EL1045111B

ENVIRONMENT CANADA CONSERVATION AND PROTECTION ENVIRONMENTAL PROTECTION PACIFIC AND YUKON REGION

POLYCYCLIC AROMATIC HYDROCARBON (PAH) AND DIOXIN/FURAN CONCENTRATIONS IN VANCOUVER HARBOUR SEDIMENTS JANUARY 1991

Data Report: DR91-07A

by

.

J. Boyd D.Goyette

December 1993

REVIEW NOTICE

Conservation and Protection reviewed and approved this report for publication. Please direct comments or questions as follows:

. .

Ms. Janice Boyd, Environmental Protection, Conservation and Protection, Environment Canada, 224 West Esplanade, North Vancouver, B.C. V7M 3H7

(604)666-2880

- ii -

TABLE OF CONTENTS

REVIEW NOTICE	i
TABLE OF CONTENTS	ii
List of Tables i	
List of Figures i	
INTRODUCTION	1
METHODS Study Area	1
Field Collections	
Laboratory Analyses	1
Dioxins and Furans	
Polycyclic Aromatic Hydrocarbons	
Particle Size	4
RESULTS	4
DISCUSSION	8
REFERENCES	10
ACKNOWLEDGEMENTS	10

APPENDICES

- Sampling Station Depths and Coordinates. APPENDIX I
- APPENDIX II Results of Internal Laboratory and External Blind Audits for Dioxin and Furan Analyses.
- APPENDIX III Surrogate Standard Recovery Percentages for Polychlorinated Dibenzo-para-dioxin (PCDD) and Dibenzofuran (PCDF) Analyses.
- APPENDIX IV Results of Internal Laboratory and External Blind Audits for Polycyclic Aromatic Hydrocarbon (PAH) Analysis - μ g/g dry weight.
- APPENDIX V Surrogate Standard Recovery Percentages for Polycyclic Aromatic Hydrocarbon Analyses.

- iii -

LIST OF TABLES

Page

Table	1	Percent Particle Size Distribution and Median Particle Size	5
Table	2	Polychlorinated Dibenzo-para-dioxin (PCDD) Concentrations (pg/g dry weight) Measured in the Surface Sediments from Vancouver Harbour - January 1991	6
Table	3	Polychlorinated Dibenzofuran (PCDF) Concentrations (pg/g dry weight) Measured in the Surface Sediments from Vancouver Harbour - January 1991	7
Table	4	Polycyclic Aromatic Hydrocarbon (PAH) Concentrations (µg/g dry weight) Measured in Surface Sediments from Vancouver Harbour - January 1991	9

LIST OF FIGURES

Page

Figure 1	Sediment	Sampling	Station	Locations	in	Vancou	ver		
	Harbour ·	- January	1991					 	2

INTRODUCTION

Goyette and Boyd (1989) reported selected benthic contaminants in Vancouver Harbour excluding polychlorinated dibenzo-para-dioxins and polychlorinated dibenzofurans (i.e. dioxins and furans). Due to fishery closures from dioxin and furan contamination in certain areas (Department of Fisheries and Oceans, 1989), there was a need to measure the levels of these compounds in Vancouver Harbour sediments to supplement the existing database.

The study located sampling sites near potential anthropogenic sources, past and present. Potential sources include anti-sapstain treatment and lumber storage areas, sawmills using chlorophenate treated lumber, ship building and repair operations, combined sewer overflows (CSO), stormwater, and combustion.

Polycyclic aromatic hydrocarbons (PAH) arise from some of the same sources. Sediment PAH levels were measured for relative comparison among sites. Goyette and Boyd (1989) also provides past PAH measures at some sites.

METHODS

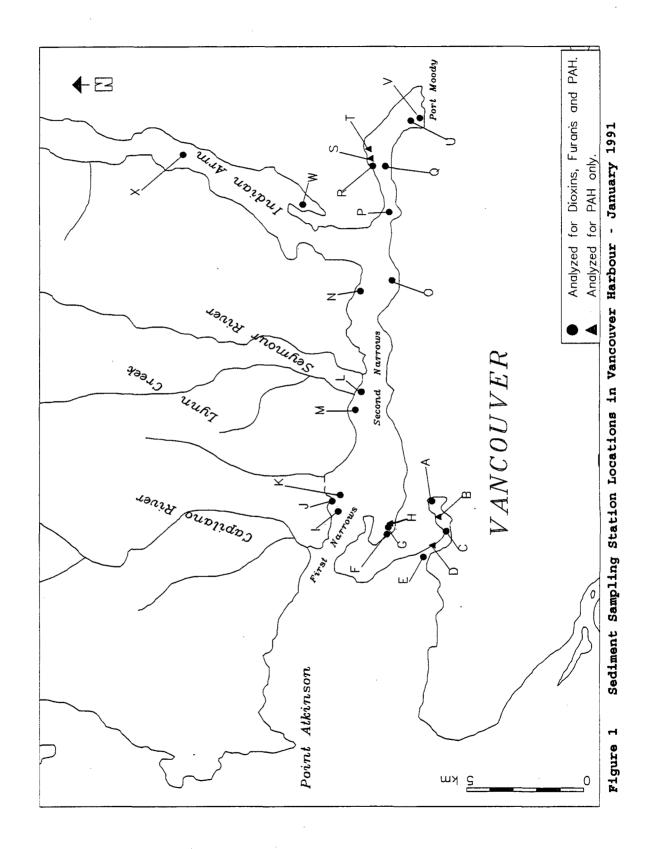
Study Area:

The study area included False Creek, Vancouver Harbour between the First and Second narrows (Inner Harbour), Vancouver Harbour between Second Narrows and the Indian Arm/Port Moody Arm junction (Central Harbour), Port Moody Arm, and Indian Arm. Two relatively undisturbed sites in Indian Arm were selected to provide local reference data. Figure 1 locates the 24 sampling stations; Appendix I lists the station depths and coordinates.

Field Collections:

Sediment sampling took place January 23-24, 1991 deploying a ponar grab from a 21 foot motor boat. Taking 3 grabs per site, we collected the top 2 cm from each grab with a heat-treated stainless steel spoon, blended the 3 composites then split in two 125 ml heat-treated jars, one jar for dioxin/furan analysis and one for PAH. Samples were immediately stored on ice in coolers then frozen at -20°C until analyzed.

Laboratory Analysis:


Dioxin and Furans - Samples were analyzed as per Environment Canada Quality Assurance Guidelines (1989) for the following parameters:

TOTAL DIOXIN CONGENERS:

TOTAL FURAN CONGENERS:

Tetrachlorodibenzodioxins(T4CDD)Pentachlorodibenzodioxins(P5CDD)Hexachlorodibenzodioxins(H6CDD)Heptachlorodibenzodioxins(H7CDD)Octachlorodibenzodioxins(08CDD)

Tetrachlorodibenzofurans (T4CDF) Pentachlorodibenzofurans (P5CDF) Hexachlorodibenzofurans (H6CDF) Heptachlorodibenzofurans (H7CDF) Octachlorodibenzofurans (O8CDF)

Chemical analyses also included the following individual isomers:

DIOXINS	2,3,7,8	T4CDD	FURANS	2,3,7,8	T4CDF
	1,2,3,7,8	P5CDD		1,2,3,7,8	P5CDF
	1,2,3,4,7,8	H6CDD		2,3,4,7,8	P5CDF
	1,2,3,6,7,8	H6CDD		1,2,3,4,7,8	H6CDF
	1,2,3,7,8,9	H6CDD		1,2,3,6,7,8	H6CDF
1,	2,3,4,6,7,8	H7CDD		2,3,4,6,7,8	H6CDF
				1,2,3,7,8,9	H6CDF
				1,2,3,4,6,7,8	H7CDF
				1,2,3,4,7,8,9	H7CDF

Sample analyses took place in February, 1991 except for Station K which remained frozen at -20°C until analyzed in March 1993 by the same laboratory. Blind splits formed ten percent of the sample submissions for external quality assurance and control (QA/QC). The laboratory duplicated 5 samples for internal QA/QC (Appendix II). Due to limited fundings, stations B, D, H, S, and T were not analyzed for dioxins and furans. The following summarizes the analytical technique (Seakem, 1990).

Samples were spiked with an aliquot of ¹³C labelled internal standards (tetrachlorodioxin, tetrachlorofuran, pentachlorodioxin, hexachlorodioxin, heptachlorodioxin and octachlorodioxin) to assess instrument performance (Appendix III). The sediment was ground with anhydrous sodium sulfate and extracted in a soxhlet apparatus for 20 hours. The extract was subjected to a series of cleanups (washings with acid and base, column chromatorgraphy on layered silica, alumina, carbon then alumina again) then analyzed by capillary gas chromatography with mass spectrometric detection. Samples were analyzed by high resolution mass spectrometry except stations C, E, N, O, P, and W, run by low resolution mass spectrometry.

Polycyclic Aromatic Hydrocarbons (PAH) - All samples were submitted in early March and analyzed according to Environment Canada Quality Assurance Guidelines (1990). Target compounds included the following:

LOW MOLECULAR WEIGHT

fluorene

naphthalene acenaphthylene acenaphthene phenanthrene anthracene

HIGH MOLECULAR WEIGHT

fluoranthene pyrene benzo(a) anthracene chyrsene benzo(b/k) fluoranthenes benzo(a)pyrene indeno(1,2,3-cd)pyrene dibenz (ah) anthracene benzo(ghi)perylene

In addition to internal QA/QC performed by the laboratory, we submitted 2 blind sample duplicates and a prepared reference standard from the NRCC HS series (4 parts HS-3 to 6 parts HS-4) for external QA/QC (Appendix IV). The analysts provided the following summary of analytical method (Seakem, 1991).

An aliquot of surrogate standard was added to a sediment sample placed in a round-bottom flask. It was refluxed with methanol, potassium hydroxide, and extracted water; the resulting digest was extracted with pentane. The combined pentane layers were washed, dried over anhydrous sodium sulphate, and concentrated in a Kuderna-Danish flask. The extract was loaded onto a silica gel column and eluted with first pentane then dichloromethane. The pentane fraction was discarded. The dichloromethane fraction, which contains the PAH, was concentrated to a small volume and transferred to a microvial.

An aliquot of recovery standard was added prior to analyzing the extract using a 3400 gas chromatograph (GC) with Finnigan Incos 50 mass spectrometer (MS) and a DG 10 Data system. The mass spectrometer was operated in the MID mode to increase sensitivity. The GC retention time and response factors were determined using a mixed calibration standard containing all target and surrogate compounds. Compounds were quantified by intergrated peak area relative to the peak area of the surrogate standard.

A procedural blank and certified reference sediment sample were analyzed with each sample batch. Twenty percent of the samples were duplicated for an internal lab comparison. The following surrogate standards were added to each sample:

napthalene d-8	chrysene d-12
acenaphthene d-10	perylene d-12
phenanthrene d-10	dibenzo(ah)anthracene d-14
pyrene d-10	benzo(ghi)perylene d-12

Recoveries, determined from the recovery standard added just prior to instrumental analysis, provided an overall indication of analysis quality (Appendix V).

<u>Particle Size</u> - This analysis was conducted using the sediment sample remaining from the PAH samples. The analysts employed the pipette method (Black, 1965) to determine particle size distribution using the following sieve sizes and classifications (Wentworth):

<0.063 mm	(-230 mesh)	silt and clay
<0.125 mm	(-120 mesh)	very fine sand
<0.25 mm	(- 60 mesh)	fine sand
<0.50 mm	(- 35 mesh)	medium sand
<1.0 mm	(– 18 mesh)	coarse sand
<2.0 mm	(– 10 mesh)	very coarse sand
>2.0 mm	(+ 10 mesh)	granule

RESULTS

Table 1 lists particle size distribution and median particle sizes for the 24 stations. Silts and clays predominated the sample types.

Tables 2 and 3 report the sediment dioxin and furan levels, respectively for 19 stations in Vancouver Harbour. Refer to Appendix II for comparison of QA/QC duplicates. Generally, both internal and external audits compare favourably

STN FALSE A B C	G CREEK 0	VCS	CS	MS				
A B C				110	FS	VFS	S&C	Particle Size
B C	0							
С	•	0.6	1.6	4.8	9.6	7.7	75.7	silt and clay
	0	0.1	0.3	1.0	2.5	4.2	91.9	silt and clay
	-	-	-	-	-	-	-	silt and clay
Ð	18.1	6.8	13.0	20.8	12.5	5.8	23.0	medium sand
E	0	1.0	6.6	17.8	21.0	12.0	41.6	very fine san
INNER	HARBOUR							
F	0	1.4	2.6	5.5	7.6	5.8	77.1	silt and clay
G	8.6	2.9	3.6	4.7	12.3	7.7	60.2	silt and clay
H	0	1.5	2.4	6.4	6.6	7.7	75.4	silt and clay
I	0	0.3	0.5	1.4	5.3	7.0	85.5	silt and clay
J	0	1.8	1.2	2.2	7.0	10.8	77.0	silt and clay
к	11.2	7.6	14.8	28.0	23.0	6.0	9.4	medium sand
L	1.2	3.1	11.2	59.1	22.1	1.1	2.2	medium sand
М	0	2.0	3.7	7.7	20.7	19.6	46.3	very fine san
Centra	L HARBO	UR						
N	0.7	1.7	3.5	9.6	32.9	26.3	25.3	very fine san
0	4.5	4.2	7.7	29.4	38.1	9.2	6.9	fine sand
PORT M	OODY AR	м						
P	0	5.0	trace	trace	trace	trace	95.0	silt and clay
Q	0	0.7	0.8	2.1	3.9	5.3	87.2	silt and clay
R	0	16.9	trace	trace	trace	trace	83.1	silt and clay
S	0	7.3	trace	trace	trace	trace	92.7	silt and clay
т	0.8	4.1	6.7	12.3	20.1	11.1	44.9	very fine san
υ	0	0.2	0.2	0.9	2.8	11.4	84.5	silt and clay
v	0	14.2	trace	trace	trace	trace	85.8	silt and clay
INDIAN	ARM							
W	0	2.6	8.6	21.3	31.5	18.6	17.4	fine sand
x	0	2.0	trace	trace	trace	trace	98.0	silt and clay
Legend		-	nules	•	>2.0 mm	•	mesh)	
	VCS	-	/ coarse		<2.0 mm		mesh)	
	CS		cse sand		<1.0 mm		mesh)	
	MS		ium sand		<0.5 mm		mesh)	
	FS		e sand		<0.25 mm		mesh)	
	VFS S&C	-	y fine sa and cla		<0.125 mm <0.063 mm		mesh) mesh)	

TABLE 1 PERCENT PARTICLE SIZE DISTRIBUTION AND MEDIAN PARTICLE SIZE.

* not analyzed due to insufficient sample; estimate based on similar field observations for stations A, B, & C.

trace - sample remaining after separating silts and clays was >.5 grams.

POLYCHLORINATED DIBENZO-PARA-DIOXIN (PCDD) CONCENTRATIONS (pg/g dry weight) MEASURED IN THE SURFACE SEDIMENTS FROM VANCOUVER HARBOUR - JANUARY 1991. TABLE 2.

MEA TERA Definition Concentrations in page dry weight) HEPA O FALTION 2378 TOTAL 12373 TOTAL 12373 TOTAL 123743 TOTAL 12379 TOTAL 1239109 TOL				ΡΟΓΥ	CHLORIN	NATED	DIBENZ	0 - P A R A	I X O I Q -	NS (PCD	(0	
FEIA HEM HEM <th></th> <th></th> <th></th> <th></th> <th>•</th> <th>Concentratic</th> <th>ons in pg/g</th> <th>dry weight)</th> <th></th> <th></th> <th></th> <th></th>					•	Concentratic	ons in pg/g	dry weight)				
2378 TOTAL 1274 TOTAL 1274 TOTAL 1274 TOTAL 1274 TOTAL 1274 TOTAL 1234/78 TOTAL 1300 (0.4) 1600 (0.4) 1600 (0.4) 1600 (0.4) 1600 (0.4) 1600 (0.4) 1600 (0.4) 1600 (0.4) 1600 (0.4) 1200 (0.5) 1600 (0.4) 1600 (0.4) 1600 (0.4) 1700 (0.4) 1600 (0.4) 1700 (0.4) 1600 (0.4) 1700 (0.4) <	AREA	TETR	A	PEN	TA		HEXA			H	PTA	OCTA
I t(CDD T (CDD T (CDD <tht (cdd<="" th=""> <tht (cdd<="" th=""> <tht (cdd<="" <="" th=""><th>STATION</th><th>2378</th><th>TOTAL</th><th>12378</th><th>TOTAL</th><th>123478</th><th>123678</th><th>123789</th><th>TOTAL</th><th>1234678</th><th>TOTAL</th><th>TOTAL</th></tht></tht></tht>	STATION	2378	TOTAL	12378	TOTAL	123478	123678	123789	TOTAL	1234678	TOTAL	TOTAL
2: 1 (0.1) 5: (0.1) 9.6 (0.1) 9.6 (0.1) 9.6 (0.1) 9.6 (0.1) 9.6 (0.1) 9.6 (0.1) 9.6 (0.1) 9.6 (0.1) 9.6 (0.1) 9.6 (0.1) 9.6 (0.1) 9.0 (2.4) 900 (2.4) 200 (2.4)		T4CDD	T4CDD	P5CDD	P5CDD	H6CDD	H6CDD	H6CDD	H6CDD	H7CDD	H7CDD	08CDD
2.1 (0.1) 6. (0.1) 9.6 (0.1) 9.6 (0.1) 9.6 (0.1) 9.6 (0.1) 9.6 (0.1) 9.6 (0.1) 9.6 (0.1) 9.0 (2.3) 1900 (2.3) 1900 (2.4) 300 (0.4)	FALSE CREEK											
WD (1.5) T.G (2.3) T.G (2.3) T.G (2.4) T.G (2.4) T.G (2.4) T.G (2.4) T.G (2.9) T.G (2.1) T.G (2.1) <tht.g (2.1)<="" th=""> T.G (2.1) <tht.g (2.1)<="" th=""> <tht.g (2.1)<="" th=""> <tht.g< th=""><th> A*</th><th>(1.0) 1.2 </th><th></th><th>9.6</th><th>96 (0.1)</th><th></th><th>250 (0.3)</th><th></th><th>1300 (0.3)</th><th>1600 (0.4)</th><th></th><th>8800 (0.6)</th></tht.g<></tht.g></tht.g></tht.g>	A*	(1.0) 1.2		9.6	96 (0.1)		250 (0.3)		1300 (0.3)	1600 (0.4)		8800 (0.6)
WD K(1.0) X(1.0) WD (1.6) WD (2.9) 18 (2.9) 140 (3.1) 300 (ი ე	ND (1.5)	110 (1.5	2.6	190 (2.3)		170	ß	980 (2.4)	1000 (2.9)	2100 (2.9)	5200 (4.5)
82 (0.3) 860 (0.3) 560 (0.3) 560 (0.3) 560 (0.3) 560 (0.3) 570 (0.4) 590 (0.4) 57 670 (0.4) 590 (0.4) 590 (0.4) 57 (0.1) 52 (0.1) 72 (0.2) 50 (0.2) 17 (0.4) 670 (0.4) 980 (0.4) 59 (0.4) 29 20 1300 (0.6) 140	u	ND (1.0)	3.7 (1.0	Q	ND (1.6)				120 (2.9)	140 (3.1)	300 (3.1)	710 (4.5)
82 (0.3) 820.0 (0.3) 820.0 (0.3) 820.0 (0.3) 820.0 (0.3) 81000 (0.4) 980 980												
R2 033 860 (0.3) 560 (0.3) 560 (0.3) 560 (0.4) 570 600 (0.4) 570 60.1 22 (0.1) 25 (0.1) 25 (0.1) 25 (0.1) 25 (0.1) 25 (0.1) 25 (0.1) 25 (0.1) 25 (0.1) 25 (0.1) 25 (0.1) 25 (0.1) 25 (0.1) 25 (0.1) 25 (0.1) 25 (0.1) 27 (0.2) 36 (0.2) 30 (0.2) 26 <th< th=""><th>INNER RAKBOUK</th><th></th><th></th><th></th><th></th><th></th><th></th><th>ļ</th><th></th><th></th><th></th><th></th></th<>	INNER RAKBOUK							ļ				
NNR (0.1) 5.7 (0.1) 5.7 (0.1) 5.7 (0.1) 5.7 (0.1) 5.7 (0.1) 5.7 (0.1) 5.7 (0.1) 5.7 (0.1) 5.7 (0.1) 5.7 (0.1) 5.7 (0.1) 5.7 (0.1) 5.7 (0.2) 3.6 (0.5) <th< th=""><th>*</th><th></th><th></th><th>-</th><th>3000</th><th></th><th></th><th>1700 (0.8)</th><th>11000 (0.8)</th><th>15000 (0.8)</th><th>31000 (0.8)</th><th>110000 (97)</th></th<>	*			-	3000			1700 (0.8)	11000 (0.8)	15000 (0.8)	31000 (0.8)	110000 (97)
NBR (0.1) 15 (0.1) 4.4 (0.2) 3.4 (0.2) 3.4 (0.2) 3.4 (0.2) 3.4 (0.2) 3.4 (0.2) 3.4 (0.2) 3.4 (0.2) 3.4 (0.2) 3.4 (0.2) 3.4 (0.2) 3.4 (0.2) 3.4 (0.1) 2.7 (0.1) 2.7 (0.1) 3.1 (0.3) 3.1	*9	NDR (0.1)			52		20	17	350 (0.2)	(7.0) 077		2500 (0.5)
0.9 (0.1) 11 (0.1) 27.0 (0.2) 3.6 (0.5) 30 (0.5) 12 (0.5) 230 (0.6) 12 23 (0.1) 23 (0.1) 23 (0.1) 23 (0.1) 23 (0.2) 140 (0.3) 15 (0.1) 23 (0.1) 23 (0.1) 23 (0.1) 23 (0.2) 140 (0.3) 15 (0.3) 15 (0.3) 160 (0.4) 22 (0.2) 140 (0.4) 170 10	*	NDR (0.1)		—	34		85	17				3400 (0.9)
0.1 0.1 1.5 (0.1) 0.4 (0.1) 2.3 (0.1) 3.7 (0.1) 2.2 (0.1) 31 (0.2) 8.7 (0.2) 8.7 (0.2) 7.4 <td< th=""><th>*2</th><th></th><th></th><th></th><th>250</th><th></th><th>30</th><th></th><th></th><th></th><th></th><th>2500 (1.1)</th></td<>	*2				250		30					2500 (1.1)
ND (0.2) ND (0.1) S3 (0.1) S4 (0.1) S4 (0.1) S4 (0.1) S4 (0.2) ND (1.1) ND	**			0.4								180 (0.1)
NDR (0.1) 9.8 (0.1) 8.3 (0.1) 47 (0.1) 10 (0.3) 140 (0.3) 30 (0.3) 560 (0.3) 1300 (0.4) 2200 (0.4) 140 ND (0.7) 2.9 (0.7) ND (1.1) ND (1.1) ND (1.1) ND (1.4) ND (1.4) 27 (1.4) 60 (1.4) 170 (1.4) 220 (2.0) ND (0.6) ND (0.9) ND (1.4) ND (1.4) 27 (1.4) 80 (1.4) 170 (1.4) 200 (2.9)	Ľ			QN_								61 (0.2)
ND (0.7) 2.9 (0.7) ND (1.1) ND (1.1) ND (1.7) 12 (1.7) 3.3 (1.7) 59 (1.7) 110 (2.0) 220 (2.0) [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) 20 (3.9) [2.0] [1.0 (2.0) [2.0 (3.0) [2.0] [1.0 (2.0) [2.0] [2.0 (3.0) [2.0] [2.0 (3.0) [2.0] [2.0] [2.0] [2.0 (3.0) [2.0] [2.0] [2.0 (3.0) [2.0] [2.0] [2.0 (3.0) [2.0] [2.0] [2.0 (3.0) [2.0] [2.0] [2.0] [2.0 (3.0) [2.0] [2.0] [2.0] [2.0] [2.0] [2.0] [2.0 (3.0) [2.0] [*₩			8.3								4900 (0.5)
ND (0.7) 2.9 (0.7) ND (1.1) ND (1.1) ND (1.1) ND (1.1) ND (1.2) 3.3 (1.7) 59 (1.7) 59 (1.7) 10 (2.0) 20 (2.0) 170 (1.4) 130 (1.4) 130												·
ND (0.7) 2.9 (0.7) ND (1.1) ND (1.7) 12 (1.7) 3.3 (1.7) 59 (1.7) 110 (2.0) 220 (2.0) ARM ND (0.6) ND (0.6) ND (0.9) ND (1.4) X,4 (1.4) ND (1.4) 27 (1.4) 60 (1.4) 170 (1.4) 170 (1.4) ARM ND (2.0) 12 (2.0) ND (4.4) 12 (4.4) ND (4.3) 74 (4.3) 78 (4.3) 780 (4.3) 540 (3.9) 990 (3.9) 99 99 1000 1000 1000 1000 1000 1000 100	CENTRAL HARB.							I				·
ND (0.6) ND (0.9) ND (1.4) 12 (1.4) 170	z	(0.7) ND		Q.	ND (1.1)			3.3 (1.7)		110 (2.0)	220 (2.0)	650 (2.1)
ARM ND (2.0) 12 (2.0) ND (4.4) 12 (4.4) ND (4.3) 74 (4.3) 18 (4.3) 380 (4.3) 540 (3.9) 990 (3.9) 12 1.9 (0.1) 35 (0.1) 6.0 (0.3) 5.4 (0.5) 78 (0.5) 26 (0.5) 1000 (0.8) 2200 (0.8) 5 1.9 (0.1) 35 (0.1) 6.0 (0.3) 60 (0.3) 5.4 (0.5) 78 (0.5) 26 (0.5) 1000 (0.8) 2200 (0.8) 5 1.4 (0.2) 41 (0.2) 7.8 (0.3) 80 (0.3) 12 (0.7) 110 (0.7) 34 (0.7) 580 (0.4) 1700 (0.4) 5 3.8 (0.2) 430 (0.2) 5.9 (0.2) 11 (0.2) 51 (0.2) 26 (0.2) 860 (0.4) 1700 (0.4) 5 3.8 (0.2) 430 (0.2) 5.9 (0.2) 290 (0.2) 11 (0.2) 51 (0.2) 26 (0.2) 860 (0.4) 1700 (0.4) 5 3.8 (0.2) 430 (0.2) 5.9 (0.2) 51 (0.2) 26 (0.2) 26 (0.4) 1700 (0.4) 5 1.4 (0.0) ND (1.0) ND (1.0) ND (1.0) ND (2.4) 7.4	0	(9.0) UN										350 (1.5)
ND (2.0) 12 (2.0) ND (4.4) 12 (4.4) 12 (4.4) ND (4.3) 74 (4.3) 380 (4.3) 540 (3.9) 990 (3.9) 5 1.9 (0.1) 35 (0.1) 6.0 (0.3) 6.0 (0.3) 5.4 (0.5) 78 (0.5) 520 (0.5) 1000 (0.8) 2200 (0.8) 5 2.6 (0.1) 6.6 (0.1) 8.9 (0.2) 110 (0.2) 12 (0.7) 110 0.7) 1300 (0.8) 2500 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 1700 (0.4) 170 (1.6) 170 (1.6) 170 170 110	 Port Moody Ari											
1.9 (0.1) 35 (0.1) 6.0 (0.3) 60 (0.3) 5.4 (0.5) 78 (0.5) 26 (0.5) 1000 (0.8) 2200 (0.4) 500 (0.4) 13 2.6 (0.1) 66 (0.1) 8.9 (0.2) 110 (0.2) 11 (0.3) 120 (0.3) 2200 (0.4) 500 (0.4) 500 (0.4) 13 1.4 (0.2) 41 (0.2) 7.8 (0.3) 80 (0.3) 12 (0.7) 110 (0.7) 34 (0.7) 1300 (0.8) 2500 (0.4) 19 3.8 (0.2) 430 (0.2) 5.9 (0.2) 290 (0.2) 11 (0.2) 51 (0.2) 26 (0.2) 420 (0.2) 860 (0.4) 1700 (0.4) 5 3.8 (0.2) 430 (0.2) 5.9 (0.2) 290 (0.2) 11 (0.2) 51 (0.2) 26 (0.2) 420 (0.2) 860 (0.4) 1700 (0.4) 5 1.4 (0.0) ND (1.0) ND (1.7) ND (1.7) ND (2.4) 74 (2.4) ND (2.4) 42 (2.4) 1700 (0.1) 120 (4.6) 1 1.2 (0.1) 19 (0.1) 5.4 (0.1) 5.4 (0.1) 100 (0.1) 25 (0.1) 500 (0.1) 1700 (0.4) 100 (0.4) 100 (0.4) 100 (0.4) 100 (0.4) 100 (0.4) 100 (0.4) 100 (0.4) <th>۵.</th> <td></td> <td></td> <td>92 </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2700 (3.9)</td>	۵.			92 								2700 (3.9)
2.6 (0.1) 66 (0.1) 8.9 (0.2) 110 (0.2) 11 (0.3) 120 (0.3) 44 (0.3) 820 (0.3) 2200 (0.4) 5000 (0.4) 130 1.4 (0.2) 41 (0.2) 7.8 (0.3) 80 (0.3) 12 (0.7) 34 (0.7) 580 (0.7) 1300 (0.8) 2500 (0.4) 9 3.8 (0.2) 430 (0.2) 5.9 (0.2) 290 (0.2) 11 (0.2) 51 (0.2) 26 (0.2) 420 (0.2) 860 (0.4) 1700 (0.4) 5 3.8 (0.2) 430 (0.2) 5.9 (0.2) 290 (0.2) 11 (0.2) 51 (0.2) 26 (0.2) 420 (0.2) 860 (0.4) 1700 (0.4) 5 1.8 (0.1) ND (1.0) ND (1.7) ND (1.7) ND (2.4) ND (2.4) 42 (2.4) 42 (2.4) 46 (4.6) 120 (4.6) 1 1.2 (0.1) 19 (0.1) 6.0 (0.1) 54 (0.1) 100 (0.1) 25 (0.1) 590 (0.1) 610 (0.1) 1100 (0.1) 3	°*	1.9 (0.1)		6.0	60 (0.3)			56		1000 (0.8)		
1.4 (0.2) 41 (0.2) 7.8 (0.3) 80 (0.3) 12 (0.7) 110 (0.7) 580 (0.8) 2500 (0.8) 5 3.8 (0.2) 5.9 (0.2) 290 (0.2) 11 (0.2) 26 (0.2) 860 (0.4) 1700 (0.4) 5 3.8 (0.2) 430 (0.2) 5.9 (0.2) 290 (0.2) 51 (0.2) 26 (0.2) 860 (0.4) 1700 (0.4) 5 ND (1.0) ND (1.0) ND (1.7) ND (2.4) 7.4 (2.4) ND (2.4) 42 (2.4) 66 (4.6) 120 (4.6) 1 1.2 (0.1) 19 (0.1) 6.0 (0.1) 54 (0.1) 100 (0.1) 25 (0.1) 590 (0.1) 1100 (0.1) 1300 1010 1100 101 1 1 1 1 1 1 1 1 1 1 1 1 1	R*	2.6 (0.1)		-	110			44				13000 (0.5)
3.8 (0.2) 430 (0.2) 5.9 (0.2) 290 (0.2) 11 (0.2) 51 (0.2) 26 (0.2) 420 (0.2) 860 (0.4) 1700 (0.4) 5 ND (1.0) ND (1.0) ND (1.7) ND (1.7) ND (2.4) 7.4 (2.4) ND (2.4) 42 (2.4) 66 (4.6) 120 (4.6) 1.2 (0.1) 19 (0.1) 6.0 (0.1) 54 (0.1) 5.4 (0.1) 100 (0.1) 25 (0.1) 25 (0.1) 610 (0.1) 1100 (0.1) 3	*	1.4 (0.2)		•	80							(6.0) 0006
ND (1.0) ND (1.0) ND (1.7) ND (1.7) ND (2.4) 7.4 (2.4) ND (2.4) 42 (2.4) 66 (4.6) 120 (4.6) 130 (4.6) 1.2 (0.1) 19 (0.1) 6.0 (0.1) 54 (0.1) 5.4 (0.1) 100 (0.1) 25 (0.1) 590 (0.1) 610 (0.1) 1100 (0.1) 3	*^			—	290							5500 (0.3)
ND (1.0) ND (1.0) ND (1.7) ND (1.7) ND (2.4) 7.4 (2.4) ND (2.4) 42 (2.4) 66 (4.6) 120 (4.6) 120 (4.6) 1.2 (0.1) 1.2 (0.1) 19 (0.1) 6.0 (0.1) 54 (0.1) 5.4 (0.1) 100 (0.1) 25 (0.1) 590 (0.1) 610 (0.1) 1100 (0.1) 3							-					·
NU (1.0) NU (1.0) NU (1.7) NU (1.7) NU (2.4) 7.4 (2.4) NU (2.4) 42 (2.4) 06 (4.6) 120 (4.6) 120 (4.6) 1 1.2 (0.1) 19 (0.1) 6.0 (0.1) 54 (0.1) 5.4 (0.1) 100 (0.1) 25 (0.1) 590 (0.1) 610 (0.1) 1100 (0.1) 3 1.2 (0.1) 19 (0.1) 10 (0.1) 10 (0.1) 10 (0.1) 10 (0.1) 25 (0.1) 10 (0.1) 10 (0.1) 1100 (0.1) 13 1.2 (0.1) 19 (0.1) 10 (0.1)	INDIAN ARM				í			;		ы (;		
1.2 (0.1) 19 (0.1) 6.0 (0.1) 54 (0.1) 5.4 (0.1) 100 (0.1) 25 (0.1) 590 (0.1) 610 (0.1) 1100 (0.1)	3	(0'1) AN			C.1.) UN		4.7	Q	47 (7.4)	00 (4.0)	120 (4.6)	380 (4.1)
	*×	1.2 (0.1)		6.0			100	S	590 (0.1)	610 (0.1)	1100 (0.1)	3000 (0.3)

ND - Not detected at the sample detection level, specified in brackets.

* Samples analyzed by High Resolution Mass Spectrometry (HRMS); remaining samples were analyzed by Low Resolution Mass Spectrometry. NDR - Peak detected at the right time but did not meet verification criteria therefore compound could not be confirmed.

POLYCHLORINATED DIBENZOFURAN (PCDF) CONCENTRATIONS (pg/g dry weight) MEASURED IN THE SURFACE SEDIMENTS FROM VANCOUVER HARBOUR - JANUARY 1991. TABLE 3.

				POLYC	Ξ	LORINATED		DIBENZOFURANS	RANS	(PCDF					
					(Conce	(Concentrations in pg/g dry weight)	<u>,</u>	y weight)							
AREA	TETRA	RA		PENTA				HEXA				HEPTA		OCTA	
STATION	2378	TOTAL	12378	23478	TOTAL	123478	123678	234678 1	123789	TOTAL	1234678	1234789	TOTAL	TOTAL	
	T4CDF	T4CDF	P5CDF	P5CDF	P5CDF	H6CDF	H6CDF	H6CDF	H6CDF	H6CDF	H7CDF	H7CDF	H7CDF	08CDF	
FALSE CREEK															
A*	16 (0.1)	84 (0.1)	(1.0) ON	ND (0.1) 8.4 (0.1) 330	330 (0.1)	56 (0.2)	45 (0.2)	34 (0.2) N	(D. (0.2)	ND (0.2) 2500 (0.2)	1300 (0.3) 39 (0.3) 3600 (0.3) 1100 (0.4)	39 (0.3)	3600 (0.3)	1100 (0	(4.
ບ 	(21 (1.0)	88 (1.0)	8.1 (1.4)	8.1 (1.4) 5.0 (1.4) 260	260 (1.4)	28 (1.8)	23 (1.8)	20 (1.8)	ID (1.8)	(1.8) ND (1.8),1400 (1.8)	1100 (2.0) 20 (2.0) 2600 (2.0) 830 (4.2)	20 (2.0)	2600 (2.0)	830 (4	.2)
ш	6.8(0.7)	11 (0.7)	(0.1) UN	(1.0) ND (1.0) 36	36 (1.0)	ND (2.7)	ND (2.7)	ND (2.7) I	łD (2.7)	ND (2.7) ND (2.7) 160 (2.7)	140 (2.5) ND (2.5)	ND (2.5)	320 (2.5) 100 (4.2)	100 (4	.2)
LINNER RANDOUN												i	i 		
	(1.0) 0001(1.0) 002 (1.0) 40 41 1		0C (7.0) 0t 7 Z (1 U) 7 C	10 (12.0) OC (2.0)			7 400 (0.0)	82 (U.D)		82 (0.0) NJ (0.6) 4100 (0.6)	1(7.0) 0062	120 (0.7)		0) 0056	(6.0)
, * 	1 16 (0.1)		2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	021 (1.0) 0.0 (1.0)		11 (1.0) 11	(1.0)0.1	(1.0) UN (1.0)4.C		1(1.0) UCC	200 (U.2)	(7.0)C.0 (2.0)	USC (2.U) USC	0) 000	(4.0)
• 1													nec (c.n) nnoi		10.00
*,	8.2(0.1)	35 (0.1)		2	_	7.0(0.3)	5.3(0.3)	4.5(0.3) 0.8(0.3)	0.8(0.3)	230 (0.3)		(0.3) 4.3(0.3)		240	(0.5)
¥.	2.0(0.2)	7.3(0.2)	0.3 (0.1) 0.4		8.4 (0.1)	1.1(0.1)	0.7(0.1)	0.6(0.1)	ND (0.1)	31 (0.1)	22 (0.3)	(0.3) NDR(0.3)	58 (0.3)	25	(0.3)
Ľ*	(2.0) UN (1.7(0.2)	(2.0) UN (0.2)	Q	10 (0.2)	1.5(0.2)	1.9(0.2)	1.8(0.2)	ND (0.2)	64 (0.2)	41 (0.2)	(0.2) 1.3(0.2)	93 (0.2)	Q	(0.2)
* E	11 (0.1)	79 (0.1)	6.4 (0.1) 6.4	6.4 (0.1) 520	520 (0.1)	31 (0.2)	38 (0.2)	31 (0.2) ND (0.2)		2100 (0.2)	1200 (0.4)	(0.4) 35 (3.4) 3200	3200 (0.4)	(0.4) 1200 (0	(0.4)
CENTRE HARB.		-													_
z	(9.0(0.6)	4.8(0.6)	(1.5) ND (1.5)	ND (1.5)	17 (1.5)	(1.2) UN	ND (3.1)	ND (3.1) ND (3.1)	VD (3.1)	70 (3.1)	63 (1.5)	63 (1.5) ND (1.5)	160 (1.5)	90 (3.3)	1.3)
0	1.5(0.5) 	1.5(0.5)	(7.0) UN (ND (0.4) 5.9	5.9 (4.4)	(8.0) UN	(8.0) UN	ND (0.8) ND (0.8)	4D (0.8)	22 (0.8)	19 (1.0)	(1.0) ND (1.0)	48 (1.0)	33	(1.4)
PORT MOODY ARM	- x														
۵.	14 (1.0)	41 (1.0)	(4.4) ND (4.4)	ND (4.4) 110	110 (4.4)	16 (2.2)	11 (2.2)	4.6(2.2) ND (2.2)	(2.2) Q	480 (2.2)	320 (2.5) 7.4(2.5)	7.4(2.5)	830 (2.5)	310 (3.5)	1(5.1
* 0	18 (0.1)	76 (0.1)	3.0 (0.2)	4.8 (0.2)	130 (0.2)	19 (0.4)	9.5(0.4)	9.5(0.4) ND (0.4)	(þ.0) dv	510 (0.4)	340 (0.7)	(0.7) 9.3(0.7)	890 (0.7)	320	(0.8)
* ~	(1) 15 (0.1)	84 (0.1)	4.8 (0.1) 6.7 (0.1) 180	6.7 (0.1)	180 (0.1)	28 (0.3)	13 (0.3)	12 (0.3) ND	VD (0.3)	720 (0.3)	380 (0.3)		1100 (0.3)	480	(0.5)
* つ	(11 (0.1)	95 (0.1)	5.6 (0.2)	ND (0.2)	300 (0.2)	29 (0.5)	16 (0.5)	13 (0.5) ND	4D (0.5)	810 (0.5)	320 (0.4)	(0.4) 8.7(0.4)	830 (0.4)	290	(0.5)
* >	35 (0.1)	230 (0.1)	6.7 (0.1)	6.5 (0.1) 170	170 (0.1)	18 (0.1)	7.6(0.1)	6.7(0.1) ND	4D (0.1)	350 (0.1)	180 (0.2)	(0.2) NDR(0.2)	490 (0.2)	170	(0.3)
INDIAN ARM															
3	2.1(0.9)	2.1(0.9)	ND (0.8)	ND (0.8) ND (0.8) 6.7	6.7 (0.8)	(9.1) UN	ND (1.6)	(9.1) UN (9.1) UN	() (1.6)	46 (1.6)	42 (2.7)	ND (2.7)	42 (2.7) ND (2.7) 110 (2.7)	52 (5.1)	1
**	22 (0.1)	64 (0.1)	5.1 (0.1)	5.1 (0.1) 4.4 (0.1) 130	130 (0.1)	18 (0.1)	12 (0.1)	(1.0) UN (1.0) 11	(L.0) O	640 (0.1)	490 (0.1)	(1.0) ON	490 (0.1) ND (0.1) 1200 (0.1) 400 (0.3)	400 (0	.3)

ND - Not detected at the sample detection level, specified in brackets.

NDR - Peak detected at the right time but did not meet verification criteria therefore compound could not be confirmed.

* Samples analyzed by High Resolution Mass Spectrometry (HRMS); remaining samples were analyzed by Low Resolution Mass Spectrometry.

•

with the exception of the external blind audit for Station C in the lower congeners. A rerun of the sample could not resolve the differences. Appendix III reports the surrogate standard recoveries for each sample. Mean surrogate recoveries ranged from 76-89%.

Table 4 reports the sediment PAH concentrations all 24 stations (Figure 1). Refer to Appendix IV for the results of QA/QC samples. Both internal and external audit samples show good comparison. Appendix V reports the surrogate standard recoveries for each sample.

DISCUSSION

Generally, the largest concentrations of dioxins were the highest congeners (i.e. T4CDD<P5CDD<H6CDD<H7CDD<O8CDD) (Table 2). The furans exhibited a similar increasing pattern except for the O8CDF. Total H7CDF and most total H6CDF levels exceeded total O8CDF (i.e. T4CDD<P5CDD<H6CDD<H7CDD>O8CDD) (Table 3).

Station F had the highest dioxin and furan concentrations and exceeded the other stations by about an order of magnitude (Tables 2 and 3). It also ranked highest for total PAH (117.38 μ g/g) (Table 4). This site is situated near a decommissioned shipbuilding and repair facility.

Station A, located at the east end of False Creek, ranked second for total PAH levels (80.18 μ g/g) as well as total H6CDD and the higher congener furans. In the past, this area supported much more industrial activity including coal gasification plants, sawmills, shingle mills and wood preservating operations.

Station R, located in Port Moody Arm had the second highest H7CDD and O8CDD levels (Table 2). Poor water circulation in the Arm, about 30% water exchange during each tidal cycle (Waldichuk, 1965), results in accumulated sediments.

Station V, also located in Port Moody Arm at the east end, had relatively high PAH levels where reported (Table 4). Note that interferences in the sample during the analyses prevented adequate recovery of the higher molecular weight PAH compounds therefore sample totals were underestimated. The T4CDD levels at this station were high by comparison (430 μ g/g) but the other congeners were in the mid ranges similar to, for example, stations C, Q and U.

Finer particles tend to concentrate contaminants more easily than coarser particles due to a larger surface area (McLaren and Little 1987). The stations noted above all contained mainly silts and clays as did most of the samples (Table 1). Stations D, E, K, L, M, N, O, T & W contained coarser sediments, and tended to have lower concentrations of dioxins, furans and PAH (Tables 1-4). Station M was an exception. Its median particle size was very fine sand but it contained the most silt and clay (46.3%) of these 9 stations. In addition, a number of chemicals measured exceeded levels reported for stations that were predominantly silt and clay.

Dioxin and furan levels in one of the reference samples (Station X) exceeded expected values. This area could be influenced by sediments transported from outside sources or atmospheric deposition.

- 8 -

POLYCYCLIC AROMATIC HYDROCARBON (PAH) CONCENTRATIONS (μ g/g dry weight) MEASURED IN SURFACE SEDIMENTS FROM VANCOUVER HARBOUR - JANUARY 1991. TABLE 4

÷

		LOW MOLECULAR WEIGHT PAH	ECULAR	HEIGH	T PAH		_					DIGN MULECULAR WEIGHI PAN						
AREA	Naph	Ace	Ace		Phen	An	Fluor	 2	Benzo(a)		Benzo(b) Benzo Indeno	Benzo	Indeno		Dibenz Benzo	TOTAL	TOTAL	TOTAL
STATION	tha	naph	hqan	Fluo	anth	thra	a anth	γ	anthra		Chry (k)fluo (a) (123-cd) (ah)	(a)	(123-cd	(uh)	(ide)	LMW	MMH	PAH
	lene	thylene thene ren	e then	e rene	rene	cene	ene e	rene	cene	sene	rene	pyrene	pyrene pyrene	anthr	. peryl.	PAH	PAH	
FALSE CREEK							_											
A	5.40	0.92	0.91	2.00	6.20	3.30	0 12.00	0 14.00	0 5.30	7.10	9.80	6.20	3.80	0.35	2.90	18.73	61.45	80.18
8	0.48	0.11	0.14	0.22	0.82	0.52	2 1.20	0 1.60	0 0.98	1.30	1.70	1.10	0.93	(0.17)*)* 0.77	2.29	9.58	11.87
υ	0.73	0.24	0.24		0.99	0.63	5 1.20	0 1.50	0 0.64	0.86	1.30	0.80	0.77	0.11	0.62	3.17	7.80	10.97
٥	0.11	0.04	0.03	0.10		0.45(0.44)*)* 0.51	1 0.55	5 0.26	0.36	0.30	0.20	0.12	0.02	0.09	0.73	2.41	3.14
ш	0.87	0.28	0.15	0.21	0.89	0.33	0.90	0 1.50	0 0.32	0.49	0.57	0.32	0.20	(0,044)*	0.20	2.73	4.50	7.23
INNER HARBOUR																		
u.	1.30	0.70	3.10	3.50	9.50	3.70	0 23.00	0 18.00	0 7.70	13.00	15.00	7.00	6.50	0.58	4.80	21.80	95.58	117.38
IJ	02.0	0.09	0.20	0.32	1.50	0.49	0 2.30	0 2.80	77.0 0	1.40	1.90	0.84	0.65	0.12	0.51	2.90	11.29	14.19
Ŧ	0.17	0.06	0.11	0.19	0.84	0.43	5 2.50	0 2.50	0 0.73	1.50	1.30	09.0	0.50	(0.086)*)* 0.35	1.80	9.98	11.78
1	0.15	0.03	0.13	0.21	0.83	0.38	3 1.90	0 1.50	0 0.59	1.00	1.20	0.50	0.36	(0.071)*)* 0.29	1.73	7.34	9.07
ר	1.30	0.05	1.60	1.60	9.10	2.20	0 11.00	0 8.60	0 3.60	5.40	6.40	3.00	2.20	0.40	1.50	15.85	42.10	57.95
¥	0.05	0.004	0.02	0.03	0.16	0.05	5 0.22	2 0.22	2 0.13	0.17	0.20	0.10	0.07	0.01	0.05	0.31	1.17	1.48
Ļ	0.02	(0.003)*	* 0.01	0.01	0.06	0.01	0.09	9 0.07	7 0.03	0.04	0.07	0.04	0.03	0.005	0.03	0.11	0.41	0.52
Σ	0.55	(0.010)*	* 0.19	0.44	1.30	0.54	i 2.60	0 2.30	0 1.00	1.40	1.60	0.66	0.38	0.08	0.35	3.02	10.37	13.39
CENTRAL HARB.																		
z	0.22	0.03	0.25		1.20	0.36	5 1.50	0 1.40	0 0.67	0.89	1.10	0.60	0.47	0.11	0.37	2.38	7.11	9.49
. 0	0.04	0.01	0.06	0.07	0.22	0.09	0.63	3 0.72	2 0.20	0.23	0.27	0.12	0.05	0.01	0.05	67.0	2.28	2.77
PORT MOODY ARM	-																	
٩	0.20	0.07	0.06	0.10	0.40	0.15	5 0.57	7 0.64	4 0.26	0.44	0.66	0.31	0.27	0.05	0.29	0.98	3.49	4.47
a	0.29	0.08	0.10	0.22	0.70	0.35	5 1.10	0 1.60	0 0.70	1.20	1.50	0.64	0.40	0.10	0.41	1.74	7.65	9.39
~	0.54	0.16	0.12	0.30	0.99	0.57	7 1.90	0 2.40	0 1.00	1.80	1.90	06.0	0.62	0.14	0.63	2.68	11.29	13.97
s	97.0	0.16	0.24	0.43	0.99	0.88	3 5.60	0 5.20	0 1.60	2.30	3.00	1.30	0.74	0.22	0.68	3.16	20.64	23.80
F	0.25	0.08	0.03	0.07	0.32	0.13	5 0.45	5 0.73	3 0.18	0.39	0.49	0.26	0.18	0.05	0.28	0.88	3.01	3.89
D	0.32	0.08	0.05	0.07	0.52	0.07	77.0 77	7 0.75	5 0.21	0.42	0.58	0.26	0.22	0.04	0.26	1.11	3.51	4.62
**^	16.00	3.70	1.00	0.64	6.80	0.41	1 2.70	-	(4.6)*(.29)*(.38)*	*(.38)*	*(87.)*		ND(.13) NA	NA	NA	28.55	>7.70	>36.25
INDIAN ARM	_						_											
2	0.02	0.01	00.0	0.002 ND(.	.01).03	0.01	0.05		0.06 0.02	0.03	0.06	0.02		(0.007)	0.02 (0.007)* 0.02	0.07	0.28	0.35
×	0.15	0.02	(.028	>*0.06	(.028)*0.06 0.27	0.08	3 0.41	1 0.45	5 0.17	0.34	0.46	0.24	0.18	0.03	0.22	0.58	2.50	3.08
ND - Not detected (detection limit in brackets)	sted (de	tection	limit	in br	ackets	AN (able t	o recov	er and	analyze	compo	und in	the san	Not able to recover and analyze compound in the sample (interferences).	erferenc	ses).	
*Peak detected at right time but did not meet verification criteria, could not confirm compound. Quantity in brackets, not added in totals.	ed at ri	ght time	s but (did no	t meet	verii	fication	crite	ria, co	uld not	: confir	m comp	ound. Q	uant i t)	r in brac	kets, no	ot added	l in tot
**This sample was reanalyzed several ti	Was rea	nalyzed	Sever	al tim	es. Al	l thous	th resul	ts wer	e ronsis	otant	the cur	etener-	0,0000	-ion fo	mas. Althnumh results were consistent the summate recoveries for most compounds and low	april inner		:
Production of the second se	S) · 076	シショ ヘンシニ	5.50															

REFERENCES

Black, C.A. (editor). 1965. Methods of Soil Analysis - Part 1. American Society of Agronomy. Chapter 43: 552-562

Department of Fisheries and Oceans. 1989. Backgrounder - Shellfish Closures and Consumption Advisories: Coastal B.C. Sites. Information release November 23, 1989. 5 pp.

Goyette, D. and J. Boyd. 1989. Distribution and Environmental Impact of Selected Benthic Contaminants in Vancouver Harbour, B.C. Environment Canada, Pacific and Yukon. Regional Program Report: 89-02. 99 pp. + appendices.

Environment Canada. 1989. Quality Assurance Guidelines for Determination of Dioxins and Furans for Environmental Monitoring Programs. Version 1.0 10 pp.

Environment Canada. 1990. Quality Assurance Guidelines for Contract Determination of Polycyclic Aromatic Hydrocarbons in Sediment and Biota Samples. Version 2.0. Pacific and Yukon Region. 5 pp.

McLaren, P. and D.I. Little. 1987. The effects of sediment transport on contaminant dispersal: an example from Milford Haven, U.K. Marine Pollution Bulletin <u>18</u>:586-594.

Seakem Analytical Services. 1990. Analysis of Polychlorinated Dibenzodioxins and Dibenzofurans in Sediment Samples. 6 pp.

Seakem Analytical Services. 1991. Analysis of Polyaromatic Hydrocarbons (PAHs) in Sediment Samples.

Waldichuk, M. 1965. Water exchange in Port Moody Arm and its effects on water disposal. J. Fish. Res. Board Cana. <u>22</u>:801-822.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Duane Brothers for his skillful navigation around the Harbour to collect the samples, AXYS (formally Seakem Analytical Services) in Sidney, B.C. for providing chemical analyses and Pacific Soil Analysis Inc. in Richmond, B.C. for conducting the particle size analysis. Hal Rogers and Walt Cretney from the Institute of Ocean Sciences in Sidney, B.C., and Mark Sekela and Randy Englar from Conservation and Protection, Environment Canada provided valuable technical review comments.

AREA	STATION	DEPTH (metres)	LATITUDE	LONDGITUDE
False Creek	A	6	49°16.53'N	123°06.19'W
	в	8	49°16.32'N	123°06.94'W
	С	5	49°16.19'N	123°07.45'W
	D	8	49°16.45'N	123°08.05'W
	E	7	49°16.66'N	123°08.30'W
Inner Harbour	F	7	49°17.50'N	123°07.62'W
	G	9	49°17.48'N	123°07.36'W
	н	10	49°17.44'N	123°07.20'W
	I	13	49°18.73'N	123°06.62'W
	J	9	49°18.77'N	123°06.32'W
	к	15	49.18.61'N	123°06.08'W
	L	17	49°17.89'N	123°02.25'W
	L	13	49°17.91'N	123°02.32'W
	L	18	49°17.88'N	123°02.19'W
	М	11	49°18.23'N	123°02.75'W
Central Harbour	N	6	49°18.15'N	122°57.75'W
	0	12	49°17.37'N	122°57.68'W
Port Moody Arm	P	29	49°17.50'N	122°54.66'W
	Q	13	49°17.52'N	122°53.22'W
	R	10	49°18.00'N	122°53.02'W
	S	15	49°17.97'N	122°52.88'W
•	T	7	49°17.95'N	122°52.70'W
	υ	2	49°16.94'N	122°51.44'W
	v	5	49°16.92'N	122°51.20'W
Indian Arm	W	31	49°19.43'N	122°54.70'W
	х	205	49°22.20'N	122°52.75'W

APPENDIX I - SAMPLING STATION DEPTHS AND COORDINATES.

APPENDIX II - RESULTS OF INTERNAL LABORATORY AND EXTERNAL BLIND AUDITS FOR DIOXIN AND FURAN ANALYSES

	POLY	CHLO	RINAT	_	IBENZ	0 - P A R A	- D I O X	IN (PCD	- (00	Concentr	ations ir	Concentrations in pg/g dry weight	leight	
	TETRA	A		PENTA			HEXA			-	HEPTA		OCTA	
STATION	2378	TOTAL	12378		TOTAL	123478	123678	123789	TOTAL	1234678	678	TOTAL	TOTAL	
	T4CDD	14CDD	P5CDD		P5CDD	H6CDD	H6CDD	несро	Hécdd	H7CDD	8	H7CDD	08CDD	
INTERNAL LAB	LABORATORY AUDITS	TS												
A* ,	2.1 (0.1)	62 (0.1)	(1.0) 9.6 (1)		96 (0.1)	23 (0.3)	250 (0.3)	46 (0.3)	1300 (0.3)	1600	(4.0)	3800 (0.4)	8800 (0.6)	
A*	2.2 (0.1)	55 (0.1)	13	(0.1) 13	130 (0.1)	21 (0.2)	220 (0.2)	36 (0.2)	1200 (0.2)	1800	(0.3)	3900 (0.3)	9300 (0.4)	
1							i				ļ			
* >	(7.0) 8.6		7 .0		(7.U) UY2		5	97	4ZU (0.2)	860	(1.4)	1/00 (0.4)	(5.0) 0044	
*^	3.2 (0.2)	370 (0.2)	6.3	(0.2) 21	210 (0.2)	9.1 (0.3)	59 (0.3)	22 (0.3)	490 (0.3)	062 	(7.0)	1600 (0.4)	2400 (0.4)	
:	; ; ;				 i :		I	:						
3	(0.1) ON				C.1) UN		7.4	Q	42 (2.4)	9 9	(4.6)	120 (4.6)	380 (4.1)	
3	- ND (1.1)	ND (1.1)		ND (1.7) N	ND (1.7)	ND (2.7)	6.1 (2.7)	ND (2.7)	34 (2.7)	%	(2.6)	120 (5.6)	400 (4.8)	
EXTERNAL BLIND AUDITS	I Nd Audits											_ ~		
U	ND (1.5)	110 (1.5)	5) 7.6 (2.3)		190 (2.3)	7.0 (2.4)	170 (2.4)	25 (2.4)	980 (2.4)		1000 (2.9) 21	2100 (2.9)	5200 (4.5)	
U	NDR (1.2)	10 (1.2)			34 (1.7)	8.8 (1.9)			700 (1.9)		930 (2.3) 19	1900 (2.3)	4300 (3.3)	
						¢						—	_	
· *9	NDR (0.1)		_		52 (0.1)		50	17	350 (0.2)			(7.0)	2500 (0.5)	
6*	NDR (0.1)	20 (0.1)	1) 5.2 (0.1)		42 (0.1)	5.0 (0.2)	45 (0.2)	15 (0.2)	300 (0.2)	4	410 (0.3) 9	910 (0.3)	2200 (0.3)	
		•	0 L Y C H L	LORINATE	NATED	DIBEN	ZOFURA	NCPCD	F) - C	Concentrations in		pg/g dry weight	jht .	·
	TETRA	A		PENTA				НЕХА				HEPTA		OCTA
STATION	2378	TOTAL	12378	23478	8 TOTAL		÷	234678	123789	TOTAL	1234678	3 1234789	TOTAL	TOTAL
	T4CDF	T4CDF	PSCDF	PSCDF	F P5CDF	H6CDF	H6CDF	H6CD F	H6CDF	H6CDF	H7CDF	H7CDF	H7CDF	08CDF
INTERNAL LABORATORY AUDITS	ORATORY AUDI	TS								-				
A*	16 (0.1) 84 (0.1)	84 (0.1)	ND (0.1) 8.4 (0.1) 330	8.4 (0.	(1) 330 (0.1)		2) 45 (0.2)		(0.2)	2500 (0.2)	1300 (0,	3) 39 (0.3)	1300 (0,3) 39 (0.3) 3600 (0.3) 1100 (0.4)	1100 (0.4)
٨*	18 (0.1) 1	(0.1) 120 (0.1)	ND (0.1) 11		(0.1) 470 (0.1)	1) 43 (0.2)	2) 35 (0.2)) 31 (0.2) ND	(0.2)	2200 (0.2)	1400 (0.3)	3) 42 (0.3)	3900 (0.3) 1200	1200 (0.3)
*^	 35 /01)2		 4 7 /0 1) 4 5 /0 1) 170	0/ 2 Y	11 170 /0 11	 1) 18 /0 1)	11 7 6/0 11	1 6 7(Å 1) ND		350 /0 11	180 / 0	180 (10 CM 10 CM		1207021
*^	37 (0.5) 2	(0.5) 250 (0.5)	8.4 (0.1)	(0.1) 5.8 (0.1) 160		20			ND (0.2)	360 (0.2)	170 (0.2)	.2) ND (0.2)		180 (0.4)
3		2.1(0.9)	ND (0.8)			2	(9°1) (IN) (9	ND (1.6)	Q	46 (1.6)	42 (2 .	Ð	(7.2) 110	
3	2.5(0.9)	2.5(0.9)	ND (0.8)		ND (0.8) 7.6 (0.8)	8) ND (1.6)	6) ND (1.6)	ND (1.6)	(9.1) UN	41 (1.6)	48 (3.2)	(2. ND (3.2)	110 (3.2)	47 (4.7)
EXTERNAL BLIND AUDITS	I ND AUDITS													
IJ	~	88 (1.0)	8.1 (1.4) 5.0 (1.4) 260	5.0 (1.	(7) 260 (1.4)	4) 28 (1.8)	8) 23 (1.8)) 20 (1.8) ND	ND (1.8) 1	(1.8) 1400 (1.8)	1100 (2.	1100 (2.0) 20 (2.0)	2600 (2.0)	830 (4 2)
U	23 (1.1)	73 (1.1)	6.5 (1.1)	(1.1) 7.2 (1.1)	(1.1) 250 (1.1)	27		21 (1.4)	().(1.4)	1400 (1.4)	1000 (2.	(2.1) 26 (2.1)		650 (2.6)
*5	 16 (0.1)	60 (0.1)	 2.6 (0.1) 3.6 (0.1)	3.6 (0.	.1) 95 (0.1)	1) 11 (0.1)	(1) 7.6(0.1)		5.4(0.1) ND (0.1)	330 (0.1)	200 (0.	200 (0.2) 6.5(0.2)	 (2.0) 0580 (0.2)	330 (0.4)
9	19 (0.1)	72 (0.1)		3.2 (0.	89					270 (0.1)	190 (0.	190 (0.2) 5.4(0.2)		250 (0.2)
Samples analyzed by High Resolution Mass Spectrometry (MS): remaining samples were analyzed by tow Resolution MS.	vzed bv Hiah	Resolutic	n Mass Spe	ctrometr	V (MS): Lei	maining sam	nles were a	nalvzed bv L	ow Resolut	tion MS.	ND - Not	detected (detec	1 1
und - Dest distributed at the side of the	ated at the	nicht tin			· · · · · · · · · · · · · · · · · · ·				the set he		2			

NDR - Peak detected at the right time but did not meet verification criteria therefore compound could not be confirmed.

APPENDIX III SURROGATE STANDARD RECOVERY PERCENTAGES FOR POLYCHLORINATED DIBENZO-PARA-DIOXIN (PCDD) AND POLYCHLORINATED DIBENZOFURAN (PCDF) ANALYSIS.

SURROGATE STANDARD RECOVERY (%)

STN	¹³ C-T4CDD	¹³ C-T4CDF	¹³ C-P5CDD	13C-H6CDD	¹³ C-H7CDD	¹³ C-08CDD
A*	56	83	95	62	76	72
A* (DUP)	79	120	120	80	90	106
С	71	71	73	62	63	62
C (DUP)	88	78	87	80	79	90
E	74	77	75	67	66	66
F*	61	77	79	71	78	97
G*	78	120	110	81	89	86
G* (DUP)	82	110	120	95	94	100
1*	63	76	84	69	68	66
J*	89	100	90	89	99	98
К*	86	76	82	81	75	54
L*	81	85	81	86	79	71
M*	63	· 70	73	76	79	86
N	79	85	81	79	80	90
0	81	87	94	84	82	88
P	65	73	66	65	68	79
Q*	80	84	100	93	97	100
R*	77	89	92	85	100	100
Ū*	72	78	92	72	91	106
V*	86	90	90	94	100	120
V* (DUP)	64	69	89	68	81	89
W	81	80	90	77	73	73
W (DUP)	82	79	82	79	70	70
X*	75	77	90	84	81	87
n	24	24	24	24	24	24
Mean	76	85	89	78	82	86
S.D.	9	14	13	10	11	16
Max.	89	120	120	95	100	120
Min.	56	69	66	62	63	54

* Samples were analyzed by high resolution mass spectrometry; remaining samples were analyzed by low resolution mass spectrometry.

DUP - Samples replicated as part of QA/QC program. Refer to Appendix II for corresponding PCDD and PCDF values; refer to Table 1 for the remainder.

HS-3/4 Blend of NCR Standard Reference Material composed of 4 parts HS-3 to 6 parts HS-4. NCR certified values compared to LAB results.

HS6 National Research Council Standard Reference Material for PAH, NRC certified values compared to laboratory performance (LAB). station U anthracene U.44, Station U acenaphthene U.U/, Station F dibenz(ah)anthracene U.8. These are not included in the fUTALS.

STATION	tha .	naph	naph	Fluo	anth	thra	anth	P≺ a	anthra	chrv i	Chrv (k)fluo		(a) (123-cd)	(ah)	(ahi)	IME	HMC	PAH
	lene	thylene		rene	rene	cene			cene	sene	rene p	>	byrene	anthr.	pervl.	PAH	PAH	
INTERNAL LAB	LABORATORY	AUDITS	- 1															
C	0.73	0.24	0.24	0.34	0.99	0.63	1.20	1.50	0.64	0.86	1.30	0.80	0.77	0.11	0.62	3.17	7.80	10.97
C	0.73	0.16	0.18	0.24	0.97	0.46	1.30	1.80	0.81	1.10	1.70	0.88	0.61	0.13	0.52	2.74	8.85	11.59
-																		
D	0.11	0.04	0.03	0.10	0.45	NDR	0.51	0.55	0.26	0.36	0.30	0.20	0.12	0.02	0.09	0.73	2.41	3.14
0	0.20	0.03	NDR	0.10	0.37	0.19	0.49	0.58	0.22	0.26	0.38	0.23	0.18	0.03	0.13	0.89	2.50	3.39
 71	1.30	0.70	3.10	3.50	9.50	3,70	23.00	18.00	7.70	13.00	15.00	7.00	6.50	0.58	4.80	21.80	95.58	116.75
	1.20	0.31	2.60	2.80	7.40	2.70	18.00	15.00	6.50	11.00	12.00	5.60	5.30	NDR	3.90		77.30	94.31
7	0.20	0.07	0.06	0.10	0.40	0.15	0.57	0.64	0.26	0.44	0.66	0.31	0.27	0.05	0.29	0.98	3.49	4.47
 P	0.25	0.06	0.06	0.10	0.47	0.18	0.62	0.65	0.27	0.39	0.66	0.36	0.33	0.05	0.31	1.12	3.64	4.76
 R	0.54	0.16	0.12	0.30	0.99	0.57	1.90	2.40	1.00	1.80	1.90	0.90	0.62	0.14	0.63	2.68	11.29	13.97
70	0.63	0.20	0.20	0.36	1.30	0.72	2.00	2.60	1.20	1.60	2.20	1.00	0.64	0.20	0.67	3.41	12.11	15.52
 HS-6(Lab)	4.50	0.24	0.22	0.51	3.25	1.10	3.23	2.83	1.68	2.48	4.60	1.90	2.45	0.43	1.85	9.82	21.45	31.27
HS-6(NRC)	4.10	0.19	0.23	0.47	3.05	1.13	3.54	2.99	1.84	2.05	4.25	2.24	1.95	0.49	1.78	9.17		30.30
EXTERNAL BLIND	AUDITS	5																
c	0.73	0.24	0.24	0.34	0.99	0.63	1.20	1.50	0.64	0.86	1.30	0.80	0.77	0.11	0.62	3.17	7.80	10.97
- <u>-</u>	0.80	0.16	0.16	0.22	0.91	0.44	1.30	1.80	0.68	0.95	1.80	0.86	0.58	0.14	0.51	2.69	8.62	11.31
<u>۔</u>	0.30	0.09	0.20	0.32	1.50	0.49	2.30	2.80	0.77	1.40	1.90	0.84	0.65	0.12	0.51	2.90	11.29	14.19
_ م	0.65	0.81	0.19	0.29	1.00	0.57	1.70	2.00	0.97	1.70	1.70	0.93	0.83	0.14	0.60		10.57	14.08
HS-3/4 (Lab)	3.70	0.17	1.70	4.00	25.00	3.00	23.00	14.00	4.80	5.60	6.50	2.30	2.20	0.40	1.70	37.57	60.50	98.07
HS-3/4 (NCR)	3.69	0.21	1.89	5.53	34_41	5.44	24.75	16.16	6.16	6.03	4.84	3.35	2.47	0.59	2.35	51.17	66.70 117.87	117.87
NDR Peak detected but did not meet quantification criteria. NDR values are as follows: Station D anthracene 0.44. Station D acenaphthene 0.07. Station F dibenz(ah)anthracene 0.8.	detected b on D anthr	but did not racene 0.44	not meet .44. Stat	et quai	quantification tion D acenaphth	ation c	criteria. 1ene 0.07.	a. NDR	values	s are a dibenzi	as follows: (ah)anthrac	ows:		These a	re not i	These are not included in the TOTALS	in the	TOTALS
Station		acene u	.44. 5	Cation	U ace	naphthe	ne u.u	. Stat	n n T	dibenzi	(ah)anth	nracene		Inese a	re not i	ncluded	in the	TOTALS.

APPENDIX IV. RESULTS OF INTERNAL LABORATORY AND EXTERNAL BLIND AUDITS FOR POLYCYCLIC AROMATIC HYDROCARBON (PAH) ANALYSIS ($\mu g/g$ dry weight).

Naph Ace

Ace

Phen

An

Fluor

Benzo(a)

HIGH MOLECULAR WEIGHT PAH

Benzo(b) Benzo Indeno Dibenz Benzo | TOTAL

TOTAL

TOTAL

LOW MOLECULAR WEIGHT PAH

APPENDIX V

SURROGATE STANDARD RECOVERY PERCENTAGES FOR POLYCYCLIC AROMATIC HYDROCARBON (PAH) ANALYSIS.

SURROGATE STANDARD RECOVERY (%) Phenan- Pyrene Chrysene Perylene Dibenz Naphtha-Acenaph-Benzo lene thene threne d-10 d-12 d-12 (ghi) (ah) anth d-8 d-10 d-10 racene perylene d-14 STN d-12 Α в С C(DUP) C(DUP) D D (DUP) Ε F F(DUP) G 1.00 G(DUP) Н Ι J к \mathbf{L} М 89 * N Ρ P(DUP) R R (DUP) S T ΰ v х

DUP - Samples replicated as part of QA/QC program. Refer to Appendix III for corresponding concentrations; refer to Table 2 for the remainder.

NOTE Spiked surrogate recoveries correspond to PAH compounds as follows: naphthalene d-8: naphthalene acenaphthene d-10: acenaphthylene, acenaphthene, fluorene. phenanthrene d-10: phenanthrene, anthracene. pyrene d-10: fluoranthene, pyrene. chrysene d-12: benz(a)anthracene, chrysene. perylene d-12: benzofluoranthene, benzo(a)pyrene benzo(ghi)perylene d-12: indeno(1,2,3-cd)pyrene dibenz(ah)anthracene d-14: dibenz(ah)anthracene benzo(ghi)perylene d-12: benzo(ghi)perylene