 Eccentional water T /100mL 0 200 /100mL coliform 0 200 /100mL ity mg/L Not considered a public 7 200 /100mL Not considered a public 7 2.2 at pH 6.5 temp 1 Neg/L 0.5 1 200 2 for ph 8.0 temp 1 (85) mg/L 0.05 1 2.2 at pH 6.5 temp 1) mg/L 0.5 1 2.2 at pH 6.5 temp 1) mg/L 0.5 1 2.2 at pH 6.5 temp 1 0.5 0.005 1 2.0 0.005 1 2.0 0.000 for hardness (21) mg/L 1.0 1 0.001 for hardness 0.0013 for hardness 0.0013 for hardness 0.0013 for protect fish um (Cr) 0.05 0.002 to protect fish um (Cr) 0.05 1 0.02 to protect fish um (Cr) 0.05 1 1 0.00 1 1 0.00 1 1 0.00 1 1 0.00 1 1 0.00 1 1 0.00 1 0.00 1 1 0.00 1 1 0.00 1 0.00 1 1</pre>	Odour and taste	If offensive	•		
Total101recreational water TTotal10 $500-1000/100mL$ coliform01 $500-1000/100mL$ coliform01 200 $/100mL$ coliform01 200 $/100mL$ ity mg/LNot considered a public4 >20 $/100mL$ m (Al) mg/LNot considered a public4 >20 $/100mL$ m (Al) mg/LNot considered a public7 2.2 at pH 6.5 temp 1mg/L0.51 2.2 at pH 6.5 temp 1mg/L0.51 2.2 at pH 6.5 temp 1mg/L0.051 0.002 for hardnessmg/L0.051 0.002 for hardnessmg/L5.00.0008 for hardness 0.0013 for hardnessmg/L0.0051 0.0013 for hardnessmg/L 0.005 1 0.002 for protect fishmm(Cr)0.05aesthetic objectives1 0.002 to protect fishmm(Cr) 0.05 0.002 0.002 for protect aqumm(Cr) 0.05 0.002 for protect fishmm(Cr) 0.05 0.002 for protect fis	Turbidity NTU	<5	Ч		
<pre>/100mL) coliform 0 1100mL ity mg/L Not considered a public 4 >20 Not considered a public 7 2.2 at pH 6.5 temp 1 Ng/L Not considered a public 7 2.2 at pH 6.5 temp 1 Ng/L 0.5 1 0.5 1 2.0 0.005 mg/L 0.05 1 0.005 1 0.0002 for hardness mg/L 1.0 0.0002 for hardness ng/L 2.0 0.003 for hardness ng/L 2.20 aesthetic objectives 1 0.02 to protect fish mg/L colmg/L 0.05 1 0.002 to protect fish mg/L 1.0 0.013 for hardness ng/L 2.20 aesthetic objectives 1 0.02 to protect fish mg/L colmg/L 0.05 1 0.002 for hardness mg/L 1.0 0.0013 for hardness mg/L 2.20 aesthetic objectives 1 0.02 to protect fish mg/L 0.05 aesthetic objectives 1 0.002 to protect fish mg/L 2.50 aesthetic objectives 1 0.002 to protect fish mg/L 2.50 aesthetic objectives 1 0.002 to protect fish mg/L 2.50 aesthetic objectives 1 0.002 to protect fish mg/L 2.000 to be bends on dissolved salts 7 150-500 /cm)</pre>	Coliform-Total	10		recreational water Total	
coliform01200/100mLity mg/LNot considered a public4>20/100mL)Not considered a public4>20 2.2 at pH %6.5m (Al) mg/LNot considered a public7 2.2 at pH %6.5 1.37 at ph 8.0 tempmg/L0.5rotal0.5 1.37 at ph 8.0 temp 1.37 at ph 8.0 tempmg/L0.50.05 1.00 2.2 at pH %6.5 temp 1.37 at ph 8.0 tempmg/L0.50.05 1.00 0.002 for hardnessmg/L0.05 1.00 0.002 for hardnessmg/L 1.0 0.002 for hardnessmg/L 0.003 sesthetic objectives 1.0002 for hardnessmg/L 0.005 sesthetic objectives 1.002 to protect fishum (Cr) 0.05 sesthetic objectives 1.002 to protect fishum (Cr) 0.05 sesthetic objectives 1.002 to protect fishum (Cr) 0.05 sesthetic objectives 1.002 to protect aqumg/L 7.500 7.002 to protect fishum (Cr) 0.05 sesthetic objectives 1.002 to protect fishum (Cr) 0.05 beends on dissolved salts 7 vity @ 25° Depends on dissolved salts 7	(count/100mL)			500-1000/100mL	ი
ity mg/LNot considered a public>20m(Al) mg/LNot considered a public>20m(Al) mg/LNot considered a public7total0.5Not considered a public7total0.51.37 at pH 6.5 temp 1 mg/L 0.051 mg/L 0.051 mg/L 0.051 mg/L 0.051 mg/L 0.002 for hardness mg/L 1.00.0008 for hardness mg/L 0.0051 mg/L 0.013 for hardness mg/L 0.02 sesthetic objectives0.013 for hardness mg/L 0.0510.02 to protect fish mg/L 0.050.013 for hardness mg/L 0.050.02 to protect fish mg/L 0.02 to protect fish mg/L 0.002 to protect fish mg/L 0.002 to protect fish mg/L 0.002 to prote	fecal coliform	0	1		ი
ity mg/LNot considered a public 20 m (Al) mg/LNot considered a public 20 m (Al) mg/LNot considered a public 2.2 at pH 6.5 temp 1health problem 2.2 at pH 6.5 temp 1mg/L 0.5 1.37 at ph 8.0 temp 1mg/L 0.5 0.05 mg/L 0.05 0.002 mg/L 0.002 0.0013 mg/L 0.002 0.0022 to mg/L 0.0022 <	Chemical				
g/Lhealth problem4>20 g/L Not considered a public70.1 at $pH > 6.5$ temp 1 0.5 0.5 1 1.37 at $pH 8.0$ temp 1 1.37 1.37 at $pH 8.0$ temp 1 1.37 at $pH 8.0$ temp 1 1.0 0.05 1 0.05 1.0 0.002 for hardness 0.0008 for hardness 0.005 0.002 for hardness 0.0013 for hardness $75-200$ 7 0.002 for protect fish 1.0 0.002 desthetic objectives 1 0.022 to protect fish 0.05 0.002 solution of the thardness 0.002 for hardness 0.05 0.0013 for hardness 0.0013 for hardness 0.05 0.002 for hardness 0.0013 for hardness 0.05 0.0013 for hardness 0.0013 for hardness 0.05 0.002 to protect fish 0.05 0.05 0.002 to protect fish 0.002 to protect fish 0.05 0.05 0.002 to protect fish 0.05 0.05 0.002 to protect fish 0.05 0.05 0.022 to protect fish	*Alkalinity mg/L	a			
) mg/L Not considered a public 7 0.1 at pH >6.5 temp 1 0.5 health problem 7 2.2 at pH 6.5 temp 1 0.5 at γ 0.05 1 1.37 at ph 8.0 temp mg/L 0.05 1 0.005 1 1 0.0008 for hardness 0.0008 for hardness 0.0008 for hardness 0.0013	(Total)	health problem	4	>20	ю
mg/L 7 2.2 at pH 6.5 temp 1 mg/L 0.5 4 2.2 at pH 6.5 temp 1 mg/L 0.05 1 2.0 otemp g/L 1.0 1 <0.05	*Aluminum (Al) md/L	Ø		a t	
0.5 4 2.2 at pH 6.5 temp 1 mg/L 1.37 at ph 8.0 temp mg/L 0.05 g/L 1.0 L 5.0 g/L 5.0 J 0.005 L 0.008 for hardness 0.005 1 0.0013 for hardness g/L 75-200 g/L 75-200 mg/L 75-200 mg/L 0.02 for protect fish r) 0.02 to protect fish r) 0.02 to protect aqu r) 0.02 to protect aqu r) 0.02 to protect aqu		h problem	7		S
mg/L 0.05 1 37 at ph 8:0 temp g/L 1.37 at ph 8:0 temp 5.0 g/L 1.0 1 0.05 g/L 1.0 1 0.0102 for hardness 0.0005 1 0.0003 for hardness 0.0013 for hardness g/L 75-200 1 0.0013 for hardness 0.0013 for hardness g/L 75-200 1 0.0018 for hardness 0.0013 for hardness g/L 75-200 1 0.0018 for hardness 0.0013 for hardness g/L 75-200 0.0018 for protect fish 1 0.002 to protect fish r) 0.05 aesthetic objectives 1 0.002 protect fish r) 0.05 bepends on dissolved salts 7 150-500	Ammonia total	о н С		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
L mg/L 0.05 1 37 at ph 8.0 temp mg/L 1.0 5.0 5.0 1 0.002 for hardness 1 0.0008 for hardness 1 0.0008 for hardness 1 0.0013 for protect fish 1 0.002 to protect fish 1 0.002 to protect agu 1 0.002 to protect agu	VIIIIOIITA LOLAT		7		
) mg/L mg/L mg/L 1.0 1.0 1.0 1.0 1.0 0.002 for hardness 0.0013 for hardness 0.0013 for hardness 0.0013 for hardness 0.0013 for hardness 0.0013 for hardness 0.0018 for hardness 0.0018 for hardness 0.0018 for hardness 0.0018 for hardness 0.0018 for pardness 0.002 to protect fish 0.02 to protect aqu 0.1 0.02 to protect aqu	(NH3-N)mg/L			1.37 at ph 8.0 temp 10°C	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Antimeny (Sb) mg/L				
mg/L 1.0 5.0 /L 5.0 1 0.002 for hardness /L 5.0 0.006 for hardness 0.0013 for hardness 0.005 0.0013 for hardness 0.0013 for hardness mg/L 7 0.0018 for hardness mg/L 75-200 0.0018 for hardness mg/L 75-200 0.0018 for hardness 0mg/L 750 aesthetic objectives 1 0.002 to protect fish 0.05 aesthetic objectives 1 0.002 to protect fish 0/L 0.05 bepends on dissolved salts 7 150-500	Arsenic (As)	0.05	-1	<0.05	10
	total mg/L			5.0	7
5.010.0002 for hardness0.00510.0008 for hardness0.0013 for hardness0.0013 for hardness70.0018 for hardness1250 aesthetic objectives10.05aesthetic objectives10.050.02 to protect fish5°CDepends on dissolved salts71150-500	Barium (Ba) mg/L	1.0	Ч		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Boron (B) ma/L	5.0	Ч	for hardness	
L 75-200 7 0.0013 for hardness 0.0018 for hardness 0.0018 for hardness 2.250 aesthetic objectives 1 0.02 to protect fish 0.05 0.05 to protect aqu	*Cadmium (Cd)	0.005	-1	for hardness	
L 75-200 7 0.0018 for hardness L <250 aesthetic objectives 1 0.02 to protect fish 0.05 0.02 to protect aqu 5°C Depends on dissolved salts 7 150-500	total mg/L			for hardness	
7 7 L <250 aesthetic objectives	ĥ			for hardness	10
L <250 aesthetic objectives 1 0.05 5 5°C Depends on dissolved salts 7	Calcium (Ca)mq/L	75-200	7		
0.05 1 °C Depends on dissolved salts 7	Chloride (C))ma/L	<250 aesthetic objectives	Ч	0.02 to protect fish	
25°C Depends on dissolved salts 7	**Chromium (Cr) total mg/L	0.05	ч	0.002 to protect aquatic life	10
25°C Depends on dissolved salts 7	Cobalt (Co)mg/L				1
	Conductivity @ 25°C (umhos/cm)	Depends on dissolved salts	L	150-500	Q

WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE TABLE 4 APPENDIX 1

1

SUBSTANCE	RECOMMENDED LEVEL(S) FOR DRINKING WATER	REFERENCES (S)	RECOMMENDED LEVEL(S) FOR AQUATIC LIFE	REFERENCE
*Copper (Cu) total mg/L	<1.0 aesthetic objective		dness dness	
Cyanide (CN) mg/L Dissolved oxygen	0.2	1	0.006 at hardness >180mg/L CaCO, 0.005 (free)	10
(% saturation) Fluoride (F)mg/L Hardness (Total)	Near 100 % 1.5	4 4	>5.0mg/L 1.5	10
Iron (Fb) total mg/L Lead (Pb) total mg/L	80-100 <0.3 aesthetic objective 0.05		0.3 0.001 at hardness 0-60mg/L CaCO, 0.002 at hardness 60-120mg/L CaCO, 0.004 at hardness 120-180mg/L CaCO,	10
Magnesium (Mg)mg/L Manganese (Mn)mg/L Mercury (Hg) total mg/L MolthAenim (Molthael	50 <0.05 aesthetic objective 0.001	4 H H	at hardness	10 7 10
Nickel (Ni) total mg/L	0.25	2	0.025 at hardness 0-60mg/L CaCO, 0.065 at hardness 60-120mg/L CaCO, 0.11 at hardness 120-180mg/L CaCO, 0.15 at hardness >180mg/L CaCO,	- -
Nitrate (NO3-N)mg/L Nitrite (NO2-N)mg/L PH units Phosphate (PO4)mg/L	10 1.0 6.5-8.5 0.2	ल ल ल ००	0.06 6.5-9.0	10
*Phosphorus (P)mg/L (Total) Potasium (K) mg/L Residue: Filterable mg/L (Total dissolved solids) Residue: Non-Filterable (mg/L) (TSS)	<500 aesthetic objective) प	0.020 to prevent algae 70-400 with a maximum of 2000 increase of 10mg/L with bkgd<100mg/L increase of 10% above bkgd with bkgd >100.0mg/L	L BO U

240

) di d

WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE TABLE 4 APPENDIX 1

SUBSTANCE	RECOMMENDED LEVEL(S) FOR DRINKING WATER	REFERENCES (S)	RECOMMENDED LEVEL(S) FOR AQUATIC LIFE	REFERENCE
**Selenium (Se)				
total mg/L	0.01	1	0.001	10
Silica (Si)mg/L				
*Silver (Ag) total mg/L		Ч	0.0001	10
Sodium (Na)mg/L		1		
Strontium (Sr)mg/L	10	Ч		
Sulphate (SO ⁴)mg/L	500	Ч		
Tin (Sn)mg/L	Not present in	7		
	natural waters			
Titanium (Ti)mg/L				
Total Inorganic Carbon				
(TIC)				
Total Organic Carbon				
(TOC)	5.0	ى		
Uranium mg/L	0.02	4		10
Vanadium (V)				
Zinc (Zn)mg/L	<5.0 aesthetic objective	ч	0.03	10

* Use graphite furnace for the lab detection limit to be less than the recommended levels. ** Lab detection limit > recommended levels.

REFERENCES:

- 1. Health & Welfare Canada. 1987. <u>Guidelines for Canadian Drinking Water Ouality 1987.</u> Supply and Services, Canada.
- 2. Inland Waters Directorate. 1980. <u>Guidelines for Surface Water Ouality.</u> Vol. 1 Inorganic Chemical Substances. Environment Canada, Ottawa.
- Thurston, R.V., R.C. Russo, C.M. Fetteroff Jr., T.A. Edsall, and Y.M. Barber Jr. (Eds.). 1979. <u>A Review</u> of the EPA Book: Ouality Criteria for Water. Water Quality Section, American Fisheries Society, Bethesda, MD, 313p.

TABLE 4 WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE

APPENDIX I

REFERENCE	
RECOMMENDED LEVEL(S) FOR AQUATIC LIFE	
REFERENCES(S)	
RECOMMENDED LEVEL(S) FOR DRINKING WATER	
SUBSTANCE	

- Territories. Report of the Working Group on Water Quality Objectives to the nymous 1977. <u>Guidelines for Establishing Water Quality Objectives for the Territorial Waters of</u> the Yukon and Northwest Territories. Report of the Working Group on Water Quality Objectives to Chairman, Water Boards, Yukon and Northwest Territories. 4. Anonymous 1977.
- Water Management Goals, Policies, Objectives and Implementation Procedures of the Ministry of the Environment 1978. 5. Ontario Ministry of the Environment.
- Environment Canada, 1976. <u>Pollution Sampling Handbook</u>. Pacific Region Laboratory Services, Fisheries Operations and Environmental Protection Service, West Vancouver, B.C.
- Publication No. 3-A 7. California State Water Resources Control Board. 1963. Water Quality Criteria. Second Edition by McKee and Wolf.
- Mater Quality Source Book a Guide to Water Quality Parameters. Environment Canada, Water Quality Branch, Ottawa, Canada. 8. Inland Waters Directorate, 1979.
- Supply and Guidelines for Canadian Recreational Water Quality. Health and Welfare Canada, 1983.
 Services Canada.
- Task Force on Water Quality Guidelines of the REM. 1987. <u>Canadian Water Quality Guidelines</u>. Task Force on W. Canadian Council of Resource and Environment Ministers. Ottawa. 10. CCREM. 1987.

APPENDIX II

WATER QUALITY DATA

Í

ł

CHLORIDE (mg/L)	1.0	0.6	0.7	0.7	0. 4.	2.9	0.7	0.7	0.7	8.0	0.6	8.0	0.7
	Q	Q	ø	۲.	<u>s</u>	ø	s.	4	۲.	4	Ч	q	Q
SULFATE (mg/L)	351.0	240.0	36.0	51.7	53.6	153.0	53.6	56.4	54.7	50.4	70.2	563.0	221.0
(Extr.) TOTAL HARDNESS (mg/L)	486	353	131	148	238	347	152	154	158	169	236	6//	266
(Extr.) HARDNESS (asCaCO3) (mg/L)	478	351	130	148	237	346	151	154	158	168	236	698	287
(Diss.) TOTAL HARDNESS (mg/L)	495	354	128	.154	240	351	159	158	161	170	244	745	297
(Diss.) HARDNESS (asCaCO3) (mg/L)	486	353	128	153	240	351	158	158	161	169	244	710	296
TOTAL ALK. (ascacco3) (mg/L)	113	132	8	90	200	192	109	111	117	131	185	160	52 22
TURB. (FTU)	0.6	0.4	0.2	0.2	0.1	4.0	0.3	0.3	0.2	0.5	0.2	40.0	0.2
COLOR (REL. U.)	ഗ	'n	6	6	ŝ	9	õ	ŝ	õ	0	ŵ	160	Ş
& DISSOLVED OXYGEN SATURATION	ŝ	8 0	101	94	6 6	94	n/a	101	6) ().	94	n/a	66	82
DISSOLVED % DISSOLVED OXYGEN OXYGEN (mg/L) SATURATION	10.4	10.1	9.1	6. 8	10.6	9.3	n/a	9.1	9.3	9.1	n/a	10.6	9.7
LAB COND. (umhos/cm)	882	687	272	319	466	658	306	315	321	327	477	1200	629
IN SITU COND. (umhos/cm)	290	490	222	233	278	480	239	253	242	258	354	278	325
Hd FAB	n/a	e/u	e/u	e/u	n/a	nía	e/u	e/u	n/a	n/a	evu	e/u	e/u
Hd INSITU	7.72	8.16	8.27	8.04	8.0	8.11	8.22	6 .19	8.21	8.04	7.74	8.00	7.74
(C)	6.6	11.0	17.4	14.9	7.5	12.5	17.5	17.0	14.5	13.5	n/a	7.5	3.5
SAMPLE DATE	24-Jul-90	24-Jul-90	24-Jul-90	25-Jul-90	26-Jul-90	25-Jul-90	25-Jui-90	25-Jul-90	26-Jul-90	26-Jul-90	25-Jul-90	26-Jul-90	26-Ju -90
STATION	~	2	n	4	Q	7	60	0	10	11	13	13	4

ICP Diss. Fe (mg/L)	600.0	0.006	0.035	0.035	0.005	0.006	0.046	0.043	0.042	0.048	600.0	0.00\$	0.007
GF Diss. IC Cu (mg/L)	0.0056	0.0025	0.0024	0.0026	0.0028	0.0047	0.0024	0.0019	0.0019	0.0020	0.0012	0.0049	0.0040
ICP Diss. Cu (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
ICP Diss. II Cr (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
ICP Diss. H Co (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.010	<0.005
GF Diss. 1 Cd (mg/L)	0.0024	<0.005 0.0013	<0.005 0.0004	0.0003	<0.005 0.0016	€0000 0°0000	<0.005 0.0003	<0.005 0.0003	0.0005	0.0010	0.0003	ļ	0.0014
ICP Diss. Cd (mg/L)	<0.005 0.0024	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.112	<0.005
ICP Diss. Ca (mg/L)	156.0	109.0	33.8	41.4	74.8	98 .4	43.1	42.9	43.7	46.4	65.3	236.0	88.5
ICP Diss. Be (mg/L)	<0.001	<0.001	€0.001	60.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	≤0.001
	0.061	0.042	0.045	0.058	0.084	0.031	0.061	0.061	0.063	0.079	0.118	0.012	0.024
KP Diss. ICP Diss. B Ba (mg/L) (mg/L)	<u>6.01</u>	<0.01	€0.01	€0.01	<0.01	<0.01	<0.01	<0.01	<0.01	€0.01	€0.01	€0.01	0.02
ICP Diss. As (mg/L)	90 .0>	<0.05	<0.05	<0.05	<0.05	€0.05	0.06	<0.05	0.06	<0.05	<0.05	<0.05	<0.05
ICP Diss. Al (mg/L)	<0.05	<0.05	<0.05	<0.05 <	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	€0.05	<0.05	<0.05
GF Diss. Ag (mg/L)	0.0004	0.0004	0.0003	0.0004	0.0008	0.0002	0.0005	0.0005	0.0006	0.0006	0.0007	0.0004	0.0004
ICP Diss. Ag (mg/L)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.0>	<0.01	<0.01	<0.01	10 .0
NFR (mg/L)	<10	<10	<10	<10 <	<10	<10	<10	<10	×10	<10	<10	60	6
FR (mg/L)	710	490	180	210	290	480	220	240	220	230	310	1120	440
AMMONIA (mg/L)	0.012	0.003	0.014	0.013	<0.002	0.014	0.002	0.003	0.010	0.005	0.005	0.050	0.005
NITRITE+ NITRATE (mg/L)	0.095	0.046	0.012	0.021	0.079	0.055	0.010	0.008	0.011	<0.002	0.150	0.031	D.396
NITRITE (mg/L)	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
TOTAL P (mg/L)	0.005	≮0.002	0.003	0.002	0.004	<0.002	0.002	0.002	0.002	0.002	<0.002	0.039	0.004
STATION	-	~	m	4	ø	7	60	Ø	6	11	12	13	4

ł

<u>\$0.05</u> <0.05 <0.05 <0.05 <u>80.05</u> <0.05 <0.05 <0.05 ICP Extr. 0.07 <u>8</u>.05 <0.05 As (mg/L) <0.05 80.0 <0.05 0.05 <0.05 8.0<u>5</u> <u>\$0.05</u> \$0.05 8 <0.05 ICP Extr. \$0.05 <u>6</u> 8 0.06 <0.05 0.05 <u>6</u> 8 AI (mg/L) 0.57 0.05 0.0003 <0.01 0.0004 <0.01 0.0003 0.0005 0.0004 <0.01 0.0008 <0.01 0.0002 0.0005 0.0006 GF Extr. Ag (mg/L) <0.01 0.0007 0.0006 0.0015 0.000 <u><0.01</u> <0.01 <0.01 <0.01 <0.01 <u>60.01</u> ICP Extr. (J/Gm) <u>60.01</u> <u>6</u>.01 ICP Diss. ICP Diss. ICP Diss. 1.100 0.266 0.014 (J/6m) 0.021 0.067 0.069 0.013 0.016 0.021 0.007 6.810 0.027 0.416 <0.01 <0.01 <0.01 <0.01 <u><0.0</u> <u>6</u>.01 <0.01 6.0 10 <0.01 <0.01 <u>60.05</u> (mg/L) ô.0 <u>6</u>.0 > <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 Ti (mg/L) <0.002 **60.002** <0.002 <0.002 0.253 0.215 ICP Diss. ICP Diss. ICP Diss. 0.339 Sr (mg/L) 0.164 0.165 0.219 0.166 0.167 0.174 0.185 0.127 0.304 0.146 <0.05 <0.05 <0.05 <0.05 <0.05 0.05 <0.05 <0.05 \$0.05 50.05 <0.05 <0.05 <0.05 <0.05 Sn (mg/L) <u><0.05</u> 3.23 3.49 1.62 Si (mg/L) 1.89 3.01 2.32 1.89 1.86 1.92 2.26 2.89 2.71 3.55 <0.05 <0.05 <0.05 <0.05 <0.05 ICP Diss. ICP Diss. \$0.05 8 <u>\$0.65</u> \$0.05 80.05 <0.05 Se (mg/L) 6.65 33 <0.05 <u>\$0.05</u> <0.05 <0.05 <0.05 <0.05 <u><0.05</u> <0.05 Sb (mg/L) <0.05 80.05 <u>6</u>.65 \$0.05 \$ <0.05 <0.05 <u>\$0.05</u> <0.05 <0.05 0.0023 0.0020 GF Diss. (mg/L) <0.05 0.0015 <0.05 0.0030 <0.05 0.0016 <0.05 0.0013 <0.05 0.0011 <0.05 0.0021 <0.05 0.0011 <0.05 0.0014 0.0020 <0.05 0.0021 <0.05 0.0027 å <0.05 ô.05 ICP Diss. ICP Diss. ICP Diss. ICP Diss. ICP Diss. Pb (mg/L) <0.05 <u>6</u> å <u>ő</u> ŝ ô. ô. ô. ŝ ő ŝ ő (mg/L) å ĉ ۵. <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 Ni (mg/L) <0.02 <0.02 <u>60.02</u> ≤0.02 60.02 ≜0.02 <0.02 0.07 1.6 <u>,</u> Na (mg/L) 1.4 ເ 6 5.6 ų, 1.6 **0** 2.0 12 1.5 2.4 \$0.01 10.01 <0.01 <0.0⁵ <u>60.0</u> Mo (mg/L) \$0.0⁵ <u>6</u>.0 <u>60.0</u> <0.01 <u><0.0</u> <u>6</u> <u>6</u>00 <u>60.0</u> 6.0 20 2.850 0.362 0.004 <0.001 ICP Diss. Mn (mg/L) 0.031 0.014 0.043 0.040 0.049 0.037 0.010 13.000 0.005 23.8 19.6 ICP Diss. 10.5 12.2 12.8 25.5 12.3 Mg (J/gm) 12.3 12.6 13.0 19.7 29.4 18.2 ICP Diss. (mg/L) K ç ۲ ů Q ç ů ů ů б ů Ŷ ů ů STATION 5 7 2 5 4

ICP Extr. Sb (mg/L)	₹0.05	<0.05	¢0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
GF Extr. # Pb (mg/L)	0.0026	0.0013	0.0006	0.0036	0.0033	0.0119	0.0027	0.0019	0.0019	0.0031	0.0014	8660.0	0.0022
ICP Extr. Pb (mg/L)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	<0.05
ICP Extr. P (mg/L)	6.1	6 .1	40.1	6 .1	6 .1	6 .1	6.1 1	6 .1	6.1 1	6 .1	6 .1	€.1	<0.1
ICP Extr. Ni (mg/L)	€0.02	<0.02	<0.02	€0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	60.0	<0.02
ICP Extr. I Na (mg/L)	1.5	1.4	1.4	1.5	1.0	5.7	1.6	1.6	1.8	2.1	1.3	1.5	2.4
ICP Extr Mo (mg/L)	€0.01	€0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
ICP Extr. Mn (mg/L)	2.780	0.367	0.025	0.041	0.005	0.016	0:050	0.049	0.044	0.058	0.010	13.000	0.025
ICP Extr. Mg (mg/L)	23.4	19.7	10.7	11.9	13.0	25.5	12.2	12.2	12.6	13.0	19.4	29.8	18.1
ICP Extr. K (mg/L)	\$	\$	ç	ç	ç	ç	ç	ç	ç	₽	ç	ç	ç
ICP Extr. Fe (mg/L)	0.206	0.062	0.115	0.114	0.109	0.100	0.151	0.150	0.163	0.336	0.075	12.600	0.140
GF Extr. Cu (mg/L)	<0.005 <0.0005	<0.005 <0.0005	0.0008	0.0013	0.0009	0.0025	0.0011	0.0007	0.0007	±0.0005	:0. 0005	ļ	0.0022
ICP Extr. Cu (mg/L)	<0.005	<0.005	<0.005	<0.005 0.0013	<0.05	<0.005 0.0025	<0.005	<0.005 0.0007	<0.005	<0.005 <0.0005	<0.005 <0.0005	0.124	<0.005 0.0022
ICP Extr. Cr (mg/L)	<0.005	<0.005	<0.005	<0.005	0.006	0.006	<0.05	<0.05	<0.05	<0.05	<0.005	<0.05	<0.005
ICP Extr. Co (mg/L)	<0.05	€0 .05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.021	<0.005
GF Extr. Cd (mg/L)	0.0047	0.0019	<0.005 <0.0001	0.0004	<0.005 <0.0001	0.0009	0.0003	0.0002	0.0003	0.0002	€0.0001	Ĵ	0.0011
ICP Extr. Cd (mg/L)	<0.005 0.0047	<0.005 0.0019	<0.005	<0.005 0.0004	<0.005	<0.005 0.0009	<0.005 0.0003	<0.005 0.0002	<0.005 0.0003	<0.005 0.0002	<0.005 <0.0001	0.183	<0.005 0.0011
	153.0	108.0	34.5	39.6	73.5	96.7	40.5	41.4	42.4	45.7	62.4	230.0	85.0
ICP Extr. ICP Extr. ICP Extr. Ba Be Ca (mg/L) (mg/L) (mg/L)	<0.001	≤0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	^0.001
ICP Extr. Ba (mg/L)	0.059	0.042	0.047	0.058	0.087	0.030	0.062	0.063	0.064	0.081	0.116	0.012	0.025
ICP Extr. B (mg/L)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
STATION	-	7	m	4	G	7	60	G)	0	11	12	13	4

•

_

0.0013 0.0025 0.0019 0.0012 0.0016 0.0008 0.0025 <0.005 0.0010 0.0029 <0.006 GF Total <0.005 0.0030 0.0031 (mg/r) ļ <0.005 <0.05 <0.005 <0.005 <0.005 <u><0.05</u> <0.05 <0.005 <0.05 <0.005 ICP Total <u>^0.05</u> <0.05 0.005 Cu (mg/L) 0.132 <0.05 0.00 **600**.0 <0.005 ICP Total 0.011 0.006 0.007 0.007 0.007 0.007 0.008 0.06 0.012 Cr (mg/r) <0.005 <0.005 <0.005 <0.05 <0.05 <0.005 <0.05 <0.05 <0.05 <0.05 ICP Total <0.05 <0.005 0.069 Co (mg/L) <0.005 <0.0001 0.0025 <0.0001 <0.005 <0.0001 <0.005 0.0010 <0.005 0.0001 <0.005 0.0002 <0.005 0.0007 <0.005 0.0002 <0.005 0.0002 ļ 0.0009 GF Total <0.005 0.0001 Cd (mg/L) <0.05 005 <0.05 60.005 <0.005 0.193 ICP Total ICP Total (ng/L) 162.0 254.0 113.0 34.1 44 2 75.5 100.0 44.2 44.0 44.8 48.4 64.0 92.3 Ca (mg/L) <0.001 <u>60.00</u> <0.001 <u>60.00</u> <0.001 <0.001 <0.001 ICP Total <u>60.00</u> <0.001 <0.001 <0.001 <u><0.05</u> <u>60.00</u> Be (mg/L) 0.060 ICP Total 0.044 0.052 0.061 060.0 0.032 0.063 0.064 0.066 0.083 0.119 0.016 0:030 Ba (mg/L) <0.01 0.01 <0.01 <0.01 <0.01 0.03 0.03 0.0 0.0 ICP Total ICP Total ICP Total 0.02 0.02 0.03 B (mg/L) 0.03 <0.05 <0.05 <0.05 <0.05 0.05 <0.05 <0.05 \$0.05 \$ <0.05 <0.05 <0.05 <0.05 \$0.05 0.05 0.13 \$0.05 0.05 As (mg/L) <0.05 <0.05 <0.05 <0.05 80.05 <0.05 <0.05 <u>8</u>.05 0.0 5 0.34 60.0 0.07 0.72 0.33 AI (mg/L) 0.0006 GF Total <0.01 0.0005 <0.01 0.0006 <0.01 0.0006 <0.01 0.0005 <0.01 0.0006 <0.01 0.0015 <0.01 0.0005 <0.01 0.0006 <0.01 0.0006 <0.01 0.0006 <0.01 0.0007 (J/gm) <0.01 0.0006 <0.01 ICP Total Ag (mg/L) <0.002 0.019 20.500 1.180 0.290 0.003 0.004 0.076 0.015 0.013 0.009 (mg/L) 0.011 0.434 ICP Extr. ñ ≤0.01 <u>60.01</u> <0.01 <0.01 <u>\$0.0</u> <u>60.0</u> <0.01 <u>6</u>0.01 <u><0.01</u> <u>6</u>.0 <u>60.05</u> <u>60.05</u> <u>60.05</u> (mg/L) ICP Extr. > **≤0.002** <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 ≤0.002 <0.002 <0.002 <0.002 <u>60.00</u>2 <0.002 (mg/L) ICP Extr. F 0.163 0.215 0.161 0.219 0.166 0.185 0.243 0.336 0.167 0.173 0.124 4 0.308 (mg/L) ICP EXtr. ັດ <0.05 <0.05 <0.05 <0.05 <0.05 0.05 <0.05 <0.05 <0.05 <0.05 <u>^0.05</u> <0.05 \$0.02 <0.05 (mg/L) ICP Extr. ร 3.17 1. 18 1.81 2.26 1.89 (mg/L) 3.8 ICP EXtr. 3.37 1.81 1.81 2.25 2.61 3.59 3.53 ō <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 0.05 <0.05 <0.05 <0.05 0.05 <0.05 <0.05 \$0.05 80.05 <0.05 (mg/L) CP Extr. å STATION 9 Ξ 2 5 4

ICP Total Zn (mg/L)	1.530	0.366	0.036	0.016	0.040	0.087	0.013	0.010	0.006	0.003	<0.002	27.200	0.564
ICP Total I v (mg/L)	<u>60.05</u>	<0.01	<0.01	<0.01	<0.01	≤0.01	≤0.01	<0.01	<0.01	<0.01	<0.01	€0.01	<0.01
ICP Total Ti (mg/L)	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
ICP Total Sr (mg/L)	0.254	0.214	0.165	0.165	0.339	0.220	0.167	0.168	0.176	0.189	0.126	0.310	0.149
ICP Total Sn (mg/L)	0.06	<0.05	<0.05	<0.05	<u>€0.05</u>	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
ICP Total Si (mg/L)	3.41	3.14	1.62	1.92	3.44	2.33	1.84	1.79	1.91	2.28	2. 6 7	3.77	3.97
ICP Total Se (mg/L)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
ICP Total ICP Total Sb Se (mg/L) (mg/L)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
GF Total Pb (mg/L)	0.0035	0.0010	<0.05 <0.0006	0.0034	0.0044	0.0126	0.0025	0.0023	0.0025	0.0040	0.0014	0660.0	0.0032
ICP Total Pb (mg/L)	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.08	<0.05
ICP Total P (mg/L)	€0.1	<0.1	6 .1	6 .1	6.1	<0.1	<0.1	6 .1	<0.1	s0.1	6 .1	6 .1	6 .1
ICP Total Ni (mg/L)	<0.02	60.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.10	<0.02
ICP Total Na (mg/L)	1.4	1.3	1.3	1.5	1.0	5.5	1.5	1.5	1.8	2.0	1.3	1.4	2.4
ICP Total Mo (mg/L)	<0.01	<0.01	6 .01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	≤0.01	<0.01
ICP Total Mn (mg/L)	2.940	0.375	0.025	0.042	0.006	0.016	0.051	0.049	0.045	0.059	0.011	13.500	0.026
ICP Total Mg (mg/L)	24.5	20.2	10.8	12.3	13.4	26.3	12.3	12.5	13.0	13.4	20.3	31.4	18.0 0
ICP Total K (mg/L)	₽	'n	\$	ç	ç	ç	₽	\$	₽	с	ç	ç	ç
ICP Total ICP Total ICP Total Fe K Mg (mg/L) (mg/L) (mg/L)	0.222	0.096	0.128	0.148	0.286	0.137	0.180	0.163	0.193	0.357	0.092	12.800	0.326
ICP Total Fe STATION (mg/L)	-	0	m	4	G	7	60	G)	6	;	1 2	13	4

SULFATE (mg/L)	e Leo	267.0	0.861	2.14 2.14	2.2	110.0	55.7		2 F 7	5	2 F	/.R0	284.0	100.0	50.5	93.5	351.0	302.0	443.0	105.0	1090.0
(EXTR.) TOTAL HARDNESS (mg/L)	ļ	47.0 7.0	R/7	15	i t	237	144	150	841				A 4 0	A77	171	40 I	514	456	743	750	1330
(EXTR.) HARDNESS (ascaco3) + (mg/L)	300		117	n (1	171	231	143	149	147	148	VEC	5	2 6	577	121		710	5 5	655	698	1190
(DISS.) TOTAL I HARDNESS (mg/L)	E.F.	510	517 0C1	140	175	227	<u>1</u>	147	148	150	22	727		677 131	2 4			447	723	723	1280
(DISS.) HARDNESS (asCaCO3) (mg/L)	OVE	57 C	ACT	1 1	174	226	143	147	147	. 149	231		1 C C	130	5 5		t (443	676	669	1150
TOTAL ALK. (ascacO3) (mg/L)	101	118		3	157	136	3 8	8	103	107	182	115	27	110	901	247			355	287	151
TURB. (FTU)	1.0	40	0.2	5.0	0.2	0.4	0.3	0.3	0.3	0.3	0.4	15.0	03	0.2	3.0		4 0	יכ	40.0	25.0	10.0
COLOR (REL. U.)	6	15	5	5	15	25	20	15	20	20	ŝ	ŝ	15	4	20	Ŷ	ç	2 ;	80	S	\$
DISSOLVED %DISSOLVED OXYGEN OXYGEN (mg/L) SATURATION	86.4	8 6.3	5 8.4	n/a	n/a	8 9.4	85.6	8 5.6	84.8	83.5	n/a	e/u	e/u	n/a	n/a	e/u			n/a	n/a	n/a
DISSOLVED	10.5	11.9	10.8	n/a	n/a	11.7	10.7	10.7	10.6	10.7	n/a	n/a	n/a	n/a	n/a	n/a	e/u			n/a	e/u
LAB COND. (umhos/cm)	750	5 69	269	298	361	473	305	320	311	317	486	822	466	267	322	986	838	1500	Del	1560	2540
IN SITU COND. (umhos/cm)	460	302	168	150	197	270	185	189	180	162	265	470	259	n/a	172	580	468	0 Z B	200	n/a	1290
Ha Ba	8.0	6.1	8.1	8.1	6 .3	8.1	6 .1	8	0. 1	8.1	8 .2	7.9	7.7	8.2	7.9	8 .2	7.9	11		8.0	7.4
Ha	п/а	n/a	n/a	n/a	a/n	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	e/u		n/a	e/u
TEMP (C)	6.0	2.2	6.8	7.2	2.2	4.5	6 2	6.2	6.0	5.1	4.2	3.2	2.8	n/a	3.1	4.1	2.9	2.9		B /1	5.0
SAMPLE DATE	20-Sep-90	20-Sep-90	20-Sep-90	20-Sep-90	21-Sep-90	19-Sep-90	19-Sep-90	19-Sep-90	19-Sep-90	19-Sep-90	21-Sep-90	20-Sep-90	20-Sep-90	21-Sep-90	21-Sep-90	21-Sep-90	21-Sep-90	21-Sep-90		ne-dec-17	20-Sep-90
STATION	-	ы	m	4	9	-	ю с	ж (2 :	11	12	13	14	15	16	17	1 8	19	ç	2	21

-

		TOTAL		NITRITE+				ICP Diss.	GF Diss.	ICP Diss.	ICP Diss.	ICP Diss.	ICP Diss.	ICP Diss.	ICP Diss.	ICP Diss.
	CHLORIDE	٩	NITRITE	NITRATE	AMMONIA	Æ	NFR	βą	βą	Ы	As	ß	Ba	Be	S	8
STATION	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
-	-	0.006	<0.002	0.112	0.005	570	¢	<0.0>	6000 [.] 0	<u>6.05</u>	<u>6</u> .05	<u>6</u> 0	0.045	<0.001 100	117.0	<0.005
7		0.004	<0.002	0.120	<0.002	430	¢10	<0.01	0.0013*	<0.05	<0.05	20.0×	0.032	<0.001	818	<0.005
ю	0.5	0.005	<0.002	0:030	0.006	181	<10 <10	<0.01	6000.0	<0.05	<0.05	<0.01	0.040	<0.00	34.3	<0.05 200.05
4	0.6	0.004	<0.002	0.034	0.014	190	<10	<0.01	0.0011*	<0.05	<0.05	<0.01	0.043	<0.001	38.0	<0.005
9	0.6	0.002	<0.002	0.158	0.003	230	<10	<0.01	0.0015*	<0.05	<0.05	<0.01	0.059	<0.001	54.5	<0.005
-	2.5	0.003	<0.002	0.036	0.007	330	6 10	<0.01	0.0012	<0.05	<0.05	<0.01	0.022	<0.001	61.3	<0.005
60	0.6	0.004	<0.002	0.037	0.007	198	0 } ♥	<0.01	0.0013*	0.05	<0.05	<0.01	0.045	<0.001	38.9	<0.005
თ	0.7	0.004	<0.002	0.036	0.009	210	6	<0.01	0.0013*	<0.05	<u>60.05</u>	<0.01	0.046	<0.001	39.6	<0.005
6	0.6	0.004	<0.002	0.036	0.008	200	67	<0.01	0.0012*	<0.05	<0.05	<0.01	0.047	<0.001	40.1	<0.005
£	8.0	0.004	<0.002	0.035	0.007	200	6	<0.01	0.0014*	<0.05	<0.05	<0.01	0.053	<0.001	40.7	<0.005
5	0.8	0.003	<0.D02	0.238	0.012	274	6 10	<0.01	0.0013*	<0.05	<0.05	<0.01	0.110	<0.001	61.4	<0.005
13	0.8	0.008	<0.002	0.201	0.015	639	1	<0.01	0.0008*	<0.05	<0.05	<0.01	0.017	<0.001	129.0	0.114
4	0.9	0.012	<0.002	0.340	0.005	344	20	<0.01	0.0011*	<0.05	<u>\$0.05</u>	0.01	0.023	<0.001	65.8	0.011
- 15	0.6	0.006	<0.002	0.046	0.008	190	¢10	<0.01	0.0013*	<0.05	<0.05	<0.01	0.055	<0.001	36.0	<0.005
16	0.7	0.012	<0.002	0.049	0.017	220	0	<0.01	0.0012	<0.05	<0.05	<0.01	0:050	<0.001	42.3	<0.005
17	8.8	0.004	<0.002	0.517	0.043	750	<u><10</u>	<u><0.0</u> 1	0.0008	<0.05	<0.05	0.01	0.031	<0.001	162.0	0.007
6	4.9	0.006	0.005	0.163	0.291	660	6	<0.01	0.0008*	<0.05	<0.05	<0.01	0.052	<0.001	128.0	<0.05
19	11.7	0.099	0.003	0.025	6.810	1000	140	<0.01	0.0007	<0.05	<0.05	<0.01	0.450	<0.001	189.0	0.006
20	10.5	0.017	0.002	0.037	0.492	1120	20	<0.01	0.0006*	<0.05	<u>60.05</u>	<0.01	0.053	<0.001	189.0	0.042
21	6.0	0.013	<0.002	<0.002	0.092	2170	6	<0.01	0.0016*	<0.05	0.16	<0.01	0.014	<0.001	393.0	0.020

Note: * Indictes GF Tot. Ag < GF Diss. Ag

GF Diss. ICP Diss. Pb Sb		0.0022	0.0019	0.0008	0.0011			0.0046	0.0046	0.0046 0.0016 0.0021	0.0016 0.0016 0.0019 0.0019	0.0016 0.0016 0.0019 0.0019 0.0019	0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001	0.0012 0.0015 0.0019 0.0013 0.0012 0.0012	0.0015 0.0015 0.0019 0.0012 0.0017 0.0017 0.0017	0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	0.0016 0.0016 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015	0.0016 0.0016 0.0015 0.0015 0.0015 0.0015 0.0016 0.0016	0.0016 0.0016 0.0015 0.0015 0.0015 0.0016 0.0016 0.0016 0.0016	0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.00000000	0.00046 -0.005 0.00046 -0.05 0.00019 -0.05 0.0019 -0.05 0.00117 -0.05 0.00117 -0.05 0.00117 -0.05 0.00117 -0.05 0.00117 -0.05 0.00117 -0.05 0.0012 -0.05 0.0013 -0.05 0.0014 -0.05 0.0015 -0.05 0.0016 -0.05 0.0017 -0.05 0.0018 -0.05 0.0019 -0.05 0.0025 -0.05 0.0025 -0.05 0.0010 -0.05 0.0010 -0.05
ICP Diss. Pb			·			•		_													
ICP Diss. P	(J/ɓw)				2 40.1																
ICP Diss. Ni	(mg/L)	20.0×	0.0×	<0.0×	\$0.0×	\$0.0×		0.0×	0.0	0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
ICP Diss. Na	(mg/L)	1.3	1.2	1.2	1.2	0.8		2.4	2.4	2.4 1.1 1.3	2.4 1.1 4.1	2. 1. 1. 1. 1. 2. 1. 1. 1. 1. 2. 2. 4. 1.	4	9 4 6 4 4 6 6	2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 0 0 4 0 4 4 0 0 0 0	2 2 4 	2	2	2
ICP Diss. Mo	(mg/L)	0.0>	<0.01	<0.01	<0.01	<0.01		<0.01	10.0> 10.0>	10.0 10.0	0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2	2	2	2	2	2	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
ICP Diss. Mn	(mg/L)	1.41	0.33	0.02	0.03	0.0	20.0	10.0	0.04	0.04	0.04	0.0 0.0 0.0 0.0 0.0	0.03 0.03 0.03 0.03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.04 0.03 0.03 0.03 1.22	0.04 0.02 0.03 0.02 0.02 0.02 0.02 0.02	0.04 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.02	0.04 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.01	0.04 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02	0.04 0.02 0.03 0.01 1.22 0.01 1.22 0.03 0.24 0.01 0.25 0.01	0.04 0.04 0.03 0.03 0.02 0.03 0.02 0.03 0.01 0.02 0.03 0.01 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02
ICP Diss. Mg	(mg/L)	18.6	16.2	10.3	10.8	9.3	177		11.2	11.2 11.6	11.2 11.6 11.5	11.2 11.6 11.5 11.5	71.5 11.6 11.5 0.0 0.0	71.5 11.6 11.6 12.0 13.0 10.0 10.0 10.0 10.0 10.0 10.0 10	7.1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	7.11 2.11 2.11 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65	7.1. 11.5 11.5 11.5 11.5 11.5 11.5 26.5 26.5 26.5 26.5 26.5	7.1. 11.5 11.5 11.5 14.3 26.6 14.3 26.6 26.6 26.6 26.6 26.6 26.6 26.6 26	7.1. 11.5 11.5 11.5 11.5 11.5 11.5 11.5	7.1. 1.1.5 1.5
icp diss. K	(mg/L)	\$	ç	ب	\$	\$	ç	2	2 4	2 4 4	2 4 4 4	2 4 4 4 4				,	,	,	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	,
ICP DIss. Fe	(mg/L)	0.033	0.031	0.036	0.034	0.008		0.044	0.078	0.044 0.078 0.048	0.048 0.078 0.048 0.070	0.044 0.076 0.048 0.070 0.089	0.044 0.078 0.045 0.070 0.089 0.011	0.044 0.076 0.048 0.070 0.070 0.011	0.044 0.078 0.070 0.070 0.070 0.011 6.005 0.013	0.044 0.076 0.070 0.089 0.089 0.011 0.011 0.013	0.019 0.076 0.070 0.011 0.011 0.013 0.038 0.038 0.038	0.019 0.076 0.070 0.011 0.011 0.015 0.005 0.038 0.038 0.038	0.014 0.078 0.070 0.011 0.011 0.015 0.005 0.003 0.003 0.003 0.003 0.003	0.014 0.078 0.070 0.070 0.011 0.013 0.019 0.019 0.019 0.019 0.005 13.600	0.044 0.078 0.070 0.070 0.011 0.013 0.019 0.019 0.019 0.019 0.019 0.025 13.600 0.025 13.600 0.025 0.025 0.225 0.225
GF Diss. Cu	(mg/L)	0.0016	0.0016	0.0018	0.0019	0.0018		0.0052	0.0052	0.0052 0.0035 0.0026	0.0052 0.0035 0.0026	0.0052 0.0035 0.0026 0.0028 0.0025	0.0052 0.0035 0.0026 0.0028 0.0025 0.0011	0.0052 0.0035 0.0026 0.0026 0.0025 0.0011	0.0052 0.0035 0.0026 0.0028 0.0025 0.0025 0.0025 0.0024	0.0052 0.0035 0.0026 0.0025 0.0025 0.0025 0.0033 0.0033	0.0052 0.0035 0.0026 0.0025 0.0011 0.0025 0.0033 0.0033 0.0033	0.0052 0.0035 0.0026 0.0011 0.0035 0.0033 0.0033 0.0033 0.0033	0.0052 0.0035 0.0026 0.0025 0.0033 0.0033 0.0033 0.0033 0.0033 0.0025 0.0033 0.0025	0.0052 0.0035 0.0026 0.0025 0.0034 0.0033 0.0033 0.0025 0.0030 0.0025 0.0022	0.0052 0.0026 0.0025 0.0011 0.0084 0.0084 0.0033 0.0025 0.0025 0.0025 0.00221 0.0022
ICP Diss. Cu	(mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	<0.005 <0.005	40.00540.00540.005	0.005 0.005 0.005 0.005	 ▲0.005 ▲0.005 ▲0.005 ▲0.005 ▲0.005 	 ▲0.005 ▲0.005 ▲0.005 ▲0.005 ▲0.005 ▲0.005 ▲0.005 	200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	 0.005 	 0.005 	 0.005 	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.010 0.010	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.010 0.010 0.010 0.010 0.010 0.010 0.005 00000000	0.005 00000000
ICP Diss. Cr	(mg/L)	<0.05	<0.005	<0.005	<0.005	<0.005		<00 ^{.0>}	<00.005 ▲0.005	40.00540.00540.00540.005	00.05 200.05 200.05 200.05	40.005 40.005 40.005 40.005 40.005	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	200.0 200.00	00.02 00.05 00	00.02 00.05 00.05 00.05 00.05 00.05 00.05 00.05 00.05 00.05 00.05	000.02 000.05	200.02 200.05 20	200.02 200.05 20	200.02 200.05 20	200.0 200.00
ICP Diss. Co	(mg/L)	<0.05	<0.005	<0.05	<0.05	<0.005		c00.0>	con.u> 900.0>	cuuu> 200.05 200.05	500.0 500.0 500.0 500.0 500.0	200.05 200.05 200.05 200.05	200.05 200.05 200.05 200.05 200.05 200.05	200.05 200.05 200.05 200.05 200.05 200.05 200.05	800.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	800.0 80	200.0 200.00	200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05	200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05 200.05	0.000 0.0000 0.0000 0.0000 0.0000 0.000000	00.05 0.
GF Diss. Cd	(mg/L)	0.0035	0.0018	0.0002	0.0003	<0.0001		0.0014	0.0003	0.0014 0.0003 0.0004	0.0003 0.0003 0.0004 0.0003	0.0014 0.0003 0.0003 0.0003	0.0014 0.0003 0.0004 0.0003 0.0001 0.0001	0.0014 0.0003 0.0004 0.0003 0.0001 0.0001	0.0014 0.0003 0.0003 0.0003 0.0001 0.0001 0.0001	0.0003 0.0003 0.0003 0.0001 0.0001 0.0001 0.0003 0.0003	0.0003 0.0003 0.0003 0.0001 0.0001 0.0003 0.0003 0.0003	0.0003 0.0003 0.0003 0.0001 0.0001 0.0003 0.0002 0.0002	0.0003 0.0003 0.0003 0.0001 0.0003 0.0008 0.0002 0.0003 0.0003 0.0003	0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003	0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0003 0.0003
	STATION	-	7	e	4	9		7	~ •0	⊳ 40 0 3	~ * 0 0	~ * * * * * * *	~ * * * * * * * *	7 8 6 0 7 7 7 8	~ * * * * * * * *	∧ ∞ ∞ 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	∧ ∞ ₀ 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	~ e e e e e e e e e e e e e e e e e e e	~ eo eo c : c : c : c : c : e : c : c : c : c : c	се в с : : : : : : : : : : : : : : : : : :	~ ㅎ ㅎ

Note: * Indictes GF Tot. Pb < GF Diss. Pb

	ICP Diss.	tCP Diss.	ICP Extr.	GF Extr.	ICP Extr.											
	ß	ខ	ъ	Sr	Ŧ	>	Zn	βġ	Ag	₹	\$	63	Ba	å	ů	ខ
STATION	(mg/L) (mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	, (mg/L)									
-	<0.05	3.15	\$0.05	0.183	<0.002	<0.01	0.922	<0.0>	0.0007	<0.05	<0.05	€0.05	0.049	<0.0>	123.0	<0.005
7	<0.05		<0.05	0.160	<0.002	<0.01	0.445	<0.01	0.0012	<0.05	<0.05	<0.01	0.035	<0.001	83.2	<0.005
n	<0.05		<0.05	0.142	<0.002	<0.01	0.022	<0.01	0.0010	0.08	<0.05	<0.01	0.043	<0.001	34.6	<0.005
4	<0.05		<0.05	0.141	<0.002	<0.01	0.038	<0.01	0.0012	0.07	<0.05	<0.01	0.046	<0.001	38.2	<0.005
9	<0.05		<0.05	0.247	<0.002	<0.01	0000	<0.01	0.0014	<0.05	<0.05	<0.01	0.062	<0.001	53.1	<0.005
7	<0.05		<0.05	0.144	<0.002	<0.01	0.199	€0.01	0.0013	<0.05	<0.05	<0.01	0.023	<0.001	62.7	<0.005
Ø	<0.05		<0.05	0.142	<0.002	<0.01	0:050	<0.01	0.0012	0.05	<0.05	<0.01	0.049	<0.001	38.7	<0.005
0	<0.05		<0.05	0.145	<0.002	<0.01	0.045	<0.01	0.0012	0.05	<0.05	<0.01	0.048	<0.001	40.3	<0.005
1 0	<0.05	2.15	<0.05	0.153	<0.002	<0.01	0.033	<0.01	0.0013	<0.05	<0.05	<0.01	0.049	<0.001	39.8	<0.005
11	<0.05		<0.05	0.153	<0.002	<0.01	0.025	<0.01	0.0014	<0.05	<0.05	<0.01	0.055	<0.001	40.2	<0.005
12	<0.05		<0.05	0.117	<0.002	<0.01	0.003	<0.01	0.0011	<0.05	<0.05	<0.01	0.116	<0.001	61.4	<0.005
13	<0.05		<0.05	0.193	<0.002	<0.01	8.660	<0.01	0.0009	0.21	<0.05	<0.01	0.017	<0.001	131.0	0.132
4	<0.05		<0.05	0.109	<0.002	<0.01	2.120	<0.01	0.0010	<0.05	<0.05	<0.01	0.024	<0.001	65.6	0.007
15	<0.05		<0.05	0.119	<0.002	<0.01	0.010	<0.01	0.0013	<0.05	<0.05	<0.01	0.057	<0.001	34.4	<0.05
16	<0.05		<0.05	0.125	<0.002	<0.01	0.137	<0.01	0.0012	0.10	<0.05	0.01	0.054	<0.001	43.8	<0.005
17	<0.05		<0.05	0.210	<0.002	<0.01	0.354	<0.01	0.0014	<0.05	<0.05	<0.01	0.033	<0.001	160.0	<0.005
18	<0.05		<0.05	0.298	<0.002	<0.01	0.381	<0.01	0.0006	<0.05	<0.05	<0.01	0.057	<0.001	128.0	<0.005
19	<0.05		<0.05	0.561	0.002	<0.01	0.151	<0.01	0.0017	0.41	0.11	<0.01	0.600	<0.001	180.0	0.006
20	<0.05	•	<0.05	0.343	<0.002	<0.01	5.030	<0.01	0.0007	<0.05	<0.05	0.01	0.059	<0.001	194.0	0.052
21	<0.05	4.26	<0.05	0.438	<0.002	<0.01	33.200	0.01	0.0017	<0.05	0.21	<0.01	0.014	<0.001	407.0	0.025

6.05 6.05 6.05 6.05 6.05 6.05 6.05 €0.05€0.05€0.05 <0.05 0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05 0.05 0.05 0.05 ICP Extr. (mg/L) å \$0.05 <0.05 <0.05 \$0.05 8.0 8 <0.05 \$0.65 86.05 <0.05 <0.05 8. 8 <0.05 <u>60.05</u> <u>\$0.05</u> <u>\$0.05</u> \$0.05 <0.05 <u>6</u>.65 8.0° 80.0° <u>8</u>.6 ICP Extr. (mg/L) ട് 0.0041 0.0045 0.0044 0.0039 0.0039 0.0559 0.0017 0.0033 0.1890 0.1890 0.0122 0.0040 0.0008 0.0027 0.0007 0.0160 0.1080 0.0279 0.0028 GF Extr. dq (Mg/L) ô. 8 <0.05 <0.05 <0.05 < <0.05 <u><0.05</u> <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <u><0.05</u> <0.05 <0.05 ≤0.05 <0.05 ô. 8 0.15 <0.05 <u>8</u>.8 ICP EXT. Pb (mg/L) ŝ ô ô. <u>6</u> 6 ŝ ŝ ĉ ô. ô. ê. ê. ô ô ICP Edt. (mg/L) ۵. <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 60.02 0.04 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 6.020.020.41 ICP Extr. Ni (mg/L) 12 26.6 10.4 1.9 Ξ 8.0 2.4 1,2 ÷. Ű. 4. 12 1.5 0.9 6.0 3.1 ICP EXII. Na (mg/L) ±0.0> <0.01 <0.01 0.05 10.05 <0.01 10.0≥ 10.0≥ 0.0 10.0 <0.01 <0.01 60.01 10.05 ô.01 6.01 <0.01 0.0 ICP Extr. (պել) ŝ 1.520 0.347 0.024 0.043 0.043 0.046 0.046 0.046 0.046 0.046 0.046 0.026 9.100 1.233 0.253 0.194 2.180 6.450 25.300 42.200 (mg/L) ICP Extr. ž 14.5 9.9 12.1 27.4 10.6 11.2 9.4 18.2 11.4 1.8 11.6 11.6 19.5 20.1 31.3 49.6 51.5 9.6 6.6 12.6 ICP Extr. Mg Mg 8888888888 000 0 0 ICP Extr. (mg/L) ¥ 0.040 0.127 0.131 0.132 0.136 0.176 0.241 0.079 0.283 0.107 0.116 0.122 3.030 0.038 0.043 0.475 0.796 40.900 1.650 3.530 5.150 ICP Extr. (mg/L) ۹. 0.0011 0.0008 0.0002 0.0012 0.0013 0.0013 0.0013 0.0016 0.0016 0.0016 î 0.0015 0.0015 0.0172 0.0031 0.0019 0.0048 0.0041 0.0104 GF Edt. ng/L) (mg/L) <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <u>60.005</u> <0.005 <u><0.05</u> 0.069 0.018 <0.05 <0.05 200.05 ICP Extr. (mg/L) 3 200.05 200.05 200.05 200.05 60.005
60.005
60.005
60.005
60.005 20.05
 20.05
 20.05
 20.05
 20.05
 20.05
 20.05
 20.05
 20.05
 20.05
 20.05 <0.005 <0.005 us (j ICP Extr. <0.005 <0.005 0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005
0.005 ICP Extr. (mg/L) გ 0.0042 0.0024 0.0001 0.0004 0.0001 0.0001 0.0003 0.0003 0.0003 0.0001 0.0001 0.0001 0.0097 0.0001 0.0024 0.0061 0.0043 0.0020 ļ ĵĴ GF Extr. (mg/L) 3 STATION

0.0002 0.0004 0.00018 0.0018 0.0004 0.0005 0.0003 -0.0001 0.0100 0.0002 0.0025 0.0057 0.0057 0.0026 0.0046 0.0027 Î ļ (mg/L) GF Tot. Cd <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.05 <0.005 <0.005 <0.005 0.124 0.007 0.007 0.005 0.056 0.027 (mg/L) ICP Tot. 8 62.5 38.9 130.0 65.5 37.0 170.0 34.6 40.7 404 62.8 136.0 192.0 210.0 121.0 83.9 38.4 55.4 39.7 44.6 422.0 ICP Tot (mg/L) ő 60.001 <0.001<0.001<0.001 <0.001 <0.001 60.001
 60.001
 60.001 <0.001 <0.001 <0.001 <0.001 ≤0.001 60.001 €0.001 <0.001 <0.001 <u>60.00</u> <0.001 (mg/L) ICP Tot. å 0.063 0.023 0.049 0.049 0.050 0.115 0.017 0.025 0.055 0.043 0.047 0.054 0.052 0.033 0.056 0.595 0.015 0.048 0.035 0.057 ICP Tot. (mg/L) Ba <u>60.05</u> <0.05 <u>60.05</u> <u>60.05</u> <u>6</u>00 <u><0.01</u> <u>60.01</u> <0.01 <0.01 <u>60.05</u> \$0.0¹ <u>60.0</u> <0.01 <u>6</u>.0 <u>60.0</u> <u>60.05</u> <u>6</u>0.0 <u>60.0</u> 0.0 0.02 ICP Tot. (mg/L) ۵ <0.05 <0.05 <0.05 <0.05 8.0 8 <u>60.05</u> <0.05 <0.05 <0.05 <u>60.05</u> <0.05 <u>60.05</u> <u><0.05</u> <0.05 \$0.05 <u>\$0.05</u> <0.05 <0.05 0.15 0.08 ICP Tot. (mg/L) ধ <0.05 <0.05 <0.05 **0**.10 0.08 <0.05 0.10 <u>60.05</u> 0.05 0.06 0.12 0.11 0.11 0.11 0.21 0.10 0.08 1.35 0.11 <u>60.05</u> ICP Tot. (mg/L) ¥ 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.00010 0.00010 0.00012 0.00012 0.00012 0.00012 0.00012 0.00012 0.0012 0.0013 0.0006 0.0010 0.0005 (mg/L) GF Tot. ₽ <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <u><0.01</u> <0.0 <0.0 <0.01 <0.01 <0.01 <0.01 <0.01 \$0.01 <0.01 <0.01 <u>6</u>.0 <u>6</u>.0 <u>60.0</u> ICP Tot. (mg/L) \$ 0.048 <0.002 <0.002 10.400 1.010 0.473 0.018 0.050 0.065 0.042 0.032 2.150 0.217 0.004 0.163 0.398 0.443 0.2**33** 5.640 34.700 ICP Extr. (mg/L) чz <0.01 <0.01 <u>*0.0</u> <u>6</u>.0 <0.01 <u>60.05</u> <0.01 <0.01 <u>6</u>0.0 <u>*0.0</u> <0.01 <0.01 <0.01 <u>60.0</u> <0.01 <0.01 <0.01 <u>60.0</u> ô.0 6.01 10.02 ICP Extr. (mg/L) > <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.010 <0.002 0.003 ICP Extr. (mg/L) F 0.148 0.146 0.150 0.156 0.199 0.168 0.147 0.254 0.149 0.155 0.122 0.197 0.111 0.122 0.132 0.221 0.316 0.594 0.374 0.464 ICP Extr. (mg/L) ര് <u>*0.05</u> <0.05 <0.05 <0.05 <0.05 0.05 \$0.05 <0.05 8.05 8 \$0.05 \$0.05 8. 8 \$0.65 <0.05 0.05 <u>\$0.05</u> <u>6</u>0.05 <0.05 0.05 <u>60.05</u> 6.05 80 <u>6</u>.05 ô.05 ICP Extr. (mg/L) ъ 3.42 2.90 1.90 1.99 2.49 2.68 2.04 2.04 2.18 2.23 2.83 3.21 3.42 2.69 10.10 3.14 4.74 3.21 5.34 ICP Extr. (J/Gw) ١Ū. STATION 6 ო •0

200

-

ICP Tot. Se (mg/L)		<0.05	<0.05	<0.05	0.06	<0.05	<0.05	<0.05	<0.05	<0.05		8.2	<0.05	<0.05	<0.05	<0.05	<0.05	0.06	200	c0.0×	<0.05	<0.05	<0.05
ICP Tot. Sb (mg/L)		8.0v	60.05	<0.05	<0.05	<u><0.05</u>	<0.05	<0.05	<0.05	<0.05	20.01	50.04	<0.05	8.0 8.0	<0.05	<0.05	<0.05	<0.05	10.05	5.04	<0.05	<0.05	<0.05
GF Tot Pb (mg/L)		0.0130	0.0044	0.0010	0.0021	6000 0	0.0161	0.0038	0.0042	0.0047	0 0041	1 100.0	2100.U	0.0564	0.0015	0.0016	0.0025	0.1600	0.0260		0.0870	0.0260	0.0023
ICP Tot. Pb (mg/L)	200	5.0	-0.05 - 0.05	6 .0	SO.0 >	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.0	<u>s</u>	6 .02	<0.05	<0.05	<0.05	0.18			0.06	<0.05	<0.05
ICP Tot. P (mg/L)	ţ,	Ż	Ş	Ş		6 .1	<u>6</u> .	6 .1	<u>6</u> .1	6 .1	40 T	į	- -	7	<u>6</u> .1	<u>6</u> .1	<0.1	6 .1	40 1		7.0	<u>6</u> .1	0.1
ICP Tot. Ni (mg/L)	5003					20.02	<0.02	<0.02	<0.02	<0.02	<0.02	200	30.0		20.02	<0.02	<0.02	<0.02	<0.02		20.02	0.03	0.43
ICP Tot. Na (mg/L)	1	; ;	<u>i</u> 5		4 e	0 I 0 (6 7	1.2	1.3	1.3	1.4		<u>i</u> 1	? ?	7	1.0	0.8	5.5	3.1	010	0.43	9.6	1.8
ICP Tot. Mo (mg/L)	6 0	<0.05					5.0	-0.04	<0.01	<0.01	<0.01	<0.01	×0.01			10.02	<0.01	<0.01	<0.01	<0.02		<0.01	<0.01
ICP Tot. Mn (mg/L)	1.530	0.356	0.024	0.045					0.047	0.047	0.041	0.024	9.210	1 250	1000		0.254	0.213	2.320	6 840		001.20	68.900
ICP Tot. Mg (mg/L)	19.8	17.1	10.7	114	0 7	18.2		0 C	0.71	11.7	11.7	20.0	20.3	14 7	ç		1.21	27.9	32.0	50.1		4.70	43.3
ICP Tot. K (mg/L)	\$	Ŷ	\$ \$	\$ \$	Ŷ	' \$	÷۲	7	7	6	Ċ,	с	\$	Ŷ	• 5	, ,	7	6	ç	2		,	ç
ICP Tot. Fe (mg/L)	0.303	0.131	0.149	0.172	660 .0	0.150	0 164	0.181		0.214	0.275	0.095	3.000	0.069	0.071	1 540	1-0-1	0.907	0.849	42.100	3 650		5.260
GF Tot Cu (mg/L)	0.0015	0.009	0.0027	0.0012	0.009	0.0022	0.0016	0.0012			0.0011	<0.006	ļ	0.0022	0.0014	0.0177		0.0039	0.0018	0.0064	0.0028	0200.0	0200.0
ICP Tot. Cu (mg/L)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005			0.013	<0.005	0.066	<0.005	<0.005	0 017	1000		<0.005	0.006	<0.005	2000	600.0×
ICP Tot. Cr (mg/L)	0.006	0.006	<0.005	0.006	<0.05	<0.005	<0.06	<0.05			cm.n	<0.005	<0.005	<0.005	0.007	<0.005	2000	100.0	<0.005	<0.005	0.005	10.00	
ICP Tot. Co (mg/l)	<0.005	<0.005	<0.005	<0.005	<0.005	<0.05	<0.005	<0.005	<0.005		500.02	<0.005	0.025	<0.005	<0.005	0.010	5000		500 .0	0.204	0.029	2010	60.0
STATION	-	0	ო	4	9	7	60	0	10	; ;	:	12	13	14	15	16	17	: :	9	19	20	2	i

	ICP Tot.					
	ß	ß	ي ا	F	>	z
STATION	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
۳	3.28	<0.05	0.192	<0.002	<0.01	1.140
0	2.89	<0.05	0.166	<0.002	<0.01	0.549
e	1.94	<0.05	0.145	<0.002	<0.01	0.033
4	2.07	<0.05	0.146	0.002	<0.01	0.061
9	2.63	<0.05	0.253	0.003	<0.01	0.00
7	2.63	<0.05	0.146	<0.002	<0.0>	0.254
ø	2.16	<0.05	0.148	<0.002	<0.01	0.063
6	2.17	<0.05	0.148	<0.002	<0.01	0.073
10	2.25	<0.05	0.152	0.002	<0.01	0.049
1	2.24	<0.05	0.152	<0.002	<0.01	0.042
12	2.82	<0.05	0.121	<0.002	<0.01	0.004
13	3.11	<0.05	0.193	<0.002	<0.01	11.800
14	3.43	<0.05	0.110	0.003	<0.01	2.450
15	2.72	<0.05	0.118	<0.002	<0.01	0.015
16	3.04	<0.05	0.127	<0.002	<0.01	0.198
17	4.81	<0.05	0.213	0.005	<0.01	0.514
18	3.30	<0.05	0.310	0.003	<0.01	0.550
19	11.90	<0.05	0.566	0.043	<0.01	0.314
20	5.27	<0.05	0.361	<0.002	<0.01	6.880
21	4.40	<0.05	0.451	<0.002	<0.01	41.400

APPENDIX III

STREAM SEDIMENTS DATA

APPENDIX III TABLE1 PERCENT PARTICLE SIZE DISTRIBUTION, JULY 24 - 26/90

				% \$	Size Range	mm			Total Weight
STATION	SAMPLE #	<0.063	0.063-0.15				1.0-2.0	>2.0	g
1	1	0.4	0.8	1.3	4.3	9.5	18.9	81.1	236.1
	2	7.8	14.9	20.0	30.8	42.6	64.6	35.4	213.4
	3	0.4	0.8	1.5	5.2	12.3	23.1	76.9	263.7
	mean	2.9	5.5	7.6	13.4	21.5	35.5	64.5	237.7
	STD	4.3	8.1	10.7	15.0	18.4	25.3	23.3	25.2
2	4	0.3	0.7	1.4	5.1	13.3	25.4	74.6	199 .0
	5	0.3	0.5	1.0	3.0	7.8	20.8	79.2	209.2
	6	0.2	0.3	0.6	2.3	7.3	16.0	84.0	251.1
	mean	0.3	0.5	1.0	3.5	9.5	20.7	79.3	219.8
	STD	0.1	0.2	0.4	1.5	3.3	4.7	4.7	27.6
3	7	1.4	2.5	3.7	6.6	9.1	16.2	83.8	177.3
	8	0.2	0.5	0.8	3.6	6.8	12.9	87.1	131.6
	9	0.8	1.6	2.6	10.5	18.3	30.5	69.5	204.8
	mean	0.8	1.5	2.4	6.9	11.4	19.9	80.1	171.2
	STD	0.6	1.0	1.5	3.5	6.1	9.4	9.4	37.0
4	10	0.4	1.1	2.7	9.4	14.3	21.5	78.5	336.7
	11	0.2	0.6	2.1	12.6	19.9	27.8	72.2	310.1
	12	0.8	2.5	6.3	26.0	41.8	50.0	50.0	272.8
	mean	0.5	1.4	3.7	16.0	25.3	33.1	66.9	306.5
	STD	0.3	1.0	2.3	8.8	14:5	15.0	15.0	32.1
7	19	0.1	0.3	0.8	4.8	11.4	19.6	80.4	244.8
-	20	0.0	0.2	0.5	6.1	11.8	15.6	84.4	317.9
	21	0.0	0.2	0.4	4.8	12.4	22.1	77.9	307.8
	mean	0.0	0.2	0.6	5.2	11.9	19.1	80.9	290.2
	STD	0.1	0.1	0.2	0.8	0.5	3.3	3.3	39.6
8	22	1.2	3.6	8.4	18.7	21.8	24.4	75.6	254.1
Ŭ	23	1.0	2.1	3.8	10.8	16.1	21.3	78.7	271.4
	23	0.2	0.6	1.6	7.4	14.7	23.5	76.5	297.6
	mean	0.2	2.1	4.6	12.3	17.5	23.1	76.9	274.4
	STD	0.5	1.5	3.5	5.8	3.8	1.6	1.6	21.9
9	25	0.5	1.0	1.4	3.2	9.0	15.2	84.8	286.1
Ū	26	1.1	1.7	2.3	4.9	8.3	15.1	84.9	259.1
	20	0.4	0.9	1.5	7.6	14.9	24.1	75.9	210.4
		0.4 0.7	1.2	1.7	5.2	14.9	18.1	81.9	251.9
	mean STD	0.7	0.4	0.5	2.2	3.6	5.2	5.2	38.4
40							12.0		
10	28	0.2	0.4	0.7	1.7	4.5	13.0	87.0	277.1
	29	0.1	0.3	0.4	2.5	8.6	24.2	75.8	236.4
	30	0.6	1.2	2.1	6.6	16.4	32.0	68.0	271.8
	mean	0.3	0.6	1.1	3.6	9.8	23.1	76.9	261.8
	STD	0.3	0.5	0.9	2.6	6.0	9.6	9.6	22.1
11	31	0.0	0.1	1.7	7.4	15.6	25.4	74.6	182.9
	32	0.0	0.1	0.1	0.8	8.6	15.3	84.7	226.7
	33	0.0	0.0	0.1	1.0	3.4	8.6	91.4	244.9
	mean	0.0	0.1	0.6	3.1	9.2	16.4	83.6	218.2
	STD	0.0	0.1	0.9	3.8	6.1	8.5	8.5	31.9
		· · · <u> </u>							

STD = Standard Deviation

1990
1 - 26,
24.
JULY
S FOR JULY 24
SES
S ANALYSE
SAN
ETAL
SEDIMENT MET
ME
SED
E 2
(III TABLE
Ē
PENDIX
APPE
-

P (mg/L)	720 830 730	770 900 720	810 770 830	720 860 910	680 610 600	840 980 910	870 910 830	880 870 900	600 560 570
Ni STD. (mg/L)	8. 96	95.7	24.6	3.6	11.0	23.5	15.9	40.1	96.1
Ni Mean (mg/L)	137	172	17	26	67	46	64	74	140
Ni (mg/L)	245 110 57	140 97 280	80 51 51	22 27 29	90 110 92	26 41 72	77 46 68	120 56 46	100 250 71
Na STD. (mg/L)	2217.4	2678.1	3642.5	1468.4	410.4	1953.0	885.5	3105.2	23325.7
Na Mean (mg/L)	2127	5110	7327	1773	5227	4330	4443	4503	32910
Na (mg/L)	4560 220 1600	3670 3460 8200	8550 10200 3230	3420 1300 600	5700 5010 4970	2740 3740 6510	5240 3490 4600	7500 4710 1300	34500 55400 . 8830
Mo STD. (mg/L)	n/a	n/a	n/a	гvа	n/a	n/a	n/a	n/a	n/a
Mo Mean (mg/L)	â	\$	\$	\$	\$	\$	\$	2	4
(mg/L) Mo	v a c	900	8 8 8	444	6 9 9	6 7 7 7 7	9 6 6	5 a 1	ი მა მა მა მა მა მა მა მა მა მა მა მა მა
Mn STD. (mg/L)	23269.4	11809.5	108.0	5273.5	5227.2	803.3	599.1	860.3	375.5
Mn Mean (mg/L)	32133	36933	1018	19800	45233	4947	6180	5087	1697
Mn (mg/L)	58400 23900 14100	46400 23700 40700	1030 905 1120	15900 25800 17700	39200 48400 48100	4750 4260 5830	6060 5650 6830	5960 5060 4240	1310 1720 2060
Mg STD. (mg/L)	869.3	2235.8	2830.0	497.9	208.4	2910.3	1691.0	2493.4	6319.1
Mg Mean (mg/L)	6567	7400	9377	5970	5213	8467	8643	8297	8713
Mg (mg/L)	7500 6420 5780	5730 6530 9940	12200 9390 6540	5550 6520 5840	5030 5440 5170	5580 11400 8420	8710 6920 10300	10900 8060 5930	5400 16000 4740
STD. (mg/L)	173.2	1209.7	1331.7	230.9	0.0	577.4	519.6	923.8	1101.5
LOCATION IN STREAM	n/a n/a	п/а п/а п/а	п/а п/а п/а	LB MS RB	n/a n/a n/a	LB MS RB	M S M R B	n/а n/а п/а	п/а п/а п/а
SAMPLE NUMBER	9 0 -	4 เก เว	r 80 69	5 1 5	19 20 21	23 24	25 26 27	8 33 38	33 33
STATION NUMBER	-	2	e	4	2	ω	თ	0	7

*STD, = Standard Deviation

APPENDIX III TABLE 2 SEDIMENT METALS ANALYSES FOR JULY 24-26, 1990

Sr Mean (mg/L)	42.0	44.6	33.7	22.2	46.4	28.4	33.1	34.8	32.0
Sr (mg/L)	50.8 38.9 36.3	44.9 44.8 44.1	37.4 33.1 30.5	22.1 20.7 23.7	44.9 50.0 44.2	20.8 31.8 32.6	34.5 33.0 31.8	41.6 30.7 32.1	31.0 38.3 26.7
Sn STD. (mg/L)	n/a	n/a	n/a	n/a	n/a	n⁄a	n/a	n/a	n/a
Sn Mean (mg/L)	8	8	ŵ	õ	õ	ŵ	ŵ	Ŷ	<20
Sn Sn	89 89 89 89 89 89	89 89 89 89 89 89	\$\$ \$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	80 80 80 80 80 80	\$\$ \$\$ \$\$	& & &	\$\$ \$\$ \$\$	8 8 8	430 40
Si STD. (mg/L)	47.7	73.1	22.0	105.1	29.1	80.2	33.3	52.3	366.9
Sì Mean (mg/L)	545	549	495	662	782	604	695	703	1032
Si (mg/L)	512 600 524	633 517 498	506 470 510	543 743 699	812 780 754	541 576 694	657 712 717	7 60 693 657	1430 960 707
Sb STD. (mg/L)	n/a	n/a	n/a	28.6	10.0	7.2	27.6	1.0	n/a
Sb Mean (mg/L)	80	<18 18	õ	20	130	8	53	20	<20
(mg/L) Sb	80 80 80 80 80 80	29 48 18	8 8 8 8	40 97 73	120 140	% % %	X 4 8	19 20 21	30201010
Pb STD. (mg/L)	<u>93.9</u>	410.2	2.6	257.4	392.3	165.6	573.4	56.2	0.0
Pb Mean (mg/L)	83	1088	22	1069	4580	791	1110	493	180
Pb (mg/L)	85 85	1550 766 949	21 25 20	798 1310 1100	4400 5030 4310	611 937 825	619 970 1740	443 483 554	180 180 180
P STD. (mg/L)	60.8	92.9	30.6	<u>98.5</u>	43.6	. 70.0	40.0	15.3	20.8
P Mean (mg/L)	760	797	808	830	630 .	910	870	883	577
LOCATION IN STREAM	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	LB MS RB	n/a n/a n/a	LB MS RB	LB MS RB	n/a n/a n/a	п/а п/а п/а
SAMPLE NUMBER	← (1 m	4 V Q	N 80 60	5 1 5	19 20 21	22 23	25 26 27	28 29 30	33 33
STATION NUMBER	-	ю	m	ব ,	2	ω	თ	10	1

*STD. = Standard Deviation

J

Zn STD. (mg/L)	7691.8	2946.2	24.4	987.6	1013.2	121.2	192.9	154.1	54.4
Zn Mean (mg/L)	8967	10400	212	2423	9247	1220	1490	1082	316
Zn Zn	17700 6000 3200	13000 7200 11000	232 185 220	1290 3100 2880	8840 10400 8500	1240 1090 1330	1710 1410 1350	1250 947 1050	25 3 350 344
V STD. (mg/L)	5.9	8.1	2.3	2.6	2.5	3.5	1.7	0.6	5.0
V Mean (mg/L)	17	15	27	25	24	31	29	R	25
(J)BW) V	10 21	10 24 10	28 24 28	23 24 28	26 21 24	29 35 29	28 31 28	30 30 31	20 24
Ti STD. (mg/L)	17.7	49.7	32.7	21.4	30.7	73.4	82.7	33.6	39.9
Ti Mean (mg/L)	285	233	446	417	237	499	377	415	349
Ti (mg/L)	265 297 294	202 290 206	458 409 471	408 401 441	244 203 263	551 531 415	429 421 282	376 437 431	355 306 385
Sr STD. (mg/L)	7.7	0.4	3.5	1.5	3.2	6.6	1.4	5.9	C C
LOCATION IN STREAM	n/a n/a n/a	n/a n/a n/a	n/a n/a n/a	LB MS RB	n/a n/a n/a	LB MS RB	LB MS RB	n/a n/a n/a	n/a n/a n/a
SAMPLE NUMBER	907	4 い の	6 8 4	12 10	1 9 21	23 24 23	25 26 27	28 30	33 33 34
STATION	-	2	ε	4	~	œ	თ	0	5

APPENDIX III TABLE 2 SEDIMENT METALS ANALYSES FOR JULY 24 - 26, 1990

*STD. = Standard Deviation

APPENDIX IV

BOTTOM FAUNA DATA

NUMBER		INVERTEBRATE	NUMBER
	Phylum:	Arthropoda	46
	Class:	Insecta	47
	Order:	Plecoptera	48
1		Acroneuria sp	49
2		Arcynopteryx sp	50
3		Capnia sp	51
4		Isogenoides sp	52
5		Isoperta sp	53
6		Kogotus sp	54
7		Malenka sp	55
8		Megarcys sp	
9		Nemoura sp	

APPENDIX IV TABLE 1 TAXANOMIC LIST OF BOTTOM FAUNA

			NONDER		INVENTEDRATE
	Phylum:	Arthropoda	46		Hydropsyche sp
	Class:	Insecta	47		Hydroptila sp
	Order:	Plecoptera	48	Family:	Leptoceridae, J/D
1		Acroneuria sp	49	, , .	Oxyethira sp
2		Arcynopteryx sp	50		Parapsyche sp
3		Capnia sp	51		Rhyacophila angelita
4		Isogenoides sp	52		Rhyacophila sp
5		Isoperla sp	53		Rhyacophila vaccua
6		Kogotus sp	54		Rhyacophila vagrita
7		Malenka sp	55		Rhyacophila (vao\acropedes
8		Megarcys sp			
9		Nemoura sp		Order:	Diptera
10		Podmosta sp	56		Unid adult
11		Pteronarcella regularis	57		Unid larvae
12		Pteronarcys californica	58	Family:	Culicidae adult
13		Sweltsa sp group	59	Family:	Sciaridae
14		Taenionema sp	60		(Corynoptera sp?)
15		Utaperla sp	61	Family:	Ephydridae
16		Zapada sp	62	·	(Hydrelia sp?)
			63	Family:	Ceratopogonidae
	Order:	Ephemeroptera	64		Palpomyia sp
17		Unid. adult	65	Family:	Tipulidae
18		Ameletus sp	66		Antocha sp
19		Baetis sp	67	•	Dicranota sp
20		Cinygmula sp	68		Erioptera sp
21		Epeorus deceptivus	69		Hesperoconopa sp
22		Epeorus (albertae)	70		Hexatoma sp
23		Ephemerella coloradensis	71		Pedicia sp
24		Ephemerella doddsi	72		Prioncera sp
25		Ephemerella grandis	73		Rhabdomastix sp
26		Ephemerella inermis	74		Tipula sp
27		Ephemerella mollitia		Family:	Empididae
28		Ephemerella sp	75	, , .	Pupae
29		Heptagenia sp	76		Chelifera sp
30		Leptophlebia sp	77		Weidemannia sp
31		Paraleptophlebia sp		Family:	Simulidae
32		Rithrogena sp	78		Prosimulium sp
		5	79		Simulium sp
	Order:	Trichoptera	80		Simulium sp pupae
33		Unid pupa	81		Adult
34		Unid J/D	82		Limnophora sp
35		Agraylea		Family:	Psychodidae
36		Arctopsyche sp	83	·	Pericoma sp
37	Family:	Brachycentridae, J/D	84	Family:	(Syrphidae?)
38	· ···· , ·	Brachycentrus sp		Family:	Chironomidae
39		Ceraclea sp	85	, <u> </u>	Adult
40		Clostoeca sp	86		Pupae
41		Ecclisomyia sp	87		Brillia sp
42		Glossosoma sp	88		Cardiocladius sp
43		Grammataulius sp	89		Constempellina sp
44		Grensia sp	90		Corynoneura sp
45		Hesperophylax sp	91		Cricotopus sp

INVERTEBRATE

• non aquatic species

APPENDIX IV TABLE 1 TAXANOMIC LIST OF BOTTOM FAUNA

MBER		INVERTEBRATE	NUMBER		INVERTEBRATE
92		Diamesa sp		Subclass:	Copepoda
93		Eukiefferiella sp	131	Order:	Cyclopoida
94		Euryhapsis sp	132	Order:	Calanoida
95		Gymnometriocnemus sp	133	Order:	Harpacticoida
96		Micropsectra sp		eruer.	Halpaolooida
97		Monopelopia sp		Order:	Cladocera
98		Nilotanypus sp	134	Order.	Acroperus harpae
99		Orthocladius sp	135		Alonella sp
		•	136		Daphnia rosea
100		Paratendipes sp			•
101		Phaenopsectra sp	137		Daphnia sp dam
102		Polypedilum (pentapedilum)			Eurycercus lamellatus
103		Polypedilum (Polypedilum)	139		Graptoleberus testudinaria
104		Potthastia sp	140		Pleuroxus trigonellus
105		Psectrocladius sp	141		Polyphemus pediculus
106		Rheocricotopus sp	142		Simocephalus sp
107		Rheotanytarsus sp			
108		Thienemanniella sp	143	Phylum:	Nematoda
109		Thienemannimyia sp			
110		Trissopelopia sp		Phylum:	Platyhelminthes
111	Family:	Unid. orthocladiinae		Class:	Turbellaria
				Order:	Tricladida
	Order:	Collembola	144		Polycelis coronata
112		lsotomurus sp			
				Phylum:	Annelida
	Order	Hymenoptera		Class:	Oligochaeta
113	Family:	Formicidae	145	Family:	Lumbriculidae, unid J/D
			146	,	Kincaidiana hexatheca
	Order:	Homoptera	147	Family:	Enchytraeidae
114	Family:	Aphididae	148	Family:	Tubificidae
115	Family:	Cicadellidae	149	Family:	Naididae
116	Family:	Psyllidae	150	r unny.	Nais sp
110	r cariny.	1 Symaae	151		Chaetogaster sp
	Order:	Hemiptera	101		Chaelogaster sp
117	Family:	Corixidae dam		Class:	Hirudinea
	ranny.		150	Cid55.	
118		Callicorixa sp	152		Batrachobdella sp
	Order:	Coleoptera		Phylum:	Coelenterata
119		Unid Iarva			
				Class:	Hydrozoa
120	Order:	Lepidoptera L		Order:	Hydroida
			153		Hydra sp
	Class	Arachnoidae			
121	Subclass:	Arachnida			
				Phylum:	Mollusca
	Order:	Hydracarina		Class:	Pelecypoda
122		Unid J/D	154	Order:	Bivalvia
123		Oribatei	155	UT401.	Sphaerium sp
123		Kerendowskia sp	156		Pisidium sp
		•	130		risididili sp
125		Lebertia sp	4=-	Class	O = = t = = = = =
126		Newmannia sp	157	Class:	Gastropoda
127		Sperchon sp	158		Stagnicola (arctica)
128		Torrenticola sp	159		Heliosoma sp
129		Wandesia sp	160		Valvata (sincera)
	Class:	Crustacea	161		Physa sp
130	Subclass:	Ostracoda			
		~~~~~~~			

• non aquatic species

APPENDIX IV TABLE 2 INVERTABRATE DISTRIBUTION

œ.

Number	INVERTEBRATE	STA.1 %	% Tot	STA.2	<b>%</b> Tot	STA.3	% Tot	STA.4	% Tot.	STA.7	% Tot	STA.8 9	% Tot.	STA.9 %	% Tot	STA.10 %	% Tot	STA.11	% Tot
*	Acronouria en	c	c	c	c	00		ę		G									
- 6		2	<b>,</b>			8_'		5	م	0	0	13	2	7	•	S	0	-	0
N 1	Arcynopteryx sp	21	2	80	-	0		0	0	0	0	0	0	0	0	0	0	80	0
т 1	Capnia sp	2	0	191	13	97		83	12	16	₽	19	7	61	80	43	7	8	e
0	isopera sp	108	ផ	45	ო	7		•	0	0	0	0	0	0	0	0	0	8	-
•	Malenka sp	2	0	0	0	<b>8</b>		157	ន	-	-	23	8	95 26	13	175	7	130	4
<b>љ</b> ;	Nemoura sp	S	-	0	0	0		0	0	æ	19	0	٥	e	0	0	0	0	0
=	Pteronarcella regularis	0	0	0	0	0		e	0	0	0	-	0	e	0	E	0	18	-
<u>6</u>	Pteronarcys californica	0	0	0	0	ę		9	-	0	0	с	-	0	0	0	0	-	0
<del>1</del> 3	Sweltsa sp group	4	-	÷	-	4		0	0	-	-	16 1	9	0	0	8	0	49	-
\$	Taenionema sp	<b>o</b>	0	-	Q	0		0	0	e	7	0	0	~	0	1 67	, c		· c
16	Zapada sp	g	80	316	ជ	22		4	-	0	0	• -		• •	) c	) c	• c	, č	, -
17	Ephemeroptera Unid. adult		0	0	0	0		0		. 0	. 0		• c	) c	) C		<b>,</b> ,	3 -	- c
18	Ameletus sp	0	0	-	0	0		0		. 0		• c	, c	• c	• c	, c		<b>,</b>	
<b>1</b> 9	Baetis sp	•	0	2	0	89		67	- 4			, K	» <del>о</del>	, a	<b>у</b> с		, c	р ų	, -
ន	Cinygmula sp	0	0	0	0	0		6	-	·c	· c	3 4	۰ <del>-</del>	ş -	, c	5 0	<b>°</b> C	<u></u> г	- c
£	Ephemerella grandis	0	0	0	0	-				, c		) c	- c	- c	<b>,</b>			-	<b>,</b>
27	Ephemerella mollitia	0	0	0	0				, c	• c	, c				<b>,</b> ,	2 (	5 0	<b>v</b> (	5 0
8	Ephemerelia sp	0	0					4 -	<b>,</b> ,			, , ,	5 0	5 0	<b>-</b> -	<b>n</b> 1		<b>v</b> o 1	<b>.</b>
8	Heptagenia sp	0	0	. 0	0	. 7		- 16	- c					n c	- c	- a		• م	
30	Leptophiebia sp	0	a	c	C			, c	- c	) c	<b>,</b> ,	•	<b>.</b>		<b>.</b>			- (	
31	Paraleptophlebia sp	0	0	0	0	, 88		• •	) C	• c	, c	- ເ	- ⁻			<b>→</b> +	5 0	- :	2 0
32	Rithrogena sp	0	0	. 0	0	1		Ę	, t	• -	, •	√ ₹	- u	<b>-</b> 5	, c	- :	<b>.</b> .	= '	
R	Tricoptera Unid J/D	0		• c		: c		5 <	ŗc	- c	- <	<u>a</u> c		3 9	<b>°</b> 0	= `	э (	ית	
35	Adraviea			, c	, c	• c		<b>,</b>		<b>,</b>		5 0	5 0	-		- (	5 (	4	
8	Arctonsvche so	, К		о с	• c	ج ج		2	<b>,</b> ,	<b>,</b>		<b>.</b> .	5,	-;		- 2	<b>.</b>	ι Ω	0
: E	Brachveantridae .//D	- ۱	) c		• •	3 -		ŧ (	<b>"</b>	<b>,</b>	-	χο (	<b>"</b> .	4 (	2	31	-	~	0
; #	Brachvrentrie en	• <del>-</del>	, c		, c	- c		- ç		<b>-</b> (	5.	э (	э (	ə (		0	0	2	0
8 8	Caracles sn	- c			<b>,</b>	- c		2 4	~ ~	<b>v</b> (	- (	-	0	0	0	4	0	m	0
3 5	Clathers th	<b>,</b>		2	•				5			0	0	0	0	0	0	ŝ	0
₽ ₽	Closideda sp Ecolisomeia sa	<b>)</b> (		2 3	4 •			0 0	0 1	0 0	0	0	0	0	0	0	0	0	0
F 4			<b>.</b> .	<u></u>	- (	<u>о</u>		5	0	0	0	0	0	0	0	0	0	0	0
\$ £		5 0	<b>.</b>	э (	5	0 0		1	0	0	0	0	0	0	0	0	0	0	0
2 <del>4</del>		5 0	5 0	э ·	20	ວ່		<b>o</b> ·	0	ŝ	ო	0	0	0	0	0	0	0	0
5 <del>2</del>		<b>&gt;</b> (	<b>.</b> .	4 (	2 0	0 0		- (	0	0	0	0	0	0	0	0	0	0	•
₽ £	Hydropsycrie sp Liverantia an		<b>.</b>	5 0	<b>.</b>	- :		2	0	0	0	0	0	-	0	0	0	0	0
7 4			<b>.</b> .			16		5	-	-	•		0	0	0	12	0	414	13
ę :	Leptocendae, J/D		0	0	0	7		0	0	0	0	0	0	0	0	4	0	÷	0
4	Uxyetnira sp	0	0	0	0	e		7	0	7	-	S	2	2	0	0	0	80	0
8	Rhyacophila vaccua	ţ	ო	59	2	9		-	0	0	0	0	0		0	-	0	0	0
ន	Rhyacophila (vaolacropedes)	-	0	S	0	13		=	7	0	0	-	0	4		35	-	0	0
ŝ	Diptera Unid, adult	-	0	2	0	ŝ		7	0	-	-	4	-	15	7	-	0	0	0
21	Diptera Unid, larvae	2	0	0	0	-		0	0	-	-	0	0	e	0	e	0	Ţ	0
64	Palçomyia sp	0	0	0	0	-		0	0	0	0	0	0	0	0	0	0	18	-
g	Antocha sp	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	-	0
71	Pedicia sp	e	-	-	0	24		e	0	0	0	0	0	0	0	( <b>(</b> 7)		. 4	· -
2	Prioncera sp	-	0	0	0	0		0	0	0	0	0	0	0				; c	· c
74	Tipula sp	0	0	-	0	0		0	0	0	0	0	0	. 0	. 0	, 0	) C	• •	, c
76	Chelifera sp	2	0	2	0	73	-	~	0	0	0	·	0 0		. 0	. њ	»	9 R	c
7	Weidemannia sp	0	٩	-	0	7		0	0	0	0	-	0			; <	- c	3 -	- c
													ł	,	,	,	•	-	,

Note: Numbering System Corresponds to the Yukon Invertebrate List

INVERTABRATE DISTRIBUTION
TABLE 2
APPENDIX IV

78 80 83 83	Prosimulium sp	ţ	e		•	۰	с		c										
87 80 83 83 83	Prosimulum sp		n		•	ç	c	•	c				•		•				
80 80 83 83	•	2		41	ŋ	4	,	þ	c	0	0	0	0	n	0	0	0	0	0
8 2 8	Simulium sp	<b>6</b> 3	19	425	83	36	-	<b>7</b> 8	4	80	S	6	4	281	37	65	ო		0
83 83	Simulium sp pupae	4	*-	-	0	0	0	80	-	0	0	0	0	41	S	16	-	0	0
83	Limnophora sp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7	0
;	Pericoma sp	4	-	16	-	7	0	0	0	0	0	0	0	0	0	-	0	~	0
8	(Syrphidae?)	0	0	0	0	0	0	٥	0	0	0	0	0	-	0			. c	
85	Chironomidae adult	•	0	0	0	0	0	0	0	0	. 0		. 0	• •			, c		• c
86	Chironomidae pupae .	e		ç	0	0	0	0	0	. 0			, c	. c	• c		, c	• c	, c
87	Britlia sp	0	0	179	12	- <del>C</del>		. 07	, <del>.</del>	•	, c	) c	• c	, c	• c	, c		> <	<b>,</b>
88	Cardiociadius sp	47	0			ic		, <del>.</del>	- c	• •	۹ C	<b>,</b> c	<b>,</b> ,	N -		ч <del>-</del>	<b>,</b>	<b>-</b>	<b>,</b>
8	Corvionellita su	; -		• c	• c		<b>,</b> ,	- c	<b>,</b> ,			<b>.</b> .	-	- 0		- •			
3 5	Contrated ap		<b>.</b>	- c		2	5 0	5 .	- c	э ·		<b>.</b>	C	0	0	0	0	-	0
5 8					5	2	Ð	4	-	4	2	n	-	0	0	48	7	27	-
26	Diamesa sp	0	0	0	0	o	0	0	0	0	0	0	0	0	0	-	0	0	0
8	Eukiefferiella sp	14	en	42	-	110	7	19	ო	-	-	***	0	₽	-	201	80	62	7
8	Micropsectra sp	0	0	7	0	74	-	7	-	0	0	20	7	9	-	16	-	875	8
97	Monopelopia sp	0	0	0	0	0	0	0	0	0	0	0	. 0		. 6	2 C		5	2
8	Nilotanypus sp	0	0	0	0	Ŷ	0	C										4 C	
8	Orthocladius sp	c				• c		• <del>-</del>	۰ c	<b>,</b> ,	<b>,</b> ,						<b>,</b>	<b>,</b>	
8	Paratendipes so		р. С	• c	, c	<b>o</b> a	• c	- c		<b>,</b>	<b>,</b>			<b>.</b> .	5 0	<b>,</b>		- ;	<b>.</b>
101	Phaenoosectra so		, c		• c					<b>.</b> .	5 0	5 0	5 0	<b>.</b> .	5 4	<b>.</b>	5 0	<u>ף</u> י	5 (
103	Polyneditym (Polyneditym)	, c	, c		, c	, c			<b>,</b> ,	<b>.</b> .	5 0	<b>.</b> .		- (	5 0	<b>-</b>		۰ n	
104	Potthastia sn	o c	<b>,</b> ,			<b>,</b>	<b>.</b> .	5 0	5 0	-	5 0	5 0	5 0		5 0	0		- 1	0
Ę	Dheoreicodonue en	<b>,</b> ,	, c							<b>.</b>	5 (		5 1		5	5	э.	5	0
3 5	Dhocknother an		-	-	<b>-</b>	4 1	- <u>-</u>	- (			0	0	0	0	0	0	0	0	0
o q	Thionomonicits as		5 0	э.	<b>.</b>	1055	<u>6</u> (	8° .	80 (	0	0	54	<b>~</b>	<b>ത</b>	<b></b>	1034	41	R	-
3 5	Tricocaelenia sp	•		- (	-	74		•	0	0	0	•	0	0	0	0	0	9	0
2 :		4 (		э i	э ·	52	2	2	0	0	0	S	2	7	0	14	-	7	n
= ;	Ormociaginae unio.	۰ ۵	- 1	5	-	4404	64	51	7	7	-	:	4	8	თ	572	ន	671	ឧ
717	isotomurus sp	0	0	o	0	-	0	0	0	0	0	-	0	0	0	-	0	9 ,	0
113	Formicidae	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
411	Aphididae	37	7	8	7		0	7	0	75	45	4		ន	e	-	0	8	o
115	Cicadellidae	0	0	-	0	0	0	0	0	-	<b></b>	0	o	6	0	0	0	S	0
116	Psyllidae	7	0	0	0	0	0	0	0	-	-	0	0	1	0	0	0	0	0
£	Corixidae dam	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
118	Callicorixa sp	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0
119	Coleoptera unid. larva	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	e	0
120	Lepidoptera L	0	0	0	0	0	0	0	0	0	0	0	o	-	0	0	0	0	0
121	Arachnida	0	0	0	0	0	0	0	0		-	0	0	2	0	0	0	0	0
123	Hydracrina unid. J/D	13	e	12	-	თ	0	7	0	0	0	4	-	7	0	8	-	67	2
133	Oribatei	0	0	0	0	7	0	0	0	0	0	0	0	0	0	0	0	4	0
124	Kerendowskia sp	0	0	0	0	0	0	***	0	0	0	0	0	0	0	e	0	6	0
127	Sperchon sp	4	-	0	0	6	0	0	0	0	0	7	-	0	0	0	0	-	0
128	Torrenticola sp	0	0	0	0	•	0	0	0	0	0	2	-	0	0	0	0	80	0
8	Ostracoda	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ო	0
131	Cyclopoida	0	0	0	0	-	0	0	0	7	-	-	0	0	0	0	0	55	-
132	Calanoida	0	0	0	0	-	0	0	0	0	0	0	0	3	0		0	0	0
133	Harpacticoida	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	ų	0
134	Acroperus harpae	0	0	0	0	0	0	0	0	0	0	0	0	0	0		. 0	. 65	
135	Akonella sp	0	0	0	0	0	0	0	0	0	0	0				, c	, c	<u>-</u>	• •
							•	1	,	•	,	•	•	>	>	4	5	-	•

Note: Numbering System Corresponds to the Yukon Invertebrate List

-

-

-

•

APPENDIX IV TABLE 2 INVERTABRATE DISTRIBUTION

Number	INVERTEBRATE	STA.1 % Tot	% Tot.	STA.2 %	% Tot.	STA.3 % Tot.		STA.4 % Tot		STA.7 %	% Tot.	STA.8 %	% Tot.	STA.9 %	% Tot	STA.10 %	% Tot.	STA.11	% Tot.
136	Daphnia rosea	0	0	c	c		c	c	c	c	,								
137	Daphnia sp dam				, c				5 0	э (	5	0	0	0	0	0	0	0	0
138	Eurycercus lamellatus		• =					- 0	<u>а</u>	0	0	0	0	0	0	e	0	-	0
139	Graptoleberus testudinaria	• c	• c	) c	<b>.</b>		5 0	5 0		0	0	0	0	0	0	0	0	e	0
140	Pleuroxus trigonellus	• c	• c		- c					0	0	0	0	0	0	0	0	-	0
142	Simocephalus sp		, c	• c				5 0		0 (	0	0	0	0	0	0	0	2	0
143	Nematoda		• c							0	0	0	0	0	0	0	0	7	0
144	Polycelis coronata	. 0	• c	- c	- c			5 0		0	0 (	0	0	-	0	9	0	21	÷
145	Lumbriculidae, unid J/D	) ac	• •	• •				э.		0	0	0	0	0	0	0	0	4	0
147	Enchytraeidae		• -	- c				-	0	-	-	0	0	0	0	0	0	62	2
148	Tubificidae	· •	- c		<b>&gt;</b> <			m i	0	0	0	0	0	7	0	0	0	27	+-
150	Nais en	- c		5 0	<b>-</b> •		0	•	0	0	0	0	0	0	0	0	0	e	0
5	Chaetoraster sn			⊃ ;			0	0	0	0	0	0	0	7	0	e	0	0	0
151	Betrachohodella en	- c		7	~		0	0	0	0	0	-	0	0	0	7	0	15	
153	Hodra sp	שכ	5 •	<b>.</b> .			0	0	0	0	0	0	0	0	0	0	0	7	0
155	Sobaerium sp	n c	~ c	<b>.</b>	2 0		0 0	<b>6</b>	-	0	0	7	-	0	0	-	0	₽	0
156	Pisidium sp	• c						0 0	0 0	0	0	0	0	0	0	-	0	:	0
157	Gastropoda			• c				<b>)</b> כ		0 (	0 0	<b>m</b>	-	0	0	0	0	80	0
158	Stagnicola (arctica)	0	0	o vo	, a	2 00		<b>1</b> P	- c	5 0		4:	9 1	0	0	7	0	9	0
159	Heliosoma sp	0	0	4			, c	~ 0	- c	<b>,</b>	- c	4	n o	0 0	0	2	0	13	0
160	Valvata (sincera)	0		2	0			• c	) c	, c		- 4	ے م	-		0 ·	0	4	0
161	Physa sp	•	0	0	0		0	0		0	00	<u>e</u> -	00			- 0	0 0	198	φc
													,	,	>	>	5	>	2

Note: Numbering System Corresponds to the Yukon Invertebrate List

.