EL1045244E

#### ENVIRONMENT CANADA CONSERVATION AND PROTECTION ENVIRONMENTAL PROTECTION SERVICE PACIFIC AND YUKON REGION NORTH VANCOUVER, B.C.

MARINE MONITORING OF STUART CHANNEL NEAR THE CROFTON PULPMILL CROFTON, B.C. 1989

EP REGIONAL DATA REPORT: DR 92-01

By

PATRICIA G. LIM



JANUARY 1992

#### REVIEW NOTICE

Data reports are prepared to make preliminary data available without full analysis or interpretation. This report has been reviewed by the Environmental Effects Branch, Environmental Protection and approved for limited distribution. For further information, please contact:

> Pollution Abatement Division Environmental Protection Branch 224 West Esplanade Avenue North Vancouver, B.C. V7M 3H7

#### ABSTRACT

Environmental Protection has monitored marine waters around coastal pulpmills since 1976. Stuart Channel has been part of this annual routine marine monitoring programme. Water quality records were kept of temperature, salinity, dissolved oxygen and colour relative to water depth. Marine sediment was collected for trace metal, volatile residue, particle size and chlorophenol analysis. Trawls of fish and crustaceans were collected, identified and analyzed for trace metals.

This data report summarizes the sampling done in Stuart Channel by Environmental Protection in April 1989 around Crofton, B.C. Methods used for collection and analysis are described and results are presented without analysis or interpretation. The sole intent of this report is to provide historical data for Crofton pulpmill.

#### RESUME

La Protection de l'Environnement a échantillonné les eaux marines réceptrices aux environs des usines de pâte côtières depuis 1976. Stuart Channel a fait partie d'un programme d'échantillonnage marin de routine annuel. Les données de qualité de l'eau sont concentrées sur la température, salinité, oxygène dissous, et couleur en relation à la profondeur d'eau. Des échantillons instantanés de sédiment furent recueillis pour des analyses de métal à l'état de trace, de résidu volatil, grosseur de particules, et des analyses de chlorophenoIs. Des poissons et crustacés attrapés au chalut furent recueillis, identifé et analysés pour métaux à l'état de trace.

Ce rapport de donnée résume l'échantillonnage fait dans le Stuart Channel par la Protection de l'Environnement en Avril 1989 près de Crofton C.-B. Les rapports de données résument les méthodes utilisées pour l'échantillonnage et l'analyse. Les résultats sont présentés en tables ou graphiques sans analyse ni interprétation. La seule intention de ces rapports est de fournir des données historiques.

### TABLE OF CONTENTS

| Page |
|------|
|------|

.

| REVIEW NOTICE                          | i  |
|----------------------------------------|----|
| ABSTRACT                               | ii |
| <b>RESUME</b>                          | ii |
| TABLE OF CONTENTS                      | iv |
| List of Tables                         | v  |
| List of Figures                        | vi |
| List of Appendices                     | vi |
| <b>1.0 INTRODUCTION</b>                | 1  |
| 1.1 Oceanography                       | 2  |
| 1.2 Fisheries                          | 2  |
| 2.0 MATERIALS AND METHODS              | 4  |
| 2.1 Water Samples                      | 4  |
| 2.1.1 Analytical Procedures - Water    | 4  |
| 2.2 Sediment Samples                   | 5  |
| 2.2.1 Analytical Procedures - Sediment | 5  |
| 2.3 Biota Samples                      | 5  |
| 2.3.1 Analytical Procedures - Biota    | 5  |
| 3.0 RESULTS                            | 9  |
| 3.1 Water Quality                      | 9  |
| 3.2 Sediment Quality                   | 10 |
| 3.3 Biota Quality                      | 11 |
| REFERENCES                             | 15 |
| FIGURES                                | 17 |
| APPENDICES                             |    |

.

## LIST OF TABLES

## <u>Table</u>

## <u>Page</u>

| 1      | Water, Sediment and Biota Sampling Stations<br>Crofton Sampling Summary, April 27, 1989 7 |
|--------|-------------------------------------------------------------------------------------------|
| 2      | Summary of ENVIRONMENTAL PROTECTION Methods<br>for Water, Sediment and Tissue Analyses 8  |
| 3      | Water Quality, Crofton 1, April 27, 1989 9                                                |
| 4      | Water Quality, Crofton 7, April 27, 1989 9                                                |
| 5      | Water Quality, Crofton 8, April 27, 1989 10                                               |
| 6      | Water Quality, Crofton 10, April 27, 1989 10                                              |
| 7<br>8 | Sediment Quality, Crofton, Stuart Channel,<br>April 27, 1989                              |
| 0      | April 27, 1989 $\dots$ 13                                                                 |
| 9      | Biota Quality, Crofton Station Trawl C-9,<br>April 27, 1989                               |

## LIST OF FIGURES

- vi -

## <u>Figure</u>

| 1 | Location Map - Crofton                              | • | • | 17 |
|---|-----------------------------------------------------|---|---|----|
| 2 | Crofton Fisheries Closures, 1991                    | • | • | 18 |
| 3 | Sampling Locations near Fletcher Challenge, Crofton | • | • | 19 |

### LIST OF APPENDICES

| APPENDIX | I   | Pacific<br>Summary:   | -         | Pulp   | &   | Paper   | Industry | Effluent |
|----------|-----|-----------------------|-----------|--------|-----|---------|----------|----------|
| APPENDIX | II  | Crofton               | Station 3 | Locati | ons |         |          |          |
| APPENDIX | III | Crofton Nov. 11,      | -         | l, Eff | lue | nt Mon: | itoring, |          |
| APPENDIX | IV  | Crofton :<br>Sediment |           |        |     |         | s in     |          |

#### **1.0** INTRODUCTION

Crofton pulpmill has been in operation at Crofton, B.C., on the southeast corner of Vancouver Island, since 1957 (Figure 1). Originally under the ownership of B.C. Forest Products, it is now operated by Fletcher Challenge. It began as a kraft mill and has expanded into a combination kraft, CTMP (Chemical Thermal Mechanical Pulp), and newsprint operation. With an average annual production of 1173 ADTD (air-dried tonnes per day), it ranks second in production of British Columbia mills.

There are two submarine outfalls with diffusers located at depths of 18 and 28 m for effluent discharge at Crofton. Average discharge is about 147,000 cubic metres per day. Effluent passes through a primary clarifier and CTMP effluent receives secondary biological treatment in an aeration basin. With the installation of secondary treatment, mill effluent will be non-acutely toxic by 1992.

One of the major effects of mill effluent on Stuart Channel (Figure 2) has been the development of an extensive fibre mat of wood fibres and solids on the surrounding seabed. This was first reported by Ellis (1970) and covers roughly a distance 1.8 km both northwest and southeast of the outfall to a depth of 5 cm. The mill has carried out routine assessments to determine the trends in fibre content, depth and size of the fibre bed (Severn and Sutherland, 1986). Observations of the bed have been made by Environment Canada on the PISCES IV submarine (Nelson, 1979). Colodey and Tyers (1987) analyzed fibre depth and volatile fraction data from several years and found considerable fluctuation in the data.

Environmental Protection Service (EP) has conducted surveillance and compliance monitoring programs at coastal pulpmills since 1976. This report continues a series of data reports of marine environmental surveillance by EP of Stuart Channel near the discharge of the Fletcher Challenge, Crofton B.C. pulpmill. Water, sediment and biota quality records from the April 27, 1989 cruise are presented.

- 1 -

#### 1.1 <u>Oceanography</u>

Crofton pulpmill is situated on Stuart Channel on the sheltered east coast of southern Vancouver Island. It is in a protected bay which is subject primarily to prevailing southeasterly or southwesterly winds. The bay itself is a typical stratified 'inside water' estuary. Tidal streams are weak at Crofton because the Gulf Islands protect it from the main effects of the Strait of Georgia. It is generally observed that the overall surface water flow is southeastward. This is due in part to a stronger ebb than flow current (Thomson, 1981).

Waldichuk (1964) studied the oceanography of Stuart Channel to help ascertain the factors affecting effluent dispersal from the Crofton mill. His principal finding was that as the primarily freshwater effluent rose, it entrained seawater resulting in an effluent-seawater mixture that was denser than seawater. This mixture would spread in a thin layer at depths between 3 and 10 metres.

In the winter, lower surface water temperatures combined with wind mixing tend to vertically homogenize the waters in the vicinity of the Crofton mill. This reduces the effect of the seawater-effluent since the effluent plume follows the density gradient of salinity and/or temperature. In the summer months, the gradient is most pronounced, and it is during this period that the location of the lower dissolved oxygen layer is critical.

Previous Environment Canada reports (Nelson, 1979; Sullivan, 1982; Colodey and Tyers, 1987) described the oceanography of Stuart Channel in the vicinity of the mill. Various water quality and environmental effects studies were conducted by Dobrocky Seatech for the mill in 1986 (Smyth, 1986a, 1986b; Severn and Sutherland, 1986). Oceanographic information prior to mill construction is unavailable.

#### 1.2 <u>Fisheries</u>

Crofton is located within Fisheries Statistical Area 18, one of the most popular and extensively used sport fishing areas in B.C. All five species of Pacific salmon are commercially and recreationally harvested with chinook salmon representing the bulk of the commercial catch. The Crofton mill draws water from the Cowichan River which is viewed as one of the most productive salmon systems on Vancouver Island (Nelson, 1979). This river system is about 16 km south of Crofton. Sediment from the intake water treatment plant is flushed into Bonsall Bay, resulting in sediment accumulation which necessitates localized dredging.

At one time the intertidal zone north and south of Crofton mill contained highly productive commercial oyster (*Crassostrea* gigas) beds. Although preservation of this important resource was considered in the planning of the mill, by 1964 the oyster population had deteriorated from effects of pulpmill effluent to the extent of losing all commercial value (Nelson, 1979). All shellfish in this area remain poor quality for human consumption. One of the main problems was zinc contamination of the shellfish and although the mill has changed its process, there has been no documentation of the change in concentration of zinc in oysters.

Stuart Channel is a small, but well-established shrimp trawling ground. Production peaked in 1957, the year Crofton pulpmill was established (Harbo and Jamieson, 1987). The primary species harvested is the pink shrimp (*Pandalus borealis/P. jordani*) with minor harvesting of the sidestripe shrimp (*Pandalopsis dispar*) and prawn (*Pandalus platyceros*) (Boutillier, pers. comm., DFO -PBS, 1991).

In November 1989, a national dioxin study by Environment Canada and Fisheries and Oceans Canada demonstrated the presence of dioxins and furans in harvested fish and shellfish in the vicinity of several pulpmills. Crofton was on this list and closures resulted for crab and oyster fisheries (Figure 2). Recreational and native harvesting of crab remained open with some hepatopancreas consumption guidelines. Associated with these closures, the mill has conducted extensive annual dioxin and furan monitoring surveys (E.V.S, 1989; Dwernychuk, 1990; Dwernychuk et al., 1991).

- 3 -

#### 2.0 MATERIALS AND METHODS

Sampling in Stuart Channel was done from the C.S.S. Vector on April 27, 1989 at stations shown in Figure 3. Stations were located using ship's LORAN-C and radar. Station positions are described in Appendix II. Table 1 summarizes water quality, sediment and tissue parameters sampled, and techniques are summarized in Table 2. Lab analyses were done at the EP/DFO West Vancouver laboratory.

#### 2.1 <u>Water Samples</u>

Water samples were collected at discrete depths with polypropylene N.I.O. (National Institute of Oceanography) water bottles using standard oceanographic techniques at stations depicted in Figure 3. Conductivity, temperature and depth (CTD) profiles were taken using a Guildline 8770 CTD/DO sensor.

2.1.1 <u>Analytical Procedures - Water</u>. Oxygen concentrations were determined in the ship's lab using the azide modification of the Winkler method. The equations of Gameson and Robertson (1955) were used in the calculation of percent dissolved oxygen saturation:

$$C = \frac{475 - (2.65xS)}{33.5 + T}$$

$$Saturation = \frac{A}{C} \times 100$$

where: C = saturation of oxygen in the sample water

S = salinity of the sample water

- T = corrected temperature of the sample water
- A = observed dissolved oxygen concentration in the sample

Tri-stimulus colour values of previously frozen samples were determined spectrophotometrically in the lab.

#### 2.2 <u>Sediment Samples</u>

Sediment grabs were taken at the stations depicted in Figure 3 using a stainless steel 0.1  $m^2$  Smith-MacIntyre grab. The surficial (2 cm) sediment layer was collected using a plastic scoop, avoiding the sediment near the sides of the grab. Samples for trace metal, volatile residue and particle size analysis were placed in paper sediment bags inside plastic bags and immediately frozen. Sediments collected for PCB and resin acid analysis were collected using a heat-treated metal spoon and stored frozen in heat-treated glass jars.

2.2.1 <u>Analytical Procedures - Sediment</u>. Sediment samples were analyzed by the EP/DFO West Vancouver Laboratory for trace metals, volatile residue and particle size according to the procedures described by Swingle and Davidson (1979) with some modification by the lab (Millward and Kluckner, 1989). Trace metal samples were dried at 60°C and passed through a nylon seive (0.15 mm mesh) then digested in a 4:1 nitric:hydrochloric acid solution diluted slightly with 1 ml of distilled water. Samples were digested in a microwave oven for 15 minutes at 720 joules/sec (watts). Trace metals were determined using a Perkin-Elmer Inductively Coupled Argon Plasma (ICAP) Optical Emission Spectrophotometer. A Jarrel Ash 850 Atomic Absorption Spectrophotometer (AAS) with an FLA 100 graphite tube furnace was used to detect low-level cadmium. Electron capture gas liquid chromatography was used for PCB and resin acid determination.

#### 2.3 <u>Biota Samples</u>

Fish and invertebrate tissue were collected for trace metal analysis from trawls taken at Crofton Stations 3 and 9. Samples were placed in plastic bags and frozen prior to analysis. The following species were used for analysis:

- 5 -

| English sole      | Parophrys vetulus                     |
|-------------------|---------------------------------------|
| Hake              | Merluccius productus                  |
| Ratfish           | Hydrolagus colliei                    |
| Rockfish          | Sebastes sp.                          |
| Pacific cod       | Gadus macrocephalus                   |
| Rough scale sole  | Lepidopsetta bilineata                |
| Prawn             | Pandalus platyceros                   |
| Sidestripe shrimp | Pandalopsis dispar                    |
| Pink shrimp       | Pandalus borealis OR Pandalus jordani |
| Dungeness crab    | Cancer magister                       |

2.3.1 <u>Analytical Procedures - Biota</u>. At the EP/DFO West Vancouver Lab, samples were thawed, blended, freeze-dried and oxidized in a low temperature asher. The ash (metallic salts) was dissolved in warm concentrated nitric acid, then analyzed on the ICAP Spectrophotometer. Low-level cadmium was analyzed using a Jarrel Ash 850 Atomic Absorption Spectrophotometer (AAS) with a FLA 100 graphite tube furnace.

- 6 -

| STATION   | WATER |    |        | SEDI | BIOTA |        |
|-----------|-------|----|--------|------|-------|--------|
|           | CTD   | DO | COLOUR | PS   | TM    | MUSCLE |
| C-1       | х     | x  | x      | x    | x     |        |
| C-2       |       |    |        | x    | x     |        |
| C-3       |       |    |        | x    | x     |        |
| C-4       |       |    |        | x    | x     |        |
| C-5       |       |    |        | x    | x     |        |
| C-6       |       |    |        | X    | x     |        |
| C-7       | x     | x  | X      | X    | x     |        |
| C-8       | x     | X  | X      | X    | x     |        |
| C-9       |       |    | X      | X    | x     |        |
| C-10      | x     | x  | X      | X    | x     |        |
| C-11      |       |    |        | X    | x     |        |
| C-12      |       |    |        | x    | x     |        |
| C-13      |       |    |        | x    | x     |        |
| C-3 TRAWL |       |    |        |      |       | x      |
| C-9 TRAWL |       |    |        |      |       | x      |

#### TABLE 1: WATER, SEDIMENT AND BIOTA SAMPLING STATIONS, CROFTON SAMPLING SUMMARY, APRIL 27, 1989

CTD DO PS

•.

Conductivity, Temperature, Depth Dissolved Oxygen

TM

Particle Size Trace Metal

### TABLE 2: SUMMARY OF ENVIRONMENTAL PROTECTION METHODS FOR WATER, SEDIMENT AND TISSUE ANALYSES

| SAMPLE TYPE                     | METHODS                                        | REFERENCE                                             |
|---------------------------------|------------------------------------------------|-------------------------------------------------------|
| WATER                           |                                                |                                                       |
| Salinity,<br>temperature, depth | CTD                                            | Goyette & MacLeod, 1984                               |
| Dissolved Oxygen                | Azide Modification of<br>Winkler               | Swingle & Davidson, 1979<br>Gameson & Robertson, 1955 |
| Colour                          | Spectrophotometer                              | Swingle & Davidson, 1979                              |
| SEDIMENT                        |                                                |                                                       |
| Particle Size                   | Freeze drying,<br>Screening                    | Swingle & Davidson, 1979<br>Griffiths, 1967           |
| Trace Metals                    | ICAP Optical<br>Emmission<br>Spectrophotometer | Swingle & Davidson, 1979<br>Millward & Kluckner, 1989 |
| Volatile Residue                | Wt. loss on ignition<br>550°C for 1 hr.        | Swingle & Davidson, 1979                              |
| TISSUE                          |                                                |                                                       |
| Trace Metals                    | ICAP Optical Emission<br>Spectrophotometer     | Swingle & Davidson, 1979                              |

#### 3.0 RESULTS

### 3.1 <u>Water Quality</u>

Salinity, temperature, dissolved oxygen (DO), % oxygen saturation and colour data from Crofton water quality stations C-1,C-7,C-8 and C-10 for April 27, 1989 are listed in Tables 3 to 6. Results of effluent monitoring for the Crofton mill on November 11, 1989 for chloroanisoles, chlorophenols and resin acids are found in Appendix III.

| DEPTH<br>(m) | TEMPERATURE<br>(°C) | SALINITY<br>(ppt) | DISSOLVED<br>OXYGEN<br>(mg/L) | <pre>% OXYGEN SATURATION</pre> | COLOUR |
|--------------|---------------------|-------------------|-------------------------------|--------------------------------|--------|
| 0            | 13.3                | 26.1              | 9.9                           | 114.16                         | 9.3    |
| 2            | 10.0                | 28.8              | 7.9                           | 86.20                          | 17.8   |
| 5            | 9.9                 | 28.9              | 6.7                           | 72.98                          | 26.7   |
| 10           | 8.9                 | 29.6              | 6.0                           | 64.15                          | 9.2    |
| 20           | 8.3                 | 30.0              | 6.8                           | 71.87                          | <5.0   |
| 30           | 8.0                 | 30.1              | 6.2                           | 65.10                          | <5.0   |

TABLE 3: WATER QUALITY, CROFTON 1, APRIL 27, 1989

| TABLE 4: | WATER | OUALITY. | CROFTON | 7. | APRIL | 27. | 1989 |
|----------|-------|----------|---------|----|-------|-----|------|
|          |       |          |         |    |       |     |      |

| DEPTH<br>(2) | TEMPERATURE<br>(°C) | SALINITY<br>(ppt) | DISSOLVED<br>OXYGEN<br>(mg/L) | <pre>% OXYGEN SATURATION</pre> | COLOUR |
|--------------|---------------------|-------------------|-------------------------------|--------------------------------|--------|
| 0            | 12.0                | 28.6              | 10.5                          | 119.67                         | 5.3    |
| 2            | 11.0                | 28.9              | 10.3                          | 115.04                         | <5.0   |
| 5            | 10.9                | 29.0              | 10.1                          | 112.63                         | <5.0   |
| 10           | 9.3                 | 29.6              | 8.5                           | 91.74                          | <5.0   |
| 20           | 8.3                 | 30.0              | 6.7                           | 70.81                          | <5.0   |
| 50           | 7.6                 | 30.3              | 5.8                           | 60.39                          | <5.0   |
| 100          | 7.3                 | 30.3              | 5.8                           | 59.95                          | <5.0   |
| 200          | 7.0                 | 30.5              | 5.2                           | 53.43                          | ND     |

| DEPTH<br>(m) | TEMPERATURE<br>(°C) | SALINITY<br>(ppt) | DISSOLVED<br>OXYGEN<br>(mg/L) | <pre>% OXYGEN SATURATION</pre> | COLOUR |
|--------------|---------------------|-------------------|-------------------------------|--------------------------------|--------|
| 0            | 12.4                | 28.3              | 11.1                          | 127.37                         | <5.0   |
| 2            | 12.1                | 29.7              | 11.7                          | 134.63                         | <5.0   |
| 5            | 10.2                | 29.4              | 10.8                          | 118.86                         | <5.0   |
| 10           | 9.1                 | 29.5              | 7.4                           | 79.44                          | <5.0   |
| 20           | 8.1                 | 30.1              | 6.7                           | 70.52                          | <5.0   |
| 30           | 7.7                 | 30.2              | 6.6                           | 68.85                          | <5.0   |

TABLE 5: WATER QUALITY, CROFTON 8, APRIL 27, 1989

TABLE 6: WATER QUALITY, CROFTON 10, APRIL 27, 1989

| DEPTH<br>(m) | TEMPERATURE<br>(°C) | SALINITY<br>(ppt) | DISSOLVED<br>OXYGEN<br>(mg/L) | <pre>% OXYGEN SATURATION</pre> | COLOUR |
|--------------|---------------------|-------------------|-------------------------------|--------------------------------|--------|
| 0            | 12.9                | 27.7              | 11.0                          | 127.09                         | <5.0   |
| 2            | 11.0                | 28.0              | 10.6                          | 117.69                         | <5.0   |
| 5            | 10.1                | 29.1              | 8.6                           | 94.24                          | <5.0   |
| 10           | 9.2                 | 29.6              | 8.0                           | 86.14                          | <5.0   |
| 20           | 8.3                 | 30.0              | 6.7                           | 70.81                          | <5.0   |
| 50           | 7.6                 | 30.3              | 5.4                           | 56.23                          | <5.0   |
| 100          | 7.3                 | 30.4              | 5.9                           | 61.03                          | <5.0   |

### 3.2 <u>Sediment Quality</u>

Results of sediment sampling in Stuart Channel are summarized in Table 7. Median particle size and trace metal analysis are recorded for the thirteen stations sampled on April 27, 1989 around the Crofton mill. All stations contained fine sediments classified as either very fine sand, or silt and clay. Results of chlorophenol analysis of the sediments are found in Appendix IV. For most samples, chlorophenols were not detected. However, tetrachlorophenol and pentachlorophenol were detected at all stations except C-2 and C-3.

## 3.3 Biota Quality

Tables 8 and 9 list the results of trace metal analyses on several different species of marine fish and invertebrates collected in Stuart Channel trawls at Crofton Trawl Stations C-3 and C-9. SEDIMENT QUALITY, CROFTON, STUART CHANNEL, APRIL 27, 1989 TABLE 7:

| CROFTON<br>STATION<br>NUMBER | DEPTH<br>(m) | MEDIAN<br>Particle<br>Size     | Al<br>(\$) | Ав<br>(µg/g) | сđ<br>(µg/g) | сr<br>(µg/g) | си<br>(µg/g) | Fe<br>(8) | Ni<br>(μg/g) | (5/57)<br>qa | (5/5/)<br>uz |
|------------------------------|--------------|--------------------------------|------------|--------------|--------------|--------------|--------------|-----------|--------------|--------------|--------------|
| c-1                          | 64           | v. fine<br>sand                | 2.0        | 8>           | 2.1          | 54.7         | 56.0         | 2.54      | 29           | 8>           | 192          |
| C-2                          | 64           | v. fine<br>sand                | 1.7        | 8>           | 2.0          | 44.2         | 44.8         | 2.36      | 26           | 8>           | 161          |
| C-3                          | 119          | <pre>Bilt &amp;<br/>clay</pre> | 2.3        | 24           | 2.0          | 54.3         | 56.3         | 3.22      | 34           | 10           | 157          |
| C-4                          | 82           | v. fine<br>sand                | 1.9        | <8           | 2.1          | 54.7         | 56.0         | 2.54      | 29           | 8>           | 192          |
| C-5                          | 129          | silt &<br>clay                 | 2.3        | 10           | <0.8         | 52.7         | 54.5         | 3.26      | 34           | 10           | 148          |
| С-6<br>С                     | 110          | silt &<br>clay                 | 2.3        | 10           | 1.0          | 51.9         | 57.5         | 3.25      | 34           | 8>           | 146          |
| C-7                          | 217          | silt &<br>clay                 | 2.5        | 8>           | <0.8         | 51.1         | 44.8         | 3.23      | 34           | 8            | 127          |
| C - 8                        | 38           | <b>βilt &amp;</b><br>clay      | 1.8        | 8>           | <0.8         | 36.2         | 22.9         | 2.76      | 23           | <8>          | 92.1         |
| 6-0                          | 104          | silt &<br>clay                 | 2.5        | 80           | <0.8         | 52.3         | 56.8         | 3.25      | 34           | 8>           | 148          |
| c-10                         | 181          | silt &<br>clay                 | 2.5        | <8           | <0.8         | 52.2         | 45.0         | 3.39      | 35           | 8>           | 128          |
| c-11                         | 81           | <b>Bílt &amp;</b><br>clay      | 2.1        | 8>           | <0.8         | 44.8         | 49.8         | 2.77      | 29           | <8           | 102          |
| c-12                         | 107          | silt &<br>clay                 | 2.3        | 10           | 1.0          | 55.6         | 59.9         | 3.13      | 33           | 6            | 151          |
| c-13                         | 67           | v. fine<br>sand                | 1.9        | 10           | 1.0          | 44.0         | 46.5         | 2.47      | 27           | 8            | 133          |
|                              |              |                                |            |              |              |              |              |           |              |              |              |

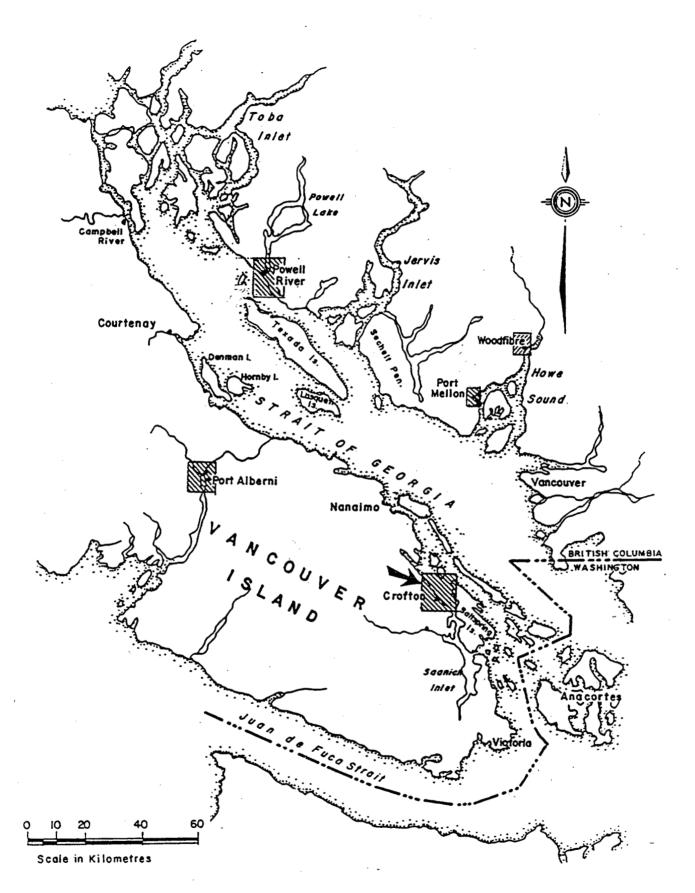
- 12 -

| 1989                                      |  |
|-------------------------------------------|--|
| 27,                                       |  |
| , APRIL 27, 1989                          |  |
| C-3,                                      |  |
| TRAWL                                     |  |
| STATION                                   |  |
| CROFTON                                   |  |
| BIOTA QUALITY, CROFTON STATION TRAWL C-3, |  |
| BIOTA                                     |  |
| TABLE 8:                                  |  |

|              | HAKE           | HAKE           | PRAWN  | PRAWN | ENGLISH<br>Sole | ENGLISH          | SHRIMP | SHRIMP | SHRIMP | ROUGH<br>SCALE<br>SOLE | ROCKFISH       |
|--------------|----------------|----------------|--------|-------|-----------------|------------------|--------|--------|--------|------------------------|----------------|
| <u>Б/6</u> п | 31 cm<br>195 g | 28 cm<br>127 g | tail   | tail  | 39 cm<br>480 g  | 30.3 cm<br>217 g | tail   | tail   | tail   | 35.5 cm<br>470 g       | 25 cm<br>206 g |
| cđ           | 0.020          | <0.008         | <0.008 | 0.020 | <0.008          | <0.008           | 0.040  | 0.030  | 0.020  | 0.009                  | <0.008         |
| Pb           | 0.35           | 0.20           | 0.13   | 0.14  | 0.16            | 0.19             | 0.18   | 0.17   | <0.04  | 0.07                   | 0.12           |
| Hg           | 0.060          | 0.050          | 0.070  | 0.063 | 0.056           | 0.190            | 0.130  | 0.081  | 0.100  | 0.220                  | 0.786          |
| Al           | 23             | 33             | 52     | 60    | 9.1             | 14               | 76     | 80     | 60     | 16                     | 39             |
| As           | <4             | <4             | 68     | 25    | 26              | 35               | 43     | 32     | 35     | 17                     | . <4           |
| Ва           | 0.10           | 0.30           | 0.30   | 0.60  | <0.08           | 0.20             | 0.80   | 0.40   | 0.40   | 0.09                   | 0.20           |
| Be           | <0.08          | <0.08          | <0.08  | <0.08 | <0.08           | <0.08            | <0.08  | <0.08  | <0.08  | <0.08                  | <0.08          |
| Co           | 0.5            | <0.4           | 0.6    | 0.4   | <0.4            | <0.4             | <0.4   | <0.4   | 0.5    | <0.4                   | <0.4           |
| Сr           | <0.4           | <0.4           | <0.4   | <0.4  | <0.4            | <0.4             | <0.4   | <0.4   | <0.4   | <0.4                   | <0.4           |
| Cu           | 2.0            | 1.1            | 10.8   | 14.8  | 0.7             | 0.8              | 16.6   | 16.8   | 14.3   | 0.6                    | 0.6            |
| Яe           | 49.0           | 48.0           | 60.0   | 71.0  | 19.1            | 23.0             | 96.6   | 107    | 73.3   | 21.2                   | 48.7           |
| Mg           | 1460           | 1550           | 1520   | 1450  | 1060            | 1160             | 1480   | 1480   | 1440   | 1230                   | 1350           |
| WI           | 1.2            | 1.7            | 1.2    | 1.7   | 0.3             | 0.7              | 1.6    | 1.7    | 1.6    | 0.5                    | 1.1            |
| Nİ           | <2             | <2             | <2     | <2    | <2              | <2               | <2     | <2     | \$     | <2                     | <2             |
| Sb           | <4             | <4             | <4     | <4    | <4              | <4               | <4     | <4     | <4     | <4                     | <4             |
| Sn           | <4             | <4             | <4     | <4    | <4              | <4               | <4     | <4     | <4     | <4                     | <4             |
| Sr           | 2.5            | 6.7            | 7.6    | 8.4   | 4.6             | 13.9             | 15.4   | 9.5    | 11.9   | 1.6                    | 9.1            |
| Ti           | 1.5            | 2.3            | 3.5    | 3.8   | 1.0             | . 1.0            | 4.8    | 5.0    | 3.9    | 1.5                    | 2.6            |
| v            | <0.8           | <0.8           | <0.8   | <0.8  | <0.8            | <0.8             | <0.8   | <0.8   | <0.8   | <0.8                   | <0.8           |
| 20           | 21.1           | 17.3           | 47.7   | 51.4  | 27.1            | 36.8             | 43.8   | 43.4   | 42.2   | 18.6                   | 14.0           |
| 8<br>mois    | 78.8           | 79.3           | 76.9   | 74.8  | 84.5            | 79.5             | 76.8   | 76.0   | 76.3   | 83.4                   | 81.3           |

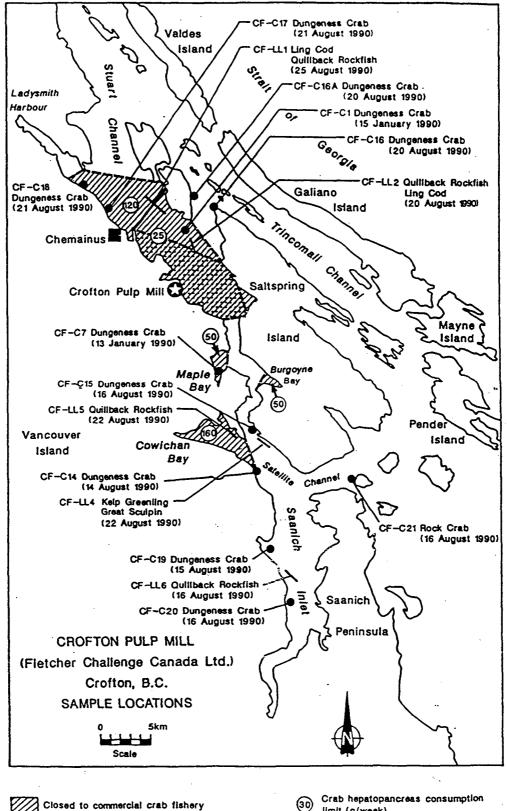
- 13 -

BIOTA QUALITY, CROFTON STATION TRAWL C-9, APRIL 27, 1989 TABLE 9:


| 6/бп  | HAKE           | HAKE           | ENG<br>ENG     | eng<br>Bng | SOLE           | PACIFIC<br>COD   | PRAWN | SIDESTR<br>Shrimp | SIDESTR<br>Shrimp | SIDESTR<br>Shrimp | DUNGENES<br>S<br>CRAB |
|-------|----------------|----------------|----------------|------------|----------------|------------------|-------|-------------------|-------------------|-------------------|-----------------------|
|       | 41 cm<br>438 g | 30 cm<br>194 g | 37 cm<br>409 g | QN         | 45 cm<br>470 g | 47 cm<br>1,239 g | tail  | tail              | tail              | tail              | hepato                |
| cq    | <0.008         | <0.008         | <0.008         | 0.010      | <0.008         | <0.008           | 0.030 | 0.060             | 0.040             | 0:030             | 0.060                 |
| Pb    | 0.12           | 0.07           | 0.14           | 0.18       | 0.13           | 0.13             | 0.63  | <0.04             | 0.36              | 0.18              | 0.89                  |
| Hg    | 0.456          | 0.220          | 0.220          | 0.480      | 0.150          | 0.250            | 090.0 | 0.076             | 660.0             | 0.068             | 0.767                 |
| Al    | <4             | <4             | 4              | 4          | ω              | <4               | 12    | 35                | 44                | 54                | 187                   |
| Ås    | <4             | 23             | 40             | 52         | 41             | 10               | 16    | 20                | 27                | 16                | 41                    |
| Ba    | <0.08          | <0.08          | <0.08          | <0.08      | 0.10           | <0.08            | 0.09  | 0.20              | 0.40              | 0.30              | 2.10                  |
| Be    | <0.08          | <0.08          | <0.08          | <0.08      | <0.08          | <0.08            | <0.08 | <0.08             | <0.08             | <0.08             | <0.08                 |
| ဗိ    | <0.4           | <0.4           | <0.4           | <0.4       | <0.4           | <0.4             | <0.4  | <0.4              | <0.4              | <0.4              | 1.8                   |
| Сr    | <0.4           | <0.4           | <0.4           | <0.4       | <0.4           | <0.4             | <0.4  | <0.4              | <0.4              | <0.4              | 1.4                   |
| Сu    | 0.8            | 0.8            | 6.0            | 1.0        | 1.2            | 0.7              | 15.0  | 16.3              | 20.1              | 19.3              | 32.7                  |
| Fe    | 7.5            | 10.3           | 10.9           | 11.9       | 25.1           | 6.6              | 15.8  | 39.1              | 52.7              | 61.1              | 396                   |
| Mg    | 1340           | 1360           | 1030           | 1060       | 1110           | 1350             | 1550  | 1410              | 1470              | 1450              | 2040                  |
| Mn    | 0.4            | 0.5            | 0.5            | 0.2        | 0.6            | 0.5              | 1.2   | 1.4               | 1.3               | 1.5               | 4.7                   |
| Nİ    | <2             | <b>ć</b> 2     | <2             | \$         | ∽2             | <u>^</u> 2       | \$    | <b>2</b>          | <2                | <2                | 7                     |
| sb    | <4             | <4             | <4             | <4         | <4             | <4               | <4    | <4                | <4                | <4                | <4                    |
| Sn    | <4             | <4             | <4             | <4         | <4             | <4               | <4    | <4                | <4                | <4                | <4                    |
| Sr    | 0.9            | 3.7            | 4.3            | 2.9        | 10.3           | 0.5              | 16.0  | 11.2              | 15.8              | 10.1              | 133                   |
| Тi    | 0.5            | 0.5            | 0.6            | 0.8        | 6.0            | 0.5              | 6.0   | 2.1               | 2.6               | 3.1               | 8.9                   |
| >     | <0.8           | <0.8           | <0.8           | <0.8       | <0.8           | <0.8             | <0.8  | <0.8              | <0.8              | <0.8              | <0.8                  |
| zn    | 17.1           | 12.1           | 18.3           | 23.1       | 25.5           | 18.6             | 56.8  | 46.1              | 45.6              | 46.0              | 256                   |
| 8mois | 81.6           | 81.1           | 76.7           | 82.9       | 79.6           | 77.3             | 78.1  | 74.7              | 75.2              | 74.8              | 80.4                  |

- 14 -

#### REFERENCES


- Colodey, A.G., and J.G. Tyers. 1987. Marine Monitoring at the Crofton, B.C. Pulpmill; November 1983 and April 1986. EP Regional Program Report 87-10.
- Dwernychuk, L.W. 1990. Effluent, Receiving Water, Bottom Sediments and Biological Tissues: A Baseline Organochlorine Contamination Survey, January/February 1990. Fletcher Challenge Canada, Crofton Pulp and Paper.
- Dwernychuk, L.W., G.S. Bruce, B. Gordon, G.P. Thomas. 1991. Organochlorine Trend Monitoring, Crofton Pulp and Paper, 1991 (Sediments/Crabs/Oysters). Prepared for Fletcher Challenge Canada, Crofton Pulp and Paper.
- Ellis, D.V. 1970. Marine Sediment and Associated Biological Surveys Around the Crofton Mill Outfall. Report to B.C. Forest Products Ltd., Crofton.
- E.V.S. Consultants Ltd. 1989. Report on the Results of the Marine Environmental Presurvey for Dioxins and Dibenzofurans. Prepared for Fletcher Challenge Crofton Pulp and Paper Division. E.V.S. Project No. 3/058-06.
- Gameson, A.L.H., and K.J. Robertson. 1955. The Solubility of Oxygen in Pure Water and Seawater. J. Appl. Chem. 5:502.
- Goyette, D., and L. MacLeod. 1984. A Computer-Controlled Water Column Profiling System. EPS Regional Program Report 84-09.
- Griffiths, J.C. 1967. Scientific Methods in Analysis of Sediments. McGraw-Hill, New York. 41 pp.
- Harbo, R.M., and G.S. Jamieson (eds.). 1987. Status of Invertebrate Fisheries off the Pacific Coast of Canada (1985/1986). Can. Tech. Rep. Fish. Aquat. Sci. No. 1576.
- Millward, C.G., and P.D. Kluckner. 1989. Microwave Digestion Technique for the Extraction of minerals from Environmental Marine Sediments for Analysis by Inductively Coupled Plasma Atomic Emission-Spectrometry and Atomic Absorption Spectrometry. Journal of Analytical Atomic Spectrometry. Vol. 4.
- Nelson, H. 1979. Pulp Mill Environmental Impact Assessment, British Columbia Forest Products, Crofton Pulp and Paper Division. EP Regional Program Report: 79-5.
- Severn, S.R.T., and A. Sutherland. 1986. Distribution of Wood Fibre on the Seabed in the Vicinity of B.C. Forest Products Crofton Pulp and Paper Division, 1986. Prepared for: British Columbia Forest Products Limited, Crofton Pulp and Paper Division, Crofton, B.C. by Dobrocky Seatech Ltd.

- Smyth, T. 1986a. Monitoring the Environmental Effects of BCFP Crofton Pulp & Paper Division: Non-technical Summary of Programs for the Year Ending February 1986.
- Smyth, T. 1986b. Quarterly Reports on Receiving Water Quality at BCFP Crofton. Numbers 41 (May 1985), 42 (August 1985), 43 (December 1985) and 44 (February 1986). Prepared for British Columbia Forest Products Limited, Crofton Pulp and Paper Division, Crofton, B.C.
- Sullivan, D.L. 1982. Marine Environmental Surveillance Monitoring at B.C. South Coast Pulpmills 1981-1982. EPS Regional Program Report 83-17.
- Swingle, J.D.H., and J.W. Davidson. 1979. Environmental Laboratory Manual. Environmental Protection Service. West Vancouver, B.C.
- Thomson, R.E. 1981. Oceanography of the British Columbia Coast. Can. Spec. Publ. Fish. Aquat. Sci. 56. 291 pp.
- Waldichuk, M. 1964. Dispersion of Kraft Mill Effluent from a Submarine Diffuser in Stuart Channel, British Columbia. J. Fish. Res. Board Can. 21(5):1289-1316.



# FIGURE 1: LOCATION MAP - CROFTON

- 18 -



(30) limit (g/week)

Health advisory to recreational and native crab Health advisory to reconstruct and hepatopancreas

Closed to all oyster harvesting

FIGURE 2: CROFTON FISHERIES CLOSURES, 1991

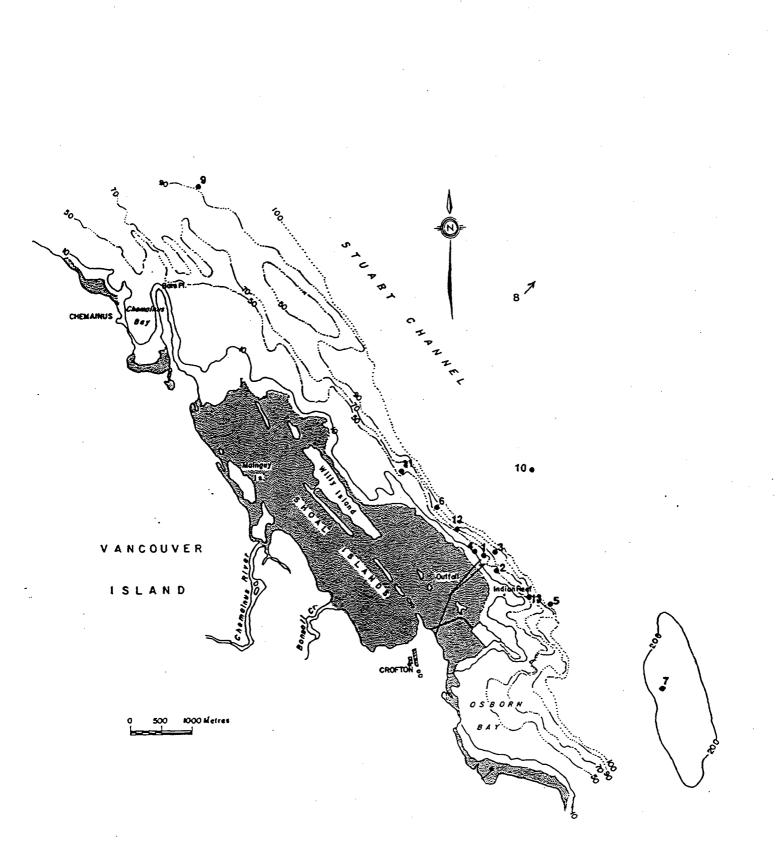



FIGURE 3: SAMPLING LOCATIONS NEAR FLETCHER CHALLENGE, CROFTON

## **APPENDICES**

۰.

4

.,

PACIFIC REGION PULP AND PAPER INDUSTRY EFFLUENT SUMMARY APPENDIX I:

==TOXICITY (PROV)== # of X Tests Comp. 33% 0 ==B0D5 (PRDV)== Av. # of (tonne/d) Tests 23 44.06 89% Comp. х ===8005 (FED)=== Av. # of X (kg/ADt) Tests Com 5 23.53 ==TSS (PROV)== Av. # of (tonne/d) Tests 345 British Columbia Forest Products Ltd. Crofton Crofton 19.35 ۲<u>۲</u> Comp. × ===TSS (FED)===
Av. # of X
(kg/ADt) Tests Com 10.13 345 =PRODUCTION= Av. # of (ADt/d) days 1987 360 1,912 Location: Company: Mill: ===FLOW=== Aver. # of (m3/d) days 179,382 185 Year: Yearly Values

EFFLUENT QUALITY REQUIREMENTS

| TOXICITY<br>(Xv/v) | 96LC20 = 65<br>96LC50 = 30               |
|--------------------|------------------------------------------|
| 8005               | 30.80<br>48.00                           |
| TSS                | 8.30<br>27.50                            |
| FL.CN<br>(m3/d)    | 230,000                                  |
|                    | Federal (kg/ADt)<br>Provincial (tonne/d) |

APPENDIX II: CROFTON SAMPLING STATION LOCATIONS, STUART CHANNEL, 1989

|             | HYDRO     | CASTS & CTD |                                        |
|-------------|-----------|-------------|----------------------------------------|
| STATION     | DEPTH (m) | LATITUDE    | LONGITUDE                              |
| C-1         | 50        | 48°53.54′   | 123°38.04′                             |
| C-7         | 205       | 48°52.39′   | 123°35.71′                             |
| C-8         | 35        | 48°55.52′   | 123°36.42′                             |
| C-9         | 93        | 48°56.46′   | 123°41.25′                             |
| C-10        | 163       | 48°54.00′   | 123°37.22′                             |
| ·           | TRAW      | L STATIONS  | ······································ |
| C-3 (START) | 110       | 48°54.05′   | 123°38.28′                             |
| (FINISH)    |           | 48°53.61′   | 123°37.86′                             |
| C-9 (START) | 95        | 48°56.62′   | 123°41.52′                             |
| (FINISH)    |           | 48°56.28′   | 123°41.00′                             |
|             | SEDI      | MENT GRABS  |                                        |
| C-1         | 60        | 48°53.54′   | 123°38.04′                             |
| C-2         | 64        | 48°53.45′   | 123°37.88′                             |
| C-3         | 110       | 48°53.61′   | 123°37.85′                             |
| C-4         | 80        | 48°53.63′   | 123°38.12′                             |
| C-5         | 126       | 48°53.18′   | 123°37.19′                             |
| C6          | 110       | 48°53.98′   | 123°38.59′                             |
| C-7         | 206       | 48°52.39′   | 123°35.71′                             |
| C-8         | 38        | 48°55.52′   | 123°36.42′                             |
| C-9         | 104       | 48°56.46′   | 123°41.25′                             |
| C-10        | 170       | 48°54.00′   | 123°37.22′                             |
| C-11        | 75        | 48°54.30′   | 123°39.10′                             |
| C-12        | 102       | 48°53.78′   | 123°38.30′                             |
| C-13        | 67        | 48°53.30′   | 123°37.52′                             |
| CORE C-1    | 60        | 48°53.54′   | 123°38.04′                             |

### <u>APPENDIX III</u>: RESULTS FOR CROFTON PULP MILL EFFLUENT MONITORING, NOVEMBER 11, 1990

.

| PARAMETER                   | NOV.11, 1990 |
|-----------------------------|--------------|
| CHLOROANISOLE/2,3,4,5-TETRA | <0.005       |
| /2346+56-TETRA              | <0.005       |
| /PENTA                      | <0.002       |
| CHLOROPHENOL/2,3,4,5-TETRA  | <0.005       |
| /2,3,4-TRI                  | <0.01        |
| /2,3,5-TRI                  | <0.01        |
| /2,3,6-TRI                  | <0.01        |
| /2,4,5-TRI                  | <0.01        |
| /2,4,6-TRI                  | <0.01        |
| /2346+2356-TETRA            | <0.005       |
| /PENTA                      | <0.002       |
| RESIN ACID/12-CHLORO-DHA    | 0.09         |
| /14-CHLORO-DHA              | 0.04         |
| /8(14)ABIETENIC             | <0.01        |
| /ABIETIC                    | 2.16         |
| /DEHYDROABIETIC             | 3.41         |
| /DICHLORO-DHA               | <0.01        |
| /DIHYROISOPIMARIC           | <0.01        |
| /ISOPIMARIC                 | 1.90         |
| /NEOABIETIC                 | 0.20         |
| /PALUSTRIC                  | 1.32         |
| /PIMARIC                    | 0.85         |
| /SANDARACOPIMARIC           | 0.84         |

.

CROFTON PULP MILL, 1990, CHLOROPHENOLS IN SEDIMENT APPENDIX IV:

|                                                               |                 |                   | ,<br>,          |                 |                         |                 | 1               |                 |                 |                 | ;               |                 |                 |
|---------------------------------------------------------------|-----------------|-------------------|-----------------|-----------------|-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| PAKAMETEK                                                     | 1-5             | C-2               | C-3             | 4<br>1<br>0     | 0-5<br>-5               | م<br>ن          |                 | 8<br>-<br>-     | <u>c-9</u>      | C-10            | C-11            | C-12            | C-13            |
| CHLOROPHENOL/<br>2,3,4,5-TETRA<br>(µg/g)                      | LON             | ND1               | <sup>1</sup> UN | ND <sup>1</sup> | <sup>1</sup> UN         | ND <sup>1</sup> | <sup>1</sup> UN | <sup>1</sup> UN | <sup>1</sup> UN | ND <sup>1</sup> | ND1             | 'DN             | ND <sup>1</sup> |
| CHLOROPHENOL/<br>2,3,4-TRI<br>(µg/g)                          | ND <sup>2</sup> | ND <sup>2</sup>   | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup>         | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> |
| CHLOROPHENOL/<br>2,3,5-TRI<br>(µg/g)                          | ND <sup>2</sup> | ND <sup>2</sup>   | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup>         | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> |
| CHLOROPHENOL/<br>2,3,6-TRI<br>(µg/g)                          | ND <sup>2</sup> | ND <sup>2</sup>   | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup>         | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> |
| CHLOROPHENOL/<br>2,4,5-TRI<br>(µg/g)                          | ND <sup>2</sup> | ND <sup>2</sup>   | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup>         | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> |
| CHLOROPHENOL/<br>2,4,6-TRI<br>(µg/g)                          | ND <sup>2</sup> | ND <sup>2</sup>   | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup>         | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> | ND <sup>2</sup> |
| CHLOROPHENOL/<br>2346+2356-TETRA<br>(µg/g x 10 <sup>3</sup> ) | 3.0             | , CN              | <sup>1</sup> UN | 10.0            | 'UN                     | 5.4             | 11.3            | 10.6            | 15.0            | 16.0            | 21.9            | 15.9            | 9.6             |
| CHLOROPHENOL/<br>PENTA<br>(μg/g × 10 <sup>-3</sup> )          | 4.4             | ND <sup>3</sup>   | ND <sup>3</sup> | 7.4             | 11.9                    | 3.6             | 7.9             | 7.1             | 14.3            | 11.0            | 11.6            | 15.7            | 7.2             |
| . ND <sup>1</sup> = <.0002                                    | 002             | ND <sup>2</sup> = | <.0005          | ND <sup>3</sup> | ) <sup>3</sup> = <.0001 | 101             |                 |                 |                 |                 |                 |                 |                 |