MOUNT HUNDERE BNSELINE BTUDY
June 1988 and June 1990

DATA REPORT NO, 94-02
by
Environmental Protection Branch Yukon Division

November, 1994

Abstract

Baseline investigations of environmental quality in the Mt. Hundere study area were carried out in June, 1988, and again in June 1990. These studies were in response to mineral exploration and eventual development of the Mt. Hundere (Sa Dena Hes) Lead/Zinc mine. The surveys investigated water quality, sediment chemistry and percent particle size distribution, and benthic invertebrates in the drainages surrounding the mineral development area.

Extractable lead and zinc concentrations found in water samples were at maximum levels recommended for aquatic life. Stream sediment chemistry was comparable to sediment compositions found in other mineralized areas in the Yukon. Benthic invertebrate populations appeared significant in numbers and diversity compared with other recent surveys.

RÉsunci

Une étude de base de la qualité de l'environnement dans la région du Mont Hundere a été conduite en juin 1988 et de nouveau en juin 1990. Ces études répondent à l'exploration minière et l'éventuel dévelopment d'une mine de plomb/zinc (Sa Dena Hes) au Mont Hundere. Les investigations portaient sur la qualité de l'eau, la composition chimique des sédiments, la distribution du pourcentage des dimensions des particules, et des invertébrés benthiques des drainages adjacents au développement minéral de la région.

Les concentrations de plomb et zinc extractable dans les echantillons d'eau étaient au taux recomendé maximum pour la protection de la vie aquatique. La composition chimique des sédiments était comparable a celle des sédiments échantillonnés dans d'autre région minéralisés du Yukon. Les populations benthiques semblent étre plus abondantes et diversifiées que d'autre études récentes.

TABLE OF CONTENTS

PAGE
ABSTRACT i
RESUME ii
TABLE OF CONTENTS iii
List of Tables iv
List of Figures v
1.0 INTRODUCTION 1
1.1 Study Area 2
2.0 METEOD 6
2.1 Water Chemistry 6
2.2 Sediments 7
2.3 Bottom Fauna 8
3.0 RESULTS AND DISCUSSION 9
3.1 Water Quality 10
3.2 Sediments 11
3.3 Benthic Fauna 11
4.0 CONCLUSIONS 19
REEERENCES 20
ACKNOKLEDGERIENTS 21
APPENDICES 22

IIST OF THBLFS

TABLE PAGE
1 Descriptions of Sample Stations in the Mt. Hundere study
Area 4
2 Sampling Program Summary 9
3 Comparative Sediment Values of Other Yukon
Mineralize Areas 11
4 Sumary Table of Invertebrate Abundance andTaxonomic Distribution for 1988 and 199013
5 Summary of Benthic Invertebrate Sampling
for 1988 and 1990 15
6 Diversity and Evenness at Other Study Areas 16
7
Percent Similarity Index for 1990 and 1988 Stations 17

LIST OF EIGURES

FIGURE
 PAGE

1 Location of Study Area .. 2
2 Sample Station Locations .. 3
3 Benthic Invertebrates Cluster Analysis 18

Abstract

1.0 INTRODUCTION

The Mt. Hundere lead and zinc deposits were discovered in 1962. Significant exploratory work was done by CIMA Resources between 1979 and 1982, delineating 250,000 tonnes of ore reserves.

Canamax Resources acquired the property in 1984 and completed over 20,000 metres of diamond drilling by 1988. As a result, estimated ore reserves were increased dramatically in a number of zones surrounding Mt. Hundere. A baseline water quality survey was carried out by the Department of Indian and Northern Affairs in August, 1985 (INAC unpublished data).

Frame Mining Corporation and Hillsborough Resources Limited purchased the property in 1989 and conducted definition drilling and an environmental baseline study (Mt. Hundere Joint Venture Initial Environmental Evaluation, May 1990). Frame Mining transferred their interest to Curragh Resources Inc., which became the manager of the joint venture.

Environmental protection conducted the first of two baseline investigations in June, 1988 which included sampling of water, sediments and benthic organisms. The Department of Indian and Northern Affairs carried out a second water quality survey in September, 1988 (INAC unpublished data).

Environmental protection carried out a second baseline survey in June 1990 covering the False Canyon Creek and Tom Creek drainages. Meanwhile, the Mt. Hundere Joint Venture passed through an environmental assessment and review, and was granted a water licence in 1991. The Mt. Hundere (Sa Dena Hes) lead/zinc mine and mill began producing concentrate in August 1991.

Mt. Hundere is approximately 50 km north of Watson Lake, Yukon Territory and has an elevation of 1574 m above sea level (Eigure 1). Mineral exploration has occurred above 1219 m . The property is situated on the drainage divide between the Tom Creek and Ealse Canyon Creek catchments. Ealse Canyon Creek drains into the Erances River 55 km upstream of its confluence with the Liard River. Tom Creek Elows directly into the Liard River. The average annual precipitation for the region is between 400-600 m. The average annual daily temperature lies in the range of -9 to $-11^{\circ} \mathrm{C}$ (Wahl, 1987).

Eighteen sample stations were set up within the study area (see Table 1). Stations 1, 2 and 3 were located on an upper circumference of Mt. Hundere, in unnamed creeks. The remaining stations are located in False Creek, Tom Creek, and their tributaries, as well as in the Erances and Liard Rivers (Figure 2).

TABLE 1 STATION	DESCRIPTIONS OF SAMPLE STATIONS IN LOCATION	MT. EUNDERE SHUDY AREA. REMARKS
1	$60^{\circ} 31^{\prime} \mathrm{N}$ by $128^{\circ} 56^{\prime} \mathrm{W}$, headwaters of Tom Creek, Tributary 5, 0.5 km from exploration camp, at water supply pump station. Elevation 1190 m .	Samples were taken downstream of camp and upstream of pump station. Banks 10\% overhung with Willow. Substrate of mixed cobble.
2	$60^{\circ} 32^{\prime} \mathrm{N}$ by $128^{\circ} 57^{\prime} \mathrm{W}$, headwaters of False Canyon Creek 1.0 km north of camp, on mine road 30 m downstream of fill from road construction. Elevation 1220 m .	Substrate of large boulders to 60 cm diameter and smaller cobble. Steep gradient (3.5: 1) has stream cascading in series of pools and falls. Ice at 4 m downstream of station.
3	$60^{\circ} 33^{\prime} \mathrm{N}$ by $129^{\circ} \mathrm{O} 1^{\prime} \mathrm{W}$, headwaters of False Canyon Creek Tributary B at road crossing.	Bank heights 0.25 to 0.5 m , and are erodible and undercut; overhung by Willow. Samples taken below bridge.
4	$60^{\circ} 28^{\prime} \mathrm{N}$ by $129^{\circ} 07^{\prime} \mathrm{W}$, Frances River Tributary A 1.75 km from Campbell Hwy, upstream of bridge crossing. Elevation 740 m .	Bank heights, 0.2 to 0.4 m , erodible and undercut but with good grass cover to the bank's edge.
5	$60^{\circ} 18^{\prime} \mathrm{N}$ by $129^{\circ} 00^{\prime} \mathrm{W}$, Tom Creek, upstream of Campbell Hwy. Elevation 762 m .	Creek approximately 15m wide. and approximately 0.30 m deep. Willow along banks.
6	$60^{\circ} 20^{\prime} \mathrm{N}$ by $128^{\circ} 56^{\prime} \mathrm{W}$, Tom Creek Tributary 2, 200 m upstream of Tom Creek. Elevation 780 m .	Creek approximately 3m wide and about .4m deep. Willow along bank.
7	$60^{\circ} 22$ 'N by $128^{\circ} 51^{\prime} \mathrm{W}$, Tom Creek upstream of Tributary 2 approximately 6 km . Elevation 810m.	Creek approximately 9m wide and approximately 0.8 m deep. Willow along bank.
8	$60^{\circ} 23^{\prime} \mathrm{N}$ by $128^{\circ} 48^{\prime} \mathrm{W}$, Tom Creek Tributary 5. Elevation 830 m .	Creek approximately 5.5m wide and approximately 0.5 m deep. Willow and grasses along bank.
9	$60^{\circ} 26^{\prime} \mathrm{N}$ by $128^{\circ} 44^{\prime} \mathrm{W}$, Tom Creek approximately 2.5 km downstream of Tom Lake. Elevation 840 m .	Creek approximately 3m wide and approximately 0.3 m deep. Willow, grasses and spruce along bank.
10	$60^{\circ} 26^{\prime} \mathrm{N}$ by $128^{\circ} 45^{\prime} \mathrm{W}, \quad$ Tom Creek Tributary 4, upstream of Tom Creek \quad approximately Elevation 840 m.	Creek width and depth not measured. Willow and grasses along bank.

$60^{\circ} 31^{\prime} \mathrm{N}$ by $128^{\circ} 46^{\prime} \mathrm{W}$, Upper False
Canyon Creek approximately 9 km
downstream of Station
2. Elevation 880 m .
$60^{\circ} 36^{\prime} \mathrm{N}$ by $128^{\circ} 46^{\prime} \mathrm{W}$, False Canyon Creek. Elevation 790m.
$60^{\circ} 38^{\prime} \mathrm{N}$ by $128^{\circ} 49^{\prime} \mathrm{W}$, Oscar Creek. Elevation. 730m.
$60^{\circ} 39^{\prime} \mathrm{N}$ by $128^{\circ} 53^{\prime} \mathrm{W}$, False Canyon Creek. Elevation 720 m .
$60^{\circ} 39^{\prime} \mathrm{N}$ by $128^{\circ} 53^{\prime} \mathrm{W}$, False Canyon Creek Tributary B. Elevation 720 m .
$60^{\circ} 41^{\prime} \mathrm{N}$ by $129^{\circ} 03^{\prime} \mathrm{W}$, False Canyon Creek approximately 60m upstream of Frances River. Elevation 680 m .
$60^{\circ} 42^{\prime} \mathrm{N}$ by $129^{\circ} 03^{\prime} \mathrm{W}$, Frances River upstream of False Canyon Creek approximately 1.5 km .
$60^{\circ} 28^{\prime} \mathrm{N}$ by $129^{\circ} 07^{\prime} \mathrm{W}$, Frances River upstream of the Campbell Hwy. approximately 200m.

Creek approximately 3.5 m wide and approximately 0.4m deep. Bank height 1 m with grass and willow cover.

Creek approximately 5 m wide and approximately 0.7 m deep. Bank height 0.5 m with grass and willow cover.

Site not sampled. No suitable landing locations nearby for helicopter.

Creek width and depth not measured. No invertebrates were collected because of depth. Bank height 0.5 m with grasses and willow cover.

Creek approximately 6.5 m wide and approximately 0.8 m deep. Bank height 1.0 m with grasses and willow cover.

Creek width and depth not measured. Creek water levels greatly influenced by Frances River levels. No benthic invertebrates or sediments collected because of water depth. bank height 0.2 m with spruce, willow and grass cover.

Stream width and depth not measured. Benthic invertebrates and sediments were not sampled.

Stream width and depth not measured. Benthic invertebrates and sediments were not sampled.

$$
2.0 \text { METHOD }
$$

Abstract

Samples and field measurements at Mt. Hundere were taken on June 21-22, 1988, and June 19-21, 1990. At each sampling site, three replicates samples of water and sediments were taken and a composite of 3 samples for benthic invertebrates. Methods of sample collection, preservation, and analysis or identification are listed in Appendix I.

2.1 Water Chemistey

Water samples were collected at 15 sample sites. A description of water sample collection, preparation, analytical methods, and detection limits are given in Appendix I, Table 1. Measurements of water temperature, conductivity, pH , dissolved oxygen and flow were made at each site. Samples sent to the laboratory were analysed for alkalinity, chloride, fluoride, true colour, conductivity, pH , total hardness and hardness as $\mathrm{Ca+Mg}$, ammonia-N, nitrite+nitrate, total phosphorous, filterable (FR) and non-filterable residues (NFR), sulphate and turbidity. For the 1988 survey, extractable metals analyses were performed (ICP scan), with a request for the higher sensitivity Graphite Furnace procedure on samples where lead and zinc were below ICP detection. The 1990 survey included dissolved, extractable, and total metals analyses, with Graphite Furnace procedure requested on samples where lead, copper, cadmium, or silver were below ICF detection. Both surveys included the following metals:

Aluminum (Al)	Copper (Cu)	Silver (A)
Antimony (Sb)	Iron (Fe)	Sodium (Na)
Arsenic (As)	Lead (Pb)	Strontium (Sr)
Barium (Ba)	Magnesium (Mg)	Tin (Sn)
Beryllium (Be)	Manganese (Mn)	Titanium (Ti)
Boron (B)	Molybdenum (Mo)	Vanadium (V)
Cadmium (Cd)	Nickel (Ni)	Zinc (Zn)
Calcium (Ca)	Phosphorous	
Chromium (Cr)	(P)Selenium (Se)	
Cobalt (Ca)	Silicon (Si)	

The analyses were completed at the Environmental Protection Service Laboratory, 4195 Marine Drive, West Vancouver, B.C.

The percent dissolved oxygen saturation point was determined by calculating the dissolved oxygen saturation point (S') from the formula:

$$
\begin{aligned}
& S^{\prime}=S \frac{P}{760} \quad(A L P H A \text { et al 1980) } \\
& \text { where, } \text { S' }^{\prime}=\text { dissolved oxygen (DO) saturation } \\
& \text { concentration at the in situ } \\
& \text { temperature and atmospheric pressure } \\
& \mathrm{S} \quad=\text { dissolved oxygen (DO) saturation } \\
& \text { concentration at sea level for the in } \\
& \text { situ temperature. } \\
& \text { P = atmospheric pressure (mm Hg) at } \\
& \text { site elevation. }
\end{aligned}
$$

The percent dissolved oxygen saturation is the ratio of field DO to the in situ saturation concentration (S'):

```
field DO * 
```

where, field $D O=$ dissolved oxygen measured in the field and adjusted for field conditions.

2.2 Sediments

One set of triplicate sediment samples were taken at each station. The samples were shipped to the Environmental Protection Laboratory, 4195 Marine Drive, West Vancouver, B.C. and analysed for leachable metals and percent particle size distribution according to the Wentworth Classification System. A description of sediment collection, preparation and analysis methods are given in Appendix I, Table 2.

2.3 Bottom Eauna

Three benthic invertebrate samples were taken with a Surber sampler (500um mesh size). The invertebrates collected from three replicate Surber samples, taken on a short reach of stream at each station, were combined in a 1 litre bottle and considered as the sample for that station. Each sample, therefore consisted of 3 grabs combined. Samples were sorted, identified and enumerated by Dr. C. Low, consulting invertebrate biologist from Nanaimo, British Columbia. The methods of sample collection and preservation are described in Appendix I, Table 3.

Indices of benthic community diversity and evenness were calculated using the following formulae (Pielou 1975):

$$
\text { Species Diversity }\left(H^{\prime}\right)=-\sum_{i=1}^{n}\left(P_{i} \log _{10} P_{i}\right)
$$

where, $\mathrm{Pi}=\mathrm{ni} / \mathrm{N}$
$n i=n u m b e r$ of individuals in the ith most specific taxonomic group (ie. genus) at one sample location.
$N=$ total number of individuals identified to specific taxonomic group (ie. genus) at one sample location.
$\mathrm{n}=$ total number of taxonomic groups (ie. genus) identified at one sample location.

Evenness $\left(J^{\prime}\right)=H^{\prime} / \log _{10} n$

Percent Similarity Index: The benthic invertebrate communities collected during the two surveys were compared using a percent similarity index (Psc) formula described by Brock (1977):

$$
\operatorname{PsC}=100-0.5 \sum_{i=1}^{k}|a-b|
$$

where a and b are, for a given genus, percentage of the total samples A and B which that genus represents. The absolute value of their difference is summed over all genera, k. The Psc compares the percentage of genera present at two different locations but is not a comparison of total invertebrate abundance. The information produced by the percent similarity index was plotted into a cluster using the nearest neighbour clustering method.

Table 2 shows the different field activities performed during the surveys of June 1988 and June 1990.

TABLE 2 SAMPLING PROGRAM SUMMARY

3.0 RESULTS AND DISCUSSION

3.1 Hater ouality

The results of water quality analyses are listed in Appendix II, Tables 1 (June, 1988) and 2 (June, 1990). Note that seasonal variability is not accounted for in the data generated by the two surveys.

Water temperatures ranged from 0.5 in the small alpine tributary to $12.5{ }^{\circ} \mathrm{C}$ in Tom Creek. Alkalinity ranged from $32 \mathrm{mg} / 1$ as CaCO_{3}, to $192 \mathrm{mg} / 1$ as CaCO_{3} at station 4 , and dissolved calcium was present in concentrations over 20 mg / l in False Canyon and Tom Creeks; indicating good buffering capacity. pH was slightly alkaline throughout the study area, ranging from 7.5 at station 3 , to 8.5 at station 4.

Tom Creek and False Canyon Creek contained moderately to very hard water. The Tom Creek catchment ranged in hardness from 81 to $147 \mathrm{mg} / 1$ as CaCO_{3}.

The False Canyon Creek catchment ranged from 107 to $169 \mathrm{mg} / 1$ as CaCO . Conductivity readings were all less than $250 \mu \mathrm{mhos} / \mathrm{cm}$. Suspended solids and turbidity were generally very low in both catchments during the June sampling period.

Nutrient levels were at low concentrations throughout False Canyon and Tom Creek catchments. Nitrite was undetectable, and nitrite + nitrate was below $0.050 \mathrm{mg} / \mathrm{l}$ throughout the survey area. Two exceptions should however be noted. Station 2 on June 1988 had nitrite + nitrate mean levels of $0.288 \mathrm{mg} / 1$. Also one replicate at Station 5 which was $3.06 \mathrm{mg} / \mathrm{l}$, and appears to be erroneous, as the other two replicates were both below the detection limit of $0.005 \mathrm{mg} / 1$. Ammonia was generally below or near the detection limit, except for a mean value of $0.010 \mathrm{mg} / 1$ at the mouth of Tom Creek in the 1988 survey.

Metals concentrations were generally low in both catchments. The metals of interest in the combined data set are primarily copper, lead, and zinc.

Total copper ranged from $<0.0009 \mathrm{mg} / \mathrm{l}$ in the Frances River to 0.0023 mg/l in False Canyon Creek at station 12 in 1990. The recommended guideline for total copper is $0.002 \mathrm{mg} / 1$ for medium hardness, to $0.004 \mathrm{mg} / 1$ for hard water (Appendix 1, Table 4).

Total lead ranged from $0.0010 \mathrm{mg} / 1$ in Upper False Canyon Creek to $0.0096 \mathrm{mg} / \mathrm{l}$ at station 12 on False Canyon Creek in 1990. The recommended guideline for lead concentration is identical to that of copper. Sub-lethal effects of low levels of lead on various fish species have been demonstrated in lab tests, but generally in soft water for early life stages (Moore and Ramamoorthy, 1984).

Total zinc measurements were all below detection limit of $0.002 \mathrm{mg} / 1$, except for Station 2 in 1998 where the mean zinc concentration was $0.032 \mathrm{mg} / \mathrm{I}$ (S.D. 0.007). However, extractable levels were found at station 3, 11, 15 in 1990 with the values of $0.016,0.004$ and $0.003 \mathrm{mg} / 1$ respectively. These could be related to contamination since dissolved metals are also below detection limit. The recomended guideline for zinc concentration is $0.03 \mathrm{mg} / 1$ total zinc.

The acute toxicity of the above metals is modified by hardness, but
chronic toxicity is not (CCREM, 1987). Given the low volumes available for dilution in False Canyon Creek combined with background concentrations of metals, particularly lead, contributions from mine effluent would have to be low if the recommended guidelines are to be maintained instream.

$\because \quad 3.2$ Sediments

Results of the sediment survey are presented in Appendix III, with percent particle size in Table 1 and sediment chemistry in Table 2 . Metals were listed as dry weights and recorded in $\mu \mathrm{g} / \mathrm{g}$.

Metals appear to exist in high concentrations only in sediments from station 2 collected in 1988. This site was not samples in 1990. All other sediment metals data are comparable to other mineralized areas in the Yukon (see Table 3). Concentrations of lead and zinc in sediments were one to two orders of magnitude lower than those observed in the Ketza River study area (unpublished report, Environmental Protection, 1994).

TABLE 3 COMPARATIVE SEDIMENT VALUES OF OTEER YUKON MINERALIZED AREAS ($\mu \mathrm{g} / \mathrm{g}$)
Grew Creek
Mount Nansen
Retza River

Matal	Avarage	standard Dariation	Matal	Avarage	standard Deviation	Motal	Averaqe	standard Deviation
18	28.64	11.0	38	384	729	As	868	1129
Cd	40.8	\cdots	Cd	4.2	7.8	cal	2.6	2.4
cos	34.5	12.3	Cris	21	15	cos	73	43
\%	140	182	Pb	115	224	Fb	820	1500
8n	184	85	20	548	1081	\%n	1156	1012

3.3 Benthic Fauna

A taxonomic list of the benthic organisms found in the study area is presented in Appendix IV, Table 1. Sample site enumeration is in Appendix IV, Table 2. Taxonomic orders have been grouped and presented as total organisms counted and the percentage of the total at each sample station and these results are listed below in Table 4.

A total of fifty taxa were identified in the 1988 survey, which covered 5 sample stations. The 1990 survey identified 89 taxa and covered 10 stations. Both in 1988 and 1990, the dominant orders of the overall sample population were Ephemeroptera, Plecoptera and Diptera (see Table 5).
TABLE 4 SUMMARY TABLF OF INVERYGBRATE RBUNDANCF AND TAXONOMIC DISTRIBUTION FOR 1988 AND 1990

TAXONOMIC GROUP	$\begin{array}{r} 1988 \\ \text { STA. } 1 \end{array}$	\%	$\begin{array}{r} 1990 \\ \text { STA. } 3 \end{array}$	\%	$\begin{array}{r} 1988 \\ \text { STA. } 4 \end{array}$	\%	$\begin{array}{r} 1990 \\ \text { STA. } 4 \end{array}$	\%	$\begin{array}{r} 1988 \\ \text { STA. } 5 \end{array}$	\%	$\begin{array}{r} 1990 \\ \text { STA. } 5 \end{array}$	\%
Plecoptera	21	18	142	47	93	22	92	20	20	7	19	5
Ephemeroptera	33	28	105	35	223	53	267	59	215	72	19 136	37
Trichoptera	10	8	0	0	6	1	26	6	9	3	136 48	13
Diptera	45	38	55	18	69	16	64	14	52	17	150	41
Collembola	0	0	0	0	0	0	1	0	0	10	150	41 0
Hymenoptera	0	0	1	0	0	0	0	0	0	0	0	0
Homoptera	0	0	1	0	1	0	0	0	0	0	1	0
Hemiptera	0	0	0	0	1	0	0	0	0	0	1	0
Lepidoptera	0	0	0	0	1	0	0	0	0	0	0	0
Hydracrina	5	4	0	0	14	3	0	0	1	0	0	0
Oribatei	0	0	0	0	- 0	0	0	0	0	0	3	1
Copepoda	0	0	0	0	1	0	0	0	0	0	0	0
Cyclopoida	0	0	0	0	0	0	0	0	0	0	0	0
Calanoida	0	0	0	0	0	0	0	0	0	0	0	0
Cladocera	0	0	0	0	0	0	0	0	0	0	0	0
Nematoda	0	0	0	0	0.	0	1	0	0	0	2	1
Turbellaria	0	0	0	0	3.	1	2	0	0	0	0	0
Oligochaeta	5	4	0	0	10	2	1	0	1	0	6	2
TOTAL NUMBERS	119		304		422		454		298		365	

TABLE 4 (Cont'd)

TAXONOMIC GROUP	$\begin{array}{r} 1990 \\ \text { STA. } 6 \end{array}$	8	$\begin{array}{r} 1990 \\ \text { STA. } 7 \end{array}$	\%	$\begin{array}{r} 1990 \\ \text { STA. } 8 \end{array}$	\%	$\begin{array}{r} 1990 \\ \text { STA. } 9 \end{array}$	\%	$\begin{array}{r} 1990 \\ \text { STA. } 11 \end{array}$	\%	$\begin{array}{r} 1990 \\ \text { STA. } 12 \end{array}$	$\%$	$\begin{array}{r} 1990 \\ \text { STA. } 15 \end{array}$	\%
Plecoptera	1	1	52	31	91	20	45	13						
Ephemeroptera	7	4	45	27	262	58	78	13	27 239	9 79	8	3	3	8
Trichoptera	2	1	0	0	22	5	0	-	239 1	7	109	45	3	8
Diptera	124	76	64	38	56	12	209	60	24	0	5	2	1	3
Collembola	0	0	0	0	0	120	20	0	24	8	70	29	27	75
Hymenoptera	0	0	0	0	0	0	1	0	0	0	0	0	0	0
Homoptera	1	1	1	1	3	1	0	0	1	0	0	0	0	0
Hemiptera	0	0	0	0	0	0	0	0	1	0	3	1	0	0
Lepidoptera	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hydracrina	1	1	0	0	0	0	0	0	0	0	0	0	0	0
Oribatei	3	2	1	1	4	1	0	0	0	0	1	0	0	0
Copepoda	0	0	0	0	. 0	0	0	0	0	0	1	0	0	0
Cyclopoida	3	2	1	1	0	0	0	0	0	0	0	0	0	0
Calanoida	0	0	0	0	0	0	0	0	2 0	1	1	0	1	3
Cladocera	0	0	1	1	0	0	3	0	0	0	2	1	0	0
Nematoda	15	9	0	0	3	1	3	1	0	0	9	4	0	0
Turbellaria	0	0	1	1	11		0	2	2	1	25	10	0	0
Oligochaeta	7	4	1	1	11 1	0	0	0	2	1	0	0	0	0
TOTAL NUMBERS	164		167		453									

TABLE 5 SUMMARY OF BENTEIC INVERTEBRATES SAMPLING EOR 1988 AND 1990

Diptera were clearly the dominant order at station 6 (76\%) and 15 (75\%) on June 1990 survey while Ephemeroptera were dominant at station 5, 1988 (72\%); station 4, 1990 (59\%); station 8, 1990 (58\%); and station 11, 1990 (79\%). Co-dominance between the above groups was found at the other stations. Nematoda were a contributing order of the community at station 6 and 12 in June 1990 with 9 and 10% respectively of the sampled population.

Benthic invertebrate analysis summary can be found in Table 5. It is composed of the total taxa, density of invertebrates, diversity and evenness indicates for each stations. Stations 1 and 15 had the highest evenness level but station 15 had the lowest density of invertebrates with only $129 / \mathrm{m}^{2}$. The stations 4 and 8 had the highest density with 1629 and 1626 respectively during the June 1990 survey. Stations 5 and 9 showed also high density with both greater than 1200 individuals $/ \mathrm{m}^{2}$. Station 5 had the greatest number of taxa (43) followed by station 12 (37).

In comparison with other baseline studies carried out by the department in 1988, which employed the same sampling method, the Mt. Hundere benthic samples are above average in total number of individuals per station, diversity and evenness (see Table 6).

TABLE 6 DIVERSITY AND EVENAESS AT OTEHER SITUDY AREAS
Grew Creek

STATION	DENSITY (ind. m^{2})	H	H^{\prime}
1	506	0.66	0.61
2	226	0.72	0.72
3	186	0.55	0.65

Quill Creek

STATION	DENSITY (ind. m^{2})	H^{\prime}	J^{\prime}
3	331	0.576	0.74
4	1168	0.744	0.618
5	530	0.180	0.257
6	530	0.808	0.808
7	584	0.594	0.763
8	693	0.722	0.669
11	2781	0.842	0.734

Abstract

The nearest neighbour clustering method was used to show the percent similarity between stations during the two surveys (Table 7, Figure 3). The cluster showed a grouping of stations with similarities greater than 60%. These are composed of stations 8, 4,5 and 11. A second grouping consists of stations 6, 9, and 15 with similarities between 42 and 56%.

-18

4.0 CONCLUSIONS

1. Extractable levels of lead and zinc are near guideline recommendations. Given the low volumes available for dilution in False Canyon Creek, combined with background concentrations of metals (particularly Pb), contributions from mine effiuent would have to be low if the recommended guidelines are to be maintained.
2. Stream sediment chemistry is comparable to other mineralized sites in the Yukon.
3. Benthic invertebrate populations appear significant in numbers and the diversity compared with other recent surveys.

REFERENCES

Brock, D.A., 1977. Comparison of Community Similarity Indexes. Journal of Water Pollution Control Federation, 49(12), p 2488-2494, Dec 1977.

Canadian Council of Resources and Environment Ministers(CCREM), 1987. Canadian Water Quality Guidelines. Task Force on Water Quality Guidelines of the CCREM, Ottawa.

Moore, J.W. and S Ramamoorthy, 1983. Heavy Metals in Natural Waters - Applied Monitoring and Assessment. Springer-Verlag, New York, Pielou, E.C., Ecological Diversity. John Wiley and Sons, New York, 151 p. (1975) .

Wahl, H.E., D.B. Eraser, R.C. Harvey, and J.B. Maxwell, 1987. Climate of Yukon, Atmospheric Environment Service, Environment Canada, 321 p.

Burns, B. , Nordin, K. 1992. Baseline Study of the Watershed in the Canamax Ketza River Gold Mine Area in Yukon Territory, Environmental Protection, Yukon Division (unpublished report).

Environmental Protection, 1994. Baseline Study of Water Quality, Sediments and Benthic Fauna in the Victoria Creek Watershed, Mount Nansen Mines Itd. Yukon Territory. Environmental Protection, Yukon Division. (unpublished report).

Environmental Protection, 1994. Baseline Study of Water Quality Sediments and Benthic Fauna in the Grew Creek Drainage, Yukon Territory.
Environmental Protection, Yukon Division (unpublished report).

Davidge, D., Godin, B., 1994. Baseline Study of Water Ouality, Sediments and Benthic Fauna in the Quill Creek Area, Yukon Terfitory. Environmental Protection, Yukon Division (unpublished report).

ACKNOWLEDGEMENTE

The Environmental Protection Branch - Yukon Division would like to acknowledge the following people for their contributions towards the completion of this report: Debbie Rene, Doug Davidge and Steve Arrell for data collection and field work, Ken Nordin and Bonnie Burns and Doug Davidge for original draft preparations, Benoit Godin, Peri Mehling and George Derksen for final editing and technical review and Linda Profeit for administrative assistance.

APPENDIX 1

COLLECTION, PRESERVATION, ANALYSIS OR INDENTIFICATION METEODS AND HATER QUALITY CRITERIA
WATER SAMPLE COLLECTION, PRESEKVATION AND ANALYSIS METHODS

farameter	detection LIMIT	COLLECTION AND PRESERVATION procedure	ANALYTICAL PROCEDURE	METHOD SECTION
Temperature	$0.1{ }^{\circ} \mathrm{C}$	In situ temperature reading.	YSI Conductivity and Temperature Meter. Model 33.	
Elow		In situ flow measurements using a prbeetype cuisent meter.	Cross-section of the stream was measured and the velocity of flow was calculated using the standard Price-type current meter method.	
Dissolved Oxygen	$1.00 \mathrm{mg} / \mathrm{l}$	In situ measurement. The instrument was calibrated in the feld mbder wath ur-saturated air combition.	YSI Dissolved Oxygen meter (in sit') Orion model 701 pH meter \& orion o, electinde (laboratory)	
pH	0.1 pH units	Small aliquots of sample were taken ard fead soon after collection. No preservative. Instrument was calirated usinis 7.0 buffering solution.	Potentiometric	080
Conductivity		It situ measurement. Laboratory measurement, specific conductivity at $25+C$. No preservative. The measurement was taken from the same sample as NH_{3} telow.	YSI Conductivity meter model 33 (in situ). Radiometer conductivity meter ICDM2D(laboratory).	044
(14.4	$\begin{aligned} & \therefore \quad(6,10414 \\ & \text { (14itio) } \end{aligned}$	(\%aus :апи, le as VH,.	Platimm-cobalt visual amfarisom	040
Tusidily	(1.) (r゙al	Bame samult as: 'IH,	Heprichemetai: latidity	130
$\begin{aligned} & \text { Wh-Fjiterathe } \\ & \text { Ke.i dir: (Ht K) } \end{aligned}$	S.0 my/ 1	Same samyte as \%h,	filtration, difitug atw weiging (f filtrate	104
$\begin{aligned} & \text { Filterable } \\ & \text { Kesidue (Fk) } \end{aligned}$	10.0 mg/l	Same sample as NH ,	Eiltration, diyifig and weighity of filtrate.	100
Totad Alkalinity	$\begin{aligned} & 1.0 \mathrm{mg} / 1 \\ & \text { as } \mathrm{caC} \text {, } \end{aligned}$	Same sample as NH_{3}	Potentiometriotitration	006

APPENDIX 1 TABLE 1		WATER SAMPLE COLLECTION, PRESERVATION AND ANALYSIS METHODS (continued)		
PAKAME'TER	DETECTION I.IMIT	COLLECTIGN AND presekvaition lRROCLDURE	ANALYTfCAL Procedure	METHOD SEC'TION
Almmolifa $\mathrm{NH}_{3}-\mathrm{N}$	u.vub $1 \mathrm{~mm} / 1$	Bilugle samples cullected in 2 Jitre linear polyethylene contalners. Each container was rinsed 3 times with sample before it was filled. No preservatives. Stored at $4^{\circ} \mathrm{C}$.	Ehenod theocichorimetriv: automated	ט¢\%
Nitrate $\mathrm{NO}_{2}-\mathrm{N}$	$0.005 \mathrm{mg} / 1$	Same sample as NH_{3}.	$\frac{\text { Diazotization-colorimetric- }}{\text { alltomated }}$	070
$\begin{aligned} & \text { Nitrate } \\ & \mathrm{NO}_{3}-\mathrm{N} \end{aligned}$	$0.005 \mathrm{mg} / 1$	Same sample as NH_{3}.	Cadmium-copper reduction-colorimetric-automated	072
Total Phosphate T $\mathrm{PO}_{4}-\mathrm{P}$	$0.002 \mathrm{mg} / 1$	Same sample as NH_{3}.	Ascorbic acid-persulphater automated autoclave digestion	086
Sulphate SO_{4}	$1 \mathrm{mg} / 1$	Same sample as NH_{3}.	Automated methylthymol-blue colorimetric	122
$\begin{aligned} & \text { Chloride } \\ & \text { Cl } \end{aligned}$	$0.5 \mathrm{mg} / \mathrm{l}$	Same sample as NH_{3}.	Thiocyanate-combined reagentcolorimetric	024

APPENDIK 1 TABLE 1

\begin{tabular}{|c|c|c|c|c|}
\hline farameter \& DETECEIION
LIMIT \& COLLECTION AND PRESERVATIUN PKocedure \& ANALYTICAL HROCEDURE \& METHOD SECTION

\hline Extractable/Total Metals \& mg/1 \& Single or triplicate samples collected in 125 ml linear \& Inductively Coupled Agron Plasma \& 300

\hline Ag \& 0.01 \& polyethylene bottles. Each bottle \& \&

\hline ${ }_{\text {Al }}^{\text {As }}$ \& 0.05 \& was rinsed 3 times with sample \& \&

\hline As \& 0.05 \& before filling. Preserved to a ph \& \&

\hline B
Ba

a \& 0.01 \& <1.5 using 1.0 ml concentrated HNO . \& \&

\hline Be \& 0.001 \& \& \&

\hline Ca \& 0.1 \& \& \&

\hline Cd \& 0.005 \& \& \&

\hline \bigcirc \& 0.006 \& \& \&

\hline Cl_{1} \& 0.005 \& \& \&

\hline Cu \& 0.005 \& \& \&

\hline Fe \& 0.005 \& \& \&

\hline Ma \& 0.10 \& \& \&

\hline Mn \& 0.001 \& \& \&

\hline Mo \& 0.01 \& \& \&

\hline Na \& 0.1 \& \& \&

\hline Hi \& 0.02 \& \& \&

\hline Pb \& 0.05 \& \& \&

\hline Sb \& 0.05 \& \& . \&

\hline Se \& 0.05 \& \& \&

\hline Si \& 0.05 \& \& \&

\hline Sr \& 0.05 \& \& \&

\hline 31 \& 0.10101 \& \& \&

\hline Ti \& a. 10 \& \& \&

\hline \checkmark \& (1.11) \& \& \&

\hline 2.1 \& 6. 110 \& \& \&

\hline
\end{tabular}

WATER SAMPLE COLLECTION, PRESERVATION AND ANALYSIS METHODS (continued)

APPENDIX 1 TABLE 1 WATER SAMPLE COLLECTION, PR	WATER SAmple collection, preservation and analysts methods (continued)	
PARAMETER DETECTION LIMIT \quad COLLECTION AND PRESERVATION	ANALXTICAL PRUCEDURE	METHOD SECTION
Pb (0.0005 Same sample as metals.	Graphite Eurnace Atomic Absorption Spectrometry	330
$\begin{aligned} & \text { Total Hardness } \quad 0.030 \mathrm{mg} / \mathrm{l} \text { Same sample as metals. } \\ & \mathrm{Ca} / \mathrm{Mg} \text { Hardness }=4.116 \mathrm{Mg}+2.497 \mathrm{Ca} \end{aligned}$		
${ }^{1}$ As described in Environment Canada (1976). ${ }^{2}$ As descriled in Department of Envjroniment (1979).		

APPENDIX 1

FARAMETER	EKEPAKATION	ANALYSIS	METHODS CODE $_{1}$	
All Parameters	Creek and River Stations: Sediment samples were collected using a Teflon scoop to scoop stream sediments into sample bag.			
	Three samples were collected at each station and placed in geochemical paper sample bags. Each sample is then sealed in plastic bags and frozen or keep cool within 24 hours.			
Metals (Leachable)	Sample was freeze-dried for 48 hours to remove water. Sample was sieved through a size 100			
Al, B,	mesh (.l5mil stajnless steel sleve. The			
Ba, Be, Ca,	portion passing through was analyzed for			
$\begin{array}{ll}\mathrm{Cd}, \mathrm{Co}, \mathrm{Cr}, & \text { leachable metals. } \\ \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mg}, & \end{array}$				
$\mathrm{Mn}, \mathrm{Mo}, \mathrm{Na}$,	Sample was leached with HCl and HNO^{3}. The		Inductively Coupled Argon	320
Ni, P, Pb,	sample was heated for 3 hours.	Plasma (ICAP)		
Si, Sn, Sr,				
Ti, V, 2 n				
As	Same as other metals.	Hydride Gerieration ICAP	350	
A. 1	Same as uthel metals.	Eleme Atomie Alusorftion	330	
raitiole size	Sany, was fletate-diciod.	Standard Sieving ofetation	078	
1				
letarartment. of Env 	nt, Department of Fisheries ard Ocearis, Labisito rvior: (1179).	Marual, Environmental Prote	Service	

APPENDIX 1 TABLE 3 BOTTOM EAUNA COLLECTION, PRESERVATION AND IDENTIEICATION METHODS

FIELD COLLECTION, SAMFLING PROCEDURES AND PRESERVATION	LABOKATUKY PROCEDUKES	IDENTIEICATION AND ENUMERATION
Surber Sampler: Creek and river samples were taken using a Suber sampler with a net, 60 cm long (mesh size $500 \mu \mathrm{~m})$. Area sampled was 929 cm^{2} (1 ft^{2}). The sampler was deployed three times, over a short reach of river (approx. 10 m), at each site. Replicates were all washed from the net into a 11 bottle. A mixture of 10% formalin was added to preserve the sample.	Bottom fauna was sorted from other material and placed in a vial contalnliag 70% methanol.	Bottom fauna samples were sent to Or. C. Low, a Consulting Invertebrate Biologist, Nanaimo, B.C. for identification to genus and speries if possible and enumeration of sample.

WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE (continued)

substance	KECOMMENDED LEVEL(S) FOR DRINKING WATER	References (S)	RECOMMENDED LEVEL(S) for rquatic life	REfERENCE
*Copper (Cu) total mq/1	< 1.0 aesthetic objective	1	0.002 at hardiess $0-120 \mathrm{mg} / 1 \mathrm{CaCO}_{3}$ 0.004 at hardness $120-180 \mathrm{mg} / 1 \mathrm{CaCO}_{3}$ 0.006 at hardness $>180 \mathrm{mg} / 1 \mathrm{CaCO}_{3}$	
Dissolved oxygen (\% saturation)	Near 100\%	4	>5.0mg/l	10
Eluoride (5) mg/l	1.5	1	1.5	7
Hardness (Total) as mg/l CaCO3	80-100	1		
Iron (Fe) total mg/l	<0.3 aesthetic objective	1	0.3	10
Lead (Pb) total mg/l	0.05	1	0.001 at hardness $0-60 \mathrm{mg} / 1 \mathrm{CaCO}_{3}$ 0.002 at harduess $60-120 \mathrm{mg} / 1 \mathrm{CaCO}_{3}$ 0.004 at hardness $120-180 \mathrm{mg} / \mathrm{l} \mathrm{CaCO}_{3}$ 0.007 at hardness $>180 \mathrm{mg} / 1 \mathrm{CaCO}_{3}$	10
Magnesium (Mg) mg/l	50	4		
Manganese (Mn) mg/l	<0.05 aesthetic objective	1	1.0	7
Mol ybdenum (Molmg/l				
Nickel (Ni) total $\mathrm{mg} / 1$	0.25	2	0.025 at hardness $0-60 \mathrm{mg} / 1 \mathrm{CaCO}_{3}$ 0.065 at hardness $60-120 \mathrm{mg} / 1 \mathrm{CaCO}_{3}$ 0.11 at hardness $120-180 \mathrm{mg} / 1 \mathrm{CaCO}_{3}$ 0.15 at hardness >180	10
Nitrate ($\mathrm{NO} 3-\mathrm{N} / \mathrm{mg} / 1$	10	1		
Nitrite ($\mathrm{NO} 2-\mathrm{N}$) mg/l	1.0	1	0.06	10
pH units	6.5-8.5	1	6.5-9.0	
Phosphate (PO4)mg/l	0.2	8		
*Phosphorus (P) mg/l (Total)			0.020 to prevent algae	5
Residue: Filterable mg/l (Total dissolved solids)	<500 aesthetic objective	4	70-400 with a maximum of 2000	6
Residue: Non-Filterable			Increase of $10 \mathrm{mg} / 1$ with bkgd<100mg/l	8
(mg/l) (TSS)			increase of 10% above bkgd with bkgd $>100.0 \mathrm{mg} / \mathrm{l}$	10

WATER QUALITY CRITERIA EOR DRINKING WATER AND AQUATIC LIfE

SUBSTANCE	KECOMMENDED Level (S) EOR DRINKING WATER	REEERENCE (S)	KECOMMENDED LEVEL(S) FOR AQUATIC LIFE	REFERENCE(S)
Physical				
Colour (TCU)	<15	1		
Temperature (${ }^{\circ} \mathrm{C}$)	15			
Odour and taste	If offensive	1		
Turbidity NTU	<5	1		
Collform-Total (count $/ 100 \mathrm{ml}$)	10	1	recreational water Total $500-1000 / 100 \mathrm{ml}$	9
fecal coliform	0	1	200 /100ml	9
Chemical				
*Alkalinity mg/l (Total)	Not considered a putlic health proklem	4	220	3
*Aluminum (Al) mg/l	Not considered a putilic. health problem	7	6.1 at $\mathrm{pH}>6.5$	5
Ammonia total ($\mathrm{NH} 3-\mathrm{N}$) mg / l	0.5	4	2.2 at pH 6.5 temp $10^{\circ} \mathrm{C}$ 1.37 at ph 8.0 temp $10^{\circ} \mathrm{C}$	10
Antimony (SL) mg/l				
Arsenic (As) total $\mathrm{mg} / 1$	0.05	1	$\begin{aligned} & <0.05 \\ & 5.0 \end{aligned}$	10
Barium (Ba) mg/l	1.0	1		
Boron (B) ing/l	5.0	1	0.0002 for hardness $0-60 \mathrm{mg} / 1 \mathrm{CaCO}_{3}$	
*Cadmium (Cd) total mg/l	0.005	1	0.0008 for hardness $60-120 \mathrm{mg} / \mathrm{l}$ CaCO_{3} 0.0013 for hardness $120-180 \mathrm{CaCO}_{3}$	10
Calcium (Ca) mg/1	75-200	7	0.0018 for hardress $>180 \mathrm{CaCO}$,	
Chacride (Cl)mg/	$\bigcirc 50$ aesthetje olijectives	1		
	0.05	1	11.02 to protect tish 11.002 tis frotest ruatic life	10
	Depernds on dissoived salts	7	$100-500$	6

APPENDIX 1
TABLE 4
WATER QUALITY CRITERIA FOR DRINKING WATER AND AQUATIC LIFE (continued)

SUBStance	RECOMMENDED LEVEL(S) EOR DRINKING WATER	REFERENCES(S)	RECOMMENDED LEVEL(S) for Aguatic life	Reference
**Selenium (Se)				
Silica (Si)mg/l				
*Silver (Ag) total mg/l		1	0.0001	10
Sodium (Na) mg / l		1		
Strontium (Sr) mg/l	10	1		
Sulphate (SO^{4}) mg / l	500	1		
Tin (Sn)mg/l	Not present in natural waters	7		
Titanium (Ti)mg/l Vanadium (V)				
Zinc (Zn) mg/l	<5.0 aesthetic objective	1	0.030	10
* Use graphite furnace for the lab detection limit to be less than the recommended levels. ** Lab detection limit > recommended levels.				
REFERENCES:				

1. Health Welfare Canada. 1987. Guidelines for Canadian Drinkinq Water Ouality 1987. Supply and Services,
Canada.

[^0]APPENDIX I TABLE 4 WATER QUALITY CRITERIA EOR DRINKING WATER AND AQUATIC LIFE (continued)

SUBSTANCE	KECOMMENDED LEVEL(S) FOR DRINKING WATER	ketekences (S)	RECOMMENDED LEVEL(S) for aquatic life	keference

[^1]APPENDIX II

WATER QUALITY
APPENDIX II TABLE 1 mT. hundere WATER quality DATA for June, 1988

STATION	DESCRIPTION	$\begin{array}{r} F R \\ S T D \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} \text { NFR } \\ \text { Mean } \\ \langle m g / L\rangle \end{array}$	$\begin{array}{r} \text { NFR } \\ \text { STD } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \text { Mean } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{STD} \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} \text { Al } \\ \text { Mean } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} A L \\ S T D \\ (m g / L) \end{array}$	$\begin{array}{r} \text { As } \\ \text { Mean } \\ (m g / L) \end{array}$	$\begin{array}{r} \text { As } \\ \text { STD } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$
1	Headwaters of Tom Creek Tributary 5	10	42	29	<0.01	n/a	<0.05	n/a	<0.05	n/a
2	Headwaters of False Canyon Creek	7	<5	n/a	<0.01	n / a	<0.05	n / a	<0.05	n/a
3	Headwaters of False Canyon Creek Tributary B	17	72	73	<0.01	n / a	<0.05	n / a	<0.05	n/a
4	Erances River Tributary A © bridge crossing	43	34	3	<0.01	n / a	<0.05	n / a	<0.05	n/a
5	Tom Creek u/s Campbell Hwy bridge	10	36	10	<0.01	n/a	<0.05	n/a	<0.05	n/a

[^2]aphendix II table 1

STATION	DESCRIPTION			$\begin{array}{r} \text { Co } \\ \text { Mean } \\ (m g / L) \end{array}$	$\begin{array}{r} \mathrm{Co} \\ \mathrm{STD} \\ (\mathrm{mg} / \mathrm{L}) \end{array}$		$\begin{array}{r} \text { Mean } \\ (m g / L)\left(\begin{array}{rl} \mathrm{Cr} \end{array}\right. \\ \hline \end{array}$	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{STD} \\ (\mathrm{mg} / \mathrm{L}) \end{array}$		$\begin{array}{r} \mathrm{Cu} \\ \mathrm{STD} \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} \text { Fe } \\ \text { Mean } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} \mathrm{Fe} \\ \mathrm{STD} \\ (\mathrm{mg} / \mathrm{L}) \end{array}$
1	Headwaters of Tom Creek Tributary 5	n/a		0.005	n/a	$<$	0.005	n/a	0.005	0.000	< 0.012	n/a
2	Headwaters of False Canyon Creek	n / a	$<$	0.005	n/a	$<$	0.005	n/a	0.005	0.000	< 0.005	n/a
3	Headwaters of False Canyon Creek Tributary B	n/a	<	0.005	n/a	$<$	0.005	n/a	0.005	0.000	0.010	0.005
4	Frances River Tributary A e bridge crossing	n/a	$<$	0.005	n / a	$<$	0.005	n/a	0.005	0.000	< 0.011	n/a
5	Tom Creek u/s Campbell Hwy bridge	n/a	$<$	0.005	n / a	$<$	0.005	n/a	0.005	0.000	0.069	0.010

STATION	DESCRIPTION	$\begin{array}{r} M g \\ M e a n \\ \{\mathrm{mg} / \mathrm{L}\} \end{array}$	$\begin{array}{r} \mathrm{Mg} \\ \text { STD } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$		$\begin{array}{r} \text { Mn } \\ \text { Mean } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} M n \\ S T D \\ (\mathrm{mg} / \mathrm{L}) \end{array}$			$\begin{array}{r} \text { Mo } \\ \text { ST'D } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} \mathrm{Na} \\ \mathrm{Mean} \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} \mathrm{Na} \\ \mathrm{STD} \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} \mathrm{NI} \\ \mathrm{Mean} \\ (\mathrm{mg} / \mathrm{L}) \end{array}$
1	Headwaters of Tom Creek Tributary 5	1.5	0.2	$<$	0.001	n/a		0.01	n/a	0.6	0.1	<0.02
2	Headwaters of False Canyon Creek	0.4	0.2	$<$	0.001	n/a		0.01	n/a	< 0.1	n/a	<0.02
3	Headwaters of False Canyon Creek Tributary B	3.5	1.2	<	0.001	n/a		0.01	n / a	0.5	0.2	<0.02
4	Erances River Tributary A © bridge crossing	11.3	3.5	$<$	0.001	n/a		0.01	n/a	0.9	0.3	<0.02
5	Tom Creek u/s Campbell Hwy bridge	6.3	1.2		0.004	0.001		0.01	n/a	0.9	0.2	<0.02

APPENDIX II TABLE 1 MT. HUNDERE WATER QUALITY DATA FOR JUNE, 1988

Metals (ICP SCan); low detection analysis (GF) for Ag, Cd, Cu and Pbif below ICP scan. n/a $=$ analysis not done
afpendik il table 2 mt. hundere water quality data for june, 1990

APPENDIX II TABLE 2 MT. HUNDERE WATER QUALITY DATA FOR JUNE, 1990

STATION	DESCRIPTION	$\begin{array}{r} F R \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} \text { NER } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{gathered} \text { Diss. GE } \\ \text { Ag } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	Diss. (mg/L Al	Diss. As (mg/L)	Diss. (mg/L)	Diss. Ba (mg/L)	Diss. Be (mg/L)	$\begin{array}{r} \text { Diss. } \\ \text { Ca } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$
3	Headwaters of Ealse Canyon Cr. Trib. B	230	10	0.0004	<0.05	<0.05	<0.01	0.027	<0.001	44.2
4	Frances River Trib. A \& Bridge	320	<10	0.0007	<0.05	<0.05	<0.01	0.069	<0.001	54.2
5	Tom Creek u/s Campbell Hwy bridge	283	<10	0.0003	<0.05	<0.05	<0.01	0.088	<0.001	34.1
6	Tom Cr. Trib. $2(200 \mathrm{~m} / \mathrm{s}$) Tom Cr.	180	<10	<0.0001	<0.05	<0.05	<0.01	0.071	<0.001	22.1
7	Tom Cr .	260	<10	0.0004	<0.05	<0.05	<0.01	0.090	<0.001	38.1
8	Tom Cr. Trib. 5	240	<10	0.0004	<0.05	<0.05	<0.01	0.101	<0.001	38.0
9	Tom Cr. Outflow from Tom Lake u / s of Site 10 Trib . (150M)	290	<10	0.0005	<0.05	<0.05	<0.01	0.083	<0.001	47.6
10	Tom Cr. Trib. u/s of outflow from Tom Lake	220	<10	0.0004	<0.05	<0.05	<0.01	0.100	<0.001	36.7
11	Upper False Canyon Cr.	210	<10	0.0005	<0.05	<0.05	<0.01	0.099	<0.001	45.7
12	False Canyon Cr. Trib. Air Photo Stn.	250	<10	0.0005	<0.05	<0.05	<0.01	0.118	<0.001	47.4
14	False Canyon $\mathrm{Cr} . \mathrm{u} / \mathrm{s}$ of Trib. B. 30 m	130	13	0.0003	<0.05	<0.05	<0.01	0.072	<0.001	29.6
15	Ealse Canyon Cr. Trib. B u/s of Ealse Canyon Cr. 300 m	193	25	0.0005	<0.05	<0.05	<0.01	0.087	<0.001	45.5
16	False Canyon Cr. $60 \mathrm{~m} \mathrm{u/s} \mathrm{of} \mathrm{Erances} \mathrm{R}$.	207	10	0.0003	<0.05	<0.05	<0.01	0.086	<0.001	35.8
17	Frances R. u/s of False Canyon Cr.	117	<10	<0.0001	<0.05	<0.05	<0.01	0.025	<0.001	18.7
18	Frances R. A Hwy. Bridge	157	<10	<0.0001	<0.05	<0.05	<0.01	0.027	<0.001	19.4

APPENDIX II TABLE 2 MT. HUNDERE WATER QUALITY DATA FOR JUNE, 1990

APPENDIX II TABLE 2 MT. hUNDERE WATER QUALITY DATA FOR JUNE, 1990

STATION	DESCRIPTION	Extr. Ca (mg/L)	$\begin{gathered} \text { Extr. } \mathrm{Cd} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	Extr. Co (mg/L)	Extr. (mg/L)	$\begin{gathered} \text { Extr. GF } \\ \text { Cu } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { Extr. } \\ \text { Ee } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { Extre } \\ \text { K } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	Extr. Mg (mg/L)	Extr. Mn (mg/L)
3	Headwaters of Ealse Canyon Cr. Trib. B	44.5	<0.0001	<0.005	0.005	0.0017	0.099	<2	4.1	0.003
4	Frances River Trib. A 0 Bridge	55.6	<0.0001	<0.005	0.009	<0.0005	0.059	<2	16.0	0.003
5	Tom Creek u/s Campbell Hwy bridge	35.5	<0.0001	<0.005	<0.005	0.0006	0.0504	<2	16.0 9.9	0.008
6	Tom Cr. Trib. $2(200 \mathrm{~m} \mathrm{u} / \mathrm{s}$) Tom Cr .	22.4	<0.0001	0.010	0.010	0.0013	0.240	<2	9.9	0.014
7	Tom Cr .	38.7	<0.0001	0.009	0.008	0.0005	0.078	<2	10.6	0.029 0.006
8	Tom Cr. Trib. 5	38.1	<0.0001	<0.005	0.007	0.0009	0.230	<2	9.6	0.011
9	Tom Cr. Outflow from Tom Lake u / s of Site 10 Trib . 1150 M)	46.9	<0.0001	<0.005	0.008	<0.0005	0.074	<2	13.0	0.017
10	Tom Cr. Trib. u/s of outflow from Tom Lake	37.6	<0.0001	<0.005	<0.005	<0.0005	0.133	<2	12.9	0.021
11	Upper False Canyon Cr.	46.0	<0. 0001	<0.005	0.005	<0.0005	0.099	<2	9.2	0.006
12	False Canyon Cr. Trib. A Air Photo Stn.	49.5	<0.0001	<0.005	<0.005	<0.0005	0.104	<2	10.6	0.008
14	False Canyon Cr. u/s of Trib. B. 30 m	30.	<0.0001	<0.005	<0.005	<0.0005	0.401	<2	6.8	0.022
15	False Canyon Cr. Trib. B u/s of False Canyon Cr. 300 m	48.3	<0.0001	<0.005	0.007	0.0007	0.328	<2	11.4	0.015
16	False Canyon $\mathrm{Cr}, ~ 60 \mathrm{~m} \mathrm{u/s} \mathrm{of} \mathrm{Frances} \mathrm{R}$.	36.9	<0.0001	<0.005	0.005	0.0005	0.370	<2	8.6	0.027
17	Frances R. u/s of False Canyon Cr.	19.4	<0.0001	<0.005	<0.005	<0.0005	0.088	<2	4.1	0.006
18	Frances R. 0 Hwy. Bridge	20.1	<0.0001	<0.005	<0.005	<0.0007	0.122	<2	4.3	0.008

APPENDIX II TABLE 2 MT. HUNDERE WATER QIIALITY DATA FOR JUNE, 1990

STATION	DESCRIPTION	$\begin{array}{r} \text { Extr } \\ \text { Sr } \\ (\mathrm{mg} / \mathrm{I}) \end{array}$	$\begin{array}{r} \text { Extr. } \\ \mathrm{Ti} \\ (\mathrm{mg} / \mathrm{I}) \end{array}$	$\begin{array}{r} \text { Extr. } \\ V \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} \text { Extr. } \\ 2 n \\ (\mathrm{mog} / \mathrm{L}) \end{array}$	$\begin{gathered} \text { Total GF } \\ \text { AG } \\ (\mathrm{mg} / \mathrm{l}, \mathrm{~s} \end{gathered}$	Total Al (mg/L)	$\begin{array}{r} \text { Total } \\ \text { As } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} \text { Total } \\ B \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} \text { Total } \\ \text { Ba } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$
3	Headwaters of Ealse Canyon Cr. Trib. B	0.120	<0.002	<0.01	0.016	0.0004	0.27	<0.05	<0.01	0.033
4	Frances River Trib. A Bridge	0.193	<0.002	<0.01	<0.002	0.0005	0.07	<0.05	0.02	0.079
5	Tom Creek u/s Campbell Hwy bridge	0.126	<0.002	<0. 01	<0.002	0.0004	0.11	<0.05	<0.01	0.102
6	Tom Cr. Trib. 2 (200m u/s) Tom Cr.	0.094	<0.002	<0.01	<0.002	0.0003	0.17	<0.05	0.02	0.088
7	Tom Cr.	0.132	<0.002	<0.01	<0.002	0.0004	0.15	<0.05	<0.01	0.104
8	Tom Cr. Trib. 5	0.120	<0.002	<0.01	0.007	0.0003	0.35	<0.05	<0.01	0.131
9	Tom Cr. Outflow from Tom Lake u/s of Site 10 Trib . (150M)	0.178	<0.002	<0.01	<0.002	0.0005	0.10	<0.05	<0.01	0.094
10	Tom Cr. Trib. u/s of outflow from Tom Lake	0.132	<0.002	<0.01	<0.002	0.0005	0.14	<0.05	<0.01	0.119
11	Upper False Canyon Cr.	0.161	<0.002	<0.01	0.004	0.0005	0.09	<0.05	<0.01	0.111
12	Ealse Canyon Cr. Trib. Air Photo Stn.	0.184	<0.002	<0.01	<0.002	0.0006	0.08	<0.05	<0.01	0.133
14	Ealse Canyon Cr . u / s of Trib. B. 30 m	0.114	<0.002	<0.01	<0.002	0.0002	0.60	<0.05	<0.01	0.092
15	False Canyon Cr. Trib. Bu/s of False Canyon Cr. 300 m	0.132	<0.002	<0.01	0.003	0.0005	0.58	<0.05	0.01	0.117
16	Ealse Canyon Cr . $60 \mathrm{~m} \mathrm{u/s}$ of Erances R.	0.126	<0.002	<0.01	<0.002	0.0004	0.45	<0.05	<0.01	0.106
17	Erances R. u/s of False Canyon Cr.	0.083	<0.002	<0.01	<0.002	<0.0002	0.21	<0.05	<0.01	0.031
18	Erances R. Hwy. Bridge	0.085	<0.002	<0.01	<0.002	0.0001	0.22	<0.05	<0.02	0.035

IZ ${ }^{*}$ ¢	S0＊0＞	S0＊0＞	－G200＊0＞	I＇0＞	$20^{\circ} 0>$					
$60^{\circ} \mathrm{\varepsilon}$	So $0>$	So＇0＞	－100．0	$1 \cdot 0>$	$20^{\circ} 0>$	$0 \cdot 1$	$10^{\circ} 0>$	$\begin{aligned} & 600^{\circ} 0 \\ & 900^{\circ} 0 \end{aligned}$		8 T
てI＊	S0＊0＞	So＇0＞	$6100^{\circ} 0$	［－0＞	$20^{\circ} 0>$	$6 \cdot 0$	10．0＞	$0 \varepsilon O^{\circ} 0$	Kuep astes	$\angle I$
t 1 ＊${ }^{\text {c }}$	S0＊0＞	S0＊0＞	2100°	［ ${ }^{\circ} 0>$	20＊0＞	$8 \cdot 0$	10．0＞		woor－ $\mathrm{J}_{\text {c uokuej esteg jo }}$	
I6 \mathcal{E}	S0＊0＞	So＇0＞	－EOO 0	$1 \cdot 0>$	20：0＞	6.0	t0．0＞	$\angle 100^{\circ}$ 92000		GI
bs＊ 2	S0．0＞	90．0＞	$9600^{\circ} 0$	$1 \cdot 0>$	$20 \cdot 0>$	$0 \cdot 1$	to 0＞	800%		ET
T0＊E	S0＊＊	SO＊${ }^{\circ}$	0100°	I－0＞	$20^{\circ} 0>$	L． 0	to $0>$	$900^{\circ} 0$	\cdot uf	2I
8L＊	S0＊ 0	G0＊0＞	$\varepsilon 100^{\circ} 0$	［＊0＞	$20^{\circ} 0>$	$6^{\circ} 0$	10＊0＞	$\varepsilon 20 * 0$		0 T
ZL．E	S0＊0＞	S0．0＞	$6100^{\circ} 0$	「•0＞	$20^{\circ} 0>$	I＇$冖$	$10^{\circ} 0>$	$810^{\circ} 0$	（WOGt）qqud ot afts jo s／n	
SでE	S0\％${ }^{\circ}$	$90^{\circ} 0>$	$8100{ }^{\circ}$	$1 \cdot 0>$	20＊0＞	6.0	$10 \cdot 0>$	$210{ }^{\circ}$	ayet mol moxi motjino ed mod	6
して・	S0．0＞	S0＊0＞	－100 0	I－0＞	$20 \cdot 0>$	$z \cdot 1$	$10 \cdot 0>$	$1.00 \cdot 0$		8
でも	$50^{\circ} 0>$	$50 \cdot 0>$	9200°	［－0＞	$20 \cdot 0>$	9＊ 1	10．0＞	عEO＊		L
ZでE	S0＊0＞	So＊0＞	St00＊0	I－0＞	$20^{\circ} 0>$	z＇I	［0．0＞	¢ $10{ }^{\circ} 0$		9
$8 \square^{\circ} \mathrm{E}$	S0＊0＞	S0＊0＞	$9100{ }^{\circ}$	I－0＞	$20^{\circ} 0>$	$\varepsilon \cdot \tau$	10．0＞	$600^{\circ} 0$	obpraq KMh tteqduej $5 / \mathrm{n}$ yeax uod	5
Lて＇＊	S0＊0＞	SO＊${ }^{\circ}$	9200°	［ $0>$	20＇0＞	9.0	10＊0＞	$900 \cdot 0$		b
（IT／5u）	（7／6w）	（＇T／bur）	（7／6ur）	（7／6w）	（＇T／5us）	（＇7／6w）				ε
！	es	qS	qd	d	IN	en	CW		NOILdİDS3a	NOILYLS
［P70山	Te704	Te70L	35 Te7od	tejol	Te70l	1e704	Ie7ol	［e7ol		

STATION	DESCRIPTION	$\begin{array}{r} \text { Total } \\ \text { Sn } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	Total Sr $(\mathrm{mg} / \mathrm{L})$	$\begin{array}{r} \text { Total } \\ \text { Ti } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{array}{r} \text { Total } \\ V \\ (m g / L) \end{array}$	$\begin{array}{r} \text { Total } \\ \text { Zn } \\ (\mathrm{mg} / \mathrm{L}) \end{array}$
3	Headwaters of Ealse Canyon Cr．Trib．B					
4	Erances River Trib．A A Bridge	<0.05 <0.05	0.131	<0.002	<0.01	＜0．002
5	Tom Creek u／s Campbell Hwy bridge	＜0．05	0.209 0.135	<0.002 <0.002	<0.01	＜0．002
6	Tom Cr．Trib． 2 （200m u／s）Tom Cr．	<0.05	0.103	<0.002	<0.01	<0.002
7	Tom Cr．	<0.05	0.146	<0.002	＜0．01	<0.002
8	Tom Cr．Trib． 5	<0.05	0.146	<0.002	＜0．01	<0.002
9	Tom Cr．Out flow from Tom Lake	＜0．05	0.191	＜0．002	＜0．01	<0.002
	u／s of Site 10 Trib ．（150M）	＜0．05	0.191	＜0．002	＜0．01	<0.002
10	Tom Cr．Trib．u／s of outflow from Tom Lake	＜0．05	0.142	＜0．002	<0.01	<0.002
11	Upper False Canyon Cr．					
12	Ealse Canyon Cr．Trib．Air Photo Stn．	＜0．05	0.169 0.177	＜0．002	<0.01	<0.002
14	False Canyon Cr．u／s of Trib．B． 30 m ．	＜0．05	0.120	＜0．002	＜0．01	<0.002
15	Ealse Canyon Cr．Trib．B u／s	＜0．05	0.120 0.138	＜0．002	＜0．01	<0.002
	of False Canyon Cr．300m	＜0．05	0.138	＜0．002	＜0．01	＜0．002
16	False Canyon Cr． $60 \mathrm{~m} \mathrm{u} / \mathrm{s}$ of Frances R．	<0.05	0.136	<0.002	<0.01	<0.002
17	Erances R．u／s of False Canyon Cr．	<0.05	0.090	<0.002	<0.01	<0.002
18	Frances R．\＆Hwy．Bridge	<0.05	0.093	<0.002	<0.01	<0.002

APPENDIX III

SITREAM SEDTMENTS
appendix ili table 1 mT hundere percent sediment particie size distribution, june 1988

TABLE 2 MT. HUNDERE SEDIMENT CHEMISTRY FOR JUNE, 1988
APPENDIX III

STATION NUMBER	$\begin{array}{r} A g \\ (\mathrm{ug} / \mathrm{g}) \end{array}$	$\begin{array}{r} \text { Al } \\ (\mathrm{ug} / \mathrm{g}) \end{array}$	$\begin{array}{r} \text { As } \\ (\mu \mathrm{g} / \mathrm{g}) \end{array}$	$\begin{array}{r} \mathrm{Ba} \\ (\mu \mathrm{~g} / \mathrm{g}) \end{array}$	$\begin{array}{r} \mathrm{Be} \\ (\mu \mathrm{~g} / \mathrm{g}) \end{array}$	$\begin{gathered} \mathrm{Ca} \\ (\mu \mathrm{~g} / \mathrm{g}) \end{gathered}$	$\begin{array}{r} \text { Cd } \\ (\mu \mathrm{g} / \mathrm{g}) \end{array}$	$\begin{array}{r} C o \\ (\mu \mathrm{~g} / \mathrm{q}) \end{array}$	$\begin{array}{r} \mathrm{Cr} \\ (\mu \mathrm{~g} / \mathrm{g}) \end{array}$	$\underset{(\mu \mathrm{g} / \mathrm{g})}{\mathrm{Cu}}$	$\begin{array}{r} \mathrm{Fe} \\ (\mu \mathrm{~g} / \mathrm{g}) \end{array}$	$\underset{(\mu \mathrm{g} / \mathrm{g})}{\mathrm{Mg}}$	${ }_{(\mu \mathrm{g} / \mathrm{g})}^{\mathrm{Mn}}$	$\begin{gathered} \text { Mo } \\ (\mu \mathrm{g} / \mathrm{g})^{\prime} \end{gathered}$
1	<2	21400	20	152	0.8	9880	3	<20	41.6	28.5	29800	10900	1160	3
	<2	20300	23	138	0.7	9100	2.7	<20	3.9 .5	28.6	29700	10900	1040	3
	<2	19400	20	182	0.9	11200	2.6	< 20	36.4	37.9	26600	9340	658	4
2	4	25500	75	177	3.2	12800	32.7	20	53.4	73.1	45000	9670	2470	5
	4	25600	80	176	3.3	13700	36.4	< 20	58.7	87.1	48100	10000	2320	8
	4	21400	89	169	2.9	12300	43.5	20	47.7	74.4	48400	7870	2580	6
3	<2	12400	10	253	0.6	12300	3.1	<20	42.8	26.8	26000	7410	565	5
	<2	15000	20	245	0.7	11000	2.2	<20	32.1	35.9	23700	7470	593	3
	<2	13700	10	419	0.6	11700	2	<20	48.5	44.1	23700	7800	541	6
4	<2	10300	10	279	0.5	10800	1	<20	35.6	44.9	22200	4720	997	4
	<2	10700	10	437	0.5	9560	0.9	<20	43.1	30.7	23500	4790	1360	4
	<2	10800	10	367	0.5	10300	1	<20	40.7	25.6	24000	4710	792	2
5	<2	15600	10	241	0.4	5300	<0.8	<20	36.6	61.3	34600	6630	942	6
	<2	11800	<8	307	0.4	5960	0.9	<20	55.1	21.3	20600	5500	712	2
	<2	13300	10	267	0.5	5390	1	<20	42.5	25.1	21300	5600	507	3

APPENDIX III

APPENDIX III TABLE 3 MT. HUNDERE SEDIMENT CHEMISTRY EOR JUNE, 1990

APPENDIX III

APPENDIX III TABLE 4 MT. hundere sediment data summary for june, 1988 and june, 1990

STATION NUMBER	SAMPLE DATE	$\begin{aligned} & \quad \mathrm{Cd} \\ & \operatorname{STD} \\ & (\mu \mathrm{~g} / \mathrm{g}) \end{aligned}$	$\begin{gathered} \text { Co } \\ \text { Mean } \\ \|\mu g / g\| \end{gathered}$	$\operatorname{STD}_{(\mu \mathrm{g} / \mathrm{g})}^{\mathrm{Co}}$	$\begin{gathered} C r \\ \text { Mean } \\ (\mu \mathrm{g} / \mathrm{g}) \end{gathered}$	$\begin{aligned} & \operatorname{STD} \\ & (\mu g / g) \end{aligned}$	Cu Mean ($\mu \mathrm{g} / \mathrm{g}$)	$\begin{gathered} \mathrm{STD}_{(\mu \mathrm{g} / \mathrm{g})}^{\mathrm{Cu}} \end{gathered}$	$\begin{array}{r} \text { Fe } \\ \text { Mean } \\ (\mu(g / g) \end{array}$	$\operatorname{STD}_{(\mu \mathrm{g} / \mathrm{g})}^{\mathrm{Fe}}$	$\begin{gathered} \text { Mean }^{K} \\ \langle\mu g / g\rangle \end{gathered}$	$\underset{(\mu \mathrm{STD} / \mathrm{g})}{\mathrm{ST}}$	$\begin{gathered} \text { Mg } \\ \text { Mean } \\ (\mu g / g) \end{gathered}$	$\begin{gathered} \mathrm{STD} \\ (\mu \mathrm{~g} / \mathrm{g}) \end{gathered}$	$\begin{gathered} \text { Mn } \\ \text { Mean } \\ (\mu g / g) \end{gathered}$	$\begin{gathered} \mathrm{Mn} \\ (\mu \mathrm{STD} / \mathrm{g}) \end{gathered}$	$\begin{gathered} \text { Mo } \\ \text { Mean } \\ (\mu \mathrm{g} / \mathrm{g}) \end{gathered}$		$\begin{aligned} & \text { Mo } \\ & \mathrm{g} \end{aligned}$
1	21-Jun-88	n / a	<20	n / a	39.2	2.6	31.7	5.4	28700	1819	n / a	n / a	10380	901	953	262	3	3	1
2	21-Jun-88	n / a	<20	n/a	53.3	5.5	78.2	7.7	47167	1882	n/a	n/a	9180	1146	2457	131	6	6	2
3	22-Jun-88	n / a	<20	n / a	41.1	8.3	35.6	8.7	24467	1328	n / a	n/a	7560	210	566	26	5	5	2
3	20-Jun-90	0.09	<20	n/a	35.3	2.4	21.0	1.9	25167	1097	1600	529	6480	420	529	34	3	3	1.
4	22-Jun-88	n/a	<20	n / a	39.8	3.8	33.7	10.0	23233	929	n/a	n/a	4740	44	1050	288	3	3	1
4	20-Jun-90	0.05	<20	n/a	29.3	3.0	21.4	3.4	23867	757	1733	58	4287	90	941	20	<2		n/a
5	22-Jun-88	n/a	<20	n / a	44.7	9.5	35.9	22.1	25500	7889	n/a	n/a	5910	626	720	218	4	4	2
5	21-Jun-90	0.06	<20	n / a	68.3	17.6	13.7	2.1	22067	2312	1300	520	4783	232	775	117	<2		n/a
6	19-Jun-90	0.11	<20	n / \mathbf{a}	57.0	10.2	11.6	3.0	16967	1358	1333	577	5160	303	349	136	<2	2	n/a
7	19-Jun-90	0.03	<20	n/a	65.0	3.4	16.5	0.9	27033	1041	1567	513	4267	202	292	20	<2	2	n/a
8	19-Jun-90	0.20	<20	n/a	37.0	5.3	20.1	0.9	22833	839	1667	577	4517	105	518	54	<3	3	n/a
9	19-Jun-90	0.11	<20	n/a	75.8	29.0	14.7	2.3	19367	1620	1967	289	4857	411	462	263	<2	2	n/a
11	19-Jun-90	0.37	<20	n / a	34.0	7.3	21.8	2.7	26900	964	2367	306	5610	355	718	508	<2	2	n/a
12	19-Jun-90	0.83	<20	n/a	34.2	3.3	21.3	8.4	17900	520	2100	458	5393	93	141	30	<2	2	n/a
14	19-Jun-90	0.01	<20	n/a	44.0	2.3	20.9	1.8	25000	608	1267	462	7313	330	372	24	<2	2	n / a
15	19-3un-90	0.02	< 20	n/a	25.2	2.7	13.7	7 1.2	18000	1114	967	58	6360	481	248	18	3	3	1

STD $=$ standard deviation $n / a=$ analysis not done
APPENDIX III TABLE 4 MT. HUNDERE SEDIMENT DATA SUMMARY FOR JUNE, 1988 AND JUNE, 1990

STATION NUMBER	SAMPLE DATE	$\begin{gathered} \operatorname{STD}_{(\mu \mathrm{g} / \mathrm{g})}^{\mathrm{Sr}} \end{gathered}$	$\underset{(\mu \mathrm{g} / \mathrm{g})}{\mathrm{Ti}}$	$\operatorname{STD}_{(\mu \mathrm{g} / \mathrm{g})}^{\mathrm{TI}}$		$\underset{(\mu \mathrm{grD} / \mathrm{g})}{\mathrm{V}}$		${\underset{(\mu \mathrm{g} / \mathrm{g})}{\mathrm{Zn}}}^{\mathrm{STD}}$
1	21-Jun-88	2.3	554	50	48	. 4	220.7	16.0
2	21-Jun-88	5.7	203	55	196	41	14366.7	1001.7
3	22-Jun-88	2.5	459	48	62	4	254.3	137.4
3	20-Jun-90	4.6	554	60	58	6	160.7	17.9
4	22-Jun-88	1.6	162	26	41	6	107.3	1.5
4	20-Jun-90	2.4	212	10	37	4	97.7	3.0
5	22-Jun-88	2.7	286	31	35	4	77.6	7.2
5	21-Jun-90	1.9	364	23	37	5	80.5	7.0
6	19-Jun-90	1.9	622	89	29	2	58.2	4.6
7	19-Jun-90	2.4	184	29	43	4	113.0	7.5
8	19-Jun-90	1.7	141	25	36	3	140.3	5.5
9	19-Jun-90	4.0	291	35	39	5	89.0	9.4
11	19-Jun-90	5.7	254	26	54	5	196.3	3.5
12	19-Jun-90	16.1	163	38	39	10	147.0	36.7
14	19-Jun-90	3.7	132	10	33	3	80.2	7.0
15	19-Jun-90	3.7	126	8	40	4	132.7	20.0

APPENDIX III TABLE 4 MT. HUNDERE SEDIMENT DATA SUMMARY FOR JUNE, 1988 AND JUNE, 1990

STATION NUMBER	SAMPLE DATE	$\begin{gathered} \mathrm{Na} \\ \text { Mean } \\ (\mu \mathrm{g} / \mathrm{g}) \end{gathered}$	$\begin{gathered} \mathrm{STD}^{\mathrm{Na}} \\ (\mu \mathrm{~g} / \mathrm{g}) \end{gathered}$	$\begin{gathered} \mathrm{Ni} \\ \text { Mean } \\ (\mu g / g) \end{gathered}$	$\begin{gathered} \operatorname{STD}^{N 1} \\ (\mu \mathrm{~g} / \mathrm{g}) \end{gathered}$	$\begin{gathered} \text { Mean } \\ (\mu \mathrm{g} / \mathrm{g}) \end{gathered}$	$\underset{(\mu \mathrm{g} / \mathrm{g})}{\mathrm{STD}}$	$\begin{gathered} \mathrm{Pb} \\ \text { Mean } \\ (\mu \mathrm{g} / \mathrm{g}) \end{gathered}$	$\begin{gathered} \mathrm{STD} \\ (\mu \mathrm{~g} / \mathrm{g}) \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \text { Mean } \\ (\mu \mathrm{g} / \mathrm{g}) \end{gathered}$	$\operatorname{STD}_{(\mu \mathrm{g} / \mathrm{g})}^{\mathrm{Pb}}$	$\begin{gathered} \text { Sb } \\ \text { Mean } \\ (\mu g / g) \end{gathered}$	${\underset{(\mu \mathrm{g} / \mathrm{g})}{\mathrm{Sb}}}^{\mathrm{STD}}$	$\begin{array}{r} \text { Si } \\ (\mu \mathrm{g} / \mathrm{g}) \end{array}$	$\operatorname{STD}_{(\mu \mathrm{g} / \mathrm{g})}^{\mathrm{Si}}$			$\begin{aligned} & \text { TD } \\ & / g)^{\text {Sn }} \end{aligned}$	$\begin{gathered} \mathrm{Sr} \\ \text { Mean } \\ (\mu \mathrm{g} / \mathrm{g}) \end{gathered}$
1	21-Jun-88	93	12	31	2	887	64	27	7	n / a	n / a	n / a	n / a	487	11	$<$	8	n/a	47.7
2	21-Jun-88	40	10	63	6	2463	395	11367	1234	n/a	n/a	n/a	n/a	791	36	$<$	8	n/a	38.7
3	22-Jun-88	100	0	35	9	987	. 23	139	130	n / a	n / a	n/a	n/a	400	31	$<$	9	n / a	45.4
3	20-Jun-90	93	12	32	2	910	17	101	26	n/a	n / a	<8	n/a	666	12	$<$	8	n/a	37.3
4	22-Jun-88	83	6	30	3	1100	0	23	2	n/a	n/a	n/a	n/a	349	9	$<$	8	n/a	39.3
4	20-Jun-90	83	6	27	3	1033	58	<10	n/a	11.20	1.22	<8	n/a	630	19	$<$	8	n/a	35.7
5	22-Jun-88	90	10	33	2	753	40	15	9	n/a	n/a	n/a	n/a	401	97	$<$	8	n / a	31.0
5	21-Jun-90	93	12	35	2	727	67	<8	n / a	7.99	1.18	<8	n / a	594	43	$<$	8	n/a	- 28.5
6	19-Jun-90	80	10	32	3	700	62	<8	n/a	7.46	1.39	<8	n/a	577	16	$<$	8	n/a	28.9
7	19-Jun-90	90	10	40	4	763	45	13	6	12.13	2.06	<8	n/a	609	53	$<$	8	n/a	24.7
b	13-5แぃ-90	90	10	39	2	857	31	13	6	13.90	$2 .: 1$	<8	n/a.	535	20	$<$	8	n/a	25.8
9	19-J14-90	87	$1:$	35	5	16.3	51	<8	n/a	1.01	1.01	<8	n/a	515	43	$<$	8	n/a	33.5
11	19-3un-90	133	58	34	2	1033	58	21	2	24.07	3.86	<8	n/a	558	60	$<$	8	n/a	42.4
12	19-Jı r_{1}-90	100	0	26	2	883	25	13	5	15.37	4.20	<8	n / a	589	111	$<$	8	n/a	61.1
14	19-Jun-90	210	36	44	2	667	21	<10	n/a	10.36	0.63	<8	n/a	609	49	$<$	8	n/a	48.8
15	19-Jun-90	70	26	29	7	963	25	<9	n/a	10.60	0.44	<8	n/a	527	25	$<$	9	n/a	40.6

STD $=$ standard deviation \quad a/a $=$ analysis not done

NUMBER	INVERTEBRATE	$\begin{array}{r} 1988 \\ \text { STA. } \end{array}$	- Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 3 \end{array}$	8 Tot.	$\begin{array}{r} 1988 \\ \text { STA. } 4 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 4 \end{array}$	\% Tot.	$\begin{array}{r} 1988 . \\ \text { STA. } 5 \end{array}$		Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 5 \end{array}$	8 Tot.
1	Capnia sp	0	0	0	0	0	0	0	0	0		0	1	0
2	Isogenoides sp	0	0	0	0	0	0	0	0	0		0	1	0
3	Isoperla sp	0	0	0	0	0	0	0	0	1		0	0	0
4	Kogotus sp	0	0	0	0	0	0	0	0	4		1	1	0
5	Megarcys sp	0	0	6	2	1	0	3	1	0		0	0	0
6	Podmosta sp	0	0	60	20	0	0	8	2	3		1	3	1
7	Sweltsa sp group	1	1	50	16	41	10	45	10	6		2	12	3
8	Skwala (paralella)	2	2	0	0	2	0	0	0	1	-	0	0	0
9	Utaperla sp	15	13	2	1	39	9	9	2	5		2	0	0
10	Zapada sp	3	3	24	8	10	2	27	6	0		0	1	0
11	Ameletus sp	16	13	7	2	0	0	3	1	1		0	7	2
12	Baetis sp	12	10	75	25	103	24	123	27	123		41	17	5
13	Cinygmula sp	4	3	8	3	81	19	67	15	58		19	51	14
14	Epeorus deceptivus	0	0	0	0	0	0	0	0	0		0	1	0
15	Epeorus (albertae)	0	0	2	1	0	0	20	4	0		0	3	1
16	Epeorus albertae	0	0	0	0	29	7	0	0	4		1	0	0
17	Epeorus longimanus	0	0	0	0	0	0	0	0	10		3	0	0
18	Ephemerella coloradensis	0	0	0	0	0	0	10	2	0		0	38	10
19	Ephemerella dodds 1	0	0	0	0	0	0	0	0	0		0	0	0
20	Ephemerella grandis	0	0	0	0	0	0	0	0	0		0	1	0
21	Ephemerella inermis	0	0	0 .	0	0	0	0	0	0		0	4	1
22	Ephemerella mollitia	0	0	0	0	0	0	0	0	12		4	0	0
23	Ephemerella spinifera	0	0	0	0	0	0	0	0	2		1	0	0
24	Ephemerella (grandis?)	0	0	0	0	1	0	0	0	2		1	0	0
25	Paraleptophlelia sp	1	1	0	0	0	0	0	0	0		0	0	0
26	Rithrogena sp	0	0	13	4	9	2	44	10	3		1	14	4
27	Unid J/D	0	0	0	0	0	0	0	0	0		0	0	0
28	Unid pupa	0	0	0	0	0	0	1	0	0		0	0	0
29	Brachycentrus sp	0	0	0	0	0	0	0	0	8		3	35	10
30	Glossosoma sp	0	0	0	0	0	0	6	1	0		0	0	0
31	Grensia sp	0	0	0	0	0	0	0	0	0		0	0	0
32	Hydroptila sp	0	0	0	0	0	0	0	0	0		0	11	3
33	Parapsyche sp	0	0	0	0	0	0	7	2	1		0	0	0
34	Pseudostenophylax sp	10	8	0	0	0	0	0	0	0		0	0	0
35	Rhyacophila angelita	0	0	0	0	0	0	3	1	0		0	0	0
36	Rhyacophila sp	0	0	0	0	0	0	4	1	0		0	0	0
37	Rhyacophila vagrita	0	0	0	0	0	0	3	1	0		0	2	1
38	Rhyacophila (vaolacropedes)	0	0	0	0	0	0	2	0	0		0	0	0
39	Ryacophila vaccua	0	0	0	0	4	1	0	0	0		0	0	0
40	Ryacophila (acropedes)	0	0	0	0	2	0	0	0	0		0	0	0
41	Culicidae adult	0	0	0	0	0	0	0	0	0		0	0	0
42	(Corynoptera sp?)	0	0	0	0	0	0	0	0	0		0	0	0
43	(Hydrelia sp?)	0	0	0	0	0	0	0	0	0		0	0	0
44	Palpomyia sp	0	0	0	0	0	0	0	0	0		0	2	1

APPENDIX IV TABLE 2 MT. HUNDERE BENTHIC INVERTEBRATE DISTRIBUTION FOR 1988 AND 1990

NUMBER INVERTEBRATE	$\begin{array}{r} 1988 \\ \text { STA. } 1 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 3 \end{array}$	\% Tot.	$\begin{array}{r} 1988 \\ \text { STA. } 4 \end{array}$	8 Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 4 \end{array}$	$\%$ Tot.	$\begin{array}{r} 1988 \\ \text { STA. } 5 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 5 \end{array}$	\% Tot.
45 Antocha sp	0	0	0	0	0	0	0	0	0	0	0	0
46 Dicranota sp	0	0	0	0	0	0	0	0	0	0	2	1
47 Erioptera sp	0	0	0	0	0	0	0	0	0	0	0	0
48 Hesperoconopa sp	0	0	0	0	0	0	0	0	0	0	3	1
49 Hexatoma sp	0	0	0	0	0	0	0	0	0	0	0	0
50 Ormosia sp	2	2	0	0	4	1	0	0	0	0	0	0
51 Rhatdomastix sp	0	0	0	0	0	0	0	0	0	0	0	0
52 Tipula sp	0	0	0	0	0	0	0	0	0	0	0	0
53 Pupae	0	0	0°	0	0	0	0	0	0	0	0	0
54 Chelifera sp	0	0	1	0	0	0	1	0	0	0	3	1
55 Weidemannia sp	0	0	3	1	2	0	0	0	0	0	0	0
56 Prosimulium sp	0	0	39	13	0	0	2	0	1	0	1	0
57 Prosimulium sp pupa	1	1	0	0	3	1	0	0	0	0	0	0
58 Simulium sp	0	0	0	0	0	0	3	1	9	3	4	1
59 Simulium sp pupae	0	0	0	0	0	0	0	0	0	0	1	0
60 Adult	0	0	0	0	0	0	0	0	0	0	0	0
61 Adult	1	1	1	0	0	0	0	0	0	0	0	0
62 Pupae	0	0	3	1	3	1	1	0	3	1	15	4
63 Unid J/D	2	2	0	0	1	0	0	0	0	0	0	0
64 Brillia sp	0	0	0	0	0	0	0	0	0	0	0	0
65 Cardiocladius sp	13	11	3	1	13	3	19	4	10	3	11	3
66 Coristemfellina sp	0	0	0	0	0	0	0	0	0	0	1	0
67 Corynoheura sp	0	0	0	0	7	2	0	0	0	0	3	1
-8 Cricotorus sp	10	ε	1.	0	7	2	11	2	13	4	32	9
69 Dlamesa sp	15	13	0	0	3	1	0	0	2	1	0	0
70 Eukiefferiella sp	0	0	2	1	2	0	14	3	0	0	9	2
71 Euryhapsis sp	0	0	1	0	0	0	0	0	0	0	0	0
72 Gymnometriocnemus sp	0	0	0	0	0	0	0	0	0	0	1	0
73 Heterotrissocladius sp	1	1	0	0	2	0	0	0	0	0	0	0
74 Micropsectra sp	0	0	0	0	0	0	6	1	5	2	30	8
75 Monopelopia sp	0	0	0	0	0	0	0	0	0	0	0	0
76 Orthocladius sp	0	0	0	0	0	0	0	0	0	0	1	0
77 Paratendipes sp	0	0	0	0	0	0	0	0	0	0	3	1

APPENDIX IV TABLE 2 MT. HUNDERE BENTHIC INVERTEBRATE DISTRIBUTION FOR 1988 AND 1990

NUMBER	INVERTEBRATE	$\begin{aligned} & 1988 \\ & \text { STA. } 1 \end{aligned}$	\% Tot.	$\begin{aligned} & 1990 \\ & \text { STA. } 3 \end{aligned}$	\% Tot.	$\begin{aligned} & 1988 \\ & \text { STA. } 4 \end{aligned}$	Tot.	1990 $\text { STA. } 4$	\% Tot.	$\begin{aligned} & 1988 \\ & \text { STA. } 5 \end{aligned}$	8	Tot.	$\begin{aligned} & 1990 \\ & \text { STA. } 5 \end{aligned}$	\% Tot.
	Polypedilum sp	0	0	0	0	12	3	0	0	2		1	0	0
79	Polypedilum (pentapedilum)	0	0	0	0	0	0	0	0	0		0	0	0
	Potthastia sp	0	0	0	0	0	0	0	0	0	-	0	0	0
	Psectrocladius sp	0	0	0	0	0	0	0	0	0	-	0	3	1
	Psectrocladius sp B	0	0	0	0	3	1	0	0	0		0	0	1
83	Rheocricotopus sp	0	0	0	0	0	0	0	0	0		0	0	0
	Rheotanytarsus sp	0	0	1	0	0	0	4	1	0		0	19	5
85	Tanytarsus sp	0	0	0	0	0	0	0	0	7		2	19	0
	Thienemanniella sp	0	0	0	0	0	0	- 1	0	0		0	4	1
87	Thienemannimyla sp	0	0	0	0	0	0	0	0	0		0	0	0
88	Trichocladius sp	0	0	0	0	7	2	0	0	0		0	0	0
	Unid. orthocladilnae	0	0	0	0	0	0	2	0	0		0	2	1
	Isotomurus sp	0	0	0	0	0	0	1	0	0		0	0	0
91	Formicidae	0	0	1	0	0	0	0	0	0		0	0	0
92	Cicadellidae	0	0	1.	0	0	0	0	0	0		0	0	0
93	Psyllidae	0	0	0.	0	0	0	0	0	0		0	1	0
94	Aphididea	0	0	0	0	1	0	0	0	0		0	0	0
95	Soldidae	0	0	0	0	1	0	0	0	0		0	0	0
96	Lepidoptera larvae	0	0	0	0	1	0	0	0	0	'	0	0	0
97	Unid J/D	0	0	0	0	0	0	0	0	0		0	0	0
98	Hydracarina sp	5	4	0	0	14	3	0	0	1		0	0	0
99	Lebertia sp	0	0	0	0	0	0	0	0	0		0	0	0
100	Newmannia sp	0	0	0	0	0	0	0	0	0		0	0	0
101	Sperchon sp	0	0	0	0	0	0	0	0	0		0	3	1
102	Wandesia sp	0	0	0	0	0	0	0	0	0		0	0	1
103	Diaptomus sp	0	0	0	0	1	0	0	0	0		0	0	0
104	Cyclopoida	0	0	0	0	0	0	0	0	0		0	0	0
105	Calanolda	0	0	0	0	0	0	0	0	0		0	0	0
106	Daphnia rosea	0	0	0	0	0	0	0	0	0		0	0	0
107	Eurycercus lamellatus	0	0	0	0	0	0	0	0	0		0	0	0
108	Polyphemus pediculus	0	0	0	0	0	0	0	0	0	'	0	0	0
109	Nematoda	0	0	0	0	0	0	1	0	0		0	2	1
110	Polycelis coronata	0	0	0	0	3	1	2	0	0		0	0	0

APPENDIX IV table 2 MT. hUNDERE benthic invertebrate distribution for 1988 AND 1990

NUMBER INVERTEBRATE	$\begin{array}{r} 1988 \\ \text { STA. } 1 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 3 \end{array}$	8 Tot.	$\begin{array}{r} 1988 \\ \text { STA. } 4 \end{array}$	8 Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 4 \end{array}$	8 Tot.	$\begin{array}{r} 1988 \\ \text { STA. } 5 \end{array}$	8 Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 5 \end{array}$	\% Tot.
111 Lumbriculidae, unid J/D	0	0	0	0	0	0	0	0	0	0	6	2
112 Kincaldiana hexatheca	0	0	0	0	3	1	1	0	0	0	0	0
113 Enchytraeidae	5	4	0	0	7	2	0	0	1	0	0	0
114 Tubificidae	0	0	0	0	0	0	0	0	0	0	0	0
		100		100		100		100		100		100
totals	119		304		422		454		298		365	

NUMBER	INVERTEBRATE	$\begin{array}{r} 1988 \\ \text { STA. } 6 \end{array}$	8 Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 6 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 7 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 8 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STR. } 9 \end{array}$	8	Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 11 \end{array}$	\% Tot.
	Capnia sp	0	0	0	0	0	0	0	0	0		0	1	0
	Isogenoides sp	0	0	0	0	0	0	0	0	1		0	0	0
3	Isoperla sp	0	0	0	0	0	0	0	0	0	-	0	0	0
4	Kogotus sp	0	0	0	0	0	0	0	0	0		0	0	0
5	Megarcys sp	5	1	0	0	0	0	0	0	0		0	0	0
6	Podmosta sp	0	0	0	0	11	7	11	2	0		0	7	2
7	Sweltsa sp group	14	4	1	1	35	21	32	7	40		11	8	3
8	Skwala (paralella)	25	6	0	0	0	0	0	0	0		0	0	0
9	Utaperla sp	73	18	0	0	3	2	18	4	0		0	5	2
10	Zapada sp	14	4	0	0	3	2	30	7	4		1	6	2
11	Ameletus sp	5	1	0	0	4	2	0	0	0		0	0	0
12	Baetis sp	137	35	2	1	2	1	79	17	47		14	102	34
13	Cinygmula sp	3	1	3	2	14	8	93	21	19		5	106	35
14	Epeorus deceptivus	0	0	0.	0	1	1	0	0	0		0	1	0
15	Epeorus (albertae)	0	0	1.	1	8	5	55	12	1		0	23	8
16	Epeorus albertae	0	0	0	0	0	0	0	0	0		0	0	0
17	Epeorus longimanus	0	0	0	0	0	0	0	0	0		0	0	0
18	Ephemerella coloradensis	0	0	1	1	11	7	5	1	9		3	2	1
19	Ephemerella doddsi	0	0	0	0	0	0	2	0	0		0	0	0
20	Ephemerella grandis	0	0	0	0	1	1	0	0	1		0	0	0
21	Ephemerella inermis	0	0	0	0	1	1	0	0	0		0	0	0
22	Ephemerella mollitia	0	0	0	0	0	0	0	0	0		0	0	0
23	Ephemerella spinifera	0	0	0	0	0	0	0	0	0		0	0	0
24	Ephemerella (grandis?)	0	0	0	0	0	0	0	0	0		0	0	0
25	Paraleptophlelia sp	0	0	0	0	0	0	0	0	0		0	0	0
26	Rithrogena sp	0	0	0	0	3	2	28	6	1		0	5	2
27	Unid J/D	0	0	1	1	0	0	0	0	0		0	0	0
28	Unid pupa	0	0	0	0	0	0	0	0	0		0	0	0
29	Brachycentrus sp	0	0	0	0	0	0	0	0	0		0	0	0
30	Glossosoma sp	0	0	0	0	0	0	21	5	0		0	1	0
31	Grensia sp	0	0	1	1	0	0	0	0	0	-	0	0	0
32	Hydroptila sp	0	0	0	0	0	0	0	0	0		0	0	0
33	Parapsyche sp	0	0	0	0	0	0	1	0	0		0	0	0

APPENDIX IV TABLE 2 MT. HUNDERE BENTHIC INVERTEBRATE DISTRIBUTION FOR 1988 AND 1990

NUMBER INVERTEBRATE	$\begin{array}{r} 1988 \\ \text { STA. } 6 \end{array}$	$\%$ Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 6 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 7 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 8 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 9 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 11 \end{array}$	\% Tot.
34 Pseudostenophylax sp	0	0	0	0	0	0	0	0	0	0	0	0
35 Rhyacophila angelita	0	0	0	0	0	0	0	0	0	0	0	0
36 Rhyacophila sp	0	0	0	0	0	0	0	0	0	0	0	0
37 Rhyacophila vagrita	0	0	0	0	0	0	0	0	0	0	0	0
38 Rhyacophila (vao\acropedes)	0	0	0	0	0	0	0	0	0	0	0	0
39 Ryacophila vaccua	1	0	0	0	0	0	0	0	0	0	0	0
40 Ryacophila (acropedes)	0	0	0	0	0	0	0	0	0	0	0	0
41 Culicidae adult	0	0	0.	0	0	0	0	0	0	0	0	0
42 (Corynoptera sp?)	0	0	0	0	0	0	1	0	0	0	0	0
43 (Hydrelia sp?)	0	0	0	0	0	0	1	0	0	0	0	0
44 Ealpomyia sp	0	0	13	8	21	13	3	1	9	3	0	0
45 Antocha sp	0	0	0	0	1	1	0	0	0	0	0	0
46 Dicranota sp	0	0	0	0	2	1	0	0	0	0	0	0
47 Erioptera sp	0	0	0	0	0	0	0	0	0	0	0	0
48 Hesperoconopa sp	0	0	1	1	0	0	0	0	0	0	0	0
49 Hexatoma sp	0	0	0	0	1	1	0	0	1	0	0	0
50 Ormosia sp	0	0	0	0	0	0	0	0	0	0	0	0
51 Rhabdomastix sp	0	0	0	0	1	1	0	0	0	0	0	0
52 Tipula sp	0	0	2	1	0	0	0	0	2	1	0	0
53 Eupae	0	0	0	0	0	0	0	0	0	0	1	0
54 Chelifera sp	0	0	0	0	1	1	0	0	0	0	${ }^{1}$	0
55 Weidemanria sp	3	1	0	0	0	0	2	0	0	0	1)	0
55 Prosimulium sp	0	0	0	0	0	0	2	0	1	0	1)	0
57 Fiosimulium sp pupa	7	2	0	0	0	0	0	0	0	1	4	0
58 Simuliur sp	1	0	0	0	0	0	0	0	1	0	0	0
59 Simulitur sp pupae	0	0	0	0	0	0	0	0	0	ü	1	0
6 6) Adult	0	0	0	0	0	0	0	0	1	0	9	0
61 Adult	0	0	0	0	2	1	1	0	0	0	0	0
62 Pupae	0	0	20	12	3	2	7	2	9	3	6	2
63 Unid J/D	0	0	0	0	0	0	0	0	0	0	0	0
64 Brillia sp	0	0	0	0	0	0	1	0	0 .	0	0	0
65 Cardiocladius sp	50	13	4	2	0	0	2	0	0	0	4	1
66 Constempellina sp	0	0	0	0	0	0	0	0	0	0	0	0

APPENDIX IV

NuMber	invertebrate	$\begin{array}{r} 1986 \\ \text { STA. } 6 \end{array}$	Tot.	$\begin{array}{r} 1990 \\ \text { STA. } \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } \end{array}$	${ }^{*}$ Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 8 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 9 \end{array}$	8	Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 11 \end{array}$	\% Tot.
67	Corynoneura sp	${ }^{0}$	0	0	0	12	7	21	5	1		0	0	0
68	Cricotopus sp	30	8	14	9	5	3	11	2	22		6	10	3
69	Diamesa sp	10	3	0	0	0	0	0	0	0		0	0	0
70	Eukiefferiella sp	2	1	3	2	4	2	3	1	6		2	0	0
71	Euryhapsis sp	0	0	0	0	0	0	0	${ }_{0}$	0		\bigcirc	0	0
72	Gymnometriocnemus sp	0	0	0	0	0	0	0	0	0		0	0	0
73	Heterotrissocladius sp	0	0	0	0	0	0	0	0	0		0	0	0
74	Micropsectra sp	10	3	38	23	4	2	0	0	107		31	0	0
	Monopelopia sp	0	0	0	0	0	0	0	0	0		0	0	
76	Orthocladius sp	0	0	2	1	0	0	0	0			0	0	${ }_{0}$
77	Paratendipes sp	0	0	4	2	0	0	0	0	0		0	0	
78	Polypedilum sp	0		0	0	0	0	0	0	0		0	0	0
79	Poiypedilum (pentapedilum)	0	0	0	0	0	0	0	0	0		0	0	0
80	Potthastia sp	0	0	0	0	2	1	0	0	0		0	0	0
81	Psectrocladius sp	0	0	5	3	0	0	0	0	2		1		0
82	Psectrocladius sp B	0	0	0	0	0	0	0	0	0		0	0	
83	Rheocricotopus sp	0	0	0	0	0	0	0	0	1		0		0
84	Rheotanytarsus sp	0		12	7	0	0	0	0	0		0		0
85	Tanytarsus sp	0	0	0	0	0	0	0	0	0		0	0	
86	Thienemanitilla sp	0		0	-	2	1	0	0	44		13		0
87	Thienemannimyia sp	0	0	5	3	0	0	0	0	0		0	0	
	Trichocladius sp	2	1	0	0	0	0	0	0	0		0		0
89 90	Unid. Orthocladilinae Isotomurus sp	0	0	1	1	3	2	1	0	2		1		1
91	Formicidae	0	0	0	0	0	0	0	\bigcirc	1		0	0	0
92	Cicadellidae	0	${ }_{0}$	1	1	1		1	${ }_{0}^{0}$	${ }_{0}^{0}$		0	0	${ }_{0}^{0}$
93	Psyllidae		0	0	0	0	0	2	0	0		0	0	${ }_{0}^{0}$
94	Aphididea	0	0	0		0	0	0	0	0		0	0	0
95	Soldidae	0	0	0	0	0	0	0	0	0			0	
96	Lepidoptera larvae	0	0	0	0	0		0	0	0		0	0	0
97 98		0 1	0	1	1	\bigcirc	0	0	0	0		0		0
99	Lebertia sp	0	0	2	1	1	1	0	0	0		${ }_{0}^{0}$	0	${ }_{0}$

APPENDIX IV

NUMBER INVERTEBRATE	$\begin{array}{r} 1988 \\ \text { STA. } 6 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 6 \end{array}$	8 Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 7 \end{array}$	8 Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 8 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 9 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 11 \end{array}$	8 Tot.
100 Newmannia sp	0	0	0	0	0	0	1					
101 Sperchon sp	0	0	1.	1	0	0	1	0	0	0	0	0
102 Wandesia sp	0	0	0	0	0	0	1	0	0	0	0	0
103 Diaptomus sp	0	0	0	0	0	0	0	0	0	0	0	0
104 Cyclopoida	0	0	3	2	1	1	0	0	0			1
105 Calanoida	0	0	0	0	0	0	0	0	0	O	2	1
106 Daphnia rosea	0	0	0	0	0	0	0	0	3	1	0	0
107 Eurycercus lamellatus	0	0	0	0	1	1	0	0	0	0	0	0
108 Polyphemus pediculus	0	0	0	0	0	0	0	0	0	0	0	0
109 Nematoda	0	0	15	9	0	0	3	1	6	2	2	1
110 Polycelis coronata	1	0	0	0	1	1	11	2	0	0	2	1
111 Lumbriculidae, unid J/D	0	0	2	1	1	1	0	0	1	0	5	2
112 Kincaidiana hexatheca	0	0	0	0	0	0	0	0	0	0	0	0
113 Enchytraeidae	1	0	1	1	0	0	1	0	2	1	0	0
114 Tubifigidae	0	0	4	2	0	0	0	0	3	1	0	0
		100		100		100		101		100		100
TOTALS	395		164		167		453		348		303	100

number	INVERTEBRATE	$\begin{array}{r} 1990 \\ \text { STA. } 12 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 15 \end{array}$	8 Tot.
1	Capnia sp	0	0	1	3
2	Isogenoides sp	0	0	0	0
3	Isoperla sp	0	0	0	0
4	Kogotus sp	1		0	0
5	Megarcys sp	0	-	0	0
6	Podmosta sp	2	1.	0	0
7	Sweltsa sp group	0	0	1	3
8	Skwala (paralella)	0	0	0	0
9	Utaperla sp	1		1	3
10	zapada sp	4	- 2	0	0
11	Ameletus sp	0	0	0	0
12	Baetis sp	7	3	3	8
13	Cinygmula sp	53	22	0	0
14	Epeorus deceptivus	0	0	0	0
15	Epeorus (albertae)	0	0	0	0
16	Epeorus albertae	0	0	0	0
17	Epeorus longimanus	0	0	0	0
18	Ephemerella coloradensis	48	20	0	0
19	Ephemerella doddsi	0	0	0	0
20	Ephemerella grandis	0	0	0	0
21	Ephemerella inermis	0	0	0	0
22	Ephemerella mollitia	0	0	0	0
23	Ephemerella spinifera	0	0	0	0
24	Ephemerella (grandis?)	0	0	0	0
25	Paraleptophlelia sp	0	0	0	0
26	Rithrogena sp	1	0	0	0
27	Unid J/D	0	0	0	0
28	Unid pupa	0	0	0	0
29	Brachycentrus sp	0	0	0	0
	Glossosoma sp	5	2	1	3
31	Grensia sp	0	0	0	0
32	Hydroptila sp	0	0	0	0
33	Parapsyche sp	0	0	0	0

NUMBER	INVERTEERATE	$\begin{array}{r} 1990 \\ \text { STA. } 12 \end{array}$	8 Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 15 \end{array}$	8 Tot.
34	Pseudostenophylax sp	0	0	0	0
35	Rhyacophila angelita	0	0	0	0
36	Rhyacophila sp	0	0	0	0
37	Rhyacophila vagrita	0	0	0	0
38	Rhyacophila (vao\acropedes)	0	0	0	0
39	Ryacophila vaccua	0	0	0	0
40	Ryacophila (acropedes)	0	0	0	0
41	Culicidae adult	1	0	0	0
42	(Corynoptera sp?)	0	0	0.	0
43.	(Hydrelia sp?)	0	0	0	0
44	Palpomyia sp	0	0		3
45	Antocha sp	0	0	0	0
46	Dicranota sp	0	0	3	8
47	Erioptera sp	2	1	0	0
48	Hesperoconopa sp	0	0	0	0
49	Hexatoma sp	0	0	0	- 0
50	Ormosia sp	0	0	0	0
51	Rhabdomastix sp	0	0	0	0.
52	Tipula sp	1	0	1	3
53	Pupae	6	2	0	0
54	Chelifera sp	2	1	0	0
55	Weidemannia sp	0	0	0	0
56	Prosimulium sp	0	0	0	0
57	Prosimuljuri sp pupa	0	0	0	0
58	Simulium sp	0	${ }^{0}$	0.	0
59	Simulium sp pupae	0	0	0	0
50	Adult	0	0	0	0
51	Adult	1	0	0	0
62	Pupae	4	2	0	0
63	Unid J/D	0	0	0	0
64	Brillia sp	0	0	0	0
65	Cardiocladius sp	28	12	0	- 0
66	Constempellina sp	0	0	0	0

Number	INVERTEBRATE	$\begin{array}{r} 1990 \\ \text { STA. } 12 \end{array}$	\% Tot.	$\begin{array}{r} 1990 \\ \text { STA. } 15 \end{array}$	- Tot.
67	Corynoneura sp	1	0	0	0
68	Cricotopus sp	5	2	2	6
69	Diamesa sp	0	0	0	0
70	Eukiefferiella sp	1	0	1	3
71	Euryhapsis sp	0	0	0	0
72	Gymnometriocnemus sp	0	0	0	0
73	Heterotrissocladius sp	0	0	0	0
74	Micropsectra sp	12	5	2	6
75	Monopelopia sp	2	1	0	0
76	Orthocladius sp	0	0	0	0
77	Paratendipes sp	0	0	0	0
78	Polypedilum sp	0	0	0	0
79	Polypedilum (pentapedilum)	0	0	3	8
80	Potthastia sp	0	0	0.	0
81	Psectrocladius sp	1	0	0.	0
82	Psectrocladius sp B	0	0	0	0
83	Rheocricotopus sp	0	0	0	0
84	Rheotanytarsus sp	0	0	0	0
85	Tanytarsus sp	0	0	0	0
86	Thienemanniella sp	2	1	13	36
87	Thienemannimyia sp	0	0	0	0
88	Trichocladius sp	0	0	0	0
89	Unid. orthocladiinae	1	0	1	3
90	Isotomurus sp	0	0	0	0
91	Eormicidae	0	0	0	0
92	Clcadellidae	1	0	0	0
93	Psyllidae	2	1	0	0
94	Aphididea	0	0	0	0
95	Soldidae	0	0	0	0
96	Lepidoptera larvae	0	0	0	0
97	Unid J/D		0	0	0
98	Hydracarina sp	0	0	-	0
99	Lebertia sp	0	0	0	- 0

[^0]:
 Bethesda, MD, 313 BP .

[^1]: 4. Anonymous 1977. Guldellnes for Establishing Water Quality Objectives for the Territorial Waters of the
 Yukon and Northwest Territories. Report of the Working Group on Water Quality Objectives to the
 Chairman, Water Boards, Yikon and Northwest Teriftories.
 5. Ontario Ministry of the Environment. 1978. Water Management - Goals. Policies. Optectives and
 Implementation Procedures of the Minlstry of the Environment. 6. Environment Canada, 1976. Rollution Sampling Handbook. Paciftc Reg
 ronment Canada, 1976. Pollution Sampling Handbook. Pactftc Region Laboratory Services, Fisheries
 Operations and Environmental Protection Service, West Vancouver, B.C.
 6. California State Water Resources Control Board. 1963. Water Quality Criteria. Publication No. 3-A Second Edition by McKee and Wolf.
 7. Inland Waters Directorate. 1979. Water Oyality Source Book a Guide to Water Ouality Parameters. Environment Canada, Water Quality Branch, Ottawa, Canada.
 8. Health and Welfare Canada, 1983. Guidelines_for Canadian Recreational Water Oyality. Supply and
 9. CCREM. 1987. Ganadan Water Quality Guidelines. Task Force on Water Quality Guidelines of the Canadian
 Council of Resource and Environment Ministers. Ottawa.
[^2]:

