ENVIRONMENT CANADA CONSERVATION AND PROTECTION ENVIRONMENTAL PROTECTION PACIFIC AND YUKON REGION NORTH VANCOUVER, B.C.

WESTMIN RESOURCES LTD. PREMIER GOLD MINE - February 25, 1991 -

REGIONAL DATA REPORT: DR 91-08A

by

Benoit Godin

MARCH 1992

TABLE OF CONTENTS

					PAGE
TABLE	GOF CONTENTS			· · · ·	. i
	List of Tables				. ii
	List of Figures				. ii
1.0	INTRODUCTION			•••••	. 1
2.0	SITE DESCRIPTION				. 3
3.0	MATERIAL AND METHODS	· · · · · · · · · ·			. 4
	3.1 Sediment Analysis				. 4
	3.2 Sediment Bicassays				. 5
	3.3 Statistical Analysis				. 6
4.0	RESULTS				. 8
	4.1 Total Sediment Analysis				. 8
	4.2 Sequential Extraction	• • • • • • • • • •			. 16
	4.3 Sediment Bioassays				. 25
	4.4 Temporal Perspective from Se	ediment Results .			. 29
	4.5 Metal loadings in Cascade Cr	reek – Winter 1991			. 38
5.0	CONCLUSION				. 43
	REFERENCES				. 44
APPEN	NDIX I Sediment Quality – Premier (Gold - 1987, 1988,	1989, 1	.990	

•

· .

- i -

LIST OF TABLES

- ii -

TABLE

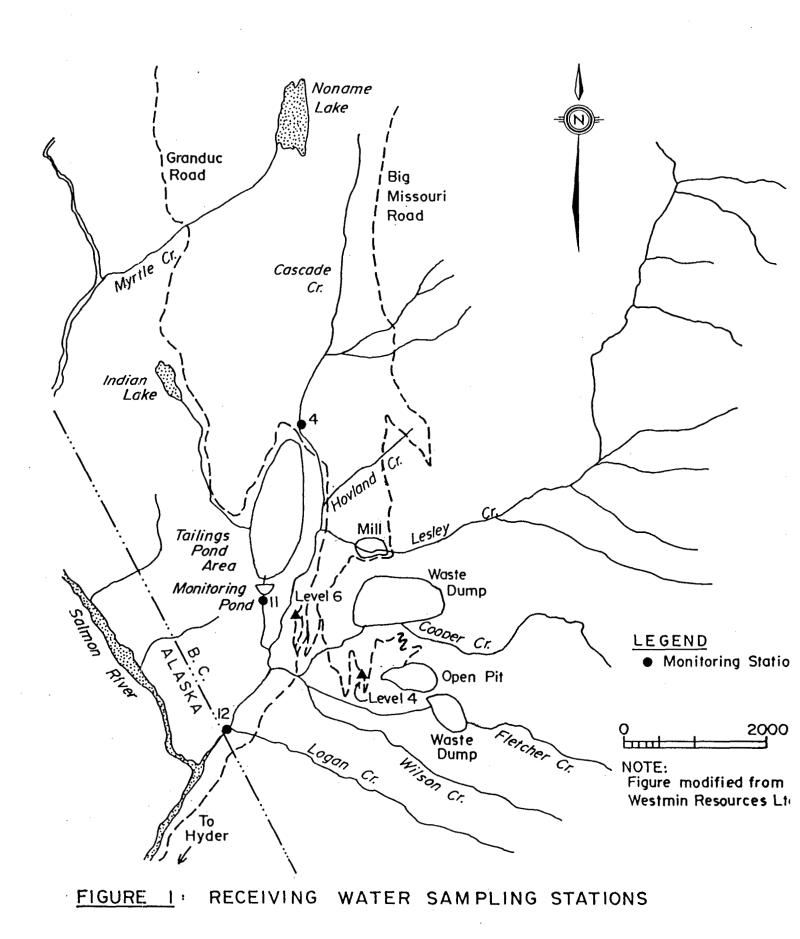
1	Sediment Quality - Premier Gold - February 26, 1991 9
2	Sediment Sequential Extraction - Station 4, Cascade Creek upstream of Tailings Pond - February 26, 1991
3	Sediment Sequential Extraction - Station 12, Cascade Creek downstream of Tailings Pond -February 26, 1991
4	Sediment Sequential Extraction - Station 11, Monitoring Pond Effluent - February 26, 1991
5	Sediment Sequential Extraction - Level 6, Treated Mine Water Effluent - February 26, 1991
6	Daphnia magna 10-Day Sediment Bioassay Test Data
7	Summary of 10-Day Daphnia magna Sediment Bioassay Results 28
8	Premier Gold Station Correlation - Surveys 1987 to 1991 29
9	Cascade Creek Zinc Loading Contributors
10	Cascade Creek Zinc Loadings

LIST OF FIGURES

FIGURE

1	Receiving Water Sampling Stations
2	Sediment Multiple Comparison Plot, Premier Gold 1991 11
3	Sediment Sequential Extraction, February 26, 1991 - Cadmium 21
4	Sediment Sequential Extraction, February 26, 1991 - Copper 22
5	Sediment Sequential Extraction, February 26, 1991 - Lead 23
6	Sediment Sequential Extraction, February 26, 1991 - Zinc
7	Cascade Creek - Sediment Profile - Cadmium
8	Cascade Creek - Sediment Profile - Copper
9	Cascade Creek - Sediment Profile - Lead
10	Cascade Creek - Sediment Profile - Zinc
11	Cascade Creek Downstream of Tailings Pond - Sediment Profile -
	Sequential Extraction - Cadmium
12	Cascade Creek Downstream of Tailings Pond - Sediment Profile -
	Sequential Extraction - Copper
13	Cascade Creek Downstream of Tailings Pond - Sediment Profile -
	Sequential Extraction - Lead
14	Cascade Creek Downstream of Tailings Pond - Sediment Profile -
	Sequential Extraction - Zinc
15	Treated Mine Water - Total Zinc - From Nov 1, 1990
16	Treated Mine Water - pH - From Nov 1, 1990

PAGE


PAGE

1.0 INTRODUCTION

The Premier Gold Mine is located on the east side of the Cascade Creek Valley in the Salmon River drainage system, about 1 km upstream from the B.C./Alaska border. The mine site is drained by Cooper Creek to the north and west, and Fletcher Creek to the south. The creeks join above the Granduc road and flow as Fletcher Creek into Cascade Creek immediately below the falls (Figure 1). The falls are an impassable barrier to salmon migration. Cascade Creek, which supports chum, pink, coho, and sockeye salmon, joins the Salmon River about 1.5 km downstream from the Fletcher Creek confluence.

Westmin Resources operates an open pit mine using a cyanide leach to extract gold and silver. The tailings pond is located in the Cascade Creek Valley and the upper part of Cascade Creek has been diverted into Lesley Creek. The tailings are discharged using the subaerial technique and the supernatant discharged to Cascade Creek above the falls.

The objective of this study was to examine sediment characteristics (metal content, metal "species", toxicity) and surface water quality at sampling stations above and below potential mine influence.

- 2 -

2.0 <u>SITE DESCRIPTION</u>

Receiving water monitoring stations were established both above and below potential mining operation influences. Stations names and locations sampled in 1991 are listed below and shown on Figure 1. For comparison, Table 8 lists stations sampled each year from 1987 to 1991. Some stations required relocation due to mining development.

STATION	LOCATION
4	Cascade Creek upstream of the tailings pond
11	Monitoring Pond discharge
12	Cascade Creek downstream of Logan Creek
Level 6	Treated mine water effluent

3.0 MATERIALS AND METHODS

3.1 <u>Sediment Analysis</u>

Sediment samples were collected at four stations during a visit to the mine site on February 25, 1991. A clean acrylic corer was used to collect four replicates from the streambed at each site. The samples were transferred into kraft bags and kept cool until analysed. All samples were sieved to <63 μ m except for Station 4 where the sample for sequential analysis was sieved to <150 μ m due to shortage of material. Sequential extractions were air dried while the routine total metal analysis samples were oven dried. Total metal samples were digested with reverse aqua regia and analysed for heavy metals using ICAP (Inductively Coupled Argon Plasma) Emission Spectroscopy. A portion of the sediment was ignited at 550°C in a muffle furnace to determine the volatile organic component. The loss of weight was noted as volatile residue and the remainder was reported as fixed residue. All results are reported as dry weight.

Sediment sequential methodology was based on the work of Tessier et al. (1979). The samples were rolled to homogenise, weighed into 50 ml centrifuge tubes, and subjected to a sequential leaching procedure designed to partition trace metals into the following fractions:

- F(a): <u>Exchangeable metals</u>. The sediment sample is extracted with 1M MgCl₂ initially at pH 7 at room temperature for one hour on a wrist action shaker.
- 2) F(b): <u>Metals bound to carbonates or specifically adsorbed</u>. The residue from (a) is leached with 1M sodium acetate adjusted to pH 5 with acetic acid at room temperature for five hours on a wrist action shaker.
- 3) F(c): <u>Metals bound to Fe-Mn oxides</u>. The residue from (b) is extracted at 96°C for six hours with 0.04M NH₄OH.HCl in 25% (vol/vol) acetic acid.
- 4) F(d): <u>Metals bound to organic matter and sulphides</u>. The residue from (c) is extracted at 85°C for five hours with 0.02M HNO₃ and 30% H₂O₂ adjusted to pH 2 with HNO₃ and then at room temperature with 3.2M NH₄OAc in 20% (vol/vol) HNO₃ for thirty minutes on a wrist action shaker.

5) F(e): Residual metals. The original dried samples were weighed in Teflon digestion vessels and digested with HNO3 and HCl in a microwave oven, resulting in a total fraction (MT). The residual F(e) is calculated as F(e) = MT - [F(a) + F(b) +F(c) + F(d)].

Analysis was performed via Inductively Coupled Argon Plasma (ICAP) Emission Spectroscopy. The reference material NBS 1646 was used as a check on the precision of the procedure.

3.2 <u>Sediment Bioassays</u>

Sediment bioassays using the freshwater cladoceran, <u>Daphnia</u> magna, were conducted on samples from the Premier Gold property and Cascade Creek using a test procedure adapted from Nebeker et al. (1984). The tests were performed by EVS Consultants of North Vancouver, B.C. The test sediments were received on February 27, 1991 and stored in the dark at 4°C until the bioassays were initiated on March 5, 1991. The water used for culture, testing, and controls was reconstituted "hard" water (APHA, 1989). Reagent-grade chemicals were added to Milli-Q deionized water in specific amounts to achieve a final hardness of 160-180 mg/L as CaCO₃. The bioassays were conducted in a constant environment chamber at the required test temperature and photoperiod.

Juvenile daphnids were obtained from an in-house laboratory culture. Cultures of daphnids were maintained in two-litre glass beakers (approximately 20 adults/L). Culture medium was replaced every Monday, Wednesday, and Friday; offspring were removed at that time and new cultures initiated if required. The daphnids were fed a diet, consisting of YCTF (yeast, cereal leaves, trout food) and three species of algae, at a rate of 10 ml/L whenever the culture medium was renewed. The daphnids used for the ten-day sediment bioassays were six days old at the start of the bioassay. Neonates (<24 hours old) were collected from one of the culture beakers and held separately until the bioassays were initiated. Feeding and renewal of culture medium was the same as for the main cultures. Six-day-old animals were used because they had not yet begun to produce off-spring but were expected to fully mature during the ten-day exposure period.

Acute lethality testing of whole fresh (unfrozen) sediments involved a ten-day exposure of juvenile daphnids to the test sediments. Sediments were prepared the day before the test was initiated and allowed to settle overnight. The daphnids were added the following day (Day 0). A one cm layer of test sediment was placed in one-litre glass jars, covered with 400 ml of culture water, and mixed thoroughly. The negative (clean) control consisted of culture water only. Five replicates were prepared for each treatment. The jars were covered with plastic lids, fitted with aeration lines, and allowed to equilibrate overnight. The following day, each jar was seeded (randomly and blindly) with ten six-day-old daphnids. Water chemistry parameters (pH, dissolved oxygen, temperature) were measured in one replicate for each treatment on Day 0 and every Monday, Wednesday, and Friday throughout the bioassay period. These parameters were measured in every replicate on Day 10. The containers were checked every Monday, Wednesday, and Friday to establish trends in mortality and to count and remove any offspring produced. The animals were also fed at that time. Any daphnids which had become trapped by surface tension at the air/water interface were gently submerged. The bioassay was allowed to proceed for ten days at a temperature of 23 ± 1°C under a 16:8 hour light: darkness photoperiod.

Final counts of surviving adults and offspring were made after ten days. Daphnids were considered dead when there was no response to physical stimulation and microscopic examination revealed no evidence of movement.

3.3 <u>Statistical Analysis</u>

Statistical analysis consisted of determining averages and standard deviations for the water quality data. One-way analysis of variance was performed on selected sediment data. Multiple comparison procedures using Tukey's harmonic significant differences were used to produce the various plots, with an alpha value equal to 0.05. Barlett's test was used to evaluate the homogeneity of the variance between sample sites.

An arcsine square-root transformation was used on the sediment bioassay survival data, as recommended for percentage data (Steel and Torrie, 1960). All data were tested for normality and homogeneity of variance prior to detailed statistical analyses. Any significant decreases in survival or total reproduction between the test sediments and negative control were determined by

- 6 -

analysis of variance and Dunnett's t-test using the TOXSTAT software program (Gulley et al., 1990).

Power analyses were performed on the sediment bioassays using the computer model "POWER" from Borenstein and Cohen (1988) in order to determine the appropriate sample size for future reproductive sediment bioassays.

4.0 <u>RESULTS</u>

4.1 <u>Total Sediment Analysis</u>

Background aluminum and arsenic concentrations in samples from Cascade Creek upstream (Station 4) were higher than those from the other stations. Calcium, copper, mercury, lead, and zinc concentrations were lowest in sediment samples from Station 4 (Table 1).

Sediment samples collected from Cascade Creek downstream of the tailings pond and the treated mine water discharge point (Station 12), had no significant differences with the upstream station results for any of the metals plotted (Figure 2). The paired comparison between Stations 4 and 12 for cadmium and zinc showed significant differences; however, Tukey's multiple comparison test is not too sensitive to normality departures of the data but it is sensitive to pronounced departure from homogeneity of variance. Bartlett's test, which evaluates the homogeneity of the variance, showed an X^2 equal to 32.47 for cadmium and 35.06 for zinc at alpha equals 0.05 and 3 degrees of freedom. The criteria for significance of X^2 (_{0.05.3}) is 7.815 (Zar, 1984). The effect of discharges from Level 6 are quite evident for these two elements using this procedure.

Monitoring pond sediments (Station 11) were high in calcium showing the influence of the milling process where lime is added to increase the pH for cyanidation. Cadmium, copper, mercury, lead, and zinc content were slightly elevated but not significantly different than the upstream station.

Sediments samples from the treated mine water discharge (Level 6) had significant levels of calcium, cadmium, copper, mercury, manganese, lead and zinc. Calcium content was high due to the treatment of mine water with lime to precipitate metal complexes out of the water. SEDIMENT QUALITY - PREMIER GOLD FEBRUARY 25, 1991

1

SEDICP MN UG/G 2290 2590 2420 2770 2518 2518 208 4310 4780 4420 4770 4570 241 264 259 273 SEDICP MG UG/G 8790 8650 9230 6800 7740 7450 7450 7468 7468 6360 4640 5160 4370 882 882 5000 5010 4990 5260 5260 130 4050 5860 5860 4330 4660 814 SEDICP K UG/G 2600 2600 2900 2500 173 3300 4700 3100 3100 3875 793 5300 5100 6100 2400 3000 2100 3500 2750 2900 2600 2900 2200 332 332 SEDICP HG UG/G 0.350 0.363 0.645 0.645 0.280 0.280 0.410 0.540 0.572 0.490 0.550 0.538 0.538 0.511 0.609 0.460 0.540 0.530 0.62 1.700 1.900 2.100 1.875 0.171 0.062 0.064 0.068 32000 31900 33600 SEDICP FE UG/G 71000 50500 54400 51400 56825 9596 48700 48600 51700 47300 49075 1863 54700 53900 63200 556400 57050 47700 53500 49200 48300 49675 2623 SEDICP CU UG/G 16.0 16.0 16.7 263.0 188.0 202.0 178.0 38.1 174.0 290.0 174.0 275.0 228.3 62.9 1370.0 1440.0 1290.0 1550.0 1412.5 1412.5 59.1 53.9 92.1 71.6 69.2 17.0 SEDICP CR UG/G 50.3 49.6 53.4 151.0 101.0 41.5 58.0 87.9 49.0 33.2 24.1 19.3 14.0 8.2 8.2 10.0 12.0 10.8 10.8 13.0 13.0 4.6 4.6 SEDICP CO UG/G 420 420 420 420 420
 420
 420
 420
 420
 1 555 555 SEDICP CD UG/G 20.5 27.5 23.2 25.7 25.7 25.7 3.0 369.0 394.0 318.0 430.0 477.8 47.0 31.1 27.3 23.2 27.2 27.2 3.2 80 80 80 V V V 5.4 5.1 5.4 1.4 1.4 SEDICP CA UG/G 3950 4580 5850 5130 808 12100 11700 9250 11600 11163 25700 30400 53900 56900 41725 15954 136000 163000 137000 171000 151750 17914 4260 4200 4460 SEDICP BE DG/G 0.9 0.60.5 4.00.5 0.000.00 0.0.1 SEDICP BA UG/G 907 1360 1220 2310 1449 604 582 722 687 696 87 858 1120 762 1110 963 180 537 6642 662 563 563 54 TOTICP AS UG/G 226 82 82 92 128 67 160 120 120 1110 1110 1110 107 54 61 60 12 8 8 4 SEDICP AL UG/G 23800 23000 26700 16500 18900 18500 20300 18550 1570 $\begin{array}{c} 17300\\ 13300\\ 15800\\ 12000\\ 14600\\ 2393\end{array}$ 12400 15400 13100 16000 14225 1744 15300 15100 17600 13600 15400 1651 SEDICP AG UG/G 4444 ÷ ÷ 321221 333 Repl.1 Repl.2 Repl.3 Repl.4 Average S.D. 1646 1646 1646 Station Number Ŷ Level adn adn adn 12 11

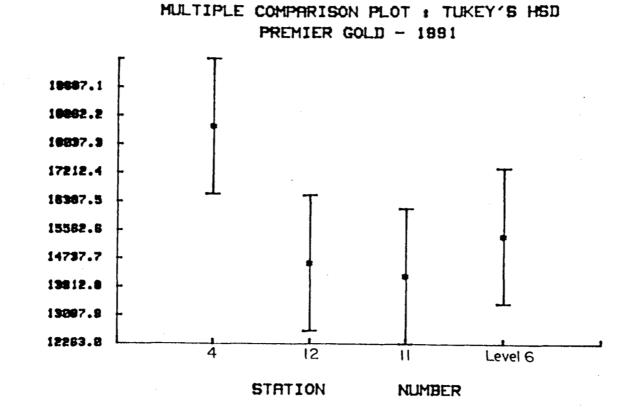

- 9 -

TABLE 1

••	
q)	•
cont'	
ч	
TABLE	

SEDIMENT QUALITY - PREMIER GOLD -FEBRUARY 25, 1991

Station		SEDICP MO	SEDICP NA	TOTICP NI	SEDICP P	SEDICP PB	SEDICP SB	SEDICP SI	SEDICP	SEDICP SR	SBDICP TI	SEDICP V	SEDICP	SFR	SVR
		DG/G	D/D0	D/DD	DG/G	ng/g	UG/G	DG/G	DG/G	DG/G	DG/G	DG/G	D/50	MG/KG	MG/KG
	Repl.1	20	100	120	1300	416	<10	1000	140	36.4	97.8	38	561	-	•
	Repl.2	10	100	76	1600	722	8 ~	980	166	45.5	68.9	40	550		••••
	Repl.3	8	06	43	1680	434	€8	1170	43	56.4	126.0	40	689	964000	35500
	Repl.4	6	100	56	1700	426	6>	950	57	70.6	72.5	44	749	! !	•••
	Average	12	86	74	1570	500		1025	102	52.2	91.3	41	637		
	s.D.	ؚۅ	2	34	185	149	¦.	66	61	14.7	26.5	m	86	: :	
	Repl.1	7	100	24	1600	737	8×	608	8≻	69.4	398.0	47	3530		+ • •
	Repl.2	7	100	17	1300	633	20	814	10	70.7	325.0	34	3190	959000	41200
	Repl.3	7	100	18	1300	579	20	935	10	63.4	405.0	42	2750	953000	47400
	Repl.4	9	100	20	1400	582	18	792	8≻	66.4	326.0	34	3200	959000	41200
	Average	7	100	20	1400	633	19	787	10	67.5	363.5	39	3168	957000	43267
	S.D.	Ч	0	m	141	74	-	135	0	3.3	44.0	ę	320	3464	3580
	Repl.1	4	100	10	1300	691	20	895	48	109.0	244.0	34	2370	972000	28200
	Repl.2	9	100	¢۰	1300	894	€8	685	68	115.0	204.0	34	3270	967000	33100
	Repl.3	4	200	6	1300	632	23	1760	48 48	144.0	373.0	28	2780	973000	26700
	Repl.4	9	220	10	1100	920	24	1860	48	148.0	337.0	32	3130	976000	24200
	Average	Ś	155	10	1250	784	22	1300	¦.	129.0	289.5	32	2888	972000	28050
	s.D.	н	64	Ħ	100	144	6	597	:	19.8	78.8	m	402	3742	3749
	Repl.1	4	100	σ	016	1830	8~	969	87	623.0	222.0	29	38100	808000	192000
	Repl.2	S	100	6	940	2090	8≻	1440	48	782.0	261.0	28	41700	893000	107000
9	Repl.3	9	200	10	1000	2090	8	1360	₹8	641.0	412.0	41	33400	899000	101000
	Repl.4	4	200	10	840	1740	8¥	1150	82	881.0	145.0	21	46000	893000	107000
	Average	ŝ	150	10	923	1938	! ;	1230	۱ ۲	731.8	260.0	30	39800	873250	126750
	s. D.	7	58	-1	67	180	:	213	•	122.3	112.2	œ	5351	43592	43592
1646		m (10800	25	540	25	°,	1100	8° (31.2	789.0	57	124	! !	1 1 1
1646 1646		n 🗣	11200	28	560	29	© ∞ V	931 931	÷.	32.9	823.0	63	131	1 1 • • 1 1	1 • • 1

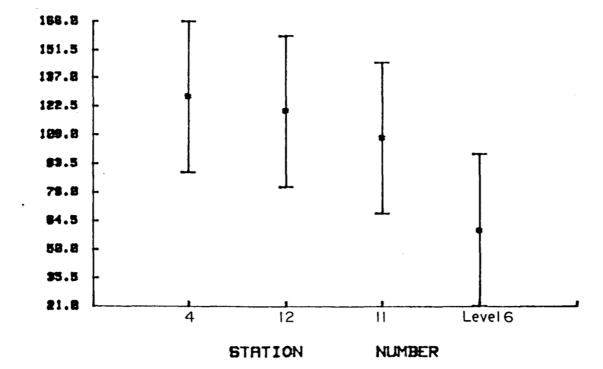
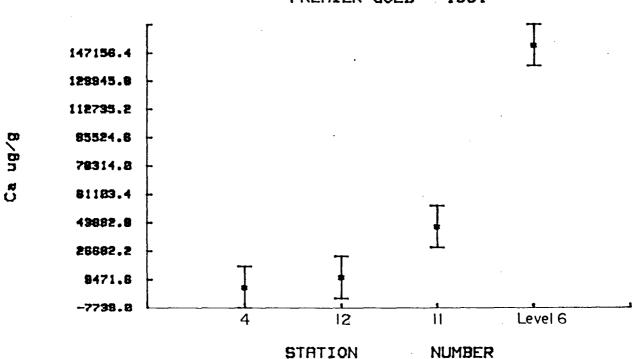



FIGURE 2: SEDIMENT MULTIPLE COMPARISON PLOT - PREMIER GOLD 1991 - A1, AS

B∕gu sH

MULTIPLE COMPARISON PLOT : TUKEY'S HSD PREMIER GOLD - 1991

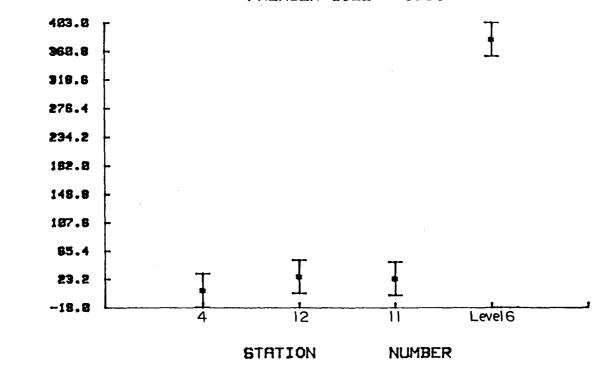
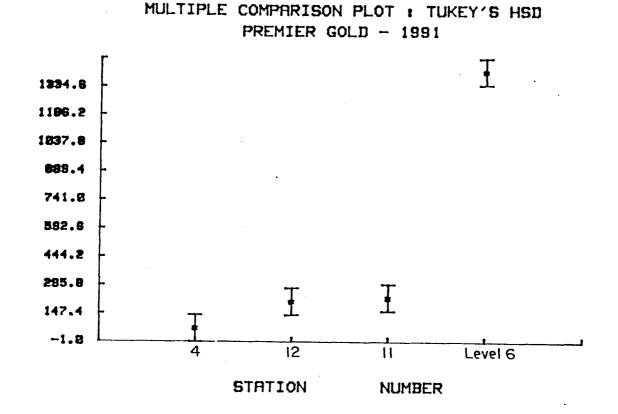
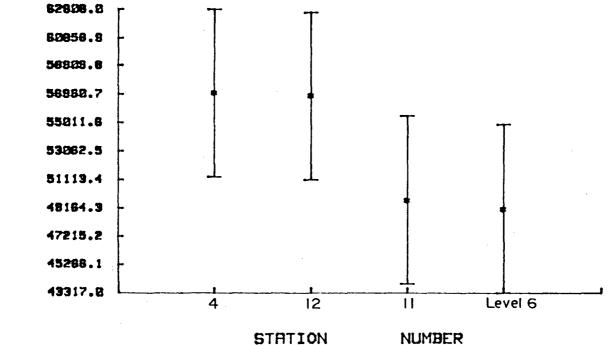
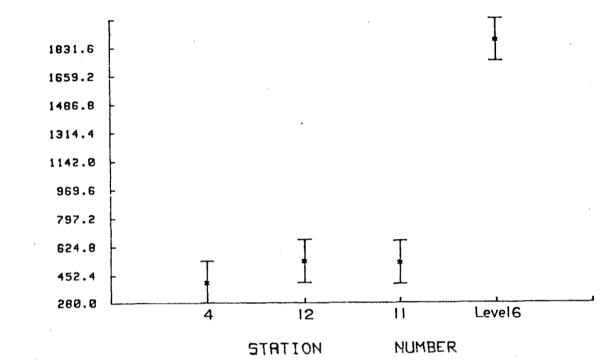




FIGURE 2: SEDIMENT MULTIPLE COMPARISON PLOT - PREMIER GOLD 1991 - Ca, Cd

Cd ug/g



DITTION

FIGURE 2: SEDIMENT MULTIPLE COMPARISON PLOT - PREMIER GOLD 1991 - Cu, Fe

Fe ug/g

MULTIPLE COMPARISON PLOT : TUKEY'S HSD PREMIER GOLD - 1991

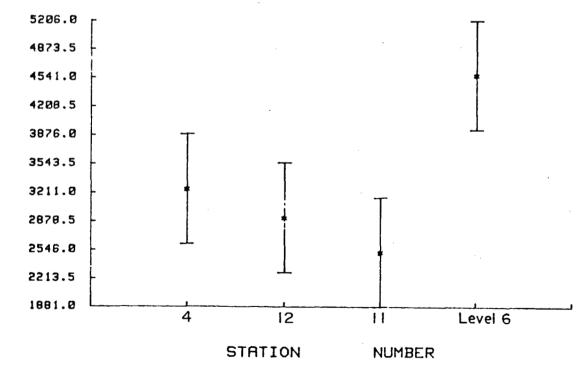
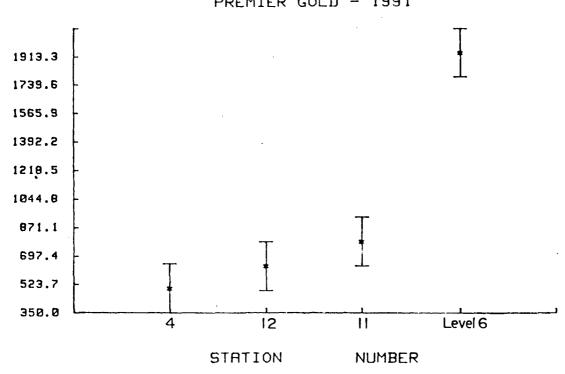
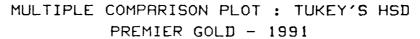




FIGURE 2: SEDIMENT MULTIPLE COMPARISON PLOT - PREMIER GOLD 1991 - Hg, Mn

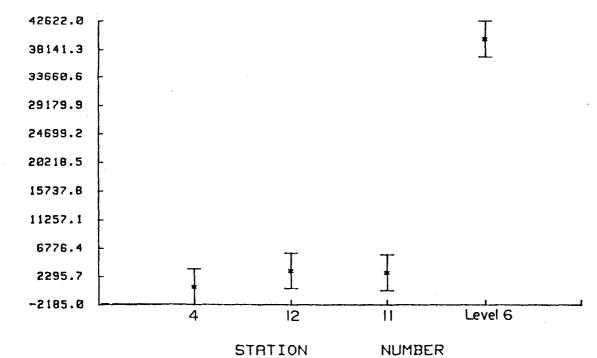


FIGURE 2: SEDIMENT MULTIPLE COMPARISON PLOT - PREMIER GOLD 1991 - Pb, Zn

Zn ug∕g

4.2 <u>Sequential Extraction</u>

Sediment sequential extractions were performed for all stations (Tables 2 - 5). Evaluation focuses on cadmium, copper, lead, and zinc due to their significance in the acid rock drainage and mill effluent process (Figures 3 - 6). The biological availability of an element was evaluated by the ease at which it can be remobilized from the sediments. The exchangeable and carbonate fractions were viewed as having the highest potential to become bioavailable. The other fractions may or may not become bioavailable depending on other processes such asa microbial degradation, bioaccumulation of the organic fraction, oxidation of sulphides, or changes in redox potential and solubilization of the iron and manganese oxides.

Sediments from Cascade Creek upstream of the tailings pond (Station 4) had some cadmium available with a combined exchangeable and carbonate fraction of 1.8 μ g/g. Copper (8.16 μ g/g) and lead (121 μ g/g) were available in the carbonate fraction while zinc (139.9 μ g/g) was available in the first two fractions.

Sediments from Cascade Creek downstream of the tailings and monitoring ponds (Station 12) had a pattern similar to that at Station 4. Cadmium (4.5 μ g/g) and zinc (483.8 μ g/g) were present in the exchangeable and carbonate fractions. Copper (21.2 μ g/g) and lead (190 μ g/g) were available in the carbonate fraction. Levels were considerably higher than at Station 4.

Sediments from the monitoring pond discharge (Station 3) had undetectable amounts of cadmium, copper, lead, and zinc in the exchangeable fraction. All metals could be detected in the carbonate fraction. Cadmium levels were 1.3 μ g/g, the lowest of the four sites. Copper concentration was 35.8 μ g/g, lead 249 μ g/g, and zinc was 123 μ g/g. These metals might be in the form of metal cyanide complexes.

Concentrations in sediments from the mine water treatment pond (Station 4) were the highest measured. Cadmium was 201.4 μ g/g, copper 309.4 μ g/g, lead 337 μ g/g, and zinc 18,633 μ g/g in the exchangeable plus carbonate fractions. In each case the carbonate fraction was much greater.

Metals (µg/g)	Exchange- able	Carbonates	Fe+Mn Oxide	Organic & Sulphides	Residual	Total
Ag	<0.5	<0.5	<0.5	<0.5	<2	<2
Al	<3	223	1020	594	14700	16500
As	<3	<3	<3 ·	16	210	226
Ba	41.5	80	97.7	3.5	684	907
Ве	<0.05	0.1	0.2	<0.05	<0.4	0.7
Ca	555	240	170	1040	1950	3950
Cđ	0.5	1.3	0.89	<0.3	<2.71	5.4
Co	<5	<5	8	<5	<12	<20
Cr	0.56	0.55	2.9	1.4	146	151
Cu	<0.3	8.16	7.91	13.9	29.1	59.1
Fe	<3	455	6520	1970	45800	54700
к	<100	<100	<100	<100	2400	2400
Mn	14.1	284	591	14.7	1420	2320
Мо	<0.5	<0.5	<0.5	<0.5	20	20
Ni	<1	2	3	1	114	120
P	<5	7	50	685	558	1300
Pb	<3	121	47	<3	248	416
Sb	<3	<3	<3	<3	<10	<10
Sn	<3	<3	<3	<3	140	140
Sr	7.45	2.5	2.4	6.76	17.3	36.4
Ti	<0.1	<0.1	<0.1	<0.1	97.8	97.8
v	0.6	<0.5	1	0.7	35.7	38
Zn	10.9	129	84.1	23.8	313	561

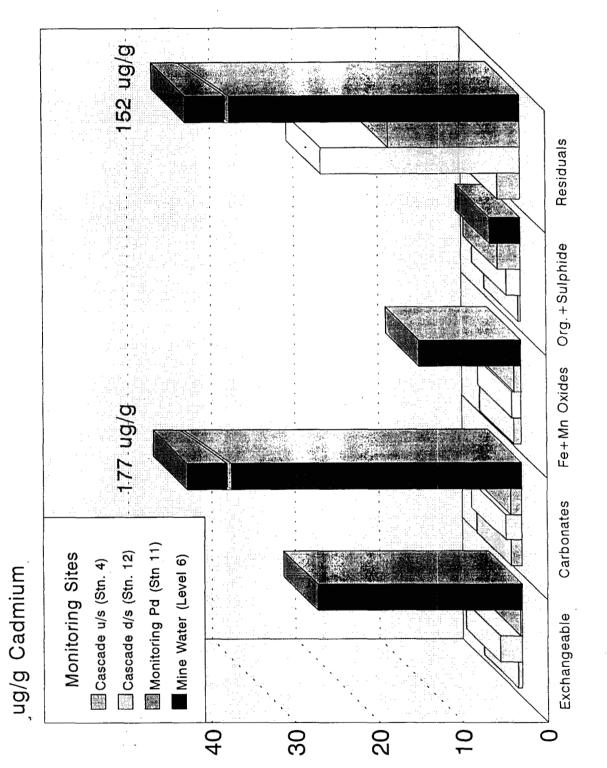
TABLE 2: SEDIMENT SEQUENTIAL EXTRACTION - STATION 4 - CASCADE CREEK UPSTREAM OF TAILINGS POND - FEBRUARY 26, 1991

Metals (µg/g)	Exchange- able	Carbonates	Fe+Mn Oxide	Organic & Sulphides	Residual	Total
Ag	<0.5	<0.5	<0.5	0.7	<5.3	6
Al	3	550	1330	850	14600	17300
As	<2	<2	<2 ·	14	146	160
Ba	35.4	65	72	3.3	406	582
Ве	<0.05	0.08	0.2	<0.05	<0.32	0.6
Ca	1800	2740	460	1420	5680	12100
Cđ	2.6	1.9	1.1	1.7	23.8	31.1
Co	<5	<5	<5	<5	<20	<20
Cr	<0.2	0.5	1.5	1.1	30.1	33.2
Cu	<0.2	21.2	8.23	78.7	155	263
Fe	<2	748	8460	4190	57600	71000
к	<90	<90	<90	<90	2600	2600
Mn	53.3	665	771	22.5	2080	3590
Mo	<0.5	<0.5	0.5	<0.5	<6.5	7
Ni	<0.9	1	1	<0.9	22	24
Р	<5	10	30	890	670	1600
Pb	<2	190	84.4	<2	463	737
Sb	<2	<2	<2	<2	<8	<8
Sn	<2	<2	<2	<2	<8	<8
Sr	12.9	14.2	4.1	6.63	31.6	69.4
Ti	<0.09	<0.09	<0.09	9	389	398
v	<0.5	<0.5	2	1	44	47
Zn	36.8	447	156	231	2660	3530

<u>TABLE 3</u>: SEDIMENT SEQUENTIAL EXTRACTION - STATION 12, CASCADE CREEK DOWNSTREAM OF LOGAN CREEK - FEBRUARY 26, 1991

- 18 -

Metals (µg/g)	Exchange- able	Carbonates	Fe+Mn Oxide	Organic & Sulphides	Residual	Total
Ag	<0.4	<0.4	<0.4	<0.4	42	42
Al	3	526	803	684	10400	12400
As	<2	<2	<2.	9	101	110
Ba	32.3	62.6	48	3.5	712	858
Be	<0.04	0.08	0.1	<0.04	<0.32	0.5
Ca	1470	14300	670	1270	7990	25700
Cđ	<0.2	1.3	0.85	2.7	15.7	20.5
Co	<4	<4	<4	<4	<20	<20
Cr	0.5	1.2	0.98	0.62	6.7	10
Cu	<0.2	35.8	5.46	71.5	61.2	174
Fe	<2	2660	5330	4070	35600	47700
к	80	100	<80	<80	3120	3300
Mn	132	1240	143	19.3	756	2290
Mo	<0.4	<0.4	<0.4	<0.4	<4	4
Ni	<0.8	3	<0.8	<0.8	<7	10
P	<4	20	30	837	413	1300
Pb	<2	249	72.7	<2	369	691
Sb	<2	4	2	<2	<14	20
Sn	<2	<2	<2	<2	<8	<8
Sr	6	58.6	5.97	7.1	31.3	109
Ti	<0.08	<0.08	<0.08	3.9	240	244
v	<0.4	<0.4	2	1	31	34
Zn	<0.08	123	62.5	405	1780	2370


TABLE 4: SEDIMENT SEQUENTIAL EXTRACTION - STATION 11, MONITORING POND EFFLUENT - FEBRUARY 26, 1991

Metals (µg/g)	Exchange- able	Carbonates	Fe+Mn Oxide	Organic & Sulphides	Residual	Total
Ag	<0.4	<0.4	<0.4	<0.4	21	21
Al	2	2640	1660	1110	9890	15300
As	<2	<2	<2.	8	46	54
Ba	16.5	49.8	20.4	7.11	443	537
Be	<0.04	0.4	0.48	0.06	0.06	1
Ca	4200	57600	3960	260	70000	136000
Cđ	24.4	177	12.1	3.6	152	369
Co	<4	<4	<4	<4	<20	<20
Cr	0.3	<0.2	<0.2	0.62	4.58	5.5
Cu	2.4	307	4.1	666	391	1370
Fe	<2	2420	17700	4920	23700	48700
к	<80	<80	<80	<80	2900	2900
Mn	249	1620	403	29.9	2010	4310
Mo	<0.4	<0.4	<0.4	0.7	<3.3	4
Ni	<0.8	3	<0.8	<0.8	<6	9
P	<4	50	53	310	497	910
Pb	<2	337	218	105	1170	1830
Sb	<2	<2	<2	<2	<8	<8
Sn	<2	<2	<2	<2	<8	<8
Sr	57.6	330	26.4	1.8	207	623
Ti	<0.08	<0.08	<0.08	12.8	209	222
v	<0.4	<0.4	1	2	26	29
Zn	233	18400	4240	546	14700	38100

<u>TABLE 5</u>: SEDIMENT SEQUENTIAL EXTRACTION - LEVEL 6, TREATED MINE WATER EFFLUENT - FEBRUARY 26, 1991

•

. .

- 21 -

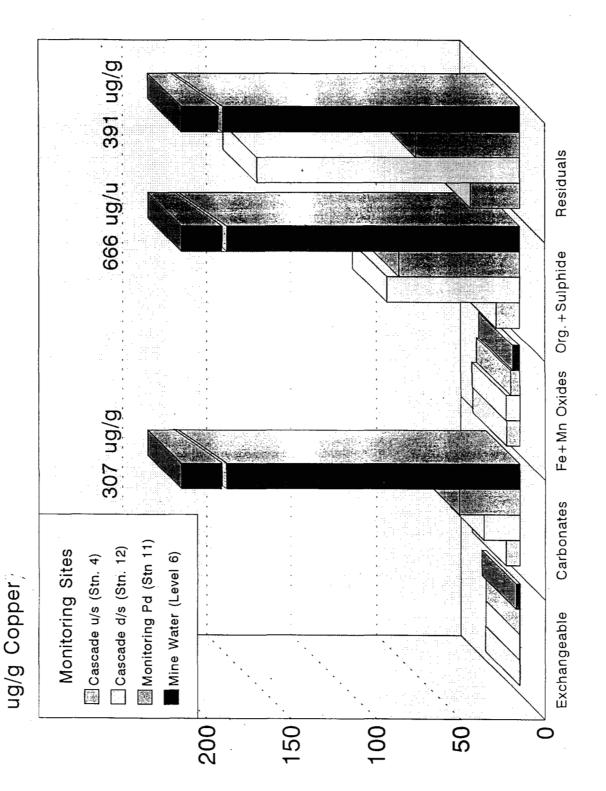


FIGURE 4: SEDIMENT SEQUENTIAL EXTRACTION - PREMIER GOLD 1991 - COPPER

- 22 -

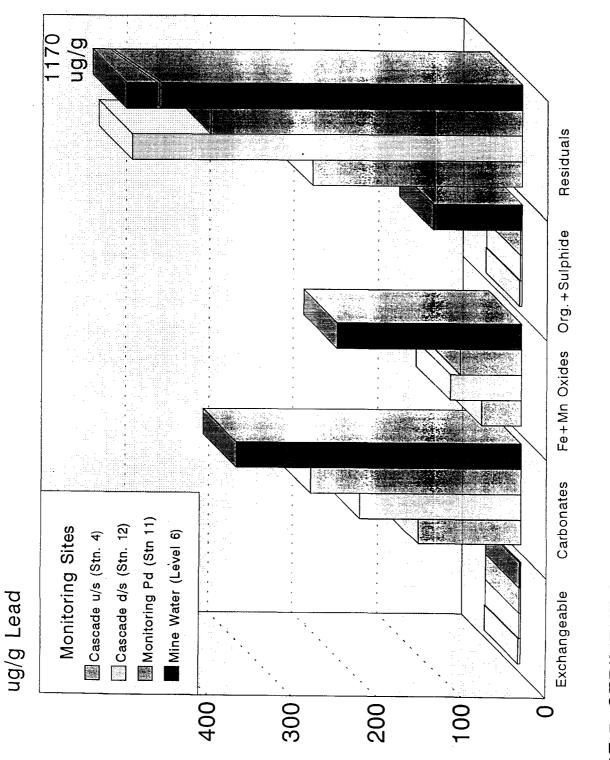
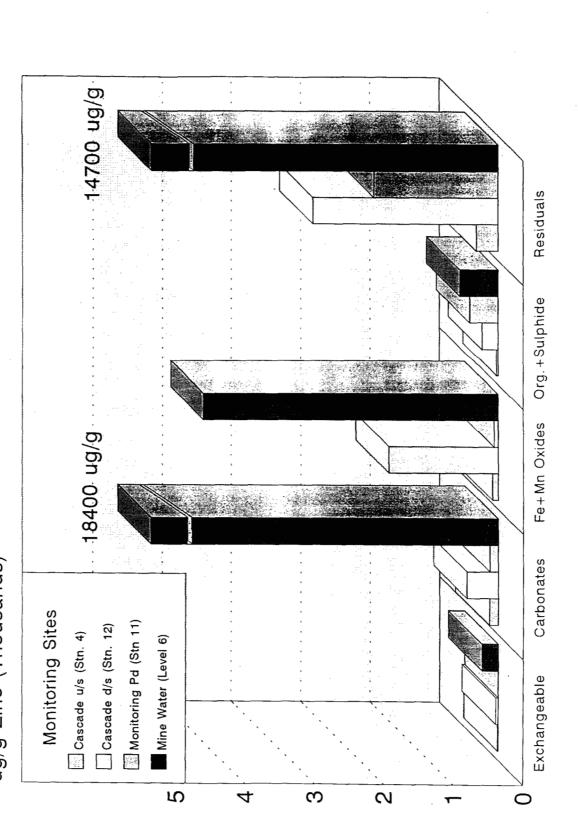



FIGURE 5: SEDIMENT SEQUENTIAL EXTRACTION - PREMIER GOLD 1991 - LEAD

- 23 -

ug/g Zinc (Thousands)

- 24 -

FIGURE 6: SEDIMENT SEQUENTIAL EXTRACTION - PREMIER GOLD 1991 - ZINC

4.3 <u>Sediment Bioassays</u>

The sediment bioassay data are reproduced in Table 6 while the results of the sediment bioassays are summarized in Table 7. Mean survival in the test sediments ranged from a low of 0.2 out of 10 (2%) for Level 6 to a high of 9.6 out of 10 (96%) for Station 4. Three of the test sediments had mean survival values of at least 84%. Mean survival in the negative control was 9.8 out of 10 (98%), which was above the minimum criterion of 90%. The results of the analysis of variance (performed on arcsine square-root transformed data) indicated that there were significant differences (p=0.05) in survival between the treatments. Using Dunnett's t-test, Level 6 was identified as having a significantly lower mean survival relative to the control.

Statistical analysis was also performed on the reproduction data. Offspring were observed in large numbers on Day 6 for Stations 4, 11 and 12. Reproduction for Level 6 was very low throughout the test. The mean number of offspring produced (per test container) ranged from a low of 5.0 for Level 6 to a high of 250.6 for Station 11, and was 122.8 in the control. Only Station 11 had higher reproduction than the control. The results of the statistical analyses indicated that there were significant decreases in reproduction for Stations 4, 12, and Level 6 relative to the control.

Power analysis

A power analysis of the survival data was done to compare Station 12 and the control. The test showed that with a sample size of 8 for each site, a significant difference can be obtained 80% of the time for difference in population means of 8.5% or greater for a one-tail analysis with a probability $\propto = 0.10$.

In order to produce a significant difference 80% of the time for a 7.3% or greater difference between downstream and upstream sediment bioassay, population means would require a sample size of 11 at these two sampling sites.

.

Tot	als at Day	10	Water Chemistry at Day 10				
Replicate	Adults Alive at Day 10	Total Offspring Produced	Temp (°C)	D.O. (mg/L)	рН	Cond. (µmho/cm)	
A	10	140	23	8.3	7.9	380	
В	10	110	23	8.3	8.0	_	
с	9	127	23	8.3	8.0	_	
D	10	108	23	8.3	8.1	*	
E	10	129	23	8.3	8.1		

Lab Control

Station 4

Totals at Day 10			Water Chemistry at Day 10				
Replicate	Adults Alive at Day 10	Total Offspring Produced	Temp (°C)	D.O. (mg/L)	рH	Cond. (µmho/cm)	
A	10	83	23	8.3	7.9	335	
В	9	52	23	8.3	7.9		
с	10	68	23	8.3	7.9		
D	9	72	23	8.1	7.9		
E	· 10	64	23	8.1	7.9	-	

Station 11

Tot	als at Day	10	,	Water Chemis	try at Day	r 10
Replicate	Adults Alive at Day 10	Total Offspring Produced	Temp (°C)	D.O. (mg/L)	Нq	Cond. (µmho/cm)
A	10	218	23	7.5	8.0	425
В	8	216	23	7.5	7.9	-
С	10	261	23	7.5	8.0	-
D	10	295	23	7.5	8.0	-
E	9	263	23	7.5	8.0	_

TABLE 6 (cont): Daphnia magna 10-DAY SEDIMENT BIOASSAY TEST DATA

Tot	als at Day	10		Water Chemis	try at Day	r 10
Replicate	Adults Alive at Day 10	Total Offspring Produced	Temp (°C)	D.O. (mg/L)	рН	Cond. (µmho/cm)
A	10	63	23	8.1	7.9	345
в	9	36	23	8.1	7.9	-
c	7	24	23	8.1	8.0	-
D	10	61	23	8.1	7.9	-
Е	6	23	23	8.1	8.0	_

Station 12

Level 6

Totals at Day 10			Water Chemistry at Day 10			y 10	
Replicate	Adults Alive at Day 10	Total Offspring Produced	Temp (°C)	D.O. (mg/L)	рН	Cond. (µmho/cm)	
A	1	12	23	8.9	8.5	360	
В	0	1		-	-	-	
с	0	3		-	-	-	
D	0	3		-	-	-	
E	0	6		-	-	-	

	Mean Value	alues ± S.D. ¹			
Sample I.D.	Survival ²	Reproduction			
Station 4	9.6 ± 0.5	67.8 ± 11.3*			
Station 11	8.4 ± 1.8	41.4 ± 19.5*			
Station 12	9.4 ± 0.9	250.6 ± 33.5			
Level 6	0.2 ± 0.4*	5.0 ± 4.3*			
Control	9.8 ± 0.4	122.8 ± 13.6			

TABLE 7: SUMMARY OF 10-DAY Daphnia magna SEDIMENT BIOASSAY RESULTS

 1 n=5 ; * denote values significantly different (p<0.05) from the control. 2 A value of 10.0 = 100% survival.

Evaluation of significant difference between Station 4 and Station 12

Reproduction test Two samples one sided t-test Hypothesis Ho: U1 = U2Ha: U1 > U2U1 = 67.8(mean reproduction at site 1) U2 = 41.4(mean reproduction at site 2) S = 15.936 (combined standard deviation) n = 5 (sampling size at each site) $t = \underline{U1} - \underline{U2}$ T-Test: = 67.8 - 41.4= 2.619 $s \sqrt{2/n}$ 15.936 $\sqrt{2/5}$

t0.05, 2(n-1) = 1.860

Since t > t0.05, 2(n-1), Reject Ho

Conclusion Reproduction from Station 4 is significantly higher than Station 12.

4.4 <u>Temporal Perspective from Sediment Results</u>

Sediment samples have been collected from the site since 1987. These data were reported as data reports (Godin, 1988; Godin and Chamberlain, 1990; Godin, 1991a; Godin, 1991b). Sampling locations have changed between 1987 to 1991 (Table 8). The sediment data from the above reports are reproduced in Appendix I.

TABLE 8: PREMIER GOLD - STATION CORRELATION - SURVEYS 1987 to 1991

		Static	Station number by year		
Station name	87	88	89	90	91
Hovland Ck. u/s Mill	1		-	-	-
Lesley Ck. u/s Mill	2	2	-	-	-
Fletcher Ck. u/s Waste Dump	-	-	10	10	-
Cooper Ck. u/s Open Pit	3	3	3 ¹	31	-
Cascade Ck. u/s Tailings Pond	4	4	4	4	4
Lesley Ck. d/s Mill	5	5	-	5	-
Hovland Ck.d/s Mill	6	-	-	-	-
Cooper Ck. u/s Fletcher Ck.	7	7	-	7	-
Fletcher Ck. d/s Granduc Rd.	8 ²	-	8	8	-
Monitoring Pond	-	-	11	-	11
Cascade Ck. d/s Tailings Pond	9	9	9	9	-
Cascade Ck. d/s Logan Ck.	-	-	-	12	12
Level 4	-	-	Level 4	-	-
Level 6	-	Level 6	Level 6	-	Level 6

Stations moved upstream due to the development of the waste rock dump
 Sample at the mouth in 1987; subsequently sampled below Granduc Road

Temporal sediment profile showed that cadmium concentration at the Cascade Creek upstream station was significantly higher in 1991 compared to 1987, 1988, and 1989. Lead and zinc were significantly higher in 1991 only when compared to 1987 levels (Figures 7 - 10).

The concentration of cadmium, copper, and zinc at the Cascade Creek downstream station were significantly higher in 1991 than any previous surveys. No significant difference could be detected for lead concentrations. This element did not seemed to change temporally at that station.

- 29 -

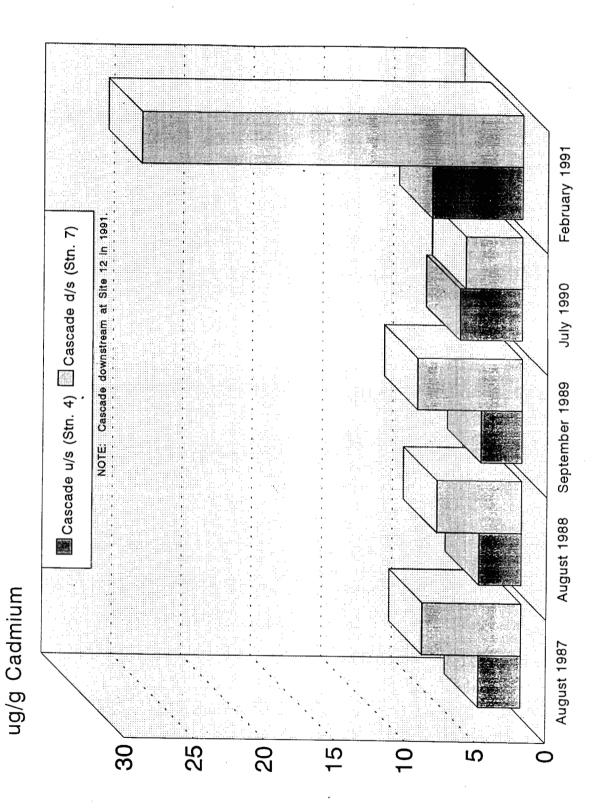


FIGURE 7: CASCADE CREEK SEDIMENT PROFILE - CADMIUM

- 30 --

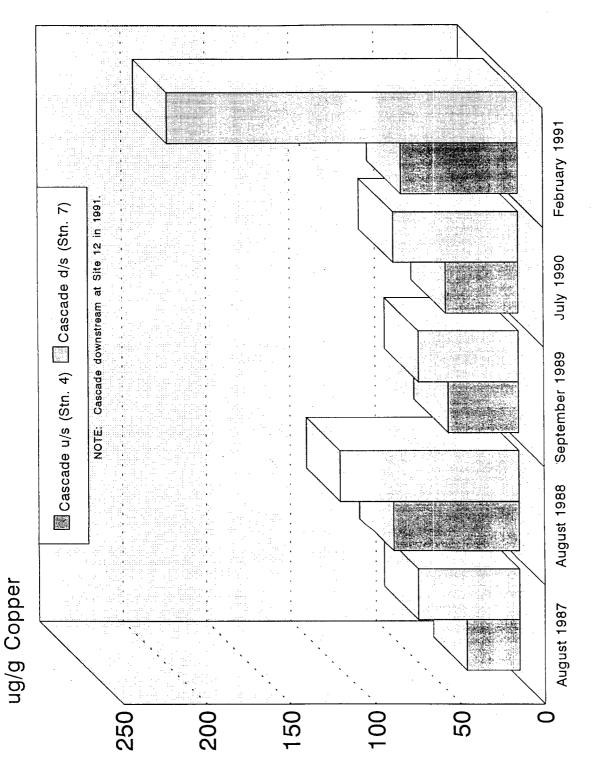
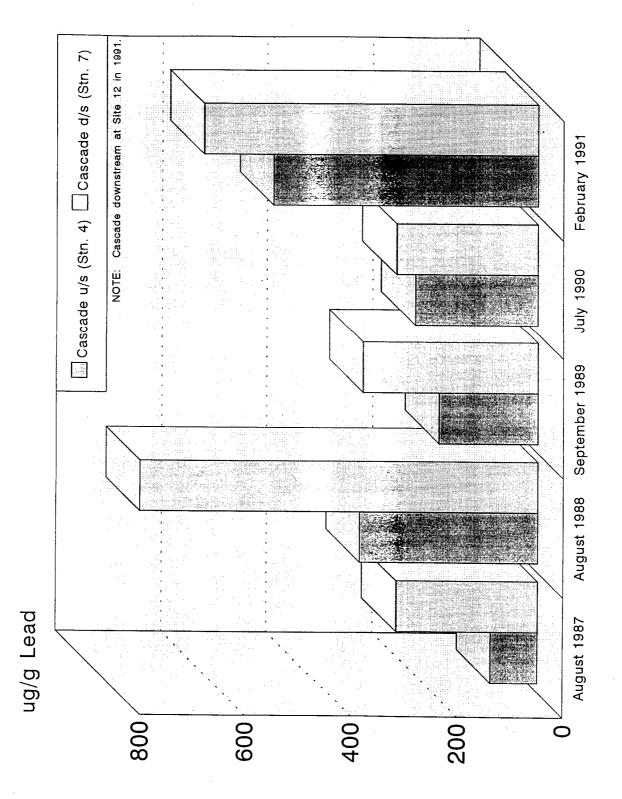
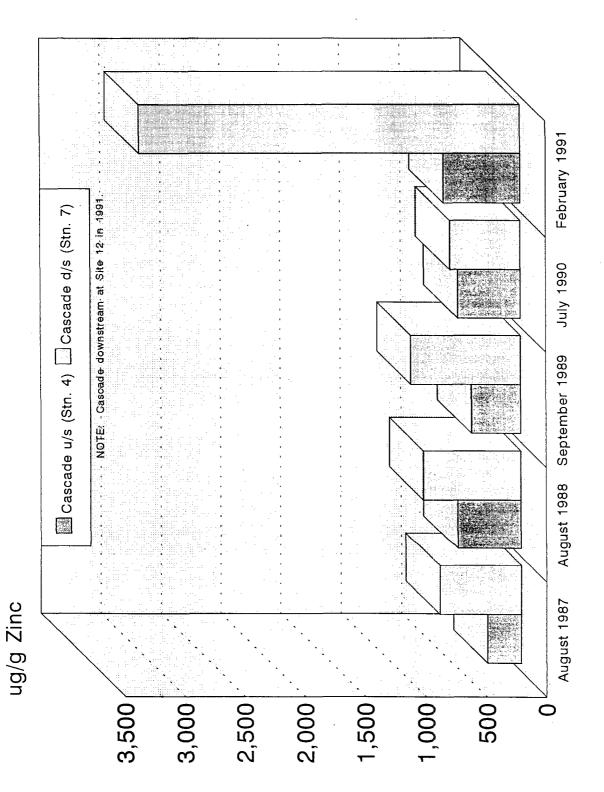
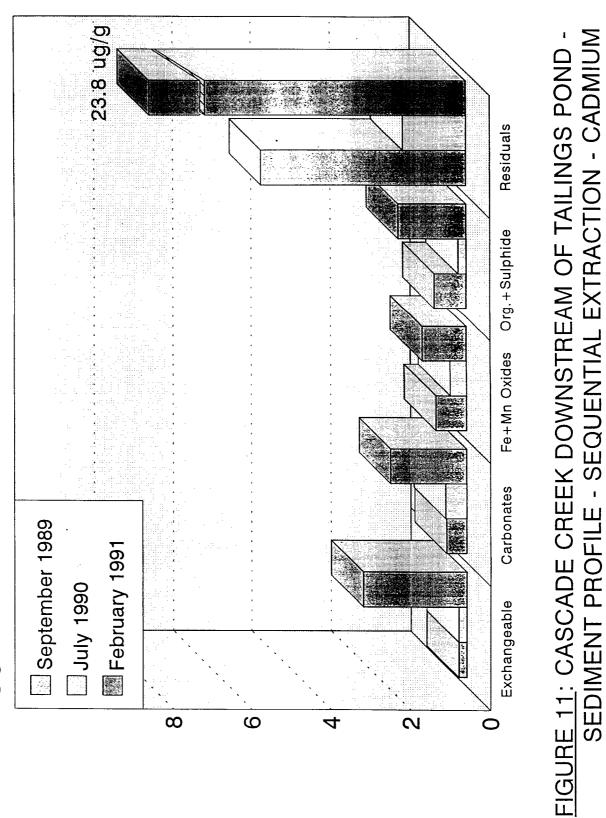
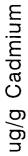


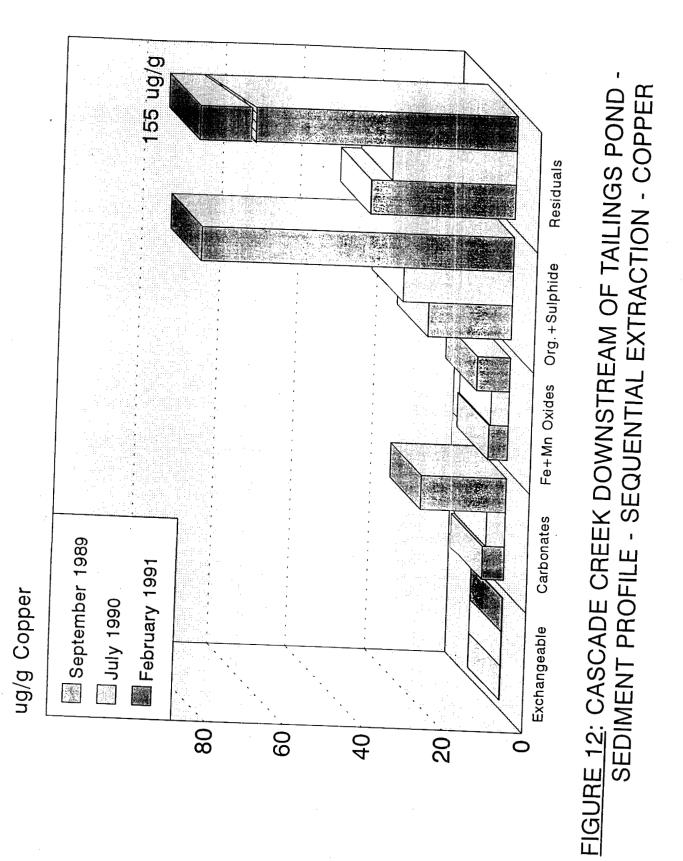
FIGURE 8: CASCADE CREEK SEDIMENT PROFILE - COPPER

- 31 -

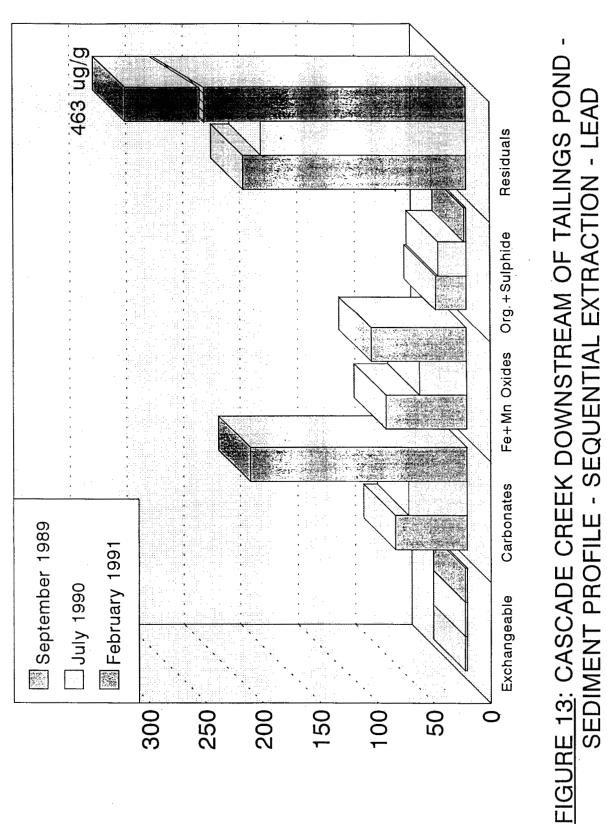




FIGURE 9: CASCADE CREEK SEDIMENT PROFILE - LEAD


- 32 -



- 33 -



- 34 -

- 35 -

ug/g Lead

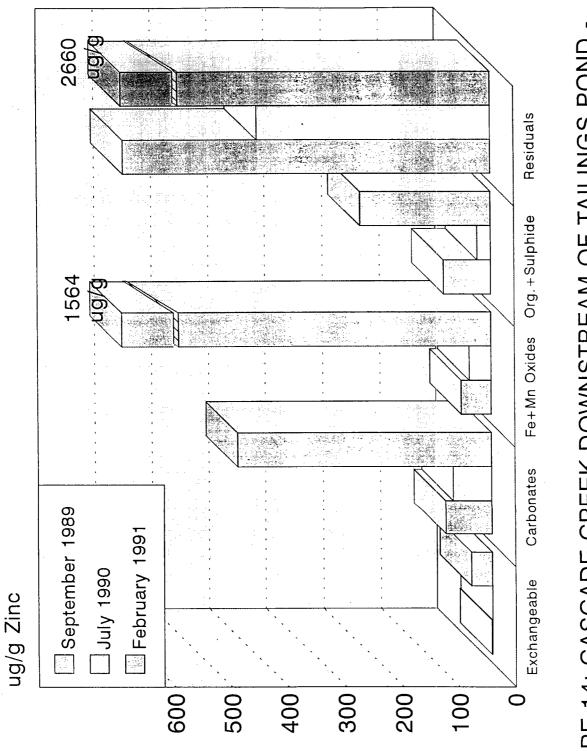


FIGURE 14: CASCADE CREEK DOWNSTREAM OF TAILINGS POND -SEDIMENT PROFILE - SEQUENTIAL EXTRACTION - ZINC

- 37 -

The sequential extraction analysis showed that, in addition to the increase of cadmium concentration downstream of the tailings pond, the pattern of metal availability changed. The exchangeable fraction was proportionally more available in 1991 than in 1989 or 1990 (Figure 11).

A comparison of sequential extractions from September 1989, July 1990, and February 1991 shows that the pattern of distribution among the fractions did not change for copper, lead, or zinc, but more metal was available as concentrations were higher in 1991 (Figures 12 - 14).

4.5 <u>Metal Loadings in Cascade Creek</u>

Monthly zinc loading to Cascade Creek downstream was calculated based on Premier Gold water quality data collected pursuant to their monitoring program under Waste Management permit PE-8044 (Table 9).

Table 10 shows the percent contribution of the three major zinc sources to Cascade Creek. It is evident from this table that during winter months (November to April) level 6 contributes more than 80% of the total. Unfortunately no data were collected for zinc levels from Fletcher Creek to complete the source survey. From more recent information collected during winter 1991-1992, metal contribution from waste rock pile above Fletcher Creek is not negligible.

Sphalerite is the main zinc mineral present in the Premier Gold property. Cadmium is often present as a substitute for zinc in the sphalerite crystal (Berry and Mason, 1959). Cadmium also has a higher pH requirement for precipitation than zinc. Although cadmium concentration in the acid mine drainage is not extremely high, cadmium will be reduced less proportionally in the treatment system than zinc.

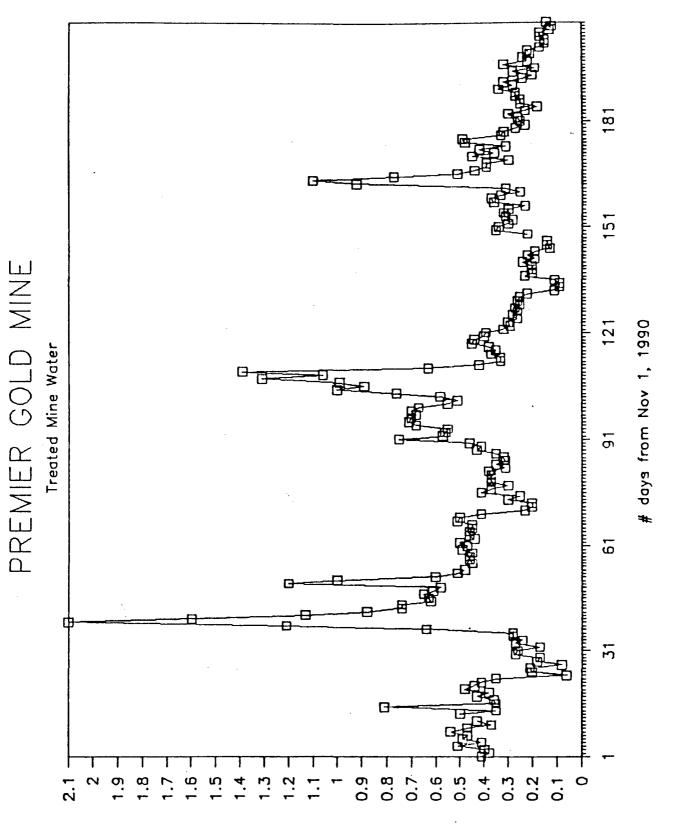
Av. Monthly Discharge (m ³ /s) 1.44 0.036 0.093 Dec 90 1.23 0.045 0.0719 Jan 91 - 0.032 - Feb 91 1.32 0.044 0.084 Mar 91 0.029 0.08 Apr 91 1.27 0.048 0.093 May 91 0.000 0.160 Av. Monthly Zinc Conc. (mg/L) 0.003 ¹ 0.080 ² 0.376 Nov 90 0.003 ¹ 0.080 ² 0.376 0.662 0.376 Dec 90 0.003 ¹ 0.080 ² 0.376 0.662 0.376 Jan 91 0.002 0.662 0.376 0.226 0.237 Mar 91 0.112 0.237 0.249 ² .20.408 0.318 0.373 4.18 Jan 91 - 0.318 0.373 4.249 ² .226 Daily Av. Loading to 0.326 0.249 ² .202 .249 ² .226 Peb 91 0.342 0.388 4.9		CASCADE U/S (Diss. Zn)	COMBINED DISCHARGE (Tot. Zn)	TREATED MINE WATER (Tot. Zn)
Nov 90 1.44 0.036 0.093 Dec 90 1.23 0.045 0.0119 Jan 91 - 0.032 - Feb 91 1.32 0.044 0.084 Mar 91 0.87 0.029 0.084 Mar 91 0.87 0.029 0.08 Apr 91 1.27 0.048 0.093 May 91 7.16 0.090 0.160 Av. Monthly Zinc Conc. (mg/L) 0.003 ¹ 0.80 ² 0.376 Nov 90 0.003 ¹ 0.080 ² 0.376 Dec 90 0.003 ¹ 0.006 ² 0.376 Mar 91 0.102 0.682 0.408 May 91 0.112 0.237 Apr 91 0.082 0.408 May 91 0.318 0.373 4.18 Jan 91 - 0.226 Dec 90 0.318 0.373 4.18 Jan 91 - 0.216 ² - Feb 91 0.322 0.388 4.95 Jan 91 - </th <th>Av. Monthly Discharge (m^3/s)</th> <th></th> <th></th> <th></th>	Av. Monthly Discharge (m^3/s)			
Dec 90 1.23 0.045 0.0719 Jan 91 - 0.032 - Feb 91 1.32 0.044 0.084 Mar 91 0.87 0.029 0.08 Apr 91 1.27 0.048 0.093 Mar 91 0.003' 0.080' 0.160 Av. Monthly Zinc Conc. (mg/L) 0.003' 0.080' 0.376 Nov 90 0.003' 0.080' 0.376 Dec 90 0.003' 0.080' 0.376 Jan 91 0.002 0.682 0.682 Mar 91 0.102 0.682 0.408 May 91 0.082 0.408 0.329 May 91 0.082 0.408 0.329 May 91 0.082 0.408 0.429' Nov 90 0.373 0.249' 3.02 Dec 90 0.318 0.373 4.18 Jan 91 - 0.342 0.388 4.95 Mar 91 0.3229 0.340 3.28		1.44	0.036	0.093
Jan 91 - 0.032 - Feb 91 1.32 0.044 0.084 Mar 91 0.87 0.029 0.08 Apr 91 1.27 0.048 0.093 May 91 7.16 0.090 0.160 Av. Monthly Zinc Conc. (mg/L) 0.003 ¹ 0.080 ² 0.376 Nov 90 0.003 ¹ 0.080 ² 0.376 Dec 90 0.0078 ² - - Feb 91 0.102 0.682 0.48 Mar 91 0.0078 ² - - Feb 91 0.102 0.682 0.480 Mar 91 0.082 0.480 0.226 Mar 91 0.082 0.408 0.169 0.226 Daily Av. Loading to - 0.373 0.249 ² 3.02 Dec 90 0.318 0.373 4.18 3.12 Jan 91 - 0.226 0.280 1.64 Apr 91 0.322 0.340 3.28 Mar 91 0.329 0.340 3.28 Mar 91 0.329				
Feb 91 1.32 0.044 0.084 Mar 91 0.87 0.029 0.08 Apr 91 1.27 0.048 0.093 May 91 7.16 0.090 0.160 Av. Monthly Zinc Conc. (mg/L) 0.003 ¹ 0.080 ² 0.376 Nov 90 0.003 ¹ 0.080 ² 0.376 Dec 90 0.003 ¹ 0.096 0.673 Jan 91 0.0102 0.682 Mar 91 0.112 0.237 Apr 91 0.012 0.682 May 91 0.169 0.226 Daily Av. Loading to 0.373 0.249 ² Cascade Creek (kg/day) 0.318 0.373 4.18 Nov 90 0.342 0.388 4.95 Mar 91 0.226 0.280 1.64 Apr 91 0.329 0.340 3.28 Mar 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to - 6.70 ² - Cascade Creek (kg) - 6.70 ² - </td <td></td> <td></td> <td></td> <td>-</td>				-
Mar 91 0.87 0.029 0.08 Apr 91 1.27 0.048 0.093 May 91 7.16 0.090 0.160 Av. Monthly Zinc Conc. (mg/L) 0.003 ¹ 0.080 ² 0.376 Nov 90 0.003 ¹ 0.080 ² 0.376 Dec 90 0.003 ¹ 0.090 ² - Jan 91 0.078 ² - - Feb 91 0.102 0.682 0.408 Mar 91 0.078 ² - - Apr 91 0.102 0.682 0.408 May 91 0.169 0.226 0.204 May 91 0.373 0.249 ² 3.02 Dec 90 0.373 0.249 ² 3.02 Dec 90 0.318 0.373 4.18 Jan 91 - 0.216 ² - Feb 91 0.342 0.388 4.95 Mar 91 0.3226 0.280 1.64 Apr 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to <td></td> <td>1.32</td> <td></td> <td>0.084</td>		1.32		0.084
Apr 91 1.27 0.048 0.093 May 91 7.16 0.090 0.160 Av. Monthly Zinc Conc. (mg/L) 0.003 ¹ 0.080 ² 0.376 Nov 90 0.003 ¹ 0.080 ² 0.376 Dec 90 0.003 ¹ 0.096 0.673 Jan 91 0.102 0.682 0.488 Mar 91 0.102 0.682 0.408 Mar 91 0.102 0.682 0.408 Mar 91 0.102 0.682 0.408 May 91 0.169 0.226 Daily Av. Loading to 0.373 0.249 ² 3.02 Cascade Creek (kg/day) 0.373 0.249 ² 3.02 Nov 90 0.373 0.249 ² 3.02 Dec 90 0.318 0.373 4.18 Jan 91 - 0.216 ² - Feb 91 0.342 0.388 4.95 Mar 91 0.226 0.280 1.64 Apr 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 <t< td=""><td></td><td></td><td></td><td>1</td></t<>				1
May 91 7.16 0.090 0.160 Av. Monthly Zinc Conc. (mg/L) Nov 90 0.003 ¹ 0.080 ² 0.376 Dec 90 0.003 ¹ 0.080 ² 0.376 Jan 91 0.002 0.682 Feb 91 0.102 0.682 Mar 91 0.112 0.237 Apr 91 0.062 0.408 May 91 0.169 0.226 Daily Av. Loading to Cascade Creek (kg/day) 0.373 0.249 ² 3.02 Nov 90 0.318 0.373 4.18 .1314 3.02 Dec 90 0.342 0.388 4.95				
Av. Monthly Zinc Conc. (mg/L) 0.003 ¹ 0.080 ² 0.376 Nov 90 0.003 ¹ 0.080 ² 0.376 Dec 90 0.102 0.682 Jan 91 0.102 0.682 Mar 91 0.082 0.408 Mar 91 0.062 0.122 Mar 91 0.082 0.408 May 91 0.069 0.226 Daily Av. Loading to Cascade Creek (kg/day) 0.373 0.249 ² 3.02 Nov 90 0.373 0.249 ² 3.02 - Dec 90 0.318 0.373 4.18 Jan 91 - 0.216 ² - Feb 91 0.322 0.340 3.28 Mar 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to Cascade Creek (kg) - 6.70 ² Nov 90 11.19 7.47 ² 90.6 Dec 90 9.86 11.56 129.6 Jan 91	-			1 1
Nov 90 0.003 ¹ 0.080 ² 0.376 Dec 90 0.096 0.673 Jan 91 0.078 ² - Feb 91 0.102 0.682 Mar 91 0.082 0.408 May 91 0.082 0.408 Nov 90 0.373 0.249 ² 3.02 Dec 90 0.318 0.373 4.18 Jan 91 - 0.216 ² - Feb 91 0.322 0.388 4.95 Mar 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to - 6.70 ² - Cascade Creek (kg) - 6.70 ² - Nov 90 9.	Av. Monthly Zinc Conc. (mg/L)		· · · · · · · · · · · · · · · · · · ·	
Jan 91 0.078 ² - Feb 91 0.102 0.682 Mar 91 0.082 0.408 May 91 0.373 0.249 ² Nov 90 0.373 0.249 ² Dec 90 0.318 0.373 4.18 Jan 91 - 0.216 ² - Feb 91 0.342 0.388 4.95 Mar 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to - - - Cascade Creek (kg) - - - Nov 90 11.19 7.47 ² 90.6 Dec 90 9.86 11.56 129.6 Jan 91 - 6.70 ² - Feb 91 9.58 10.86 138.6 <td></td> <td>0.003¹</td> <td>0.080²</td> <td>0.376</td>		0.003 ¹	0.080 ²	0.376
Feb 91 0.102 0.682 Mar 91 0.082 0.102 Apr 91 0.082 0.408 May 91 0.169 0.226 Daily Av. Loading to 0.373 0.249 ² Cascade Creek (kg/day) 0.318 0.373 4.18 Nov 90 0.318 0.373 4.18 Jan 91 - 0.216 ² - Feb 91 0.342 0.388 4.95 Mar 91 0.226 0.280 1.64 Apr 91 0.322 0.340 3.28 Mar 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to - 6.70 ² - Cascade Creek (kg) 11.19 7.47 ² 90.6 Nov 90 9.86 11.56 129.6 Jan 91 - 6.70 ² - Feb 91 9.58 10.86 138.6 Mar 91 7.00 8.68 50.8	Dec 90		0.096	0.673
Mar 91 0.112 0.237 Apr 91 0.082 0.408 May 91 0.169 0.226 Daily Av. Loading to 0.373 0.2492 Cascade Creek (kg/day) 0.373 0.2492 Nov 90 0.373 0.2492 Dec 90 0.318 0.373 Jan 91 - 0.2162 Feb 91 0.342 0.388 Mar 91 0.326 0.280 Mar 91 0.326 0.2162 Morthly Loading to - 0.226 Cascade Creek (kg) 11.19 7.472 Nov 90 11.19 7.472 90.6 Dec 90 9.86 11.56 129.6 Jan 91 - 6.702 - Feb 91 9.86 11.56 129.6 Jan 91 - 6.702 - Feb 91 9.58 10.86 138.6 Mar 91 7.00 8.68 50.8	Jan 91		0.078 ²	-
Apr 91 0.082 0.408 May 91 0.169 0.226 Daily Av. Loading to 0.169 0.226 Cascade Creek (kg/day) 0.373 0.249 ² 3.02 Nov 90 0.373 0.249 ² 3.02 Dec 90 0.318 0.373 4.18 Jan 91 - 0.216 ² - Feb 91 0.342 0.388 4.95 Mar 91 0.3226 0.280 1.64 Apr 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to - - 6.70 ² Cascade Creek (kg) - 6.70 ² - Nov 90 11.19 7.47 ² 90.6 Dec 90 9.86 11.56 129.6 Jan 91 - 6.70 ² - Feb 91 9.58 10.86 138.6 Mar 91 7.00 8.68 50.8	Feb 91		0.102	0.682
May 91 0.169 0.226 Daily Av. Loading to Cascade Creek (kg/day) 0.373 0.249² 3.02 Nov 90 0.373 0.249² 3.02 Dec 90 0.318 0.373 4.18 Jan 91 - 0.216² - Feb 91 0.342 0.388 4.95 Mar 91 0.226 0.280 1.64 Apr 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to - 6.70² - Cascade Creek (kg) - 6.70² - Jan 91 - 6.70² - Feb 91 9.58 10.86 138.6 Jan 91 - 5.8 50.8	Mar 91		0.112	0.237
Daily Av. Loading to Cascade Creek (kg/day)0Nov 900.3730.2492Dec 900.3180.373Jan 91-0.2162Feb 910.3420.388Mar 910.2260.280May 911.8561.314Monthly Loading to Cascade Creek (kg)11.19Nov 909.8611.56Jan 91-6.702Feb 913.02Monthly Loading to Dec 909.86Jan 91-Sec 909.86Jan 91-Feb 919.58Mar 917.008.6850.8	Apr 91		0.082	0.408
Cascade Creek (kg/day) 0.373 0.249 ² 3.02 Dec 90 0.318 0.373 4.18 Jan 91 - 0.216 ² - Feb 91 0.342 0.388 4.95 Mar 91 0.226 0.280 1.64 Apr 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to - - - Cascade Creek (kg) - - - Nov 90 11.19 7.47 ² 90.6 Jan 91 - 6.70 ² - Feb 91 9.58 10.86 138.6 Mar 91 7.00 8.68 50.8	May 91		0.169	0.226
Nov 90 0.373 0.249² 3.02 Dec 90 0.318 0.373 4.18 Jan 91 - 0.216² - Feb 91 0.342 0.388 4.95 Mar 91 0.226 0.280 1.64 Apr 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to - - 6.70² Dec 90 9.86 11.56 129.6 Jan 91 - 6.70² - Feb 91 9.58 10.86 138.6 Mar 91 7.00 8.68 50.8				
Dec 90 0.318 0.373 4.18 Jan 91 - 0.216 ² - Feb 91 0.342 0.388 4.95 Mar 91 0.226 0.280 1.64 Apr 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to - - - Cascade Creek (kg) 11.19 7.47 ² 90.6 Nov 90 9.86 11.56 129.6 Jan 91 - 6.70 ² - Feb 91 9.58 10.86 138.6 Mar 91 7.00 8.68 50.8				
Jan 91 - 0.216 ² - Feb 91 0.342 0.388 4.95 Mar 91 0.226 0.280 1.64 Apr 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to - - - <u>Cascade Creek (kg)</u> - - - Nov 90 11.19 7.47 ² 90.6 Dec 90 9.86 11.56 129.6 Jan 91 - 6.70 ² - Feb 91 9.58 10.86 138.6 Mar 91 7.00 8.68 50.8	Nov 90			3.02
Feb 91 0.342 0.388 4.95 Mar 91 0.226 0.280 1.64 Apr 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to - - - Cascade Creek (kg) - 6.70 ² - Nov 90 91 - 6.70 ² - Feb 91 9.58 10.86 138.6 138.6 Mar 91 7.00 8.68 50.8	Dec 90	0.318		4.18
Mar 91 0.226 0.280 1.64 Apr 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to				· -
Apr 91 0.329 0.340 3.28 May 91 1.856 1.314 3.12 Monthly Loading to 1.314 3.12 Monthly Loading to 11.19 7.47 ² 90.6 Dec 90 9.86 11.56 129.6 Jan 91 - 6.70 ² - Feb 91 9.58 10.86 138.6 Mar 91 7.00 8.68 50.8	Feb 91			4.95
May 91 1.856 1.314 3.12 Monthly Loading to Cascade Creek (kg) 11.19 7.47 ² 90.6 Nov 90 11.19 7.47 ² 90.6 Dec 90 9.86 11.56 129.6 Jan 91 - 6.70 ² - Feb 91 9.58 10.86 138.6 Mar 91 7.00 8.68 50.8				
Monthly Loading to Image: Cascade Creek (kg) Nov 90 11.19 7.47 ² 90.6 Dec 90 9.86 11.56 129.6 Jan 91 - 6.70 ² - Feb 91 9.58 10.86 138.6 Mar 91 7.00 8.68 50.8		5 C		1 1
Cascade Creek (kg)Nov 90Dec 90Jan 91Feb 91Mar 917.008.6850.8	May 91	1.856	1.314	3.12
Nov 9011.197.47290.6Dec 909.8611.56129.6Jan 91-6.702-Feb 919.5810.86138.6Mar 917.008.6850.8				
Dec 909.8611.56129.6Jan 91-6.702-Feb 919.5810.86138.6Mar 917.008.6850.8				
Jan 91- 6.70^2 -Feb 919.5810.86138.6Mar 917.008.6850.8			l	
Feb 919.5810.86138.6Mar 917.008.6850.8				129.6
Mar 91 7.00 8.68 50.8		1		120 6
	Apr 91	9.87	10.2	98.4
May 91 57.54 40.73 96.7	-			

TABLE 9: CASCADE CREEK ZINC LOADING CONTRIBUTORS

¹ Zinc concentration for this period was arbitrarily determined as 0.003 mg/L Dissolved Zn

² These measurements are Dissolved Zn

TABLE 10: CASCADE CREEK ZINC LOADINGS


	Total (kg)	Cascade u/s Tre Diss. Zn	ated Level 6 Tot. Zn	Tailings Pond Tot. Zn
	100.2	10.0		
Nov 90	109.3	10.2	82.9	6.9
Dec 90	151.0	6.5	81.5	7.7
Feb 91	159.0	6.0	87.2	6.8
Mar 91	66.5	10.5	76.4	13.1
Apr 91	118.5	8.3	83.1	8.6
May 91	195.0	29.5	49.6	20.9

Monthly Loading to Cascade Creek -Zinc - % Contribution from Various Sources

Figure 15 shows the total zinc concentration in the treated mine water while Figure 16 shows the pH of the effluent. The correlation of these two variables using six months of data showed r = -0.642, for 181 data points. This correlation is very significant, r(0.01, 150) = 0.208. The correlation could be better if the pH unit was changed to hydrogen ion concentration. The linear relationship between these two variables can be described by:

pH = -1.02066 [Tot. Zn] + 9.49798

According to this formula a concentration of 0.2 mg/L of Total Zinc in the effluent should be achieved with a pH of 9.29 in the effluent.

TREATED MINE WATER - TOTAL ZINC - FROM NOVEMBER 1, 1990 FIGURE 15:

(I\pm) nZ lofoT

- 41 -

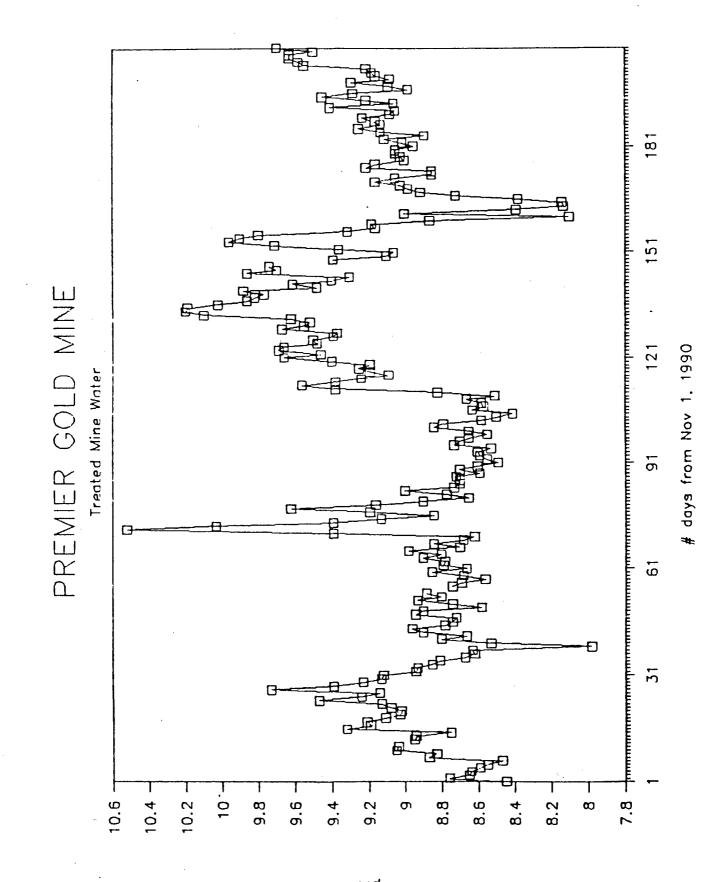


FIGURE 16: TREATED MINE WATER - pH - FROM NOVEMBER 1, 1990

Ηq

- 42 -

5.0 CONCLUSION

During February 1991, bioassays on <u>Daphnia maqna</u> using sediments from Cascade Creek downstream of the tailings pond had reduced reproduction and survival. This corresponded to elevated heavy metal concentrations. The bioassays and sequential extractions showed that the tailings from the tailings pond are not responsible for the reduction in <u>Daphnia</u> reproduction but rather the effluent from the treated mine water is to blame. The sediment extraction showed that cadmium was proportionally more mobile in the sediment downstream than other metals. This effect was due to the higher pH requirement of the element. Winter sediment concentrations were higher than during summer surveys reflecting the low dilution and stable hydrological conditions which favour high concentrations and quiescent conditions for precipitation.

This survey showed the value of using sediment techniques to assess mine impact. The use of sediment bioassay can demonstrate toxicity of the sediment and identify possible sources. The sediment sequential extractions can identify the suspect element while regular total metal concentration can be used for monitoring environmental changes.

REFERENCES

- Anonymous. 1979. Laboratory Manual. Department of the Environment, Environmental Protection Service. Department of Fisheries and Oceans (Pacific Region), Fisheries and Marine Service.
- APHA. 1989. Standard methods for the examination of water and wastewater. 17th ed. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, D.C.
- Berry, L.G., and B. Mason. 1959. Mineralogy Concepts, descriptions, determinations. W.H. Freeman and Company, San Francisco.
- Borenstein, M., and J. Cohen. 1988. Statistical Power Analysis A computer program. Laurence Erlbaum Associates Inc., Hillsdale, New Jersey.
- Godin, B. 1988. Baseline water quality monitoring at the Westmin Resources Limited Silbak Premier Project - August 9, 1987. Environment Canada, Environmental Protection. Pacific and Yukon Region. Data Report 88-06.
- Godin, B., and V. Chamberlain. 1990. Baseline monitoring, Westmin Resources Limited Silbak Premier Mine - August 9, 1988. Environment Canada, Environmental Protection, Pacific and Yukon Region. Data Report 90-01.
- Godin, B. 1991a. Westmin Resources Ltd., Premier Gold Mine September 12-15 1989. Environment Canada, Environmental Protection, Pacific and Yukon Region. Data Report 91-06.
- Godin, B. 1991b. Westmin Resources Ltd., Premier Gold Mine July 19 and 23, 1990. Environment Canada, Environmental Protection, Pacific and Yukon Region. Data Report 91-07.
- Gulley, D.D., A.M. Boelter, and H.L. Bergman. 1990. TOXSTAT. Release 3.2. Department of Zoology and Physiology. University of Wyoming.
- Nebeker, A.V., M.A. Cairns, J.H. Gakstatter, K.W. Malueg, G.S. Schuytema, and D.F. Krawczyk. 1984. Biological methods for determining toxicity of contaminated freshwater sediments to invertebrates. Environmental Toxicology and Chemistry <u>3</u>:335-353.
- Steel, R.G.D., and J.H. Torrie. 1960. Principles and procedures of statistics. McGraw-Hill Book Co., Inc., New York.
- Tessier, A., P.G.C. Campbell and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51(7):844-851.
- Zar, J.H. 1984. Biostatistical analysis. 2nd ed. Prentice-Hall Inc., Toronto. 718 p.

APPENDIX I

SEDIMENT QUALITY - PREMIER GOLD -1987, 1988, 1989, 1990

.

Silbak sediments (< 150 um) dry weight – August 9, 1987

۲

Table 1 :

00/00 00/0		2630 6.1						610 6.5		150 1.8		224 2.5					217 1.7		941 4.0	947 3.3				1280 4.8									4080 3.1 759 0.8		2760 4.0			2013 3.4		951 < 8	0A0 1.7	1380 <.8			180 0.2		310 2.6		1.	1303 2.8	
MG 06/G WN		8510 2						10400				676					112	7140	7320	7250	6630	7085	312	1 0000									7413 4		6730 2							9440								8338 1	
нс 107.6 ИС ИС	i –	0.160				Ú.Ū34						0.024					620.0			0.281				660.0			0.128		•				0.435						0.435			0.964			0		0.302			0.353	
FE UG/G	i i					2131						3288					3918			43500				45100									58775						10345			64100					54000				
су ис/с	÷	1 75.4										0 10.4					8 1.3			2 35.9				1.25 0									3 72.5 E 54.1						5 157.1			0 102.0		7 66.9			0.00				
CR UG/G	;	71 3 58.1										2.3 24.0					3.9 0.8		7.1 25.	.0 27.2	13.0 25.			12.0 13.0									23.5 11.3			.0 14.0			5.4 1.			25.9 7.0					11.6 2 20.0				
00 00/0	;											1.1 2					0.7 1.0 0.7 3			3.0 16				0.0 ID									2.7 23						16.9 5			12.0 25								7.0 17	
6 UG/G		00101	0050	5700	2975	2615						537	7040	6130	7050	6000 2665	568 568						144	4030	0064	4550	4703	151					1900						542 1			8240 6870 1								4280	
BE CA UG/G UG/G	: :)					0.1						0.1	0.6	ۍ ا			0.0		r 7				0.0	ه. د							0.7	-				4	<u>م</u>		0.1		.	t ()	ነው	6		· u	o v	0.5	4.0	ç.()	
BA BE UG/G UG		583 717	100	101	044	:18	305	46.8	445	- 20E	380	68	866	638	907	814 201	16 16	U U	001 848	597	480	520	65	315	348	304	325	29		683 760	978	814	783	82	530	411	1070	447	309	00.7	4 Z J	ሳት የትር	801	590	jSe	UC .	C12	553	067	571	
AS B UG/G U		4 n U n	ים שני	0	ŝ	2	БС	ъ (5	ο σ 1		12	24	36	55	5) (7) (ν. Γ. υ.	ç	4 4 6 9	69	65	58	11	14		1 II 5 II	34	с. т		18	130	140	112	27	52	33	81	ት ት ት	20		ŧ.:	2 E G		30		91	8K	. P	Ч,	ł	
ני נינ		00017	00100	00.444		1997	14600	00212	16400	15,800		2419			21000		C/907 789				12500	13175	493	00001	167000			9 9 9					24650						1278			00221			I unte		11/14/21			50.000	
Sample Number		-4 Ç	4 (، 0	Averade	S.D.	ſ	יי	7 0	∖ œ	Average	5.D.	¢	10	3	12	Average S.D.	•	61 14	1	16	ŝ	۰. ۵.	17	0 C	2 2	Averade	. D.	:	21	52 52	24	Average	s.v.	25	56	27	87	5.D.	Ċ	r, ç	9 F	22	- C	5. D.			5 %	i đ	•	
Station Number		r	4					Ċ	4					'n						r				ų	n					٩,	Û					7					J	Į,					Ĵ	r			

10/9/	4100	3200	5000	7200	48/3		230	0694	090	428	244	2800	3000	1800	1800	2350 640		200	210	200	213	19		042	300	200	250	48	3000	3200	4300	3400	574	000	570	1100	390	740 320	06	200	250	965 265	108	1.00	070	07F	200	283	57
MG/KG U	224000	162000	247000	274000	47759		16500 22200	27700	00677	20400	5854	101000	85500	103000	71100	90150 14915		18700	16900	475000	132050	228635		19100	18600	14100	16750	2047	132000	165000	203000	160000	23200		21800	43300	20100	516/3 12425	0006	5900	16400	116300	5292	10200	00261	21100	18400	19475	1147
Jr.n MG/KG	776000	838000	753000	726000	47759		984000	000776	945000	979750	6021	000668	915000	897000	929000	910000		981000	983000	525000	867750	228501	0000000	0000000	981000	986000	983250	2217	868000	835000	797000	840000	29200		0008C6	957000	980000	968250 12447	000166	994000	984000	984000	5058	000100	981000	000676	000201,	980750	1258
57 57 57 57 57 57 57 57 57 57 57 57 57 5	256	169	243	228	477 40		189	221	191	661	15	197	178	201	215	15	1	270	300	283	285	12		505	502 579	191	205	17	285	351	386	356	040 040	00.55	4500 1490	4010	1710	2953 1583	554	532	1230	883	329	2.6	511	652 652	017	676	44
v UG/G	49.1	54.3	52.7	52.4	1.20		61.5	66.7	66.1 5.7 4	5. CY	4.4	66.5	57.4	59.5	67.6	62.8 5 1		26.0 27	28.7	27 6	27.4	1.1		65.1 7	6.8.3	66.6	65.9	2.2	50.7	50.0	46.9	53.3	2.6	ŗ	48.6	47.5	44.9	47.2	75.5	70.5	6.77	101.0	5.61	ר ע ע	F.7C	9.01 7. 52	47.6	6,05	2.6
11 10/02	516	609	548	505	040 74		393	480	436	014	50	429	550	495	444	480	2	43	10	3.5	9.4 5	7	0	47.44 1.0	210	505	514	19	486	445	399	480	404		765	664	262	740 55	171	784	785	1090	155		-916 Prio	E E	285	015	2
UG/G	139	124	178	188	<u>[5]</u>		30	0.0	86 66	4 6		69	58	63	58	τ, α υ	0	40 0	r 5	5 C C	34	. 4		87 7	4, 14 1	37	40	e	131	146	166	157	15	i	Г 4	62	43	<u>م</u>	45	53	51	58	9 9	į	46	: :	. 2,	6.4	7
2N 10/0	3	\$	3	Ç			Ç.	3	3 3	; ;	1	. 5	ů Ú	\$	Q,	: :		С, S	3 0	2 0	; ;		9	3 3	3.0	33	;	:	ŝ	3	°,	ç	r (ç	3 3	Ĝ	\$: :	10	\$	\$	3	< 1 }		3 3	50	; Ç	: :	
1 9/96	720	840	680	750	847	i	510	540	460	005	éε	530	500	540	520	523	1	470	064	054	5 G 6 G 7 G	17. 17		095	010	520	520	5 0	950	890	910	966 100	44		1000	710	490	685 230	560	490	480	500	980 980		0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	016	46.0	0440	
1 572 U	64 70	θE	5,8	.0 .7	44		5	50	4 C	40	ιJ	6 6	41	40	÷,	4 1	r	11	x .	0.00	22	01	•	40 0	4 V 5 V	5 m	46	5	86	110	120	110	10/ 14		1320	1280	484	862 508	265	150	463	34]	132		to e		104	268	14
ь 10/0	1110	1150	1290	1360	1230) 4 4	1140	1340	1250	1005) G G	1310	1250	1360	1320	1310	2	1180	0821	0441	0001	- 5 6		1220	1 230	1280	1268	49	1370	1490	1490	1550	575 75		1040	1350	1040	1148 146	1290	1310	1400	1520	105		1290	08/1	04-24	1300	11
ען אין 10/10 ע	20	32	10	4	<u>,</u>	•	12	eng - An -	9 C 	• ic	22	10	12	10	. т .	2 -	4	67	9F 7	r () 4 2	י הי	1	24	50 70	31 26	25	Ŷ	7	69	7	10	ю г		20	50	22	18	و	6	7		× -	,	06 92	8 7			4
NA N UG/G U	5520	4490	1700	100	2953 2464		100	1810	170	270	167	080	100	1200	360	485	r. Cr T	60	0,0	00	5 5 5	n (n 		100	100	100	160	0	100	190	390	220	622 121		210	100	96	150 64	100	220	260	340	100		0011	0/.	170	470	4.26
Sample N Number U	 e~4 	13	(^{ri}	. 1 .	4767306 6 7	•	ŝ	Q,	r :		5. Ú.	J	101		12	Average S 2		8 1 3	7 7 	<u> </u>	orerout	5.U.	:	17	1 S	50 20	Average	s.p.	21	22	. 23	24	Average S.D.		52 %	27	28	Average S.D.	29	08.	31	32	Average S.D.		ee i	4	2 ∉	Average	s.b.
Station	C 1 1 1 1	, .4						त्न					m						Ŧ					,	ŝ					9					٢					æ					¢	τ			

Table 2								Sediment Qualit Silbak Premier	: Qualit Tremier	y. Metal - August	Sediment Quality. Metal Analysis Silbak Premier - August 9. 1988	20					
	c	9/9N NG/G	AL VG/G	AS UG/G	BA UG/G	BE UG/G		CA UG/G	CD UG/G	02 00	CR UG/G	cu UG/G	FE UG/G	HG UG/G	MG UG/G	NN UG/G	
6 6 1	Repl.1	3	:	1 1 1 1		383	. 9.0	5500	1	<pre></pre>	1		1	-	7610		230
Ċ	Repl.2	ů :				388 500	0°2	6160	8 °	¢20			46100	0.06	7900	1490	88
N	Nepl.3	3 5	17700		2 4 2 4	385 417		19300	₩ •		0.41	14.4	41900		6640		3 6
	Average				-	444		12465	••	; ;			43800	0.08	7258		8
	S.D.	;			17	96	0.0	7668	-	1	6.6		3202		595		196
	Repl.1	ო	25700		-	020	0.7	8530	٤.۶	<20	11.0		57400	60.0	7480	2450	ŝ
	Repl.2	° M				826	0.6	8590	1	< 20					7550		60
m	Repl.3	\$				1020	0.7	8060	6. 8	<20					7240		8 8
	Repl.4		25000		09	867 922	0.0	7390	8.>	\$20 1	14.0		57200	0.10	7443	2170	25
	S.D.	00				102	0.0	555	:			2.1			138		117
	Repl.1	0	16200		8	584	0.5	3680	7	€20					7510		6
	Repl.2	6				873	0.7	3790	0	20					8590		8
•	Repl.3	8				697	0.5	3590	2	< 20					7710		8
	Repl.4					293 202	9°0	9930	90	< 20	43.7		55500	0.41	8360	1969	e e
	Average S.D.	0 0	18/00 2399		10	125	0.1 0	3/48 147	המ		5.4	37.9			515		242
	Reni.1	(T)	15900		68	163	0.4	3560	, 8,8	¢20	13.0	27.7	36900	0.04	7590		908
	Rep1.2	0.01				179	0.4	3720	6. 8	¢20	-				7560	1080	80
Ð	Repl.3	. 01				180	0.4	3480	د.8	¢20					7630	(7)	20
	Repl.4					151	0.4	3450	٤.>	¢20	13.0	19.2			7610		898
	Average S.D.	- 1	16150		4 r	168 14	• • • •	3553 121			13.0 0.8		36200 1086	0.04	9657 30	14//	32
		ç				0111	0 0	1 0200	-	007	0.01	187 0	51300	0.59	08P?		770
	Ren1.2	30	13200			410 828		11900	ç Q	¢20 ¢20					5680		430
7	Repl.3	; Ç				729	0.2	12800	ыл N	¢20					5530		1330
	Repl.4		-			813	0°3	12500	in i	¢ 20					5550		ខ្ល
	Average S.D.	11	13400		47 60 47 60	870 166	е. О.О	11875	~ 4		8°0	51.3	3152	60°0	208	-	205
	t land	ç	15000	*	ç	378	4	4630	ď	¢20	15.0	142.0	89100	0.20	7390	1870	20
	Repl.2	90				365	4.0	5350	n no	¢20					7220		8
6	Repl.3	\$				384	0.4	4320	4	¢20		-			7280		22
	Repl.4			•		455 200	\$°0	6070 E002	99	\$ 20	15.0	68°0	61100	0.29	7375	1510	
	S.D.	: :	1367		29 29	0 10 10	• 0 • 0	782	9 (1)		0.8				06		310
	Repl.1	\$	15100			152	0.3	13300	د.8	¢20			38100		8480		803
	Repl.2	\$	12300		49	114	0.3	11600	٤.۶	¢ 20			31000		7420		700
10	Repl.3	\$2			66	117	0.3	13800	٤.۶	¢20			31600		7680		718
	Repl.4		-			113	0.2	11700	6.9	(20	28.0	7.17	44500		OECT BTTT		000 014
	Average S D	1	62261		10	19		1117		1	4.0		6342	0.01	480		62
	2		-			1	•	•					I I				

.

а. <u>с</u> С

,

Table 2 (cont.):

.

Sediment Quality, Metal Analysis Silbak Premier - August 9, 1988

٠

Station		VC	AL	AS .	BA	BE	CA	មិ	8	CR	cn	FE	윉	NG	MN
Number		06/6	06/6	06/6	NG/G	06/G	UG/G	0C/C	0C/G	0C/G	0C/G	NG/G	06/6	NG/G	NG/G
L J L L		3	21400		1680	6.0	1				1850.0	83900	4.50	4860	15600
	Repl.2	0	18900	120	1220	0.7	25600	230	40	28.8	4300.0	102000	4.20	3720	7640
Level	Repl.3	7	21000		1290	0.8					1650.0	81600	6.20	5370	8910
4	Repl.4	2	20600		1460	0.8					2390.0	81200	4.20	4760	13800
	Average	8	20475		1413	0.8					2547.5	87175	4.78	4678	11488
	s.D.	0	1100		205	0.1					1209.4	9955	0.96	692	3817
	Repl.1	ç	18000	•	701	0.4					732.0	61200	1.10	7630	3690
	Repl.2	ĉ			571	0.3					757.0	61500	1.20	7640	2850
Level	Repl.3	\$			574	0.2			< 20		805.0	68300	1.30	7540	3130
#6	Repl.4	\$		77	562	0.3	7500	52		16.4	518.0	53800	0.66	7980	2020
	Average	!	16400		602	0.3			1		703.0	61200	1.07	7698	2923
	s.D.	;	1095		9 9	0.1		•	•		127.0	5923	0.28	194	696

able	Table 2 (cont.):						Sedi Silb	iment Jak Pr	Sediment Qualit Silbak Premier	Sediment Quality. Metal Silbak Premier – August	l Analysis t 9, 1988	ysis 388						
		NO VG/G	NA UG/G	NI UG/G		P UG/G	₽₽ UG∕G		SI VG/G	SN UG/G	SR UG/G	11 UG/G		v UG/G	5/90 ЛС/С	SFR MG/KG		SVR MG/KG
1	Repl.1			8	22	1000		: 69		10	43	- °.	380		L 1 F	I	965000	34 900
	Repl.2	-1		100	36	1100		130	608	44		4	358	65			978000	22000
8	Repl.3	•		8	21	1200		110	638	10		~ ~	348	6 :			958000	42200
	Kepl.4	•		88	2 C	1100	5 0	50	169	85	5 0 L	<u>م</u> د	906 196	1.5	177		000475	31375
	S.D.	-	2 -	30	11	82	5 74	27	103	32		. 89	14	5	4		8995	,
	1 land	-			ç	1400	c	2	770	A >		5	188	78	**	53 86:	863000	137000
	C Land	~ ~		230	2 6	1300	, c	, C	735	10	65.7	~	777	69			877000	123000
'n	Ren1.3			061	2 C	1400		8 K	840	8		. 60	366	88			865000	135000
,	Repl.4			60	9	1300	. 0	1 e	769	8		9	256	79			889000	111000
	Average		19	193	13	1350	0	32	779	t T		6.	259	79		æ	873500	126500
	. S.D.			29	ŝ	58	8	13	44	;	Ŷ	8	76	¢		51 1:	12042	12042
	Ren1.1	•		70	E 4	1200	0	174	670	23	36	4	66	33	362		978000	21700
	Ren1.2			2 8	29 29	1300		198	693	21	48	5	16	45			974000	26400
4	Repl.3			20	48	1300		150	634	20	6E	•	64	35			979000	21500
	Repl.4	1		8	51	1300		823	700	26	45	.1	73	41			980000	20500
	Average	**	10	85	51	1275		336	674	23	42	ຕຸ	74	6E '			977750	22525
	s.D.		0	17	80	Ŵ		325	30	m	ŋ	Ω,	12	۵		268	7630	
	Repl.1		7	70	17	066	0	EE	516	4 8		0.	457	56			985000	• •
	Repl.2		7	70	23	870	0	35	536	, (8		29.6	405	52		-	981000	• •
n	Repl.3		6	70	17	880	.0	59	577	8			441	53			983000	16600
	Repl.4		б	80	50	068	0	8	591	6		29.5	441				982000	18400
	Average		80.	Ē	19	893	, m	6E	000	;		C' 67	95 6	f (5		
	S.D.		-	n	m	26	٥	<u>.</u>	ŝ			5	77	7			00/1	
	Repl.1	-	0	80	10	1200	-	120	719	6 8	76	е.	705	52			972000	27500
	Repl.2	-	0	60	10	1300		642	642	8>	73	8.	630	ŝ			981000	-
2	Repl.3	**	0	60	ወ	120		586	590	8	71	۲.	562	45		-	983000	16900
	Repl.4	-	ខ្ម	60	б	1200		538	547	6 8		•	528	4 1	1540		985000	
	Average		<u> </u>	65	01 ·	CZZ1		771	629	;		ູ່	909 7 8	ř			5727	•
	• •• •		5	2	-	ל		603	ŗ		4	•	2	2				
	Repl.1		20	001	20	1200	Ţ	260	941	4 8	36	e.	462	75		-	000626	21000
	Repi.2	••	0	80	10	1300		403	749	15	8	6 , 0	570	84			980000	20000
6	Repl.3			ŝ	19	1200		1110	643	20	5	æ, 1					000186	00200
	Repl.4	-		8	16	1200		239	618	80 <u>-</u>	3 5	•	265	21			0001/6	28/00
	Average		17	66	16	1225		753	813	14	88. •	و ب	533	8/			00///6	0227
	s.D.		n	10	n	20		207	601	۵	n	4.	ñ	Q.			5/04	
	Repl.1	-		370	17	1200	0	45	699	6 8		•	1440	98		243 98	987000	-
	Repl.2			180	10	1100	0	36	633	6 8		55.5	1070	76			989000	10700
10	Repl.3		о О	200	20	1100	0	34	662	6 8		œ.	1230	81		-	000066	10100
	Repl.4	-		190	20	1100	0	50	632	6 8	57	ະ	1250	110		168 98	989000	11400
	Average			235	17	1125	5	41	649	1	61	.،	1248	16			988750	11325

.

Table 2 (cont.):

Sediment Quelity. Metel Anelysis Silbek Premier - August 9, 1988

		õ	K N	1 1 1	۵.	PB	31	SN	SR	71				SVR
		NG/G	0C/G	00/0	0C/C	0C/G	00/0	NG/G	0/0n	0C/G	NG/G	0C/G	MG/KG	MG/KG
(; ; ; ; ;	Repl.1	 	1 1 1	*	0 1300				!	144	35	16900	i T	36800
	Repl.2		27 100		0 1100	0 8160	1090	140	133.0	202	e e	26600	867000	133000
Level	Repl.3			37						171	6E	16100	•	37700
4	Repl.4									150	₩.	17500	-	42800
	Average						· .			167	37	19275		62575
	S.D.									26	7	4917		47024
	Repl.1		19 100	1	0 1200			17	92.0	730	65	9540	•	40000
	Repl.2							10	73.5	672	60	9780	•	18300
Level	Repl.3							6 8	66.0	652	68	10100	•	18400
# 6	Repl.4		5 100	10				82,	65.4	191	67	7460	•	18400
	Average				0 1150	0 2355	1018	14	75.0	636	65	9220	976500	23775
	s.D.	.4	¢ د		0 8			n	13.8	6	4	1196		10817

SEDIMENT QUALITY, IMMEDIATES ANALYSIS - PREMIER GOLD SEPTEMBER 12, 1989

1

7150 7080 7340 7330 7330 7225 130 10500 10600 10000 10400 271 8080 8220 8450 8820 8393 323 6760 6930 6570 7030 6823 202 MG UG/G 2000 1700 2000 1875 150 1800 1000 1700 1375 435 1000 1000 1700 350 1000 2000 1000 500 2000 2000 2000 500 3500 K UG/G 0.150 0.140 0.310 0.120 0.180 0.088 0.100 0.110 0.092 0.120 0.120 0.126 0.325 0.281 0.230 0.230 0.236 0.236 0.258 0.273 0.216 0.216 0.243 0.243 0.428 0.383 0.438 0.438 0.477 0.477 0.043 0.058 0.035 0.035 0.035 0.035 0.034 HG UG/G 54900 59400 58900 58400 57900 2041 56500 53700 58900 60300 57350 2895 45900 46100 44000 45475 988 50400 48800 57600 49700 51625 4037 32800 26000 32700 32700 33200 6268 53600 54100 51700 48600 52000 52000 FE UG/G 35.5 34.1 25.9 25.9 27.8 27.8 4.7 30.0 30.8 33.9 32.9 31.9 1.8 131.0 147.0 147.0 127.8 127.8 177.3 177.3 177.3 177.3 177.3 177.3 177.3 177.3 177.0 111.0 51.9 60.4 63.0 5.0 70.0 74.6 81.1 80.2 76.5 5.2 9/92 P.0 CR DG/G 8.2 9.2 8.6 0.5 2.73.99.6 2.73.83.6 2.73.83 7.6 6.5 6.8 0.6 20.2 19.6 18.5 21.7 21.7 1.3 9.9 9.8 9.0 0.0 · · · 550 CO UG/G CD GC/G 16.0 12.0 12.0 29.5 8.3 * * * * * i i 00 00 00 1 1 V V V V 1 1 6.7 8.1 9.4 5830 5420 5180 5180 5330 5330 5330 278 6440 6230 6400 6400 6230 6230 269 6610 5960 6150 6230 6238 273 3000 3120 2970 3190 3070 103 6580 8650 5710 4660 6400 1693 15400 15200 15900 17600 16025 16025 CA DG/G BE UG/G 0.00.60 8.00.0 2.000.00 0.00.00 00000 BA UG/G 613 563 563 546 121 617 594 516 564 564 AS UG/G 23 110 18 4235 442 442 442 47 52 49 44 52 74 59 65 67 67 13100 13000 12200 13100 12850 436 21200 21500 21900 223800 223800 22100 13800 13600 13900 13700 13750 129 12800 13200 12400 13900 13075 640 12300 11300 11600 11600 12500 11925 568 3190 3120 3960 3318 435 AL NG/G AG UG/G 10202388 • PD0080 • 1 • 0200 • 1 02008 • 1 • 0200 • 1 • 0200 Repl.1 Repl.2 Repl.3 Repl.4 Average S.D. Station Number 3 H

TABLE 3

SEDIMENT QUALITY, IMMEDIATES ANALYSIS - PREMIER GOLD -SEPTEMBER 12, 1989

TABLE 3 (cont'd):

SVR MG/KG	14100 9400 11400 13900 12200	87800 78600 67800 67800 8198	28000 24600 34100 24800 26875 26875 2655	18700 19900 19300 849		21200 15600 21900 255500 4093
SFR Mg/Kg	986000 991000 989000 986000 986000 988000	912000 921000 923000 932000 932000	972000 975000 970000 975000 973000 2449	981000 980000 980500 707	980000 981000 979000 978000 979500	979000 984000 978000 975000 979000 3742
D/DO NZ	135 121 118 133 127 9	200 191 231 231 201 21	2160 1970 2620 2175 311	437 415 381 231 23 23	819 1210 715 908 214	1860 1420 1520 3470 2068 954
0/00 00/0	78 76 71 36	968 988 993 993 993	2 4 4 4 2 2 4 4 4 2 2 7 7 8	27 27 29 29	900 900 900 900 900 900 900 900 900 900	H v o v v o o
TI UG/G	720 707 69 4 682 32	178 206 192 195 135	639 555 45555 4388 4388 4388 4388 4388 4388	44445 80800	330 352 352 453 45 45 52	1247080 1567080
SR UG/G	39.1 37.5 34.2 36.8 2.0 2.0	52.8 51.4 51.2 51.2 2.3 2.3	47.2 45.5 45.5 46.0 0.7	28.8 30.3 33.9 33.9 2.9	39.3 50.6 37.3 40.7 6.8	74.8 79.4 83.1 79.0 79.0 3.4
SN UG/G	& & & & + +	\$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		∞∞∞∞÷;	*****	& & & & + +
SI NG/G	1360 1390 1370 1510 1408 69	1350 1320 1420 1455 45	984 1050 1180 1190 1101	1040 1060 991 1040 1033	847 1050 1100 874 126	540 523 513 12 12
PB UG/G	5 6 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	90 93 98 98 98 98 98	806 696 817 817 103	187 187 185 189 189 189	279 448 275 316 330 81	582 363 424 1490 715 525
P UG/G	1100 1200 1100 11200 11200 58	1300 1300 1400 1325 1325	1000 980 1100 12000 54	1100 1100 1100 1100 1100 50	1100 1100 1200 1100 1125 50	810 830 900 885 865
NI UG/G	198792 7978	11110	10 10 15 15 15 15 15	0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0000;;;
NA UG/G	2000 2000 21200 21200 21200	000111000000000000000000000000000000000	0000 0000 00000 00000	200 200 213 213 213 213 213 213 213 213 213 213	80 80 810 813 813	80000 80000
MO UG/G	8 8 8 8 ¹ 1	88889 · ·	99999 · ·	8888	8888; ; ;	8888;;
MN DG/G	1130 1130 1060 1240 74	2580 2730 2860 2843 2843 2843	1970 4170 1890 2640 2668	1570 1650 1530 1780 1633	1300 1440 1140 1340 1305	1360 1360 1390 1480 1398 57
	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	Repl.1 Repl.2 Repl.3 Average S.D.	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	Repl.1 Repl.2 Repl.3 Repl.4 Åverage S.D.	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	Repl.1 Repl.2 Repl.3 Repl.4 Åverage S.D.
Station Number	10	m	ω	4	Oh	11

•.

,

SEDIMENT QUALITY - PREMIER GOLD -JULY 23, 1990

TABLE 4:

Station Number		SEDIC AG UG/G	SEDICP AL UG/G	SEDICP AS UG/G	SEDICP BÅ UG/G	SEDICP BE UG/G	SEDICP CA UG/G	SEDICP CD UG/G	SEDICP CO UG/G	SEDICP CR UG/G	SEDICP CU UG/G	SRDICP PR UG/G	SEDHG HG UG/G	SEDICP K UG/G	SEDICP MG UG/G	SEDICP MN UG/G
4	Repl.1 Repl.2 Repl.3 Repl.4 Åverage S.D.	8222	13800 12700 11700 12900 12775 862	73 62 41 63 16	544 520 542 545 593 593	0.00 0.55 0.55 0.55 0.55	5340 4750 4120 4975 689	2460.000 2460.000 2460.000	420 420 420	13.0 13.0 13.0 13.0 0.0	46.4 44.9 42.5 42.2 43.3 3.0	43900 42600 42600 42200 42275 42575 42575 42575 42575	0.370 0.300 0.330 0.330 0.330 0.330 0.330	2300 1700 2400 1825 690	6190 5960 5790 5880 5955 171	2690 23390 1840 2375 378
ي ا	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	ন্ <i>ত</i> ৰ গে ০ ৰ ০	12600 12000 12300 12100 12250 265	9 1103 450 465 465	403 311 315 319 319 59 59	000000 0400000	5860 6840 8700 5380 6695 1468	440000 66790 600	<pre>420 420 420 420 420 420 420 420 420 420</pre>	10.0 7.7 8.5 8.5 1.2	63.3 51.4 33.4 31.9 45.0 15.1	57200 57400 52500 36900 51000 51000 9668.85	0.250 0.180 0.110 0.200 0.200	<pre>600 600 600 600 600 600 153 153</pre>	7070 7010 7020 7058 55	1050 962 955 1020 997 46
œ	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	75239	11800 11900 10700 12100 11625 629	6 9 4 6 3 1 5 5 6 4 6 0 1 5 0 6 7 6 9	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	000000 	6890 6780 7630 7330 7330 7330	6.9 12.0 12.0 2.5 2.5		101011	62.1 104.0 114.0 113.0 98.3 24.5	43000 51700 50900 51600 51600 7282.4	0.140 0.210 0.230 0.067 0.162 0.074	800 <300 500 1100 794	6530 6160 55570 6280 6135 407	1220 1390 1350 1350 1310
σ	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	4 7 F F 2 6 0	11500 14000 11600 12600 12425 1162	66 100 100 296 296	250 23457 2385 2385 238 238 238 247 247 247 247 247 247 247 247 247 247	000000 000000	10500 5770 8250 8010 8133 1934	00000000000000000000000000000000000000	20000 1 20000	6698994 646999	40.6 66.9 98.0 74.0 25.9	50500 78600 76600 52050 12205	0.049 4.170 0.140 0.130 1.122 2.032	<pre><300 <2000 1900 1633 551</pre>	6870 6490 6370 6550 6570 214	1160 11370 1150 1280 1240
12	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	8 11 5 11	12500 11300 12600 11500 11975 670	74 206 139 64	415 2455 2955 8888	000000 404400	7060 6420 6730 7220 6858 356	4 M M M M M M 	000000 000000	000044 00070	62.7 104.0 50.9 82.7 75.1 23.3	58200 00000 59700 92100 77500 21669.8	0.130 <.02 5.570 0.130 1.943 3.141	1900 900 800 1200 608	6730 5940 6430 6170 6318 340	1130 1120 1120 1130 1113 29

.

TABLE 4 (cont.):

SEDIMENT QUALITY - PREMIER GOLD -JULY 23, 1990

SEDICP SEDICP SEDICP TI V UG/G UG/G UG/G UG/G UG/G UG/G 104 30 UG/G UG/G 104 30 542 81 104 26 481 93 93 29 29 525 90 28 53 680 11 2 23 680 487 50 681 681	95 980000 20200
1/G 93 93 111 111 111	
	538
SEDICP SR 00/0 38.4 38.4 40.0 35.8 4.4 4.4 4.4	41.4
SEDICP SN 103/G 48 48 48 48 48 48 48 48 48 48 48 48 48	9 V
SEDICP SI UG/G 767 767 764 713 747 25 25 833 846	818
SRDICP 53 10 10 12 18 18 18 18 12 5 5 5 5 20	8
SEDICP FB FB FB FB FB FB FB 76 232 240 233 240 233 240 233 235 363 363	061
SEDICP P 1400 1400 1400 1400 1400 1400 1400 1	1200
SEDICP NT UG/G 21 23 21 23 21 23 23 23 23 23 23 23 23 23 23 23 23 23	21
SEDICP NA UG/G 100 100 100 100 200 200 200	0.0

U	000035	0000000	000000	000000	888885
SVR MG/KG	29800 25600 19000 25900 25900	27400 26700 20200 19300 23400 23400	1930 2370 2380 2370 2370 2370	21100 28800 33800 29300 28250 28250 28250	2110 3880 3880 3180 3180 11880 11880
SFR MG/KG	970000 974000 981000 974000 974750 974750	973000 973000 980000 981000 976750 4349	981000 976000 977000 971000 976250 4113	979000 971000 966000 971000 971750 5377	979000 961000 978000 955000 968250 12093
SEDICP ZN UG/G	542 534 681 525 521 27	680 681 495 306 541 791	951 1450 1450 1630 1375 294 294	. 351 609 630 586 169	654 659 619 624 624 624
SEDICP V UG/G	30 58 58 58 58 58 58 58 58 58 58 58 58 58	4 9 1 0 3 9 8 9 1 0 3	4 5 3 4 4 4 5 3 4 4 7 4 5 5 6 3 3	できょうよ 0 7 9 8 4 9	4 N 4 4 4 N 8 N 8 7 N 8 0 1 0 0 1
SEDICP TI UG/G	104 82 81 93 11	518 487 326 467 96	519 501 505 505 93	200 390 37821 1712 1712	44002 44002 4002 4002
SEDICP SR UG/G	38.4 34.5 30.2 40.2 4.4	881.4 86.1 85.3 85.3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	37.8 39.3 41.1 2.6 2.6	40.7 32.7 35.9 36.6 36.6	332.5 33.5 33
SEDICP SN UG/G	& & & &	8 8 8 8 1 1 V V V V I I	\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	∞ ∞ ∞ ∞ ¦ ¦
SEDICP SI UG/G	767 764 713 713 743 747 25	88188 88188 8855 8855 8855 8855 8855 88	797 900 891 882 61	1020 968 968 980 25	848 1130 865 1020 134
SEDICP SB UG/G	588°22	1508804 1108808	e 11008	800001	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SEDICP PB UG/G	244 232 232 240 233 233	276 363 190 230 117	305 611 686 627 557 171	120 223 427 302 130	2663 2663 2699 2688 2688 2688 2688 2688 2688 2688
SEDICP P UG/G	1400 1300 1300 1300 1325 50	1200 1200 1200 1150	1100 1200 1200 82	1400 1300 1375 1375	1400 1300 1360 1350 58
SEDICP NI UG/G	22 23 23 23 23 24 23 24 23 24 23 24 23 24 24 24 24 24 24 24 24 24 24 24 24 24	20 110 88 1100 18	42 110 110 110	5 2 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0	10 118 150 150 150
SEDICP NA UG/G	100 100 80 95 10	200 100 118 56	100 100 90 19	60 100 100 85 19	100 100 95 10
SEDICP MO UG/G	োৰা লৰালন	ৰুৰা লৈ লে বা লা	50 m m m m m m	যেৰাৰাৰাৰান	9 F M 9 G 9
	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.	Repl.1 Repl.2 Repl.3 Repl.4 Average S.D.
Station Number	-7	S	œ	Ø	12

.