Environment Canada

Environnement Canada

Environmental Protection
Protection de I'environnement

The Standing Crop of Plankton in Kamloops Lake, B. C., from March 1974 to April 1975

Survellance Repori
EPS 5-PR-75-2A

ENVIRONMENTAL PROTECTION SERVICE REPORT SERIES

Surveillance reports present the results of monitoring programs carried out by the Environmental Protection Service. These reports will usually be published on a regular basis.

Other categories in the E.P.S. series include such groups as Regulations, Codes and Protocols; Policy and Planning; Technical Appraisal; Technology Development; and Reprints of Published Papers.

Inquiries pertaining to Environmental Protection Service Reports should be directed to the Environmental Protection Service, Environment Canada, Kapilano 100, Park Royal, West Vancouver, B.C., V7T 1A2.

THE STANDING CROP OF PLANKTON IN KAMLOOPS LAKE, B.C., FROM

LIBRARY
DEPT. OF THE ENVIRONMENT ENVIRON:SENTAL PROTECTION SERVICE PACIFIC REGION

by
B.W. Kelso and G. Derksen
Pollution Abatement Branch Environmental Protection Service Pacific Region
Report Number EPS 5-PR-75-2A
April, 1976

ABSTRACT

In 1973 a Federal-Provincial Task Force was established to determine the sources of nutrients and foaming agents in the Thompson River system, and document the effects of nutrients and colour on the biology of Kamloops Lake and lower Thompson River. The Environmental Protection Service, as part of this study, monitored the standing crop of plankton in Kamloops Lake. Six mid-lake stations were sampled monthly from March, 1974, to April, 1975. A minor peak in algal crop occurred in the late spring, which consisted mainly of the diatom, Tabellaria fenestrata; the phytoflagellate, Dinobryon sp.; and the green algae, Chlamydomonas sp. Large values of phaeophytin (mean $8.76 \mu \mathrm{~g} / \ell$) obtained at this time suggest that the greater part of both the phaeophytin and chlorophyll-a may have been from allochthonous sources. After the freshet, a second, larger bloom occurred in the early fall which was dominated by the diatoms Tabellaria fenestrata, Melosira italica, and Fragilaria crotenensis. Chlorophyll-a production values were low, with the highest value of $5.4 \mu \mathrm{~g} / \ell$ being recorded in September, 1974.

Zooplankton numbers were very low and were comparable to other oligotrophic lakes. The total number of organisms ranged between 4,500 to $21,000 / \mathrm{m}^{3}$. Two peaks of zooplankton were recorded, one in June, 1974 $\left(20,993 / \mathrm{m}^{3}\right)$, and the second in September, $1974\left(15,764 / \mathrm{m}^{3}\right)$. For the annual mean, Copepoda (32.5%) and Rotifera (9.7%) were more abundant than the Cladocera (5\%). The Rotifer, Kellicottia longispina; the Copepods, Diaptomus ashlandi and Cyclops biscupidatus; and the Cladocerans, Daphnia longispina and Bosmina longerostris were the most dominant of each class.

The physical parameters of the lake, such as turbidity-related light limitation, temperature, and the complex circulation within the lake probably play a much more important role in the limitation of phytoplankton standing crop than the amount of nutrients within the lake.

En 1973, un groupe de travail féderal-provincial a été formé en vue de déterminer l'origine des $^{\prime}$ (éments nutritifa et des agents de moussage dane le reseau hydrographique de la riviere Thompson ot d'obtenir des renseignements our les offets des 6lements nutritifs et de la couleur de l'eau mur la biologie du lac Eamloops et du cours inferieur de la rivière Thompson. Ie Service de la protection de l'environnement a, dans le cadre de cette étude, évalué le stock actuel du plancton du lac Kamloops. Entre mars 1974 et avril 1975, on a recueilli une fois par mois des échantillons en six stations dans la partie centrale du lac. ì la fin du printemps, on a observé une faible proliferation d'algues, parmi lesquelles se trouvaient notamment la diatomée Tabellaria fenestrata, les phytoflagellés Dinobryon sp. et les algues vertes Chlamydomonas. Les concentrations elevees de pheophytine (noyenne: 8,76 pg/l) alors obserVées portent a croire que cette dernière ainsi que la chlorophylle-a seraient allochtones. Au début de l'antomne apres la crue, on a observé une seconde prolifération, plus importante, ou dominaient les diatomées Tabellaria feneatra, Melosira italica et Fragilaria crotenensis. La production de chlorophylle-g était alors faible, la valeur la plus élevée ayant été observée en septembre 1974 (5,4 $\mu \mathrm{g} / \mathrm{l}$).

Ia population de zooplancton était tres faible mais comparable a celle d'autres lacs oligotrophes (entre 4,500 et 21,000 organismes par metre cube). Deux maximums ont été observés, le premier en juin $1974\left(20,993 / \mathrm{m}^{3}\right)$, le second en septembre $1974\left(15,764 / \mathrm{m}^{3}\right)$. ì l'échelle de l'année, les copépodes et les rotiféres ont été en moyenne plus abondants que les cladocères 32,5 ot $9,7 \%$ respectivement contre 5%. Le rotifère Kellicottis longispina, les copépodes Diaptomus ashlandi et Cyclops biscupidatus et les cladoceres Daphnia longispina et Bosmina longerostri dominaient chez leur classe.

Les paramètres physiques du lac, comme la limitation de la pénétration de la lumière attribuable a la turbidité, la température et les modes complexes de circulation des eaux, ont probablement jout un role limitant beaucoup plus important, a l'égard du phytoplancton que les 6lements nutritifs.

TABLE OF CONTENTS

PAGE
ABSTRACT i
RESUME ii
TABLE OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES vi
SUMMARY AND CONCLUSIONS vii
1 INTRODUCTION 1
2 STUDY AREA 2
3 MATERIALS AND METHODS 4
3.1 Phytoplankton 4
3.2 Zooplankton 5
4 RESULTS 6
4.1 Phytoplankton 6
4.2 Zooplankton 13
5 DISCUSSION 19
REFERENCES 28
ACKNOWLEDGEMENTS 30
APPENDIX I MID LAKE DEPTH PROFILES OF KAMLOOPS LAKE FOR CHLOROPHYLL-A 31
APPENDIX II KAMLOOPS LAKE PHYTOPLANKTON FOR STATION G ${ }_{2}$, SEPTEMBER, 1974 35APPENDIX III MEAN NUMBER OF PHYTOPLANKTON PER ML OF THEPHOTIC ZONE FROM APRIL, 1974, TO APRIL, 1975,FOR KAMLOOPS LAKE 38APPENDIX IV ZOOPLANKTON WISCONSIN HAULS, KAMLOOPS LAKE,FROM 30.5 METRES IN DEPTH 53

LIST OF FIGURES

FIGURE1 KAMLOOPS LAKE SHOWING THE SAMPLE SITES USED FORSAMPLING THE STANDING CROP OF PHYTOPLANKTON ANDZOOPLANKTON3MONTHLY MEAN CONCENTRATIONS OF PHYTOPLANKTONPIGMENTS AND ASH-FREE WEIGHT FOR KAMLOOPS LAKE.(SEE TABLE I FOR MAXIMUM DEPTH USED.)7
DAILY RIVER FLOWS FOR THE NORTH THOMPSON RIVER AT MCLURE AND SOUTH THOMPSON RIVER AT CHASE (THE TWO FLOWS WERE ADDED TO GIVE THE FLOW FOR THE THOMPSON RIVER.)
MEAN CONCENTRATION OF CHLOROPHYLL-A IN THE PHOTIC ZONE OF THE WATER COLUMN AT EACH STATION (SEE TABLE 1 FOR DEPTH OF PHOTIC ZONE.)10
MEAN CONCENTRATION OF PHAEOPHYTIN IN THE PHOTIC ZONE OF THE WATER COLUMN AT EACH STATION (SEE TALBE 1 FOR DEPTH OF PHOTIC ZONE.) 11
MEAN CONCENTRATION OF ASH-FREE WEIGHT IN THE PHOTIC ZONE OF THE WATER COLUMN AT EACH STATION (SEE TABLE 1 FOR DEPTH OF PHOTIC ZONE.) 12
MEAN NUMBER OF DIATOMS IN THE PHOTIC ZONE OF THE WATERCOLUMN FOR KAMLOOPS LAKE
(SEE TABLE 1 FOR DEPTH OF PHOTIC ZONE.)MEAN NUMBER OF ZOOPLANKTON PER MONTH FOR KAMLOOPS LAKE(NUMBER 20 MESH WISCONSIN HAUL FROM 30.5 METRES INDEPTH)17
ZOOPLANKTON WISCONSIN HAULS AT KAMLOOPS LAKE, 30.5
METRES IN DEPTH (80 MICRON MESH NET) 18 18
10 THE MONTHLY RELATIONSHIP BETWEEN PHYTOPLANKTON, TEMPERA-TURE AND TURBIDITY IN KAMLOOPS LAKE FOR THE PHOTIC ZONEOF THE WATER COLUMN20
11 THE MONTHLY RELATIONSHIP BETWEEN CHLOROPHYLL-A, $\mathrm{NO}_{2}-\mathrm{NO}_{3}$ AND TOTAL DISSOLVED PO_{4} IN KAMLOOPS LAKE FOR THE PHOTIC ZONE OF THE WATER COLUMN 22
12
THE MONTHLY RELATIONSHIP BETWEEN NUMBER OF ZOOPLANKTON AND NUMBER OF PHYTOPLANKTON IN KAMLOOPS LAKE 26
LIST OF TABLES
TABLE PAGE
1 THE MONTHLY MAXIMUM DEPTHS OF THE PHOTIC ZONE OF THE WATER COLUMN FOR KAMLOOPS LAKE 6
2 MEAN NUMBER OF PHYTOPLANKTON (EXCLUDING THE DOMINATE diatoms) CELLS PER ML OF THE WATER COLUMN TO THE BOTTOM OF THE PHOTIC ZONE 15

SUMMARY AND CONCLUSIONS
The overall standing crop of plankton in Kamloops Lake is very low. A small phytoplankton bloom occurred in the late spring, 1974 (mean $1.95-1.86 \mu \mathrm{~g} / \ell$ Chlorophyll-a), which consisted mainly of the diatom, Tabellaria fenestrata; the phytoflagellate, Dinobryon sp.; and the green algae, Chlamydomonas sp. The phaeophytin values during this time period were very high (mean $8.76 \mu \mathrm{~g} / \ell$) which suggests that most of this pigment must have been from allochthonous origin. This also implies that part of the chlorophyll-a values obtained in the spring bloom could have been from the same source. A second, larger bloom occurred in September, 1974 (mean $2.91 \mu \mathrm{~g} / \ell$ Chlorophyll-a), which consisted mainly of diatoms. Tabellaria fenestrata, Melosira italica, and Fragilaria crotonensis were the dominant species.

Zooplankton abundance peaked in June with a second, smaller increase in September. In both cases the Copepoda and Rotifera by far outnumbered the Cladocera. The Rotifers peaked in the spring of 1974, with Kellicottia longispina being the most abundant species. Diaptomus ashlandi and Cyclops bicupidatus thomasi were the more dominant Copepoda, while Daphnia longispina and Bosmina longirostris were the dominant Cladocera. The total number of organisms ranged between 4,500 to $21,000 / \mathrm{m}^{3}$ over the fourteen-month sampling period.

The two main controlling factors affecting the standing crop of algae are deduced to be light limitations and temperature. During July and August when temperature was optimal for algal growth, the light penetration into the water was still at a very low level due to the high turbidity caused by the annual spring flood. Once the turbidity decreased, the standing crop of algae increased, but in the late fall with the association of decreasing temperature and deeper mixing of the epilimnion, the algae crop decreased to its winter minimum.

Two other factors that probably play a secondary role in the control of the productivity of the lake are low phosphate levels and the
complex circulation within the lake. This is reported in detail in the Canada Centre for Inland Waters' report on Kamloops Lake (St. John et al, 1976).

No attempt was made to assess the effect water colour has on the standing crop of algae. However, due to the physical factors discussed above, it is doubtful that colour is a limiting factor.

Kamloops Lake would fall well within the classification of an oligotrophic lake. Furthermore, because of the nature of the lake, the phytoplankton would not be affected by any addition of nutrients by Weyerhaeuser Canada Limited or the City of Kamloops' sewage lagoon except for a brief period in the spring and fall of the year. Just before the beginning of the freshet, the temperature and light conditions begin to be more favourable for algal growth, but in the early fall after the freshet has passed, the physical and chemical conditions of the lake are the most favourable for growth.

INTRODUCTION
Starting early in 1971, Federal and Provincial agencies received an increasing number of complaints on the colour, foaming, algal growths, and fish tainting of the Thompson River and Kamloops Lake. To investigate these complaints, a Federal-Provincial Task Force was formed. An immediate short-term study of the North and South Thompson rivers, Kamloops Lake, and the Thompson River was carried out in April, 1973. Chemical (Federal-Provincial Task Force Report, 1973) and biological (Kelso, 1973) samples were collected and as a result it was recommended that the Federal-Provincial Task Force start an immediate program of data collection and fact finding to determine the source of nutrients and the type and source of foaming agents in the Thompson River system. The effects of nutrients and colour on the biological activity of Kamloops Lake and the lower Thompson River was also to be studied over a minimum one-year period.

From March, 1974, to April, 1975, the Environmental Protection Service conducted a detailed study of the standing crop of plankton in Kamloops Lake and related this information to the nutrient loadings from the upper Thompson River.

At the same time, the Canada Centre for Inland Waters conducted a detailed physical and chemical study of the lake, with assistance provided by the Environmental Protection Service on the collection of the chemical sampling (St. John et al, 1976). Productivity studies on phytoplankton were also conducted by the Canada Centre for Inland Waters and are included in their report.

Apart from the limnological study completed by Ward (1964), very little background data was available on the lake. Ward noted that the standing crop of net plankton in Kamloops Lake was very low. He concluded that the low level of standing crop was associated with the amount and character of the inflowing water. He further concluded that high turbidity and temperature as well as the brief residence time of surface water in the basin may have accounted for the relatively low standing crop of net plankton.

STUDY AREA

Kamloops Lake is approximately 29 kilometres long with a maximum depth of 150 metres and is located in the semi-arid plateau area of the central area of British Columbia (Figure 1). A description of the lake morphometry was given by Ward (1964) and a further, more detailed account of the lake is given in the report of the Canada Centre for Inland Waters (St. John et al, 1976).

MATERIALS AND METHODS
Six sites on Kamloops Lake were sampled for phytoplankton and zooplankton on a monthly basis from March 19, 1974, to April 23, 1975. These were the mid-lake stations $B_{2}, C_{2}, G_{2}, X_{2}, D_{2}$, and E_{2} (Figure 1). Permanently established marker buoys were placed at each sampling station.

3.1 Phytoplankton

The phytoplankton samples were collected by VanDorn water bottles at ten depths: $0,2,4,6,10,15,20,30,50$, and 100 metres, except for stations B_{2} and E_{2}, where the bottom samples were from 40 to 50 metres. Starting in August, 1974, the 50 and 100 metre samples were deleted because chlorophyll-a values were at or below detection limits. Two 1-litre water samples were taken at each depth and analyzed for chlorophyll-a and phaeophytin pigment and for ash-free dry weights. The l-litre sample was filtered for chlorophyll-a and phaeophytin in the field using 0.45 micron cellulose nitrate filters in a sartorius filtering apparatus at a vacuum of 10 inches of mercury. The filters and contents were then frozen and transported on dry ice to the Laboratory Services, Pacific Region (Environmental Protection Service and Fisheries Service) in West Vancouver. The samples were analyzed using the Parson and Strickland method described in "Standard Methods" (1971). Spectrophotometer readings for chlorophyll-a were performed on the basis of a $1-\mathrm{cm}$ cell instead of the preferred 10 cm cell and, consequently, the readings probably contain an inherent reduction in accuracy. The detection limit was $.3 \mu \mathrm{~g} / \ell$ for chlorophyll-a.

The l-litre water samples for the ash-free weights were shipped immediately by courier truck to the West Vancouver Laboratory where they were filtered, weighed, ashed ($500^{\circ} \mathrm{C}$ for 2 to 3 hours), and re-weighed to determine the ash-free weight.

A 225 ml water sample was taken for identification of phytoplankton at the time of sampling. This was preserved with Lugal
solution and examined at the Environmental Protection Service Biology Laboratory in North Vancouver. Phytoplankton was enumerated using the Untermohl method with a Wild inverted microscope. A 10 cc settling chamber was used and two counts were made, one of the whole bottom of the settling chamber at 100 x and a one-strip at 400 x magnification, excluding those counted at 100 x . For this report, only those values within the photic zone have been used for discussion purposes.

3.2 Zooplankton

The zooplankton samples were collected with a Wisconsin plankton net (25 cm diameter opening) from a depth of 30.5 metres. From March, 1974, to June, 1974, two different mesh sizes (3 hauls at each station) were used - \#10 mesh (153 micron aperture) and \#20 mesh (80 micron aperture). Preliminary analyses showed that the \#10 mesh did not retain the majority of the Rotifers and only the \#20 mesh size was used after June. From that time on, four hauls at each station were taken. The samples were preserved in 3% formalin and taken to the Environmental Protection Service Biology Laboratory. Enumeration was performed on two subsamples and these related back to the entire sample and reported as number per metre ${ }^{3}$.

RESULTS

4.1 Phytoplankton

Chlorophyll-a values for Kamloops Lake throughout the study were very low. Depth profiles of chlorophyll-a for each month are shown in Appendix I. A small bloom occurred in the spring of 1974 in which values were less than $3 \mu \mathrm{~g} / \ell$. The largest bloom occurred in September, 1974. However, even at this time the maximum value obtained was only $5.4 \mu \mathrm{~g} / \ell$ which occurred at 4 metres in depth at station G_{2} (Appendix I).

The maximum depth of the photic zone was determined by Canada Centre for Inland Waters with the aid of a light metre or a secchi disk (Table 1).

TABLE 1 THE MONTHLY MAXIMUM DEPTHS OF THE PHOTIC ZONE OF THE WATER COLUMN FOR KAMLOOPS LAKE

Date	Depth (m)	Date	Depth (m)
March 13, 1974	15	October 23, 1974	10
Apri1 24, 1974	15	November 22, 1974	10
May 29, 1974	2	December 18, 1974	10
June 27, 1974	2	January 22, 1975	10
July 26, 1974	10	February 25, 1975	10
August 21, 1974	10	March 19, 1975	10
September 25, 1974	10	Apri1 24, 1975	6

A mean value of the concentrations of chlorophyll-a, phaeophytin, and ash-free weight was determined for the photic zone. From this, a mean value of the standing crop of phytoplankton was determined for Kamloops Lake (Figure 2). As stated above, the peak of chlorophyll-a production was in September, 1974. A high value of phaeophytin, $8.76 \mu \mathrm{~g} / \ell$, was obtained in July. This value does not correspond to any

of the phytoplankton values from within the lake, which suggests that these pigment values may be of allochthonous origin. The ash-free : weight also rises to a high value during July and this is attributed, most probably, to the detritus carried into the lake by the annual river flood.

The river flow for the North Thompson River at McLure and the South Thompson River at Chase from March 1, 1974, to April 30, 1975, is shown in Figure 3. The South Thompson River peaked on June 27 and 28,1974 , at $46,300 \mathrm{cfs}$, while the North Thompson River reached its maximum flow at McLure on June 24, 1974, at 80,800 cfs. Thus, the maximum impact of the flood on the lake was in the latter part of June.

In comparison of stations, station G_{2} shows the greatest standing crop of planktonic algae (Figure 4). A small bloom was evident at each station in the spring but this had declined by August. The phaeopigment measurement of the phytoplankton is very low except for the July sample (Figure 5). During July there was a wide range of phaeopigment between stations, a low of $3.39 \mu \mathrm{~g} / \ell$ at station D_{2} to a high of $12.78 \mu \mathrm{~g} / \ell$ at station X_{2}. This variation is probably caused by the complex lake circulation and the internal wave motions generated within the lake (St. John et al, 1976). Small peaks of pigments occur in September with the exception of station B_{2} where this does not occur until November.

The ash-free weight measurements throughout the lake were greatly affected by the river flood (Figure 6). Station B_{2} had the highest value as it is nearest the entrance to the lake. The river flows of the North and South Thompson rivers reached their peak in June, but the ash-free weight in the lake did not peak until July, which shows that the detritus carried into the lake during the latter part of June was still in suspension.

Over 30 species of phytoplankton were identified in Kamloops Lake. The most dominant class was by far the Bacillariophyceae or

NOSdWOH.

$$
\begin{aligned}
& \text { THOM } \\
& \text { ASE. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { puDlul } \\
& 3 H \perp \text { y }
\end{aligned}
$$

$$
\begin{aligned}
& 3 H \perp ~ 甘 C \\
& \forall H O \perp \forall
\end{aligned}
$$

$$
\begin{aligned}
& H O \perp 1 \\
& H \perp 甘 C
\end{aligned}
$$

figure 4 mean concentration of chlorophyll o in the photic zone of the WATER COLUMN AT EACH STATION. SEE TABLE I FOR DEPTH OF PHOTIC ZONE.

FIGURE 5 mean concentration of phaEophytin in the photic zone of the WATER COLUMN AT EACH STATION. SEE TABLE I FOR DEPTH OF PHOTIC ZONE.

FIGURE 6 MEAN CONCENTRATION OF ASH FREE WEIGHT IN THE PHOTIC ZONE OF THE WATER COLUMN AT EACH STATION. SEE TABLE I FOR DEPTH OF PHOTIC ZONE.
diatoms. As there was more than one lab technician employed in the enumeration of the phytoplankton, there was some controversy regarding the identification of the species of some of the minor genera. For this reason the data is taken only to genera. However, in the case of the most dominant diatoms, Tabellaria fenestrata was the only species present; while for Melosira, two species existed, M. distans and M. italica, the latter being the more numerous of the two. As an example of the genera present, the enumeration of station G_{2} for September, 1974, is given in Appendix II. Copies of the data in its entirety may be obtained from the author upon request.

The average number of algal cells per me of the photic zone, of the water column, for each genera, on each sample day, at each station, were calculated. The eleven most dominant species of diatoms were used and the remainder were added together as "Other Diatoms". The calculations for this data are shown in Appendix III for the entire sampling period.

The bloom that occurred in September, 1974, was the result of increased diatom abundance (Figure 7), while the smaller spring bloom in 1974 was due to the other algal classes, mainly Dinobryon species of the Chrysophyceae (Table 2). The most dominant diatoms in the plankton in the spring were Tabellaria fenestrata and Melosira italica. In August, 1974, Cycolotella Sp. was dominant while during the bloom in September, 1974, Tabellaria fenestrata was by far the most abundant species. After the fall bloom, the Tabellaria numbers declined and Melosira and Tabellaria were almost equal in number.

4.2 Zooplankton

Thirteen different species of crustacean plankton were recorded in Kamloops Lake. The enumeration of the eleven most dominant zooplankton is given in Appendix IV. The most abundant Copepoda, Diaptomus ashlandi, peaked in September and October, 1974. The second most abundant species, Cyclops biscupidatus thomasi, reached its peak in

FIGURE 7 MEAN NUMBER OF DIATOMS IN THE PHOTIC ZONE OF THE WATER COLUMN FOR KAMLOOPS LAKE. SEE TABLE I FOR DEPTH OF PHOTIC ZONE.

TABLE 2 MEAN NUMBER OF PHYTOPLANKTON (EXCLUDING THE DOMINATE DIATOMS) CELLS PER ML OF THE WATER COLUMN TO THE BOTTOM OF THE PHOTIC ZONE

Date	Station					
	B_{2}	C_{2}	G_{2}	x_{2}	D_{2}	E_{2}
1974						
March 12	4.9	5.1	3.7	30.3	4.4	-
April 24	30.3	30.3	3.4	4.1	7.2	10.0
May 29	2.0	59.4	35.7	37.3	12.9	-
June 26	159.6	193.1	250.5	112.4	165.5	172.0
July 26	197.1	92.6	101.2	87.5	115.4	164.4
August 21	31.7	-	8.3	4.0	-	-
September 25	30.6	19.1	83.9	28.9	21.4	105.8
October 23	-	2.0	-	1.2	-	0.8
November 22	0.8	1.2	5.5	3.2	-	4.8
December 18	-	0.4	-	-	-	-
1975						
January 22	9.1	-	1.2	2.0	2.0	-
February 25	1.2	1.6	1.2	0.8	0.4	0.8
March 19	-	-	1.2	1.6	1.2	-
April 24	2.0	1.3	-	2.7	0.7	1.3

June, 1974, as well as a smaller peak in the winter months. For Cladocera, the more dominant organisms were Daphnia longispina and Bosmina longirostris. Daphnia reached its peak in September while Bosmina reached its maximum in June and again in November-December of 1974. The number 10 mesh Wisconsin net (153μ) was sufficient to catch all of these organisms. In some samples it was more efficient than the number 20 mesh net (80μ).

The most dominant Rotifera were Kellocottia longispina which peaked at station G_{2} in June at 10,515 organisms per cubic metre and Asplanchna sp. which also reached its maximum number in June. In most instances the \#20 mesh net was the most efficient sampler except for Asplanchna where the $\# 10$ mesh net was more effective. Some of the Rotifers less than 80 microns in size would have been missed even with the \#20 mesh net.

The greatest total peak of zooplankton occurred in June, 1974, with the Rotifers, Nauplii, and Copepoda being the most abundant (Figure 8). The Copepoda as well as the Cladocera peaked at a greater number in September. However, the Cladocera did not form a significant number of the zooplankton at any time. No attempt was made to identify the Nauplii. It is interesting to note that the Nauplii started to increase after the spring bloom in September, 1974, and was still on the increase when sampling stopped in April, 1975. The exact reason for this is not known at this time.

The two stations B_{2} and C_{2} nearest the east end of the lake were the most productive for zooplankton (Figure 9). Unfortunately, the June samples for B_{2} were lost, but in the September-October peak, this station contained 34% of the total number of individuals sampled. The overall number of organisms decreased as one progressed down the lake, except at station E_{2} where there is a slight increase in numbers. The exact reason that more zooplankton reside in the delta area is not known.
LEGEND

KAMLOOPS
LAKE. NUMBER 20 MESH WISCONSIN HAUL FROM 30.5 METERS
IN DEPTH.
FIGURE 8

FIGURE 9 ZOOPLANKTON WISCONSIN HAULS AT KAMLOOPS LAKE, 30. 5 METERS IN DEPTH (80 MICRON MESH NET).

Nutrient loadings indirectly influence primary production and hence the standing crop of algae. The main purpose of this part of the study was to document the effects of the nutrient loadings on certain lake flora and fauna. Primary productivity is generally influenced by the availability of nutrients, light, and the temperature of the surrounding waters. The level of chlorophyll-a in Kamloops Lake was very low as indicated by the maximum bloom in September (mean chloro-phyll-a for lake $2.91 \mu \mathrm{~g} / \ell$). Schindler (1974) states that most experts consider lakes to be eutrophic when the algae blooms have more than $30 \mu \mathrm{~g} / \ell$ chlorophyll-a. For Kamloops Lake, light limitation caused by turbidity and temperature would seem to be very important factors in the control of primary production (Figure 10). The annual flooding of the Thompson River system caused an increase of turbidity in the lake starting in May, 1974, and reached its peak in the last part of June and first part of July. Coinciding with the above, temperature also increased and reached its maximum in August. Phytoplankton abundance started to increase in the spring, but as the lake turbidity increased, the diatom population declined and only the Chrysophyceae and Chlorophyceae were able to produce in the more turbid waters during June and July. It must be stated at this time that these figures are based on the total number of phytoplankton and not on the total biomass of the phytoplankton. R. Daley found in his study of the lake that the biomass of Chrysophyceae and Chlorophyceae make up 30.8% of the phytoplankton while the diatoms occupied 54.9% of the total biomass (St. John et al, 1976). There is also the possibility that some of the chlorophyll-a total in the spring may have been from allochthonous sources brought in by the spring flood.

In August, when the turbidity had dropped to near 1-JTU, the diatom population began to increase. In September, after conditions had been more favourable for algal growth for at least a month (i.e., low turbidity and sustained high temperatures), the diatom population

reached its maximum. After September, the diatom population decreased with the decreasing water temperature.

There was a negative correlation ($r^{2}=-0.64$) between the chlorophyll-a concentration and nitrate concentration over the whole sampling period, while no correlation of significance was found between chlorophyll-a and total dissolved phosphate (Figure 11) (raw chemical data supplied by CCIW). The concentration of nitrate may not have been decreasing solely because of the uptake for algal growth, because during the same period the nitrate concentration in the inflow river was also decreasing and by approximately the same amount (St. John et al, 1976). Between August and September the average chlorophyll-a concentration doubles but the net nitrate concentration drops by less than 10%. Thus, nitrate appears to be in excess of algal requirements at this time.

Another very important factor that affects the productivity of the lake is the complex circulation pattern caused by the movement of the river plume through the lake. The bulk residence time in the lake can vary from 18 days in June to 340 days in February (St. John et al, 1976). As mentioned earlier, the diatom abundance decreases during June and July (Figure 10). The very high flushing rate in the epilimnion, together with the decreased light penetration caused by the turbidity, would account for most of this decrease. The increase in chlorophyll-a and phaeophytin, especially the latter, at this time, is probably from allochthonous sources brought into the lake by the river plume. The mixing zone of the epllimnion during summer and early fall is much deeper than the photic zone (St. John et al, 1976). Thus, a continuous supply of nutrients is being brought up from deeper layers. After September, along with the decrease in temperature, there is the increased depth of mixing and thus the phytoplankton population declines. Furthermore, it is quite feasible that algal cells from the east end of the lake may start to settle out and be caught in the currents to be carried down the lake and resurface at the west end. This may explain why the peak of diatoms occurs at station G_{2} in September, yet at station X_{2} the number

AND TOTAL DISSOLVED PO4 IN KAMLOOPS LAKE FOR THE PHOTIC ZONE
OF THE WATER COLUMN. (Chemical Daia supplied by C.C.I.W., Pocific Bri).
|1 3yก91」
of organisms are higher in October than September. Calculations of the mean number of organisms to the depth of the epilimnion (40 metres instead of just within the photic zone) shows the peak algal growth occurring in October instead of September.

No direct attempt was made to determine if colour played an important role in productivity. However, due to the strong influences of other controlling factors (e.g., turbidity and temperature), it is doubtful that water colour in Kamloops Lake would be a controlling factor.

Stockner and Northcote (1974) found a close relationship between chlorophyll-a concentration and total phosphorus for Okanagan Lake and Kalamalka Lake in the photic zone during the summer period. Okanagan Lake showed approximately $30 \mu \mathrm{~g} / \ell$ total phosphorus with a mean of $5 \mu \mathrm{~g} / \ell$ of chlorophyll-a, while Kalamalka had approximately $15 \mu \mathrm{~g} / \ell$ of total phosphorus and a mean of $2.5 \mu \mathrm{~g} / \ell$ of chlorophyll-a. Kamloops Lake was much lower in September with a mean of $5 \mu \mathrm{~g} / \ell$ of total dissolved phosphorus and $2.9 \mu \mathrm{~g} / \mathrm{l}$ of chlorophyll-a in the photic zone. Stockner and Shortreed (1974) report Babine Lake, another large oligotrphic lake, as being more productive than Okanagan Lake, with a mean seasonal chlorophyll-a value of $1.78 \mu \mathrm{~g} / \ell$, while the mean chloro-phyll-a value for Kamloops Lake from March, 1975, to February, 1976, was $1.1 \mu \mathrm{~g} / \ell$.

It is generally agreed that most oligotrophic lakes are dominated by diatoms and that the presence of bluegreen algae indicates a more eutrophic lake (Stein and Coulthard, 1971). In Kamloops Lake very few blue-green organisms were found. The dominate phytoplankton were by far the bacillariophyceae or diatoms. This was confirmed by Daley where he found, in calculating total biomass, that the diatoms were greater than 50% of the total phytoplankton by volume, except during the peak biomass period in early fall when they consisted of 34% of the volume (St. John et al, 1976). In June and July, there was a small
peak of phytoflagellates, mainly Dinobryon sp. and a few green algae, primarily Chlamydomonas sp. However, Daley (St. John et al, 1976) found that during this period the dominate genera of the Chrysophyta biomass were Chromulina, Mallomonas, and Ochromonas and from the Chlorophyta biomass, Botryococcus and Chlorella were the most dominant. For Kalamalka and Okanagan lakes, Stein and Coulthard (1971) found that the dominate algae in Kalamalka were blue-greens in early summer, but gave way to phytoflagellates by late summer. In the spring the phytoflagellates and diatoms were equal for Kalamalka Lake. For Okanagan Lake in early spring, with the exception of the north end, diatoms were dominate but this changed to blue-green dominance by late summer for the whole lake and reverted to diatom dominance by spring. The main diatoms for the two lakes were Cyclotella ocellata, C. kutzingiana, and Melosira italica for Kalamalka and M. italica, C. ocellata, and Fragilaria crotonensis for Okanagan Lake. For Kamloops Lake, Tabellaria fenestrata, M. italica and Fragilaria crotonensis were the most dominate diatoms.

Ward (1964) identified eight common pelagic zooplankton in Kamloops Lake, four cladocerans and four copepods. However, due to the large mesh size of his sampling net, he was unable to report on the community of Rotifers. Hutchinson (1967) states that planktonic Rotifers occupy fairly discrete niches in the plankton community. Hutchinson further states that much has to be learned about the feeding habits of Rotifers as different species of a class can be herbivorous and primary or even secondary carnivores. He reports that Keratella and Kellicottia can capture Cryptomonas. Keratella normally can ingest small whole organisms. Asplanchna eats a variety of food, notably algae, Keratella, Ascomorpha, and other Rotifers and even small Crustacea.

The Cladocera are filter feeders while some Copepoda can feed on both plant and animal material. Cyclops biscupidatus thomasi
is predacious while Diaptomus is a filter feeder and thus feeds mainly on diatoms.

The greatest overall abundance of zooplankton in Kamloops Lake was found in the east end of the lake and the exact reason for this is not known. At certain times of the year they could be feeding on detritus brought in by the river, but during the September-October peaks, the river flow is greatly reduced and very little detritus would enter the lake. Also, during this time period the phytoplankton values were higher at the other stations on the lake. However, part of the reduced phytoplankton levels in the delta area could be because of the increased grazing . One possible explanation for the higher standing crop of zooplankton in the delta area could be caused by allochthonous organisms being carried into the area by the South Thompson River from the Shuswap Lake system.

In Kamloops Lake, the zooplankton reached a peak in June, 1974. However, at this time the diatom population decreased when the phytoflagellates and green algae reached their maximum (Figure 12). In the fall of the year the zooplankton again reached a peak at the same time the diatom population reached a maxtmum. The zooplankton decreased as the diatoms decreased except in November. In December the diatom population was very low but the total zooplankton population began to increase. However, if one subtracted the nauplii, the zooplankton number followed the phytoplankton curve much closer. As previously mentioned, it was interesting to note that the number of nauplii in the spring of 1975 was much higher than the same time period in 1974. The chlorophyll-a values and diatom counts were slightly higher in March, 1975, than the same period in the previous year. This and other environmental factors may have caused an earlier hatch of the overwintering eggs, thus giving the zooplankton standing crop an earlier start.

On the same basis as the phytoplankton, a very important factor affecting the zooplankton population would be the complex lake circulation and the flow of the river through the lake.
LEGEND

[^0]In comparison of zooplankton communities to other lakes, Patalas and Salki (1973) found 13 species in Okanagan Lake. The densities in September were between 30,000 and 40,000 individuals $/ \mathrm{m}^{3}$ through the central and most northern part of the lake, while higher numbers $\left(50,000\right.$ to $70,000 / \mathrm{m}^{3}$) were found at the southern end of the lake. Kalamalka Lake showed a rather uniform distribution throughout the lake of between 20,200 and $33,800 / \mathrm{m}^{3}$. For both lakes, Cyclops bicuspidatus thomasi and Diaptomus ashlandi were the most abundant of the copepods; the same was found in Kamloops Lake. Of the cladocerans, Daphnia thorata and Daphnia longiremis were dominate in Okanagan while only Daphnia longiremis was most numerous in Kalamalka Lake.

Watson (1974) showed the range of zooplankton of the Great Lakes to be as follows:

Lake Huron	2,000 to $24,000 / \mathrm{m}^{3}$
Lake Ontario	2,000 to $55,000 / \mathrm{m}^{3}$
Lake Erie	2,000 to $200,000 / \mathrm{m}^{3}$

In comparison, Kamloops Lake's range of zooplankton over the 14 month sampling period of 4,500 to $21,000 / \mathrm{m}^{3}$ would fall close to Lake Huron and below both Kalamalka and Okanagan lakes.

REFERENCES

Federal/Provincial Task Force Report, 1973. A preliminary report on sources and effects of colour, foam, and algal growth in the Thompson River system. B.C. Control Branch, Victoria, B.C., and Environment Canada, Vancouver, B.C. 90 pp.

Hutchinson, G. Evelyn, 1967. A treatise on Limnology, Volume II, Introduction to lake biology and limnoplankton, John Wiley \& Sons., Inc., New York. 1115 pp.

Kelso, B.W., 1973. A biological assessment of the Thompson River system during the low flow period of April, 1973. Surveillance Report EPS 5-PR-73-9, Environment Canada. 21 pp.

Patalas, K., and A. Salki, 1973. Crustacean plankton and the eutrophication of lakes in the Okanagan Valley, British Columbia. J. Fish Res. Board, Canada, 30. 519-542 pp.

St. John, B.C., E.C. Carmack, R.J. Daley, C.B.J. Gray, and C.H. Pharo, 1976. The Limnology of Kamloops Lake, B.C. The Canada Center for Inland Waters, Inland Waters Directorate, Pacific and Yukon Region. 204 pp.

Schindler, D.W., 1974. Eutrophication and recovery in experimental lakes: Implications for lake management. Science, Vol. 184, pp 897-899.

Standard Methods for the Examination of Water and Wastewater, 1971, 13th edition. Amer. Pub. Health Assn., Washington. 874 pp.

Stein, J.R., and T.L. Coulthard, 1971. A report on the Okanagan Water Investigation, U.B.C. 176 pp.

Stockner, J.G. and T.G. Northcote, 1974. Recent limnological studies of Okanagan Basin lakes and their contribution to comprehensive water resource planning. J. Fish. Res. Board, Canada, 31. 955-976 pp.

Stockner, J.G. and K.R.S. Shortreed, 1974. Phytoplankton succession and primary production in Babine Lake, British Columbia. Tech. Report \#417, Fish. Res. Bd., Canada. 98 pp.

Ward, F.J., 1964. Limnology of Kamloops Lake, Int. Pac. Sal. Fish. Comm., Bu1. XVI. 47 pp.

Watson, N.H.F., 1974. Zooplankton of the St. Lawrence River and Great Lakes - species composition, distribution, and abundance. J. Fish. Res. Board, Can. 31: 783-794.

ACKNOWLEDGEMENTS
We are grateful to Mr. David Barrett for the initial preparation of field sampling equipment and to Jane Lee and Jean Illingworth for the plankton identification and enumeration. We also would like to acknowledge other members of the Environmental Protection Service staff and Canada Center for Inland Waters field staff who assisted us in the field. Dr. John Stockner also provided guidance in the identification of the phytoplankton. We greatly appreciate the patience and expertise of Lillian Pearson in the drafting of the figures and to Colleen Manness for the careful typing of the manuscript.

We are indebted to Dr. Ralph Daley and Mr. Colin Gray for their constructive criticism of the manuscript.

APPENDIX I

MID LAKE DEPTH PROFILES OF KAMLOOPS LAKE FOR CHLOROPHYLL-A (After August, 1974, sampling at 50 and 100 metres depth was stopped)

> Stations B_{2} and C_{2}
> Stations G_{2} and X_{2}
> Stations D_{2} and E_{2}
CHLOROPHYLL

APPENDIX II

KAMLOOPS LAKE PHYTOPLANKTON FOR STATION G_{2} SEPTEMBER, 1974. (/ml)

APPENDIX II KAMLOOPS LAKE PHYTOPLANKTON FOR STATION G_{2}, SEPTEMBER 25, 1974. (/ml)

	Depth (m)							
Class	0	2	4	6	10	15	20	30

Bacillariophyceae

Tabellaria	1315	1604	1418	1418	998	1010	151	140
Fragilaria	285	273	347	337	214	277	65	40
Asterionella	210	111	163	170	135	99	71	44
Cymbella	-	-	-	-	4	-	16	16
Melosira	176	93	234	160	143	257	77	77
Achnanthes	12	4	4	-	8	12	97	107
Navicula	-	-	-	-	-	-	28	40
Synedra	4	28	4	24	8	36	28	8
Cyclotella	24	36	32	36	55	-	83	91
Gomphonema	-	4	-	-	4	4	4	20
Hannaea	-	-	-	-	-	-	-	4
Stephanodiscus	-	-	-	-	-	-	-	-
Nitzschia	-	-	-	-	-	-	8	4
Stauroneis	-	-	-	-	-	-	4	-
Disploneis	-	-	-	-	-	-	-	-
Mastogloia	-	-	-	-	-	-	-	-
Amphipleura	-	-	-	-	-	-	-	-
Cocconeis	-	-	-	-	-	-	-	-
Surirella		-	-	-	-	-	4	-
Diatoma	-	-	-	-	-	8	8	
Neidium	-	-	-	-	-	-	-	
Pinnularia		-	-	-	-	-	8	

Chrysophyceae
$\begin{array}{lllllllll}\text { Dinobryon } & - & 16 & 4 & 16 & - & 4 & 16 & 12\end{array}$
Ceratium

Class	Depth (m)							
	0	2	4	6	10	15	20	30
continued...								
Chlorophyceae								
Crucigenia	-	-	-	-	-	32	-	-
Onychonema	-	-	-	-	-	-	-	-
Cyanophyceae								
Borzia	111	-	-	273	-	-	-	-
Dinophyceae								
Dinoflagellate	-	-	-	-	-	-	-	-

APPENDIX III

MEAN NUMBER OF PHYTOPLANKTON PER ML OF THE PHOTIC ZONE FROM APRIL, 1974, TO APRIL, 1975, FOR KAMLOOPS LAKE.

March 13, 1974	-	15 metres
April 24, 1974	-	15 metres
May 29, 1974	-	2 metres
June 26, 1974	-	2 metres
July 26, 1974	-	6 metres
August 21, 1974	-	10 metres
September 25, 1974	-	10 metres
October 23, 1974	-	10 metres
November 22, 1974	-	10 metres
December 18, 1974	-	10 metres
January 22, 1975	-	10 metres
February 25, 1975	-	10 metres
March 19, 1975	-	10 metres
April 24, 1975	-	6 metres

Class	Station					
	B_{2}	C_{2}	G_{2}	x_{2}	D_{2}	E_{2}
Bacillariophyceae						
Tabellaria fenestrata	223.3	212.1	151.6	147.9	81.9	131.0
Fragilaria spp.	12.8	13.2	3.3	- 7.2	4.3	29.7
Asterionella spp.	25.4	6.3	12.8	7.5	13.0	9.9
Cymbella	5.2	1.9	1.4	2.0	0.6	4.0
Melosira italica	5.5	21.1	14.7	7.7	4.0	48.0
Achnanthes	5.4	7.3	2.9	4.9	4.1	17.8
Navicula	3.8	2.3	2.4	1.4	1.7	28.7
Synedra	3.0	4.3	0.8	2.3	1.0	14.9
Cyclotella spp.	. 4.8	3.3	2.7	5.4	1.8	24.7
Gomphonema	1.5	1.1	0.5	2.2	0.3	15.9
Hannaea	2.4	1.9	1.2	0.6	-	5.9
Other Diatoms	11.6	8.7	6.1	7.4	6.6	22.8
Chrysophyceae	0.8	0.7	0.9	-	1.5	-
Chlorophyceae	2.4	1.4	1.8	30.3	2.4	-
Cyanophyceae	1.7	3.0	-	-	-	-
Dinophyceae	-	-	1.0	-	0.5	-

Class	Station					
	B_{2}	C_{2}	G_{2}	X_{2}	D_{2}	E_{2}
Bacillariophyceae						
Tabellaria fenestrata	402.7	865.2	392.4	276.3	224.1	244.4
Fragilaria spp.	13.2	47.5	18.7	- 7.3	8.3	5.6
Asterionella spp.	6.2	11.7	10.6	4.0	9.5	13.5
Cymbella	3.1	10.7	8.5	1.4	3.4	2.4
Melosira italica	17.3	21.7	37.7	18.6	39.3	48.5
Achnanthes	9.5	45.0	12.1	8.2	7.3	1.5
Navicula	3.0	6.4	3.6	1.5	4.0	0.8
Synedra	3.6	11.2	3.5	12.5	1.5	1.7
Cyclotella spp.	2.6	14.2	5.2	5.8	2.7	3.0
Gomphonema	2.1	9.6	7.9	4.9	2.5	0.3
Hannaea	3.0	8.7	1.2	4.3	2.6	0.9
Other Diatoms	12.9	45.7	12.5	7.6	6.4	5.3
Chrysophyceae	25.4	20.4	1.3	0.9	0.6	1.1
Chlorophyceae	4.9	9.9	2.1	3.2	6.6	8.9
Cyanophyceae	-	-	-	-	-	-
Dinophyceae	-	-	-	-	-	-

May 29, 1974
(2 metres)

Class	Station					
	B_{2}	C_{2}	G_{2}	x_{2}	D_{2}	E_{2}
Bacillariophyceae						
Tabellaria fenestrata	193.3	585.1	436.6	897.0	1594.9	635.6
Fragilaria spp.	3.0	50.5	7.0	-	14.9	53.5
Asterionella spp.	11.9	9.9	12.9	8.0	22.8	13.9
Cymbella	1.0	4.5	0.0	-	2.0	3.0
Melosira italica	-	59.4	36.6	31.7	6.0	47.6
Achnanthes	-	9.9	7.9	7.9	4.0	-
Navicula	3.9	4.0	2.0	-	-	2.0
Synedra	3.0	3.0	5.9	8.9	4.0	3.0
Cyclotella spp.	7.2	17.3	5.5	5.0	7.9	-
Gomphónema	1.0	1.0	-	3.5	-	-
Hannaea	-	-	-	1.0	7.9	2.0
Other Diatoms	8.9	7.5	17.4	1.5	4.0	3.0
Chrysophyceae	2.0	11.9	21.8	17.9	2.0	-
Chlorophyceae	-	47.5	13.9	19.4	10.9	-
Cyanophyceae	-	-	-	-	-	-
Dinophyceae	-	-	-	-	-	-

Class	Station					
	B_{2}	C_{2}	G_{2}	x_{2}	D_{2}	E_{2}
Bacillariophyceae						
Tabellaria fenestrata	279.2	363.3	237.6	231.7	207.9	338.6
Fragilaria spp.	6.9	18.8	1.0	6.5	2.0	5.0
Asterionella spp.	9.9	12.9	8.9	13.9	-	-
Cymbella	4.5	2.0	-	1.0	-	1.0
Melosira italica	11.9	-	8.9	29.7	29.7	17.8
Achnanthes	2.0	20.8	6.0	8.4	7.9	11.9
Navicula	7.9	11.9	-	6.5	-	1.0
Synedra	13.9	5.5	6.0	6.9	11.9	6.0
Cyclotella spp.	8.9	27.3	16.8	30.7	45.1	31.7
Gomphónema	1.0	1.0	2.5	4.0	1.0	-
Hannaea	-	-	1.0	-	-	-
Other Diatoms	68.5	17.0	30.7	23.8	20.4	5.5
Chrysophyceae	108.9	105.0	100.0	87.1	128.7	72.3
Chlorophyceae	50.7	88.1	150.5	25.3	36.7	99.7
Cyanophyceae	-	-	-	-	-	-
Dinophyceae	-	-	-	-	-	-

Class	Station					
	B_{2}	C_{2}	G_{2}	x_{2}	D_{2}	E_{2}
Bacillariophyceae						
Tabellaria fenestrata	256.4	343.0	187.9	276.9	202.0	202.0
Fragilaria spp.	75.9	45.6	30.3	55.9	6.3	55.3
Asterionella spp.	72.6	23.8	58.5	56.4	46.7	35.0
Cymbella	6.3	2.8	8.1	1.3	0.8	2.3
Melosira italica	39.4	16.9	7.6	50.5	31.7	9.2
Achnanthes	11.2	9.7	11.6	0.7	5.9	7.3
Navicula	2.7	10.4	0.0	0.0	-	0.3
Synedra	20.3	27.7	23.5	32.4	17.8	12.9
Cyclotella spp.	111.7	106.9	135.0	122.0	91.7	81.0
Gomphónema	5.0	7.2	6.8	-	-	3.3
Hannaea	2.6	1.5	1.0	2.6	-	0.3
Other Diatoms	52.6	16.9	25.0	16.6	21.7	14.8
Chrysophyceae	21.5	21.3	22.8	44.9	24.5	49.9
Chlorophyceae	175.6	71.3	78.4	42.6	90.9	114.5
Cyanophyceae	-	2.0	-	-	-	-
Dinophyceae	-	-	-	-	-	-

Class	Station					
	B_{2}	C_{2}	G_{2}	x_{2}	D_{2}	E_{2}
Bacillariophyceae						
Tabellaria fenestrata	174.7	292.2	361.2	375.8	374.2	413.4
Fragilaria spp.	63.2	121.2	147.9	158.4	132.9	138.8
Asterionella spp.	3.0	15.9	26.1	26.1	19.0	46.4
Cymbella	7.4	6.0	2.4	6.4	0.8	1.6
Melosira italica	22.4	4.0	7.5	13.9	12.7	32.3
Achnanthes	25.5	20.6	59.8	46.3	22.2	19.4
Navicula	16.9	26.9	21.0	41.6	9.1	13.9
Synedra	15.0	5.2	8.3	8.7	7.5	19.8
Cyclotella spp.	91.4	219.4	386.1	507.7	325.1	480.0
Gomphónema	12.0	7.5	7.1	6.3	2.8	0.8
Hannaea	0.8	1.6	-	-	-	-
Other Diatoms	24.9	44.4	25.4	50.4	7.2	24.2
Chrysophyceae	10.4	-	1.2	0.8	-	-
Chlorophyceae	-	-	0.0	-	-	-
Cyanophyceae	21.3	-	7.1	4.0	-	-
Dinophyceae	-	-	0.0	-	-	-

Class	Station					
	B_{2}	C_{2}	G_{2}	x_{2}	D_{2}	E_{2}
Bacillariophyceae						
Tabellaria fenestrata	457.8	596.2	1360.7	876.8	1128.6	1129.2
Fragilaria spp.	177.8	134.9	296.2	- 175.4	295.6	254.8
Asterionella spp.	85.1	119.2	153.6	152.9	135.8	144.6
Cymbella	7.1	3.2	0.8	0.8	0.8	-
Melosira italica	75.9	130.9	159.8	156.6	121.4	121.6
Achnanthes	46.1	41.6	4.4	15.9	21.8	13.9
Navicula	15.8	16.2	-	3.2	11.9	3.6
Synedra	5.2	2.0	15.5	25.0	8.3	10.9
Cyclotella spp.	75.6	130.8	37.6	32.5	41.4	28.5
Gomphónema	5.2	3.6	1.6	0.8	2.4	2.0
Hannaea	1.6	2.0	-	-	0.8	-
Other Diatoms	24.2	8.4	-	3.2	2.4	2.0
Chrysophyceae	3.2	4.8	8.7	3.6	8.7	10.3
Chlorophyceae	-	-	-	-	-	2.4
Cyanophyceae	23.4	12.7	75.2	25.3	12.7	93.1
Dinophyceae	4.0	1.6	-	-	-	-

Class	Station					
	B_{2}	C_{2}	G_{2}	X_{2}	D_{2}	E_{2}
Bacillariophyceae						
Tabellaria fenestrata	238.0	240.2	221.8	308.5	276.4	314.0
Fragilaria spp.	119.8	94.7	136.2	161.4	88.9	141.0
Asterionella spp.	4.0	10.3	9.9	21.4	4.4	22.9
Cymbella	4.0	2.0	-	2.4	0.8	2.8
Melosira italica	915.6	747.2	946.8	1140.7	859.5	972.9
Achnanthes	25.0	36.4	25.0	45.4	17.0	17.4
Navicula	12.5	10.3	5.9	12.3	2.0	7.9
Synedra	13.9	8.7	14.6	17.0	21.4	12.7
Cyclotella spp.	40.0	38.4	19.4	36.0	25.0	36.4
Gomphónema	3.6	5.1	5.1	6.7	3.6	2.4
Hannaea	2.0	3.2	-	-	1.2	-
Other Diatoms	2.0	3.6	6.0	11.1	3.2	3.2
Chrysophyceae	-	2.0	-	1.2	-	0.8
Chlorophyceae	-	-	-	-	-	-
Cyanophyceae	-	-	-	-	-	-
Dinophyceae	-	-	-	-	-	-

Class	Station					
	B_{2}	C_{2}	G_{2}	x_{2}	D_{2}	E_{2}
Bacillariophyceae						
Tabellaria fenestrata	132.7	171.6	117.6	122.0	179.4	132.6
Fragilaria spp.	91.9	64.9	66.5	58.0	115.4	61.0
Asterionella spp.	5.5	16.6	21.8	12.3	19.8	11.1
Cymbella	5.6	4.0	1.6	10.7	3.2	0.8
Melosira italica	442.6	585.8	459.8	558.2	894.2	764.3
Achnanthes	53.9	43.6	39.2	77.6	42.8	35.2
Navicula	9.9	21.8	21.8	21.4	16.6	10.3
Synedra	10.3	6.7	- 13.9	17.4	13.1	7.1
Cyclotella spp.	23.0	17.0	37.6	53.9	56.2	32,1
Gomphonema	9.5	11.1	4.4	6.0	5.2	1.2
Hannaea	-	-	1.2	0.8	-	0.0
Other Diatoms	3.2	4.8	4.4	11.1	7.2	14.7
Chrysophyceae	0.8	1.2	-	-	-	0.8
Chlorophyceae	-	-	5.5	3.2	-	4.0
Cyanophyceae	-	-	-	-	-	-
Dinophyceae	-	-	-	-	-	-

Class	Station					
	B_{2}	C_{2}	G_{2}	x_{2}	D_{2}	E_{2}
Bacillariophyceae						
Tabellaria fenestrata	128.7	123.6	125.9	67.3	50.5	94.6
Fragilaria spp.	34.4	24.2	36.0	- 22.2	26.1	41.6
Asterionella spp.	7.9	9.5	7.1	9.9	4.4	8.3
Cymbella	8.3	5.6	12.3	7.5	2.4	5.9
Melosira italica	117.0	94.9	104.3	142.7	132.5	156.2
Achnanthes	70.5	50.7	20.2	29.3	22.6	38.4
Navicula	34.4	14.3	60.5	46.3	19.8	43.2
Synedra	11.5	13.1	6.8	4.8	13.5	6.7
Cyclotella spp.	19.4	28.5	20.2	9.1	11.9	26.1
Gomphónema	6.0	15.8	7.1	5.2	3.6	5.9
Hannaea	1.6	1.6	-	-	1.6	-
Other Diatoms	29.4	13.9	13.5	4.8	6.8	12.3
Chrysophyceae	-	-	-	-	-	-
Chlorophyceae	-	0.4	-	-	-	-
Cyanophyceae	-	-	-	-	-	-
Dinophyceae	-	-	-	-	-	-

	Station					
Class	B_{2}	C_{2}	G_{2}	X_{2}	D_{2}	E_{2}
Bacillariophyceae						
Tabellaria fenestrata	197.2	103.4	100.6	74.1	53.9	85.5
Fragilaria spp.	71.9	24.2	26.1	11.9	14.5	15.2
Asterionella spp.	5.6	-	7.1	1.6	9.5	5.5
Cymbella	10.3	8.7	2.0	7.5	7.1	3.6
Melosira italica	114.5	89.9	112.7	74.9	88.7	116.2
Achnanthes	92.3	46.3	29.7	55.5	32.1	42.8
Navicula	71.7	24.9	13.1	56.6	56.2	19.8
Synedra	10.3	4.4	5.9	2.4	5.6	4.8
Cyclotella spp.	57.8	21.0	12.3	23.8	19.0	13.9
Gomphonema	13.9	9.1	10.3	6.7	6.3	3.6
Hannaea	4.8	0.8	-	-	1.2	0.8
Other Diatoms	31.0	15.9	1.2	10.7	12.7	10.7
Chrysophyceae	-	-	-	0.8	2.0	-
Chlorophyceae	9.1	-	1.2	1.2	-	-
Cyanophyceae	-	-	-	-	-	-
Dinophyceae		-	-	-	-	-

Class	Station					
	B_{2}	C_{2}	G_{2}	x_{2}	D_{2}	E_{2}
Bacillariophyceae						
Tabellaria fenestrata	85.1	134.3	78.8	84.3	98.6	95.1
Fragilaria spp.	22.0	9.1	16.6	5.9	21.4	38.4
Asterionella spp.	2.0	0.8	5.2	7.5	2.0	0.8
Cymbella	3.6	10.3	4.0	5.6	6.7	4.8
Melosira italica	77.2	90.7	75.4	75.7	104.8	95.6
Achnanthes	45.6	61.4	39.2	34.8	31.7	43.1
Navicula	23.8	36.1	37.2	39.6	32.9	63.8
Synedra	4.8	14.6	7.5	6.7	8.3	7.5
Cyclotella spp.	15.1	19.8	18.6	20.2	19.0	32.1
Gomphónema	7.9	15.1	5.9	8.3	11.1	13.5
Hannaea	2.0	2.8	1.6	2.4	1.2	-
Other Diatoms	9.6	19.6	13.9	12.8	7.6	13.9
Chrysophyceae	-	-	1.2	0.8	-	0.8
Chlorophyceae	1.2	1.6	-	-	0.4	-
Cyanophyceae	-	-	-	-	-	-
Dinophyceae	-	-	-	-	-	-

March 19, 1975
(10 metres)

Class	Station					
	B_{2}	C_{2}	G_{2}	x_{2}	D_{2}	E_{2}
Bacillariophyceae						
Tabellaria fenestrata	85.2	121.2	100.6	126.7	122.0	87.9
Fragilaria spp.	9.9	31.1	25.4	18.4	19.8	18.6
Asterionella spp.	8.3	22.6	4.8	2.0	10.7	4.4
Cymbella	3.2	10.3	9.5	5.6	5.6	4.8
Melosira italica	101.3	111.9	130.7	129.9	89.5	113.3
Achnanthes	33.3	54.7	40.4	24.2	19.4	24.6
Navicula	24.1	32.1	46.7	35.3	46.3	42.4
Synedra	4.4	9.1	6.7	1.6	4.8	5.6
Cyclotella spp.	13.5	21.0	19.0	19.0	13.9	17.0
Gomphonema	7.9	17.0	8.3	8.7	7.9	2.8
Hannaea	1.6	0.8	1.6	-	3.6	0.8
Other Diatoms	13.5	15.9	28.6	10.3	7.2	13.1
Chrysophyceae	-	-	-	0.8	-	-
Chlorophyceae	-	-	1.2	0.8	1.2	-
Cyanophyceae	-	-	-	-	-	-
Dinophyceae	-	-	-	-	-	-

Class	Station					
	B_{2}	C_{2}	G_{2}	x_{2}	D_{2}	E_{2}
Bacillariophyceae						
Tabellaria fenestrata	105.6	143.9	124.8	153.8	117.5	131.3
Fragilaria spp.	23.4	8.6	31.0	37.6	22.4	12.5
Asterionella spp.	17.1	3.3	15.8	4.6	9.3	8.6
Cymbella	15.8	1.3	7.9	8.6	6.6	2.7
Melosira italica	143.2	142.3	138.3	201.0	189.7	219.4
Achnanthes	51.5	43.6	28.4	38.3	22.5	24.4
Navicula	48.2	17.2	15.8	29.7	40.9	16.5
Synedra	3.3	16.5	3.3	2.7	6.6	7.9
Cyclotella spp.	18.5	26.4	19.1	18.5	11.2	19.8
Gomphonema	15.2	4.6	6.6	7.3	7.3	1.3
Hannaea	1.3	-	2.0	1.3	0.7	-
Other Diatoms	19.8	13.3	16.6	11.3	18.6	8.7
Chrysophyceae	2.0	1.3	-	2.7	-	-
Chlorophyceae	-	-	-	-	0.7	1.3
Cyanophyceae	-	-	-	-	-	-
Dinophyceae	-	-	-	-	-	-

APPENDIX IV

ZOOPLANKTON WISCONSIN HAULS, KAMLOOPS LAKE, FROM 30.5 METRES IN DEPTH (NO. $/ \mathrm{m}^{3}$). $\overline{\mathrm{x}}=\mathrm{MEAN}$ OF 3 SAMPLES MARCH/74 TO JUNE/74; MEAN OF 4 SAMPLES AFTER JUNE. sd = STANDARD DEVIATION. NO SAMPLES WERE TAKEN WITH \#10 MESH NET AFTER JUNE, 1974.

STATION B_{2}
STATION C_{2}
STATION G_{2}
STATION X_{2}
STATION D_{2}
STATION E_{2}
Station B_{2}

	Mesh			24/4		28/5		26/6		24/7/74		21/8		25/9/1		23/1	0/74	20/1	1/74	18/12		22/1/		25/2		19/3		23/4	
		$\overline{\mathrm{x}}$	sd	x	sd	$\overline{\mathrm{x}}$																							
COPEPOOA																													
Diaptomus ashlandi	20	3257	808	2271	${ }_{5}^{503}$	1298	173			1515	214	4332	571	15850	1913	21701	1634	5759	674	1345	95	1856	163	1678	428	2272	84	3905	274
Cyclops biscupidatus thomasi	20	493	206	267	123	613	53		**	969	273	685	132	770	315	1754	181	1241	167	778	45	492	9	423	17	327	44	3789	27
Epischura nevadensis	20	-	-	435	90	8.	53	${ }^{327}$	$\stackrel{7}{7}$	-	-	171	47	171	126	471	35	43	18	27	14	-	-	-	-	-	-		
Other	10 20 10	*	*	-	$=$	-	:	$\stackrel{23}{*}$	$\stackrel{13}{*}$	-	-	-	-	-	.	-	-	-	-	-	-	-	.	.	-	-			
Cladocera																													
Dephnie longispina	20	5	4	7	12	125	43	*	,	676	101	671	107	1102	222	2802	823	321	87	67	27	16	6	3	6	8	10	22	25
Bossuina longirostris	20	99	66	50	${ }_{3}^{6}$	188	65	1127	${ }^{312}$	288	19	217	48	107	43	161	73	246	108	302	83	107	23	145	53	145	37	337	140
Leptodora kindtif	10			64	24	150	43	510	130																				
	10	-	*	-	-	-	-		14	13	7	-	-	-	-	43	60	-	-	-	-	-	-	-	-				
Holopedium gibberum	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	-	*	7 5	6	$\begin{aligned} & 11 \\ & 29 \end{aligned}$	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	151	$\stackrel{*}{8}$	16	14	719	65	546	327	97	88	52	51	-	-	-	-	-	-	-	-	-	-
ROTIFERA																													
Kellicottia longispina	20	-		7	12	18	${ }^{6}$	*	*	165	81	11	22	118	73	193	128	727	120	399	47	329	124	252	9	172	45	1583	605
kerstelli sp.	20	7	33	18	22	14	16	${ }_{6}$	162	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
Nothoica sp.	10 20	*	-	157	146	;	6	-	-	-	-	-	-	-	-	-	.	481	197	345	55	3	6	-	-	11	22	209	87
Asplancima sp.	10	*	*	12	17	-	-	*	:																				
	10	:	*	:	-	-	-	1825	442	8	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Other	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	${ }^{16}$	*	18	-	:	-	*	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
muplius	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	2610	232	$\begin{array}{r} 2656 \\ 430 \end{array}$	$\begin{gathered} 690 \\ 70 \end{gathered}$	$\begin{gathered} 2061 \\ 293 \end{gathered}$	$\begin{aligned} & 598 \\ & 169 \end{aligned}$	326	20	2654	865	1168	521	4481	965	5786	2695	8241	1266	7519	462	7968	346	6664	800	5338	644	17263	1351
OTMER CLASSES	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	*	*	4	-	$\begin{gathered} 262 \\ 78 \end{gathered}$	-	7	*	17	-	17	-	11	-	-	-	-	-			6	-	3	-	3	-	-	-

[^1]STATION C_{2}

	Mesh Size	13/3/74		24/4/74		28/5/74		26/6/74		24/7/74		21/8/74		25/9/74		23/10/74		20/11/74		18/12/74		22/1/75		25/2/75		19/3/75		23/4/75	
		$\overline{\mathrm{x}}$	sd	$\overline{\bar{x}}$	sd	$\overline{\mathrm{x}}$	sd	$\overline{\mathrm{x}}$	sd	$\overline{\mathrm{x}}$	sd	*	sd	$\overline{\mathrm{x}}$	sd	$\overline{\mathrm{x}}$	sd	$\overline{\mathrm{x}}$	sd										
COPEPOOA																													
Diaptomus ashlandi	20	1537	987	3194	362	1871	102	2909	482	1324	191	6102	1144	11926	1680	5685	495	6503	968	845	105	2115	157	1774	148	2034	59	3404	479
Cyclops biscupidatus thomasi	20	275	220	2373 599	231	${ }_{9} 989$	498	${ }_{4200}^{289}$	420	845	324	776	145	578	281	727	190	1374	140	343	40	602	32	441	24	787	51	4843	1117
Epischura nevadensis	10 20	393	111	362	81	1041	303	3701 21	413 22	11	5	391	111	171	35	75	41	86	25	8	16	-	-	-	-	-	-	-	-
Other	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	-	:	-	-	$:$	$:$	$\stackrel{68}{\square}$	49	-	.	-	-	-	-	-	-	.	-	.	-	-	-	-	-	-	-	-	-
Clnaocera																													
Daphnia longispina	20	8	6	7	12	121	6	1155	128	599	131	829	147	1402	361	738	199	385	91	32	15	-	-	-	-	11	15	54	37
Bosemina longirostris	20	130	102	36	13	97	18	${ }_{863}$	${ }^{285}$	195	60	294	140	43	35	128	30	481	123	113	52	58	24	107	68	161	29	498	264
Leptodora kindtii	10	165	26	59	14	104	16	${ }_{22}^{716}$	225	3	3			-	-	-			-	-	-	-	-	-	-		-	-	-
	10	-	-	-		-	-	18	12																				
Holopedium qibberve	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	-	:	-	-	$\begin{aligned} & 28 \\ & 18 \end{aligned}$	13 6	$\begin{aligned} & 193 \\ & 129 \end{aligned}$	$\begin{aligned} & 22 \\ & 49 \end{aligned}$	28	18	1059	254	1401	383	80	48	75	28	-	-	-	-	-	-	-	-	-	-
ROTIFEM																													
Kellicottia longispina	20	27	18	42	18	624	171	870	139	472	510	37	21	54	22	129	60	824	157	260	49	519	56	246	29	725	64	2151	497
koratella sp.	20	96	39	200	154	250	184			16	13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	6	5	11
Mottolca sp.	10 20	50°	34	310°	19	235	57	-	-	-	-	-	-	-	-	-	-	1219	646	241	111	94	38	-	-	110	46	246	168
Asplanctios 39.	10	-	$=$	2	3	43	22					-																	
Asplanime 3 .	10	-	-	-	-	-	-	1472	279			-	-	-	-	-	-				-			-	-	-	-	-	
Other	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	8	-	$\stackrel{18}{-}$	-	-	:			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
muplius	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{aligned} & 3230 \\ & 100 \end{aligned}$	$\begin{array}{r} 2150 \\ 47 \end{array}$	$\begin{gathered} 4585 \\ 909 \end{gathered}$	$\begin{aligned} & 841 \\ & 263 \end{aligned}$	$\begin{array}{r} 4310 \\ 403 \end{array}$	$\begin{gathered} 279 \\ 54 \end{gathered}$	$\underset{178}{9576}$	$\begin{aligned} & 712 \\ & 106 \end{aligned}$	1921	186	1824	392	8460	1669	5048	213	7150	990	7491	706	8567	898	5568	328	9975		17701	1986
OTHER CLASSES	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	2	3	7	${ }^{12}$	76 68	:	$:$:	7	-	-	-	-	-	-	-	-	-	-	-	-	-	3	6	-	-	11	12

Station G_{2}

STATION X_{2}

	$\begin{aligned} & \text { Mesh } \\ & \text { Size } \end{aligned}$	13/3/74		24/4/74		28/5/74		26/6/74		24/7/74		21/8/74		25/9/74		23/10/74		20/11/74		18/12/74		22/1/75		25/2/75		19/3/75		23/4/75	
		$\overline{\mathrm{x}}$	sd	$\overline{\mathbf{x}}$	sd	$\overline{\mathrm{x}}$	sd	$\overline{\mathrm{x}}$	sd	-	sc	$\overline{\text { x }}$	sd																
COPEPODA																													
Diaptomus dshlandi	20 10	${ }_{2978}^{2798}$	1124	3446 2875	673 188	2186 2581	271 166	1383 1515	592 220	486	66	875	53	1528	620	821	32	3257	415	2113	259	2973	227	1753	276	2403	502	277	267
Cyclops biscupidatus thomasi	20	${ }_{594}^{404}$	207	1031	${ }^{331}$	1476	75	${ }^{2361}$	159	768	83	443	66	530	136	402	109	610	211	682	147	952	201	936	160	967	212	1199	230
Epischura nevadensis	20	584	103	418	213	1644	281	2474 28	142 13	3	3	39	12	17	19	8	7	-	-	3									
	10	-	-		-	-	-	${ }_{28}^{28}$	13 6	3	3	39	12	17	19	8	7	-	-	3	6	-	-	-	-			-	
Other	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	-	-	-	-	-	:	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cladocera																													
Daphnia lompispina	20	36	35	73	12	160	29	298	43	190	11	384	81	673	194	259	29	59	32	26	6	21	18	5	11	5	11	-	-
Bosmina longirostris	10 20	$\begin{array}{r}18 \\ 242 \\ \hline\end{array}$	12 75	146	19 63	107	11	467	${ }^{65}$	143	30	257																	
	10	220	171	82	24		89	542	135	143	30	257	47	92	40	86	25	80	81	206	$3)$	257	$9)$	335	181	326	93	118	57
Leptodora kindtii	20	-	1	8	-	4	6	S2	-	5	11	-	-	3	6	-	-	-	-	-	-	-	-	-	-			-	-
Holopedium gibberum	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	-	:	-	:	$\begin{array}{r} 7 \\ 75 \\ \hline 25 \end{array}$	$\begin{array}{r} 62 \\ { }_{28}^{28} \end{array}$	$\begin{array}{r} 8 \\ 43 \\ 42 \\ \hline 3 \end{array}$	$\begin{array}{r} 58 \\ 38 \\ 0 \end{array}$	48	14	352	66	860	70	497	46	64	63	-	-	-	-	-	-	-	-	-	-
ROTIFERA																													
Kellicottia longispine	20	103	45	136	41	1091	368	5358	219	9	45	23	13	16	32	91	49	257	109	286	107	1150	342	1100	129	1033	231	1156	252
Kerstella sp.	20	1159	252	642	93		284	2030	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5	11	5	11	5	11
Notholca sp.	20			228	35	371	112	-	-	-	-	-	-	-	-	-	-	893	155	214	174	193	52	147	28	102	20	134	54
Asplanchna sp.	10 20			7	6	68	33																						
	10			-	-	-	-	1929	146	4	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-
Other	20 10	$\begin{gathered} 190 \\ \hline \end{gathered}$	-	${ }^{25}$	-	$:$			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Muplius	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{array}{r} 6506 \\ 180 \end{array}$	$\begin{array}{r} 5185 \\ 182 \end{array}$	$\begin{aligned} & 6157 \\ & 1940 \end{aligned}$	$\begin{aligned} & 352 \\ & 258 \end{aligned}$	$\begin{aligned} & 214 \\ & 228 \end{aligned}$	$\begin{aligned} & 57 \\ & 59 \end{aligned}$	$\begin{gathered} 4971 \\ 107 \end{gathered}$	$\begin{array}{r} 815 \\ 47 \end{array}$	1585	286	1296	93	4325	2605	2651	207	7085	2435	7960	548	11968	243	9833	422	14304	461	814	805
OTHER CLASSES	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$:$	-	11	-	$\begin{aligned} & 221 \\ & 268 \end{aligned}$	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	5	11	-	-	-	-	-	-

Station D_{2}

		13/3/		24/4		28/5		26/6		24/7		21/8		25/9/		23/10		20/11		18/1		22/1		25/2		19/3		23/4	
	Size	$\overline{\mathrm{x}}$	sd	$\overline{\mathbf{x}}$	sd	$\bar{\square}$	sd																						
COPEPOOA																													
Oidaptomus ashlandi	20	$\underset{210}{2893}$	831	$\underset{\substack{2018 \\ 1661}}{ }$	215	1968	363	${ }_{148}^{980}$	${ }_{29}^{96}$	703	97	1392	125	2078	173	1244	161	4150	720	1859	305	1586	245	1456	257	2488	290	3564	356
Cycleps biscupidatus thomasi	20	2426 3271	63	2945	506	${ }_{952}$	167	1390	177	834	177	734	92	711	45	665	215	1364	196	490	135	436	142	918	167	1124	81	132	207
Epischura mevadensis	20	27.	43.	${ }^{3030}$	${ }^{499}$	920	21.	${ }^{1758}$	43	3	3	60	25	8	10	4	6	-	-	-	-	-	-	-	-	-	-	-	-
Other	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	-	-	$:$	-	-	-	5	$\underline{6}$	-	-	-	-	-	-	-	.	-	-	-	-	-	-	-	-	-	-	-	
CaADOCERA																													
Dophnia lonatspina	20	16		46	27	32	45	458	122	281	61	352	85	1428	307	542	165	129	63	24	6	8	10	5	11	8	10	43	33
Bosmina longirostris	20	1180	38	25 246	${ }_{91}^{27}$	268	${ }_{1}^{22}$	354	76 32	222	77	308	69	78	20	80	14	123	11	150	38	390	62	265	143	287	167	43	46
Leptotora kindtii	10 20	103	28	303	127	114	12	421	75	5	8	1	3	3	6														
Leptodre kimeril	10	-	-	-	-	:	-	:	-			1	3	3	6	-	-	-	-	-	-			-					
Heolopedive glbberum	$\begin{aligned} & 20 \\ & 10 \end{aligned}$:	-	:	-	54	15	7 36	$\begin{array}{r} 6 \\ 13 \end{array}$	11	12	177	18	71	80	290	115	187	36	-	-	-	-	-	-	-	-	-	
rotifera																													
Kellicottia longispina	20	37	6	14	25	203		4020	1089	150	121	30	39	38	28	25	8	177	21	123	26	361	84	1672	418	1480	359	14	158
keratelle sp.	10 20	19	${ }_{69}$	-	,	396	\%	${ }_{15}^{1104}$	263 74	-	-	-	-	-	-	-	.	-	-	-	-	-	-	-	-	5	11	43	35
Notholca sp.	10 20	48	28	278	482	834	242	:	-	-	-	-	-	-	-	-	-	460	245	61	40	69	63	145	11	166	192	139	45
Asplanchna sp.	20	:	-	-	-	168	91	1561	289	7	7	-	-	-	-	-	-	-	-	-	-	3	6	-	-	-	.	-	
Other	$\begin{aligned} & 10 \\ & 20 \\ & 10 \end{aligned}$	32	-	-	-	-	-	${ }^{1656}$	${ }^{81}$	-	.	.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
muplius	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	$\begin{array}{r} 7550 \\ 442 \end{array}$	$\begin{array}{r} 2150 \\ 30 \end{array}$	$\begin{array}{r} 3533 \\ 207 \end{array}$	$\begin{array}{r} 2207 \\ 103 \end{array}$	$\begin{array}{r} 5200 \\ 738 \end{array}$	$\begin{array}{r} 59 \\ 436 \end{array}$	$\begin{array}{r} 498 \\ 160 \end{array}$	$\begin{gathered} 543 \\ 141 \end{gathered}$	2101	637	1615	310	3326	962	2356	565	83\%	1730	6637	611	7889		15227	1127	13581	2258	7504	1028
OTHER CLASSES	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	5	$:$	-	-	$\begin{array}{r} 75 \\ 107 \end{array}$	-	:	$:$	1	-	-	-	-	-	-	-	-	-	-	-	5	11	-	-	-	-	1	

- = sample lost

5n -
station E_{2}

	Mesh	13/3		24/4		28/5/4		26/6		24/7/1		21/8		25/9		23/1		2011		18/1		22/1		25/2		19/3		23/4	
	Size	$\overline{\mathrm{x}}$	sd	\bar{x}	sd	$\overline{\mathrm{x}}$	sd	$\overline{\mathrm{x}}$	sd	\bar{x}	sd	$\overline{\mathrm{x}}$	sd	$\overline{\mathrm{x}}$	sd	$\overline{\mathrm{x}}$													
COPEPODA																													
Diaptomus ashiandi	20	2722	255	1904	656	1512	532	1811	348	523	86	689	124	4530	218	587	52	4187	765	2000	265	1305	179	1124	101	1857	70	3393	
Cyclops biscupidatus thomsi	20	560	145	748	130	685	154	1918	157	811	63	630	46	599	255	405	69	1278	169	558	102	348	135	1070	25	712	27	1429	
Episccura nevadensis	20	6	\%		-	854	${ }^{422}$	14	12	-	-	29	10	59	64	9	5	-	-	-	-	-	-	-	-	-	-		
Other	20 10	:	=	*	-	:	:		$\stackrel{-}{-}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Candecta																													
Oaphnio lonalspine	${ }^{20}$	18	16	7	6	-	-	335	119	211	18	122	32	1401	460	187	23	102	56	40	10	5	11	16	21	4	7	27	11
Bosaine longrostris	20	1488	112	${ }^{50}$	25	114	89	${ }_{4}^{485}$	108	202	39	302	72	75	28	46	14	396	65	238	67	153	53	835	246	337	197	86	
Leptodora kindtii	20	-	-	-	-	-	-	7	12	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-		
Holopedive gibberum	20 10	:	三	4	$\stackrel{8}{6}$	-	\vdots	7		1	3	21	14	663	74	142	23	113	59	-	-	-	-	-	-	-	-	-	
Rotifem																													
Kellicottie lomsispine		46	3					6039		49	29	19	13	64	18	72	31	551	37	83	51	278	57	2365	537	963	120	487	
keratella sp.	${ }_{20}$	444	$36{ }^{-}$	4	${ }_{6}$				3	-	-	-	-	-	-	-	-	-	-		-	-	-						
Hotrolca sp.	20	$4{ }^{\circ}$	12	46	80	214	196		!	-	-	-	-	-	-	-	-	551	37	54	20	5	11	101	1	-	-	11	
Asplanctres sp.	20	-	-	-	-	,	-	1276	381	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	145	83	118	
Other	$\begin{aligned} & 10 \\ & 20 \\ & 10 \end{aligned}$	20	:			:		149	97	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		
muplius	${ }_{10}^{20}$	${ }_{968}^{8952}$	$\begin{gathered} 2248 \\ 312 \end{gathered}$	4592.	1412	17051	${ }_{358}^{5096}$	${ }_{5012}^{5012}$	${ }_{31} 7$	1577	305	1358	336	4993	119	2573	161	7669	1523	6952	564	1327				11799	46	8530	
OTHER CLISSES	${ }_{10}^{20}$	41	${ }^{25}$:	:	1	:	:	:	-	-	-	-	-	-	-	-	-	-	-	-	5	11	5	11	-	-	-	

[^0]: FIGURE I 2 THE MONTHLY RELATIONSHIP BETWEEN NUMBER OF ZOOPLANKTON AND NUMBER OF PHYTOPLANKTON IN KAMLOOPS LAKE

[^1]: * - sample lost

