el 1044645 J

ENVIRONMENT CANADA CONVERSATION AND PROTECTION ENVIRONMENTAL PROTECTION PACIFIC AND YUKON REGION

QUINSAM COAL DEVELOPMENT

ġ.

đ.

*

A MONITORING REPORT ON THE EFFLUENT AND RECEIVING WATER QUALITY - 1987/1988 -

Regional Data Report

By

A. Redenbach

LIBRARY -ENVIRONMENT CANADA AUGUST 1988 CONSERVATION AND PROTECTION PACIFIC REGION TABLE OF CONTENTS

TABLE OF CONTENTS i List of Figures ii List of Tables iii 1 INTRODUCTION 1 2 STUDY AREA 2 3 METHODS AND MATERIALS 5 RESULTS 7 4 4.1 **Detection Limits** 9 4.2 Receiving Water Quality 10 4.2.1 Station 1 4.2.2 Station 5 4.2.3 Station 2 4.2.4 Station 8 4.3 Effluent Quality 13 4.3.1 2N - Pit Water 4.3.2 Settling Pond 4 - Inflow 4.3.3 Settling Pond 4 - Outflow 4.3.3 Settling Pond 4 - Middle 4.3.4 Quinsam Lake Road Culvert 5 DISCUSSION 17 5.1 Comparison of EP Effluent and Receiving Water 17 Quality Data (December 1987 - March 1988) Comparison of EP Monitoring Data (December 1987 5.2 19 - March 1988) to QCC Baseline Data (82 - 84) 5.3 Settling Pond 4 Discharges (December 1987 21 - March 1988) 24 REFERENCES ACKNOWLEDGEMENTS 25

APPENDIX A Quinsam Coal Corporation - Winter Baseline Data (82 - 84) PAGE

•

LIST OF FIGURES

Figure		Page
1	QUINSAM DRAINAGE BASIN STREAM SAMPLING LOCATIONS	3
2	EFFLUENT AND RECEIVING WATER MONITORING STATIONS FOR THE QUINSAM COAL DEVELOPMENT	4

•

ų

.

$\underline{\texttt{LIST}} \ \underline{\texttt{OF}} \ \underline{\texttt{TABLES}}$

-

TABLE		PAGE
1	SUMMARY OF PARAMETERS, LABORATORY/FIELD MEASUREMENT AND SAMPLE PRESERVATION	6
2	HEAVY METALS IN WATER, AT OR BELOW THE DETECTION LIMITS	9
3	RECEIVING WATER QUALITY - STATION 1 (QUINSAM RIVER U/S MIDDLE QUINSAM LAKE)	10
4	RECEIVING WATER QUALITY - STATION 5 (QUINSAM RIVER D/S MIDDLE QUINSAM LAKE)	11
5	RECEIVING WATER QUALITY - STATION 2 (FLUME CREEK U/S ARGONAUT ROAD)	12
6	RECEIVING WATER QUALITY - STATION 8 (QUINSAM RIVER U/S IRON RIVER)	12
7	EFFLUENT QUALITY - 2N PIT WATER	13
8	EFFLUENT QUALITY - SETTLING POND 4 - INFLOW	14
9	EFFLUENT QUALITY - SETTLING POND 4 - OUTFLOW	15
10	EFFLUENT QUALITY – SETTLING POND 4 – MIDDLE QUINSAM LAKE CULVERT	16
11	COMPARISON OF SELECTED WATER QUALITY PARAMETERS (EP 87/88)	22
12	COMPARISON OF SELECTED WATER QUALITY PARAMETERS (QCC B/L 82/84 AND EP 87/88)	23

1 INTRODUCTION

Quinsam Coal Corporation (QCC) began construction of the 2N Pit and Settling Pond in the fall of 1987. Mining activities followed in December 1987, when the B.C. Ministry of Environment and Parks, Waste Management Branch (MOEP) issued a permit (PE 7008) for the release of coal mine effluent into the surface waters of the Quinsam drainage. The permit limits mining activities to the 2N and 3N pits and requires that the company regulate and monitor the effluent discharge and monitor the water quality of the receiving environment, both surface and groundwater. The permit is staged and requires an increase in monitoring activities as the mine expands in size.

Federal and provincial government agencies in December 1987, decided to monitor the effluent and receiving waters during the initial mining phases, to ensure that acid generation, release of heavy metals, nutrient enrichment and sedimentation did not adversely affect the Quinsam drainage. The information (effluent quality and quantity) would also be used to determine permit levels for discharges into more sensitive areas, i.e. Long Lake, that may be mined at some later date.

The Quinsam Technical Review Committee, established at the recommendation of the Inquiry Commission, requested Environmental Protection (EP), MOEP and QCC to report receiving water and effluent data for the initial phase of mining. This report presents effluent and receiving water quality data from the start of mining, (December 1987) to March 31, 1988. Data comparisons are made to baseline data collected by Quinsam Coal Corporation in the winters of 1982/83 and 1983/84.

2 STUDY AREA

The Quinsam drainage is located in the coastal-Douglas fir biogeoclimatic zone on the eastern slopes of Vancouver Island and covers an area of 210 km². The Quinsam River flows northeast, joining the Campbell River three km upstream of its estuary (Figure 1). The study area is located in the upper half of the Quinsam drainage at an elevation of 300m, approximately 20 km southwest of the Qunsam-Campbell confluence. The Quinsam drainage, having logged in 1950's, well established second growth. the has а Annual precipitation is estimated at 100-150 cm and is concentrated in the fall and winter months (October to March).

Flows in the Quinsam River are regulated by two British Columbia Hydro dams located at the outlet of Upper Quinsam and Wokas lakes and diverted by a third dam 1.9 km upstream of Middle Quinsam Lake. Minimum flows of 0.3 and 1.7 cms are maintained upstream of Middle Quinsam Lake and at the outlet of Lower Quinsam Lake. The remaining flow is diverted via Gooseneck Lake into the Campbell system where it is used for hydroelectric generation. All other flows in the Quinsam drainage are not regulated.

Stream stations shown in Figures 1 and 2 were established prior to the start of mining. Two control stations were established on the Quinsam River (station 1) and Flume Creek (station 2) upstream of the Quinsam Coal Development. Receiving water quality was monitored at two stations downstream of the development (Quinsam River - stations 5 and 8).

- 2 -

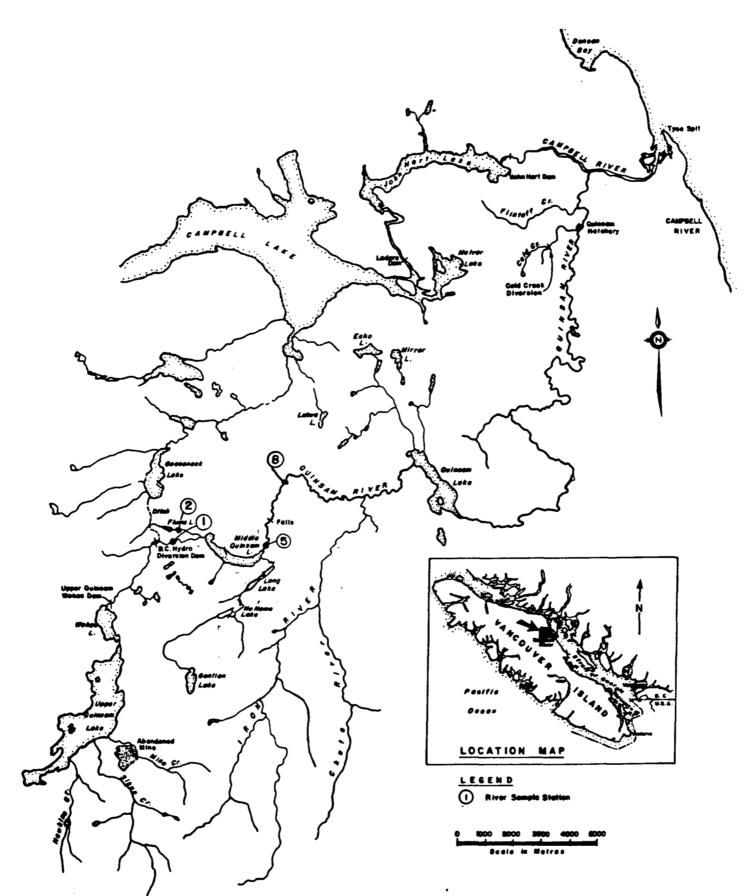
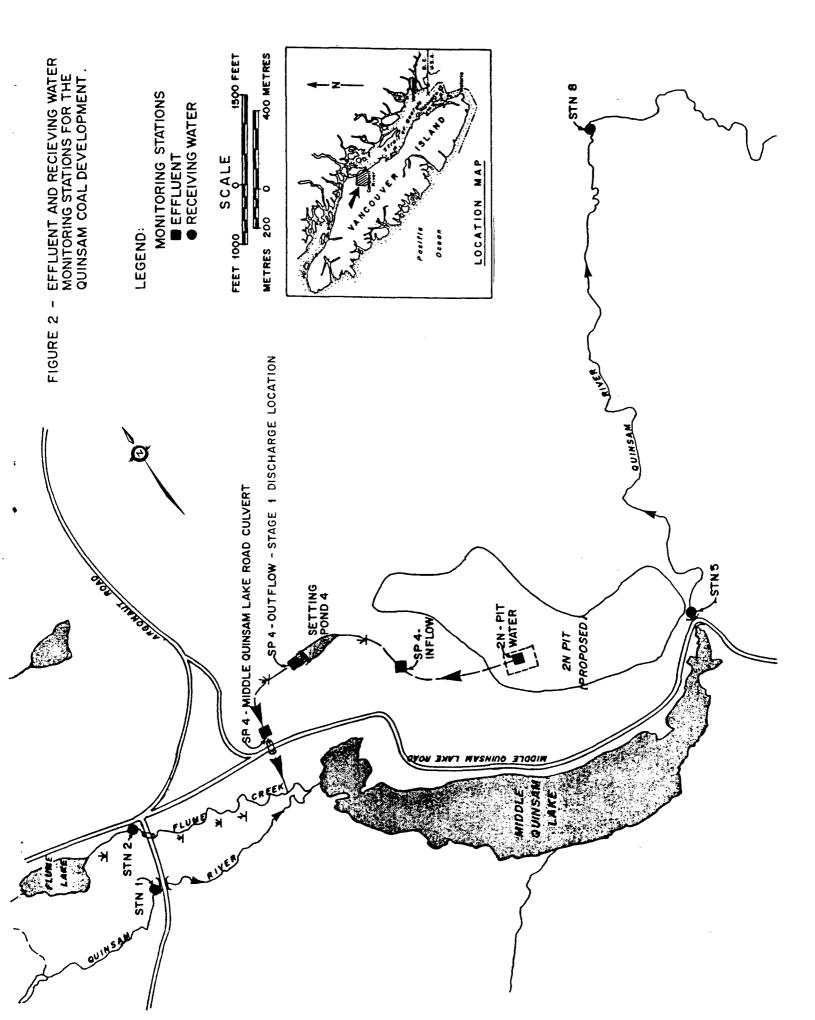



FIGURE 1 QUINSAM DRAINAGE BASIN - STREAM SAMPLING LOCATIONS

Effluent was monitored before (2N Pit - sump and Settling Pond 4 - inflow) and after (Settling Pond 4 outflow and at Middle Quinsam Lake Road culvert) treatment in the settling pond. The point of discharge for the company's permit is the discharge from Settling Pond 4.

3 METHODS AND MATERIALS

Water and effluent samples were collected at approximately three week intervals from December 1987 to March 1988. Triplicate grab samples were collected at all stream and river stations. Initially, effluent was sampled in triplicate, however this effort was reduced to a single grab sample when variability between replicates was determined. Sample means are tabulated in the accompanying tables.

Temperature, pH, conductivity and dissolved oxygen were measured in situ with a Hydrolab Model 4041. A summary of field methods, sample preparation and preservation, and parameters is presented in Table 1. Dissolved metal and phosphorus samples were filtered in the field. All samples were kept on ice and in the dark until delivered to the laboratory.

River flows were calculated from measurements taken from existing staff guages at stations 1 and 5.

TABLE 1	SUMMARY (OF PARAMETERS,	LABORATORIES,	INSTRUMENTS
		AND SAMPLE PR	RESERVATION	

	LABORATORY	FIELD PREPARATION
Temperature	Hydrolab 4041	- in situ measurement
Dissolved Oxygen	Hydrolab 4041	- in situ measurement
Conductivity	Hydrolab 4041	- in situ measurement
pH	Hydrolab 4041	- in situ measurement
Turbidity	EPS Lab	
Alkalinity	EP Lab	
Residues	EP Lab	
Sulphate	EP Lab	
Nitrate	EP Lab	
Nitrate	EP Lab	
Ammonia	EP Lab	
Total Phosphorus	EP Lab	
Total Dissolve Phos- phorus	EP Lab	 filter through prewashed 0.45 u Sartorius cellulose filters
Total Metals *	EP Lab	- acidify with conc HNO3
Total Metals *	EP Lab	- filter through 0.45 u Sartor- ius cellulose nitrate filters then acidify with Conc HNO3

* Metals are routinely analyzed by Inductively Coupled Argon Plasma techniques. To achieve lower detection limits for Al, Cd, Cu and Pb, these metals are analyzed by Graphite Furnace and Atomic Absorption methods.

Sample dates were:

December 11, 1987 January 12, 1988 February 16, 1988 February 29, 1988 March 8, 1988

Several metals, consistently below the detection limit, are reported separately in Table 2.

4. **RESULTS**

4.1 <u>Detection Limits</u> Table 2 Heavy Metals in Water, At or Below the Detection Limit

4.2 Receiving Water Quality

a)	Station 1 -	Quinsam River u/s Middle Quinsam Lake
	Table 3A	Physical and Chemical
	Table 3B	Dissolved Metals
	Table 3C	Total Metals

- b) Station 5 Quinsam River d/s Middle Quinsam Lake
 Table 4A Physical and Chemical
 Table 4B Dissolved Metals
 Table 4C Total Metals
- c) Station 2 Flume Creek u/s Argonaut Road
 Table 5A Physical and Chemical
 Table 5B Dissolved Metals
 Table 5C Total Metals
- d) Station 8 Quinsam River u/s Iron River
 Table 6A Physical and Chemical
 Table 6B Dissolved Metals
 Table 6C Total Metals

4.3	Bffluent	Quality

a) 2N Pit Water
 Table 7A Physical and Chemical
 Table 7B Dissolved Metals
 Table 7C Total Metals

b) Settling Pond 4 - Inflow Table 8A Physical and Chemical Table 8B Dissolved Metals Table 8C Total Metals

c) Settling Pond 4 - Outflow
 Table 9A Physical and Chemical
 Table 9B Dissolved Metals
 Table 9C Total Metals

d) Settling Pond 4 - Middle Quinsam Lake Road Culvert
 Table 10A Physcial and Chemical
 Table 10B Dissolved Metals
 Table 10C Total Metals

TABLE 2 HEAVY METALS IN WATER AT OR BELOW THE DETECTION LIMITS

METAL

ICAP DETECTION LIMIT

Antimony (Sb)	0.05
Berryllium (Be)	0.001
Nickel (Ni)	0.02
Selenium (Se)	0.05
Vanadium (V)	0.005

5

DATE	FLOH CHIS	TEMP deg ()		pH relu	COND uS/cm			504 mg/1				TURB JTU	NARD Ng/1		TDP •9/1	1₽ ∎g∕1	803 ∎q/1		NH3
87/12/11				6.9	34	2.1	13.5	3.0	32	ô.7	36.7	.20		2.5	.002	.009	.052	(.005	.021
88/01/12	.46	3.1	12.3	7.6	42	2.1	17.8				35	.23	2 0	1.6	(.002	.005		(.005	
88/02/16				6.8	33	5.0	13.5	2.0	35	(5.0	35		13.7	2.2	(.002	.011	.017	<.005	(.005
88/02/29				7.3	42	1.3	18.1	(1.0	29	(5.0	29	.20	19.8	1.7		.011	.040	(.005	(.005
88/03/08	.45	3.9	12.1	7.6	4 3	1.5	18.0	3.0	33	<5.0	33	.13	19	1.9	.003	.006	.047	<.005	(.005
nean STD Dev	.46 .01	-	12.2 .1	7.2 .4	38.8 4.9	2.4 1.5	16.2 2.4		32.8 2.5		34. 1 3.5	. 19 .04	1 8.1 3.0		.002 .001	.00 8 .003	.041 .014	(.005 0	.00 9 .007

A PHYSICAL & CHENICAL

TABLE 3 RECEIVING WATER QUALITY STATION 1 (QUINSAM RIVER U/S MIDDLE QUINSAM LAKE)

B DISSOLVED HETALS

DATE	Aĩ	As	-	Ba	Cd	Co	Gr		Fe			Рь		Sr			Ca		Na
·	ng/1	/	<u>∎g</u> /1	<u>ng/i</u>	∎q/i	(/	<u>n</u>]/i	∎g/l	1 0	∎g/1	•q/1	m g/1	∎g/l	ng/1	m /1	ng/1	<u>n/1</u>	∎g/l	_∎g/1_
87/12/11																			
83/01/12	.025	(.05	<.001	<.001	.0001	<.005	<.005	< .00 05	(.005	<.001	<.005	< .000 5	<.010	.011	< .00 2	(.002	8.7	.7	.7
88/02/10	(.050	(.05	<.001	.003	.0005	<.005	<.005	< .000 5	.017	.002	(.005	<.0005	.013	.011	<.002	4.00 2	4.4	.6	1
86/02/29																		.7	.8
86/05/08	.030	<.05	<.001	<.001	.0001	.006	(.005	< .00 05	.009	< .0 01	< .00 5	< .000 5	.010	.011	< .00 2	< .00 2	6.4	.7	.7
NEAN	.034	.05	< .001	.002	.0002	.005	(.005	.0011	.010	.002	< .00 5	4.000 5	.013	.011	< .00 2	(.002	6.0	.7	.8
std dev	.011	.01	0	.001	.0002	.001	0	.001 3	.005	.0 01	0	0	.003	.001	0	0	1.1	.1	.1

C TUTAL NETALS

DATE	Al	As	B	Ba	Cd	Go	Gr	Qu	Fe	Ħn	Ho	Pb	Sn	Sr	ħ		Ca	Ng	Ka
	<u>∎g</u> /l	g/l	m g/l	mg/1	m /1	∎g/l	∎g/î	∎g/1	∎g/l	a g/1	∎g/1	∎g/1	eg/ 1	∎g/1	∎ <u>1</u> /	•u/1	mg/1	∎g/1	∎q/1
07 40 44			~ ~~	~	0000	~~		-	••••					• • •					
87/12/11	.0/5	(.C	.022	.004	.000	.005	.015	.001 6	.092	.008	.006	3 000.	<.010	.013	.003	4.00 2	4.6	.8	1.1
88/ 01/12	.062	< 05	300.	.001	.0001	< .005	.021	.0009	.029	.007	.007	.0006	.037	.012	<.002	(.002	6.4	.6	.8
88/02/1 6	.067	.09	.018	.004	.0005	(.005	<.005	<.0005	.038	.002	<.005	.0019	<.010	.012	.002	<.002	4.7	.7	1
86/02/29	.125	.06	.002	.002	.0001	.009	<.005	.0022	.084	.003	.011	2000.>	(.010	.012	.003	.002	8.5	.7	.8
88/03/0 6	.040	<.05	.010	.001	.0001	.006	.005	<.0005	.02 2	<.001	<.005	4.0005	.028	.011	.004	.002	6.5	.8	.7
NEAN	.074	.06	.013	.002	.0003	.006	.010	.0011	.053	.004	.007	.0006	.019	.012	.003	_002	5.7	.8	.9
STD DEV	.031		.009	.001	.0002	.002	.007	.0007			.002	.0006	.013	.001	.001	0	1.0	.1	.2

.*

*

.

		ng hate							A PH	YSICAL	s Chen	CAL							
DATE	FLON	TEPP	00	рH	COND	ACID	ALK	SD4	FR	NFR	TR	TURB	hard	Si	TDP	TP	ND3	ND2	NH3
	CIIIS	deg (∎g/l	rel u	. ປໂ/ດ∎	<u>∎</u> 1/1	_∎g/1	∎g/1	e g/1	∎q/l	∎g/l	JTU	∎g/l	mg/1	m/1	b]/l	∎ <u>]</u> /î	∎ı/l	•9/
88/ 01/12		2.2	10.3	7.0	44.0	4.3	15.1	2.3	33	(5	33	.27	15.5	2.1	.002	.005	00F.	<.005	/ តែវ
88/02/ 29		6.6	10.0	6.9	35.7	1.9		(1.0	28	(5	28	.20	15.3	1.8	.000	.003		<.005	
, ,																			
HEAN		2.2	10.3	7.0	39.9	3.1	15.1	1.7	30.5		30.5	.24	15.4	2.0	.002	.007		<.005	
std dev				.1	5.9	1.7	.1	.9	3.5	0	3.5	.05	.1	.2		.002	.013	0	0
									B DI	SSOLVED	HETALS	i							
DATE	A]	As	B	Ba	Cd	60	Cr	Cu	Fe	łin	Ho	РЬ	Sn	Sr	li	Zn	Ga	Hg	Na
	mg/1	m/l	∎g/l	mg/1	<u>my/1</u>	•3/1	∎ <u>n</u> /1	∎g/î	ng/1	∎g/1	∎g/l	∎g/1	∎g/l	•ŋ/l	ej/l	∎g/l		ny/1	n]/
88/01/12	.034	(.05	.204	n na	<.0001	(1005	(005	.0007	.028	n ro	< 005	< .800 5	m 3	012	<.002	2.002	4.9	.7	1.1
88/02/29	.030	.06	.016		(.0001			.0019				<.0005			<.002		5.0	.7	1.1
																		_	
nean STD dev	.032 .003	.06 .01	.110 .133	.004 .001	<.0001 0	(.005 0	<.005 0	.0013 .0008	.033 .007	.003 .001	<.005 0	<.0005 0	.017 .009	.013 .001	<.002	<.002 0	5.0 .1	.7 0	1.1 .0
SID DEV	.005	.01	• 100	-001	U	U	U	.0000	.007	.001	U	U	•009	.001	U	U	•1	U	.0
									C TO	tal het	ALS								
DATE	AI	As	8	Ba	Cd	Co	Or	Cu	Fe	Hn	No	Pb	Sn	Sr	ħ	Zn	Ca	Ng	Na
<u></u>	m g/1	n/i	•g/i	mg/1	<u></u> /i	m q/1	<u>ш</u> у/1	eg/1	m/1	m/l	∎g/l	(ì	m /1	∎g/l	n q/1	n g/i	∎g/i	<u>m</u> /1	<u> </u>
86/01/12	.057	(.05	<.001	.004	< .00 01	< .00 5	<.005	.0007	.060	.002	<.005	3000.	.017	.013	(.002	< .00 2	4.7	.7	1.2
88/02/29	.153	(.05	<.001	.004	.0001	.020	<.005	.0006	.1 01	.004		<.0005	(.01 0	.013	.003	.00 3	4.9	.6	1.0
HEAN	.105	.05	< .0 01	.004	< .0001	.013	< .005	.0007	.081	.00 3	.009	.0007	.014	.013	.003	.003	4.8	.7	1.1
std dev	.068	0	0	0	0	.011	0	.0001		.001	.005	.0002	.005	0	.001	.001	.1	.1	.1
TABLE 6	RECEIVI	ng hate	r quali	TY <u>s</u>	TATION 8	(QUI	nsah ri	ver u/s	_		-	·04i							
DATE	FLON	TEMP	DO	pH	COND	ACID	ALK	504	н m FR		& Cheni Tr	TURB	HARD	Si	TDP	TP	ND3	ND2	NK
	C#5			•	. uS/cm														
00 m 2 m0		A A	40-4	77	41	15	42 N	20	20	/5	20	47	14 7	ንደ	005	006	074	1 005	n
88/03/08		7.7	12.1	(.(71	1-0	12.0	. 3. U	30	10	30	• 1(19.(2.0	.000	.000	1,1/14	1.000	.00
									B DI	SSOLVED	HETALS	;							
DATE	AI	As	B	Ba	Cd	60	ûr	Cu	Fe	Mn	No	Pb	Sn	Sr	Ti	Zn	Ca	Hg	Na
	∎g/I	<u>n/i</u>	m /\	n q/1	<u>ng/1</u>	<u>n/1</u>	e q/1	Q/I	m g/1	mg/1	n y/1	ng/1	0]/1	e g/1	<u>∎q</u> /1	n/1	<u>n</u> j/l	<u>n</u> /i	<u> </u>
88/1 3/112	.043	(.05	.058	(.002	<.0001	< .00 5	(.005	<.000 5	.035	.003	.005	(.000 5	.013	.012	(,00 2	<. 00 2	4.6	.7	1.2
									сm	tal het	ANS.								
84TT	6	A _	P	D-	61	۰.	€-	6				64	¢-	r-	T :	۶_	ŕ-	M.	N
DATE	ค 1 ∎g/1	As ng/1	8 mg/1	8a ●1/1	Cd mg/1	Co m)/i	Cr nag/i	Ωu ∎α/1	Fe mg/i	Hin mg/i	Ho ma/1	Pb (i	Sn ag/l	Sr ∎g/l	Ti m/l	Zn <u>n</u> /î	Ca agA	Hg ∎g∕i	Na ng/
	<u>1('</u>		¥					¥	<u> </u>			Y			<u></u>			ه	<u>_</u>
88/03/08	000	00	020	000	/ 0004	/ 005	000	/ 0000	ort	005	/ 000	0007	1 040	040	/ 000	000	4.0	0	1.2

OCLION 2

.

٠

٠

TABLE 4 RECETUTING HATER QUALITY STATION 5 (QUINSAM RIVER D/S MIDDLE QUINSAM LAKE)

DATE	FLOH CHRS		00 3 mg/1	pH re]_u.	COND . uS/cm		ALK mg/i	504 #g/l	FR ng/1	NFR 10g/1	π ∎g/1	TURB JTU	HARD mg/1	Si ng/l	10P #3/1	TP ng/1	N03 1103/1	N02 #13/1	₩3 ∎q/1
67/1 2/11				7.1	36	2.4	14. 0	2	34	5.7	39.7	.37		2.1	.004	.003	.077	(.905	.030
86/01/1 2	<u>95</u>	3.2	11.8		30 47	2.5	15.3			5.7 (5	39.7 40	.37 .33	16.5		.003	.005 .007	.100	<.005	.030
86/02/16	•00	0.2	11.0	7.0	33.7	3.4	12.8			(5	30	••••	14.2		<.002	.009	.078	(.005	<.005
88/02/29				7.0	35	1.5	14.8		28	-	28	.30	15.2			.007	.061	(.005	.005
88/03/08	1.56	4.4	11.6		40			3		(5	36	.20	14.2		.005	.007	.073	<.005	.007
NEAN	1.21	3.8	11.7	7.2	38. 3	2.3	14. 0	2.5	33.6	5.1	34. 7	.30	15.0	2.3	.004	.007	.078	<.00 5	.012
STD DEV	.50	.8	.1	.3	5.4	.8	1.1	.9	4.8	.3	5.5	.07	1.1	.2	.001	.002	.014	0	.010

A PHYSICAL & CHENICAL

B DISSOLVED HETALS

DATE	A1 ma/1		8 •1/1	Ba #0/3	Cd ng/1	-	0r m/1					₽ 5 ■0/1	Sn m/i		Ti na/i		Ca en/i	Hg m/3	Na mg/1
						V										Y/ 1			
87/12/11																			
86/01/12	.045	(.05	<.001	.002	(.00 01	(.005	(:005	.0011	.040	.004	<.005	<.0005	(.010	.013	(.002	<.00 2	5.2	.8	1.2
88/02/16	05 0	.05	< .0 01	.001	< .000 5	<.005	< .005	(.0005	.026	.0 03	(.005	.005	<.010	.011	<.002	.0 03	4.5	.7	1.1
83/02/29	.040	.05	<.001	.002	< .000 1	(,005	(.005	.0026	.031	.003	.006	.0007	(.010	.012	<.002	(.002	4.8	.7	1.3
68/0 3/09	.050	.06	<.001	.002	<.0001	< .005	(.00 5	<.0005	.036	.010	<.00 5	< .000 5	.017	.013	< .00 2	<.00 2	4.4	.7	1.1
NEAN	046	nr.	<.001	002	(.0002	.7 005	/ 005	.0012	നാ	.006	.005	0006	012	012	(00)	<.002	A 7	.7	12
std dev	.005	.01		.002	.0002	0	0			.003			.004			.001		.0	.1

C TOTAL HETALS

DATE	A1		B m/i	Ba m/i	Cd mg/1	Co m/1	Cr m/i				No ma/l		Sn ma/l			Zn ■0/1		Hg mg/i	Na ma/1
								- 32										<u></u>	<u> </u>
87/12/11	.855	.05	.050	.002	< .000 5	(,00 5	.007	.0016	.111	.010	< .00 5	.0008	< .01 0	.013	<.002	(.002	4.7	.8	1.2
88/01/12	.087	05. ک	.020	.002	<.0001	300.	(.00 5	3008.	.097	.005	<.005	.0008	<.010	.013	.003	<.002	5.2	3.	1.1
86/02/16	.093	<.05	.019	.002	(.000 5	<.005	<.005	.0012	.068	.0 05	.011	.0006	<.01 0	.011	.003	<.00 2	4.5	.7	1.0
88/02/29	.095	<.05	.032	.002	.0004	.012	<.005	.0011	.097	.006	.015	<.00 05	<.010	.011	.004	.003	4.8	.7	1.2
88/03/0 8	.08 3	<.05	.019	.002	< .000 1	(.005	300.	3 000.	.067	.011	<.005	.0007	<.010	.012	< .00 2	(.00 2	4.5	.8	1.3
HEAN	.063	<.05	.028	.002	.0003	.007	.006	.0011	.086.	.007	.006	.0007	(.010	.012	.003	.002	4.7	.8	1.1
std dev	.01 6	0	.013	0	.0002	.00 3	.001	.0004	.020	.003	.005	.0001	0	.001	.001	.000	.3	.1	.1

•

٦

•

TABLE 7 EFFLUENT QUALITY 2N PIT NATER

.

ε

4

ŧ

DATE	FLOH cms	TENP deg (pH relu	COND uS/cm	ACID Day/i	ALK my/i	S04 mg/1	FR mg/1	NFR mg/1	TR mg/1	TURB JTU	HARD mg/1	Si sq/i	TDP mg/l	1P #9/1	ND3 101/1	NO2 mg/i	₩3 ⊪1/1
87/12/11																			
88/01/12		2.8	8.2	7.8	342	3.4	78.8	69	283	500	783	54 6	111	2.3	.009	.270	5,54	.84	2.62
88/02/16																			
88/02/29				8.1	530	1.3	163	110	360	390	750	130	72.7	3.5		.280	.92	. 14	.41
88,03,09		5.8	9.7	7.6	1060	4.5	121	370	771	23	994	4,30	22 2	2.9	.006	.022	2.25	.62	.60
HEAN		4.3	9.0	7.8	651	3.1	121	183	471	304	84 2	24 3	135	2.9	.008	. 191	2.90	.53	1.21
std dev		2.1	1.1	.3	364	1.6	4 2	163	262	250	132	276	78	. 6	.002	, 14 6	2.38	.36	1.23

A PHYSICAL & CHENICAL

.

B DISSOLVED HETALS

date	A1 ma/1		8 •1/1	Ba an∕l	Cd ma/l				Fe m/}		No mo/1	Pb mg/1		5r ⊪n/1		2 n ∎n/1		Hg ma/1	Na mu/i
	(<u> </u>											¥
87/12/11																			
\$8/01/12	.201	(.05	.073	.034	< .0001	(.005	< .005	.001 0	.056	.063	.098	(.0005	.043	.284	.007	(.002	38.3	3.5	26.2
88/02/16																			
88/02/29	.140	.03	454	.044	< .000 1	.006	<.005	.0038	.106	.034	.014	.0018	.030	.300	<.002	.023	25.8	1.8	90.4
86/0 3/08	.070	30.	.29 3	.06 6	< .000 1	<.005	(.005	.002 3	< .005	.352	.023	(.0005	.02 6	.799	<.002	.006	78.1	6.2	116
	407		076	040	/ 0004	005	/ 00E	0004	050	450	0.65	0000	004	A C4	004	040		2.0	77 C
nean Std Dev	.137 .066	.06 .02	.275 .189	.048	<.0001	.005	<.005 0			.150		.0009 .0006		.461 .293			47.4 27.3		77.5 46.3
SID DEV	.000	•UC	. 103	-010	U	-001	U	+100+	*001		-04U	•0000	.012	•230	.005	-011	21.3	2.2	-10-0

C TOTAL HETALS

DATE	A1 #a/1		8 mg/1	Ba mu/1	Cd ma/1	Co ma/1	Cr aq/1		Fe ma/l		Ho mg/1	Pb #g/1		Sr ma/1		-	Ca ma/1	Hg mg/i	Na ng/1
·																			
87/12/11																			
86/01/12	25	.21	. 155	.135	.0001	.587	.029	.0580	17.5	.317	.109	(.0005	<.010	.349	1.04	.029	46.1	8.3	26.7
88/02/16																			
86/02/29	16	.10	.531	.096	.0016	.485	.040	.0380	15.5	.205	.012	(.0005	(.010	.346	.329	.028	32.8	5.1	\$2.5
88/03/0 8	.380	< 05	.288	.064	.0009	<.005	<.005	.0 039	.78	.3 52	.032	(.000 5	< .01 0	.754	.002	.011	73.2	6.3	115
NEAN	13.8	.12	.325	.098	.0009	.359	.025	.0333	11.3	.291	.051	(.0005	<.M0	.483	.455	.023	51.4	6.6	78.1
STD DEV		.08	.191	.036	.0006	.311		.0274			.051		0		.528	.010	20.4		45.9

TABLE 8	EFFLUENT	QUALITY	SETTLING	POND	4 -	INFLOH
---------	----------	---------	----------	------	-----	--------

TEMP deg 0 .2 4.7 2.5 3.2 As eg/1	D0 9.6 8.3 9.0 .9 B mg/1	7.4 6.6 7.3 7.6 7.4 7.3 .4 8a	COND U.S./cm 195 195 680 375 772 443 270 Cd	ACID ng/1 4.1 18.8 10.1 1 10.7 8.9 6.9 Co	ALX mg/1 51.8 34.4 105 89.5 70.5 70.2 28.3	504 <u>mg/1</u> 19 37 190 50 240 107 101	218 156	NFR mg/1 3390 41 12 25 (5 82.6 139 82.6	TR mg/1 470 182 100 267 479 300 170 HETAL	TURB JTU 230 24 23 6.30 70.8 106	HHPD mg/1 30.2 141 89.7 169 107 61.1	Si ■g/1 3.0 2.7 3.9 3.3 3.2 .5	907 100 200. 200. 200. 200. 2006	TP eq/1 .174 .036 .115 .030 .054 .062 .062	ND3 mg/1 3.99 4.67 6.29 1.39 1.62 3.58 2.08	ND2 ●1/A .108 .25 .46 .14 .29 .254 .149	
.2 4.7 2.5 3.2 As	9.6 8.3 9.0 .9	7.4 6.6 7.3 7.6 7.4 7.3 .4 8a	195 195 680 375 772 443 270	4.1 18.8 10.1 1 10.7 8.9 6.9	51.8 34.4 105 89.5 70.5 70.2 28.3	19 37 190 50 240 107	140 141 88 242 479 218 156	339) 41 12 25 (5 82.6 139	470 182 100 267 479 300 170	230 24 23 6.30 70.8 106	30.2 141 89.7 169 107	3.0 2.7 3.9 3.3 3.2	ano. 900.) 800. 800.	.174 .036 .115 .030 .054	3.99 4.62 6.29 1.39 1.62 3.58	. 108 . 25 . 48 . 14 . 29 . 254	.611 .42 1.14 3.17 .34 1.14
4.7 2.5 3.2 As	8.3 9.0 .9	6.6 7.3 7.6 7.4 7.3 .4 Ba	195 680 375 772 443 270	18.8 10.1 1 10.7 8.9 6.9	34.4 105 89.5 70.5 70.2 28.3	37 190 50 240 107	141 86 242 479 218 156	41 12 25 (5 82.6 139	182 100 267 479 300 170	24 23 6.30 70.8 106	141 89.7 169 107	2.7 3.9 3.3 3.2	<.002 .008 .006	.036 .115 .030 .054 .082	4.62 6.29 1.39 1.62 3.58	.25 .48 .14 .29 .254	.42 1.14 3.17 .34 1.14
4.7 2.5 3.2 As	8.3 9.0 .9	6.6 7.3 7.6 7.4 7.3 .4 Ba	195 680 375 772 443 270	18.8 10.1 1 10.7 8.9 6.9	34.4 105 89.5 70.5 70.2 28.3	37 190 50 240 107	141 86 242 479 218 156	41 12 25 (5 82.6 139	182 100 267 479 300 170	24 23 6.30 70.8 106	141 89.7 169 107	2.7 3.9 3.3 3.2	<.002 .008 .006	.036 .115 .030 .054 .082	4.62 6.29 1.39 1.62 3.58	.25 .48 .14 .29 .254	.42 1.14 3.17 .34 1.14
4.7 2.5 3.2 As	8.3 9.0 .9	7.3 7.6 7.4 7.3 .4	680 375 772 443 270	10.1 1 10.7 8.9 6.9	105 89.5 70.5 70.2 28.3	190 50 240 107	86 242 479 218 156	12 25 05 82.6 139	100 267 479 300 170	23 6.30 70.8 106	141 89.7 169 107	2.7 3.9 3.3 3.2	<.002 .008 .006	.115 .030 .054 .082	6.29 1.39 1.62 3.58	.48 .14 .29 .254	1.14 3.17 .34 1.14
2.5 3.2 As	9.0 .9 B	7.6 7.4 7.3 .4 Ba	375 772 443 270	1 10.7 8.9 6.9	89.5 70.5 70.2 28.3	50 240 107	242 479 218 156	25 (5 82.6 139	267 479 300 170	6.30 70.8 106	89.7 169 107	3.9 3.3 3.2	.003 .006	.030 .054 .082	1.39 1.62 3.58	.14 .29 . 254	3.17 .34 1.14
2.5 3.2 As	9.0 .9 B	7.3 .4 Ba	443 270	8.9 6.9	70.2 28.3	107	218 156	82.6 139	300 170	70.8 106	107	3.2	.006	.06 2	3.58	.254	.34 1.14
3.2 As	.9 B	.4 Ba	270	6.9	28.3		156	139	170	106							1.14 1.18
3.2 As	.9 B	Ba			28.3	101	156	139	170		61.1		.00 3				1.18
	_		Cd	ſ.			B D)	ISSOLVE) heta l	ç							
	_		Cd	£0						~							
	-		Lid .	10	•	•	-					•	• •	-	•	ч	
		• <u>n</u> /l	∎ <u>1</u> /1		ն։ թղ/1	Cu ∎q/l	Fe ng/l	Hin ng/l	Ho ng/1	Pb mj/1	Sn mg/1	Sr ng/1	Ti mg∕i	Zn ng/1	Ca ng/1	Hg mg/i	Na m/1
/ OE	041	044	/ 0004	005	/:000	/ 0005	000	000	000	/ 0005	0 00	000	0073	/ 000	0 5	2.0	38.5
																	- 30.0 - 85,3
	-																57.2
(.05	.174										.020			.007	57.6	5.8	7 6.3
< .05	.190	.836	.0002	(.005	(.005	.0017	.078	.227	.011	.0006	.016	.360	.002	.007	36.0	4.0	62.3
0	.122	.021	.0002	0	0				.003	.0002	.007	.234	.001	.009	21.8	1.6	24.2
							с п	ital NF	TALS								
	_	_	•		•	•				-		•	- -	_			
As ∎o/l											Sn.` ∎n/1			-		-	Na ng/1
	(.05 0	(.05 .339 (.05 .105 (.05 .174 (.05 .190 0 .122	(.05 .339 .054 (.05 .165 .027 (.05 .174 .053 (.05 .180 .036 0 .122 .021	<pre><.05 .339 .054 (.0005 <.05 .165 .027 (.0001 <.05 .174 .053 (.0001 <.05 .190 .036 .0002 0 .122 .021 .0002</pre>	<pre><.05 .339 .054 (.0005 (.005 (.05 .165 .027 (.0001 (.005 (.05 .174 .053 (.0001 (.005 (.05 .190 .036 .0002 (.005 0 .122 .021 .0002 0</pre>	<pre><.05 .339 .054 <.0005 <.005 <.005 <.05 .165 .027 <.0001 <.005 <.005 <.05 .174 .053 <.0001 <.005 <.005 <.05 .190 .036 .0002 <.005 <.005 0 .122 .021 .0002 0 0 As B Ba Cd Co Cr</pre>	<pre><.05 .339 .054 <.0005 <.005 <.005 .0014 <.05 .165 .027 <.0001 <.005 <.005 .0030 <.05 .174 .053 <.0001 <.005 <.005 .0017 <.05 .190 .036 .0002 <.005 <.005 .0017 0 .122 .021 .0002 0 0 .0010</pre>	(.05 .339 .054 (.0005 (.005 (.005 .0014 .072 (.05 .165 .027 (.0001 (.005 (.005 .0030 .074 (.05 .174 .053 (.0001 (.005 (.005 .0017 .106 (.05 .190 .036 .0002 (.005 (.005 .0017 .078 0 .122 .021 .0002 0 0 .0010 .020 C TQ As B Ba Cd Co Cr Cu Fe	<pre><.05 .339 .054 <.0005 <.005 .0014 .072 .304 <.05 .165 .027 <.0001 <.005 <.005 .0030 .074 .212 <.05 .174 .053 <.0001 <.005 <.005 .0017 .106 .351 <.05 .190 .036 .0002 <.005 <.005 .0017 .078 .227 0 .122 .021 .0002 0 0 .0010 .020 .138 C TOTAL NE As 8 Be Cd Co Cr Cu Fe Nn</pre>	 (.05 .339 .054 (.0005 (.005 (.005 .0014 .072 .304 .006 (.05 .165 .027 (.0001 (.005 (.005 .0030 .074 .212 .015 (.05 .174 .053 (.0001 (.005 (.005 .0017 .106 .351 .012 (.05 .190 .036 .0002 (.005 (.005 .0017 .078 .227 .011 0 .122 .021 .0002 0 0 .0010 .020 .138 .003 (.05 .122 .021 .0002 0 0 .0010 .020 .138 .003 C TOTAL NETALS As B Ba Cd Co Cr Cu Fe Nn No 	(.05 .339 .054 (.0005 (.005 (.005 .0014 .072 .394 .006 (.0005 (.005 .165 .027 (.0001 (.005 (.005 .0030 .074 .212 .015 .0008 (.05 .174 .053 (.0001 (.005 (.005 .0017 .06 .351 .012 (.0005 (.05 .180 .036 .0002 (.005 (.005 .0017 .078 .227 .011 .0006 0 .122 .021 .0002 0 0 .0010 .020 .138 .003 .0002 C TOTAL METALS As B Ba Cd Co Cr Cu Fe Hn No Pb	(.05 .339 .054 (.0005 (.005 (.005 .0014 .072 .304 .006 (.0005 (.010 (.05 .105 .027 (.0001 (.005 (.005 .0030 .074 .212 .015 .0008 .010 (.05 .174 .053 (.0001 (.005 (.005 .0017 .106 .351 .012 (.0005 .020 (.05 .180 .036 .0002 (.005 (.005 .0017 .078 .227 .011 .0006 .016 0 .122 .021 .0002 0 0 .0010 .020 .138 .003 .0002 .007 C TOTAL METALS As B Ba Cd Co Cr Cu Fe Mn No Pb Sn *	(4.05 .339 .054 (4.0005 (4.005 4.005 4.005 4.004 4.072 4.304 4.006 (4.0005 4.010 4.503 4.005 4.005 4.005 4.005 4.005 4.003 4.014 4.212 4.015 4.0005 4.010 4.283 (4.05 4.174 4.053 4.0001 4.005 4.005 4.0017 4.006 4.351 4.012 4.0005 4.000 4.005 4.005 4.0017 4.078 4.227 4.011 4.0006 4.016 4.360 0 4.122 4.021 4.0002 0 0 4.0010 4.020 4.138 4.003 4.0002 4.007 4.234 C TOTAL METALS As B Ba Cd Co Cr Cu Fe Nn No Pb Sn Sr	(105 .339 .054 (.0005 (.005 (.005 .0014 .072 .394 .006 (.0005 (.010 .503 (.002 (.015 .165 .027 (.0001 (.005 (.005 .0030 .074 .212 .015 .0008 .010 .283 (.002 (.05 .174 .053 (.0001 (.005 (.015 .0017 .006 .351 .012 (.0005 .020 .586 (.002 (.05 .180 .036 .0002 (.005 (.005 .0017 .078 .227 .011 .0006 .016 .360 .002 0 .122 .021 .0002 0 0 .0010 .020 .138 .003 .0002 .007 .294 .001 K B Ba Cd Co Cr Cu Fe Hn No Pb Sn Sr Ti	(4.05 .339 .054 (4.0005 (4.005 (4.005 4.005 4.0014 4.072 4.304 4.006 (4.0005 (4.010 4.503 (4.002 4.003 4.005 4.015 4.005 4.005 4.005 4.005 4.005 4.005 4.007 4.212 4.015 4.0008 4.010 4.283 (4.002 4.021 4.055 4.174 4.053 (4.0001 4.005 4.005 4.0017 4.063 351 4.012 4.0005 4.020 4.586 4.002 4.007 4.05 4.05 4.005 4.005 4.0017 4.078 4.227 4.011 4.0006 4.016 4.360 4.002 4.007 4.122 4.021 4.0002 4.000 4.005 4.005 4.001 4.001 4.001 4.005 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.001 4.005 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.0	(4.05 .339 .054 (.0005 (.005 (.005 .0014 .072 .304 .008 (.0005 (.010 .503 (.002 .003 48.6 (.05 .105 .027 (.0001 (.005 (.005 .0030 .074 .212 .015 .0008 .010 .283 (.002 .021 29.4 (.05 .174 .053 (.0001 (.005 (.005 .0017 .106 .351 .012 (.0005 .020 .586 (.002 .007 57.6 (.05 .190 .036 .0002 (.005 (.005 .0017 .078 .227 .011 .0006 .016 .360 .002 .007 36.0 0 .122 .021 .0002 0 0 .0010 .020 .138 .003 .0002 .007 .234 .001 .009 21.8 C TOTAL METALS As B Ba Cd Co Cr Cu Fe Nn No Pb Sn Sr Ti Zn Ca	(4.05 .339 .054 (4.0005 (4.005 4.005 4.005 4.005 4.005 4.006 4.0005 (4.010 4.503 4.002 4.013 46.6 4.4 (4.05 4.05 4.005 4.005 4.005 4.005 4.005 4.005 4.015 4.012 4.0006 4.010 4.283 4.002 4.021 429.4 3.6 (4.05 4.05 4.001 4.005 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.005 4.001 4.005 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.005 4.001 4.000 4.001 4.000 4.001

.0780 1.94 .058

.0082 1.83 .227

.0028 .546 .354

.0242 1.75 .243

.0359 .865 .135

.0079 2.68 .331 <.005

.00S

.010

.005

.0010 (.010

.0018 <.010

.0008 (.010

.0003 0

.012 (.0005 (.010

.016 (.0005 (.010

.072

.526

.236

.604

.372

.241

.153

.099

.009

.068

.071

.009 (.002

.005 9.5

.017

.005

.007

.007

2.3

5.50

3.9

6.3

50.6

29.3

57.2

36.6 4.5

21.7 1.8

25.8

89.9

56.3

85.5

64.4

29.7

A PHYSICAL & CHENICAL

OCLINON 5

88/01/12 2.52 (.05 .094

88/02/16 2.08 .09

88/02/29 2.06 (.05)

88/03/08 .350 (.05

1.75

HEAN

ł

STD DEV .959

.020

.034

.057

.044

.020

.294

.227

.197

.203

.083

.06

.02

.0001 .006 .005

.051

,0008 (.005 (.005

.017

.023

.006

.005

.001

.063 (.0005 (.005 (.005

.0015

.0007

.0006

	C# 5	deg fi	<u>n</u> /l	rel i	u\$/cm	e g/l	•ŋ/l	m/1	щA	ŋ۸	∎g/i	JTU	<u>∎</u> 1/1	<u>n</u> /l	/I	∎g/1	∎¶/Ì	. ₁/ì	. ∎]/Î
87/12/11				6.7	69	5.1	14. 3	9	65.7	63.3	129	67	27.3	4. 0	.007	.069	2.01	.050	.080.
88/01/12		2.1	9.3	6.5	76	12.3	18.3	10	73	5.0	78	8.1	23.5	3.fi	.010	.019	1.60	.633	Û/8
88/02/16				6.6	120	10.5	22.0	26	87.7	12.3	100		2 9.2	2.9	(. m 2	123	1.05	.100	fie4
88/02/29				6.3	សា	3.1	13.8	11	53	(5,0	53	1.8	15.7	2.5		.017	.309	.8 66	.016
88/112/112		5.2	10.1	6.7	148	8.5	28.5	30	111	9	120	8.8	37.3	3.3	.01 0	.021	.527	.14?	.012
HEAN		3.7	9.7	6.6	95	7.9	19.4	17	78.1	18.9	9 6	20.9	27	3.3	.007	.030	1.10	.042	.038
std dev		2.2	.5	.2	38	3.8	6.1	10	22	25	31	31	7.9	.6	.004	.022	.713	.035	.029
									8 D]	ISSOLVE	d hetal	S							
DATE	A	As	8	Ba	64	Co	Cr	Cu	Fe	Hn	No	Pb	Sn	Sr	Ti	Zn	Ca	Ng	Na
	<u>m</u> /l	• <u>1</u> /1	<u>m</u> /l	<u>m</u> /l	∎g/î	<u>m/1</u>	<u>m/</u> 1	ng/ 1	m g/1	∎g/l	m/l	∎g/l	n/A	• <u>1</u>	■ 1/1	• <u>1</u> /I	• <u>1</u> ∕1	∎/l	<u>m/1</u>
87/12/11	1.097	' (.1 5	.023	.006	.0001	.006	<.005	.0028	.703	.035	.007	< .000 5	.057	.040	.058	.010	5.6	1.4	4.8
88/01/12	.112	<.05	. NA7	.004	<.0001	(.005	<.005	.0011	. 100	,050	< .005	(,0005	<.01 0	.036	.003	.028	6,5	1.5	6.4
88/02/16	.060	(.05	. 143	.006	<.0001	.007	(,005	.0003	.224	.097	(.00 5	(.005	<.01 0	.055	<.002	.016	8.5	1.7	11.9
88/02/29	.120	(.05	.011	.004	< . 0001	K ,00 5	(.005	.0015	.125	.061	.008	.0017	.020	.028	(.002	.016	4.4	1.0	6.1
88,403,408	. (161)	<.05	<.001	.00 9	(.0001	< .00 5	<.005	.0011	.960	.272	(.005	(.0005	<.010	.067	<.002	.015	10.5	2.1	14. 0
HEAN	.292	(.05	.037	.006	< .000 1	.006	.00 5	.0015	.422	. 103	.006	.0007	.021	.045	.013	.017	7.1	1.5	8.6
std dev	.445	0	.060	.002	0	.001	0	.0008	.387	.097	.0 01	.0005	.020	.016	.025	.007	2.4	.4	4.0
									C T	ital he	TALS								

TABLE 9 EFFLUENT QUALITY SETTLING POND 4 - OUTFLON

DATE	FLOH	TEMP	00	pН	COND	ACID	ALK	SD4	FR	NFR	TR	TURE	HARD	Si	TOP	TP	ND3	ND2	NHB
	C#5	deg f.	n/l	าค่า บ	แร∕เต	m /1	m/l	m /l	<u>m/</u> 1	ηΛ	m/i	.1111	<u>m</u> /l	n/1	<u>n</u> /1	∎g/ì	мЛ	•₁/ì	. ∎1/1
87/12/11				6.7	69	5.1	14.3	9	65.7	63.3	129	67	27.3	4. 0	.007	.069	2.01	.030	.020
88/01/12		2.1	9.3	6.5	76	12.3	18.3	10	7 3	5.6	78	8.1	23.5	3.fi	.010	.019	1.60	.633	.028
88/02/16				6.6	120	10.5	22.0	26	87.7	12.3	100		29.2	2.9	$\langle .m_{2}\rangle$.123	1.05	.100	fiE4
88/02/29				6.3	60	3.1	13.8	11	5 3	(5.0	53	1.8	15.7	2.5		.017	319	.866	.016
86/m/na		5.2	10.1	6.7	148	8.5	28.5	30	111	9	120	8.8	37.3	3.3	.010	.021	.527	.04?	.012
NEAN		3.7	9.7	6.6	95	7.9	19.4	17	78.1	18.9	9 6	20.9	27	3.3	.007	.030	1.10	.042	.038
			-	-										-					

A PHYSICAL & CHENICAL

Date	A1 mg/1	As mg/1	-	8a mg/1	6d (* 100	Co mg/1						የ ቴ ቋୁ/ነ		Sr aq/l					Na 101/1
87/12/11	6.21	.06	.023	-019	.0016	.017	.014	.0730	5.33	.073	(.005	.002	C.010	-045	.210	.017	6.2	2.4	5.4
88/01/12					<.0001														
88/02/16					(.0005									.056	.041	.017	8.7	2.0	11.7
88/02/29	.240	(. fE	(,001	.005	.0013	.020	<.005	.0019	.306	.060	.018				.011	.005	4.3	.9	5.8
88/0 3/03	.610	<.05	.015	.010	< .00 01	<.005	(.005	.001 9	1.83	.269	.00 6	(.0005)	(.01 0	.067	.022	.021	10.2	2.3	14.7
NEAN	1.62	.05	.019	.01 0	.0006	.010	.007	.0217	1.83	.112	.008	.0006	.012	.047	.06 6	.01 9	7.2	1.8	8.8
std dev	2.589	.00	.014	.006	.0005	.007	.004	.0310	2.04	.090	.006	.0004	.003	.016	.082	.011	2.3	. 6	4.2

DATE	ค า 100/1		B ∞/1	Ba	Ed m/l							Pb mg/1						-	
87/12/11	1.17	(.05	< .001	.005	< .0001	.006	(.005	.0270	.979	.009	.005	<.0005	<.01 0	.018	.046	<.002	3.7	1.3	3.1
88/01/12	.217	(.05	<.001	.002	<.000 1	306. V	(.005	.0012	,096	.002	(.005	3000.	.013	.018	.003	.004	4.0	1.2	3.0
88/02/16																			
88/02/29																			
86/0 3/08																			
NEAN	.38	.06	.004	.003	.0004	.006	<.005	.0063	.31	.003	.006	.0006	.011	.020	.012	.002	4.4	1.4	5.1
std dev	.45	.02	.006	.001	.0006	.002	0	.0116	.39	.003	.003	.0001	.001	.003	.019	.001	.6	.1	2.1

C TOTAL NETALS

	• <u>9</u> /1	∎g/1	∎g/1	ng/l	∎g/î	∎g/1	m /1	∎g/1	n g/1	m g/1	mg/1	ag/1	n g/1	ng/1 ng/1	ng/1	•1/1	• <u>1</u>	<u>ng/1</u>
87/12/11	.453	.07	.010	.003	<.0001	.006	<. 00 5	.0025	.301	.003	.007	(.0005	.037	.017 .002	.006	3.53	1.2	2.9
														.017 <.002				
														.021 <.002				
														.024 <.002				
														.024 (.002				
nean Std Dev		.06 .01												.021 <.002				

B DISSOLVED HETALS

Min

Ho

PЬ

`

Sr Ti

Sn

Zn

Ca

Na

ł

Ng

DATE	FLOH CHIS		00 •1/7	рН relu	COND uS/cm		ALK ng/1			NFR mg/1	TR ∎g/1	TURB JTU	HARD Mg/1	Si m1/1	TDP mg/l	₩ 17	ND3 103/1	ND2 101/1	NH3 101/1
													46.7		044	040	4.00	/ 005	.012
87/12/11				6.8	44	3.5	10.3			5.3		13	16.7		.011	.018		(.005	
86/01/12		.1		6.8	44	4.0	11.1	6.3	54	5.3	59.3	1.2	15.7	3.7	.006	.020	.694	<.005	.011
88/02/16				6.9	60	3.4	12.7	11.7	52	(5.0	52		17.0	3.4	<.002	.012	.433	(M 5	<.NFi
88/02/29				6.8	70	1.8	11.5	14	56	(5.1)	61	.2	19.7	3.6		,009	.396	< .005	.006
88/ 03/05		3.9	11.8	7.1	78	3.6	15.0	17	64	(5.8	64	.6	19.2	3.2	.007	.009	.228	(.005	(.005
NEAN		2	11.8	6.9	59	3.3	12.1	11	56	5.1	59	3.8	17.7	3.5	.007	.014	.56	(.00 5	.009
std dev		2.7		.1	15	.8	1.8	5	5	0	4	6	1.7	.2	.004	.005	.320	0	.006

A PHYSICAL & CHENICAL

TABLE 10 EFFLUENT QUALITY SETTLING POND 4 - NIDDLE QUINSAN LAKE ROAD CULVERT

Cd

Ba

B

As

Co Cr

Du

Fe

DATE

۰.

٩

A1

5. DISCUSSION

5.1 Comparison of EP Effluent and Receiving Water Quality Data (December 1987 to March 1988)

A comparison of seventeen parameters representing QCC permit requirements and Federal concerns were expressed to the provincial Commission of Inquiry in 1983. These were as follows:

> Acid Mine Drainage - pH, conductivity and sulphate Heavy Metals - dissolved Al, Cu, Fe, Pb and Zn Nutrients - phosphorus (total and dissolved), nitrate, nitrite and ammonia Sedimentation - non filterable residue and turbidity

In addition, alkalinity and hardness are compared in order to detect changes in the effluent and receiving water buffering capacities.

Because standard deviations are large relative to mean values of many parameters and the number of samples is small, comparisons were made between parameter means (Table 11). A difference of twice the mean control (station 1) value for each parameter was chosen to define a "significant" change in the parameter. Comparisons were made between sample means if the number of samples in each data set were similar.

To compute means and standard deviation, all values less than the detection limits were assumed to equal the detection limit. As a result, the increases in effluent will be under-estimated when control values are lower than the detection limit. Statistical tests were not performed on the data sets for the reasons outlined above. In the settling pond outflow most parameters, 13 of 17, were elevated, i.e. greater than twice the control value - station 1. The increases varied from 2.4X to 110X. pH was 0.5 rel. u. lower in the effluent. Only alkalinity, hardness, dissolved Cu and Ph were wimilar in the control and effluent (less than a two-fold increase).

In comparison, at the Middle Quinsam Lake Road culvert, only 6 of the 17 parameters (sulphate, turbidity, total dissolved phosphorus, nitrate, dissolved Al and Fe) were greater than twice the control values at station 1. The values are considerably lower than Settling Pond 4 outflow and varied from 3.5X to 20X the control values. pH was only 0.3 rel. u. lower in the effluent stream. Hardness, non filterable residues, nitrite, ammonia and dissolved Cu were the same at both stations. Alkalinity was slightly lower in the effluent stream than in the control (0.8X). The remaining parameters were less than double the control values at station 1.

Receiving water quality at station 5 was very similar to control station 1, only total dissolved phosphorus and dissolved Fe were elevated, 2X and 3.3X respectively. pH, conductivity, non filterable residue, nitrate, dissolved Cu and Zn were identical at both stations. Alkalinity, hardness and total phosphorus were slightly lower in the receiving water while the remainder of the parameters were less than double the control values.

Water quality at station 8 appears similar to the control station and identical to station 5. However, these results should be viewed with caution as it was sampled only once. 5.2 Comparison of BP Monitoring Data (December 87 to March 88) to QCC Baseline Data (82 - 84)

Data collected in the winter (December - March) by EP and QCC was compared in order to verify that there were no other factors influencing the receiving water quality subsequent to QCC's collection of baseline data (Table 12). As in Section 5.1 the same parameters were compared using the same criteria, i.e. less than a two-fold to change between sample dates to determine a significant change between dates sampled.

EP monitoring and QCC baseline data are very similar at control stations 1 and 2 and receiving water stations, station 5 and station 8. Only 2 of the 17 parameters are significantly different at station 1. The parameters are nitrate and dissolved Fe, EP monitoring data for nitrate and dissolved Fe are 3X and 1/3X respectively the QCC baseline data. At control station 2 the comparisons are limited by small data sets (n=2), however, only 3 parameter means are significantly different. The EP results for nitrate are 5X those of QCC, while the QCC values for total dissolved phosphorus and ammonia are 2.5X and 4X those reported by EP.

Receiving water quality at station 5 is the most similar between EP and QCC. The only parameter to vary by more than 2X is nitrate, EP results are 6X those of QCC. Station 8 had the least similar data sets of the river stations, with dissolved Fe, sulphate and turbidity means being significantly different. There are two reasons for this difference; uneven and small data sets and sample stations are 2 to 3 km apart.

- 19 -

EP monitoring data and QCC baseline data were the least similar at Middle Quinsam Lake Road culvert. Eight parameters were significantly different, in all cases the EP results were higher. Nitrate, sulphate, conductivity, turbidity, non filterable residue, and dissolved Fe, Pb and Zn were 33X, 11X, 2.7X, 5.5X, 5X, 4.5X, 7X and 4X, respectively.

There are three possible explanations for the differences at the Middle Quinsam Lake Road culvert:

Uneven and small data sets, Aerial fertilization of the surrounding forests, and Mining activities

Differences in the size of data sets will randomly affect the results, therefore one would expect 50% of the parameters in either data set to be significantly different from the other data set. It is unlikely that one data set would have all the significantly larger values.

Aerial fertilization using a nitrogen base fertilizer increases nitrogen concentrations in the forest soils. Water flowing over the surface or through the surficial soils would absorb nitrogen compounds, eg. nitrate. This may explain the higher levels of nitrate at all stations in 87/88.

The most likely explanation for the increase is mining. Several activities associated with mining such as the use of explosives, land clearing and exposure of soils and unweathered minerals and rock will result in increased levels of the above mentioned parameters in the discharge from the settling pond.

AREA OF	PARAMETER			ſ	STATION		
CONCERN		<pre>1 (CONTROL)</pre>	2 (n=2)	5 (n=5)	8 (n=1)	(n=5)	(n=5)
		1	, T	r	- r	u v	6 9
ACID MINE	pH (Rel.U.)	7.2	1.0	7.1			
DRAINAGE	Conductivity (uS/cm)	39	40	38	41	66	C
	Sulphate	2.3	1.7	2.5	m	17	11
	Altalicity	16	5	14	13	19	12
	Hardness	18	15	15	15	27	18
UEAVV	Discolved Al	.034	.032	.046	.043	.292	.188
		0011	0013	. 0012	<0.0005	.0015	.0010
MEIALS				1.00	038	.422	.145
		010.				2000	0007
	Dissolved Pb	<0.0005	<0000.0>	.0006	v.vvv		
	Dissolved Zn	<0.002	<0.002	.002	<0.002	. 110	.004
	-	200	200	00	.005	. 007	.007
NUTRIENIS	lotal Uissolved r	200.		200.	900	030	.014
	Total P	800°.					5 6 0
	Nitrate	.041	.026	.078	. U / 4	1.10	
		<0.005	<0.005	<0.005	<0.005	.042	<0.005
	Ammonia	600.	<0.005	.012	.008	.038	600.
SEDIMENTATION	Non Filt. Residue Turkidity (1711)	5.3	<5.0 .24	5.1 .30	<5.0 .17	18.9 20.9	5.1 3.8
		•					

-

.

SELECTED EP EFFLUENT AND RECEIVING WATER QUALITY DATA DECEMBER 87 - MARCH 88 (units in mg/l, except es noted) TABLE 11

,

-. •

٩

3

•

SELECTED EP MONITORING DATA (DECEMBER 87 - MARCH 88)	AND QCC BASELINE DATA (DECEMBER 82 - MARCH 83, DECEMBER 83 - MARCH 84)	as noted)
SELECTED EP MONITORING	AND QCC BASELINE DATA	(units in mg/l, except as noted)
TABLE 12		

.

١

.

AREA OF	PARAMETER							STATION	NO		
CONCERN		1 (CON	I (CONTROL)		2	1	5		80	SP4-MQLR	MQLR
		000	EP	000	EP	000	EP	000	EP	000 0	EP
		(u = 7)	(u=2)	(u=2)	(n=2)	(u=1)	(u=2)	(u=3)	(u=1)	(u=3)	(u=2)
ACID MINE		с С	י ד	0	c r	י ד	ŗ	0 1	1 1	, 1	د ر
		•••	2.1	0.0			1.6	0./			6.4
URAINAGE	Conductivity (uS/cm)		66	31	40	30	38	33	41	22	59
	Sulphate	1.8	2.3	<1.0	1.7	1.8	2.5	1.2	3.0	<1.0	11
	Alkalinity	2.2	16	24	15	22	14	24	13	19	12
	Hardness	15	18	18	15	15	15	18	15	11	18
HEAVY		.034	.034	.047	.032	.034	.046	.044	.043	.103	.188
METALS		<.0008	.0011	<.001	.0013	<.0008	.0012	100.>	<.0005	<.0008	.0010
	Dissolved Fe	.030	.010	.029	.033	.030	.033	.108	.038	.032	.145
		<.001	<.0005	<.001	<.0005	<.001	.0006	<.001	<.0005	<.001	.0007
	Dissolved Zn	.002	<.002	200.	<.002	.002	.002	.002	<.002	.001	.004
NUTRI ENTS	Total Dissolved P	.004	.002	.005	.002	.004	.004	.003	.005	.005	.007
	Total P	.008	.008	.007	.007	.008	.007	.004	.006	.008	.014
	Nitrate	.013	.041	.005	.026	.013	.078	.049	.074	.017	.560
	Nitrite	<.001	<.005	<.001	<.005	<.001	<.005	1.00. >	<.005	<.001	<.005
	Ammonia	.008	600.	.023	<.005	.008	.012	.015	.008	.012	600.
SEDIMENTATION	Non Filt. Residue	<1.0	5.3	<1.0	<5.0	<1.0	5.1	1.1	<5.0	<1.0	5.1
	Turbidity (JTU)	.75	.19	<1.0	.24	. 75	.30	1.30	.17	.70	3.80

.

REFERENCES

÷.

- 1. Department of the Environment and Department of Fisheries and Oceans. October 1983. A Brief to the Qunisam Coal Public Inquiry, Campbell River, B.C.
- 2. Quinsam Coal Limited. January 1986. Baseline Monitoring Program.
- 3. Hillier, F.A., L. Edgeworth, and A.J. Lynch. Report to the Minister of Environment on the Public Inquiry into the Quinsam Coal Project, at Campbell River, B.C. (October 12 to November 25, 1983).
- 4. Ministry of Environment and Parks, Waste Management Branch, Permit No. PE7008 issued December 23, 1987, to Quinsam Coal Ltd., #2000-1055 West Hastings Street, Vancouver, British Columbia. V6E 3V3.
- 5. Task Force on Water Quality Guidelines of the Canadian Council of Resource and Environment Ministers. March 1987. Canadian Water Quality Guidelines.

ACKNOWLEDGEMENTS

The author wishes to thank the following for their contributions:

K.	D. Ferguson	Field Studies
v.	Chamberlain	Field Studies
в.	Defehr	Word Processing

#

1

•

-

APPENDIX I

QUINSAM COAL CORPORATION - BASELINE DATA (82-84)

Table 1	QCC Baseline Data - Station 1 (Quinsam River u/s Middle Quinsam Lake)
Table 2	QCC Baseline Data - Station 5 (Quinsam River d/s Middle Quinsam Lake)
Table 3	QCC Baseline Data - Station 8 (Quinsam River u/s Iron River)
Table 4	QCC Baseline Data - Station 2 (Flume Creet at Argonaut Road)
Table 5	QCC Baseline Data - Settling Pond 4 (Middle Quinsam Lake Road Culvert)

							A PHYSI	A PHYSICAL & CHEDNICAL	HICH								
DATE	HOH	9 81	8	£	0100	ALK.	00MH	Š	æ	Ę	1068	de	e=	EON	N	EHN	
		о <mark>н</mark> С	∫∕b∎	rel u	uS/ca	1/6	1/bu	1/2	1/6.	1/0	Ē	1/5	1/50	L/pm	1/548	L/t-m	
83/10/23		2.0		7.4	Æ		19.0	(5.0		(1.0	(.1 0		:005	110.	c.002	600.	
83/00/28		3.5	12.8	8.2	ĸ		18.4	(1.0		<1.0	£.	æ.	60 .	300.)	(,001	<.010	
83/03/22	.67	4.0	13.2	7.2	£		19.4	(1.0		1.6	6.	<u>8</u> ,	30 0-	;005	;00	(.010	
83/12/13	ន	4.0	12.2		ж	26.4	19.7	2.0		<1.0	<1.00	200.	80.	8	;001	(.010	
11/10/48	S.	1.5	13.6	7.4	92	26.4	2.9	2.0		(1.0	<1.00	100	50 .	.014	100.)	(.005	
84/02/11	.41	4.0	12.4	7.2	24	24.2	23.3	2.0		(1.0	(1.00	200.	8	83.	,001	.00	
84/03/12	-57	5.0	12.2	7.2	ន	22.8	22.1	1.7		(1.0	<1.00	.00	8	.015	100°,	.007	
NEW.	¥.	3.4	12.7	7.4	31.7	25.0	20.7	2.1		1.1	R	300 .	300.	014	100")	800-	
stid dev	8	1.2	G.	۲.	7.9	1.8	2.0	1.4		5	ĸŗ	8	20	89.	00.	20.	
			ossia 8	OLVED HETALS	ឡ						,	C TOTAL HETALS	HETALS				
4	Defi	łł	2	e	£	ų				DATE	લા	ප	ъ.	£	Ţ,		
I		1 /1	V	1/0	1/0=	1/60	1				/ 5	√ 8∎	1/0	L/pe	1/64		
æ	3/11/23	.015	2000.	60 .	(.001	10 .				83/01/23	.016	.0017	.010	100.)	(,000		
80	8/00/22	8	(,000	200"	:00 [.])	100.				83/00/25	890.	<.0005	.01	, 100 .)	.0010		
60	3/03/22	8 .	(,000	80.	(.00	10 .				83/03/22	1 22	9000 *	140.	H0.,	0600"		
æ	83/12/13	83.	(.0010	600.	(.001	. 004				83/12/13	529.	000.	.017	, 001	0100		
60	4/01/17	946.	.010	.013	;001.)	• 00				21/10/48	.150	.0100	<u>8</u> 2	.01 100.	020		
æ	4/02/11	<u>س</u>	<.0010	8	:00.)	8				84/02/11	8	(.0010	.042	,001 1001	.0050		
8	4/03/12	8	(,0010	.024	100.>	10				84/03/12	83.	<0010	.042	<.001	0200.		
<u>е</u> 0	NEAN STD DEU	<u>8</u> . 5	88. 28. 29.	15 16 18	., 100. ⁰	<u>s</u> s				KEN Sid den	280 260	2 8.	8	<u>,</u> 0	880. 880 - 880 -		

TABLE A1 QCC BASELINE DATA STATTON 1 (QUINSAN RUGR U/S MITOLE QUINSAN LAVE)

•

- A1 -

.

		8	Q	g	ខ	yo Yo	يو مو	ĸ	æ	g										
		8	<u>10.</u>	. .	5	90 .)	8 .	-00 -	, S	80.			1							
	20 N	, 002	,001	,001	, 001	:001	, 001	.00	100 100	8		ភេន៍		, 000 2000	.000	000.	.000	000.	.0040	MAN MAN
	89 /s	ć.005	;000.)	.010	.016	8.	8	.012	10.	200-		£		., 100.)	:00.)	, (1001	<u>100.</u>)	., 101.)	;001. 2	, m,
	dl Va	300 .)	.014	.018	8 9	90	8	200	8	90	. NETALS	e 1	- //	.0 1 3	.045	.043	930.	9 8.	.051	ŝ
	e 1		8	90 0-	600 -	8	90 .	100.	ē.	8	B TUTAL	ខរ៍		809.	, 0005	ć.0005	(.0010	.0010	<.0010	1 0010
	89 E	. .10	8.	8	(1.00	(1.00	(1.00	(1.00	K.)	ĸ		6		8	0.0.	.045	4 0.	8	020	5
		(1.0	1.2	(1.0	(1.0	(1.0	(1.0	(1.0	1.0			DATE		82/10/88	83/00/25	83/03/22	83/12/13	84/01/17	84/02/11	04 00 40
HICH	æ ₽				8	ឌ	ង	54	र	2.8										
A PHYSICAL & CHENICAL	NS	(5,0	(1.0	(1.0	(1.0	1.8	(1.0	1.5	1.8	1.5										
A PHYS	00000 1/12m	13.0	11.8	15.0	17.8	16.3	16.5	17.2	15.4	2.2			1							
	ALK M				23.1	\mathbf{z} .0	20.2	20.9	21.6	1.3		ង		<.0005	10 .	ć.001	200.	æ.	90	ę
	COIO U5/ca	Я	প্থ	R	8	8	83	8	29.7	3.4	នា	£	- /F	, 001	,001	;001	,001	<u>100.</u>)	100°.)	1 001
	HE I	7.2	8.2	7.2	6.7	7.3	7.2	7.3	7.3	۳.	B DISSOLVED HETALS	Fe M	• 7	8	ෂි	.016	33.	<u>8</u> .	8	2
	8		12.8	14.2	13.0	12.7	12.1	12.2	12.8	æ	B DISSI	3		-000	;000; ·	(,000	<.0010	(,0010	(,0010	/ 0040
	900 - 50 20	2.0	4.0	5.0	3.5	2.5	4.0	5.0	3.7	1.1		19		<u>.</u> 12	.043	ଞ	ଞ୍	.051	8.	£
	102 se				83.	1.557	3.110	1.330	1-72	8		DATE		101/23	1/02/25	72/60/	83/12/13	21/10/	11/20/11	m /10
	DATE	83/01/23	83/00/25	ZZ/E0/E8	83/12/13	84/01/17	84/02/11	84/03/12	KEAN	sid dev		ä	1	8	8	æ	æ	85	35	8

TABLE A2 QCC BASELINE DATA STATION 5 (QUINSAM RIVER D/S MIDDLE QUINSAM LARE)

۶

e

Ł

*

•

- A2 -

800 100 100

<u>,</u> °

89. 19.

3 5 5

KEN Std dev

8 5

6 67 67

8.8

NEW Sid dev

TABLE A3 QCC DASELINE DATA STATION 8 (QUINSAM RIVER U/S IRON RIVER)

e

.

: .

CHEMICAL
6
PHYSICAL
æ

NC2 NH3 mg/1 mg/1	.001 .017 .001 .024 .001 .005	01 .015 .010	V	8 8 8	ម
	0, 0, Û,	100", 0	4Z	999	80 .
EON 1/2	50. A. 80.	640 1920	£ 2	100, 1 00, 100, 100, 100, 100, 100, 100, 100,	100.)
d± 1	90 , 500, 500, 500, 500, 500, 500, 500, 5	9 8. 18.	HETRIS Fe	81. 151. 151.	.157
d ⊒ ∫2	<u> 8</u> 9 9	500 100	8 TUTAL Cu mg/1	100°)	(.001
891 1.1.C	1.00 1.80 1.00	1.27 .46	e s	8. 8 . 89	660.
NFN Ng/1	1.2 (1.0 (1.0	11	DATE	83/12/13 84/02/09 84/03/15	HEM.
8¥					
8 5	1.5 (1.0 (1.0	1.2 .3			
00044 	16.8 18.3 18.1	17.7 .8	1		
ALK 10	22.0 27.5 20.9	23.5 3.5	بح الح	88.8	8
000 12/31	8 8 8	5 33	ج ع	100.) 100.)	100.)
Je Je L	7.0 7.1 7.0	7.0 1.	LUED NETALS Fe mg/1	. 100 . 083 . 140	8
8 8	11.5 12.1 10.8	11.5 .7	8 DISSO La 10	100.) 100.) 100.)	101.
	4.0 4.0 5.0	4 .3 .6	la Ing/	<u>s</u> 8 8	¥.
			BAR	83/12/13 84/02/09 84/03/15	
DATE	83/12/13 84/02/03 84/03/15	NEW STD DEV		00 00 00 00	Ξι

TABLE AM QCC BASELINE DATA STATION 2 (FLUNE CREEX AT ARCOMULT ROAD)

A PHYSICAL & CHENICAL

4

*

<u>_</u>___

_...

	m	-				
81N 1/2	8	8		1		
20 N	100.) 100.)	,001 0		5 V	89. 90.	1 9. 19.
89 V	1 99. 199.	39 , 10,		£	100.) 100.)	.001) 0
ett M	.010 004	200 -	L HETALS	Fe mg/l	.061 .042	989. E10.
da ∑∎	900 ⁻	36 . 10	C TUTAL	3	100.) 100.)	,001 0
	(1.00 (1.00	(1.00 0		€8 1/2€	.110	189. 199.
X .	<1.0 <1.0	(1.0 0		DATE	83/11/15 84/02/11	NEAN Stid dev
84						
85 /2	(1.0 (1.0	(1.0 0				
004H	15.5 19.4	17.5 2.8		1		
	20.0 28.6	24.3 6.1		v2 ∎	8.8	80.0
000 rg/ca	8 8 83	30.5 3.5	រ	£ \$	100.) 100.)	10°.
E e	6.8 6.9	6.8 -1	OLVED NETALS	er Eg/I	ଛିଛି	8 5
8	10.0 11.6	10.8 1.1	B DISSI	3	100.) 100.)	100.) 1
	8.0 5.0	6.5 2.1		æ 🖌	.07 1024	780.
				DATE	83/11/15 34/02/11	HEAN Stid dev
DATE	83/11/15 84/02/11	HEAN Stid dev				

.

METER	
	5
NITUCA	
-	rl
	B
Se E	3
	3
	5
8	5
٤	31
e	1
낼	2
TAG	

A PHYSICAL & CHENICAL

ø

€

.

	·						
		, 010 , 020 , 000			I		
	20	99. 109. 109.	100°) 100°)		بې	18. 99. 18. 19. 19.	88
	89		20 .		£ }	100.) 100.) 100.)	100°,
	d1	88. 59. 59. 500	80 . 200	HETALS	5e 10	89.89	80° 14
	6	900 200	38 300	C TOTAL	3	<pre>(,0005 (,0010 (,0010</pre>	9000.) 2000.
		.15 (1.00 (1.00	r, r		e Va	88. 17. 100	.118 .045
	X . 1/50	(1.0 (1.0 (1.0	(1.0 0		DATE	83/02/25 83/11/15 84/02/07	KEW Stid dev
	e j						
	55 ∑	(1.0 (1.0 (1.0	(1.0 0				
	00.04 1	8.8 11.5 13.2	11.2 2.2		1		
	AK /2	16.0 20.9	18.5 3.5		v 2	19. 29. 19. 19. 19.	10. 10.
	000 (%	នន	8-	នា	æ 🕯	100°, 100°, 100°,	,001.) 0
	E e	8.2 6.8 6.8	7.3 .8	B DISSOLVED NETALS	Fe Mul	20.00	50 50 50
	8	12.6 12.6 13.4	12.9 .5	essia 8	3	(,0005 (,0010 (,0010	8000.)
	8 19 19	4.0 7.8 1.0	4.3 3.4		₽ Vo	180 191 980	81. 23.
	FLOH				DATE	83/02/28 83/11/15 84/02/07	NEAN Stid dev
	DATE	83/02/25 83/11/15 84/02/07	nean Std dev			8 8 8	2 V