EL1045325F

REF EPS DR 92-11 c.2

ENVIRONMENT CANADA CONSERVATION AND PROTECTION ENVIRONMENTAL PROTECTION SERVICE PACIFIC AND YUKON REGION NORTH VANCOUVER, B.C.

MARINE MONITORING IN ALBERNI INLET NEAR THE MacMILLAN BLOEDEL PULPMILL PORT ALBERNI, B.C.

1984, 1986, 1988, 1990

EP REGIONAL DATA REPORT: DR 92-11

By

PATRICIA G. LIM ALAN G. COLODEY

MARCH 1992

REVIEW NOTICE

Data reports are prepared to make preliminary data available without full analysis or interpretation. This report, prepared under contract, has been reviewed by Environmental Protection, and approved for limited distribution. For further information, please contact:

> Vic Niemela Regional Director Environment Canada Environmental Protection Conservation and Protection 224 West Esplanade Avenue North Vancouver, B.C. V7M 3H7

.

- ii -

<u>ABSTRACT</u>

Environmental Protection has monitored marine waters around coastal pulpmills since 1976. Alberni Inlet has been part of this annual routine marine monitoring programme. Water quality records were kept of temperature, salinity, dissolved oxygen and colour relative to water depth. Marine sediment was collected for trace metals, volatile residue, particle size and chlorophenol analysis. Trawls of fish and crustaceans were collected, identified and analyzed for trace metals.

This data report summarizes the sampling done in Alberni Inlet by Environmental Protection in September 1984, August 1986, July 1988 and August 1990. Methods used for collection and analysis are described and results are presented without analysis or interpretation. The sole intent of this report is to provide historical data for the Port Alberni pulpmill.

RESUME

La Protection de l'Environnement a échantillonné les eaux marines réceptrices aux environs des usines de pâte côtières depuis 1976. Alberni Inlet a fait partie d'un programme d'échantillonnage marin de routine annuel. Les données de qualité de l'eau sont concentrées sur la température, salinité, oxygène dissous, et couleur en relation à la profondeur d'eau. Des échantillons instantanés de sédiment furent recueillis pour des analyses de métal à l'état de trace, de résidu volatil, grosseur de particules, et des analyses de chlorophenols. Des poissons et crustacés attrapés au chalut furent recueillis, identifiés et analysés pour métaux à l'état de trace.

Ce rapport de donnée résume l'échantillonnage fait dans l'Alberni Inlet par la Protection de l'Environnement en Septembre 1984, 1986, 1988 et Avril 1990. Les rapports de données résument les méthodes utilisées pour l'échantillonnage et l'analyse. Les résultats sont présentés en tables ou graphiques sans analyse ni interprétation. La seule intention de ces rapports est de fournir des données historiques de Port Alberni.

TABLE OF CONTENTS

Page

REVIEW	NOTICE	• • •	• •	•••	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. i
ABSTRAC	ст	• • •	• •	• •	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ii
RESUME	• • •	• • •	• •	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	iii
TABLE O	OF CONTI	ENTS .	• •	• •	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iv
	List of	Table	s.	• •	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	. v
	List of	f Figur	es	• •	•		•	•	•		•	•	•	•	•	•		•	•	•	vi
	List of	Appen	dice	s.			•	•	•	•	•	•	•	•	•	•	•	•	•	•	vi
1.0	INTRODU	OCTION	• •		•		•	•	•		•	•	•	•	•	•	•	•		•	. 1
	1.1	Study																			
	1.2	Mill																			
	1.3	Fishe	-																		
2.0	MATER17																				
	2.1																				
	2.1	1	Anal	- ytio	cal	Pr	oce	edu	ıre	s	_ `	Wa	te	r	•	•	•	•	•	•	. 8
	2.2	Sedin		-																	
	2.2.		Anal		-																
	2.3			-																	
	2.3.		Anal	_	_																
	2.4			-																	
			-																		
3.0	RESULTS		• •		•	• •	•	•	•	•	•		•	•		•	•	•	•	•	13
	3.1	Water	Qua	lity	7	• •	•	•	•	•	•	•	•	•		•	•	•	•	•	13
	3.2	Sedim	ent	Qua:	lit	у.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20
	3.3	Biota		-		-															32
				-	•																
REFEREN	NCES .	• • •	••	•••	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	36
FIGURES	3	• • •	• •	•••	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	37
APPENDI	ICES																				

LIST OF TABLES

Table

1	Alberni Inlet Sampling Summary, September 1984	. 4
2	Alberni Inlet Sampling Summary, August 1986	. 5
3	Alberni Inlet Sampling Summary, July 1988	. 6
4	List of Species Alberni Inlet Otter Trawls (AT-1 and UT-1) July 27, 1988	11
5	Summary of ENVIRONMENTAL PROTECTION Methods for Water, Sediment and Tissue Analyses	12
6	Water Quality, September 11, 1984	14
7	Water Quality, August 27, 1986	15
8	Water Quality, July 26, 1988	16
9	Water Quality, July 28, 1988	18
10	Water Quality, August 14, 1990	19
11	Description of Sediment, September 12, 1984	22
12	Description of Sediment, August 27, 1986	23
13	Description of Sediment, July 26-28, 1988	24
14	Sediment Data, September 12, 1984, Alberni Inlet	25
15	Sediment Data, August 27, 1986, Alberni Inlet	26
16	Sediment Data, July 26, 1988, Alberni Inlet	27
17	Sediment Trace Metal Concentrations, September 12, 1984	28
18	Sediment Trace Metal Concentrations, August 27, 1986.	29
19	Sediment Trace Metal Concentrations, July 27, 1988	30
20	Sediment Chlorophenols, July 27, 1988	31
21	Mean Metal Levels in Tissues Collected,	31
<i>4</i> 1	September 12, 1984	33
22	Metal Levels in Tissues Collected, August 27, 1986	34
23	Metal Levels in Tissues Collected, July 26, 1988	35
24	Alberni Harbour Tissue Bioassay Results, July 1988	35

LIST OF FIGURES

Figure

1	Location Map - Port Alberni
2	Port Alberni Dioxin Sampling Sites, 1991 38
3	Port Alberni Sample Sites, 1988

LIST OF APPENDICES

- APPENDIX I Pacific Region Pulp & Paper Industry Effluent Summary: 1987
- **APPENDIX II** Port Alberni Pulpmill Effluent Monitoring, June 14, 1990
- **APPENDIX III** Alberni Inlet Sampling Station Locations, September 11 & 12, 1984
- **APPENDIX IV** Alberni Inlet Sampling Station Locations, August 27, 1986
- APPENDIX V Alberni Inlet Sampling Station Locations, July 26-28, 1988
- APPENDIX VI Alberni Inlet Sampling Station Locations, August 13, 1990

1.0 INTRODUCTION

This report presents data collected by EP during September 1984, August 1986, July 1988 and August 1990 from Alberni Inlet. A detailed analysis and interpretation of the data is beyond the scope of this report.

1.1 <u>Study Area</u>

Alberni Inlet is a typical stratified estuary and has been extensively studied and described since the work of Tully (1949) (Figure 1). The inlet receives about 10 tonnes per day (T/D) BOD (Biochemical Oxygen Demand) loading from the pulpmill and only 173 kg/D from the next largest input, the city sewage treatment plant (BC Ministry of Environment, Lands and Parks, 1980 data).

Periodic depressions of dissolved oxygen in the inlet have been attributed to reduced phytoplankton activity linked to high effluent colour values (Parker and Sibert, 1972). The shading effect of high colour in the water apparently reduced primary production.

1.2 <u>Mill Operations</u>

Mill operations began in 1947 (unbleached kraft 220 T/D) and have expanded to the present level of kraft and groundwood production of 1,294 ADT/D (air dried tonnes per day). Primary clarifiers were installed in 1966 to remove wood solids from mill effluent and in 1970 secondary biological treatment facilities were constructed to lower the BOD loading from the mill by 50%. Sullivan (1978) presented data on the effect of changing bleaching sequences on the amount of colour in the mill effluent. Ranges of 38 to 67% colour reduction were noted using modified (HEH) bleaching sequences in May-July 1975.

Production and effluent data for 1985-7 are presented below:

	PRODUCTION		TSS	3*	BOD5		
			LOAD	ING	LOAD	ING	
YEAR	ADT/D	DAYS	kg/ADT	T/D	kg/ADT	T/D	
1985	1,232	336	8.90	11	8.00	9.86	
1986	1,131	308	9.87	11	7.91	8.95	
1987	1,294	359	7.98	10	7.65	9.90	
LIMITS:		ERAL VINCIAL		11.4 14.5		23.7 14.5	

* TSS - Total Suspended Solids

The mill conducted five toxicity tests and obtained an 80% compliance rate in 1987 with the Provincial Limit of a 96h LC50 using 80% effluent. The mill was 90% compliant with Federal TSS limits and 100% compliant with Federal BOD limits.

1.3 <u>Fisheries Resource Information</u>

Alberni Inlet supports a wide variety of resource species: chinook, sockeye, coho and chum salmon, steelhead, herring, rock cod, flounder, prawns and crabs. A major commercial gillnet and seine fishery occurs in Alberni Inlet up to Polly Point. About 1.2 million sockeye and 50,000 chinook are caught annually by gillnet and seine boats. Alberni Inlet is also the site of a major sport fishery for chinook, coho and sockeye, although no landing information is available.

Waldichuk (1987) expressed concern that low dissolved oxygen waters present in Alberni Inlet may form a migration barrier to salmon stocks destined for the Somass River. This has been an ongoing concern considering the declining salmon stocks of the west coast.

In November 1989, a national dioxin study by Environment Canada and Fisheries and Oceans Canada demonstrated the presence of dioxins and furans in harvested fish and shellfish in the vicinity of several pulpmills. Port Alberni was not on this list.

2.0 MATERIALS AND METHODS

Sampling in Alberni Inlet was done from the C.S.S. Vector on 11-12 September 1984, 27 August 1986, 26 July 1988 and 14 August 1990. Stations were located using ship's LORAN-C and radar, and positions are described in Appendices III-VI.

Figure 2 depicts the sample locations used for dioxin tests in 1990 on species destined for human consumption. Figure 3 shows the location of 1988 sampling sites.

Tables 1 to 4 summarize water quality, sediment and tissue parameters sampled, plus species collected, and techniques are summarized in Table 5.

Lab analyses were done at the EP/DFO West Vancouver laboratory. Photographs were taken at each site to characterize the area. Intertidal sediments were collected where possible.

		WATI	ER			SEDIME	ENT	
STATION	DO	CTD	COLOUR	NFR	PS	SVR	0 & G	TM
1	х	x	x	x	x	x	x	x
2	x	x	х	x	x	x	х	x
3	x	x	X	x				
4				x	x	х	x	х
5	x	x		x				
6					x	x	x	х
7	x	х		x				
8				x				
10	x	x	x	x	x	x	X	х
11	x	х	X	x	x	x	х	х
12					x	х	x	x
14	x	х	X	x	x	х	x	x
15	x		X	x	x	x	x	х
16					x	x	x	x
18	x	х	x		x	х	x	х
19	x	х	x	x	x	x	x	x

TABLE 1:	ALBERNI	INLET	SAMPLING	SUMMARY,	SEPTEMBER	1984
----------	---------	-------	----------	----------	-----------	------

	TISSUE				
SPECIES	TM muscle	TM gill	TM liver		
English sole (Parophrys vetulus)	x		x		
Slender sole (Lyopsetta exilis)	x				
Pacific hake (Merluccius productus)	x	x	<u>x</u>		
Ratfish (Hydrolagus collei)	x	x	x		

DO	Dissolved Oxygen
CTD	Conductivity, Temperature, Depth
NFR	Non-filterable Residue
PS	Particle Size
SVR	Sediment Volatile Residue
0 & G	Oil and Grease
тм	Total metals and mercury

		WATER	<u> </u>		SED	IMENTS	
STATION	DO	CTD	COLOUR	PS	SVR	0 & G	TM
1	x	x	X	x	x	x	х
2				х	x	х	x
3	х	x	x	x	x	х	х
4				x	x	х	x
5			_	x	x	x	x
6	x	x	<u>x</u>	x	x	x	х
7				x	x	x	x
8	x	x	x	x	x	x	х
10	х	x	x	x	x	x	х
11				x	х	х	х
12				x	x	x	х
13				x	x	х	х
15				x	x	х	x
18				x	x	X	x
19	x	x	x	x	x	x	x
I-1				x	x	x	x
I-3				x	x	x	x
I-4			5	x	x	х	x

TABLE 2: ALBERNI INLET SAMPLING SUMMARY, AUGUST 1986

	TISSUE				
SPECIES	TM muscle	TM liver			
Ratfish (Hydrolagus collei)	x	x			
Pacific hake (Merluccius productus)	x	x			

DO	Dissolved Oxygen
CTD	Conductivity, Temperature, Depth
PS	Particle Size
SVR	Sediment Volatile Residue
0 & G	Oil and Grease
тм	Total metals and mercury

JULY 1988
SUMMARY,
AND
STATIONS
SAMPLING
INLET
ALBERNI
TABLE 3:

			SEDIMENTS	ĽS		BIOTA	TTA	3	WATER
STATION	SVR PS	Ш	PCBs	CP/RA	ODOUR	INVERTS	TRAWLS	DO CTD	COLOUR
1	×	x	x	x	x	X		×	x
2	×	x	×	×	×	×			
3	×	x	x	x	×	X		×	×
4	х	х			x				
13	х	х	х	х	x				
5	х	х	x	x	х	х	Х	х	X
14	x	х	х	х	х				
11	х	х	х	х	х				
12	x	x			x				
10	×	x			×			×	×
19	×	x			×			×	×
32								х	X
34								×	×
A-4								×	x
SB-1	×	x	x	x	х	x		×	×
UT-1	×	×			×		X	х	X

TABLE 3 (cont.): ALBERNI INLET SAMPLING STATIONS AND SUMMARY, JULY 1988

			TISSUE	
SPECIES	TM liver	CP liver	PCB liver	Histo- pathology
Ratfish (<i>Hydrolagus collei)</i>	х	X	Х	
English sole (Parophrys vetulus)				X
Slender sole (Lyopsetta exilis)				x
Pacific hake (Merluccius productus)	х			
Prawn (Pandalus platyceros)		X	x	
Dungeness crab (Cancer magister)		Х	Х	

DO CTD PS SVR CP/RA PCBS TM

Dissolved Oxygen Conductivity, Temperature, Depth Particle Size Sediment Volatile Residue Chlorophenols & chloroanisoles, resin acids Polychlorinated phenols (Aroclor 1260) Trace metals and mercury

2.1 <u>Water Samples</u>

Samples for water quality measurements were collected throughout Alberni Inlet at 13 sites in September 1984, six sites in August 1986, 10 sites in July 1988, and six sites in August 1990. For the purposes of inter-year data presentation, the stations were divided into three groups:

Inner Harbour: Harbour area to Stamp Point and Polly Point Outer Harbour: Polly Point to Sproat Narrows Reference: Uchucklesit Inlet

Samples were collected at discrete depths with polypropylene N.I.O. (National Institute of Oceanography) water bottles using standard oceanographic techniques. Conductivity, temperature and depth (CTD) profiles were taken using a Guildline 8770 CTD/DO sensor.

2.1.1 <u>Analytical Procedures - Water</u>. Oxygen concentrations were determined in the ship's lab using the azide modification of the Winkler method. The equations of Gameson and Robertson (1955) were used in the calculation of percent dissolved oxygen saturation:

$$C = \frac{475 - (2.65xS)}{33.5 + T}$$

$$Saturation - \frac{A}{C} \times 100$$

where: C = saturation of oxygen in the sample water

- S = salinity of the sample water
- T = corrected temperature of the sample water

A = observed dissolved oxygen concentration in the sample

Nutrient samples were immediately frozen after collection (Strickland and Parsons, 1971), then analyzed using an automated colourimeter (Technicon Auto-analyzer II). Tri-stimulus colour values of previously frozen samples were determined spectrophotometrically in the lab.

2.2 <u>Sediment Samples</u>

Benthic samples were collected from 12 stations in 1984, 18 in 1986 and 11 in 1988. They were analyzed for particle size, sediment volatile residue and trace metals. In 1988 mercury, PCBs, CP and resin acid analyses were also done.

Sediment grabs were taken in 1988 at the stations depicted in Figure 3 using a stainless steel 0.1 m² Smith-MacIntyre grab. The surficial (2 cm) sediment layer was collected using a plastic scoop, avoiding the sediment near the sides of the grab. Samples for trace metal, volatile residue and particle size analysis were placed in paper sediment bags inside plastic bags and immediately frozen. Sediments collected for PCB and resin acid analysis were collected using a heat-treated metal spoon and stored frozen in heat-treated glass jars.

2.2.1 Analytical Procedures - Sediment. Sediment samples were analyzed by the EP/DFO West Vancouver Laboratory for oil and grease, trace metals, volatile residue and particle size according to the procedures described by Swingle and Davidson (1979). Oil and grease analysis included Freon 113 extractable compounds: hydrocarbons, fatty acids, soaps, waxes, fats and oils. Trace metal samples were freeze-dried and passed through a 100-mesh (0.177 mm) nylon sieve then digested in a 4:1 nitric-hydrochloric acid solution, and analyzed using a Perkin-Elmer Inductively Coupled Argon Plasma (ICAP) Optical Emission Spectrophotometer. Low-level cadmium was analyzed using a Jarrel Ash 850 Atomic Absorption Spectrophotometer (AAS) with an FLA 100 graphite tube furnace.

2.3 <u>Tissue Sampling</u>

Tissue samples were collected using a small otter trawl which consisted of a 3.8 cm mesh net with a 5.8 m throat. The trawl was towed with a 3:1 scope for approximately 0.5 km. Trawl catches were enumerated by species. Tissue samples were taken from selected fish specimens using a stainless steel scalpel and forceps and included dorsal muscle (with skin removed), liver and soft gill tissues. All tissue samples were frozen individually (except gill composites) onboard in whirlpac bags for later analysis. Table 4 lists the species found in 1988 otter trawls.

2.3.1 <u>Analytical Procedures - Tissue</u>. Tissue trace metals were analyzed at the West Vancouver Laboratory according to procedures described by Swingle and Davidson (1979) as follows: tissue samples were thawed, blended, freeze-dried and oxidized in a low temperature asher. The ash containing the metallic salts was then dissolved in warm concentrated nitric acid. Samples were analyzed on the Inductively Coupled Argon Plasma (ICAP) Optical Emission Spectrophotometer. Tissue levels that were below the ICAP detection limit for cadmium and lead were analyzed by the Jarell Ash 850 Atomic Absorption Spectrophotometer (AAS) with an FLA 100 graphite tube furnace.

For mercury, the blended and freeze-dried samples were dissolved in a 4:1 sulphuric acid-water mixture. These solutions were further oxidized with 50% peroxide, heated, cooled and diluted with potassium permanganate. The resultant solutions were then analyzed by "cold vapour" AAS with background correction.

2.4 <u>Quality Control</u>

Standard reference materials Lobster Tail (NRC), Oyster Tissue (NBS), Bovine Liver (NBS), BCSS Marine Sediment (NRC) and MESS Marine Sediment (NRC)were analyzed with each batch of samples processed. If significant differences were observed between measured and certified values, methods were checked and the samples re-run. Quality control results are recorded, and are available at the Environment Canada laboratory in West Vancouver.

SPECIES	STATION AT-1	STATION UT-1
White Anemone (Metridium senile)	6	0
Orange Anemone (Stomphia sp.)	2	0
Coonstripe Shrimp (Pandalus danae)	1	0
Crangon Shrimp (Crangon commun)	40	108
Sidestripe Shrimp (Pandalopsis dispar)	9	6
Smooth Pink Shrimp (Pandalus jordani)	0	30
Octopus (Cephalopoda)	0	2
English Sole (Parophrys vetulus)	3	0
Large Slender Sole (Lyopsetta exilis)	2	2
Medium Slender Sole (Lyopsetta exilis)	16	32
Small Slender Sole (Lyopsetta exilis)	15	66
Blackbelly Eelpout (Lycodopsis pacifica)	19	4
Midshipman (Porichthys notatus)	6	2
Pacific Staghorn Sculpin (Leptocottus armatus)	1	0
Ratfish (Hydrolagus collei)	3	0
Stickleback (Gasterosteidae)	3	0
Pacific Tomcod (Microgadus proximus)	19	0
Pacific Hake (Merluccius productus)	0	2
Pygmy Poacher (Odontopyxis trispinosa)	0	4
Long Spine Combfish (Zaniolepsis latipinnis)	0	2
Prawn (Pandalus platyceros)	5	<u> </u>
Crab (Cancer magister)	4	0

TABLE 4: LIST OF SPECIES, ALBERNI INLET OTTER TRAWLS (AT-1 and UT-1), JULY 27, 1988

TABLE 5: SUMMARY OF ENVIRONMENTAL PROTECTION METHODS FOR WATER, SEDIMENT AND TISSUE ANALYSES

-

SAMPLE TYPE	METHODS	REFERENCE
WATER		
Salinity, temperature, depth	CTD	Goyette & MacLeod, 1984
Dissolved Oxygen	Azide Modification of Winkler	Swingle & Davidson, 1979 Gameson & Robertson, 1955
Colour	Spectrophotometer	Swingle & Davidson, 1979
SEDIMENT		
Particle Size	Freeze drying, Screening	Swingle & Davidson, 1979 Griffiths, 1967
Trace Metals	ICAP Optical Emission Spectrophotometer	Swingle & Davidson, 1979 Millward & Kluckner, 1989
Volatile Residue	Wt. loss on ignition 550°C for 1 hr.	Swingle & Davidson, 1979
TISSUE		
Trace Metals	ICAP Optical Emission Spectrophotometer	Swingle & Davidson, 1979

3.0 RESULTS

3.1 <u>Water Quality</u>

· --

Salinity, temperature, dissolved oxygen (DO), % oxygen saturation and colour data from Port Alberni water quality stations are listed in Tables 6 to 10. Results of effluent monitoring for the Port Alberni mill on June 14, 1990 for chloroanisoles, chlorophenols and resin acids are found in Appendix II.

STATION	DEPTH	DO	COLOUR	NFR
	(m)	(mg/L)	(ADMI)	(mg/L)
1	0	5.90	35	15.7
	5	3.30	5	16.7
	10	3.00	5	16.7
2	0	7.85	18	16.7
	5	3.30	5	18.0
	10	3.05	5	17.1
3	0	7.35	24	9.0
	5	3.30	5	16.6
	10	3.20	8	18.6
	15	2.80	5	18.4
4	0 5 10 15	- - -	-	10.7 16.9 19.8 19.2
5	0 5 10 19	6.90 4.75 4.40 2.80	-	9.9 18.1 18.9 22.7
7	0 5 10 20 30	7.05 3.80 - 4.15 2.55		16.0 19.1 17.7 21.4 25.0
8	0 5 10 20 55		- - - - -	22.6 18.9 19.2 21.8 31.5
10	0 5 10 20 50 63	7.40 4.85 4.40 4.00 2.85 1.90	18 5 5 5 5 5 5	21.0 21.6 12.9 19.7 11.7 14.1
11	0	7.85	17	18.5
	5	7.45	6	22.0
	10	3.60	5	18.9
	15	3.20	5	17.5
14	0	6.70	25	10.3
	5	3.10	5	26.2
15	0	7.00	27	12.4
	5	3.60	8	15.0
	10	3.80	5	20.8
	14	3.10	5	18.0
18	0 5 10 50 95	7.70 5.30 4.90 3.30 3.10	11 5 5 5 5	-
19	0	8.50	5	12.9
	5	5.60	26	18.5
	10	5.65	5	18.6
	50	3.90	5	19.1
	120	3.20	5	20.2

TABLE 6: WATER QUALITY, SEPTEMBER 11, 1984

- No data available due to sampling error

STATION	DEPTH	SALINITY	TEMPERATURE	DO	%	COLOUR
	(m)	(ppt)	(°C)	(mg/L)	SATURATION	(ADMI)
INNER HARBO	DUR					
1	0	9.7	22.3	8.3	103.1	13
	2	27.0	13.7	5.8	67.9	9
	5	30.9	10.5	3.2	35.8	6
	10	31.4	9.8	2.6	28.7	7
3	0	13.2	21.3	8.5	105.9	11
	2	27.0	14.0	5.2	61.2	7
	5	31.4	9.8	3.3	36.5	8
	10	31.6	9.5	2.7	29.7	7
	15	31.7	9.3	2.8	30.6	7
6	0	10.5	22.1	7.7	95.8	13
	2	28.1	13.2	3.5	40.8	10
	5	30.8	10.7	-	-	7
	10	31.5	9.9	3.0	33.2	7
	15	31.6	9.5	3.2	35.2	7
OUTER HARBO	DUR					
8	0	13.9	21.0	8.2	102.0	12
	2	19.7	18.3	2.5	30.6	9
	5	31.3	10.6	3.5	39.4	7
	10	31.6	9.9	4.3	47.7	6
	15	31.7	9.6	3.8	41.9	6
	25	32.0	8.9	5.7	61.9	6
	50	32.7	8.2	2.5	26.8	7
10	0 2 10 15 25 50	12.0 24.4 29.8 31.7 31.4 32.0 32.3	21.6 16.0 12.0 9.7 9.4 9.1 8.7	8.2 6.6 4.9 4.0 3.9 3.2 2.6	102.0 79.6 56.3 44.2 42.7 34.9 28.2	10 9 7 6 6 6 6
19	0	17.0	20.5	8.7	109.3	12
	2	21.8	15.1	8.3	96.7	12
	5	31.5	10.5	5.9	66.3	7

10.2

9.9

8.9

8.7

8.9

6.2

5.6

5.3

3.8

4.2

31.7

31.8

32.2

32.4

32.4

10

15

25

50

120

7 7 7

6 7

5

5

69.3

62.2

57.7

41.2

45.8

TABLE 7: WATER QUALITY, AUGUST 27, 1986

STATION	DEPTH	TEMPERATURE	SALINITY	DO	%
	(m)	(°C)	(ppt)	(mg/L)	SATURATION
INNER HARE	BOUR				
1	0	20.9	5.3	5.5	64.9
	2	18.6	-	3.9	-
	5	9.7	31.3	0.7	8.2
3	0	22.8	3.3	5.1	61.5
	2	13.2	12.4	4.1	42.8
	5	9.6	31.5	1.0	11.1
	10	9.3	31.8	1.3	14.6
	15	9.3	31.9	1.3	14.4
32	0	22.3	4.0	4.7	56.4
	2	19.8	9.1	5.4	63.7
	5	9.8	31.3	0.9	9.9
	10	9.4	31.8	1.3	14.1
	15	9.3	31.7	2.2	24.1
34	0	21.9	4.7	4.9	58.4
	2	17.0	16.2	4.1	48.4
	5	9.6	31.4	1.5	16.5
	10	9.4	31.7	0.6	6.0
5	0	20.9	6.8	6.8	80.9
	2	19.2	9.0	5.4	63.1
	5	9.7	31.0	1.3	14.3
	10	9.4	31.8	0.3	3.3
	15	9.3	31.9	1.0	10.6
	20	9.2	32.0	1.1	12.1
OUTER HARE	SOUR				
10	0	21.4	6.3	6.9	82.6
	2	21.3	10.0	5.3	64.7
	5	10.2	30.5	1.7	18.8
	10	9.3	31.8	1.9	21.8
	15	9.2	32.0	1.7	18.8
	20	9.2	32.0	1.0	10.6
	50	8.8	32.3	2.2	24.3
	60	8.7	32.3	2.7	28.9
19	0	20.5	12.0	7.5	91.4
	2	17.3	17.5	5.5	65.2
	5	9.9	30.5	2.7	29.7
	10	9.1	31.9	2.8	30.6
	15	9.1	32.0	2.7	29.0
	20	9.1	32.0	2.8	30.7
	50	8.7	32.3	2.9	31.2
	120	8.6	32.4	2.8	30.5

TABLE 8: WATER QUALITY, JULY 26, 1988

STATION	DEPTH	TEMPERATURE	SALINITY	DO	%
	(m)	(°C)	(ppt)	(mg/L)	SATURATION
OUTER HARE	OUR				
A-4	0 2 5 10 15 20 50 120 200	18.7 17.0 9.6 9.3 9.0 8.9 8.3 8.0 8.0 8.0	19.0 21.2 31.4 31.9 32.0 32.1 32.6 32.8 32.9	7.5 6.0 3.8 3.6 3.2 3.3 2.7 2.3 2.5	92.2 72.3 41.8 39.4 34.9 35.3 29.1 24.6 26.7
REFERENCE	AREA				
UT-1	0	-	18.2	8.5	-
	2	13.0	29.0	6.8	79.5
	5	9.9	31.7	4.7	52.2
	10	9.4	31.9	4.1	44.9
	15	9.2	31.9	1.0	43.4
	20	8.0	32.0	3.6	37.9
	50	8.3	32.6	2.7	29.1
	65	8.3	32.7	2.5	26.9
SB-1	0	19.9	9.6	7.1	84.3
	2	15.9	25.9	7.5	91.2
	5	10.8	31.3	7.1	80.2
	10	9.3	31.8	3.6	39.9
	18	9.0	32.0	3.3	35.9

TABLE 8: WATER QUALITY, JULY 26, 1988

- Missing data

STATION	DEPTH	TEMPERATURE	SALINITY	DO	%
	(m)	(°C)	(ppt)	(mg/L)	SATURATION
INNER HAR	BOUR				<u></u>
1	0	20.2	2.0	5.8	66.3
	2	20.1	7.8	4.8	56.6
	5	11.8	29.0	0.5	6.1
	10	9.4	31.7	0.5	5.2
3	0	20.2	3.3	6.8	78.6
	2	20.3	5.2	5.5	64.2
	5	14.5	24.5	2.0	22.9
	10	9.3	31.8	0.7	8.1
	15	9.2	32.0	1.2	13.1
5	0	20.1	4.5	6.3	73.1
	2	20.0	6.3	4.9	57.2
	5	10.7	29.6	1.1	12.7
	10	9.4	31.7	0.7	7.1
	15	9.3	31.9	1.0	10.6
	20	9.1	32.0	1.1	12.3
OUTER HAR	BOUR				
10	0	19.8	6.7	6.3	73.5
	2	19.5	11.5	5.1	60.8
	5	11.9	27.4	2.0	22.6
	10	9.4	31.8	1.8	19.3
	20	9.1	32.1	1.3	14.3
	50	8.7	32.3	2.5	27.2
	60	8.7	32.3	2.4	26.5
19	0	18.9	13.1	6.4	76.1
	2	18.4	15.2	5.2	62.1
	5	10.9	29.7	2.7	30.2
	10	9.4	31.6	2.7	29.6
	15	9.1	31.9	2.8	30.6
	20	9.1	32.0	2.9	31.7
	50	8.7	32.3	3.2	34.7
	120	8.6	32.4	2.9	30.9
A-4	0 2 5 10 15 20 50 120 200	17.3 16.6 15.7 9.3 9.1 8.9 8.3 8.0 8.0	19.6 21.1 24.6 31.8 32.0 32.1 32.7 32.9 32.9 32.9	7.1 6.2 5.7 3.8 3.2 3.2 1.8 2.6 2.5	84.6 74.1 68.4 41.7 34.9 34.8 19.4 27.8 26.3
REFERENCE	AREA				
UT-1	0 2 5 10 15 20 50 65	19.1 16.9 12.5 9.3 9.1 8.9 8.3 8.2	20.8 25.6 31.2 31.8 31.9 32.0 32.6 32.7	7.8 6.3 3.7 3.0 3.5 2.5 2.5	97.7 78.0 73.4 40.5 32.7 38.1 26.9 26.9

TABLE 9: WATER QUALITY DATA, JULY 28, 1988

STATION	DEPTH	TEMPERATURE	SALINITY	DO	%
	(m)	(°C)	(ppt)	(mg/L)	SATURATION
1	0	22.7	5.9	5.3	64.8
	2	21.9	14.4	4.9	62.1
	5	15.4	26.8	0.1	1.3
	10	10.8	30.8	2.8	31.5
3	0	-	-	5.6	-
	2	21.9	12.4	5.4	67.7
	5	15.6	25.6	1.7	20.5
	10	10.6	31.1	2.3	25.8
	15	10.2	31.4	2.6	29.0
10	0	20.9	15.2	5.9	73.9
	2	20.8	15.1	5.8	72.4
	5	15.8	25.1	4.8	57.9
	10	10.8	31.2	4.4	49.7
	15	10.3	31.4	3.6	40.3
	20	10.1	31.5	3.1	34.5
	50	9.1	32.1	2.5	27.3
	100	8.9	32.3	2.3	25.0

TABLE 10: WATER QUALITY, AUGUST 14, 1990

- No Data

3.2 <u>Sediment Quality</u>

Results of sediment sampling in Alberni Inlet are summarized in Tables 11 to 20. Sediment chemical and physical characteristics were sampled at 12 stations in 1984, 15 in 1986, and 13 in 1988. For the purposes of inter-year data presentation, the stations were divided into two groups:

Inner Harbour: Harbour area to Stamp Point and Polly Point Outer Harbour: From Polly Point towards mouth of inlet

The visual descriptions and physico-chemical parameters of the sediments collected from the Inner Harbour indicate degraded benthic conditions (Tables 11 to 15):

- reducing (anaerobic) sediments

- high oil and grease levels
- high sediment volatile residues
- large amounts of wood fibre and bark debris
- few benthic invertebrates

The most severely impacted sediments in 1986 were found nearest the outfall (Stations 1, 2, 11, 13) to a distance of about 0.9 km. When the visual appearance of the stations were examined between years, it was apparent that the stations nearest the outfall were consistently described as degraded and anoxic. Sediment quality at other stations was more variable between years.

These findings are consistent with information on the diversity and abundance of benthic invertebrates in Alberni Inlet (McGreer, 1984). There were reduced numbers of taxa and abundance of invertebrates found within 750 m of the mill outfall. Amphipod species were noticeably absent from most samples. Abundances were highly variable between years.

The widespread contamination of the Inner Harbour with high levels of oil and grease, and large amount of bark debris reflect the multiple inputs into the harbour: pulpmill effluent, log-booming and storage debris, sewage treatment plant, sawmill and lumber mill. Sediments in the Outer Harbour were generally less impacted in terms of oils and grease, and bark debris. Although the sediment volatile residues were similar in both areas, the Outer Harbour had generally aerobic sediments. The following changes in concentrations were apparent:

INNER HARBOUR

Mercury - declined since 1980 Cadmium - mainly declined Copper - no pattern apparent Lead - no pattern apparent Zinc - general decline OUTER HARBOUR Mercury - declined since 1980 Cadmium - unchanged from 1981 Copper - increased Zinc - declined since 1980

These trends were not corrected for differences in lab percent recovery of each metal, which may differ between years.

STATION	DEPTH (m)	VISUAL DESCRIPTION
INNER HAP	BOUR	
1	8	black fibres and Beggiatoa, bacterial; reducing
2	13	1) fine black reducing fibres with <i>Beggiatoa</i> ; yellow slime 2) same as above; no yellow slime
4	21	 not as black as Station 12; somewhat coarser; many white bivalves (1 doz/grab); Capitella; Solemya reidii, (several/grab) same as above with coarser wood fibres; i.e., chunks of bark
6	27	slightly reducing sand/silt; wood particles; worm tubes
11	20	 light brown silt overlying black reducing muck same as above; worm tubes
12	22	very fine wood fibres; expanding grey/black mud; H ₂ S odour; worm tubes; <i>Solemya reidii; Capitella;</i> white bivalves
14	8	 dark black reducing mud and wood debris same as above; Beggiatoa
15	17	very fine clay/mud substrate; non-reducing; coarse wood debris; transluscent white tunicates attached to worm tubes
16	11	mostly bark; some fine black reducing sediment
OUTER HAR	BOUR	
10	70	grey/green mud with errant polychaetes; not strongly reducing; a few small stones; no bivalves visible; debris; bark; twigs
18	102	brown, non-reducing mud; worm tubes and branches
19	131	brown, non-reducing sediment; worm tubes

TABLE 11: DESCRIPTION OF SEDIMENT, SEPTEMBER 12, 1984

STATION	DEPTH (m)	VISUAL DESCRIPTION
INNER HAR	BOUR	
1	14	black reducing mud with white bacteria, <i>Beggiatoa</i> ; wood fibres and bark; amphipods swimming in water
2	16	 black, reducing, fine mud; oily; no signs of life black, reducing, fine mud with white fibres and bacterial growth only; no signs of life
3	18	brown sandy mud with bivalves; many polychaete tubes and maldanids
4	22	grey/brown silt and mud, non-reducing; white bivalves; errant polychaetes
5	22	soft, non-reducing sediment; worm tubes
6	28	 non-reducing; no wood waste; small pebbles non-reducing sediment; some wood debris
11	19	 thin coating of brown silt overlying black reducing mud and gravel; Solemya reidii no brown coating of silt; reducing with bacteria
12	23	fine grey mud with polychaete tubes and small white bivalves and errant polychaetes
13	13	 fine, black, reducing mud; oily; wood fibres; no signs of life brown sandy silt; wood bark; crab legs; eelgrass; small white bivalve; gastropod
15	17	aerobic brown mud with worm tubes; many white clams; bark and twigs
OUTER HAR	BOUR	
7	36	 soft, grey, non-reducing sediment; shell/pebble fragments soft, grey, non-reducing sediment; wood debris
8	61	soft, non-reducing sediment; some wood debris
10	65	soft, grey/brown, non-reducing sediment
18	107	soft, brown, non-reducing sediment
19	127	soft, non-reducing sediment; worm tubes

TABLE 12: DESCRIPTION OF SEDIMENT, AUGUST 27, 1986

TABLE 13: DESCRIPTION OF SEDIMENT, JULY 26-28, 1988

-

STATION	DEPTH (m)	VISUAL DESCRIPTION
INNER HAR	BOUR	
1	12	black reducing mud; no biota present; debris included white fibres, leaves, bark, pieces of wood, oil from grab
2	14	black surfaced, reducing, grey-green mud; some polychaetes present; debris of twigs, bark, leaves, white fibres, 1 clam shell
4	23	odourless grey-brown mud; some polychaete tubes present; bark and leaves
3	19	odourless, grey-green, clay-like mud; numerous clams and polychaete tubes; woodstem debris
13	19	grey-green mud; clams, tunicates and numerous polychaetes present
5	25	grey-green sandy mud; numerous clams, polychaetes and tubes; debris of bark, shells, wood
14	11	black surfaced, grey-black reducing mud; polychaetes present; wood, bark, and fibre debris
11	21	grey-black reducing mud; no biota present; fibres and some wood debris finer mud than that of station 14
12	24	grey-black surfaced grey-green mud; slight reducing odour; polychaetes present; fibrous debris
OUTER HAR	BOUR	·
10	71	grey-green sandy mud, with grey-brown surface; polychaetes and clams present; debris of shells and fungi
19	131	grey-brown sand, without odour; polychaetes present; shell and bark debris; second grab more a grey-green clay texture
REFERENCE	AREA	
SB-1	18	odourless brown mud, with a grey-brown surface; numerous clams and polychaetes present; shells were the only debris
UT-1	64	green mud; heart urchins present; shells were the only debris

_
INLET
ALBERNI
1984,
12,
SEPTEMBER
DATA,
SEDIMENT
14:
TABLE

		 			SILT AND	AND CLAY	V		SVR (8)	(8)	_		OIL AND	OIL AND GREASE	
	(u)		MEAN		Replicates	cates	:		Replicates	cates	1		Repli	Replicates	
STATION	-	7	PARTICLE SIZE	MEAN	1	2		MEAN	٦	2		MEAN	1	2	с.V. (в)
INNER HARBOUR	BOUR														
-	eo g	80	fine sand	11.45	12.7	10.2	15	14.75	14.4	15.1	, M	2450	2600	2300	0
N •	51	۲ ۲	fine sand	14.15	6.90	1.5	~;	11.45	10.4	12.5	<u>ت</u>	1100	1100	1100	•
4 40	52	នស	medium sand	25.55 18.60	15.0	2.2	27	9.88 9.92	8.6	10.01	~~~	220	004 7004	600	1128
=	20	20	fine sand	21.05	19.5	22.6	2	11.50	10.9	12.1	~	1250	1300	1200	2
12	ខ	2,	fine sand	24.20	27.0	21.4	15	9.97	10.2	9.7	m	900	600	006	0
4 V	80 L	80 L	fine sand medium cand	15.35	12.2	18.5	8:	2.2	15.3	14.1	96	2150	1900	2400	2:
16	:=	: <u>p</u>	fine sand	9.80	10.1	9.5	4	23.30	20.5	26.1	17	3350	3400	3300	° 0
MEAN	16	16	fine sand	17.78	17.5	18.1		13.02	12.5	13.6		1310	1300	1300	-
MAX	27	25	_	25.95	28.3	23.6		23.30	20.5	26.1		3350	3400	3300	
10	2	2	medium sand	22.85	23.6	22.1		11.60	11.7	11.5		450	007	200	16
8 <u>,</u> ç	22	108	medium sand	15.10	19.7	10.5	53	15.40	12.1	15.7	m	450	009	200	14
				61.01	+-03	6.2	0	66.61	2.6	C.C.	-	000	nnc Nnc	000	
MEAN	101	103	madium	18.70	21.2	16.2	22	13.45	13.3	13.6	7	467	500	433	
МАХ	130	132	sand	22.82	23.6	22.1	43	15.40	15.1	15.7	S	500	600	200	

TABLE 15: SEDIMENT DATA, AUGUST 27, 1986

	DEPTH	ਸ ਸ	MEDIAN	MEDIAN PARTICLE SIZE		S	SILT & CLAY	×		SVR (%	(%)			OIL & GREASE (vg/g	ASE (ug/g)	
	E		Size (mm)	Description	MEAN	Rep.1	Rep.2	c.v. (%)	MEAN	Rep.1	Rep.2	с.v. (%)	MEAN	Rep.1	Rep.2	C.V. (%)
INNER HARBOUR	our															
-	14	14	0.125	fine sand	18.9	16.8	21.0	16	17.61	19.1	16.0	12	1645	2000	1290	5
NM	5 <u>5</u>	2 82	0.125	fire sand v. fire sand	20.5	30.1	18.9 26.9	5	2.8 12.5	12.2	13.4 12.8	∼ m	85	5/5 718	890 824	88
4	25	23	0.125	fine sand	29.7	30.8	28.6	5	12.0	12.0	6.11.9	~ (429	389	897	۳: ۲:
<u>.</u>	5	5	0.25	meatum sand	0.0	C4.U	0.7	3 3	 	0	n	>	20	241	noci	2
ŝ	ស	21	0.125	fine sand	31.1	30.7	31.4	2	11.6	10.9	12.3	0	507	453	560	5
5	17	17	0.125	fine sand	25.5	24.8	26.1	4	13.4	12.5	14.2	•	728	611	845	23
=	\$	6	0.125	fine sand	25.0	21.2	28.7	21	10.5	8.2	12.8	Ē	926	1010	942	5
24	ខ	2×	0.063	v. fire sand	30.2	28.6	N. 4	- u	2.C	13.6	12.8	46	626	8 2 2 2 2 2 2	886 410	60 v
	NOUR	-														
01	65	$\left \right $	1.000	v. coarse sand	17.4	17.4			15.6	15.6			378	378		
~	38	36	0.125	fine sand	22.6	22.8	22.4		12.3	12.8	11.8	·0·	486	567	405 201	54
ю ;	85	8	0.500	coarse sand	20.6	19.2	21.9		9.4	2.1	13.2	\$ \$	458	431	484	00
00	126	127	0.500	coarse sand	14.9	16.9	12.8	20	18.1	17.7	18.5	<u>o</u> N	270	256	284 284	70
INTERTIDAL SITES	SITES															
	F	F						ſ	ſ							
			1.000	v. coarse sand			0.1	0	4 C		м. • с	14	34.8	30.7	38.8	16
	<u> </u>		0.250	medium sand	4 M	7.0 0.3	0.2	582	0.8		0.7	0 -4	32.5	34.8	30.1	, 5

STATION	DEPTH	MEDIAN	I PARTICLE SIZE	SILT AND	SVR	PCBs
	(m)	Size(mm)	Description	CLAY (%)	(*)	(µg/g)
INNER HAR	BOUR					
1	12	0.063 0.063	very fine sand very fine sand	43.1 33.7	17.2 17.7	0.33 0.07
2	14	0.063 0.063	very fine sand very fine sand	28.8 33.6	10.6 10.0	0.05 0.07
3	19	0.063 0.063	very fine sand very fine sand	44.8 41.3	9.5 10.8	0.11 0.12
4	23	<0.063 <0.063	silt and clay silt and clay	51.0 53.2	9.4 10.1	-
13	19	0.125 0.125	fine sand fine sand	26.4 24.2	13.3 14.7	0.10 0.04
5	25	0.063 0.063	very fine sand very fine sand	44.2 48.8	11.0 10.0	0.03 0.04
14	11	0.125 0.125	fine sand fine sand	31.1 30.7	16.1 15.7	0.01 0.05
11	21	0.063 0.063	very fine sand very fine sand	37.4 35.7	13.6 13.6	0.11 0.18
12	24	0.063 0.063	very fine sand very fine sand	37.2 33.7	11.0 11.2	-
MAX	25			53.2	17.7	0.33
MEAN	19			37.7	12.6	0.09
STD	5			8.4	2.8	0.08
CV (%)	28			22.4	22.1	87.09
OUTER HAR	BOUR					
10	71	0.125 0.063	fine sand very fine sand	29.9	13.2	-
19	131	0.063 0.125	very fine sand fine sand	33.4	12.8	-
MAX	131			38.7	18.2	
MEAN	101			34.1	15.2	
STD	42			3.6	2.6	
CV (%)	42		- <u></u>	10.6	17.1	
REFERENCE	AREA					
SB-1	18	0.125 0.125	fine sand fine sand	25.0 29.1	21.4 21.8	-
UT-1	66	0.250 0.125	medium sand fine sand	25.0 15.7	15.9 16.7	-
MAX	66			29.1	21.8	
MEAN	42			23.7	19.0	
STD	34			5.7	3.1	
CV (%)	81			23.9	16.3	

TABLE 16: SEDIMENT DATA, JULY 26, 1988

- Not detected

1984	
12,	
SEPTEMBER 1	
CONCENTRATIONS,	
METAL	·
TTRACE MET	
SEDIMENT	
TABLE 17:	

	4 7																							ā	ž	3	2.6							E	ł	a a	8	3.61
		2	121	5	Ĩ	1	5	157	ž	X	3	2	6	Ä	N	3	3	3	E	151	<u>.</u>	137	2		2	2	23		8	3	X	Ī	Z	X	ł	i S	2	3.N.
	11				N.X		2470	3140			9110	92.					11		2120	2110	2760	Ĩ	2710		3962	3	13.4						Ĩ	Ĩ		Ì	3	2
	a	8	2.7		5.1	K. 3	2.7	19	5.4	45.2	5	7.2	57.1	8.2	3	X. 6	3 .7	5.1	2.3	4).6	.	5.5	61.2	3	2.1	9.9	11.5	111	3	69.7		•.a	3	1.0	Į			7:2
	3	8			1210		1230	101	Ż	3	21	9	201	1310	8	2	R	53	211	1220	1610	ž	N	Į	ž	ž	1	Ē			1679	2 I	1670			63	= :	11.1
	2		, , , ,	m	•				-	~	-	-		-		-	•	-	~	~	.		-	-	-		37.0	-			[]	-			•	-	•	►
	•	ž	Ξ	3	Ŕ	ž	ž	ł	3	35	14	ş	¥	Ē	120	ĩ	F	=	2	2	£	ž	1/6		ā	2	1.3	Ĩ	E	20	83	22	1610	Ĩ			5;	
	2	×	×	*	8	8	3	×	*	8	Ħ	Ŧ	×	*	*	R	Ŧ	Ħ	X	R	31	Ħ	ж	Ţ	R	•	5.5	R	R	8	ħ	Ŧ	8	Ä	1	; #	~ (
	2	150		5	9 29	5/6	ŝ	ij	215		Ĩ	9 8 8	5	Ē		63	6770			376		1976		11600	22		20					Ż	12000	Ī				1
	2	ŝ	Ş	Ş	ŧ	Ŧ	ŧ	ž	Ş	422	Ş	471	Ş	ž	Ş	ŧ	264	ŧ	17	ą	\$	ŧ	Ş	Ę	đ	2	1.1	17	3	5	3	3	3	53	Į	ĪĨ	۳ ;	
	£	13366	00+C1		15100	00/21			WALL	12306	15200		13546			15200	15200		1	NKC1	OOCHI	1530	¥.	15200	1	2	3.7	16200	821			21200		1960				
	2					43700	1012		99474	2.2.E			1310		8		12/00			1 27	9	42166					2.6	44786		ļ	52300		90/34					7
	3	2	1.2	8.5 2	1.1	2.1	7-16	1 3.2	X.5	n.3	% .5	9.3	1 3.8	2	8	*	1.18	. ,	76.8	2.9	13.9	9.1	91.4	5.4	2.3		10.0	1	N. 3	2	11	=	ē	Ĩ		- -		
	5	9.5	62.1	61.6	1. 1	•••	1.1	62.1	2.2	2	3	2	5.5	6.5	5.3	2	6. 3	6.1	5.5	5.3	61.7	Ż	5.4	2	5.3	1.1	3	X.3	2	"	2.2	2.5	13.9	14.4	5	Ē	::	
	3	2.9	2.0	27.5	2.7	13.4	14.3	X. 1	Ø	21.5	8	.	13.2	2	n.1	1.1	27.7	27.7	13.7	22.6	16.3	21.0	%	đ	23	77	17.4	2.1	13.4	11.3	23.6	27.6	2	24.1	1	iä	~~~	
	8	ŧ	ŧ	2	Ŗ	-	1.10	Ŗ	R . U	N .	2	X :	s :	R .	2	Ŗ	8	Ŗ	7.8	~	5.8	2	Ŗ	~	8.1	Ę	K.2	1.20	871		2	2	2	8	1	ļŦ	z ;	
	3		1220	12700		12100	12200		00021		1256	1230								Ĩ	5					99	7				11/10					Ē	i:	
ą	2	'n	ŗ	ņ	ŗ		7	ų	•	7	'n	•	7	~ `	ų.	ņ	i	•	 ,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	₹.	ņ	•	4	•	-	ñ	-		ņ	ų,	ŗ	ż	ŗ	•	i J	-:	
KTALS (up/g fry ut)	2	2.1	5.5	6.5	67.1		5.3	57.1	2	~.8	59.1	7		Ţ	5.7	3	#	5.3	k.J	2.2	5.1	£.4	÷ Ľ		3	5	2	62.10	5.2	3	2.7	5.5	52.9	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	3	33	
_		31000			Ĩ																	ž		Ţ		ÿ	F 2	X	N.X							Ī	Ì.	•
TUTAL	£	Ŧ	Ħ	26.	2	Į	Ę	¥	8	52.	EIS.	Ę	5	Ä	E.	Ŗ	Ę	-	.7	.710	3	ä	ij	E	Ę.	3	X	52.	5	8	121		29.	Ş		Ē	ē.]	ł
STAT DON		-		~		•		*			2		2		:			1	13			•		7		E		2		!	2		2				6 2	

MUTE: All assurements of Sn ((2), No ((0.8) and As ((3) were below detection limits

1986
27,
AUGUST
METAL CONCENTRATIONS,
TRACE
SEDIMENT
TABLE 18:

	v 2		12	5	2	2	23	ĒĮ	12	ĩ	5	1 A	2	21	i ž	8	ā	2	2 \$	5			15	EI2	8	<u> </u>	E	3	8	<u>n</u>	1 , 21		Ä	2		2	ä	a i	2
	•	S 11	1	2	š s	: 5	23	R 5	12	8	H	R 2	121	53	<u> </u>	ž	Ä	ž.	•	•		Ē	13	E	8 2		13	Ä	Ħ	<u> </u>	6 3		g	3	, , , , ,	23	<u>1</u>	38	i k
	2	23	<u> </u>	2		3	<u>.</u>		2	167	3		ž		Ē	N 91	ğ	ğ	3 -	•				3			Ĩ	ž		Ēł	s =		2			1	NSI 12M	35	3 x
	ž	i i	1	9.6				Ì	5	8.3 1	3		8			9.6	2.4	3	3 -	•	i	23	i d	5.)	i i		Ē	31.1	Ŧ	7.6]a		21.9	2.7	Ş s	3.) 1	R. 8	N.	3 s
	3	5	•	•	-	•	•	• =		-	- 1	n ~	=	m e	•	12	2	~ (~ x		•	• :	: ^	2	n 3	: 5	:=	2	2	27	7 2		*	2 1	2	: 2	2	83	- ;
	3	<u>8</u>	: \$	5	B #	8	5	; ;	8	Ħ	Z I	5 3	ŧ	R 3	ŧ M	R	5	R:	7 2	8		R I	8	5	£ 5	1	3	23	5	R a	F 7		2	3	ł	; Z	2	<u>a</u> X	₹,
	8	88	1	81	9 8	2	R 1	R 8	1 2	8	2	5 7	5	R I	7 X	8	R	8	N P	•	ł	R 7	: 8	8	X 1	: 1	: X	×		R 7	- =		3	3	2 3	: #	Ŧ	3\$	= 7
)	•	53	83	3	Ęź	3	23	35	E	3	23	i 2	5	21	Eġ	3	M	g :	7.	•	1	2 3		2					Ĩ	<u>B</u> s	¥2		111	3 i	1	i Ŧ	53	83	3 5
1	i	88	: #	a 1	2	R	# i	R 8	: 8	8	R :	3 8	ន	A X	2 8	×	Ħ	8	N W		1	X	; A	2	* *	; A	. XI	8	R :	x '	-		R	7 7	3	K 18	\$	**	~ 3
•	1	į	ŝ	826	Į	Ĩ			ŝ				8			3			<u> </u>	2				Ĩ				J.		Į	Įa		0021	2		2 2		8.2 20	ž z
	2	22	•	22	5 T			23	1					2];	••	7	3:	3	3				•••				-	-	-	:3		•••				•••	• •	••
		X 9	2	¥	5 Đ	ŧ	Ŧ		1	5	R 1	13	Ş :	ş 3	₹	Ŧ	Ş	Ş;	5 7	•	Į	3 5	12	2 -	ð)	13	5	ž	Ř	Ŧ;	4 =		2	21	5 5	3	165	2 A	Īz
•	2	12000	12000			13300			WIC1				12100			12200			ļa	,			94/61	Ĩ	Ēį	2110	MSM	Ĩ	2110		1 =			.		5	-	N (SE	<u>9</u> 2
	2	3)/266	3366								1		A MAR			N.	ŧ		-	•				10/62			Ŧ	3			j =		esse			8127			ŧ.
	3	2.5	7.1			73.6	Z		2	2	3		1.15		5	7-5	.	ž.	; ~	•	5		2.5	3.1		2	2		91		=		7.1		21.5	42.7	¥.3	2.2 7	5.5
	3	# (Ţ	~ 4		2	5, 1 5, 1		2.2	.	;;;	į	ន	, , ,	3	к.3	8.8		-	•		5	5.5	9.6	33	j	3	1.1	3	3	-		\$	- 		1.6	37.6	91.6 81.2	9-2 F
	3	11.5	1.3	2:	5 23	15.6		1.6	21.3		<u>.</u>		("H	5 2		1.1	8	i.	53	1	5		19.2	n.		Ā	X. 2	X .1	=	23	=		ä	<u>-</u>		16.2	2	22	3 #
	3	8.2	2	ន់រ	ļē	8	9 S	ja	3	÷,	H 3	1	81	9,5	5	y.	S.	á i	9 3	:	-	2	3	r,	-	į¥	×	S.	61'I	R 8	z		S.	s s	3	7	9	2 2	3 3
	3	ş i			Į	816			926			Ē			,		Ī	§ ;	i -	ı				Ş.		12300					2							į	<u> 8</u>
	*	~~~		ų.	ŗ	÷		: 7	. .	ų,	ų r	: 7	ب ب		: . . :	ŗ	ŗ	~ •	1 2	:	•	: 7		- 1		: 7		ŗ	.		:=		?	d C	: 3	?	÷	8 2	2 ల్లి
()n n()	2	6.1 1	42.9	5		3			2.3	5.2			51.3		3	•••	5.5	3] 4		5		2.3	5		2.1	1.1	n R	B		Ŧ		5.9		6.0	'n	3.5	2.5 2.6	33
	4								5							-	•	•	• •		•		J		55				•	• •	•		•				Ĵ		• •
ELALS (Al As		21346										Į.		27700				ž -												=								<u> </u>
_																											Ę.		Ę			M	8	Ę¥	3	3		e si	<u>i</u> z
7		ł																														(SIR							
Statites an			~	•	•	•	5	2	•	;	2	=	!	21	٠		2					!~		•	9	}	2		3			LITERTIAN,	Ξ	-1	•	I		22	

TABLE 19: SEDIMENT TRACE METAL CONCENTRATIONS, JULY 27, 1988

					JO.	TOTAL METALS	1, (μg/g,	g, dry wt	· .)			
STATION	DEPTH (m)	ВЯ	Al (%)	As	cđ°	Cr	Cu	Fe (%)	Mn	Nİ	Pb	uz
INNER HARBOUR	Ř											
1	12	0.120 0.120	2.61 2.65	888	0.42 0.36	51.0 49.3	75.0 81.7	3.90 3.98	406 464	31 30	10 -	128 114
7	14	0.219 0.226	2.45 2.49	20 10	0.60 0.61	49.5 49.7	68.5 69.7	3.53 3.56	412 416	29 30	<8 10	259 254
б	19	0.185 0.226	2.37 2.84	9 20	0.73 0.64	49.7 53.4	71.5 76.7	3.69 3.85	395 417	28 29	8 × 8 8	204 217
4	23	0.227 0.208	2.64 2.72	9 10	0.74 0.82	51.2 52.2	67.6 70.8	3.69 3.75	389 398	28 29	8 8 8 8	188 186
13	19	0.364 0.221	2.51 2.75	10 20	0.86 0.99	50.6 55.0	72.9 83.2	3.66 3.80	405 416	28 31	10 10	275 293
ம	25	0.250 0.228	2.64 2.52	10	0.83 0.92	52.4 50.4	100 76.7	3.87 3.78	400 392	30 28	80 ∞ 80	197 172
14	11	0.241 0.160	2.50 2.88	10	0.60 0.70	49.3 53.7	76.4 83.3	3.55 3.77	461 438	30 31	6 ×	452 256
11	21	0.223 0.160	2.64 2.54	2 0 2 0 8	0.67 0.59	49.9 51.8	82.8 81.6	3.93 3.86	415 408	29 32	8 8 8	172 197
12	24	0.200 0.164	2.40 2.59	19 10	0.53 0.50	48.4 50.2	76.3 76.5	3.74 3.86	402 413	31 30	88	206 185
OUTER HARBOUR	Ĕ											
10	11	0.263 0.251	2.60 2.50	20 9	0.93 0.87	56.1 53.7	66.4 65.3	3.70 3.70	404 397	30 29	8 8 8 8	222 212
19	131	0.288 0.319	3.00 3.10	28 25	0.66 1.10	61.4 63.7	97.5 100	4.50 4.10	590 471	29 30	<8 <8	157 179
REFERENCE AR	AREA											
SB-1	18	0.150 0.158	2.70 2.70	20 10	1.70 1.40	43.7 43.5	71.0 71.9	3.50 3.30	458 427	18 19	8 × ×	149 153
UT-1	66	0.207 0.180	2.60 2.50	20 10	1.20 1.30	54.6 49.2	58.2 53.6	3.30 3.40	361 452	25 22	4888	143 120

* graphite furnace results

TABLE 20: SEDIMENT CHLOROPHENOLS, JULY 27, 1988

				CELC	ROPHENOLS	CHLOROPHENOLS (µg/g, dry wt.)	wt.)		
STATION	DEPTH (m)	234-tri	235-tri	236-tri	245-tri	246-tri	2345- tetra	2346+2356 -tetra	penta
1	12	<0.0005	<0.0005<00.0005	0.0039 0.0030	<0.0005	<0.0005	0.0239 0.0229	0.0180 0.0173	0.0023 0.0018
2	14	<0.0005	<0.0005	0.0026 0.0014	<0.0005	<0.0005	0.0036	0.0061	<0.0001
£	19	<0.0005	<0.0005	0.0016 0.0019	<0.0005	<0.0005	0.0036 0.0049	0.0089 0.0118	0.0006 0.0018
13	19	<0.0005	<0.0005	0.0012 0.0006	<0.0005	<0.0005	0.0070 0.0020	0.0147 0.0056	<0.0001 <0.0001
14	11	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0002<0.0002	<0.0002 <0.0002	<0.0001
11	21	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0185 0.0388	0.0168 0.0137	0.0012<0.0001
ũ	25	<0.0005	<0.0005	<0.0005<0.0005	<0.0005<0.0005	<0.0005	<0.0002 <0.0002	0.0018 0.0016	<0.0001 <0.0001

.

3.3 Biota Quality

Results of biota sampling in Alberni Inlet and the reference site at Uchucklesit Inlet are summarized in Tables 21 to 24. Most metal levels were similar when species were compared. The 1988 data indicate that metal values had a coefficient of variability (CV) of 8% to approximately 70%. All chlorophenolic compounds were near the limit of detection in all species and tissues analyzed. Polychlorinated biphenyls were detected in ratfish liver (3-11 μ g/g) from Alberni Harbour, and in trace amounts (<2.0 μ g/g) in crab and prawn hepatopancreas from the reference site.

Only ratfish (Hydrolagus collei) liver was analyzed each year. The concentration of metals in ratfish liver declined from 1984 to 1988, except for lead which was inconclusive due to varying lab detection limits. Trends were not corrected for laboratory differences. TABLE 21: MEAN METAL LEVELS IN TISSUE COLLECTED SEPTEMBER 11, 1984

					MEAN	I METAL I	I) SIANT	MEAN METAL LEVELS (µg/g, dry	. wt.)		
SPECIES	TISSUE	N	Al	As	Ba	cđ	Сr	Cu	Вg	Pb	uz .
English sole	muscle liver	77	7.0 16.0	28.5 7.0	0.11 0.11	0.05 0.40	0.54 0.40	1.10 4.21	0.15 0.08	0.34 0.71	17.85 64.90
Slender sole	muscle	е	7.7	38.7	0.08	0.05	0.57	06.0	0.42	0.32	15.93
Pacific hake	muscle gill liver	տոտ	8.2 525.0 19.6	7.2 6.3 11.6	0.08 1.26 0.10	0.04 0.13 0.23	0.78 2.33 0.40	1.44 7.13 12.44	0.45 0.27 0.11	0.32 0.60 0.36	14.78 86.50 72.68
Ratfish	muscle gill liver	សលល	11.6 67.2 7.2	38.8 14.4 20.6	0.09 0.12 0.09	0.04 0.06 0.13	0.52 0.86 0.40	1.10 5.94 10.54	0.56 0.14 0.09	0.25 0.26 0.18	12.26 45.62 14.84

Species English sole (Parophrys vetulus) Slender sole (Lyopsetta exilis) Pacific hake (Merluccius productus) Ratfish (Hydrolagus collei)

.

TABLE 22: METAL LEVELS IN TISSUES COLLECTED AUGUST 27, 1986

						н	TOTAL METALS (µg/g, dry wt.)	TALS (µ	g/g, dı	:Y Wt.)				
SPECIES	WEIGHT (9)	(cm)	TISSUE	Ħg	Al	As	cd.	Cr	Сu	Fe	Mg	Nİ	ЪЪ	Zn
Ratfish	654	50	Muscle Liver	0.43 0.03	< 4 - <	18 8	0.480 0.470	1.1 <0.4	0.6 8.1	17.1 739	1300 75	<2 <2 <2	<2 <2	14.9 6.7
	737	54	Muscle Liver	0.42 0.04	10 6	31 7	0.025 0.021	0.6 <0.4	0.5 5.5	30.8 451	1270 61	° 5 7 √	<2 <2 <2	80.2 5.6
	761	54	Muscle Liver	0.69 0.09	14 <4	31 19	0.027 0.100	1.1 0.6	<0.4 14.1	26.3 1000	1310 146	° °	° 5 ° √	79.5 16.2
Pacific	133	27	Liver	0.57	25	9	0.032	1.4	1.4	63.2	1790	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2	17.8
паке	256	30	Muscle Liver	1.20 0.24	28 9	4 <4	0.048 0.110	1.7 0.6	0.5 5.7	69.4 217	17 183	~ ~ ~ ~ ~	<2 <2	18.1 72.0

Graphite furnace method

¥

	٩d		
	ï		
	Mg		
, dry wt)	F. %		
TOTAL METALS (µg/g, dry wt)	Ū		
TAL MET	ບັ		
10	.po		
	As		
	AI		
	βH		
	TISSUE		
		our	
	LOCATION SPECIES	ALBERNI HARBOUR	

6.8 5.1

4 \$ \$ \$

~ ŝ

ñ R ß 37 32

2.46 2.39

5.8 3.0 3.9

<0.4 <0.4 <0.4 <0.4

0.01

0

4

0.02

Liver Liver Liver

Ratfish

AT-1

80 Ξ ٥ 16

4

0.01

Zn

5.5 20.2

0

54

33.8

0

69.30

0

4.53 8.04

4.2

4.7

ů ŝ

8.73

0.03 0.01

> 3 4

0.05 0.03 69.20

Ratfish Ratfish

0.02

53.5

TABLE 23: METAL LEVELS IN TISSUES COLLECTED JULY 26, 1988

CV (X)

MEAN

4 ç 370 1.13 14.9 ¢0.4 0.16 0 12 0.02 Liver Hake REFERENCE AREA u-1

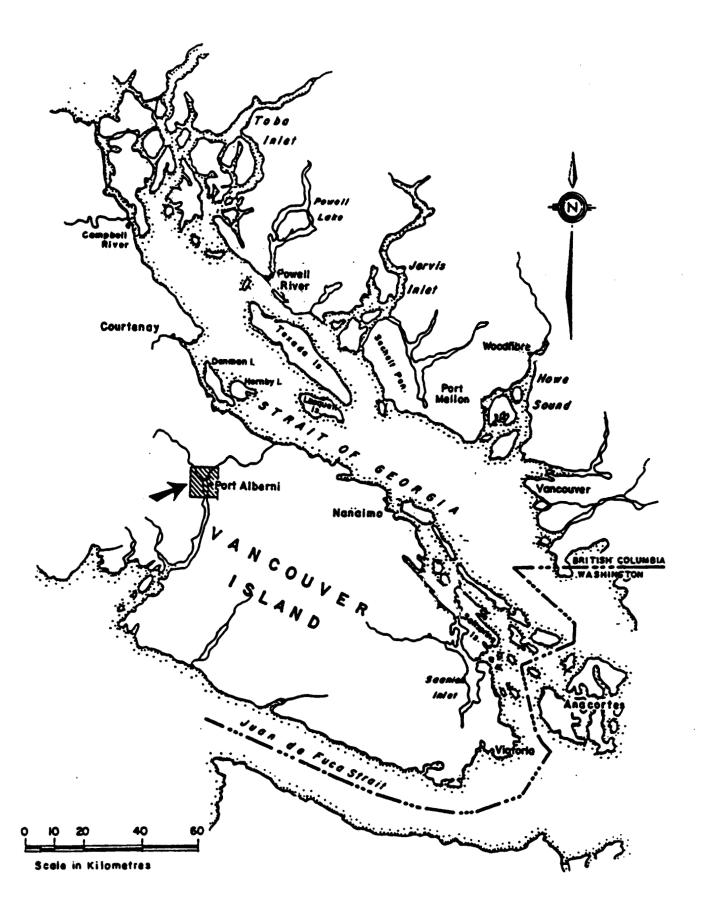

Graphite furnace method

TABLE 24: ALBERNI HARBOUR TISSUE CHEMISTRY RESULTS, JULY 1988

			PCB.	CHLOR	CHLOROANISOLES (µg/g)	(6/6,				CHLOROPI	CHLOROPHENOLS (#9/9)	(b/		
SITE	SPECIES	TISSUE	(6/6/1)	2,3,4,5- Tetra	2346+ 56-TETRA	PENTA	2,3,4,5- TETRA	2,3,4- TRI	2,3,5- TRI	2,3,6- TRI	2,4,5- TRI	2,4,6- TRI	2346+2356- TETRA	PENTA
ALBER	ALBERNI HARBOUR													T
AT-1	Ratfish	Liver	\$	<0.02	<0.02	<0.01	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05	<0.02	<0.01
	Ratfish	Liver	~	<0.02	<0.02	<0.01	<0.02	<0.05	<0.05	<0.05	<0.05	<0.05	<0.02	<0.01
	Ratfish	Liver	:	<0.02	<0.02	<0.01	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.2	<0.1
REFERI	REFERENCE AREA													
-1- 1	Dungeness Crah	Hepato	0.18	<0.0002	0.0002	0.0021	<0.0002	<0.0005	<0.0005	<0.0005 <0.0005	<0.0005	<0.0005	0.0002	0.0023
	Prawn	Kepato	0.1	<0.0002	0.0004	<0.0001	<0.0002	<0.0005	<0.0005 <0.0005	<0.0005	<0.0005	<0.005	0.0002	0.0004

REFERENCES

- Gameson, A.L.H., and K.J. Robertson. 1955. The Solubility of Oxygen in Pure Water and Seawater. J. Appl. Chem. 5:502.
- Goyette, D., and L. MacLeod. 1984. A Computer-Controlled Water Column Profiling System. EPS Regional Program Report 84-09.
- Griffiths, J.C. 1967. Scientific Methods in Analysis of Sediments. McGraw-Hill, New York. 41 pp.
- McGreer, E.R. 1984. Analysis of Marine Benthic Invertebrate Data from British Columbia Coastal Pulp Mills. Project EP-84-01. Vancouver, B.C.
- Millward, C.G., and P.D. Kluckner. 1989. Microwave Digestion Technique for the Extraction of Minerals from Environmental Marine Sediments for Analysis by Inductively Coupled Plasma Atomic Emission-Spectrometry and Atomic Absorption Spectrometry. Journal of Analytical Atomic Spectrometry. Vol. 4.
- Parker, R.R., and J. Sibert. 1972. Effects of Pulpmill Effluent on the Dissolved Oxygen Supply in Alberni Inlet, British Columbia. Fisheries Research Board Technical Report No. 316.
- Strickland, J.D.H., and T. Parsons. 1971. A Practical Handbook of Seawater Analysis. Bull. Fish. Res. Board Can. 167. 311 pp.
- Sullivan, D.L. 1978. The Effects of Modified Bleaching of Pulp Mill Effluent on the Dissolved Oxygen Levels in Alberni Harbour, British Columbia, 1974-1976. EPS Regional Program Report: 78-8. 16 pp.
- Swingle, J.D.H., and J.W. Davidson. 1979. Environmental Laboratory Manual. Environmental Protection Service. West Vancouver, B.C.
- Tully, J.P. 1949. Oceanography and Pulp Mill Pollution in Alberni Inlet. Fish. Res. Bd. Canada Bulletin No. LXXXIII. 169 pp.
- Waldichuk, M. 1987. Alberni Inlet, British Columbia: A Multi-Use Fjord System with Fisheries Resources and a Large Waste-Disposal Component. Proceedings from the 7th International Ocean Disposal Symposium, September 21-25, 1987. Wolfville, Nova Scotia, Canada. pp 107-136.

FIGURE 1: LOCATION MAP - PORT ALBERNI

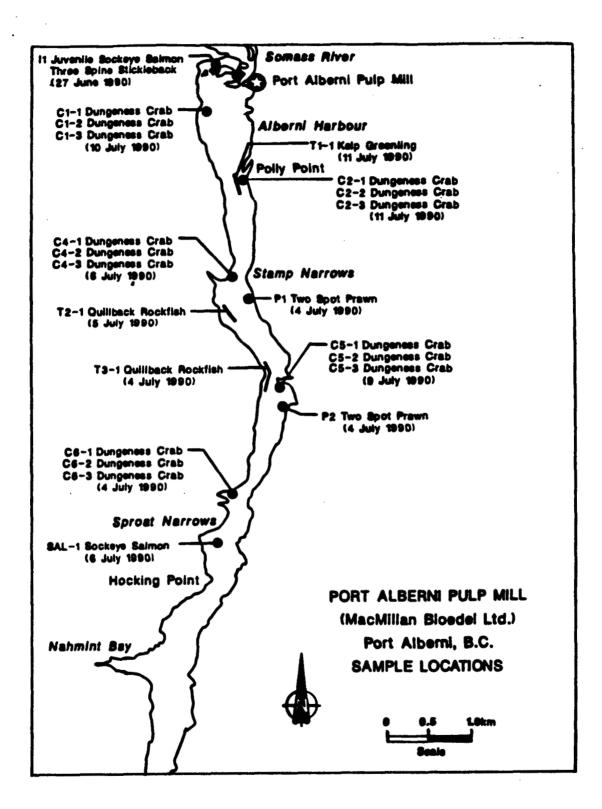


FIGURE 2: PORT ALBERNI DIOXIN SAMPLING SITES, 1990

- 39 -

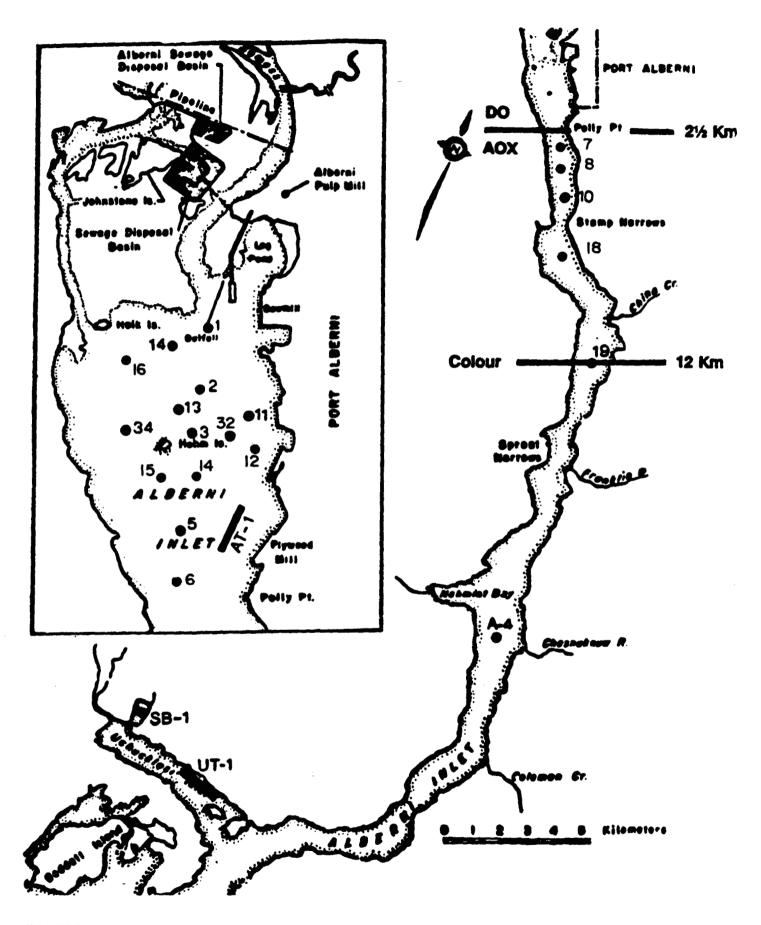


FIGURE 3: PORT ALBERNI SAMPLE SITES, 1988

APPENDICES

-

PACIFIC REGION PULP AND PAPER INDUSTRY EFFLUENT SUMMARY APPENDIX I:

Company: MacMillan Bloedel Limited Mill: Alberni Location: Pt. Alberni

Year: 1987

0V)==	×
TY (PR	80%
==BOD5 (PROV)== ==TOXICITY (PROV)== Av. # of # of X (tonne/d) Tests Comp.	Σ.
(PROV)≈= # of) Tests	67
==8005 (Av. (tonne/d	9.39 49
D)≈== X Comp.	100%
005 (FE # of Tests	63
===B005 (FED)=== Av. # of % (kg/ADt)Tests Comp.	7.65 49
ROV)== # of Tests	363
==TSS (PROV)== Av. # of (tonne/d) Tests	10.31 363
)=== X Comp.	*****
TSS (FED)=== # of x () Tests Comp.	363
===T§ Av. (kg/ADt)	7.98
ction= # of days	359
=PRODUCTION= Av. # of (ADt/d) days	1,294 359
d=== t of Days	364
===FLOW=== Aver. # of (m3/d) Days	168,430 364
	Yearly Values

NUREMENTS	TOXICITY (Xv/v)	96LC20 = 65 96LC20 = 65
FLUENT QUALITY REQUIREMEN	8005	23.70 14.50
EFFLUENT	TSS	11.40 14.50
	FLOU (m3/d)	209,000
		Federal (kg/ADt) Provincial (tonne/d)

* The suspended solids data for this mill reflects sampling at a site which cannot be used to assess compliance with PPER

APPENDIX II: RESULTS FOR PORT ALBERNI PULP MILL EFFLUENT MONITORING, JUNE 14, 1990

PARAMETER	UNITS	
CHLOROANISOLE/2,3,4,5-TETRA	μg/L	<0.005
/2346+56-TETRA	μg/L	0.022
/PENTA	µg/L	0.016
CHLOROPHENOL/2,3,4,5-TETRA	µg/L	<0.005
/2,3,4-TRI	µg/L	<0.01
/2,3,5-TRI	µg/L	<0.01
/2,3,6-TRI	µg/L	0.05
/2,4,5-TRI	μg/L	<0.01
/2,4,6-TRI	µg/L	1.21
/2346+2356-TETRA	µg/L	0.050
/PENTA	μg/L	0.300
RESIN ACID/12-CHLORO-DHA	mg/L	<0.005
/14-CHLORO-DHA	mg/L	<0.005
/8(14)ABIETIC	mg/L	<0.005
/ABIETIC	mg/L	<0.005
/DEHYDROABIETIC (DHA)	mg/L	<0.005
/DICHLORO-DHA	mg/L	<0.005
/DIHYROISOPIMARIC	mg/L	<0.005
/ISOPIMARIC	mg/L	<0.005
/NEOABIETIC	mg/L	<0.005
/PALUSTRIC	mg/L	<0.005
/PIMARIC	mg/L	<0.005
/SANDARACOPIMARIC	mg/L	<0.005

APPENDIX III: ALBERNI INLET SAMPLING STATION LOCATIONS, SEPTEMBER 11 & 12, 1984

STATION	LATITUDE	LONGITUDE
1	49°14.27'N	124°49.10'W
2	49°14.00'N	124°49.20'W
3	49°13.72'N	124°49.27'W
4	49°13.50'N	124°49.35'W
5	49°13.27'N	124°49.40'W
6	49°13.01'N	124°49.40'W
7	49°12.68'N	124°49.15'W
8	49°12.20'N	124°49.05'W
10	49°11.80'N	124°49.05'W
11	49°13.83'N	124°48.88′W
12	49°13.58'N	124°48.87′W
14	49°14.48'N	124°49.33'W
15	49°13.60'N	124°49.60'W
16	49°14.10'N	124°49.80'W
18	49°10.50'N	124°48.92′W
19	49°08.27'N	124°48.25′W
TRAWL T-1		
START	49°13.10'N	124°49.18'W
FINISH	49°13.38'N	124°49.02′W

<u>APPENDIX IV</u>: ALBERNI INLET SAMPLING STATION LOCATIONS, AUGUST 27, 1986

STATION	LATITUDE	LONGITUDE	
1	49°14.27'N	124°49.10'W	
3	49°13.72′N	124°49.27'W	
4	49°13.50'N	124°49.35'W	
5	49°13.27'N	124°49.40'W	
6	49°13.01'N	124°49.40'W	
7	49°12.68'N	124°49.15'W	
8	49°12.20'N	124°49.05'W	
10	49°11.80'N	124°49.05'W	
11	49°13.83'N	124°48.88′W	
12	49°13.58'N	124°48.87'W	
13	49°13.84'N	124°49.30'W	
15	49°13.60'N	124°49.60'W	
16	49°14.10'N	124°49.80'W	
18	49°10.50'N	124°48.92′W	
19	49°08.27'N	124°48.25'W	
TRAWL			
START	49°13.14'N	124°49.20'W	
FINISH	49°13.49°N	124°48.95'W	
INTERTIDAL STATIONS			
Polly Point	49°12.98'N	124°48.95′W	
N. of Katherine Point	49°13.48'N	124°48.76'W	
Mill mud flats	49°14.70'N	124°48.76'W	
Lupsi Cupsi Point	49°13.68'N	124°49.07'W	
Hohm Island	49°13.68′N	124°49.46'W	
Hoik Island	49°14.22'N	124°49.94'W	
Stamp Point	49°12.82'N	124°49.59′W	

<u>APPENDIX V</u>: ALBERNI INLET SAMPLING STATION LOCATIONS, JULY 26-28, 1988

STATION	LATITUDE	LONGITUDE
1	49°14.18'N	124°49.10'W
2	49°14.00'N	124°49.20'W
3	49°13.72'N	124°49.27'W
4	49°13.50'N	124°49.35'W
5	49°13.27'N	124°49.40'W
10	49°11.80'N	124°49.05'W
11	49°13.83'N	124°48.88'W
12	49°13.58'N	124°48.87′W
13	49°13.84'N	124°49.30'W
14	49°14.18'N	124°49.33'W
15	49°13.60'N	124°49.60'W
19	49°08.27'N	124°48.25'W
32	49°13.10'N	124°49.18'W
A-4	49°02.70'N	124°51.10'W
SB-1	49°01.43'N	125 01.60'W
TRAWL UT-1		
START	49°00.13'N	125 00.47'W
FINISH	48 59.83'N	125 59.83'N
INTERTIDAL STATIONS		
Polly Point	49°12.98'N	124°48.95′W
N. of Katherine Point	49°13.48'N	124°48.76'W
Lupsi Cupsi Point	49°14.78'N	124°49.07'W
Holk Island	49°14.22'N	124°49.94'W
Holm Island	49°13.68'N	124°49.46'W
S. of Stamp Point	49°12.82'N	124°49.59'W

-

APPENDIX VI: ALBERNI INLET SAMPLING STATION LOCATIONS, AUGUST 13, 1990

STATION	LATITUDE	LONGITUDE
3	49°13.66′N	124°49.22′W
4	49°13.54'N	124°49.32'W
5	49°13.15'N	124°49.24'W
10	49°10.26'N	124°48.80'W
19	49°08.83'N	124°48.88'W
A-4	49°02.65'N	124°51.14'W
UT-1	49°02.10'N	125 05.90'W
SB-1	49°01.51'N	125 01.71'W