ENVIRONMENT CANADA
CONSERVATION AND PROTECTION
ENVIRONMENTAL PROTECTION
PACIFIC AND YUKON REGION
NORTH VANCOUVER, B.C.

WESTMIN RESOURCES LTD.
PREMIER GOLD MINE
- September 12-15, 1989 -

REGIONAL DATA REPORT: DR 91-06

by

Benoit Godin

ENVIRONMENT CANADA

SEPTEMBER 1991

TABLE OF CONTENTS

																									<u> </u>	AGE
TABLE	OF	CONI	ENT	s .						•								•								i
	List	of	Tab	les							•															ii
	List	of	Fig	ure	s																					ii
1.0	INTE	RODU	CTIO	N						•																1
2.0	SITE	DE	SCRI	PTI	Ю											•			•							3
3.0	MATE	ERIA	L AN	D M	ET	HO:	DS											•								4
4.0	RESU	JLTS	•																•		•					7
	4.1	Wa	ter	Qua	ali	.ty	<i>r</i>	na	ıly	/si	İs						•									7
	4.2	Сс	ntir	nuoi	ıs	Су	ar	nic	le	Εf	f]	Lue	ent	: 5	San	ip]	lir	ıg					•	•	•	12
	4.3	Тс	otal	Sec	din	en	ıt	Ar	ıal	lys	sis	3								•						12
	4.4	Se	equer	ntia	al	Ex	tı	ac	cti	ior	1					•										14
REFER	ENCE	s.																								25

LIST OF TABLES

<u>TA</u>	<u>BLE</u>	PAGE
1	Water Quality, Metal Analysis Premier Gold - September 12, 1989	. 8
2	Water Quality, Immediates Analysis Premier Gold - September 12, 1989	11
3	Effluent Quality - Premier Gold - September 12-15, 1989	13
4	Sediment Quality - Premier Gold - September 12, 1989	15
5	Sediment Sequential Extraction - Station 4, Cascade Creek upstream of Tailings Pond - September 13, 1989	21
6	Sediment Sequential Extraction - Station 8, Fletcher Creek below Granduc Road - September 13, 1989	22
7	Sediment Sequential Extraction - Station 9, Cascade Creek downstream of Tailings Pond - September 13, 1989	23
8	Sediment Sequential Extraction - Station 11, Monitoring Pond Effluent - September 13, 1989	24
	LIST OF FIGURES	
FIG	GURE	PAGE
1	Receiving Water Sampling Stations	. 2
2	Sediment Multiple Comparison Plot Premier Gold 1989 - Al, As, Ca, Cd	17
3	Sediment Multiple Comparison Plot Premier Gold 1989 - Cr, Cu, Fe, Hg	18
4	Sediment Multiple Comparison Plot Premier Gold 1989 - Mn, Pb, Zn	19

1.0 INTRODUCTION

The Premier Gold Mine is located on the east side of the Cascade Creek Valley, about 1 km upstream from the B.C./Alaska border, in the Salmon River drainage system. The mine site is drained by Cooper Creek to the north and west, and Fletcher Creek to the south. The creeks join above the Granduc road and flow as Fletcher Creek into Cascade Creek immediately below the falls (Figure 1). The falls are an impassable barrier to salmon migration. Cascade Creek joins the Salmon River about 1.5 km downstream of the falls and supports chum, pink, coho, and sockeye salmon.

The company operates an open pit mine using cyanide leach to extract gold and silver. The tailings pond is located in the Cascade Creek valley bottom and the upper part of the Cascade Creek has been diverted into Lesley Creek. The tailings are discharged using the subaerial technique and the supernatant discharged to Cascade Creek above the falls.

FIGURE 1: RECEIVING WATER SAMPLING STATIONS

2.0 SITE DESCRIPTION

Receiving water sampling stations were established both above and below potential influence of mining operations. Station names and location descriptions are listed below and compared with stations sampled in previous years (refer also to Figure 1).

PREMIER GOLD - STATION LOCATION - SURVEYS 1987 to 1989

Station name	Statio 87	on number b 88	y year 89
Hovland Ck. u/s Mill	1		_
Lesley Ck. u/s Mill	2	2	_
Fletcher Ck. u/s Waste Dump	-	-	10
Cooper Ck. u/s Open Pit	3	-3	3 i
Cascade Ck. u/s Tailings Pond	4	4	4
Lesley Ck. d/s Mill	5	5	-
Hovland Ck.d/s Mill	6	-	_
Cooper Ck. u/s Fletcher Ck.	7	7	_
Fletcher Ck. d/s Granduc Rd.	8 ²	-	8
Monitoring Pond	-	-	11
Cascade Ck. d/s Tailings Pond	9	9	9
Cascade Ck. d/s Logan Ck.	-	-	
Level 4 - Mine portal	_	-	Level 4
Level 6 - Mine portal	-	Level 6	Level 6

Stations moved upstream due to the development of the waste rock dump Sample at the mouth in 1987; subsequently sampled below Granduc Road

3.0 MATERIAL AND METHODS

Water chemistry samples were collected at eight stations during a visit to the mine site September 12-15, 1989. The following chemical parameters were included in the analysis: alkalinity, pH, conductivity, ammonia, nitrite, nitrate, total residue, non-filterable residue, and sulphate. Samples were packed with ice until analysed. Dissolved metals were filtered the same day through a 0.45 micron cellulose nitrate membrane filter. Total and dissolved metals were preserved with 0.5 ml nitric acid per 100 ml of sample. All samples were collected with clean polyethylene bottles. Bottles for metal samples were acid washed. Hardness was determined from the dissolved metal sample. The cyanide species were collected in one litre polyethylene bottles and preserved with sodium hydroxide pellets. Total cyanides, weak acid dissociable cyanides, cyanates, and thiocyanates were also analysed.

Inductively Coupled Argon Plasma (ICAP) Emission Spectroscopy was used for the total and dissolved metal analysis and gave a reading of twenty-six metals. Samples were re-analysed for cadmium, copper, and lead with the graphite furnace when the values were below two times the detection limit of the ICAP procedure. Analytical methods were in accordance with the Environment Canada, Pacific Region, Environmental Laboratory Manual (Anon., 1979).

A Sirco model #MK-7 sampler was set to collect one sample every three hours from the monitoring pond effluent from September 12 to September 15, inclusive. Sodium hydroxide pellets were placed in the bottles before water samples were collected. These preserved samples were then analysed for cyanide species as described above.

Sediment samples were collected from the streambed with a clean acrylic corer; four replicates were taken at each site. The samples were transferred into kraft bags and kept cool until analysed. They were air dried, sieved to <150 μm , digested with reverse aqua regia, and analysed for heavy metals using ICAP. A portion of the sediments were ignited at 550°C in a muffle furnace. The loss of weight was noted as volatile residue and the remainder was reported as fixed residue. All results are reported as dry weight.

Sediment sequential extraction was performed at four stations (4, 8, 9, and 11) to evaluate the mobility of metal in the sediment component. The methodology was based on the work of Tessier et al. (1979). Samples were air dried, sieved to <63 μm , and rolled to homogenise. The samples were then weighed into 50 ml centrifuge tubes and subjected to a sequential leaching procedure designed to partition trace metals into the following fractions:

- 1) F(a): Exchangeable metals. The sediment sample is extracted with 1M MgCl₂ initially at pH 7 at room temperature for one hour on a wrist action shaker.
- 2) F(b): Metals bound to carbonates or specifically adsorbed.

 The residue from (a) is leached with 1M sodium acetate adjusted to pH 5 with acetic acid at room temperature for five hours on a wrist action shaker.
- 3) F(c): Metals bound to Fe-Mn oxides. The residue from (b) is extracted at 96°C for six hours with 0.04M NH_4OH .HCl in 25% (vol/vol) acetic acid.
- 4) F(d): Metals bound to organic matter and sulphides. The residue from (c) is extracted at 85°C for five hours with 0.02M HNO3 and 30% H₂O₂ adjusted to pH 2 with HNO3 and then at room temperature with 3.2M NH₄OAc in 20% (vol/vol) HNO3, on a wrist action shaker.
- 5) F(e): Residual metals. The original dried samples were weighed in Teflon digestion vessels and digested with HNO $_3$ and HCl in a microwave oven, resulting in a total fraction (MT). The residual F(e) was calculated as: F(e) = MT [F(a) + F(b) + F(c) + F(d)].

Analysis was performed via Inductively Coupled Argon Plasma (ICAP) Emission Spectroscopy. The internal laboratory reference material TATS-1 was used for this test to evaluate the performance of the procedure.

Statistical analysis consisted of determining averages and standard deviations for the water quality data. One-way analysis of variance was performed on selected sediment data. Multiple comparison procedures using Tukey's harmonic significant differences were used to produce the various plots (Figures 2-4) and a significant difference was determined when the alpha probability was lower than 5% (p < 0.05). Contaminants

with values below the detection limit were considered equal to the detection limit. The standard deviation for cadmium at Stations 3 and 10 was equal to zero. A slight variability was arbitrarily introduced so that Tukey's separation procedure would work. This modification does not introduce appreciable changes in the outcome (Atkinson, pers. comm.).

4.0 RESULTS

4.1 Water Quality Analysis

The water metal results can be found in Table 1, while the other water quality results are found in Table 2. Alkalinity in the receiving water was low with a range of 11.9 to 38.9 mg/L. pH was slightly alkaline with the exception of Station 9 where pH was 6.5. Interestingly, the pH readings from laboratory measurements were much more variable than expected (Table 2).

Nitrogen compounds were low for all stations except Stations 9 and 11 where the monitoring pond effluent introduced high levels of nitrogen. The cyanide levels were high with almost similar levels of total and weak acid dissociable cyanides. The thiocyanate in the effluent at Station 11 was not detected downstream at Station 9 perhaps indicating that a transformation from thiocyanates to cyanates had occurred within the distance between the two stations. Ammonia levels in the monitoring pond effluent (34 mg/L) contributed to increased ammonia levels (to 0.327 mg/L) in Cascade Creek.

The residue levels in the receiving environment were usually low. Station 11 had non-filterable residues of 246 mg/L and total residues of $1.5~\rm g/L$.

Station 8 was located downstream of Station 3, Station 10, and the mine adit at Level 4. The elevated Station 8 concentrations of calcium, iron, magnesium, manganese, sodium, strontium, and zinc can be attributed to Level 4 discharges. Other constituents at Station 8, such as aluminum, barium, silicon, and titanium, were already present upstream having been detected at either or both Stations 3 and 10 (Table 1).

Total and dissolved metal concentrations were higher at Station 11 for silver, barium, calcium, cobalt, copper, iron, potassium, magnesium, manganese, sodium, antimony, silicon, and strontium than at other stations. Aluminum, lead, and zinc were higher in the total fraction but not in the dissolved fraction. The high non-filterable and filterable residues were responsible for these high metal values.

WATER QUALITY, METAL ANALYSIS - PREMIER GOLD - SEPTEMBER 12, 1989

TABLE 1:

Station Number		TOTICP AG MG/L	DISICP AG MG/L	TOTICP AL MG/L	DISICP AL MG/L	TOTICP AS MG/L	DISICP AS MG/L	TOTICP BA MG/L	DISICP BA MG/L	TOTICP CA MG/L	DISICP CA MG/L	TOTICP CD MG/L	DISICP CD MG/L	TOTICP CO MG/L	DISICP CO MG/L	TOTICP CR MG/L	DISICP CR MG/L
10	Repl.1 Repl.2 Repl.3 Average S.D.	4.01 4.01 4.01	<pre>< 01 < 01 < 01 < 01 < .01 < </pre>	0.10 0.17 0.09 0.12	<.05 <.05 <.05	0.050.050.050.05	0.050.051.11.1	0.103 0.110 0.108 0.107 0.004	0.107 0.101 0.111 0.106	10.2 10.7 10.6 10.5	10.7 10.1 10.9 10.6	<.005 .005</.005</th <th><.005 <.005 <.005</th> <th>005005005105</th> <th>005005005100</th> <th>200°></th> <th>005005005105105</th>	<.005 <.005 <.005	005005005105	005005005100	200°>	005005005105105
ъ	Repl.1 Repl.2 Repl.3 Average S.D.	<pre></pre>	<pre></pre>	<pre></pre>	05 	0.050.050.050.05		0.156 0.161 0.156 0.158 0.003	0.157 0.160 0.161 0.159	11.1 11.5 11.2 11.3	11.0 11.3 11.5 11.3	005005005105	× 0005 × 0005 × 0005	005005005107	005005005107	× 0005 × 0005 × 0005	
œ	Repl.1 Repl.2 Repl.3 Average S.D.	.01.01	<pre><.01 <.01 <.01 <.1 </pre>	0.08 0.12 0.10 0.10	× · · 05 × · · 05 × · · · · · · · · · · · · · · · · · · ·	× · · · · · · · · · · · · · · · · · · ·	05 05 	0.099 0.102 0.101 0.101	0.104 0.096 0.097 0.099	17.7 18.3 18.2 18.1 0.3	19.6 18.3 18.5 18.8	<.005 <.005 <.005	005005005105		005005005105	005005005105	
4	Repl.1 Repl.2 Repl.3 Average S.D.	0.010.010.010.01	<pre></pre>	6.05 6.05 6.06 6.06		× · · · · · · · · · · · · · · · · · · ·		0.015 0.015 0.015 0.015 0.000	0.012 0.012 0.014 0.013	44440 6.2.2.4.1	W W W W W O O O O O O O O O O O O O O O	<.005 <.005 <.005	005005005105	005005005105	<.005 .005</.005</td <td>005005005</td> <td>4.0054.0054.005</td>	005005005	4.0054.0054.005
6	Repl.1 Repl.2 Repl.3 Average S.D.	0.010.010.010.10.1	<pre><.01 <.01 <.01 <.1 </pre>	0.18 0.17 0.22 0.19	6.05 0.06 0.05 0.05	0.050.050.051.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.11.1.1<	0.050.050.051.1	0.047 0.046 0.047 0.047 0.001	0.032 0.032 0.031 0.032	8.7 8.6 8.7 8.7	9.1 9.2 9.7 9.0	0.0050.0080.005	005005005005	005005005005	<.005 0.007 <.005	.005.005.005	005005005105
#	Repl.1 Repl.2 Repl.3 Average S.D.	0.06 0.06 0.08 0.07	0.03 0.01 0.02 0.02	1.50 1.51 2.37 1.79 0.50	0.07 <.05 <.05	0.050.060.060.06	0.050.050.05	0.388 0.293 0.565 0.415	0.203 0.196 0.191 0.197	165.0 164.0 161.0 163.3 2.1	174.0 172.0 168.0 171.3	005005005105	005005005005	0.024 0.030 0.019 0.024 0.006	0.039 0.035 0.034 0.036	0.005 0.006 0.005	<.005 <.005 <.005
Level 4		<.01	<.01	0.13	<.05	0.06	<.05	0.031	0.032	62.7	67.0	0.010	0.013	0.006	<.005	<.005	<.005
Blank		<.01	<.01	<.05	<.05	<.05	<.05	<.001	<.001	, 1.	4:1	<.005	<.005	<.005	<.005	<.005	<.005

WATER QUALITY, METAL ANALYSIS - PREMIER GOLD -SEPTEMBER 12, 1989

TABLE 1 (cont'd):

10 Neglia (100 c) (100	Station Number		TOTICP CU MG/L	DISICP CU MG/L	TOTICP FE MG/L	DISICP FE MG/L	TOTICP K MG/L	DISICP K MG/L	TOTICP MG MG/L	DISICP MG MG/L	TOTICP MN MG/L	DISICP MN MG/L	TOTICP MO MG/L	DISICP MO MG/L	TOTICP NA MG/L	DISICP NA MG/L	TOTICP NI MG/L	DISICP NI MG/L
Replication Comparison Co	10	Repl.1 Repl.2 Repl.3 Average S.D.	005005005106107107108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108108<l< td=""><td>, 005 , 005 , 005</td><td>0.079 0.142 0.054 0.092</td><td>0.010 0.009 0.011 0.010</td><td>\$\$\$;;</td><td>22.22.</td><td>0.6 0.7 0.6 0.6</td><td>0.7 0.6 0.6 0.1</td><td>0.006 0.007 0.006 0.006</td><td>0.002 4.001 4.001</td><td><pre></pre></td><td><pre></pre></td><td>0.7 0.7 0.0</td><td>99990</td><td></td><td></td></l<>	, 005 , 005 , 005	0.079 0.142 0.054 0.092	0.010 0.009 0.011 0.010	\$\$\$;;	22.22.	0.6 0.7 0.6 0.6	0.7 0.6 0.6 0.1	0.006 0.007 0.006 0.006	0.002 4.001 4.001	<pre></pre>	<pre></pre>	0.7 0.7 0.0	99990		
Replication Coordinate Co	٣	Repl.1 Repl.2 Repl.3 Average S.D.		005005005105	<pre></pre>	**************************************	\$\$\$;;	222	8.0 0.9 0.8 0.0 1.0	0.0 0.0 0.9 0.1	<pre><.001 <.001 <.001 <.001 < < </pre>	<pre><.001 <.001 <.001 <.001 < </pre>	6.01 6.01 6.01		0.00	99990	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 1 1 0 0 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Repl. 1	œ	Repl.1 Repl.2 Repl.3 Average S.D.			0.123 0.133 0.141 0.132 0.009	0.017 0.016 0.015 0.016	\$\$\$.:.	555 · · ·		44440	0.033 0.031 0.030 0.031	0.021 0.020 0.021 0.021			0.00 0.00 0.00 0.00	00000	205	· · · · · · · · · · · · · · · · · · ·
Repl. 1	4	Repl.1 Repl.2 Repl.3 Average S.D.	0.005 0.005 0.003 0.033	* 005 * 005 * 005 * 1 · 1	0.113 0.061 0.097 0.090 0.027	0.008 0.009 0.014 0.010	222::	222	00000 www.vo	0.5 0.5 0.5 1.0	0.005 0.008 0.008 0.006	0.001 0.001 0.001 0.001			00000 E.4.E.1	mmm.0		
Repl. 1 0.399 0.438 4.700 0.032 73 77 5.1 5.5 3.880 3.550 0.06 0.06 174.0 174.0 <.02 Repl. 2 0.389 0.422 3.080 0.026 73 76 5.1 5.3 3.850 3.490 0.06 0.06 173.0 170.0 <.02 4.00 0.428 5.913 0.034 72 75 5.2 5.2 3.780 3.410 0.06 0.06 170.0 170.0 <.02 4.00 0.012 0.034 73 75 5.1 5.3 3.837 3.483 0.06 0.06 172.3 169.7	ø	Repl.1 Repl.2 Repl.3 Average S.D.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.005 0.007 0.007 0.007	0.312 0.497 0.320 0.376	0.008 0.011 0.009 0.009	44440	949::	8886	00000 6.000	0.056 0.054 0.055 0.055	0.041 0.041 0.039 0.040			44444 44444	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		**************************************
4 0.041 0.010 0.608 <.005 <2 <2 4.6 5.1 0.245 0.249 <.01 <.01 2.8 2.8 <.02 6 0.009 <.005 0.155 0.006 2 <2 6.5 6.4 0.506 0.450 <.01 <.01 10.7 9.7 <.02 7 <.005 <.005 <.005 <.005 <2 <2 <.1 <.1 <.1 <.001 <.01 <.01 <.01 <.1 <.1 <.02	11	Repl.1 Repl.2 Repl.3 Average S.D.	0.399 0.389 0.413 0.012	0.438 0.422 0.425 0.009	4.700 3.080 9.960 5.913 3.597	0.032 0.026 0.034 0.031	73 72 73 1	77 76 72 75	5.1 5.2 5.3 6.3	លសសស សម្មាល់ សម្មាល់	3.880 3.850 3.780 3.837 0.051	3.550 3.490 3.410 3.483 0.070	0.00 0.00 0.00 0.00			174.0 170.0 165.0 169.7 4.5		.02.02.02
<.005 <.005 <.005 <.005 <2 <2 <.1 <.001 <.001 <.01 <.01 <.1 <.02			0.041	0.010	0.608	0.006	ý n	ŝ ŝ	6.5	5.1	0.245	0.249	<.01	<.01	2.8	2.8	<.02	<.02
	Blank		<.005	<.005	<.005	<.005	42	<2	¢.1	¢.1	<.001	<.001	4.01	<.01	4.1	¢.1	<.02	<.02

WATER QUALITY, METAL ANALYSIS - PREMIER GOLD -SEPTEMBER 12, 1989 TABLE 1 (cont'd):

Station		TOTICP P MG/L	DISICP P MG/L	TOTICP PB MG/L	DISICP PB MG/L	TOTICP SB MG/L	DISICP SB MG/L	TOTICP SI MG/L	DISICP SI MG/L	TOTICP SN MG/L	DISICP SN MG/L	TOTICE SR MG/L	DISICP SR MG/L	TOTICP TI MG/L	DISICP TI MG/L	TOTICP ZN MG/L	DISICP ZN MG/L
10	Repl.1 Repl.2 Repl.3 Average S.D.	###!! ***!!		0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 °	4.05 4.05 4.05 1.1	4.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.054.05<	<.05 <.05 <.05 	1.30 1.56 1.30 1.39	1.26 1.27 1.28 1.27 0.01	0.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.050.05<	<.05 <.05 <.05	0.104 0.110 0.109 0.108	0.109 0.103 0.112 0.108 0.005	0.003 0.017 <.002 0.010	<.002 <.002 <.002	0.004 0.060 0.005 0.023	0.006 4.002 4.002
, m	Repl.1 Repl.2 Repl.3 Average S.D.	ਜ਼ਜ਼ਜ਼। ' ' ' ' ' ' '		0.050.050.050.05	0.050.051.11.1		0.050.050.05	1.16 1.26 1.18 1.20	1.26 1.21 1.21 0.33		**************************************	0.094 0.097 0.095 0.095	0.094 0.095 0.096 0.096	6.002 6.003 6.002	<pre></pre>	002002102102	002002102103
α	Repl.1 Repl.2 Repl.3 Average S.D.		14411	<05<05<05<05		0.5 0.5 	× 005 × 005 × 005	1.30 1.40 1.38 1.36 0.05	1.38 1.32 1.30 0.04		* 05 * 05 * 05	0.170 0.175 0.174 0.173	0.187 0.171 0.174 0.177 0.009	0.003 0.004 0.003 0.003	**************************************	0.164 0.155 0.145 0.155	0.144 0.135 0.136 0.138 0.005
4	Repl.1 Repl.2 Repl.3 Average S.D.	ਜਜਜ : : ****;;	T T T ! !	< .05< .05< .16<	× · · · · · · · · · · · · · · · · · · ·		× 0.05 × 0.05 × 0.05	0.51 0.49 0.50 0.50	0.44 0.44 0.46 0.01	0.050.050.05	* 05 * 05 * 05 * 05	0.045 0.044 0.044 0.044	0.040 0.039 0.044 0.041	<.002 <.002 <.002	<.002 <.002 <.002	0.002 0.039 0.028 0.028	* 002 * 002 * 002
م	Repl.1 Repl.2 Repl.3 Average S.D.	ਰਜ਼ਰ:: ****:			0.050.050.05	* . 05 * . 05 * . 05		0.84 0.78 1.02 0.88	0.59 0.59 0.59 0.00		0.050.050.05	0.078 0.078 0.078 0.078 0.000	0.082 0.081 0.077 0.080 0.003	0.006 0.005 0.006 0.006	**************************************	0.064 0.054 0.054 0.054	0.024 0.024 0.023 0.024 0.024
11	Repl.1 Repl.2 Repl.3 Average S.D.	00000		0.59 0.57 0.57 0.58	× · · · · · · · · · · · · · · · · · · ·	0.16 0.17 0.15 0.16	0.20 0.18 0.19 0.19	4.50 5.90 6.96 0.81	2.57 2.52 2.47 2.52 0.05	× × × × × × × × × × × × × × × × × × ×	* 05 * 05 * 05 * 1	0.789 0.779 0.779 0.782 0.006	0.834 0.812 0.787 0.811	0.028 0.025 0.055 0.036	**************************************	0.431 0.227 0.862 0.507 0.324	0.025 0.024 0.025 0.025
Level 4 Level 6		4.1 4.1	<.1 <.1	<.05	<.05	<.05	<.05	2.05	2.16	<.05	<.05	0.814	1.830	<.002 0.002	,002,002	3.890	1.360
Blank		4:1	4.1	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.05	<.001	<.001	<.002	<.002	<.002	<.002

6000

CNS 000. 000. 000. 1.1 .0053.3700.2131.7922.232 <.005 <.005 <.005 **** NPR WATER QUALITY, IMMEDIATES ANALYSIS - PREMIER GOLD - SEPTEMBER 12, 1989 MG/L 005005005 0.047 0.050 0.049 0.049 × .005 × .005 × .005 005005005105 0.318 0.315 0.329 0.321 0.005 0.005 0.005 0.005 .005.005.005.005.005 0.327 0.327 0.327 0.327 34.800 34.800 34.900 34.833 0.058 <.005 <.005 <.005 0.029 NH3 DISICP HC MG/L DMHO/C COND 73 70 71 71 REL.U. ΡH 37.7 37.2 41.8 38.9 11.2 12.2 12.2 11.9 S.D. ALK Repl.1 Repl.2 Repl.3 Average S.D. Repl.1 Repl.2 Repl.3 Average Repl.1 Repl.2 Repl.3 Average S.D. TABLE 2: Station Level 6 Level 4 11

The total copper concentration in samples from Station 9 was less than detection limit (5 $\mu g/L$), but the dissolved fraction averaged 7 $\mu g/L$. This indicates that the Station 9 samples were contaminated. Iron, manganese, and sodium content reflected levels at Station 11. Zinc concentration averaged 54 $\mu g/L$, but the source could be any, or a combination of, Fletcher Creek (Station 8), the monitoring pond, or the Level 6 mine portal.

4.2 Continuous Cyanide Effluent Sampling

Continuous sampling of the monitoring pond was limited due to failure of the power supply. Samples from the first days of the four day collection period had cyanide levels close to 1 mg/L. Concentrations were down to 0.2 mg/L by the end of the sampling period. The weak acid dissociable cyanide concentration was in good agreement with the total cyanide concentration. Replicated samples were collected in the afternoon of September 12, 1989 at about 1630. On September 12 and 13, when the cyanide levels were high, there seems to have been a reduction of cyanide as the day progressed (Table 3). Natural degradation may have an influence on the results when levels are high but treatment may have a greater effect when levels are low.

The cyanide levels were clearly reduced from the initial sampling day on September 12 to a much lower level on September 15. Total cyanide was 0.95~mg/L initially, and stabilised around 0.20~mg/L later in the day.

4.3 Total Sediment Analysis

Sediment data are reported in Table 4 and the evaluation of the total sediments in the receiving environment are presented in Figures 2 to 4.

Sediment sample concentrations of arsenic, calcium, cadmium, copper, mercury, lead, and zinc were low at Stations 3 and 10. Station 3 samples from near the waste rock dump were particularly high in aluminum and manganese, and both stations were high in iron.

TABLE 3: EFFLUENT QUALITY - PREMIER GOLD - SEPTEMBER 12-15, 1989

Sampling Date	Sampling Time	CN mg/L	CNO mg/L	CNS mg/L	CNWD mg/L
09/12	1015	0.95	28.1	24.0	0.94
11	1315	0.97	26.3	31.0	0.93
09/13	1125	0.59	28.1	26.0	0.78
, ,	1830	0.27	<.005	11.2	0.25
1 1	2130	0.24	<.005	9.6	0.23
09/14	0030	0.20	<.005	8.4	0.20
, ,	0330	0.25	<.005	9.2	0.25
1.1	0630	0.41	<.005	7.6	0.25
, ,	0930	0.22	<.005	7.4	0.21
1.1	1000	0.19	<.005	7.4	0.19
, ,	1300	0.20	<.005	9.4	0.20
, ,	1600	0.26	<.005	9.8	0.23
, ,	1900	0.22	<.005	8.2	0.20
, ,	2200	0.23	<.005	8.8	0.23
09/15	0100	0.19	<.005	8.8	0.19
′ ′	0730	0.18	<.005	9.2	0.18

Samples from Station 8, which is downstream of Stations 3 and 10, had high concentrations of cadmium (20.3 $\mu g/g$), copper (127.8 $\mu g/g$), lead (330 $\mu g/g$), and zinc (2175 $\mu g/g$). These metals were significantly different from the controls at Stations 3 and 10.

Samples from Station 4, which was upstream of the tailings pond on Cascade Creek, had low levels of calcium (3.07 mg/g), cadmium (2.9 $\mu g/g)$, copper (42.0 $\mu g/g)$, and mercury (0.276 $\mu g/g)$. This control station showed high concentrations of elements such as arsenic (67 $\mu g/g)$, lead (188 $\mu g/g)$, and zinc (412 $\mu g/g)$. Chromium concentrations were the highest in the survey (20.0 $\mu g/g)$, but these were low compared to other northwest B.C. regions.

Samples from Station 11, which was downstream of the monitoring pond, had high sediment metal concentrations for arsenic (95 μ g/g), calcium (16.0 mg/g), cadmium (17.4 μ g/g), mercury (0.47 μ g/g), lead (715 μ g/g), and zinc (2068 μ g/g). Calcium content was a reflection of the high pH requirement in the tailings pond. The copper content averaged 76.5 μ g/g, which was lower than the other downstream station (Station 8, 127.8 μ g/g).

Station 9, downstream on Cascade Creek, was the last monitoring point before the confluence with the Salmon River. The introduction of metal elements from Fletcher Creek and/or the monitoring pond increased the average concentrations of arsenic, calcium, cadmium, copper, lead, and zinc in samples from Station 9. However, the differences between these samples and those from upstream were not significant (p > 0.05).

4.4 Sequential Extraction

Sediment sequential extractions on samples from Stations 4, 8, 9, and 11 were conducted (Tables 5-8). Samples were analysed for cadmium, copper, lead, and zinc due to the toxicity of these elements and their significance in acid rock drainage and mill effluent processes. Biological availability was evaluated by the ease in which the extractive can remobilize metals from the sediments. The metals from the exchangeable and carbonate sequential extraction fractions were viewed as having the highest potential to become bioavailable. Metals from the other fractions may or may not become bioavailable depending on other processes such microbial degradation, bioaccumulation of the organic fraction, oxidation of sulphides, or changes in redox potential and solubilization of the iron and manganese oxides.

Certain differences may occur between the sequential extraction results and the total replicated metal analysis presented in Table 3. These could be explained by the differences in particle size. The sequential extraction uses <63 μm particles while the total metals procedure uses particles <150 μm . Most of the time the sequential extraction leads to slightly higher metal concentrations.

Samples from Station 8 had cadmium levels of 2.7 μ g/g in the exchangeable fraction and 4 μ g/g more released from the carbonate fraction. This represents 35% of the cadmium in the sediment at that station. Copper bioavailability potential was low. Lead was not found in exchangeable salts but 61.3 μ g/g was released at pH 5. Zinc was highly available with 41.9 μ g/g in the first fraction and 555 μ g/g released in the second fraction.

7150 7380 7330 7225 7225 130 6570 6823 202

6950 6960 6900 6840 6738 321 1500 1300 1300 1525 330

Ħ

3300 3300 3300 3450 300 1800 1000 1700 1000 1375 435 1000 1000 1000 1700 1175 1000 1000 1000 1250 500 K UG/G 0.428 0.383 0.438 0.659 0.477 0.100 0.110 0.092 0.120 0.106 0.150 0.140 0.310 0.120 0.180 0.325 0.281 0.230 0.267 0.276 0.039 0.258 0.273 0.216 0.226 0.243 0.043 0.058 0.035 0.034 0.043 HG UG/G 54900 59400 58900 58400 57900 56500 53700 58900 60300 57350 2895 45900 46100 44000 45900 45475 988 50400 48800 57600 49700 51625 4037 53600 54100 51700 48600 52000 FR UG/G SEDIMENT QUALITY, METAL ANALKSIS - PREMIER GOLD SEPTEMBER 12, 1989 Cd 706/6 131.0 105.0 147.0 128.0 127.8 17.3 17.3 39.4 34.5 35.7 11.0 CR UG/G 20.2 19.6 18.5 21.7 20.0 8.2 9.2 8.1 8.5 5.5 27.99.65 CO UG/G CD 4G/G 5830 5420 5180 5330 5440 278 6610 5960 6150 6230 6238 6580 8650 5710 4660 6400 1693 6440 6230 6400 5850 6230 269 3000 3120 2970 3190 3070 CA UG/G BE UG/G BA UG/G 99936 617 594 516 530 564 AS UG/G 13100 13000 12200 13100 12850 436 13800 13600 13900 13700 13750 12800 13200 12400 13900 13075 12300 11300 11600 12500 11925 568 21200 21500 21500 21900 23800 22100 AL 56/6 AG UG/G 3333 Repl.1 Repl.2 Repl.3 Repl.4 Average S.D. Repl.1 Repl.2 Repl.3 Repl.4 Average Repl.1 Repl.2 Repl.3 Repl.4 Average S.D. Repl.1 Repl.2 Repl.3 Repl.4 Average S.D. Repl.1 Repl.2 Repl.3 Repl.4 Average S.D. Repl.1 Repl.2 Repl.3 Repl.4 Average TABLE 4: Station Number

10500 10600 10000 10500 10400 271

MG UG/G

8080 8220 8450 8820 8333

SEDIMENT QUALITY, METAL ANALYSIS - PREMIER GOLD - SEPTEMBER 12, 1989 TABLE 4 (cont'd):

							N A	навмата	SEFTEMBER 12, 1989	50					
Station Number		MN UG/G	MO UG/G	NA UG/G	NI UG/G	P UG/G	PB UG/G	SI UG/G	SN UG/G	SR UG/G	TI UG/G	V UG/G	ZN UG/G	SPR MG/KG	SVR MG/RG
10	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	1130 1130 1060 1240 1140	2222::	100 200 100 100 125 50	10 6 8 10 9	1100 1200 1100 1200 1150	59 63 70 70 64	1360 1390 1370 1510 1408 69	8888.	39.1 34.5 36.8 36.9	720 707 694 647 692 32	78 78 76 71 76	135 121 118 133 127 9	986000 991000 989000 986000 2449	14100 9400 11400 13900 12200
ĸ	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	2580 2730 2860 3200 2843 264	\$\$\$\$\$ <u></u> ;	100 100 100 100 0	0 1 1 0 0 0 0	1300 1300 1400 1300 1325 50	90 110 93 100 98	1350 1320 1330 1420 1355	& & & & &	52.8 52.8 51.4 51.2 2.2	178 206 192 205 195	3 6 7 8 8 8 8 9 4 4 9 8 8 8 8 8 9 9 9 9 9 9 9	200 191 231 183 201 21	912000 921000 923000 932000 8206	87800 78600 76800 67800 77750 8198
œ	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	1970 4170 1890 2640 2668 1057	\$\$\$\$;;	90 100 90 93	10 21 10 20 15	1000 980 1100 1000 54	806 696 947 817 817 103	984 1050 1180 1190 1101	32	444.7.2 445.1 445.0 46.0	639 609 551 554 584 438	18444 1844 1877 1844	2160 1970 2620 1950 2175	972000 975000 975000 975000 2449	28000 24600 30100 24800 26875
ч	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	1570 1650 1530 1780 1633	\$\$\$\$\$\;	100 70 60 100 83	24 24 30 30 6	1100 1100 1000 1100 1075 50	191 187 185 189 3	1040 1060 991 1040 1033	& & & & &	28.8 30.3 27.1 33.9 20.0	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	1 1 1 1 1 1 1 1	437 4115 4115 381 23	981000 980000 980500	18700 19900 19300 849
ه	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	1300 1440 1140 1340 1305	\$\$\$\$\$;;	80 70 80 620 213 272	100 100 100 1	1100 1100 1200 1100 1125 50	279 448 275 316 330	847 1050 1100 874 968	\$\times \times \	39.3 37.3 35.6 40.7 6.8	330 270 352 374 332 45	3 6 6 6 7 2 2 8 6 8 3 8 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	819 1210 715 886 908	980000 981000 979000 978000 979500	20300 19400 21000 21800 20625 1021
11	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	1360 1360 1390 1480 1398	2222	30 30 30 5 8 5	\$\$\$\$\$;	810 830 1000 900 885 86	582 363 424 1490 715 525	540 535 527 513 12 12	& & & & & · · · ·	74.8 78.4 79.8 83.1 79.0	20 18 20 47 26 14	1 v & 21 v v	1860 1420 1520 3470 2068 954	979000 984000 978000 975000 979000	21200 15600 21900 25500 21050

Cd FIGURE 2: SEDIMENT MULTIPLE COMPARISON PLOT - PREMIER GOLD 1989 - Al, As, Ca,

Cr uB/B

B/Bn uW

 z_n Pb, FIGURE 4: SEDIMENT MULTIPLE COMPARISON PLOT - PREMIER GOLD 1989 - Mn,

Station 4 samples had 0.93 $\mu g/g$ of cadmium available in the exchangeable and carbonate fractions. Copper and lead availability was negligible while some zinc (66.4 $\mu g/g)$ was available in the first two fractions.

Samples from Station 9 had 0.7 μ g/g of cadmium in the exchangeable and carbonate fractions which was less than that at Station 4 (0.93 μ g/g). However, the total amount of cadmium increased from the upstream station (Station 9, 7.4 μ g/g; Station 4, 3.1 μ g/g). Copper availability potential was negligible. Lead was not detectable in the exchangeable form, but 63.6 μ g/g was detected in the carbonate fraction. Zinc was similar, with none detected in the exchangeable form, but 81.7 μ g/g detected in the carbonate.

Samples from Station 11 had the lowest available cadmium with non-detectable amounts in the exchangeable form and 0.42 $\mu g/g$ in the carbonates. The total concentration was 13 $\mu g/g$ but most of this was in the residual portion (10.9 $\mu g/g$). Copper, lead, and zinc were not detected in the exchangeable fraction, but all metals could be detected in the carbonate fraction. Copper levels were 23.1 $\mu g/g$, lead 156 $\mu g/g$, and zinc 42.2 $\mu g/g$. These metals might be in the form of metal cyanide complexes.

TABLE 5: SEDIMENT SEQUENTIAL EXTRACTION - STATION 4, CASCADE CREEK UPSTREAM OF TAILINGS PONDS - SEPTEMBER 13, 1989

Metals (μg/g)	Exchange- able	Carbonates	Fe+Mn Oxide	Organic & Sulphides	Residual	Total
Ag	<0.4	<0.4	<0.4	<0.4	<3	<3
Al	<2	54	673	775	12300	13800
As	<2	<2	<2	15	62	77
Ba	44.7	56.4	86.5	11.6	941	1140
Вe	<0.04	<0.04	0.04	<0.04	<0.26	< 0.3
Ca	423	170	110	2050	407	3160
Cđ	0.53	0.4	0.97	0.2	1	3.1
Co	< 4	< 4	<4	<4	< 30	< 30
Cr	<0.2	<0.2	2.5	0.5	20	23
Cu	<0.2	1.6	6.71	12.2	15.1	35.6
Fe	<2	16	5780	3860	38200	47900
K	<80	<80	<80	<80	2000	2000
Mn	18.9	102	883	23.8	462	1490
Mo	<0.4	<0.4	<0.4	< 0.4	<3	< 3
Ni	<0.8	1	4	2	23	30
P	<4	< 4	40	918	242	1200
Pb	<2	7.2	48.7	26	78.1	160
Sb	<2	<2	2	<2	<18	<20
Sn	<2	<2	4	<2	<26	30
Sr	5.02	2	1.9	8.96	15.5	33.4
Ti	<0.08	<0.08	<0.08	1.4	119	120
V	< 0.4	< 0.4	2	1	33	36
Zn	13.2	53.2	62.5	26.8	230 .	386

TABLE 6: SEDIMENT SEQUENTIAL EXTRACTION - STATION 8, FLETCHER CREEK BELOW GRANDUC ROAD - SEPTEMBER 13, 1989

Metals (μg/g)	Exchange- able	Carbonates	Fe+Mn Oxide	Organic & Sulphides	Residual	Total
Ag	0.4	<0.4	0.6	2	7	10
Al	<2	122	1260	987	13800	16200
As	<2	<2	<2	8	39	47
Ba	45.7	72.7	178	16.8	446	759
Ве	<0.04	<0.04	<0.04	< 0.04	<0.2	<0.2
Ca	931	1490	230	2020	2270	6940
Cđ	2.7	4	2.8	0.69	9.21	19.4
Со	<4	< 4	5	<4	<15	20
Cr	<0.2	< 0.2	1.1	0.86	13	15
Cu	<0.2	8.43	13.7	45.5	43.4	111
Fe	<2	50.5	6080	4900	48400	59400
K	<80	<80	· <80	<80	2100	2100
Mn	7.51	339	3040	40.1	833	4260
Mo	<0.4	<0.4	< 0.4	< 0.4	< 2	<2
Ni	<0.8	4.7	4.6	2	12.7	24
P	<4	< 4	30	853	317	1200
Pb	<2	61.3	211	65.2	404	741
Sb	<2	<2	<2	<2	< 10	10
Sn	<2	<2	3	<2	55	58
Sr	7.64	8.36	4	6.42	29.3	55.7
Ti	<0.08	<0.08	0.3	24	802	826
V	<0.4	< 0.4	3	2	59	64
Zn	41.9	555	273	83.7	1090	2040

TABLE 7: SEDIMENT SEQUENTIAL EXTRACTION - STATION 9, CASCADE CREEK DOWNSTREAM OF FLETCHER CREEK - SEPTEMBER 13, 1989

Metals (μg/g)	Exchange- able	Carbonates	Fe+Mn Oxide	Organic & Sulphides	Residual	Total
Ag	<0.4	<0.4	1	2	<2	5
Al	<2	82.8	640	729	11900	13400
As	<2	<2	<2	21	74	95
Ba	54.2	62.6	73.7	10.8	409	610
Ве	<0.04	<0.04	<0.04	<0.04	<0.2	<0.2
Ca	628	1390	150	2330	1850	6350
Cd	0.2	0.5	0.76	0.79	5.15	7.4
Co	<4	<4	<4	<4	<20	20
Cr	<0.2	<0.2	1.9	<0,2	11.1	13
Cu	<0.2	5.54	4.88	20.8	36.1	67.3
Fe	<2	107	3820	5770	53600	63300
K	<80	<80	<80	< 80	1800	1800
Mn	22.2	310	310	23.8	444	1110
Mo	<0.4	<0.4	<0.4	< 0.4	<2	<2
Ni	<0.8	2	2	1	15	20
P	<4	< 4	40	1070	190	1300
Pb	<2	63.6	71.7	27	196	358
Sb	<2	<2	3 .	<2	<6	9
Sn	<2	<2	<2	3	39	42
Sr	5.01	6.61	2.3	6.29	23.4	43.6
Ti	<0.08	<0.08	<0.08	7.88	625	633
V	<0.4	<0.4	2	2	57	61
Zn	1.6	81.7	52.8	83.7	647	867

TABLE 8: SEDIMENT SEQUENTIAL EXTRACTION - STATION 11, MONITORING POND EFFLUENT (SEPTEMBER 13, 1989)

Metals (μg/g)	Exchange- able	Carbonates	Fe+Mn Oxide	Organic & Sulphides	Residual	Total
Ag	<0.4	<0.4	2	11	27	40
Al	<2	53.2	238	257	4420	4970
As	<2	<2	<2	67.8	52.2	120
Ba	65.5	83.3	70.2	9.35	384	612
Ве	<0.04	<0.04	<0.04	<0.04	<0.2	<0.2
Ca	465	12000	390	1960	1590	16400
Cd	<0.2	0.42	0.65	1	10.9	13
Co	<4	<4	<4	5	<15	<20
Cr	<0.2	0.57	3.7	<0.2	1.83	6.1
Cu	<0.2	23.1	4.07	29.5	29.7	86.4
Fe	<2	392	2390	10000	22700	35500
K	<80	<80	<80	<80	2200	2200
Mn	32.3	922	211	14.7	210	1390
Mo	<0.4	<0.4	<0.4	0.9	<1.1	<2
Ni	<0.8	1	<0.8	<0.8	<2	<3
P	< 4	< 4	84	925	191	1200
Pb	<2	156	85.4	25	210	476
Sb	<2	<2	3	2	<22	27
Sn	<2	<2	<2	4	<20	24
Sr	2.7	53.3	3.5	6.58	11.4	77.5
Ti	<0.08	<0.08	<0.08	<0.08	56.6	56.6
V	<0.4	< 0.4	0.8	1	8.2	10
Zn	<0.08	42.2	30.9	107	1370	1550

REFERENCES

- Anonymous. 1979. Laboratory Manual. Department of the Environment, Environmental Protection Service. Department of Fisheries and Oceans (Pacific Region), Fisheries and Marine Service.
- Atkinson, G. Applied Statistics Division, Environment Canada. Ottawa. Personal communication, December. 1991.
- Tessier, A., P.G.C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry <u>51</u>(7):844-851.