SHELLFISH GROWING WATER SANITARY SURVEY PENDER HARBOUR AND OUTLYING AREAS
EPS 5-PR-74-11
by D.B. Arney and T.J. Tevendale

SHELLFISH GROWING WATER SANITARY SURVEY
 OF

fENDER HARBOUR AND OUTLYING AREAS
by
D.B. Arney, B. Sc.
and
T.J. Tevendale, P. Eng.

Pollution Abatement Branch
Environmental Protection Service
Pacific' Region
Vancouver, B.C.

Report EPS 5-PR-74-11
December 1974

LIBRARY
ENVIRONMENT CANADA

ENVIRONMENTAL PROTECTION SERVICE REPORT SERIES
Surveillance reports present the results of monitoring programs carried out by the Environmental Protection Service. These reports will usually be published on a regular basis.

Other categories in the E.P.S. series include such groups as Regulations, Codes and Protocols, Policy and Planning, Technical Appraisal, Technology Developments Surveillance and Reprints of Published Papers.

Inquiries pertaining to Environmental Protection Service Reports should be directed to the Environmental Protection Service, Department of the Environment, Kapilano 100, Park Royal, West Vancouver, B.C. V7T lA2

ABSTRACT

A sanitary survey of the waters of Pender Harbour and outlying areas was conducted during July 1974 by personnel of the Environmental Protection Service, Pacific Region.

The purpose of the survey was to reassess the existing Schedule J closure of Gunboat Bay, and to determine the effect of the increase in the residential and boating populations on the water quality in the remainder of Pender Harbour and outlying areas.

The existing closure proved to be justified. In addition, the remaining waters of Pender Harbour did not meet the minimum water quality standards. All of the outlying areas proved acceptable.

A recommendation is made to extend the Gunboat Bay closure to include all the waters of Pender Harbour and to rectify the contaminating input at East Pender Bay.

résumé

Le personnel du Service de protection de l'environnement de la région du Pacifique a effectué en juillet 1974 une étude sanitaire des eaux 1e long du littoral et au large de Pender Harbour.

Cette étude avait pour but de réexaminer l'efficacité de la barriẹre de Gunboat Bay, installée en vertu du programme J, et de déterminer quels effets le nombre croissant de riverains et de bateaux pourrait avoir sur la qualité des eaux de Pender Harbour (en dehors de Gunboat Bay) et du large.

L'utilité de la barrière existante a été démontrée. En outre, en dehors de Gunboat Bay, la qualité des eaux de Pender Harbour est inférieure aux normes minimales. Au large, toutes les zones se sont révélées acceptables. On a formulé les recommandations suivantes: allongement de la barrière de Gunboat Bay de façon à englober toutes les eaux de Pender Harbour, et détournement du courant de contamination de East Pender Bay.

TABLE OF CONTENTS

PAGE

ABSTRACT i
TABLE OF CONTENTS iii
LIST OF FIGURES iv
LIST OF TABLES iv
1 INTRODUCTION 1
2 SAMPLE STATION LOCATIONS 2
3 FIELD PROCEDURES AND METHODS 2
3.1 Bacteriological Sampling and Analysis 5
3.2 Chemical and Physical Sampling and Analysis 5
4 DISCUSSION OF RESULTS 6
5 SOURCES OF POLLUTION 10
5.1 Oyster Bay, Gunboat Bay, East Pender Bay 10
5.2 Garden Bay 11
5.3 Hospital Bay 12
5.4 Gerran's Bay Area 14
5.5 Other Stations in Pender Harbour 14
5.6 Other Points 15
6 CONCLUSIONS 15
7 RECOMMENDATIONS 16
8 REFERENCES 16
ACKNOWLEDGEMENTS 17

LIST OF FIGURES

FIGURE PAGE
1 PENDER HARBOUR OUTLYING AREA SAMPLE STATIONS 3
2 PENDER HARBOUR SAMPLE STATION LOCATIONS 4
3
CORRELATION BETWEEN RAINFALL AND TOTAL 13CONFIRMED COLIFORM MPN AT GARDEN BAY
LIST OF TABLES
TABLE1SUMMARY OF STANDARD TOTAL COLIFORM MPN DATAFOR SHELLFISH GROWING WATER SAMPLES7
2

SUMMARY OF FECAL COLIFORM MPN DATA FOR,SUMMARY OF FECAL COLIFORM MPN DATA FOR PROPOSEDSHELLFISH GROWING WATER STANDARDS23 SHELLFISH GROWING WATER SAMPLES8
SUMMARY OF STANDARD TOTAL COLIFORM MPN DATA FOR ERESHWATER SAMPLES 9
SUMMARY OF FECAL COLIFORM MPN DATA FOR FRESHWATER SAMPLES 9
DESCRIPTION OF MARINE SAMPLE STATIONS 19DESCRIPTION OF FRESHWATER SAMPLE STATIONS21
BACTERIOLOGICAL ANALYSES RESULTS AND SAMPLING CONDITIONS FOR MARINE SAMPLES 24
BACTERIOLOGICAL ANALYSES RESULTS FOR FRESHWATER SAMPLES 59
1.

INTRODUCTION

Pender Harbour is located on the mainland coast of B.C. about 50 miles northwest of Vancouver. It is a convenient port of call for summer boaters, many being U.S. tourists proceeding to Alaska and other points north. The area is a relatively shallow and protected waterway (particularly at the northeastern end), a situation which is not conducive to adequate tidal flushing. Oyster beds are prevalent in Oyster Bay and small beds are also found around the remainder of the harbour.

Pender Harbour was surveyed in 1964 by personnel of the federal Department of Fisheries and National Health and Welfare and of the provincial Department of Health and Hospital Insurance. As a result of that survey, the commercial oyster leases in Oyster Bay were closed to shellfish harvesting. A further survey in 1967 carried out by the Department of Health and Hospital Insurance confirmed the 1964 closure. The closure area is defined as "that area of Pender Harbour, Area 16, lying east of the overhead power lines crossing the narrow entrance to Gunboat Bay". ${ }^{1}$

During July 1974, a comprehensive sanitary and bacteriological survey of Pender Harbour and outlying waters was carried out to reassess the quality of the growing waters. This reassessment was necessary for several reasons: (1) Considerable development had taken place since the 1967 survey and the presence or absence of pollution from these sources had to be ascertained; (2) Because of the increase in recreational boating in the area, the impact of direct discharges from these sources on the receiving waters quality needed
${ }^{1}$ British Columbia Fisheries Regulations, Schedule J, Area 16-1.

$$
\begin{aligned}
& \text { LIRRARY }
\end{aligned}
$$

ENVIRONME:
SERVICE
to be assessed; and (3) Reappraisal of Area 16-1, Schedule J, was required.

Personnel of the Shellfish Water Quality Program (E.P.S., Pacific Region) carried out a sanitary and bacteriological survey of the shellfish growing waters in Pender Harbour during the period July $2-22,1974$. Growing waters of outlying areas were also surveyed, including: a) Bargain Bay and the southern waters of Beaver Island, b) a commerical oyster lease on the mainland opposite Harness Island, c) a proposed and an operating oyster lease in Hotham Sound, and d) three moorage areas in Agamemnon Channel.
2. SAMPLE STATION LOCATIONS

Pender Harbour sample station locations are shown in Figure 2. Sample station locations in outlying areas are shown in Figure 1.

The waters from two streams were tested. The stream at $S 1$ in East Pender Bay was sampled, since it passes through grazing land, thus posing an obvious health hazard from manure deposits. The stream at $S 2$ was tested, since its waters pass over oysters relayed from Oyster Bay.

Recreational harvesting locations in the outlying areas were identified by the local fisheries officer. Only those locations known to be popular moorages were chosen for sampling.

A complete description of sample station locations is presented in Tables 5 and 6 of Appendix I.
3. FIELD PROCEDURES AND METHODS

Sampling stations were selected and a bacteriological and physical water testing program developed to assess the shellfish growing water quality and the sources of pollutants.

"ur,
,..."

FIGURE 1 PENDER HARBOUR OUTLYING AREA SAMPLE STATIONS

FIGURE 2 PENDER HARBOUR SAMPLE STATION LOCATIONS
3.1 Bacteriological Sampling and Analysis

All samples for bacteriological analysis were collected in sterile 6-ounce wide-mouth jars approximately six inches to one foot below the water surface. The water depth at collection points over oyster beds did not exceed four feet. Samples were collected by boat or by wading and stored in coolers at temperatures not exceeding $10^{\circ} \mathrm{C}$ until processed. Analyses were carried out in the Environmental Protection Service Field Laboratory located at Duncan Cove, and were performed within $2 \frac{1}{2}$ hours of collection.

The total confirmed coliform MPN per 100 ml was determined using the multiple tube fermentation technique (at least 3 decimal dilutions of 5 tubes each) as described in Part 407A of the l3th edition of Standard Methods for the Examination of Water and Wastewater.

The fecal coliform MPN per 100 ml was determined as described in Part 407C of Standard Methods. Incubation was for 24 ± 2 hours in a circulating water bath maintained at $44.5 \pm 0.2^{\circ} \mathrm{C}$.

Media used for the coliform MPN determinations was Lauryl Tryptose Broth and Brilliant Green Bile (2\%) Broth for the confirmed test, and EC medium for the fecal coliform test. 2 The MPN/ 100 ml of each sample was calculated from Table II, Recommended Procedures for the Examination of Sea Water and Shellfish, Fourth edition (1970).
3.2 Chemical and Physical Sampling and Analysis

Temperature and salinity measurements were made at a depth of $6^{\prime \prime}$ to one foot below the water surface using

2 All test media was Bacto brand, obtained from Difco Laboratories, Detroit, Michigan.
test equipment carried in the boat. The temperature and salinity were determined with a Yellow Springs Instrument Co. Model 33 Salinity, Conductance and Temperature Meter. Results are presented in Appendix II. Tides were calculated from the Canadian Hydrographic Service Tide and Current Tables using Point Atkinson as the reference port. Rainfall data was provided by the Madeira Park Forestry Station at Madeira Park.
4.

DISCUSSION OF RESULTS
Sample station locations are shown in Figures 1 and 2. Descriptions of marine and fresh water sample stations are found in Tables 5 and 6 respectively in Appendix I. Daily bacteriological and elemental data for each sample station is presented in Appendix II. Total and fecal coliform MPN results for marine samples are summarized in Tables 1 and 2 respectively. Bacteriological results for fresh water samples are summarized in Tables 3 and 4.

As a point of interest and future reference, fecal coliform data is summarized (Table 6, Appendix II) in terms of the two most recently proposed fecal coliform growing water standards presently under consideration by the National Shellfish Sanitation Program (U.S. Food and Drug Administration).

The present National Shellfish Sanitation Program growing water bacteriological standard is defined as follows: "In order that an area can be considered bacteriologically safe for the harvesting of shellfish, the total confirmed coliform median MPN of the water must not exceed 70 per 100 ml , and not more than 10 percent of the samples ordinarily exceed an MPN of 230 per 100 ml for a 5-tube decimal test in those portions of the area most probably exposed to fecal contamination during the most unfavourable hydrographic and pollution conditions. The foregoing limits need not be applied if it can be shown by

TABLE 1: SUMMARY OF STANDARD TOTAL COLIFORM MPN DATA FOR SHELLFISH GROWING WATER SAMPLES

| | | | |
| :--- | :---: | :---: | :---: | :---: |
| Sample | Number of | | |
| Station | MPN Range | Median MPN
 Samples | 90th Percentile |

TABLE 2: SUMMARY OF FECAL COLIFORM MPN DATA FOR SHELLFISH GROWING WATER SAMPLES

| Sample
 Station | Number of
 Samples | MPN Range |
| :---: | :---: | :---: | | Median MPN |
| :---: |
| per 100 ml |\quad| 90 th Percentile |
| :---: |
| MPN per 100 ml |

1	7	13-240	49	106.3
2	7	6.8-140	46	76.3
3	6	22-540	150	426
4	6	1.8-49	13.2	39.4
5	11	<1.8-27	4.5	7.7
6	15	<1.8-280	11	64
7	15	2-350	6.8	71.5
8	11	< 1.8-46	4.5	12.8
9	6	2-130	56	99.4
10	12	<1.8-920	14	206
11	14	1.8-31	4.5	23
12	10	<1.8-17	2	17
13	14	<1.8-1600	15	67
14	14	< 1.8-33	7.8	33
15	10	< 1.8-17	2	2
16	11	$<1.8-130$	2	17.9
17	11	<1.8-130	4.5	31
18	11	1.8-49	4.5	13
19	10	<1.8-49	3.3	22
20	10	<1.8-4.5	1.9	2
21	10	<1.8-11	2	7.8
22	10	<1.8-23	3.3	17
23	10	<1.8-4.5	<1.8	2
24	6	$<1.8-79$	5.9	38.2
25	6	<1.8-4	<1.8	2.7
26	6	< 1.8-7.8	1.9	5.8
27	6	< 1.8-2	<1.8	2
28	6	- 1.8-240	25.5	16.2
29	6	<1.8<1.8	1.8	1.8
30	6	- 1.8-79	1.9	36.3

TABLE 3: SUMMARY OF STANDARD TOTAL COLIFORM MPN DATA FOR FRESHWATER SAMPLES

Sample Station	Number of Samples	MPN Range	Median MPN per 100 ml
S_{1}	5	$13-79$	33
$\mathrm{~S}_{2}$	4	$700-1300$	1,200

TABLE 4: SUMMARY OF FECAL COLIFORM MPN DATA FOR FRESHWATER SAMPLES

Sample Station	Number of Samples	MPN Range	Median MP per 100
S_{1}	5	$7.8-49$	7.8
S_{2}	4	$230-790$	595

detailed study that the coliforms are not of direct fecal origin and do not indicate a public health hazard." ${ }^{3}$ In addition, a comprehensive sanitary survey of the area is required to identify and evaluate all sources of pollution.

A total of 283 marine and 9 freshwater samples were collected for bacteriological analysis during the survey period. A minimum of six samples were collected from each marine station.

On the basis of bacteriological standards, sample stations $1,2,3,6,7,9,10,11,13,14$ and 28 do not fall within the acceptable water quality limits (Table 1). All of these stations except one were situated in Pender Harbour. The one exception was station 28 in Agamemnon Bay.

All of the remaining stations surveyed came well within the acceptable water quality limits. Surprisingly, these included station 24 , which had boat counts of up to 18. This can be attributed to the good tidal flushing in this area. It may be noted by referring to Appendix II that a direct daily relationship existed between the number of boats present and the water quality at this location.
5. SOURCES OF POLLUTION
5.1 Oyster Bay, Gunboat Bay, East Pender Bay

Sample stations 1, 2, 3, 4, and Sl were located here. There are a number of permanent and part-time residences in this area. However, no obvious direct discharges were found and most of the dwellings had septic tanks and tile fields.

3 National Shellfish Sanitation Program Manual of Operations. Part l. Sanitation of Shellfish Growing Areas. 1965 Revision. U.S. Department of Health, Education and Welfare.

Both Oyster Bay and East Pender Bay have freshwater inputs, which pass through grazing land, and are therefore susceptible to animal fecal contamination. The stream into Oyster Bay was not sampled since the tides inundated the mouth of the stream, making it difficult to obtain a sample representative of the pollution input from the grazed area. However, in East Pender Bay, the situation was more obvious. The stream passes through property belonging to the Malaspina Ranch, which maintains horses for hire. Horse manure was in evidence near the stream and water samples taken at the mouth had a total confirmed median MPN of $1,200 / 100 \mathrm{ml}$ (4 samples), which was the highest recorded anywhere during the survey. The bacterial contribution of this stream to the receiving waters was observed at station 3, where the confirmed coliform median MPN was $295 / 100 \mathrm{ml}$, which was double that recorded at the head of Oyster Bay. Pigs and chickens also have access to the tidal flats from a barn located near the foreshore.

One may observe by again referring to Appendix II, Station 4, that the MPN counts were always the highest on the ebb tide and the lowest on the flood, thus indicating that there is a net outflow of polluted water to the outer harbour.

5.2 Garden Bay

The main onshore establishments at Garden Bay are the Home Oil Co. Marina and the Garden Bay Hotel. The laundromat at the former has a septic tank and tile field. The hotel has a septic tank and outfall pipe to the bay carrying the effluent of up to 100 persons. The cottages adjacent to the hotel are serviced by three tile fields which have been recently installed.

There is a good relationship between precipitation and the bacterial counts obtained at sample station 6 (figure 3), indicating the influence of landwash on the water quality of the bay. It is probable that sewage discharges from boats moored at the Home Oil Co. Marina about 200 feet from or anchored in the vicinity of sample station 6 had as much if not more influence on the bacteriological levels obtained during the survey period. The number of boats equipped with toilets varied between 23 and 60 (Sample Station 6, Table 8, Appendix II), and averaged 4 occupants per boat.

Station 7 at the entrance to Garden Bay exhibited the highest bacterial levels on the ebb tide. Boats with toilets moored at Clayton's Marina in the north-east part of the bay undoubtedly contributed to the intermittent unacceptably high coliform counts recorded for Station 7 .

5.3 Hospital Bay

Water samples from Stations 13 and 14 exceeded the bacteriological standard with total confirmed median MPN's of $104.5 / 100 \mathrm{ml}$ and $135 / 100 \mathrm{ml}$ respectively.

One direct sewage discharge pipe into the bay from a house onshore from Station 13 was identified and three other piped discharges entering the foreshore waters were found just east of station 13.

In the N.E. Corner of the bay there is a government dock and two marinas. The number of boats equipped with toilets varied between 16 and 26 (Sample Station 13, Table 8, Appendix II) at these three facilities and were undoubtedly contributors to the high coliform counts recorded for Station 13. The store at Lloyd's Store and Marina has an outfall to the bay from a septic tank. All the other onshore facilities in this area are serviced by septic tanks and tile fields.

Several private docks are situated in the N.W. corner of the bay. The highest boat count recorded in this area was 5. It is unlikely that these boats contributed substantially to the coliform counts recorded for station 14.

FIGURE 3 CORRELATION BETWEEN RAINFALL AND TOTAL CONFIRMED COLIFORM MPN AT GARDEN BAY

5.4 Gerrans Bay Area

The water quality was unacceptable at Stations 9, 10 and ll. At Station 10 high bacterial densities occurred coincident with heavy precipitation and/or ebbing tides. Ebb tides consistently carried away more contaminants that the flood tide returned, thus indicating the source of pollution to be onshore and most probably the result of septic tank seepage. Some horse manure was found on the land adjacent to the station. Apparently horses are grazed there periodically.

Local residents reported that all the houses in the area (approximately 15 residences) have septic tanks with tile fields. However, this area has a high angle of repose, which could be a contributing factor to the problem.

The contamination observed at Station 9 appeared to be localized as Station 19, located on the southern side of Bargain Narrows, had acceptable water quality. There is little evidence to attribute the bacterial counts to landwash, i.e. no correlation with precipitation. The most probable source of contaminants reaching this station would be from boats moored at the marina to the north. There is some tidal flushing from this area into Gerrans Bay and the main channel of Pender Harbour.

The unacceptably high counts recorded at Station 11 can be attributed to septic tank tile field seepage from the houses located on the steep banks overlooking this station.

5.5 Other Stations in Pender Harbour

Station 8, located at mid-channel near the southern tip of Garden Peninsula, minimally meets acceptable water quality standards. Generally, the poorest water quality was observed at the end of the ebb tide, but in some instances high counts were recorded on the incoming tide, thus suggesting little flushing action on these occasions. The water tested at Station 15 at the mouth of the harbour was acceptable.

A few unacceptable counts were recored in Agamemnon Bay. Since dwellings in the area are serviced by septic tanks and tile fields, and since the boat counts were low, the problem can be justifiably attributed to seepage. The British Columbia Fishery Regulation Schedule J 400 foot foot wharf closure will apply to the marina in Agamemnon Bay and this closure embraces most of the shellfish resource observed in the area.

At Earl's Cove, the B.C. Ferry Terminal washroom facilities are sewered by septic tank with an outfall to the cove. Sewage from the ferries is discharged directly to the sea. The shellfish resource is minimal and the main health hazard is contained by the 400 foot Schedule J closure applied to the Ferry dock.

Bacteriological results from the other sampling stations were acceptable and there was no pollution sources of significance that might pose a health hazard. Specific attention was given to the commercial oyster relay area on the mainland foreshore opposite Harness Island which is influenced by freshwater stream S_{2}. The bacteriological results for Stations 22 and 23 in the oyster relay area were acceptable.

6.
 CONCLUSIONS

a) The present area $16-1$ in Schedule J is supported by bacteriological data taken during the month of July. The main source of contamination in East Pender Bay emanates from Malaspina Ranch.
b) Most of the remaining waters of Pender Harbour outside the present Schedule J closure are of unacceptable quality for the direct consumption of shellfish. Much of this may be attributed to raw sewage discharges from moored boats. This
factor would be lessened during the winter when there are fewer boats present. However, sewage discharges from land to the harbour continue to pose a threat, and landwash contamination will be greater in winter due to higher rainfall.
c) With the exception of the waters at Station 28 in Agamemnon Bay, all the waters sampled in the outlying areas were of an acceptable quality for the direct consumption of shellfish.

RECOMMENDATIONS
a) Contaminated area $16-1$ should be extended to read: "that portion of Pender Harbour contained by a line drawn from the southermost tip of the point between Farrington Cove and Duncan Cove to the government floats at Donnelly Landing on the northern tip of Beaver Island and by the bridge at Bargain Narrows".
b) The pollution sources from the Malaspina Ranch should be rectified. Following rectification a further survey should be conducted to determine if the present Schedule J closure respecting Oyster Bay and East Pender Bay shoula be rescinded.
8.

REFERENCES

1. Recommended Procedures for the Examination of Sea Water and Shellfish, 1970, 4th ed. Amer. Public Health Assoc., New York.
2. Standard Methods for the Examination of Water and Wastewater, 1971, 13th ed. Amer. Public Health Assoc., New York.
3. National Shellfish Sanitation Program Manual of Operations, Part I, Sanitation of Shellfish Growing Areas, 1965. Revision, U.S. Department of Health, Education and Welfare.

ACKNOWLEDGEMENTS
B. Kay, Bacteriologist, and M. Gaertner, Bacteriological Technician, conducted the bacteriological analyses in the Environmental Protection Service mobile laboratory located at Duncan Cove. Mr. Kay compiled the bacteriological data.
D. Arney, Biological Technician, and K. Cooper, Engineering Technician conducted the sanitary survey and carried out the sampling program.

APPENDIX I

 SAMPLE STATION LOCATIONS DESCRIPTIONTable 5 Description of Marine Sample Stations

Table 6 Description of Freshwater Sample Stations

TABLE 5: DESCRIPTION OF MARINE SAMPLE STATIONS

Sample Station Latitude

Longitude
Location

1	$49^{\circ} 38^{\prime} 04^{\prime \prime}$	$123^{\circ} 59^{\prime} 40^{\prime \prime}$	Middle of the channel off the Oyster Bay Oyster Co.
2	$49^{\circ} 37^{\prime} 43.5^{\prime \prime}$	$123^{\circ} 59^{\prime} 55.5^{\prime \prime}$	Middle of the channel at the entrance to Oyster Bay
3	$49^{\circ} 37 \prime 35.5 \prime$	$123^{\circ} 59^{\prime \prime} 31.5^{\prime \prime}$	In the neck of East Pender Bay
4	$49^{\circ} 37$ '37.5"	124*00'52"	Middle of the channel under the power lines at the entrance to Gunboat Bay
5	$49^{\circ} 37 \cdot 29.5 \prime$	$124^{\circ} 00^{\prime} 58^{\prime \prime}$	In the small cove $S E$ of the entrance channel to Gunboat Bay
6	$49^{\circ} 37 \cdot 51.5^{\prime \prime}$	$124^{\circ} 01^{\prime} 27^{\prime \prime}$	Middle of Garden Bay opposite the gothic arch house on the north shore
. 7	$49^{\circ} 37^{\prime} 43^{\prime \prime}$	$124^{\circ} 01^{\prime} 15.5^{\prime \prime}$	Middle of the channel at the entrance to Garden Bay
8	$49^{\circ} 37^{\prime} 34^{\prime \prime}$	$124^{\circ} 01^{\prime} 39 \prime$	Middle of the channel in line with the two B.C. Tel underwater cable markers off the southern tip of Garden Peninsula
9	$49^{\circ} 37^{\prime} 03^{\prime \prime}$	$124^{\circ} 01^{\prime \prime} 52^{\prime \prime}$	Off the northern entrance to Bargain Narrows
10	$49^{\circ} 36^{\prime} 58^{\prime \prime}$	$124^{\circ} 02^{\prime \prime} 7^{\prime \prime}$	Middle of the channel about 100^{\prime} off the floats at the head of Gerran's Bay
11	$49^{\circ} 37 \cdot 16.5^{\prime \prime}$	$124^{\circ} 02{ }^{\prime \prime} 8^{\prime \prime}$	Off the green house on pilings on Beaver Island just opposite the southern tip of Calder Island
12	$49^{\circ} 37 \cdot 22.5 \prime$	$124^{\circ} 02 \cdot 25^{\prime \prime}$	Halfway between Beaver Island and the northern tip of the small island between Beaver Island and Calder Island

TABLE 5: DESCRIPTION OF MARINE SAMPLE STATIONS (CONT'D)

Sample

Station Latitude Longitude

Location

13	$49^{\circ} 38100.5^{\prime \prime}$	$124^{\circ} 01^{\prime} 54 "$	Off pink house on north shore of Hospital Bay
14	$49^{\circ} 38^{\prime} 03^{\prime \prime}$	$124^{\circ} 01^{\prime} 58{ }^{\prime \prime}$	Off the dilapidated wharf on the north shore of Hospital Bay
15	$49^{\circ} 37 \cdot 47.5^{\prime \prime}$	$124^{\circ} 03^{\prime} 25^{\prime \prime}$	In the channel between William's Island and Henry Point
16	$49^{\circ} 36 \cdot 20.5 \prime$	$124^{\circ} 02 \cdot 56.5^{\prime \prime}$	Head of tidal bay at south end of Beaver Island
17	$49^{\circ} 36^{\prime} 20^{\prime \prime}$	$124^{\circ} 02{ }^{\prime \prime} 17^{\prime \prime}$	Small cove at $S E$ tip of Beaver Island
18	$49^{\circ} 36 \cdot 39.5 \prime$	$124^{\circ} 02^{\prime} 26^{\prime \prime}$	The larger unnamed cove in Bargain Bay next to Beaver Island
19	$49^{\circ} 37^{\prime} 00^{\prime \prime}$	$124^{\circ} 01^{\prime} 57.5^{\prime \prime}$	Just off Canoe Pass at the head of Bargain Bay
20	$49^{\circ} 36^{\prime} 34^{\prime \prime}$	$124^{\circ} 01.39^{\prime \prime}$	Opposite the grey house in the unnamed bay pointed to by the northern tip of Edgecombe Island
21	$49^{\circ} 36^{\prime} 31 \prime$	$124^{\circ} 01$ '34.5"	Opposite yellow house in the same bay as station \#20
22	$49^{\circ} 35^{\prime} 41^{\prime \prime}$	124*00'53.5"	Off stream at Bremer's lease
23	$49^{\circ} 35^{\prime} 38^{\prime \prime}$	$124^{\circ} 00^{\prime \prime} 51^{\prime \prime}$	Off the southern end of Bremer's lease
24	$49^{\circ} 43^{\prime} 50 \prime$	$124^{\circ} 12^{\prime} 43^{\prime \prime}$	Head of unnamed anvil-shaped cove opposite Fox Island on Hardy Island
25	$49^{\circ} 43^{\prime} 48^{\prime \prime}$	$124^{\circ} 12 \cdot 35^{\prime \prime}$	At the mouth of the above named cove
26	$49^{\circ} 49^{\prime} 54^{\prime \prime}$	$124^{\circ} 03^{\prime \prime} 05^{\prime \prime}$	Cove on NW tip of Junction Island
27	$49^{\circ} 52^{\prime} 08^{\prime \prime}$	$124^{\circ} 00^{\prime} 54^{\prime \prime}$	Off the proposed Harris lease on mainland north of the northern tip of the Harmony Islands

TABLE 5: DESCRIPTION OF MARINE SAMPLE STATIONS (CONT'D)

Sample Station	Latitude	Longitude		
28	$49^{\circ} 45^{\prime} 11^{\prime \prime}$	$123^{\circ} 59^{\prime} 36^{\prime \prime}$	\quad	Off yellow house in Agamemnon Bay
:---				
29	${49^{\circ} 44^{\prime} 33^{\prime \prime}}^{124^{\circ} 03^{\prime} 22^{\prime \prime}}$	Off the brown house on Nelson		
:---				
Island just in from Caldwell				
Island				

TABLE 6: DESCRIPTION OF FRESHWATER SAMPLE STATIONS

Sample Station Location
s_{1}
Stream into East Pender Bay
S_{2}
Stream into the oyster relay area opposite Harness Island.

APPENDIX II

BACTERIOLOGICAL RESULTS AND SAMPLING CONDITIONS

Table 7 Summary of Fecal Coliform MPN Data for proposed Shellfish growing water standards

Table 8 Bacteriological Analyses Results and Sampling Conditions for Marine Samples

TABLE 7: SUMMARY OF FECAL COLIFORM MPN DATA FOR PROPOSED SHELLFISH GROWING WATER STANDARDS *

Sample Station	Number of Samples	MPN Range	Median MPN per 100 ml	$\begin{array}{r} \% \\ 43 \\ \hline \end{array}$	Exceeding MPN/ 100 ml	\%Exceeding 76 MPN/100 ml
1	7	13-240	44		57.1	14.3
2	7	6.8-140	46		57.1	14.3
3	6	22-540	150		66.6	66.6
4	6	1.8-49	13.2		14.3	0.0
5	11	$<1.8-27$	9.3		0.0	0.0
6	15	<1.8-280	11		40.0	0.0
7	15	2-350	6.8		20.0	9.9
8	11	<1.8-46	4.5		9.1	0.0
9	6	2-130	23		50.0	5.0
10	12	$<1.8-920$	14		25.0	16.6
11	14	1.8-31	4.5		0.0	0.0
12	10	<1.8-17	2		0.0	0.0
13	14	<1.8-1600	7.5		21.3	14.3
14	14	1.8-33	7.8		0.0	0.0
15	10	<1.8-17	2		0.0	0.0
16	11	<1.8-130	2		9.1	9.1
17	11	<1.8-130	4.5		9.1	9.1
18	11	1.8-13	4.5		0.0	0.0
19	10	<1.8-49	3.3		10.0	0.0
20	10	<1.8-4.5	1.9		C. 0	0.0
21	10	<1.8-11	2		0.0	0.0
22	10	<1.8-23	3.3		0.0	0.0
23	10	<1.8-4.5	<1.8		0.0	0.0
24	6	$<1.8-79$	6.9		16.6	16.6
25	6	<1.8-4	<1.8		0.0	0.0
26	6	<1.8-7.8	1.9		0.0	0.0
27	6	<1.8-2	<1.8		0.0	0.0
28	6	<1.8-240	25.5		50.0	33.3
29	6	$<1.8<1.8$	<1.8		0.0	0.0
30	6	< 1.8-79	1.9		16.6	16.6
S_{1}	5	7.8-49	7.8		40.0	0.0
S_{2}^{1}	4	230-790	595		100.0	100.0

* U.S. Food and Drug Administration proposed standards per 100 ml
(1) Proposed at Microbiology Task Force Meeting, June, 1973, median MPN of 23,90 percentile of 76 .
(2) Proposed at 8th National Shellfish Sanitation Workshop median MPN of 14,90 percentile of 43 .

(
TABLE 8: BACTERIOLOGICAL ANALYSES RESULTS AND SAMPLING CONDITIONS FOR MARINE SAMPLES													
Sample Station: 2 Location: Entrance to Oyster Bay													
$\begin{aligned} & \text { Date } \\ & (1974) \\ & \hline \end{aligned}$	Sample Time	Tide Conditions\qquad		Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	```Total Precip. (in.)```	Wind (mph)		$\begin{gathered} \text { Sky } \\ \text { Cond. } \end{gathered}$	Local Sea Cond.	$\begin{gathered} \text { Salinity } \\ \text { (ppt) } \end{gathered}$	Coliform$\frac{\text { MPN } / 100 \mathrm{ml}}{\text { Total Fecal }}$		Boat Count
July 3	1640	$\begin{aligned} & 1149 \\ & 1937 \end{aligned}$	$\begin{array}{r} 1.0 \\ 13.3 \end{array}$	16	0.66	E	A 2	10/10	Calm	24.3	350	46	--
July 4	0950	$\begin{aligned} & 0452 \\ & 1224 \end{aligned}$	$\begin{array}{r} 11.8 \\ 1.1 \end{array}$	15	0.02	S	@ 2	9/10	Calm	15.9	920	140	--
July 4	1420	$\begin{aligned} & 1224 \\ & 2012 \end{aligned}$	$\begin{array}{r} 1.1 \\ 13.3 \end{array}$	16.5	0.02	W	@ 7	8/10	Ripple	15.9	49	49	-
July 5	1430	$\begin{aligned} & 1304 \\ & 2037 \end{aligned}$	$\begin{array}{r} 1.3 \\ 13.4 \end{array}$	18	Nil	W	@ 10	2/10	Light Wave	18.0	49	6.8	--
July 8	1335	$\begin{aligned} & 0752 \\ & 1439 \end{aligned}$	$\begin{array}{r} 10.7 \\ 3.1 \end{array}$	18	Nil	W	@ 7	10/10	Ripple	15.9	130	6.8	--
July 9	0905	$\begin{aligned} & 0852 \\ & 1509 \end{aligned}$	$\begin{array}{r} 10.2 \\ 4.0 \end{array}$	19.5	0.42		$i l$	10/10	Calm	15.9	31	6.8	-
July 9	1615	$\begin{aligned} & 1509 \\ & 2107 \end{aligned}$	$\begin{array}{r} 4.0 \\ 13.7 \end{array}$	17	0.42		il	9/10	Calm	14.2	79	49	-

1

TABLE 8:
BACTERIOLOGICAL ANALYSES RESULTS AND SAMPLING CONDITIONS FOR MARINE SAMPLES
Sample Station: 5
Sample stations

$\begin{gathered} \text { Date } \\ (1974) \\ \hline \end{gathered}$	$\begin{gathered} \text { Sample } \\ \text { Time } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Tide } \\ & \text { Conditions } \end{aligned}$		Water Temp. (${ }^{\circ} \mathrm{C}$)	Total Precip. (in.)	Wind (mph)	Sky Cond.	Local Sea Cond.	$\begin{gathered} \text { Salinity } \\ \text { (ppt) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Coliform } \\ & \text { MPN/100 } \mathrm{ml} \\ & \hline \end{aligned}$		Boat Count
		Time	Ht. (Ft.)							$\frac{\text { MPN/l }}{\text { Total }}$	$\frac{10 \mathrm{ml}}{\text { Fecal }}$	
July 11	1005	$\begin{aligned} & 0534 \\ & 1102 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 9.5 \end{aligned}$	17	0.20	Nil	6/10	Calm	15.3	46	<1.8	3
July 11	1550	$\begin{aligned} & 1102 \\ & 1624 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.4 \end{aligned}$	18	0.20	Nil	10/10	Calm	15.3	350	6.8	--
July 12	0955	$\begin{aligned} & 0624 \\ & 1137 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 9.6 \end{aligned}$	17	0.77	Nil	10/10	Calm	15.3	32	4	--
July 15	1420	$\begin{aligned} & 0859 \\ & 1647 \end{aligned}$	$\begin{array}{r} 0.9 \\ 11.8 \end{array}$	17.5	Nil	Nil	10/10	Calm	16.5	23	2	--
July 16	0900	$\begin{aligned} & 0147 \\ & 0949 \end{aligned}$	$\begin{array}{r} 12.8 \\ 0.9 \end{array}$	17	0.25	SW @ 1	10/10	Calm	24.3	13	<1.8	--
July 16	1430	$\begin{aligned} & 0949 \\ & 1737 \end{aligned}$	$\begin{array}{r} 0.9 \\ 12.5 \end{array}$	17	0.25	SE @ 7	10/10	Calm	15.9	110	4.5	--
July 17	1050	$\begin{aligned} & 1039 \\ & 1817 \end{aligned}$	$\begin{array}{r} 1.1 \\ 13.1 \end{array}$	17	0.53	Nil	10/10	Calm	15.9	79	27	--
July 17	1545	$\begin{aligned} & 1039 \\ & 1817 \end{aligned}$	$\begin{array}{r} 1.1 \\ 13.1 \end{array}$	17	0.53	SE @ 5	1/10	Ripple	14.7	17	4.5	--
July 18	0910	$\begin{aligned} & 0352 \\ & 1129 \end{aligned}$	$\begin{aligned} & 13.3 \\ & -0.7 \end{aligned}$	16.5	Nil	Nil	10/10	Calm	14.2	46	7.8	--
July 18	1500	$\begin{aligned} & 1129 \\ & 1857 \end{aligned}$	$\begin{aligned} & -0.7 \\ & 13.5 \end{aligned}$	17.5	Nil	W @ 2	5/10	Ripple	14.2	49	2	--
July 19	1420	$\begin{aligned} & 1259 \\ & 1932 \end{aligned}$	$\begin{array}{r} -0.7 \\ 13.9 \end{array}$	17.5	Nil	NW @ 4	0/10	Ripple	14.2	17	6.8	--

TABLE 8: BACTERIOLOGICAL ANALYSES RESULTS AND SAMPLING CONDITIONS FOR MARINE SAMPLES

TABLE 8: BACTERIOLOGICAL ANALYSES RESULTS AND SAMPLING CONDITIONS FOR MARINE SAMPLES

1
TABLE 8: BACTERIOLOGICAL ANALYSES RESULTS AND SAMPLING CONDITIONS FOR MARINE SAMPLES

1
TABLE 8: BACTERIOLOGICAL ANALYSES RESULTS AND SAMPLING CONDITIONS FOR MARINE SAMPLES
Sample Station: 11

$\begin{gathered} \text { Date } \\ (1974) \\ \hline \end{gathered}$	$\begin{gathered} \text { Sample } \\ \text { Time } \\ \hline \end{gathered}$	Tide Conditions		Water Temp. (${ }^{\circ} \mathrm{C}$)	Total Precip. (in.)	Wind (mph)	Sky Cond.	Local Sea Cond.	$\begin{gathered} \text { Salinity } \\ \text { (ppt) } \\ \hline \end{gathered}$	Coliform MPN/ 100 ml		Boat Count
		Time	Ht. (Ft.)							$\frac{\text { MPN / } 10}{\text { Total }}$	$\frac{30 \mathrm{ml}}{\text { Fecal }}$	
July 4	1445	$\begin{aligned} & 1224 \\ & 2012 \end{aligned}$	$\begin{array}{r} 1.1 \\ 13.3 \end{array}$	17	0.02	S @ 2	7/10	Calm	20.8	170	2	--
July 9	0925	$\begin{aligned} & 0852 \\ & 1509 \end{aligned}$	$\begin{array}{r} 10.2 \\ 4.0 \end{array}$	18	Nil	Nil	10/10	Calm	15.3	12	2	--
July 9	1445	$\begin{aligned} & 0852 \\ & 1509 \end{aligned}$	$\begin{array}{r} 10.2 \\ 4.0 \end{array}$	18	0.42	NE @ 3	10/10	Ripple	15.9	540	1.8	--
July 10.	1435	$\begin{aligned} & 0947 \\ & 1444 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 5.2 \end{aligned}$	18	0.27	SW @ 6	10/10	Ripple	13.5	920	4.5	--
July 11	0945	$\begin{aligned} & 0534 \\ & 1102 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 9.5 \end{aligned}$	17.5	0.20	N@ 2	5/10	Calm	15.3	79	6.8	--
July 11	1420	$\begin{aligned} & 1102 \\ & 1624 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.4 \end{aligned}$	18	0.20	SW @ 4	9/10	Ripple	14.7	540	2	--
July 12	0945	$\begin{aligned} & 0624 \\ & 1137 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 9.6 \end{aligned}$	17.5	0.77	Nil	10/10	Calm	14.7	240	23	--
July 15	1405	$\begin{aligned} & 0859 \\ & 1647 \end{aligned}$	$\begin{array}{r} 0.9 \\ 11.8 \end{array}$	18	Nil	Nil	10/10	Calm	18.0	170	6.8	--
July 16	1330	$\begin{aligned} & 0949 \\ & 1737 \end{aligned}$	$\begin{array}{r} 0.9 \\ 12.5 \end{array}$	17	0.25	Nil	10/10	Calm	15.3	540	<1.8	--
July 17	1010	$\begin{aligned} & 0247 \\ & 1039 \end{aligned}$	$\begin{array}{r} 13.1 \\ 1.1 \end{array}$	16	0.53	Nil	10/10	Calm	14.7	540	23	--
July 17	1345	$\begin{aligned} & 1039 \\ & 1817 \end{aligned}$	$\begin{array}{r} 1.1 \\ 13.1 \end{array}$	17.5	0.53	S @ 3	5/10	Calm	14.7	110	31	--

TABLE 8 Sample	Station:	RIOLO 12	GICAL ANA	YSES	SULTS AN	SAMPLI cation:	NG COND Betwe islan	ITIONS FOR en Beaver d between	OR MARINE Island a	MPLES the N nd and	tip of Cald	small Island
$\begin{aligned} & \text { Date } \\ & (1974) \\ & \hline \end{aligned}$	Sample Time	$\begin{array}{r} \text { Tj } \\ \text { Cond } \\ \hline \text { Time } \end{array}$	$\begin{aligned} & \text { ide } \\ & \text { itions } \\ & \text { Ht. (Ft.) } \end{aligned}$	Water Temp. (${ }^{\circ} \mathrm{C}$)	```Total Precip. (in.)```	Wind (mph)	Sky Cond.	$\begin{gathered} \text { Local } \\ \text { Sea } \\ \text { Cond. } \end{gathered}$	Salinity (ppt)	$\begin{array}{r} \text { Coli } \\ \text { MPN/I } \\ \hline \text { Total } \end{array}$	$\begin{aligned} & \text { Eorm } \\ & 00 \mathrm{ml} \\ & \hline \text { Fecal } \end{aligned}$	Boat Count
July 4	1445	$\begin{aligned} & 1224 \\ & 2012 \end{aligned}$	$\begin{array}{r} 1.1 \\ 13.3 \end{array}$	16.5	0.02	SW @ 6	6/10	Calm	21.9	4.5	<1.8	--
July 9	0925	$\begin{aligned} & 0852 \\ & 1509 \end{aligned}$	$\begin{array}{r} 10.2 \\ 4.0 \end{array}$	20 .	0.42	Nil	10/10	Calm	14.7	23	2	--
July 9	1445	$\begin{aligned} & 0852 \\ & 1509 \end{aligned}$	$\begin{array}{r} 10.2 \\ 4.0 \end{array}$	18	0.42	N @ 2	10/10.	Ripple	15.3	130	17	--
July 11	0955	$\begin{aligned} & 0534 \\ & 1102 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 9.5 \end{aligned}$	17	0.20	Nil	$6 / 10$	Calm	15.3	23	2	--
July 11	1420	$\begin{aligned} & 1102 \\ & 1624 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.4 \end{aligned}$	18	0.20	SW@ 15	9/10	Ripple	14.7	49	4.5	-
July 12	0945	$\begin{aligned} & 0624 \\ & 1137 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 9.6 \end{aligned}$	17	0.77	Nil	10/10	Calm	14.7	33	4.5	--
July 15	1410	$\begin{aligned} & 0859 \\ & 1647 \end{aligned}$	$\begin{array}{r} 0.9 \\ 11.8 \end{array}$	18	Nil	Nil	10/10	Calm	16.5	70	2	--
July 17	1005	$\begin{aligned} & 0247 \\ & 1039 \end{aligned}$	$\begin{array}{r} 13.1 \\ 1.1 \end{array}$	16	0.53	Nil	10/10	Calm	14.7	49	17	--
July 17	1340	$\begin{aligned} & 1039 \\ & 1817 \end{aligned}$	$\begin{array}{r} 1.1 \\ 13.1 \end{array}$	17	0.53	SE @ 10	$6 / 10$	Ripple	14.2	49	2	--
July 18	1430	$\begin{aligned} & 1129 \\ & 1857 \end{aligned}$	$\begin{aligned} & -0.7 \\ & 13.5 \end{aligned}$	18	Nil	S @ 10	$6 / 10$	Calm	14.2	49	<1.8	--

TABLE 8: BACTERIOLOGICAL ANALYSES RESULTS AND SAMPLING CONDITIONS FOR MARINE SAMPL Sample Station: 13 (Cont'd) Location: Off pink house on N shore Hos														
$\begin{gathered} \text { Date } \\ (1974) \\ \hline \end{gathered}$	$\begin{gathered} \text { Sample } \\ \text { Time } \\ \hline \end{gathered}$	$\frac{\text { T }}{\text { T }}$	de tions Ht. (Ft.)	Water Temp. (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \text { Total } \\ \text { Precip. } \\ \text { (in.) } \\ \hline \end{gathered}$		in		Sky cond.		$\begin{gathered} \text { Salinity } \\ \text { (ppt) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Col } \\ & \text { MPN/ } \\ & \text { Tota } \end{aligned}$	form 00 ml Fecal	Boat Count
July 17	1330	$\begin{aligned} & 1039 \\ & 1817 \end{aligned}$	$\begin{array}{r} 1.1 \\ 13.1 \end{array}$	16.5	0.53	W	@	4	6/10	Calm	13.5	350	49	26
July 18	1000	$\begin{aligned} & 0352 \\ & 1129 \end{aligned}$	$\begin{aligned} & 13.3 \\ & -0.7 \end{aligned}$	16.5	Nil		@	3	9/10	Ripple	13.5	>1600	1600	24
July 19	1015	$\begin{aligned} & 0452 \\ & 1259 \end{aligned}$	$\begin{aligned} & 13.4 \\ & -0.7 \end{aligned}$	17	Nil	W	@ 5		1/10	Ripple	14.2	240	17	18

,
TABLE 8: BACTERIOLOGICAL ANALYSES RESULTS AND SAMPLING CONDITIONS FOR MARINE SAMPLES

$8:$
BACTERIOLOGICAL ANALYSES RESUITS AND SAMPLING CONDITIONS FOR MARINE SAMPLES
Location: Small cove at SE tip of Beaver Island

$\begin{gathered} \text { Date } \\ (1974) \\ \hline \end{gathered}$	$\begin{gathered} \text { Sample } \\ \text { Time } \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{Tj} \\ \text { Cond } \\ \text { Time } \\ \hline \end{array}$	$\begin{aligned} & \text { ide } \\ & \text { itions } \\ & \text { Ht. }\left(\mathrm{F} \mathrm{t}_{0}\right) \end{aligned}$	Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Total } \\ \text { Precip. } \\ \text { (in.) } \end{gathered}$	$\begin{aligned} & \text { Wind } \\ & \text { (mph) } \end{aligned}$	$\begin{gathered} \text { Sky } \\ \text { cond. } \\ \hline \end{gathered}$	Local Sea Cond.	$\begin{gathered} \text { Salinity } \\ \text { (ppt) } \end{gathered}$	$\begin{array}{r} \text { Colif } \\ \text { MPN/lo } \\ \hline \text { Total } \end{array}$	$\begin{aligned} & \text { Orm } \\ & 00 \mathrm{ml} \\ & \hline \text { Fecal } \end{aligned}$	Boat Count
July 3	1510	$\begin{aligned} & 1149 \\ & 1937 \end{aligned}$	$\begin{array}{r} 1.0 \\ 13.3 \end{array}$	15	0.66	SE @ 10	8/10	Light Wave	21.9	49	11	--
July 4	1115	$\begin{aligned} & 0452 \\ & 1224 \end{aligned}$	$\begin{array}{r} 11.8 \\ 1.1 \end{array}$	15	0.02	$S E$ @ 2	10/10	Small Wave	21.9	23	2	--
July 4	1540	$\begin{aligned} & 1224 \\ & 2012 \end{aligned}$	$\begin{array}{r} 1.1 \\ 13.3 \end{array}$	19.5	0.02	S @ 6	4/10	Light Chop	21.9	27	4.5	-
July 9	0955	$\begin{aligned} & 0852 \\ & 1509 \end{aligned}$	$\begin{array}{r} 10.2 \\ 4.0 \end{array}$	19.5	0.42	E @ 8	10/10	Light Swell	13.5	11	<1.8	--
July 9	1345	$\begin{aligned} & 0852 \\ & 1509 \end{aligned}$	$\begin{array}{r} 10.2 \\ 4.0 \end{array}$	17.5	0.42	SE @ 2	10/10	Light Chop	14.2	130	130	--
July 11	0930	$\begin{aligned} & 0534 \\ & 1102 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 9.5 \end{aligned}$	16.5	0.20	Nil	9/10	Calm	14.7	6.8	1.8	--
July 11	1520	$\begin{aligned} & 1102 \\ & 1624 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.4 \end{aligned}$	17	0.20	SE @ 10	9/10	Light Swell	15.3	33	13	--
July 12	0915	$\begin{aligned} & 0624 \\ & 1137 \end{aligned}$	$\begin{array}{r} 4.9 \\ 9.6 \end{array}$	16.5	0.77	Nil	10/10	Calm	14.7	23	7.8	--
July 15	1345	$\begin{aligned} & 0859 \\ & 1647 \end{aligned}$	$\begin{array}{r} 0.9 \\ 11.8 \end{array}$	17	Nil	SE @ 5	10/10	Ripple	15.3	<1.8	<1.8	-
July 16	1355	$\begin{aligned} & 0949 \\ & 1737 \end{aligned}$	$\begin{array}{r} 0.9 \\ 12.5 \end{array}$	17	0.25	W@1	10/10	Light Swell	15.3	49	33	--
July 18	1415	$\begin{aligned} & 1129 \\ & 1857 \end{aligned}$	$\begin{aligned} & -0.7 \\ & 13.5 \end{aligned}$	19	Nil	SE @ 7	$6 / 10$	Light Wave	13.0	23	4.5	--

TABLE 8: BACTERIOLOGICAL ANALYSES RESULTS AND SAMPLING CONDITIONS FOR MARINE SAMPLES

$\begin{aligned} & \text { Date } \\ & (1974) \end{aligned}$	Sample Time	$\begin{array}{r} \mathrm{T} j \\ \text { Cond } \\ \text { Time } \end{array}$	$\begin{aligned} & \text { ide } \\ & \text { itions } \\ & \mathrm{Ht} \cdot\left(\mathrm{~F} \mathrm{t}_{.}\right) \end{aligned}$	Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Total } \\ \text { Precip. } \\ \text { (in.) } \end{gathered}$	Wind (mph)	$\begin{gathered} \text { Sky } \\ \text { cond. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Local } \\ \text { Sea } \\ \text { Cond. } \end{gathered}$	Salinity (ppt)	$\begin{array}{r} \text { Colif0 } \\ \text { MPN/100 } \\ \hline \text { Total } \end{array}$	$\begin{aligned} & \text { orm } \\ & 0 \mathrm{ml} \\ & \hline \text { Fecal } \end{aligned}$	Boat Count
July 3	1435	$\begin{aligned} & 1149 \\ & 1937 \end{aligned}$	$\begin{array}{r} 1.0 \\ 13.3 \end{array}$	15	0.66	E@1	10/10	Calm	20.8	4	<1.8	--
July 4	1040	$\begin{aligned} & 0452 \\ & 1224 \end{aligned}$	$\begin{array}{r} 11.8 \\ 1.1 \end{array}$	15	0.02	S @ 3	9/10	Calm	20.8	17	2	-
July 4	1505	$\begin{aligned} & 1224 \\ & 2012 \end{aligned}$	$\begin{array}{r} 1.1 \\ 13.3 \end{array}$	17	0.02	SE @ 6	6/10	Ripple	21.9	7.8	2	-
July 9	1000	$\begin{aligned} & 0852 \\ & 1509 \end{aligned}$	$\begin{array}{r} 10.2 \\ 4.0 \end{array}$	18	0.42	S@3	10/10	Calm	14.7	6.8	<1.8	--
July 9	1350	$\begin{aligned} & 0852 \\ & 1509 \end{aligned}$	$\begin{array}{r} 10.2 \\ 4.0 \end{array}$	18	0.42	E@ 2	10/10	Calm	13.5	79	22	-
July 11	0845	$\begin{aligned} & 0534 \\ & 1102 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 9.5 \end{aligned}$	17	0.20	Nil	9/10	Calm	13.5	49	7.8	-
July 11	1445	$\begin{aligned} & 1102 \\ & 1624 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.4 \end{aligned}$	18	0.20	SE @ 17	10/10	Calm	14.7	33	11	--
July 12	0925	$\begin{aligned} & 0624 \\ & 1137 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 9.6 \end{aligned}$	17	0.77	Nil	10/10	Calm	14.7	14	2	-
July 15	1355	$\begin{aligned} & 0859 \\ & 1647 \end{aligned}$	$\begin{array}{r} 0.9 \\ 11.8 \end{array}$	18	Nil	Nil	10/10	Calm	17.3	49	49	-
July 16	1345	$\begin{aligned} & 0949 \\ & 1737 \end{aligned}$	$\begin{array}{r} 0.9 \\ 12.5 \end{array}$	17	0.25	NE @ 2	10/10	Ripple	15.3	7.8	4.5	--

TABLE 8:
Sample Station: 21

TABLE 8: BACTERIOLOGICAL ANALYSES RESULTS AND SAMPLING CONDITIONS FOR MARINE SAMPLES

$\begin{gathered} \text { Date } \\ (1974) \\ \hline \end{gathered}$	$\begin{gathered} \text { Sample } \\ \text { Time } \\ \hline \end{gathered}$	$\begin{array}{r} \text { Cond } \\ \text { Time } \\ \hline \end{array}$	$\begin{aligned} & \text { ide } \\ & \text { itions } \\ & \text { Ht. (Ft.) } \end{aligned}$	Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	```Total Precip. (in.)```	Wind (mph)	$\begin{gathered} \text { sky } \\ \text { Cond. } \\ \hline \end{gathered}$	Local Sea Cond.	$\begin{gathered} \text { Salinity } \\ \text { (ppt) } \\ \hline \end{gathered}$	$\begin{array}{r} \text { Colif } \\ \text { MPN/lo } \\ \hline \text { Total } \end{array}$	$\begin{aligned} & \text { Eorm } \\ & \frac{0 \mathrm{ml}}{\text { Fecal }} \end{aligned}$	Boat Count
July 3	1500	$\begin{aligned} & 1149 \\ & 1937 \end{aligned}$	$\begin{array}{r} 1.0 \\ 13.3 \end{array}$	15	0.66	SE 15	9/10	Calm	20.8	17	4.5	--
July 4	1105	$\begin{aligned} & 0452 \\ & 1224 \end{aligned}$	$\begin{array}{r} 11.8 \\ 1.1 \end{array}$	15	0.02	S A 3	10/10	Ripple	20.8	17	17	--
July 4	1530	$\begin{aligned} & 1224 \\ & 2012 \end{aligned}$	$\begin{array}{r} 1.1 \\ 13.3 \end{array}$	16.5	0.02	SSE @ 4	4/10	Ripple	19.9.	23	<1.8	--
July 5	1345	$\begin{aligned} & 1304 \\ & 2037 \end{aligned}$	$\begin{array}{r} 1.3 \\ 13.4 \end{array}$	17.5	Nil	SW @ 7	2/10	Ripple	18.0	<1.8	<1.8	--
July 8	1415	$\begin{aligned} & 0752 \\ & 1439 \end{aligned}$	$\begin{array}{r} 10.7 \\ 3.1 \end{array}$	18	Nil	SW@1	9/10	Calm	13.5	7.8	2	--
July 9	1020	$\begin{aligned} & 0852 \\ & 1509 \end{aligned}$	$\begin{array}{r} 10.2 \\ 4.0 \end{array}$	19.5	0.42	Nil	10/10	Light Swell	13.5	11	6.8	--
July 9	1405	$\begin{aligned} & 0852 \\ & 1509 \end{aligned}$	$\begin{array}{r} 10.2 \\ 4.0 \end{array}$	17.5	0.42	SE @ 1	10/10	Ripple	14.2	4.5	<1.8	--
July 10	1410	$\begin{aligned} & 0947 \\ & 1444 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 5.2 \end{aligned}$	17	0.27	S @ 1	10/10	Ripple	13.5	11	1.8	--
July 11	0905	$\begin{aligned} & 0534 \\ & 1102 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 9.5 \end{aligned}$	16.5	0.20	Nil	8/10	Calm	14.7	23	23	--
July 11	1500	$\begin{aligned} & 1102 \\ & 1624 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.4 \end{aligned}$	17	0.20	Nil	10/10	Calm	15.3	23	4.5	--

TABLE 8: BACTERIOLOGICAL ANALYSES RESULTS AND SAMPLING CONDITIONS FOR MARINE SAMPLES

Sampl	e s	Station: 23			Location:			Southern end of Bremer's Lease					
$\begin{gathered} \text { Date } \\ (1974) \\ \hline \end{gathered}$		Sample Time	$\begin{gathered} \text { Ti } \\ \text { Condi } \\ \hline \text { Time } \end{gathered}$	$\begin{aligned} & \text { ide } \\ & \text { itions } \\ & \text { Ht. (Ft.) } \end{aligned}$	Water Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Total } \\ \text { Precip. } \\ \text { (in.) } \end{gathered}$	Wind (mph)	$\begin{gathered} \text { Sky } \\ \text { Cond. } \end{gathered}$	$\begin{gathered} \text { Local } \\ \text { Sea } \\ \text { Cond. } \end{gathered}$	$\begin{gathered} \text { Salinity } \\ \text { (ppt) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Colifo } \\ & \text { MPN/100 } \\ & \hline \text { Total } \end{aligned}$	$\begin{aligned} & \text { Orm } \\ & 0 \mathrm{ml} \\ & \hline \text { Fecal } \end{aligned}$	Boat Count
July	3	1500	$\begin{aligned} & 1149 \\ & 1937 \end{aligned}$	$\begin{array}{r} 1.0 \\ 13.3 \end{array}$	15	0.66	SE @ 15	9/10	Calm	20.8	4	2	--
July	4	1110	$\begin{aligned} & 0452 \\ & 1224 \end{aligned}$	$\begin{array}{r} 11.8 \\ 1.1 \end{array}$	15	0.02	S @ 6	10/10	Ripple	20.8	17	2	--
July	4	1530	$\begin{aligned} & 1224 \\ & 2012 \end{aligned}$	$\begin{array}{r} 1.1 \\ 13.3 \end{array}$	15.5	0.02	S @ 10	4/10	Ripple	19.0	11	<1.8	--
July	5	1350	$\begin{aligned} & 1304 \\ & 2037 \end{aligned}$	$\begin{array}{r} 1.3 \\ 13.4 \end{array}$	17.5	Nil	SW @ 7	1/10	Ripple	17.3	4.5	2	--
July	8	1415	$\begin{aligned} & 0752 \\ & 1439 \end{aligned}$	$\begin{array}{r} 10.7 \\ 3.1 \end{array}$	18	Nil	Nil	9/10	Calm	13.0	7.8	<1.8	--
July	9	1025	$\begin{aligned} & 0852 \\ & 1509 \end{aligned}$	$\begin{array}{r} 10.2 \\ 4.0 \end{array}$	18	0.42	Nil	10/10	Light Swell	14.2	2	<1.8	--
July	9	1410	$\begin{aligned} & 0852 \\ & 1509 \end{aligned}$	$\begin{array}{r} 10.2 \\ 4.0 \end{array}$	17.5	0.42	SE @ 2	10/10	Light Swell	14.2	13	4.5	--
July	10	1410	$\begin{aligned} & 0947 \\ & 1444 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 5.2 \end{aligned}$	17	0.27	SE @ 3	10/10	Ripple	14.2	4.5	<1.8	-
July	11	0910	$\begin{aligned} & 0534 \\ & 1102 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 9.5 \end{aligned}$	16,5	0.20	Nil	8/10	Light Swell	14.7	2	<1.8	--
July	11	1505	$\begin{aligned} & 1102 \\ & 1624 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 6.4 \end{aligned}$	17	0.20	Nil	10/10	- Calm	15.3	79	<1.8	--

1
TABLE 8: BACTERIOLOGICAL ANALYSES RESULTS AND SAMPLING CONDITIONS FOR MARINE SAMPLES

Sample	Station	24		Location:			Cove opposite Fox Island on Hardy Island					
$\begin{gathered} \text { Date } \\ (1974) \\ \hline \end{gathered}$	$\begin{gathered} \text { Sample } \\ \text { Time } \\ \hline \end{gathered}$		$\begin{aligned} & \text { ide } \\ & \frac{\text { itions }}{\text { Ht. (Ft.) }} \end{aligned}$	Water Temp. (${ }^{\circ} \mathrm{C}$)	Total Precip. (in.)	Wind (mph)	Sky Cond.	Local Sea Cond.	$\begin{gathered} \text { Salinity } \\ \text { (ppt) } \end{gathered}$	$\begin{aligned} & \text { Colifo } \\ & \text { MPN/10 } \\ & \text { Total } \end{aligned}$	$\begin{aligned} & \text { Eorm } \\ & 00 \mathrm{ml} \\ & \hline \text { Fecal } \end{aligned}$	Boat Count
July 3	0850	$\begin{aligned} & 0422 \\ & 1149 \end{aligned}$	$\begin{array}{r} 11.9 \\ 1.0 \end{array}$	15	0.66	E 1	10/10	Calm	--	130	79	12
July 5	0935	$\begin{aligned} & 0547 \\ & 1304 \end{aligned}$	$\begin{array}{r} 11.9 \\ 1.3 \end{array}$	15.5	Nil	Nil	1/10	Calm	20.8	<1.8	<1.8	3
July 8	0910	$\begin{aligned} & 0752 \\ & 1439 \end{aligned}$	$\begin{array}{r} 10.7 \\ 3.1 \end{array}$	17	Nil	Nil	7/10	Calm	21.9	<1.8	< 1.8	7
July 10	0940	$\begin{aligned} & 0454 \\ & 0947 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 9.8 \end{aligned}$	17.5	0.27	Nil	10/10	Calm	14.7	11	4	13
July 15	0950	$\begin{aligned} & 0859 \\ & 1647 \end{aligned}$	$\begin{array}{r} 0.9 \\ 11.8 \end{array}$	18	Nil	Nil	10/10	Ripple	15.3	49	7.8	18 N
July 16	0955	$\begin{aligned} & 0949 \\ & 1737 \end{aligned}$	$\begin{array}{r} 0.9 \\ 12.5 \end{array}$	17	0.25	Nil	10/10	Calm	15.3	70	11	14

TABLE 8: BACTERIOLOGICAL ANALYSES RESULTS AND SAMPLING CONDITIONS FOR MARINE SAMPLES

$\begin{gathered} \text { Date } \\ (1974) \\ \hline \end{gathered}$	$\begin{gathered} \text { Sample } \\ \text { Time } \end{gathered}$	```Tide Conditions```		Water Temp. (${ }^{\circ} \mathrm{C}$)	Total Precip. (in.)	Wind (mph)	Sky Cond.	Local Sea Cond.	$\begin{gathered} \text { Salinity } \\ \text { (ppt) } \end{gathered}$	Coliform MPN/ 100 ml		Boat Count
		Time	Ht. (Ft.)									
July 3	0855	$\begin{aligned} & 0422 \\ & 1149 \end{aligned}$	$\begin{array}{r} 11.9 \\ 1.0 \end{array}$	16	0.66	E @ 1	10/10	Calm	---	6.1	4	--
July 5	0940	$\begin{aligned} & 0547 \\ & 1304 \end{aligned}$	$\begin{array}{r} 11.9 \\ 1.3 \end{array}$	15	Nil	S @ 0-6	1/10	Ripple	20.8	<1.8	<1.8	--
July 8	0910	$\begin{aligned} & 0752 \\ & 1439 \end{aligned}$	$\begin{array}{r} 10.7 \\ 3.1 \end{array}$	17	Nil	SE @ 2	7/10	Ripple	21.9	<1.8	<1.8	--
July 10	0950	$\begin{aligned} & 0947 \\ & 1444 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 5.2 \end{aligned}$	17.5	0.27	Nil	10/10	Calm	15.3	1.8	<1.8	--
July 15	0955	$\begin{aligned} & 0859 \\ & 1647 \end{aligned}$	$\begin{array}{r} 0.9 \\ 11.8 \end{array}$	18	Nil	SE @ 4	10/10	Ripple	15.3	2	<1.8	--
July 16	1055	$\begin{aligned} & 0949 \\ & 1737 \end{aligned}$	$\begin{array}{r} 0.9 \\ 12.5 \end{array}$	17	0.25	Nil	10/10	Calm	15.3	2	<1.8	--

TABLE 8 Sample		RIOLO 28	GICAL ANA	YSES RE	SULTS	SAMPLI cation:	NG CON Off	ITIONS ellow hou	R MARINE use in Aga	MPLES non Ba		
$\begin{gathered} \text { Date } \\ (1974) \\ \hline \end{gathered}$	$\begin{gathered} \text { Sample } \\ \text { Time } \end{gathered}$	$\begin{array}{r} \mathrm{T} \\ \text { Cond } \\ \hline \end{array}$	ide itions Ht. (Ft.)	Water Temp. ($\left.{ }^{\circ} \mathrm{C}\right)$	Total Precip. (in.)	Wind (mph)	Sky cond.	Local Sea Cond.	$\begin{gathered} \text { Salinity } \\ \text { (ppt) } \end{gathered}$	$\begin{array}{r} \text { Colif } \\ \text { MPN/10 } \\ \hline \text { Total } \\ \hline \end{array}$	$\begin{aligned} & \text { Eorm } \\ & 0 \mathrm{ml} \\ & \begin{array}{l} \text { Fecal } \end{array} \end{aligned}$	Boat Count
July 3	1005	$\begin{aligned} & 0422 \\ & 1149 \end{aligned}$	$\begin{array}{r} 11.9 \\ 1.0 \end{array}$	16	0.66	Nil	10/10	Calm	--	350	240	2
July 5	1050	$\begin{aligned} & 0547 \\ & 1304 \end{aligned}$	$\begin{array}{r} 11.9 \\ 1.3 \end{array}$	16	Nil	NNE @ 3	2/10	Ripple	21.9	23	2	2
July 8	1025	$\begin{aligned} & 0752 \\ & 1439 \end{aligned}$	$\begin{array}{r} 10.7 \\ 3.1 \end{array}$	17	Nil	N E 7	8/10	Ripple	19.9	70	2	--
July 10	1055	$\begin{aligned} & 0947 \\ & 1444 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 5.2 \end{aligned}$	17	0.27	Nil	10/10	Calm	15.3	4.5	<1.8	--
July 15	1110	$\begin{aligned} & 0859 \\ & 1647 \end{aligned}$	$\begin{array}{r} 0.9 \\ 11.8 \end{array}$	17	Nil	NE @ 1	10/10	Light Swell	15.3	350	49	--
July 16	1125	$\begin{aligned} & 0919 \\ & 1737 \end{aligned}$	$\begin{array}{r} 0.9 \\ 12.5 \end{array}$	16	0.25	Nil	10/10	Ripple	15.9	350	110	--

TABLE 9: BACTERIOLOGICAL ANALYSES RESULTS FOR FRESHWATER SAMPLES Sample Station: S_{1} Location: Stream into East Pender Bay

$\begin{gathered} \text { Date } \\ (1974) \end{gathered}$	Sample Time	Total Precip. (in.)	$\begin{gathered} \text { Coliform } \\ \text { MPN/100 ml } \end{gathered}$	
			Total	Fecal
July 17	1730	0.53	1300	490
July 18	1600	Nil	700	700
July 19	1200	Nil	1300	790
July 19	1530	Nil	1100	230

Sample Station		Stream into oyster relay area opposite Harness Island.		
Date	Sample	$\begin{aligned} & \text { Total } \\ & \text { Precip. } \end{aligned}$		
(1974)	Time	(in.)	Total	Fecal
July 16	1415	0.25	46	46
July 17	0915	0.53	79	49
July 17	1430	0.53	33	7.8
July 19	1200	Nil	17	7.8
July 19	1530	Nil	13	7.8

