ENVIRONMENT CANADA CONSERVATION AND PROTECTION ENVIRONMENTAL PROTECTION PACIFIC AND YUKON REGION

SEDIMENT METAL CHEMISTRY SURVEY OF ESQUIMALT HARBOUR BRITISH COLUMBIA OCTOBER 1987 REGIONAL DATA REPORT DR-92-03

BY

D.E. Brothers

JANUARY 1992

TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
List of Figures List of Tables	ii ii
<pre>1.0 INTRODUCTION 2.0 MATERIALS AND METHODS</pre>	1 4
APPENDIX I ACCURACY DATA	13
APPENDIX II RAW DATA	17

. 1

LIST OF FIGURES

Figure			Page
1.	Esquimalt Harbour Sampling Stations	- Benthic Sediment	2
2.	Esquimalt Harbour Sediment Sampling	Industrial Sites - Benthic Stations	3

LIST OF TABLES

					-
1.	Esquimalt H	larbour -	Stations	A-Q	

Table

.

,

1.Esquimalt Harbour - Stations A-Q52.Esquimalt Harbour - Industrial Sites9

Page

1.0 INTRODUCTION

During October 1987, a benthic sediment chemistry survey was conducted at selected sites in Esquimalt Harbour. The need for repeat maintenance dredging at industrial locations and the degree of elevated concentrations of mercury and cadmium in the harbour prompted a comprehensive survey to determine the extent of trace metal contamination. Sample locations are identified in Figures 1 & 2. Data from the analysis of the sample collected during this study is presented herein.

ESQUIMALT HARBOUR - BENTHIC SEDIMENT SAMPLING STATIONS FIGURE I

ESQUIMALT HARBOUR INDUSTRIAL SITES - BENTHIC SEDIMENT SAMPLING STATIONS N FIGURE

2.0 MATERIALS & METHODS

Grab samples were collected using a Smith McIntyre grab sampler. Upon retrieval, water was siphoned from the sediment surface as necessary. One grab was taken at each station and three representative samples, from 0 cm to 5 cm, were removed for analysis.

Core samples were collected using a 2 meter BENTHOS gravity corer. The core was extruded into a plastic trough, held at a gentle incline and washed to remove the outer disturbed layer. Samples were removed for analysis from the following depths: 10-20 cm, 30-40 cm, 60-70 cm, and 90-100 cm.

All analyses were conducted by the Conservation and Protection Laboratories in West Vancouver, B.C. The raw data is presented in Appendix II and represents a single analysis for each sample after drying and homogenizing. Copper (Cu), lead (Pb), and zinc (Zn) were analyzed using Inductively Coupled Argon Plasma Atomic Emission (ICAP-AE), cadmium (Cd) using Graphite Furnace Atomic Absorption (GFAA), and mercury (Hg) using flameless Atomic Absorption (AA).

Hg, Cd, Pb, Cu and Zn concentrations are presented in the tables, with the mean and standard deviation.

The accuracy data for each lab submission are given in Appendix I. The raw data printouts, giving the complete ICAP semi-quantitative scan and particle size data (Appendix II), are on microfiche and can be located by matching the sample and lab submission numbers given on the data tables. Precision data for the lab submissions are provided on the data tables, and represent analyses of separate aliquots of dried, homogenized sediments from the sample bag.

ESQUIMALT_HARBOUR___STATIONS_A-Q___-5-

DATE	SAMPLI	ED:	OCTOBER	7, 1	987.	ME ME PARTICL PARTICL	TALS: TALS: E SIZE E SIZE	LAB #8 LAB #8 LAB #8 LAB #8 LAB #8	390132: 390130: 380267: 380268:	A-E,H,I,L F,G,J,K 1-22 77-85	P,Q
<u>stn</u>	DEPTH (m)	(P4	AMPLE ARTIC_E SIZE)	SEDIM DEFTH	ENT (cm)	Hg	<u>Cd_</u>	<u>Fb</u>	<u> </u>	<u>Zn</u>	
A	15	77 78 79	(22)*	0-5 0-5 0-5	MEAN STD DEV	.172 .182 .194 163 011	.26 .29 .28 .28 .28 .28	20 20 <u>18</u> <u>19</u> <u>1</u>	23.8 23.8 <u>23.4</u> 23.7 .2	65.8 67.8 <u>65.8</u> 66.5	
В	14	74 75 76	(21)*	0-5 0-5 0-5	MEAN STD DEV	1.060 .409 	.32 .35 .34 .34 .02	27 32 25 28 4	45. 7 45.1 <u>41.2</u> <u>44.0</u> 2.4	83.7 108.0 <u>81.0</u> <u>90.9</u> 14.9	
C	13	51 52 57	(14)*	0-5 0-5 0-5	MEAN STD DEV	.350 .391 <u>361</u> <u>367</u> 021	.47 .48 .43 .43 .46 .03	27 29 <u>32</u> 29 32	49.6 47.1 <u>46.9</u> 47.9 1.5	87.7 90.3 <u>92.0</u> <u>90.0</u> 2.2	
D	14	49 49 50	(13)*	0 -5 0-5 0-5	MEAN STD DEV	.457 .440 <u>.544</u> <u>+80</u> <u>956</u>	.55 .56 .48 	36 37 3 3 2	56.8 71.1 <u>54.3</u> 60.7 9.1	90.3 94.7 <u>95.3</u> <u>95.4</u> 2.7	
E	16	58 59 60	(15)*	0-5 0-5 0-5	MEAN STD DEV	.675 .641 <u>.639</u> . <u>.652</u> .020	.38 .41 .36 .38	42 42 42 42 42	65.3 60.3 <u>63.7</u> 63.1 2.6	99.7 101.0 <u>99.7</u> 100.1 .8	
F	14	74 75 76	(65)*	0-5 0-5 0-5	MEAN STD DEV	1.300 1.200 <u>1.100</u> <u>1.200</u> .100	.66 .57 .51 .58 .08	80 63 <u>68</u> 70 9	135.0 106.0 <u>117.0</u> <u>119.3</u> 14.6	147.0 124.0 <u>135.0</u> 1 <u>35.3</u> 11.5	
6	11	49 50 51	(54)*	0-5 0-5 0-5	MEAN STD DEV	1.600 2.100 <u>1.800</u> <u>1.833</u>	1.00 1.00 <u>70</u> <u>90</u>	140 180 <u>160</u> <u>160</u> 20	185.0 192.0 <u>244.0</u> 207.0 32.2	264.0 269.0 <u>214.0</u> 249.0 30.4	

ESQUIMALT_HARBOUR___STATIONS_A-Q_(con't)__

DATE SAMPLED: OCTOBER 7, 1987.

						UG/G_D	RY WEIG	HT_	
SIN_	DEPTH	SAMFLE_	SEDIM	ENT	<u>Hg</u>	Cd	<u>Fb</u>	<u> </u>	Zn
	(m)	(PARTICLE SIZE)	DEFTH	(cm)					
Η	13	61 (16)* 62 63	0-5 0-5 0-5	MEAN STD DEV	2.100 1.810 <u>1.910</u> <u>1.940</u> .147	1.00 .91 .94 .95 .05	212 150 <u>169</u> 177 32	245.0 252.0 <u>249.0</u> 2 <u>48.7</u> 3.5	291.0 277.0 <u>324.0</u> 297.3 24.1
		64 65 66	10-20 30-40 60-70		2.320 .037 .027	.77 1.50 1.30	175 ND(8) S	62.1 15.0 18.8	116.0 52.0 62.1
I	12	71 (20)* 72 73	0-5 0-5 0-5	MEAN STD DEV	1.950 2.310 2.340 2.300 .332	.86 1.30 <u>.97</u> 1.04	170 214 <u>166</u> <u>183</u> 27	301.0 379.0 <u>323.0</u> 3 <u>34.3</u> 40.2	324.0 669.0 364.0 452.3 198.7
J	10	6 (35)* 7 8	0-5 0-5 0-5	MEAN STD DEV	3.690 4.330 <u>6.200</u> 4.740 1.304	$1.40 \\ 1.20 \\ 1.00 \\ 1.20 \\ 1.20 \\ .20 \\$	227 586 32 348 206	333.0 313.0 412.0 352.7 52.3	419.0 340.0 <u>492.0</u> 417.0 76.0
К	7	1 (32)* 2 3	0-5 0-5 0-5	MEAN_ STD DEV_	3.180 7.380 <u>3.250</u> 4.603 2.405	$1.30 \\ 1.50 \\ -1.10 \\ -1.30 \\ -20 $	296 306 <u>534</u> <u>379</u> 135	412.0 447.0 <u>417.0</u> <u>425.3</u> 18.9	640.0 682.0 663.0 661.7 21.0
		4 (33)* 5 (34)*	10-20 20-30		3.920 .631	1.30 2.20	214 33	84.8 25.5	127.0 48.3
	16	23 (2)* 24 29	0-5 0-5 0-5	MEAN_ STD DEV_	2.540 2.590 2.470 2.533 .060	1.68 1.72 <u>1.64</u> <u>1.68</u>	221 281 259 254 30	526.0 566.0 486.0 526.0 40.0	585.0 654.0 684.0 641.0 50.8
		30 (3)* 31 (4)* 32 (5)* 33 (6)*	10-20 30-40 60-70 90-100)	4.820 .082 .022 .028	1.40 2.20 1.80 1.80	180 10 ND(8) ND(8)	189.0 24.1 25.8 27.6	147.0 61.9 68.3 72.5

ESQUIMALT HARBOUR - STATIONS A-Q (cont'd)

DATE SAMPLED: OCTOBER 7, 1987.

						UG/G_D	RY WEIG	HT	
STN_	DEPTH	SAMPLE	SEDIM	ENT	Hg	Cd	<u>Fb</u>	<u> </u>	<u>Zn</u>
	(m)	PARTICLE	E DEPTH	$C \subset \mathbf{m} (0)$					
		SIZED							
h.d	4.4		0 E		* 700	7 B	100	100 0	
11	1 -+	34 (/)* SE	0-0		1.780	.60	168	182.0	ZIZ.U Domeno
		30 77	0-5		1.480	. 60	140		203.0
		30	0-0	ME" AN	- <u>4-95</u> 7-	╌ᅳ┺╧╧	·		
				CTD DEU	_1.249.	<u></u>			
				SID DEV.		<u>•</u> ⊻Չ_			
N	12	37 (8)*	0-5		1.210	- 75	179	131.0	179.0
••		38	0-5		1.370	. 45	130	128.0	168.0
		43	0-5		1.260	- 44	120	129.0	164.0
		. 🗠		MEAN	1.280		143	129.3	170.3
				STD DEV	.082	.18	32	1.5	7.8
		44 (9) *	10-20		2.880	.89	283	45.3	142.0
		45 (10)*	30-40		.026	1.20	ND(8)	16.8	56.8
		46 (11)*	67-70		.027	1.00	ND (8)	18.9	62.9
		47 (12)*	90-100		.027	.92	ND(8)	17.9	60.8
D	13	17 (85)*	0-5		2.800	.73	174	218.0	225.0
		18	0 -5		2.330	.84	181	233.0	316.0
		19	0-5		1.900	.65	150	204.0	_277.0_
				MEAN_	2.343	74_	168	18.3	_272.7_
				STD DEV	450_	<u>1</u>	16	14.5	45.7_
							_		
Ρ.	13	6 (85)*	0-5		.854	.46	54	72.8	107.0
		7	0-5		.692	.48	51	72.9	107.0
		8	0-5		<u>-Z42</u> -	47	<u>50</u>	83.5	<u>_106.0</u> _
				MEAN		4/		764	106.7
				SID DEA	• <u>083</u> -	<u>01</u>		6.1	±
		9 (81) *	10-20		605	1 20	50	22 E	76 0
		10 (82)*	30-40		.037	1.87	ND(B)	18 7	61 0
		15 (83)*	67-70		.027	1.76	ND(8)	19.7	64 9
		16 (84)*	90-100)	.020	1.30	ND(8)	22.2	65.7
O.	13	1 (77)*	0-5		.569	1.80	39	61.5	114.0
		2	0~5		.614	1.90	40	63.3	111.0
		Э	0-5		.616	2.10	39	<u>60.</u> 3	112.0
				MEAN	.600	1.93	39	61.7	11.3
				STD DEV	.027	.15	1	1.5	1.5
		4 (78)*	10-20		.057	2.60	ND(B)	21.4	66.6
		5 (79)*	30-40		.034	2.10	ND(8)	23.4	71.6

NOTE: numbers in brackets are limits of detection. (cf:SCPESQAQ) ND - not detected * depotes particle size data in appendix (were # in brackets)

* denotes particle size data in appendix (use # in brackets).

ESQUIMALT HARBOUR - STATIONS A-Q (con't)

DATE SAMPLED: OCTOBER 7, 1987.

FRECISION_	DATA
------------	------

-

-

SAMPLE	<u>Ha</u>	<u> Cd </u>	<u> </u>	<u> </u>	<u>Zn</u>
79	.194	.29	18	23	65.8
80	.191	.28	18	24	66.8
81	.310	.31	10	22.9	65.9
82	.310	.31	20	23.6	63.9
83	.290	.29	20	23.3	65.6_
MEAN	.259	.30	20_	23.4	65.6
STD DEV	.061	01_	4	3	1.1
52	.391	. 48	29	47.1	.ao.3
53	.365	. 41	34	48.0	93.0
54	.377	.42	29	47.7	91.3
55	.383	.44	30	48.1	93.7
56 _	387_	43_	<u>30</u>	46.8	
MEAN_	381	44	<u>30</u>	47.5	22.1
STD DEV_	<u>010_</u>	03_		6	1.3_
~ ~	~~~~ ~		0	10 0	<i>⊏</i> ~ +
55	.027	1.30		10.8	52.1 50 7
6/	.U23	1.30	ND(8)	17.7	39.7
68	.027	1.30	ND(8)	1/.9	19.8 (7.6
59	.022	1.40	ND(8)	18.4	ರವ.ರ
/U	<u>024</u> _	<u>_i.gv</u> _			
MEAN_		_ <u>1.</u> 24_			<u>ē</u> †• <u>ē</u> -
SID DEV_	002	04_		······································	<u>-</u> - <u>-</u> -
10	037	1.87	ND (8)	18.7	61.0
11	.029	1.76	ND(8)	18.4	61.8
12	.029	1.77	8	18.1	59.8
13	.038	1.76	10	19.6	62.3
14	.035	1.79	ND(8)	18.5	61.3
MEAN	.034	1.79	- <u></u>	18.7	61.2
STD DEV	.004	.05	1	.6	9
24	2.590	1.72	281	566.0	654.0
25	2.630	1.72	230	566.0	628.0
26	2.750	1.66	240	533.0	664.0
27	2.630	1.60	243	558.0	704.0
28 _	2.620	1.66_		<u>577.</u>	<u>_630.0</u> _
MEAN_	2.644_	1.67_	250	<u>560.</u>	_ <u>656.</u>
STD DEV_	061	5	20	16.5	<u>31.</u>
	1 070	4 55	1 m m	100	100 0
<u>ವರ</u> ೧೯	1.370	.40	130	128.0	158.0
ವರ್ ಕಂತ	1.320	.44	140	124.0	168.0
40	1.200	.48	100	12/.0	192.0
41	1.210	.40	110	120.0	138.0
°4≟ мг‴акі	1.010		<u></u>	<u>-138.V</u>	
CTD DEU	<u>-1.444</u>		<u>+</u> + <u>-</u>		
DID DEA		<u>-</u> 2=-	2/		

	SAMPLE	<u>AFEQUE, I</u> :D: Octobe	NDUSTRI R 7, 19	<u>AL BITES</u> 27.		METALS METALS: METALS:	LAB LAB	#890130: #890130: #870753:	Padei 1-8. 49-111 8-48
					PARTIC	_E 3IZE :	LAB	#880268:	1. <u>21</u> -75
					ļ	UGZ <u>G_DRY</u> .	WEIG	T	-
<u>_s_</u> .	<u>DEPTE</u> (m)	(PARTICL SIZE)	E DEPTH	(cm)	<u> </u>			<u> </u>	<u> </u>
A-1		63 (60)* 64 65	০−5 ০−5 ০−5		1.690 2.210 1.700	1.40 1.40 1.60	160 140 130	170.0 190.0 155.0	145.0 235.0 201.0
				MEAN	1.900	1.47	143	171.7	24.0
				SID DEV_	935		12-	14-5-	
		56 (61)* 71 (62)*	10-20 30-40		3.740 .058	1.90 1.30	454 10	172.0 18.3	416.0 57.1
		73 (64)*	90-10	0	.019	1.30	ND (8)	16.0	-9.0 49.1
A-2	11	52 (55)* 57	°−5 0−5		2.000	.92 .99	140 1170	164.0 183.0	190.C
		58	0-5	_	<u>1.720</u>	<u>1.10</u>	120	184.0	<u>198.</u>
				MEAN	<u>_2.257_</u>	1.00	<u>- 477</u>	<u></u>	<u>1209.)</u>
			. ·	SID DEV_	± <u>_</u> ⊻±	**=			
<u>]</u> -1	8	46 (53)*	0-5		11.300	1.99	404	930.0 810 0	1040.0
		48	0-5	_	12.800	<u>2.20</u>	418	<u>1010.0</u>	<u>542.0</u> _
				MEAN	<u>11.033</u> .	9	<u> </u>		
	-			s.u dev_				<u></u>	
2-2	12	35 (48)* 36	0-5 0-5	5	1.180	1.56	857 141	182 125.0	322.0 217.0
		37	°-5		<u> </u>	1.68	120	149.0	<u>259.</u>
				STD DEV	<u>210</u> 235	1.56	373_ 420_	<u>152.0</u> 28.8	<u> 266.0 </u> 52.8
		38 (49)*	10-20		1.270	1.50	72	34. <u></u>	114.0
		43 (50)* 44 (51)*	50-40 50-70			2.30 2.20	12	14.3	53.8
		45 (52)*	90-100)	.000	1.23	ND(S)	14.8	54.6
्-3	a ana	24 (43)*	<u>0~5</u>		1.300	3.69	7:0	741.0	5 100.0
		29 30	୍~-5		2.250	2.80	30⊻ 430	753.0	2060.0
				MEAN		3.23	547	732.7	<u> </u>
				STD DEV_		45	145_	25.5	2135.3
	•	31 (44)* 32 (45)*	10-20 30-40		.036 .030	1.32 1.59	10 8	15.3 15.1	59.8 55.3
		33 (46)*	60-70	_	.045	1.89	14	15.3	54.3
		34 (47)*	90-10	0	.032	1.49	ND(8)	13.9	50.3

ESQUIMALT_HARBOUR, INDUSTRIAL_SITES (contid)

DATE SAMPLED: OCTOBER 7, 1987.

					ļ	UG/G_DRY_WEIGHT			
STN	DEPTH	SAMPLE	SEDIME		Hg	<u>d</u>	<u>Pb</u>	<u> </u>	<u>Z</u> 5
	(m)	(PARTICLE	DEFTH	(cm)					
C-4	10	18 (39)* 19 20	ಿ−5 ೦−5 ೦−5	MEAN_ STU DEV_	2.560 2.480 <u>4.350</u> <u>3.297</u> 1.346	4.20 6.10 5.40 5.23	376 380 <u>430</u> 395 30	608.0 463.0 633.0 568.0 91.8	985.0 1040.0 <u>1080.0</u> 1035.3 47.2
		21 (40)* 22 (41)* 23 (42)*	10-20 30-40 60 -70		3. 370 . 050 . 027	4.00 2.80 1.69	1360 13 ND(8)	591.0 14.1 12.3	1600.0 84.2 48.6
C-5	n j	9 (36)* 10 15	0-5 0-5 0-5	MEAN_ STD DEV_	1.260 1.220 <u>1.230</u> <u>1.237</u> <u>021</u>	2.10 3.80 2.83 2.91 .85	989 1110 928 1009 93	716.0 782.0 948.0 815.3 119.5	2840.0 2700.0 _2340.0 _2626.7 _257.9
		16 (37)* 17 (38)*	10-20 30-40		7.820 3.770	3.60 1.37	592 181	666.0 66.9	680.0 1 2 0.0
ŕ	14	74 (65)* 75 76	0 -5 0-5 0-5	MEAN_ STD DEV_	1.300 1.200 <u>1.100</u> <u>1.200</u> .100	.66 .57 .51 .58 .08	80 63 <u>68</u> 70 9	135.0 106.0 <u>117.0</u> 119.3 4.6	147.0 124.0 <u>135.0</u> 135.3 11. 5
F-i	12	91 (72)* 92 93	0-5 0-5 0-5	NBAN_	.184 .200 	1.90 1.90 <u>2.70</u> <u>2.17</u> .46	18 22 <u>20</u> 20 2	48.2 48.0 	90.3 81.1 <u>-265.0</u> 145.5 103.6
F-2	13	94 (73)* 99 100	0-5 0-5 0-5	MEAN_ STD DEV_	.300 .354 	2.50 2.80 <u>2.30</u> 2.53 .25	22 25 <u>26</u> 24 24	50.5 53.1 54.6 2.7 2.1	97.4 115.0 102.0 104.9
		101 (74)* 102 (75)* 103 (76)*	10-20 30-40 60-70		.296 .145 .023	2.30 2.60 .60	19 ND(8) ND(8)	36.1 28.5 14.0	81.5 64.1 33.2

-10-

ESQUIMALT HARBOUR, INDUSTRIAL SITES (contid)

DATE SAMPLED: OCTOBER 7, 1987.

						UG/G_DRY	_WEIGHT	-	
STN	DEPTH	SAMELE	SEDIME		<u>Hg</u>	Cd	Pb	<u>Cu</u>	<u>Zn</u>
	(m)	(PARTICLE SIZE)	DEPTH	(cm)					
~3	11	77 (66)* 78 79	0-5 0-5 0-5		.718 .671 <u>1.040</u>	3.70 3.50 <u>3.80</u>	59 78 80	95.8 91.8 <u>106.0</u>	231.0 230.0 <u>- 265.0</u>
				STD DEV_	.201	<u>3.6/</u> <u>15</u>	<u>12</u>	7.3_	<u>19.9</u> _
F-4	10	80 (67)* 85 86	0-5 0-5 0-5	MEAN	.292 .248 <u>.237</u> _	3.10 2.80 <u>2.70</u>	21 22 	51.4 42.7 <u>45.7</u>	104.0 102.0 <u>119.0</u>
				STD DEV_	.029	21	1	4.4_	9.3_
PWC−1	14	20 (1)* 21 22	0-5 0-5 0-5	MEAN	7.100 3.040 <u>5.420</u> 3.343 2.406	1.30 1.90 <u>1.30</u> <u>1.50</u> 	293 500 <u>-437</u> -410 -106	356.0 672.0 <u>469.0</u> 499.0 160.1	721.0 1740.0 <u>1340.0</u> 1267.0 513.4

NOTE: numbers in brackets are limits of detection. (cf:SCPESGIN) ND - not detected

* denotes particle size data in appendix (use # in brackets).

PRECISION_DATA_____

66 3.740 1.90 454 172.0 416.0 67 2.700 2.00 454 158.0 437.0 68 2.300 2.00 326 139.0 346.0 69 3.700 2.10 487 156.0 506.0 70 2.200 2.10 622 134.0 484.0 MEAN 2.928 2.02 469 151.8 437.8 STD DEV .747 .08 106 15.4 62.6 52 2.000 .92 140 164.0 190.0 53 1.900 .94 130 198.0 213.0 54 2.400 .98 130 192.0 204.0 55 1.900 .90 179 196.0 202.0 56 1.200 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 8.7 38 1.270 1.50 72 34.0 114.0	SAMPLE	Ha	<u>Cd</u>	<u>Pb</u>	<u> Cu </u>	<u>Zn</u>
66 3.740 1.90 454 172.0 416.0 67 2.700 2.00 454 158.0 437.0 68 2.300 2.00 326 139.0 346.0 69 3.700 2.10 487 156.0 506.0 70 2.200 2.10 622 134.0 484.0 MEAN 2.928 2.02 469 151.8 437.8 STD DEV .747 .08 106 15.4 62.6 52 2.000 .92 140 164.0 190.0 53 1.900 .94 130 198.0 213.0 54 2.400 .98 130 192.0 204.0 55 1.900 .90 179 196.0 202.0 56 1.200 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 8.7 38 1.270 1.50 72 34.0 114.0						
67 2.700 2.00 454 158.0 437.0 68 2.300 2.00 326 139.0 346.0 69 3.700 2.10 487 156.0 506.0 70 2.200 2.10 622 134.0 484.0 MEAN 2.928 2.02 469 151.8 437.8 STD DEV .747 .08 106 15.4 62.6 52 2.000 .92 140 164.0 190.0 53 1.900 .94 130 198.0 213.0 54 2.400 .98 130 192.0 204.0 55 1.900 .90 179 196.0 202.0 56 1.900 .90 179 196.0 202.0 56 1.900 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 8.7 38 1.270 1.50 72 34.0 114.0	66	3,740	1.90	454	172.0	416.0
68 2.300 2.00 326 139.0 346.0 69 3.700 2.10 487 156.0 506.0 70 2.200 2.10 622 134.0 484.0 MEAN 2.928 2.02 469 151.8 437.8 STD DEV .747 .08 106 15.4 62.6 52 2.000 .92 140 164.0 190.0 53 1.900 .94 130 198.0 213.0 54 2.400 .98 130 192.0 204.0 55 1.900 .90 179 196.0 202.0 56 1.900 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 8.7 38 1.270 1.50 72 34.0 114.0 38 1.270 1.50 72 34.0 114.0	67	2.700	2.00	454	158.0	437.0
69 3.700 2.10 487 156.0 506.0 70 2.200 2.10 622 134.0 484.0 MEAN 2.928 2.02 469 151.8 437.8 STD DEV .747 .08 106 15.4 62.6 52 2.000 .92 140 164.0 190.0 53 1.900 .94 130 198.0 213.0 54 2.400 .98 130 192.0 204.0 55 1.900 .90 179 196.0 202.0 56 1.900 .93 242 184.6 203.0 MEAN 2.020 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 3.7 38 1.270 1.50 72 34.0 114.0	68	2.300	2.00	326	139.0	346.0
70 2.200 2.10 622 134.0 484.0 MEAN 2.928 2.02 469 151.8 437.8 STD DEV .747 .08 106 15.4 62.6 52 2.000 .92 140 164.0 190.0 53 1.900 .94 130 198.0 213.0 54 2.400 .98 130 192.0 204.0 55 1.900 .90 179 196.0 202.0 56 1.900 .93 242 184.6 203.0 MEAN 2.020 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 8.7 38 1.270 1.50 72 34.0 114.0	69	3.700	2.10	487	156.0	506.0
MEAN 2.928 2.02 469 151.8 437.8 STD DEV .747 .08 106 15.4 62.6 52 2.000 .92 140 164.0 190.0 53 1.900 .94 130 198.0 213.0 54 2.400 .98 130 192.0 204.0 55 1.900 .90 179 196.0 202.0 56 1.900 .92 629 173.0 209.0 MEAN 2.020 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 3.7 38 1.270 1.50 72 34.0 114.0	70	2.200	2.10	622	134.0	484.0
STD DEV .747 .08 106 15.4 62.6 52 2.000 .92 140 164.0 190.0 53 1.900 .94 130 198.0 213.0 54 2.400 .98 130 192.0 204.0 55 1.900 .90 179 196.0 202.0 56 1.900 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 8.7 38 1.270 1.50 72 34.0 114.0	MEAN	2.928	2.02	469	151.8	437.8
52 2.000 .92 140 164.0 190.0 53 1.900 .94 130 198.0 213.0 54 2.400 .98 130 192.0 204.0 55 1.900 .90 179 196.0 202.0 56 1.900 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 8.7 38 1.270 1.50 72 34.0 114.0	STD DEV	.747	.08	106	15.4	62.6
52 2.000 .92 140 164.0 190.0 53 1.900 .94 130 198.0 213.0 54 2.400 .98 130 192.0 204.0 55 1.900 .90 179 196.0 202.0 56 1.900 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 8.7 38 1.270 1.50 72 34.0 114.0		•	هي هو من عن عن من من م	-		
53 1.900 .94 130 198.0 213.0 54 2.400 .98 130 192.0 204.0 55 1.900 .90 179 196.0 202.0 56 1.900 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 8.7 38 1.270 1.50 72 34.0 114.0	52	2.000	.92	140	164.0	190.0
54 2.400 .98 130 192.0 204.0 55 1.900 .90 179 196.0 202.0 56 1.900 .93 629 173.0 209.0 MEAN 2.020 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 8.7 38 1.270 1.50 72 34.0 114.0	53	1.900	. 94	130	198.0	213.0
55 1.900 .90 179 196.0 202.0 56 1.900 .95 629 173.0 209.0 MEAN 2.020 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 8.7 38 1.270 1.50 72 34.0 114.0	54	2.400	.98	:30	192.0	204.0
56 1.300 .36 629 173.0 209.0 MEAN 2.020 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 3.7 38 1.270 1.50 72 34.0 114.0 38 1.270 1.50 72 34.0 114.0	55	1.900	.90	179	196.0	202.0
MEAN 2.020 .93 242 184.6 203.6 STD DEV .217 .03 218 15.2 8.7 38 1.270 1.50 72 34.0 114.0 38 1.270 1.50 72 34.0 114.0	56	1.900	. JG	629	173.0	209.0
STD DEV .217 .03 218 15.2 8.7 38 1.270 1.50 72 34.0 114.0 38 1.270 1.50 72 34.0 114.0	MEAN	2.020	.93	242	184.6	203.6
38 1.270 1.50 72 34.0 114.0	STD DEV	.217	.03	218	15.2	8.7
38 1.270 1.50 72 34 .0 114.0		·	مد مرد ماة عله علم جد عدم ال			
	38	1.270	1.50	72	34.0	114.0
	39	1,130	1.39	73	32.2	86.0
40 1.230 1.40 85 31.0 83.9	40	1.230	1.40	85	31.0	83.9
41 1.070 1.39 85 32.3 84.1	41	1.070	1.39	85	32.3	84.1
42 1.150 1.33 77 31.8 80.6	42	1.150	1.33	77	31.8	80.6
MFAN 1,170 1,40 78 32.3 89.7	MEAN	1.170	 1.40		32.3	89.7
STD DEV .080 .06 6 1.1 13.7	STD DEV		.06	<u>-</u> Ĕ		13.7

ESQUIMALT HARBOUR, INDUSTRIAL SITES

DATE SAMPLED: OCTOBER 7, 1987.

CRECIBION_DATA						
	SAMELE	Hg	<u>_</u> d	<u> </u>	<u>Cu</u>	<u>Zn</u>
	24	1.800	3.69	710	741.0	6100.0
	25	2.090	4.15	362	523.0	2990.0
	26	1.900	3.40	359	511.0	6020.0
	27	2.270	3.35	331	501.0	2260.0
	28	2.000	3.36	326	593.0	2760.0
	MEAN	2.012	3.59	418	573.8	4026.0
	STE DEV	.180	.34	164	100.2	1875.7
	-					
	10	1.220	3.80	1110	782.0	2700.0
	11	1.160	3.20	842	647.0	2450.0
	12	1.070	2.96	969	702.0	2700.0
	13	1.020	2.98	1050	781.0	2020.0
	14	.898	3.71	928	704.0	2720.0
	MEAN	1.074	3.33	980	723.2	2720.0
	STD DEV	.125	.40	104	57.9	206.0
	-					
	94	.300	2.50	22	50.5	97.4
	95	.336	2.30	20	49.5	97.9
	96	.335	2.50	20	48.0	97.9
	97	.318	2.40	24	50.1	99.2
	98	.305	2.40	18	46.8	92.6
	MEAN	.319	2.42	21	49.0	97.0
	STD DEV	017	8	22	1.5_	2.5_
	80	.292	3.10	21	51.4	104.0
	81	.254	3.40	 	56.2	105.0
	82	.262	3.30	23	50.5	102.0
	83	.241	3.10	21	55.3	110.0
	84 _	268	3.00	25	<u>51.7</u> _	<u>111.</u>
	MEAN	263	3.18	22	53.0_	106.4_
	STD DEV_	019	16		. 2 . 6_	3.9_

.

(cf:SCRESDIN)

APPENDIX I

ACCURACY DATA

ACCURACY_DATA_

	Ha	<u> </u>	<u> </u>	<u> </u>	Zn
MESS-1_					
CERTIFIED:	0.171 +/- 0.014	0.59 +/- 0.10	34.0 +/- 6.1	25.1 +/- 3.8	191 +/- 17
FOUND:	.200 .212 .212 .215 .215	.76 .74 .75 .74 .68	35 36 32 40 	23.9 24.7 24.3 24.8 25.0	182.0 186.0 183.0 187.0 <u>185.0</u>
STD DEV	.008	. <u>03</u>	44	<u>4</u>	

BCSS-1_

CERTIFIED:	0.129 +/- .012	0.25 +/- .04	22.7 +/- 3.4	18.5 +/- 2.7	119 +/- 12
FOUND:	.159	. 27	31	16.2	109.0
· .	.149 .163 .162	.32 .31 .33	33 29	17.1 15.7	108.0
MEAN	.170	.33	31	<u>16.5</u> 16.6	<u>107.0</u> 107.8
STD DEV	.008	2		Z	8

(cf:AC870753)

ACCUEACY DATA

	<u> </u>	<u>Cd</u>	<u>F'b</u>	<u>Cu</u>	<u>Za</u>
MESS-1_					
CERTIFIED:	0.171 +/- 0.014	0.59 +/- 0.10	34.0 +/- 6.1	25.1 +/- 3.8	191 +/- 17
FOUND:	.177 .174 .174 .187 .189 .189	.77 .73 .67 .67 . <u>65</u> .70	29 28 27 25 24	26.7 25.9 25.2 25.8 <u>25.7</u> 25.9	189.0 185.0 180.0 179.0 <u>173.0</u> 181.2
STD DEV	<u>007</u>	05			6.1

<u>BCSS-1</u>_

•

CERTIFIED:	0.129 +/- .012	0.25 +/- .04	22.7 +/- 3.4	18.5 +/- 2.7	119 +/- 12
FOUND:	.140	.23	18	17.1	
	.140	.19	20	17.4	105.0
	.160	.20 	1' 3 22	17.1 <u>18.3</u>	108.0
MEAN STD DEV	.148		<u> </u>	17.4	<u>107.0</u> <u>1.6</u>

(cf: AC890130)

.

ACCURACY DATA

1

í

,

	<u> </u>	<u>Cd</u>	<u> </u>	<u>Cu</u>	<u>Zn</u>
MESS-1_					
CERTIFIED:	0.171 +/- 0.014	0.59 +/- 0.10	34.0 +/- 6.1	25.1 +/- 3.8	191 +/- 17
FOUND:	.200 .193 .194 .204 .207	.67 .53 .70 .61 .65	36 30 29 32 31	27.0 25.2 24.7 25.3 25.8	182.0 181.0 183.0 184.0 184.0
MEAN STD DEV	.200	.66	32 32	25.6	182.8
BCSS-1_			· .		

CERTIFIED:	0.129 +/- .012	0.25 +/- .04	22.7 +/- 3.4	18.5 +/- 2.7	119 +/- 12
FOUND:	.164	.21	22	17.1	113.0
· .	.130	. 19	23	17.1	115.0
•	.150	.21	23	17.2	119.0
	.150	.24	23	17.3	112.0
	.150	.23	23	17.2	113.0
MEAN	.149	.22	23	17.2	114.4
STD DEV	.012	.02	0		2.8

• .

(cf:AC890132)

APPENDIX II

RAW DATA

_

.