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, ABSTRACT  

In this study, techniques in the form of 

computationally feasible Algorithms are presented for 

-the optimal synthesis of minimum cost simultaneous 

transmission networks and the near optimal synthesis 

of minimum cost time shared computer communication 

networks. Methods and Algorithms are also given for 

,. 	 .... 

•,:. 

the synthesis of minimum cost non flow redundant 

networks. 

Computer programs written in Fortran 4 and 

compiled on a Sigma 7 computer that implement these 

Algorithms are in the appendices. 
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FORWARD  

This study was part of Kalman Toth's work 
for the Master of Engineering degree at Carleton 
University in 1972. 



6 
0 
7 

14 
17 
19 
20 
41 
45 

46 

47 
47 
50 

66 
77 
86 
98 

TABLE OF - CONTENTS 

ABSTRACT 	• 

ACKNOWLEDGEMENTS 

INTRODUCTION 

CHAPTER I 

1.1 SUMMARY 
1.2 MATHEMATICAL PRELIMINARIES 
1.3 GRAPH THEORY 
1.4 NETOWRKS AND COMMUNICATION NETWORKS 
1.5 SCOPE OF THE STUDY 
1.6 THE ANALYSIS AND SYNTHESIS OF COMMUNICATION NETWORKS 
1.7 THE ANALYSIS PROBLEM 
1.8 THE SYNTHESIS PROBLEM 
1.9 CONCLUSIONS 

CHAPTER II 

2.1 SUMMARY 
2.2 MATHEMATICAL PRELIMINARIES 
2.3 THE SHORTEST PATH FROM A GIVEN NODE TO ALL OTHER 

NODES IN A NETWORK 
2.4 ALL SHORTEST PATHS IN A MULTI-TERMINAL NETWORK 
2.5 THE SYNTHESIS OF SIMULTANEOUS TRANSMISSION NETWORKS 
2.6 THE SYNTHESIS OF TIME-SHARED COMMUNICATION NETWORKS 
2.7 CONCLUSIONS 

CHAPTER III 

3.1 SUMMARY 
3.2 MATHEMATICAL PRELIMINARIES 
3.3 ALGORITHM FOR SYNTHESIZING A NETWORK 
3.4 SOME EXAMPLES USING ALGORITHM 3.3.1 
3.5 SYNTHESIZING A COMMUNICATION NETWORK 
3.6 CONCLUSIONS 

APPENDIX A' 	, 
APPENDIX B 
APPENDIX C 
APPENDIX D . 
CURRICULUM VITAE 
REFERENCES 

99 

100 
101 
107 
114 

• 127 
136 

138 
140 
151 
162 
178 
179 



INTRODUCTION  

. The computer  industry reached maturity in the sixties: 

and  it now is . certain that computer networks will'be the 

wealth generators that propel Canada'into the 21St century. 

An urgent need eXists for computer syStems to share each 

others software and hardware resources by coupling them 

together with 'communication links thereby creating what is 

called à computer-communication network.. 

Before costly and major network design commitments 

are made, it is clear that simulations must be undertaken 

to a priori ascertain the performance - and cost - of such large 

systems. This study provides analysis and synthesis  'techniques:' .  

and algerithms for the topological design of large. computer-

communication networks. 

An important problem treated in this study is the 

synthesis of a netWork providing the required channel capa-

cities between various communication centres. That is,' 

given the nodal configuration of thellow requirements between 

all pairs of nodes' (terminals),'the synthesis problem deals 

with determining . the network(s) that SatiSfy - the given flow 	' 

requirements. A further constraint . considers the determinatiOn 

of the network(s) that satisfy these terminal requirements 

at minimilm total ost. 

It is shown that although classical linear program-

ming can, in theory, solve the above problems, in reality 

large scale network problems formulated'using linear 

programming will lead to untractable computational require-

ments, especially for networkS withgarge nimber of 



terminals. Thus, linear programming methods are usually 

impractical and other techniques to solve this problem 

are required. 

Al;though a universal and alternate approacirto 

linear programming has not yet been developed,=seïreral 

specialized methods have been given [8,11,13 2 14,15]. The 

n 

most important recent contribution to the synthesis problem 

has been made by Mayeda 113] who using matrix mepresentations 

; gave a solution for the synthesis problem with uniform cost 

•on all the communication channels. Mayeda also gave 

necessary conditions for the realizability of such networks. 

However, all of the methods given todate are special cases 

(uniform cost, unoriented networks, symetric considerations) 

and much work remains to be done to find a general solution 

to the synthesis problem. This Study contributes further 

to the existing work in this area. 

The study is divided into three chapters:- 

The second and third sections of Chapter I present 

certain elementary concepts from set and graph theory that 

are used in section 1.4 to formally define a communication 

network. Section 1.5 differentiates between simultaneous 

transmission and time-shared communication networks; while 

section 1.6 introduces the analysis and synthesis problems. 

Section 1.7 offers a detailed presentation of the general 

analysis problem while section 1„.8 introduces the .constraints 

and variables of the synthesis problem. Sections 1.7 and 1.8 

also give the details of linear programming formulations so 



- 

that the reader'caniaPPÏ.eCiate the - coMputational difficullies 

inherent in such-an approach. Chapter T, thus-provides a 

general theoretical:basis:fer the two chapters that fellow, 	• 

and also céntains ah introduction to network . theory. 

Many authors 13,4 e 5,6] have made contributions 

towards the design of networks by.'developing various simulation• 

algorithms that are based on techniques for finding the shortest 

paths between.pairs of terminals in a network, *Chapter II of, 

this study utilizes various shortest path techniques to 

develop soMé new synthesis algorithms. The "eultiterminal 

shortest path"' problem is solved:in section 2.4'.and the algorithm 

presented that implements the multiterminal problem is used . 

as the basis for the synthesis algoriths that fellow. 

• Section 2.5 presentS a new algorithm' for the optimal . synthesis - 
I 

of simultaneOus transMission networks and . section 2.6 presents 

a'subeptimal:Synthesis algorithm for time-shared networks. 
1 •• In this Chapter it is also shown that Floyd's • 
! 	' 

Multiterminal.Shortest:Path Àlgorithm [5] is simply an 

extension of the elementary shortest path algorithm (from a 

single terminal to:all others) an“heorems  2.3.4 and 2.4.1 

provide the basis for I this result. The synthesis algorithms 

as well as the above mentioned theorems and restiatsas. 

presented in this study,Hare.given  for the first time, and 

are important and original contributions of this,work. 



1 

Q. 

In ChaPier III, i.procedure for synthesizing a 

time-shared communication•network that exactly meets a-priori - 

given terminal requirements is presented. 'Section 3.2 

Contains some preliminaries. Section'3.3*contains both the 

algorithm that çOnStrutts such a network as well as the 

necessary conditions'under which.this can . be accomplished. • 

In Section 3.4, some illuStrative:examples are presented and 

in section 3.5, the algorithm Iorconstructing a communication 

network from some general (having negative capacities) network, 

that may arise in the synthesis procedure,is given. . 

The procedures described in Chapter III Were 	• • 

originally sùggested and, sketched by Resh [14]. The proofs 

given by Resh were inadequate and'unSatisfactory. ,In this 

work  formai, and  new proofs of all :  these theoreks and 

algorithms are given. 

In addition to the .iefined theoretical development , 

of ReshysIdork, the study also contains useful computer 

'programs that implement these network synthesis procedures. 

These'programs which were developed as part of this study 

are now resident on the Dàpartment of Communications computing 

installation at.Shirley Bay. One of these programs has 

already been used by W.L.. Hatton .  [17] for the analysis of 

a proposed satellite communication network. ' 



It should be appreciated that some of the methods 

presented in this study have constraints, and therefore 

that the general solution relaxing these conStraints 

still has not been found. It appears promising that more 

sophisticated shortest path techniques exist that could give 

better algorithms allowing the uiliform cost restrictions 

in the procedures in Chapter III to be extended. These 

and other related problems should form the basis for 

further research in this area. 
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A - { (i '  i) 	ieN N  (1.2.2) 

1.1 SUMMARY  

This chapter preSents the mathematical preliMinaries 

that form the basis for the synthesis techniques given in 

ChaptersII and III. Some set theory and graph theoretic 

concepts are reviewed and used to formally define a communi-

cation network. In this framework, definitions  •are given for 

both simultaneous transmission and time-shared communication 

networks. Finally, a brief discussion of some of the problems 

that arise in the analysis and synthesis of networks is 

presented. An explanation of the notation used in this study, 

is given in Appendix A. 

1.2 MATHEMATICAL PRELIMINARIES  

SET THEORY  

Cartesian Product - If X and Y are two sets, 

then  the set  

' 	X x Y 	. { . (4y) 1 'xe)( ygr,} 	 (1.2.1) 

is called the cartesian product  Of X'and Y. 

Relation  - . Any.subset of X x Y is,called a relation from X into 

Y and in particular, if X .-.. Y = N, then any relation from N 

into N is called a relation on N. 

'Identity Relation  - A relation in N, A. 1,1., where 



h:  X 	Y (1.2.3) 

(Ns  x Ns ) (1.3.2 

is called the identity relation  on N. 

Function  - A function  h defined on some set X and taking 

on values in a set Y is denoted by: 

Restriction  - Given the function h and a set DC:X, the 

function, 

Y 	) h* (d) = h(d) VdED, 	 (1.2.4) 

is called the restriction of h to D and it is denoted by: 

h/D. 

1.3 GRAPH Tam  
In keeping  with1  standard practice,an oriented graph  G 

is defined as 

G = 	(N,A) 	 . 	 • 1.3.1) • 

where N is a non-empty point set (normally a finite set of 

points) and A is a relation on N. If A = N x N, G is said 

to be complete  whileA=NxN- AN  thenGis said to be 

quasicomplete.  

For a set of points Ns CN, a subgraph Gs  is defined as 

If X is a non-empty proper subset of N, then the 

set Sx  iS called a semicut of G and Sx x Sxc is called a 

cut of G. Then, 



S: 	(X x"., 

=  f •,„ x xc, 	(xc 	x). n  A. 

(1.3.3) 

(1.3.4) 

2 = 2(2n-1 -1) 	 (1.3.5) CD- n 
.1) 

Pictorally,  the  graph G is represented as follows. The 

elements of N = 	 are points on the plane 

and are called nodes, centers or terminals; while the  • 

ordered pairs, (i,j) EA are called arcs, links or channels, 

and are directed line segments that originate at node i and 

terminate at node j. These line segments each bear an 

arrow head pointing from i to j; hende they are called 

directed arcs. An arc is called -à'ioop if i = j. 

From the representation of G, it is immediately apparent 

that a semicut Sk of a graph consists of all those arcs 

"emanating" from the set of nodes X and "entering"  •the set 

of nodes Xc . Removal of these arcs from the graph would 

destroy the connection from X to Xc . Since connections 

from Xc  to X can exist, the set S is called a semicut as X 
opposed to the set S,LJS,c  which is called a cut; that is, 

A A 

the removal from the graph of the arcs in the cw4 S  U S  c X X 
separates the graph into two disjoint subgraphs. Moreover, 

if the number of nodes in N is n,  th en the number of distinct 

semicuts in G is exactly the number of distinct proper non-

empty subsets of N, that is, 



sx  = (x x,c) ri A 	(X x Xc ) 

s x 	s 	(x x xc) Li (xc x x) 
xç 

and 

(1.3.6) 

(1.3.7) 

arcs, 

• 

' -9  

Since there are exactly twice as many semicuts possible 

as there are cuts, the number of distinct cuts in G is 

n-1 2 	-1. 

The notion of a quasicomplete graph is important in 

this study; and the following definitions are given t 

introduce this notion. 

If G LI (N,A) is a quasicomplete graph, then for every 

non-empty proper subset X of N, it is obvious that 

X x XcC:A, and thus 

Each set of nodes, Nk 	(ni ,n 2 ,---,nd where 

P  . n i , q= n z  and where Nk  is a non-empty subset of the 

nodes in the quasicomplete graph G, determines a set of 

HPq - 	, {(n.  nit1.  ) / 1<i<z-1} $ zk2, 	 (1.3.8) 1  

called the'kth  path  from,p to 	Thena subpath 
uv- 

k of IIpq  is 

le 	= 	{(n. n1:+1)  . 	/ u< ik y-1}(1-1H uv 	le 	 Pq 

where l< u <y < z and v= n.  Y 
To each path Hk q there corresponds a set of arcs, P 

(1.3.9) 



• { ni ) / 	 1}, z (1.3.11) 

{(i,j) E A / 	e (1.3.12) 
PP 

- 10 - 

k 	k 
llpp  = Hpq  u {(q,p)1, 

called the circuit  corresponding •to the path 
Pq 

Observe that the set, 

(1.3.10) 

=e A / (j,i) 	} 

pq 	 - 	Pq 

is the return path from q to p corresponding to the path 

Hpa , while, 

= 	(P Yq )1 	Reg 

is the circuit corresponding to II . and that clearly, 
Pq 

*k  n rrpq 0,. 	- 	 - 	 (1.3.13) 

k r) 
UPP 	I riPP • .4 	0. (1.3.14) 

Finally, if the quasicomplete graph G is also finite 

with n nodes, it is evident that the number of paths from 

any node p to any node q such that p e'q is, 

Cti-3)- 

 

n - 2 	 n- 2  
0 J. 0 	( 	).1 	--7  (fl -3) 	4  n-2 

(1.3.15) 



- 11 - 

I.  

The following examples illustrate some of the 

graph theoretic concepts introduced above. 

Example 1.3.1  - The graph G = (N,A) where N = {1,2,3,4,5 }  

and A = {(1,2), (1,4), (1,5), (2,1), (2,3), (2,4), (3,4), 

(4,5)1 is a finite oriented graph with the following 

representation. 

figure 1.3.1 

The semicut S x  corresponding to the non-empty 

proper subset X = {1,2,5} of N can be found as follows, 

{1, , 2,5} x 	= .U(1,3), (1,4), (2,3),(2,4),(5,3),(5,4)1, X x 



G 2  = 	({3,4 }, {(3,4)1) = 	(N2 , 

From the original definition, 

). 

it can be shown that 

- 12 - 

Now remoVing from G the arcs in Sc X 
still leaves the arcs in S connecting•X to Xc  while X 

removing the arcs in the cut, 

Sx U S c  = 	'{(1 ,4),(2,3),(2,4),(4,5)1, 

separates the graph G into two subgraphS, namely: 

both G 1  and G 2  are subgraphs of G. Putting  N5 = N1 , 

rI(N, x N1 ), 

= 	({1,2,5 }, A r1,{1,2,,, x {1,2,5} )) 

({1,2,51, {(1,2), (1,5), (2,1)1) 

- G 

Similarly it can be shown that G2  is a subgraph of G. 

Example 1.3.2  - The finite, quasicomplete, oriented graph 

G = (N,A) where N = {1;2,3,4 } and A = {(1,2),(1,3),(1,4), 

( 2 , 1 ),( 2 , 3 ),( 2 , 4 ),(3 , 1 ),(3 , 2 ),(3, 4 ),(4,1),(4,2),(4,3)1 has 

the following representation: 



figure 1.3.2 

The number of possible paths from a node p to another 

node q where p q and p,q e N is, 

f4 - 2'‘ 	t 
•2 • = 

2  
1±21t2::= 5. 

For a given pair of nodes, p = 1 and q = 2, the 

five possible paths from 1 to 2 are 



= {(1,2), 	(3,4 )' ,,(4,1)} .. 115 
11 

- 14 - 

11 12-  

1121,2 	7:: 	{( 1,3 ) , (3,2) " 

11 ,2  

. {(1,3), (3,4), (4,2)1, 

ils  1,2 . 1(1,4), (4,3), (3 1 2)1. 

The circuit corresponding to HI 2 iS, 

5 
11 1, 2 Lj  L (2,1)1 = 

Observe that the "return" path corresponding te 

11 Î,2 iS, 

= 	{(2,3)°, (3,4), (4,1)1 5 

12  

and that the circuit corresponding to 

1.4 :NETWORKS AND COMMUNICATION NETWORKS 

In  general a network N is defined as 

N 	(G, rw 	w (1.4.1) -» Wm), 



1, 2 wk  : A 	R; (1.4.2) 

7 15 - 

I 	■ 

where G is a finite, quasicomplete, oriented graph with 

n nodes. 	wk is the k
th  real-valued function defined 

on some set A, that is 

In particular, a communication network is one in 

which the wk 's are non-negative real valued functions, 

namely, 

: 	A 7›. R .  ; 	k = 	1,2,---,m. 	 (1.4.3) 

The function wk  is usually called the "arc capacity" 

or "weighting function"; that is for each arc (i,j) e A, 

wk j) is referred  té as the "weight" of arc (i,j), or 

the arc capacity. 

, 	The requirement that G be quasicomplete is by no means 

restrictive. That is, if the graph representing the actual 

network is not quasicomplete it is a simple matter to add 

to it the missing arcs, each with zero weight, so as to make 

it quasicomplete. In other words, it is always possible 

to represent any network by a quasicomplete graph. 

If SX  is a semicut of G then for the network N e  the 
real number 	 ' 

Isx  = 	Wk(i,j) ; 	V (iyi) E Sx 	 (1.4.4) 



(1.4.5) 

c: A 	R+  

f: A 	R+  

w 	d: 
3 

t: A .4- le: 

- 16 - 

is called the value of the semicut S with respect to 

the weighting function wk . Whenever no confusion can arise, 

ISx 1 will be written instead of IS,I 
AI wk .  

The "sum" and the "difference" of two networks 

= (G,w 1 ) . and4 2 := (G, w2 ),: .ay- i -  is defined as: 

and, therefore, for any seMicut S . .in G, 

isx 1 w ±w 	= plc ! w 	I8x1 w  
1 	2 	 1 	 2 

The following weighting functions will be used in 

this study: 

1.4.6) 

(1.4.7) 

(1.4.8) 

(1.4.9) 

,j) 	minfpx i c  / (i,j)eSx l (1.4.10) 

The function c, is the channel capacity function and 

c(i,j) represents the 'channel capacity of the channel (i,j). 

In a communication problem, c(i,j) is usually given in 

terms of bandwidth or as a bit rate. It represents the 

maximum speed at which a message may be transferred along 

the given channel (i,j). 



and f(i e j) is the rate at which a)liessage is-ac-tUally being 

- 17 - 

The function f is the message rate or flow function 

transmitted along• arc (i,j). When subscripts are used 

fpq (i,j) means that a given amount of flow (see section 1.5) 

from p to q is taking place along the arc (i,j) and that 

its value is f
Pq 
 (i,j). 

The function d ià-called the cost function. Usually 

d(i,j) is either the cost per unit capacity (for the 

synthesis problem) or it is the cost per unit flow (for 

the analysis problem). 

. 	The function t is called the terminal capacity function. 

Formally t(i,j) is the maximum flow that can be achieved 

between terminals i and j given that no other flows are 

introduced into the network. It is by the Ford Fulkerson [7] 

theorem equal to value of the minimum valued semicut 

separating i and j. 

For computational purposes, the functions c,f e d and t 

will be represented by the n by n àatrices C,F,D and T. 

Each matrix entry, c(i,j), f(i,j), d(i,j) and t(i,j) et c . 

represent the respective values of the functions as 

defined above. Since no loops are present at the nodes 

of a communication  network, the diagonal elements of 

these matrices are not defined. 

1.5 'SCOPE . OF THE-STUDYi 

In,thiS'siudy, two 'large classes of communication 

networks Will be discussed. These are,- 



• 

• 

• 
- 18 - 

1) Simultaneous transmission communication networks, 

2) Time-shared coMmunication networks. 

In simultaneous transmission networks all communi-

cation centers are able to both transmit and receive 

messages at the same time. This, for example, is the 

mode of communications in the common telephone system. 

It is assumed that some form of channel selection or 

switching allows messages with different origins 

and destinations to pass along common links without 

interferings- with each other. Thldle sof M,f;;;'''from 

terminal p to terminal q in a network is called the 

commodity with origin p and destination q. This 

commodity may be:distributed among the . paths that join 

p to q, and the value of the flow of this commodity on 

arc (i,j) is denoted by fpg (i,j). In addition, other 

independent message flows, say fst(i2j)  could exist 

along the same arc at the same time, this leads then 

to what is called a multicommoditY  flow problem. 

In general, for an n node communication network 

there are n(n-1) commodities, two for each node pair 

(one in each direction). 

The total flow from p to q is given in such a 

network by 

ft 	E 	f
q 
 (p k) 	E f

Pq 
 (k,q); 	(1.5.1) 

Pq 	kp P 	' 	keg  

-VkeN. 



f  ( 1 ,J) = p!:q fpq (le)); eP°C1 (1.5.?) 

à 

• 

- 19 - 

and the total message flow» or all commodities in arc 

(i,j) is, 

• 

In  contrast to the above, networks engaged in 

,time-shared communications are networks, in which communi-

cation occurs between only a single pair of . ndes  in a 

particular interval of time. This system is used in 

time-shared computing installations. This is still a 

multicommodity situation and the commodities are not only 

distinct but also are transferred in non-overlapping 

intervals of time. 

It follows that the total flow from p to q, f t  
Pq' 

is again given by (1.5.1), and that this value is less 

than or equal to the terminal capacity, t(p,q). 

Furthermore the flow in a given arc (i,j) is simply 

Fpq (ii) and the capacity of arc (i,j) must be large 

enough to allow the maximum of the f
Pq 

 (i,j)gs to pass 

along that arc. 

1.6 THE ANALYSIS AND SYNTHESIS OF COMMUNICATION NETWORKS  

In the following two sections, the analysis  of 

communication networks is discussed and the s nthesis 

problem is introduced. 

• 
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In the case where the capacity and cost functions 

c and d for the network N = (G,d,c,f,t) are known, 

N is obviously a physical entity. The analysis problem, 

then, consists of obtaining the message flow function f, 

and the terminal capacity function t. 

The contrasting case is the one in which a network 

N = (G,d,c,t) is to be synthesized. That is, G, d 
and t are known and c is to be found. It is possible 

to have as •a resùlt of synthesis, networks having arc 

capacity functions that give terminal capacities that are 

all larger  •or at least as large as the apriori specified 

entries in t. These resulting networks are considered 

feasible (not necessarily optimarl): .,soautions  as the arcs 

have at least enoue cffl.q#Y , tos-atïs 

capacity requirements. 

In all cases, t is called the terminal capacity 

requirement function and the entries in t will be called 

simply the terminal requirements. 

1.7 THE ANALYSIS PROBLEM  

In the analysis problem, a communication network 

N = (G,d,c,f,t) is given, and the network configuration 

G, the arc costs d (cost per unit flow) and the arc 

capacities c are known. 
• 

The obtaining of the message flow function f, constitutes 

the first. analYsis , problém. It is obvious that for any 

type of communication network,seVerâ1 flow functions are 
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feasible. Any flow function that assumes non-negative 

values that do not exceed the corresponding arc capacities, 

is said to be  •a feasible flow pattern. Among these flow 

patterns, there exists•at least one that is called an 

optimal flow pattern. 

The optimality may be based on maximum total network 

flow, on minimum het*Ork cost  on,maximum 

at minimum cost. Thus several possibilities exist and for 

each one there is a set of constraints, that is for each 

case there is a function called the objective function 

that has to be optimized. 

The following observations apply to all the cases 
■ 

considered in this study. 

1) All values of flow in a communication network 

are non-negative (that is, greater than or equal to 

zero). 

2) Flow is conserved at all nodes, hence, the sum 
■ 

total of message flow incident on a node is equal 

to the sum total flow emanating from that node. 

3) The total flow in a given arc must not exceed 

the capacity of that arc at any time. 

4) The objective function must be expressed in 

terms of the independent variables, that is, the 

entries in f. 

5) Optimization implies that the flow function is 

to be evaluated so that the objective function takes 

either, its maximum or minimum value. Since the 



O  

-v if j=s, 

E 	fst (k itj ) 	fst(j)k) =
•k9ej 	 kdj• 

0 if jOs,t, 	(1.7.2) 

v if j=t; s,teN,s;Pt, 

O 

e 

• 
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operations are addition, subtraction or multiplication, 

this optimum is well defined if the independent 

variables are bounded from above and below. 

Case 1.7.1 - Single Commodity - Maximize Flow: 

Given:  A single commodity flow network where 

N = {s,1,2,---,t } and fst (i,j), (i,j) e A, is the flow 

from s to t of the single commodity on arc (i,j). 

Required: To find the flow pattern that maximizes the 

total flow from s to t. •  

.Solution: jCnowing that fst  (i j) Is.the  flow value on arc 

and letting the maximum flow  from s to t be v, 

the constraints may be stated is fo..11ows: 

0 • ; 	(i j) c •A 	 (1.7.1) st 	
ee  

fst(i,j)  4Ç  c(ipi); V(iy•) e A. 

(1.7.3) 

Observe that (1.7.2) is simply the statement of the 

conservation of flows. 

Since v is to be maximized, the objective function is 

z = v, and z is maximized subject to constraints 
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(1.7.1), (1.7.2) and (1.7.3), that is, 

Maximize z = v (1.7.4) 

Note that all entries in f are bounded and that y 

is a function of some of the values in f. 

Case 1.7.2 	Single Commodity - Minimize Cost:  

Given:  A single commod.ity flow network ia.e'rer 

the flow from s to t is v. 

Required: To find the flow pattern that minimizes the 

cost. 

Solution: Remembering that the "throughput" v is no 

longer a variable but of fixed value and assuming that 

a feasible flow pattern corresponding to v exists then 

the constraints are given by equations (1.7.1); (1.7.2); 

(1.7.3) above. 

The objective function z is now dependent upon the 

arc costs. To arrive at a solution for f it is necessary 

to minimize z, 

Minimize z = f5t (ipi). 01 (ipj); V(i e j)EA. 	(1.7.5) 
1 ,5) 

Obviously, the maximum throughput at minimum cost 

can be obtained for a given network by adopting the 

above approach. That is, by first evaluating the maximum 

flow v using case 1.7.1 and then finding the pattern that 

minimizes the cost, given that the throughput is v as 

outlined in case 1.7.2. 



fpa (i,j) 

.E 	f 
g 
 (kW 	fP4 (j,k) 

P  
• k4j 	 Scj- 

) 
1■■ 

z, 	G 
•Pe'g Pq  

,j); V(i,j)c A; Vp,cieN, 1)&1. 	(1.7.8) c 
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Case 1.7.3  - Simultaneous Transmission - Multicommodity  - 

Maximum Flow: 

Given:  An n node network with n(n-1) commodities. 

Required: To find the flow pattern that maximizes the 

sum of all the commodity flows. 

Solution:  Letting vpq  be the undetermined commodity 

flow value for nodes p and q (p4, pAEN),the constraints 

are, 

p,qebt, 10*{, 	(1.7.6) 

[ -vPg 
, if jeps, 

= 	0, if j4,q, 	(1.7.7) 

vPg 
if j=q, 

' 

V p,qclq, p4q, 

To arrive at a solution it is necessary to maximize 

Maximizez=Ev ;Vp,cieN, 	 (1.7.9) pq  
Peg 

z , 



Pj) 9 E 	d(i,j). 	E f 
(i,j) 	 p,q 

(1.7.10) 
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Case 1.7.4 - Simultaneous TransMiesien  - MulticomModity - 

Minimum Cost  

Given:  An n node network with n(n-1) commodities where•

the magnitude of each commodity of flow is a constant 

vpq > 0  

Required: To find the flow pattern that minimizes the 

total network cost. 

Solution:  Equations (1.7.6), (1.7.7) and (1.7.8) are the 

system constraints for this case as well, where v
Pq 
 is 

no longer ayariable quantity. 

The objectiv&.function, - however, changes to take 

the arc .costs into_account. Theni from (1.5.2),_ _ 

Minimize z 	E 'd 

(i,j) 
,j).ftc i,i V(i,j)EA 

V p,cieN, pkt, 

to find the minimum total cost of the network. 

Case 1.7.5  - Time-shared Multicommodity - Maximum Flow: 

Given:  An n node network with n(n-1) commodities. 

Required: To find the flow pattern that maximizes the 

sum of all the commodity flows. 
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Solution:  Letting v
Pq 
 be the undetermined flow value 

for nodes p and q (p,q6N, p4), the constraints are 

f 	Ci, j) lo ct  
V(i,j)6A; V p,qcN, ph, 	 (1.7.11) 

E f (k ) 	E f (iyk) = Pq 	 Pq 
k4j 	 k4j 

-v pq , if j4,•

0) if j=lp,q, 

v 
Pq 	.•,

j q , •  if 

(1.7.12) 

V p,cel., 

c(i,j); V (i,j) s A; .V p,gsbi, 	 (1.7.13) pq  

Pkt• 

Observe that the constraints for this problem are 

identical to those of the Simultaneous Transmission• 

Problem in Case 1.7.3 except for (1.7.13). In the 

time-shared case only one commodity of flow may appear 

in the arc (i,j) at any instant in time, hence fpq  (i,j) 

could take on a value up to the value of c(i,j). In 

Case 1.7.3 all commodities appear simultaneously in 

(i,j) hence the summation in (1.7.8). 

Subject to the constraints (1.7.11), (1.7.12) and 

(1.7.13) the solution is found by maximizing z, namely 

Maximize  Z =  E vpq p,qsN,pq (1.7.14)  p,ct  



f* j)e 'A; 11 ,cicNy PZ* (1.7.15) 

2n•(n-1) 2 . Since the computin solution using 
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Case 1.7.6 - Time-Shared - Multicommodity - Minimum Cost: 

Given:  An n node network with n(n-1) commodities, where 

the vpq  >0 3pqcN are constants. 

Required: To find the flow pattern that minimizes the 

total network cost. 	 ' 

Solution:  The constraints are identical to those of 

Case 1.7.5. The solution is found -01'ce again. , by 

minimizing z, 

Minimize  Z =  E d(i,j).f*(i,j);  V(i,j)EA, (1.7.14) 

where f*(i,j) is the average flow value expected in arc 

(i,j). If each of the commodities has an "equal chance" 

to utilize arc (i,j), then, 

Comments  

(1) Closer examination of the above cases silowsthat the 

complexity of these solutions increases very rapidly as 

the number of nodes in the network is increased. For 

example, for an n node network in Case 1.7.3, the number 

of unknown variables as well as the number of constraints 

is n(n-1)(r1 2-n4.1). For case 1.7.5 the number of unknowns 

is n(n-1)(n 2 -e1) and the number of constraints is 
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a linear program is dependent upon the number of 

constraints as well as the number of unknowns, the size 

of the task grows almost without bound as the number of 

nodes increases. Hence the use of linear programs to 

solve network problems is limited by the computer time 

the analyst can afford to spend on a given problem. 

This shortcoming is what has prompted the "modern" network 

theorists to develop more efficient graph theoretic based 

algorithms to obtain solutions instead of using linear 

programming. Although only some of these problems have 

been solved this way, the ones that 4rç eVe the:network 

analyst some useful tools for modelling larger network 

problems. Some of these algorithms are presented in this 

study. 

I(2) The second, analysis problem requires that the terminal 

Capacity function be evaluated. It has been•s4owil,that t is 

dependent upon another function, namely, the arc capacity 

function, that is, 

t(p,q) = min {1Sx i c  / (PA) 

Thus the minimum valued semicut separating nodes p 

and q, has a value equal to the maximum possible flow 

from p to q. This is exactly case 1.7.5. Then 	e  

t(p,q) = v
Pq 
 and t is found using linear programming. 

I. 4.-10) 
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(3) The theorem that originally solved the analysis 

problem for finding t, was  formulated by Ford and 

Fulkerson [7] and has subsequently become the central 

theorem in network theory. Since a formal definition 

(1.4.10) of the terminal capacity function is essential 

for the network synthesis problem, Ford and Fulkerson's 

"Max-Flow, Min-Cut" theorem is stated (without proof). 

In addition, some extensions are presented as these 

analytic tools are useful in analyzing networks once 

they have been synthesized. 

Theorem 1.7.1  - Maximum-Flow, Minimum-Cut:  [6,7,9] 

For any network N 	(G,c,t) where  Gis an n node, 
finite, quasicomplete, oriented graph and where c is the 

capacity function defined on the arcs of G, the maximum 

flow from some terminal p to another terminal q, called 

the terminal capacity t(p,q), is equal to the minimum 

valued semicut containing (p,q). (see equation (1.4.10)). 

The direct result of this theorem is that algorithms 

can and have been formulated to solve the maximum flow 

problem using methods other tîan lineàr programenge  The 

use of this theorem is illustrated in the following 

example, 

• 
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Example 1. 7 .1  - Find t (1, 

figure 1.7.1 

Given the net, N 	• (G,c,t), where G = (N,A) is 

quasicomplete, finite and oriented, N 	{ 1,2,3,4 }  and 

A=NxN-q• the capacity entries are noted beside the 

corresponding arcs in figure 1.7.1 and in the matrix C. 

• 

 

* 	8 	4  • 1 • 

5 * 2 4 

0 

0 • 10 

c=  
* 0 

In order to find t(1,3),:allal4tits 

examined in which 1EX and 3eXc . Then the values of 

these semicuts are computed and t: (1,3) 'takes, orptp4o 

minimum of thèse values.‘ 'Thus 



( 11-.2 
I. 	) 1.7.16) Ln-2) = 

31 - 

X 	...{1 } , 
• 1 

X 	= . {1,2 } , 
2 

X 	..{1,4 } , 
3 

= 1{1} x't2,3,411 = 8±4+1:l3  

4+1 4-2+9 = 16 x 	e 
2 

S. 	= 1{1,4 }  x:{.2,-3}1 = 8+4470*10,= 22 .x 
3 . 	c 

1 

	

Sx 	= 	1{1,2,4 }  x .:{3}1 = 	471.-.2.±10 re 16 

	

: 	C • 	-- 	- 

Then t(1,3) 	13, the minimum valued semicut. Q.E.D. 

Comments  

The nuMber of semicuts that must be tested.for any 

• terminal pair'is, 

where n is the total number of nodes in the network. .Again 

it is evident that as n increases, the number of semicuts 

that must be examined increases rapidly. To overcome this 

inefficiency, many authors have developed labelling 

algorithms that locate these minimum cute quickly. A 

familiar one is one that T.G. Fhl : (9i,develePed, which is based 

on the theorem of Ford-Fulkerson [7] . This algorithm is 

presented below and then an example given to illustrate 

its application. 

In the Algorithm 1.7.1 presented below,  for an  n node 

network N , where  Gis a finite, oriented quasicomplete 
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graph, N 	 and the arc capacities 

c(i,j) are given, the Maximumflew-'ftom p to 

is found. This corresponds by definition to the 

terminal capacity t(p,q). 

Algorithm 1.7.1: 

A. Labelling Routine - 

1. a) Initially, all nodes are unlabelled and unscanned 

and flows in the arcs are zero. Labels are of the form 

"(j,±, E(i))" where this label corresponds to the 

i
th node. 

b) Label node p with (p,+,e(p)  =œ).  Now p is 

labelled and unscanned while all other nodes are 

unlabelled and unscanned. 

2. Choose any labelled, unscanned node  I. 

a) If for some unlabelled neighbour of j where 

c(j,i) > 0, ji, there is a flow f(j,i) > 0, then 

label j by (i,-,E(j)) where s(j) = min{E(i), f(j,i)}. 

• b) If for some unlabelled neighbour of j where 

eti,j»d'and f0-9jj < c(f,J) then, labelj bY '(ip+,c(i)) 

where E(j)  = min {E(i), c(i,j)  

Now j is labelled but unscanned. îDo this for 

all such neighbours  of i.  

Now change the label on i by encircling the 

"t" or "-" sign. Node i is now labelled and scanned. 

3. Repeat step 2 until either, 
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a) q is labelled then go to routine B or 

b) no more nodes can, 

B - Augmentation Routine - 

1. let z = 

2. a) If for node z the label is (k,±,E(z)) then 

increase f(k,z) by E(q). 

b) If for node z the label is (k,-,E(z)) then 

decrease f(k,z) by E(z). 

3. a) If k = p, erase all labels and go to step A (2). 

b) If k 0 p, let z =k and go to step 2. 

Observe that upon termination at step A-3b), the terminal 

capacity, t(p,q) is given by: 

t(p,q) = E f(p,j) = E f(j,q) ; V j0p,cleN 	 (1.7.17) 

and that the minimum semicut SK  is found by placing the 

labelled nodes into the set X.. 

Also note that by executing this algorithm n(n-1) times 

for all terminal pairs, the terminal capacity function in 

the form of its matrix of values is found. 

The following example demonstrates this algorithm. 

Example 1.7.2  

The network configuration and constants are indicated 

in figure 1.7.2. In the notation fix,y" beside each arc; 

the x represents the capacity of that arc and the y 

represents the flowA.n that arc. Then our initial 
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configuration without labels (exf4ept for p) and without 

flows is: 

7,0 

figure 1.7.2 

Starting with routine A; nodes 1 and 2 are selected 

and labelled as neighbours of nodei,p, the only labelled 

node at this step. Consequently, node p has been 

scanned. 



(P,0,04 

figure 1.7.3 

This procedure is continued until'"breakthrough" 

to q has been achieved. 



figure 1. 7 . 4 

(3,+14) 
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1  • 	 Now that node q has been-labelled', flows are 

changed along the path from p to q using Routine B 

and then the labels are all erased. 

6,4 

figure 1.7.5 

Using Routine A again a  ttbreakthoughhI  is fgund- , 
to node q and the following labelled configuration is 

obtained. 



gg 

(3,+,I) I 

figure 1.7.6 

Routine B gives the next flow pattern: 

7,0 

figure 1.7.7 
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. 	. 
Executing Routine A once. more gives: 

figure 1.7.8 

The resultant flow pattern is: 

7,7 

figure 1.7.9 



• 
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• Trying to!label once more does not succeed, 

we have: 

• Sx 	, 

• ••. 

6,5 

figure 1.7.10 

Observe that the minimum valued semicut is S 

where X 	fp,21 (elements of X are the labelled nodes 

that remain at termination). Then IS1 = c(p,1) + c  

c(2,1) * c(2,4)= 4+1t7 = 12 and t(p,q) = 12. This 

can be varified by calculating that the sum of the 

flows leaving p equals the sum of the flows.arriving 

at q which is again 12. 



• 
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1.8 THE SYNTHESIS PROBLEM  
! 	

In the synthesis problem, it is required to construct 

the communication .  network N = (G,d,c,t) where the network 
configuration G is an n node, finite, oriented, quasicomplete 

graph. The costs d(i,j) and the terminal capacities t(i,j) 

are also known. The solution must find the values of the 

capacity function on all arcs in G, so that t is satisfied; :. 

at the same time the network t91591°Ü'is  f9und. ' Thus 

in the analysis problem', j-t Is'as,ea'4Ted , • 

t, knowing c,  •but in the synthesis problem c must be found 

given t. 

A first attempt to solve this problem m•ght be 

,to construct an arc for each  entry, of the'terminal.capacity 

function, that is, set c(i,j) = t(1,j); V(i,j) EA. The 

'resultant network contains links between all possible 

pairs of nodes. 

problem as all nodes can communiàaté with'all other nodes. 

at the same time, consequently, the time-shared case is 

certainly satisfied. However, is it an optimal cost 

solution? At a glance it is obvious that it isn't. 

If arc costs are not uniform then a given requirement.› 

can certainly be satisfied by using a route that may be 

cheaper than the direct route. In the time-shared case, 

the quasicomplete configuration allocates a dedicated 

line to one terminal pair. This results in under- 

II› 	
utilization as the line is active only a very small 

This satisfies the simultaneous transmission 



- 42 - 

fraction of the time, remaining .j,q1e. for the rest of. 

'"the time. -  These observations suggest that optimal 

capacity assignment requires thoughtful formulation. 

If the object is to satisfy the requirements at 

minimum total network cost, the most obvious method of 

solution is linear programming. As in the analysis 

problem, the set of constraints and the objective 

' function to be optimized is given 'f,(5thetii'eshared case. 

Furthermore each t(p,q) in t, represents a 

commodity of flow that is required to flow from p to q. 

Then the flow pattern in the network for each commodity 

must satisfy these requirements without violating the 

arc capacities and at the same time must be such as to 

minimize the total network cost. 

Only multicommodity problems are considered here. 

Case 1.8.1  - Simultaneous Transmission - Minimum Cost -  

Synthesis: 

Given: An .n node network with known costs d and known 

requirements t. 

Required: To find the capacity function c that satisfies 

the requirements at minimum total network cost for the 

simultaneous transmission problem. 

Solution:  Knowing that all the network flows are positive, 

that flow at the nodes obeys the conservation laws and 

that the flow in each arc must be less than the capacity 

of that arc, the constraints are 
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1.8.1)•  fpq  > 0; V (i,j) E A; V p,cieN, _ 

-t(p,q), if j=p 

0, if j;611 

t(p,q), if j=q, 

V p,cieN, 

E f
Pct 

 (k,j) 	f
Pq 

 (j,k) 
k 4j . 	1c4j  

c(i)j) 	E f (i,j) = 0; V(i,j)eA; Vp,qcN, pki. (1.8.3) p,c1  pq 

An optimal solution is found by minimizing z. 

Minimize 	z 	E 	d(i,j).c(i,j) V(i,j)cA. 	(1.8.4) 
(iyi) 

Case 1.8.2  - Time-Shared - Minimum Cost - Synthesis: 

Given:  An n node network with known costs d and known 

requirements t. 

Required:  To find the capacity function that satisfies 

the time-shared requirements at •minimum network cost. 

Solution: The constraints for this problem are, 

fpq (i„j) . ?, 0; V(i,j)cA, Vp,cieN, , p4q, (1.8.5) 



- 44 - 

Ef,n (k,j) 	E f 	(jek) I= 
k4j 	 k4j 

-t(p,q), if j=p, 

if j413,q, 	(1.8.6) 

t(p,q) , if j=q, 

V pAeN, 

c(i,j) 	fpq (iyi) = 0 ; V(i,i)eA; V p,q01, p0q. 	(1.8.7) 

Subject to the above constraints 

Minimize  Z 	E 	d 
(i,j)  

( i,j) ; v (i,j )e.A. 	( 1.8 .8) 

Comment  

The values  of-capacity generated -  by these solutions 

are, in general,  non- integers. Since capacity rental is 

usually ,quantized, implementation of simulation resu1ts 

requires that these non -integers be rounded off tO their 

next largest integer.. Thus, excess capacity is left in 

the system and the network cost is increased, that is, 

the final  result is usually suboptimal even when linear 

programming is ilSed. 	- 	• 	, 2 	H 	• 
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1.9 CONCLUSIONS  

In the cases presented in section 1.8, the commodity 

•flows f
Pq 

 (i,j), as well as the capacities c(i,j), are 

obtained. That is, each linear program solves for a 

large number ,  of unknowns such as flows, that are not 

required in the network synthesis cases. Moreover for 

large n, the number of unknowns and the number of 

constraints is unmanageably large as has already been 

pointedoutintwooftheanalysis cases. This leads 
! 

to the conclusion that me ithods more efficient than linear 

programming must be found 1  to arrive at >practicarsolutions 
! 

quickly and efficiently. 

It was pointed out that for the analysis problem 

certain labelling techniques can be applied. For the 

multicommodity synthesis, since no such methods exist t 

date, it is concluded that one must settle for some sub-

optimal synthesis procedures. In Chapter II of this 

study, some shortest path techniques are presented that 

tend to minimize total network cost. In Chapter III, a 

synthesis procedure is developed that exactly allows 

the determination of c, given the terminal requirements 

and the arc constraints. 



C FU■P TER I I  
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2.1 SUMMARY 

This chapter develops methods for the synthesis of 

simultaneous transmiSsion.and-tIM6-Shared  communication 

networks using various:shortest  path techniques.  The  

need for computationally feasible , methods was - pointed 

.out in Chapter I, where it was sboWn that  due  to the 

presence  of hUge numbers of cone.raints and unknowd4linear 

programming formulations for large network problems -leads 

to difficult and often impossible computational problems. 

First Certain path definitions are given, then 

various shortest path algorithms are developed based on 

these shortest path notions.. These algorithms  permit 

readily coMpiltable solutions.to be.found for these synthesis 

problems. _The simulation pragraMs that implement these 

algorithms for the.simultaneous transmission.methe time-

shared.cases.arà given : in  appendices B and C. 	: 

2.2 •MATHEMATICAL PRELIMINARIES  

PATH DEFINITIONS  

In Chapter I, the kth  path,
q

-  was.defined to be 
P 

the sequence of arcs that join terminal p to terminal q. 

Hère de 
q
) • is defined to be the length of.  the  path  

P - 
ilk

q 	
and it is given as the sum of the "lengths" of the P 

arcs that are in that path. In the synthesis procedures 

developed in this chapter, •these lengths are the arc costs, 
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namely, the d(i,j). Then, 

d(H k  ) = 	E 	d(i,j) ;V(i,j) eli k  . 	 (2.2.1) 
Pq 	(iej) 	 Pq 

Thus, the shortest path  Hpq  is defined to be the 

one whose length is smallest among all m paths joining p 

to q. That is, 

- 
-d(R

Pq
- -  ).= MIN .{(i(n

Pq
k )1 j  k = 1, 2, 

k  

These definitions are illustrated in the following 

example. 

Example 2. 2.1  

figure  2.2.1  
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Consider the network shown in figure 2.2.1 with arc 

costs (lengths) as indicated. By inspection, the possible 

paths and their lengths are: 

11 1 	{(p,i), (1,2), (2,q)1; 	d(H1q  ) 	- 4, 
Pq 	

p 

2 	• H 
Pq  

2,q)1 ; d(np2,1 ) • 	s, 

H 3 	= {(P,q)} 
Pq 

n 4 • 	'{(p , 3) ,  
pq  

Therefore the • shortest path is given by - 

k 

	

) 	MIN {&( 	)}, k 

	

Pci 	 Pq 

= 3 

so that, 

fi 	= 114 q   pq 	p  

In communication-problemsallarc , :costs  are   non - 

negative,  and the Minimum in,(2.2 ...2) existS. However, 

in many general netwdrk problems where these lengths may 
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be negative, further constraints must be placed on the 

system so that all shortest ;paths can be well defined. That 

is, the general problem for all circuits H 	where pcN and 
PP 

k = 1, 2, 	m, must satisfy 

d(flk ) > 0. 
PP — 

If for some circuit Rk  it should happen that d(Rk ) 
PP' 	 PP 

then this circuit is called a negative circuit.  This 
k 	 h means that if (i,j) E R 	and if Huv  (u v p) is a path 
PP 	I 

h where (i,j) E H , then H 	is not well defined, that is, uv   

the minimum is  •  an undefined negative number. 

The détection of negative circuits is important in 

network problems as their absence is one check of the validity 

of a shortest path computation. 

2.3 THE SHORTEST PATH FROM A GIVEN NODE TO ALL OTHER NODES  

IN A NETWORK  

Given the network N = (G,d) where d is the arc cost func-

tion, and it is required to find the shortest paths from a given 

node p to all other nodes, 1,2,---,n-1 in this network; 

algorithm 2.3.1 solves this problem using a labelling procedure 

that was first formulated by Ford and Fulkerson [7]. 

Algorithm 2.3.1 - (Shortest Path Algorithm)  

Step 1)  - Assign to all nodes i labels of the form 
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[',d(H*,)] where d(H* )'= 0, and d(11* -) 	co 	P. PP 
d(1T) is called an "intermediate shortest path length" 

and
i 
 is called an "intermediate shortest path". P 

(Initially the shortest paths to all nodes i 0 p are 

assigned infinite length). 

Step 2)  - Find an arc (i,j) for node j,j0i, such that, 

(2.3.1) d(11 4 .) + d(i,j)  < • 1 

When such an arc is found, put d(H* j.) = d(H * . i,) + d(i,j) p 	p. 
and rewrite the label for node j to read, [i,d(e-)] 

Repeat this step until i labels can no longer be changed; 

at this point terminate. The intermediate shortest paths 

have become the desired shortest paths and for all nodes 

•) pj 

Step 3)  - To identify the nodes in the shortest paths 

from node p to some node j 	p: 

a) Put k = j. 

•b) Identify i from the label [i,d(H pk  )] on node k. 

If i does not 
11 11 3 .  

exist there is no shortest path from p to j. 

c) Put k = 	If k = p then terminate, otherwise 

return to 3-b). 
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The proof that algorithm 2.3.1 finds the shortest 

path from a given node p to all other nodes and that it 

terminates in a finite number of stops  is established 

in the following lemmas and theorems[8]. The lemmas 

are stated while the theorems are proved. 

THEOREM 2.3.1  7 Step 2 of Algorithm 2.3.1 terminates 

after a finite number of labellings. 

* 
PROOF:  For any node 5-..e p, d(n 3 ) is  either 

decreased in value or unchanged. Thus the magnitude of 

the intermediate shortest path for node j is bounded from 
1 

above by the initial value. 

' 	Due to the nature of the algorithm, termination in 

step 2 occurs when some d(H*.) can no longer be reduced 
PJ 

in value. It only remains then to show that for all nodes 

j e p; d(H*.) has a lower bound, that is, that the labels 
PJ 

cannot be reduced indefinitely. 

If there exists some semicut 	whose value corres- 

ponds to infinity where p Ç X, it Is clear that for all 
c 

jEX,d(H .) = 00, that is, all shortest paths from p 
PJ 

to j have infinite value. In such cases, the algorithm 

certainly is not able to find some arc that reduces 

d(H. .) to a finite value. These d(e.) remain upper 
P3 

bounded, and are not relabelled, consequently, they cannot 
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, 

be reduced indefinitely and they do not affect termin-

ation. 

Since all the arc lengths (costs) are positive, that 

. 	. 	. is, d(1,3) > 0 and initially d(n) 	œ then d ( e ) is 
P 1  	Pj 

always either a finite non-negative number or ah .  arbitrarily 

large ..on'e. Thig places a'léwéi.'bound on'401 	 zero and 

the theorem is proved. 

'Observe that the lower bound on d(H1) implies that 

negative circuits cannot exist. This is true for the 

networks considered in this chapter, since  négative arc 

costs are not considered. 

LEMMA 2.3.2  - If at termination, the label of node 

k, namely d(5k ) is finite, then a node i which is on the 

path H
pk 
 * will be found at each iteration of step 3-b) of 

the algorithm. 

From Theorem 2.3.1 and Lemma 2.3.1, 

.:LEMM'e2.3.2  - Algorithm 2.3.1 terminates in a finite 

number of steps. I  

Finally, it is required to show that the shortest 

paths are indeed found in step 3 of the algorithm. 

THEOREM 2.3.2  - At,termination of Algorithm 2.3.1, 

the path found in step 3 is the shortest path from p 

to q. 



d(e.) + d(i j) > d(11 
-); V(i,j) E

k 
ple 	 P3 

(2.3.5) 
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PROOF: On termination of the algorithm, some path 

n* q 	p is found using step 3 and its value, d(n
Pq
*  ) 

Pg'  
is found in step 2. Suppose that some other path qq , 

nk , H* 
àlpq. e. pq,'exists that isnshorter" thanji;q  that is 

Then !, 	• < dÉin; q1. 

d(Hpq ) = 	E  
(lei)  

11;V 
Pq 

ej) e Pq (2.3.4) 

But the algorithm has terminated and no more relabel-

ling can occur; thus equation (2.3.1) cannot be satisfied 

and it follows that, 

An equation of the'form (2.3.5), can be written for 

each (i,j) e 4q , and substituting d(nPp) = O  gives, 

c > d(R );V(i,j) 	pq  
pq (i)j) 

(2.3.6) 

• However, equations (2.3.4) and. (2.3.6) contradict 

each other and therefore npq must be  the  required shortest' 

path, that is,. 11pq• " 	a.t!terfli•ifil and the theorem •. • 	..pq. , 

is proVe4 	 H 	 • 

THEOREM 2.3.3  - Any' path that is a subpath of a 

shortest path is itself•a shortest•path. 
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k PROOF:  Let n k i and H. be subpaths of H . If 
1 	

p 	ij 	 Pi 
k H 	is not a shortest path from p to i then some other 
Pi 

, path Hm
i' 
 m k, must exist where de.i ) < d(Hk

Pi 
 ). But 

p 	 p  
m 	 h I. H 	is a subpath of some other path n . 0 H - therefore 
Pi 	 PJ 	PJ' 
d(n) < d ( .). But,fipj is the shortest path and this is 

Pi 	P3 

ri  

P3 - • 
k. 	• a. Contradiction. 'Hence. H 	must. be  the Shortest path . pi 

Similarly is can be shown that 

theorem is proved. 

=H. and the 
ij 

,COMMÉNTS  

1. In step 2 of the shortest path algOrithM where 

more than one shortest path is present, only the first 

one encountered is selected. This fat, together with 

Theorem 2.3.3 implies that upon termination of Algorithm 

2.3.1,a tree is formed whose arcs are all 

shortest paths. 

2. Computational errors can be detected by checking 

the  sign of d(H ) 	If d(H
PP 

 ) is negative then this 
PP  

implies that a negative circuit exists and the problem 

is not well defined. 

,• 3,- .  Step 2 of, Algorithm 2.3.1 dees not provide a - 

systematic way ofeither scanning each'node j Or searching 

'fora m.ode i that-satisfies -(2.3.1 ) : 	order to:urrive• 

members of :the  
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.. 	 • 	. 
at a solution rapidly the following convention is adopted, 

mamely that,.for'eàch node j = 1, 2, ---, (n-1) inequality, 

(2.3.1) is tested for all nedeS i = p,  1, ---, (n-1), 

i-0 j. Algorithm 2.3.1 can now be rewritten as, 

Algorithm 2.3.2  - 

Step 1)  - Same as for Algorithm 2.3.1 

Step 2)  - a) For j = 1, 2, ---, (n-1), 

For i 	p, 1, ---, (n-1), i 0j, 

If d(H .) +d(i,j) 	d(H .) then put pi 	 P3 * 	* 
.'d(H .) + d(i,j), and the label pj 

for node j is rewritten to read: 

.)]. 
P3 

If at least one label is changed in a) then 

repeae2a). 	Other140.se terminate step 2. 

Step 3  - Same as for Alg rithm 2.3.1. 

Observe that for 

ea1 

h application of step 2a), (2.3.1) 

•is scanned (n-1) 2  times. 

Algorithm 2.3.2 is now illustrated in the following 

example: 
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1 
Example 	 • 

.The network N = . (G,d) is shown in figure 23.1. 

N= {p,1,1,3,4}, A = 	(p,1), (p,4) , (4,1) , (1,2) , (4,2) , 

(3,2)1 and the arc  costs., 	 (ipi) C  A, are 

indicated beSide the correspOnding 

C. ,0] 

figure 2.3 . .1 

Step .  1 of Algorithm 2 . .3. 1.  assigns the labels shown 

in the figure above..i.  Then, the first iteration of step 

2a) gives: 



C.,o 1 

•  

I ,9 ] 

P, 

figure 2.3.2 
I 	 ' 

.(Note that three labelsliav changed.) 
. 	. 

• On scanning all  four  nodes once  more  it is found 	- 

that thé labels for node's 1, 2 and 3 : have changed and the 

- resUltingfigure iS shown below: 



c. , 

,4 

[ • , o 
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[P, 

figure 2.3.3 

Finally, on termination of step 2: 

Pt 0 

{4,4] 

figure  2.3.4  



op H 

4,1)1, 

d(IL _) = 
P,3 • 

{(11 $4),(4, 3 )1$ 
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Then, executing step 3, 

e. A 

d(Hp,2 } = 4, 	Hp,2 :='{(pi4),(4,3),(3,2)1, 

" 

d(H).; 1,H
1D,4 

= {(p,4)}.
• P, 4   

Note that the graph formed using only those arcs 

that are in  • theSe shortest paths gives the tree shown in 

figure 2.3.5. This alsà demonstrates thé validity of 

Theorem 2.3.3. 

figure 2.3.5 
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Utilizing the following theorem, some further 

modifications on Algorithm 2.3.1 can be made. 

THEOREM 2.3.4 - For termination to occur, step 2a) 

of Algorithm 2.3.2 is performed at least once and at the 

very most n-1 times. 

PROOF: First of all, observe that step 2a) of 

Algorithm 2.3.2 investigates all possible ways of changing 

all labels, except for p, in the network. Hence, the first 

time that 2a) does not get a label change, termination 

occurs in 2b). Consequently, at the very least, step 

2a) is performed once before termination. This special 

case occurs when for some network e  ISX  I d  = co for X = {p } , 

that is, node p cannot relabel any of its neighbouring 

nodes. 	 ' 

Now, the maximum number of application of 2a) occurs 

! if after each application at least one node i is left 

which can change the label of some other nodes jeN, j 0 i 

e p. Suppose that after the first iteration some nodes 
jeN, j 0 p are relabelled, then, since d(H ) > d(H ) pk 	pp 
V keN, k 	p, (that is, all intermediate path lengths are 

greater than d(H) = O.) any application of (2.3.1) cannot PP 
relabel p, hence p cannot relabel nodes after the first 

iteration. In the worst case, theni node i 	p is the 

only node that can relabel other nodes (excluding p of,  
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course), and after the second iteration, some other nodes 

jeN,“10pare relabelled. Since all intermediate 

path lengths d(Hpi ), keN, k 	p 	are• greater than 

d(H i  ) y  node i cannot be relabelled using (2.3.1) and p  

hence node i cannot relabel any nodes. If at each 

application of 2a) the,worst case results (that is; 'only one 

node remains that can relabel other nodes) then it follows 

that at  application n-1, ri-1 nodes are relabelled for the 

last time. Since the nth  node has no nodes left to relabel, 

it too is relabelled for the last time. Hence, at the 

very most, n-1 applications'of step 2a) need be performed 

and the theorem is proyed. 

COROLLARY 

From this theorem it follows that the first iteration 

1
of step 2a) puts d(H .) 	d(p,j) for all j and p E N, 

PJ 
j # p. Performing this assignment first requires that 

only n-2 iterations of step 2a) be.performed to guarantee 

a solution. 

A new notation will now be utilized to rewrite the 

shortest path algorithm in more suitable for computer 

'implekentation. 

A useful computer programmable representation of 

the variables in this algorithm is to arrange them in 

array form. 'Now it has been shown that arc costs d(i,j) 

are entries in the matrix D, and now the shortest path 



e. 

(Pp = UPp e le (4 , 2$ "9 ' 4).13, (n .4)] .  (2.3.8) 
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, length arrayi I will be defined : to be 

îp = [d(11 9: 	d(H* 	), 	.d(11 * 	)] p,1 	p,2 	"" 	 e 

and the shortest path node array 115 isdefined to be 

(2.3.7) 

Observe that (2.3.7) and (2.3.8) together present a 

convenient way of representing the labels and that an 

entry for p is unnecessary. Henceforth, the entries of 

Ï  will be called labels. 

Then the required representation of the shortest 

path algorithm is; 

Algorithm 2.3.3  - 

Step 1) . -  a) For j-= 1, 2, 	 do lb). 

b) d(11 J ) = .d(pi) 
P 

If d(p,j) < co then cp. = p, otherwise (P. 
3 	 3 

=  j. 

Step 2)--  a) For k = 1, 2, ---, (n-2), do 2h) and 2c). 

b) For j = 1, 2, ---, (n-1), 

For i = 1, 2, ---, (n-1), i 	j, 

If d(Hpi ) 	d(i,j) <d(i) 

then d(H 
3 
 .) = d(5.)  + d(i,j) and 4)- = P 1 	 3 

• 



- 64 - 

If no labels have been changed in 2b) 

terminate step 2 and initiate step 3. 

Step  • )  - TO identify the nodes.on the shortest paths 

- from p to:i 	pr - 	- 

a) 	Put k = j... 	• 	, 

b). Identify i froM  the  value of qh
k. 

Then if 

yb k 	k, no Shortest . path from p to j exists, 

otherwiSenodeiisônpath11. --  
PJ . 	• 

Put-k 	i. -If k = p then terminate., other- 

wise return to 3b). 

Observe that on termination, the pertinent data is 

stored in the I  and Ci ,arrays. To illustrate the use of 

Algorithm 2.3.3 Example 2.3.1 is  •again worked out. 

Example 2.3.2  - (With reference to figure 2.3.1 

Matrix D) 

Applying the first step 1 of this algorithm gives 



[p 2, 3 ,P] • and 

k = 1, j I.p 
=•[4,631] = [4,4 .,4à] , 

65 

and 71) when label Then listing the values of k,j, 

changes -occut it fol-roWs that, 

k = 1, j = 1, 

k = l, .j = 2, 	îp 

= [4,ce,œ,1] ; 	= [4,2, YID ] , 

14,4,3,p1 , 

= 2, j = 2, 	ip e  [4,4, 3 , 1 ] p 	 = [4,3,4,p] p 

= [4,4,3,1] $ 	"ibp = [4,3,4,p] . 

(Note that step : 2a) iS executed three times before 

términation'occurs). 

I gives the magnitude of the various shortest paths 

and using step 3 of the'algorithm, the shortest paths are 

extracted from the contents .of (I
e  

) 	that is, at termination: 
P 

= 4, 	j'113 , p,1 



" 

11p,2  4 , 
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• 
d(11 	) = 3, 

13 , 3  

à(11 • A ) = 4 , 

H  pe 3 	Y 	 Y 

•11p,4 = {(p,4) } . 

The results in this example are identical to those 

in Example 2.3.1. 

2.4 • ALL SHORTEST PATHS IN A MULTI-TERMINAL NETWORK  

In this section, a method is presented for finding 

the shortest paths between all pairs of nodes in a given 

network. It is shown that the algorithm that Floyd [3,51 

originally formulated to solve this problem is actually•

just an extension of Algorithm 2.3.3. 

Consider, once againthe network N = (G,d) where G 

• is an n node finite oriented quasicomplete graph, and d 

• is the cost function. Now Algorithm 2.3.3 manipulates 

the arrays D, 1 and 4) in such a way as to leave in cp 

and 1 the shortest paths and their values from  •p to all 

other nodes in the network. It follows then, that  •by 

executing the algorithm n times, once for each node 

s = p,1,---,(n-1) in the network, that the shortest paths 

from s to all other nodes are found for all s, that is, 



d(112 , ) do-12  

(I) l e n 

,n Çb 2.1 

ln  
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Hsq' for all 	s 0 q are found and the multi-terminal 

shortest path problem is solved. 

After each execution of Algorithm 2.3.3 the row 

vectors 1 and çt. are generated. Renumbering the nodes, s 	s 
s 	l,2,---,n and performing this procedure n times for 

all se gives the following two matrices. These are 

formed by collecting the row vectors. 

- d(ni,n) 

L = 

.n 1 	11 , 2  
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Steps 1, 2 and 3 are independent operations within 

Algorithm 2.3.2, hence, each step may be executed n times 

to arrive at a solution •for the multi-terminal problem. 

Then the following Algorithm can now be formulated 

Algorithm 2.4.1  - 

•,Step 1)  - a) For s = 1,2,---,n, do lb). 

b) For j = l,2,---,n, .j e s, 

d( 11 5) = d.(s,j), 

• If d(s,j) ,  <oothen 	. 

Step 2)  - a) For s- = 1,2,---,n e 'do 2b). 

• b) For. k = 1,2,---,(n-2), do 2c) and 2d). 

c)  For j = 1,2,---,n, 

For i = •1,2,---,n, 1 0 j, i 0 s e  

If  d(e) + d(i,j) < d(II) 

then d(H 
j 
 ) = d(H *  ) + d(i,j) and (P sj  = s 	si 

If no labels have been changed in 2c) then 

terminate step 2 and initiate step 3. 

Step 3)  - To ,identify the nodes.on the ShorteSt_paths 

s = 1,2,---,n, j 

a) P
Î
t k = j. 

b) Identify i from the value of d) Then if 

qh  
sk • 

= k, no shortest path from s to j exists, 

•otherwise i is on•  path H. sj • 



• 
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cy Put k = 	 s then terminatè, other- 

wise return to 3b). 

Steps 2a) and 2b) can be interchanged without affecting 

the algorithm. This is due to the independenceof the 

operations on each row in L, that is, any iterat-i'on on 

some 1x inL  does not affect the calculations on some 
other

• 
1y, y x hence, the shortest paths from node x to nodes 

j = 1,2,---,n,j 	x can be computed in common steps to 

those for node y. Consequently the modification is 

justified. 

Furthermore, in step 1, d(4.i )' = d(i,j) V (i,j) E A 

and at some iteration of 2c) some d(e.)i0s0j, is lj e 

decreased in value. Hence, d(H..) 	d(i,j) throughout 

the algorithm. Then replacing d(i,j) with d(H1j) in  • 

Step 2c) certainly causes the algorithm to converge no 

less rapidly than before. This leads to 

Algorithm 2.4.2  - 

Step 1)  - Same as for Algorithm 2.4.1 

Step 2)  - a) For k = 1,2,---,(n-2), do 2b) and 2f). 

b) For s 	1,2,---,n, do 2c). 

c) For j = 1,2,---,n, j 0 s, do 2d). 

d) For i = 1,2,---,n, I e 	e s do 2e). 
e) If d(n 1 ) 	d(H..) 	d(H .) s 	, 	ij 	sj 
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then  d(II) = d(Hsi ) 	d(H) and . 5  = 

f) If no labels have been changed in 2c) then 

terminate step 2 and initiate step 3. 

Step 3  - To identify the nodes on the shortest paths 

sj 	= 

a) Put h = s and k = j.' 

b)-Identify i from the value of  4)à. Then if 

fiAc = 	no shortest path from s to j exists, 

otherwise i is on the path Hsj* 
c) If i 	h then 11 i:,and go to step. 3b). 

d) If h 	s then terminate, otherwiSe,puth... s, 

k = i and go to step 3b). 

Note that step 3 of the-algorithm-has been altered 

by the substitutien made for .d(i;j) in step 2e.) 	In 

Algorithm 2.4.1, if the 'Introduction of the node 1 
* 	, 

decreases the value of d(H ;-) then the assignment:4 s3  ) . 	i 

was made,that is the second last node in the path Hs j 

(the one before j) is recorded. In Algorithm 2.4.2, 

putting (bsj 	i when  d(n) is reduced does not •guarantee 

that  lis the second last node in II .  This only occurs sj 

if d(H..) = d(i,j). In general,since d(H..) may be 13 	 13 
changed at some point in the algorithm,(that is, inter- 

mediate nodes may be found on the path from i to j) the 
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. 	. 
Matrix 0 must be seay'dhed - 	subpaths of 	.eind all 

the intermediate nodes. 

Let the basic operation in step 2e) be the triple 

(s,i,j) where i is the intermediate node for the path 

H 	By inserting statement 2d) before statement 2b) 

in the algorithm above, the same triples are performed 

only in a different order, hence the outcome is certainly 

not altered. This modified form of the Algorithm reduces 

ail labels d( H ) V (s,j) e A for each introduction of si  

node i,  1= 1,2,---,n, and with this change, Algorithm 

2.4.2 introduces each node n-2 times to guarantee solution. 

It is now proposed that each node need only be introduced 

once to arrive at the desired solution, that is the 

following Algorithm 2.4.3 leads to a program that solves 

the multi-terminal shortest path problem. 

Algorithm 2.4.3  - 

Step 1)  - Same as for Algorithm 2.4.1. 

Step 2)  - For i. = 1,2,---,n, 

For s = 1,2,---,n,s0i, 

For j - 1,2,---,n,j0s,j0 
* 	* 

If d(II) 	d(ii) <d;) 

then d(Hsj ) = d(llsi ) 	do) and cpsj  

Step 3)  - Same as for Algorithm 2.4.2. 
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This is the same algorithm that Floyd presented . 

to Solve the multi-terminal shortest path problem [3,5]. 

The-following theorem shows that step 2 need not 

be performed n-2 times t6 guarantee sôlution.' 

THEORBM 	In.step 2 of Algorithm 2.4.3, each 

node-i,  I= 1,2,--in, need only be introduced'at most 

once to,guarantée that aiLshorest paths.are found.' 

PROOF:  The proof is inductive, that is a basic 

assumption is made for the introduction of some node 

i=k-1; tlen it is proved that from this assumption it 

must also be true for i = k; then if it is true for. i = 

the assumption is true for all i and the theorem can be 

proved. But first the following comments are given. 

Step 2 of the algorithm contains every possible 

triple precisely once and theàe'tilPles are  arranged 

in n groups, with the kth group, that corresponds to the 

introduction of node k, consisting of every useful triple 

with intermediate node k. Furthermore if after the 

introduction of some node k, some d(R s3
.) reaches its 

minimum value, then none of the nodes i > k can possibly 

be introduced to that path since these nodes cannot decrease 

the minimum. Suppose that this algorithm finds the short-

est paths between all pairs of nodes that have k-1 as the 

highest numbered intermediate node. Further, suppose this 
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ds true for all nodes i < k-1; then these shortest paths 

are found after node i 	k-1 has been introduced to all 

d(11 * .) and before'the kth. group has been reached. s3 

Let k be the highest numbered intermediate node 

on path nuve•then  the subpaths Huk  and Hkv  must have 

intermediate nodes that are smaller than k. By assumption 

Huk and Hkv are reached before node 
k is introduced, hence 

d(H ) reaches its lower bound at i = k and the shortest 
uv 

path H 	persists to the end. This assumption then, is uv 

true for i 	k and for i = k-1. 

• The first group of triples with intermediate node 

i = 1 ensures that the shortest path produced by  •  a two 

arc path using node 1 as an intermediate node is obtained 

correctly. Therefore, the assumption is also true for 

i = 1. By induction it also follows that the assumption 

is true for all ieN. 

Letting k = n + 1, it follows that all of the 

shortest paths with intermediate nodes i < n are found 

before the (n+ l) st  group. But these are all of the 
! 
urequired shortest paths, consequently none of the nodes 

i = 1,2,-77,n need be  •reintroduced to improve any of the 

path lengthS, hence the theoreM is  proved. . 

! 	An example that illustrates Algorithm 2.4.3 is now 

•presented.• 	• 
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Example  2.4,1-  For the network of figure 2.4.1 

the values of the cost • function d are given as matrix D. 

figure 2.4.1 

4 

* 	11,1 

1 	3 

3 3 .* 



1 

* 1 3 1 

2 *  22 

 1 3 * 3 

414   * 

00 4 

11 1 (1) = L 
* 3 

co 	1 

1 

L = (1) = 

22 

2 2 

* 2 

2 

7$ 

Then from step 1 of the algorithm L = D, and q) is 

..■•• 

2 * 2 2 
(I) = 

1 * 3 

L4 4 4 

Introducing node 1, that is, for iteration i 	1 

it follows that 

Now only d(1I4 2) 

iterating  •for i =  

is improved using node 1, and 

* 	1 ,12 2 

.4 * 11 1' 

51 * 2 

1 

1.■•••• 



* 2 2 

3 
L .= 

L = 

0.•••• 

* 1 

2 * 

3 1 * 2 

1  23  

H 14 	{(42),(44)1, 

H 21 {(2e4),(4,1)}, d (ii 2  

- 

For  i=  3, 

* 	1  . 122  

4 * 11 1 

5 1 * 2 

1 2 3 * 

Finally, for i = 4, 

* 142 

 4• * 4 	2 

4 3 * 2 

4 1  4.*  
.••••• 

From L and çt■ the shortest paths and their values 

are found on inspection of the entries of L directly and 

by applying step 3 of the algorithm to matrix 

12)  = 	 rf„ 	{(1,2)}, 

d ( ; 13 ) = . 5, 

d( 11 14 ) = 2, 

11 3 e . { (1 ,2 ), 2 , 4 ),(4 , 3)1, 



e. 

d( 34 )  = 2, . 	II 34 = 2,4)1, 
et. 

d(11 41) 	1, 

"=. 2 , 

d(fi43) 7 3 ' 

11 41 =  

e.  

{(4,1).,(1,2)1, 

= C(4 .,3)}. 

11 42 
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d(ii 2  .7: 4 , 

».'" l e 	144 = {(2,4) } , 

d (11 31) e 3 , 

d(; 32 ) =  

n 31  = . {(3,2)(2,4),(4,1 )1,. 

= 11 3  

2. 5  THE SYNTHESIS OF SIMULTANEOUS TRANSMISSION - NETWORKS  

In this section, a procedure to synthesize a simul-

taneous transmission network N 	(G,d,c,t) is presented. 

The terminal capacity function t represents the terminal 

requirements that must be simultaneously satisfied;  •the 

cost function d is specifiable in cost per unit of capacity; 

and the capacity function c is to be found. 

The following program constructs a network that satisfies 



• 

- 78 - 

the requirements, moreover, no cheaper capacity configur-

ation can be found to meet the given specifications. 

A1gorithm  2.5.i - 

• Step 1)  - For i e  
• • 

For j 
i• 	. 

c(i,j). = 0 . 	. 

j 0 1, 

Step 2)  - Using Algorithm 2.4.3 and the cost function d, 

1 , 	• 	find all the shortestipaths : T.pq in - the network. 

Step 3)  - For p 

For q = 1,2,---,n, q 	1), 

c(iej) = c(iej) +t(13 ,(1); 	/i(ipi) E îlpq . 

ObserveS that the algorithm is an accumulative process 

that begins with a network without any capacity on the arcs 

and then builds enough capacity in the network to satisfy 

each requirement, one at a time. 

IMEORBM 2,5..1:  -.Algorithm 2,5.1 constructs a network 

that exactly satisfies the terminal requirements  and does-

so at minimum netwOrk'cost. 

• PROOF  -Because all terminal.requirements,must be . 

411 	satisfied 'simultaneously, dedidated lines 
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must be constructed for each t(p,q), (p,q) e A along 

specified routes to ensUre that  messages  do not inter-

fere with each other. Step 2 of the Algorithm selects 

such routes,:that is, selects'à path 11
Pq 
 for each t(p,q). 

:Suppose  that  for  some Sef-ac.STAe:are 

Ili terminal requirements, such that for each (u -,v)eX, the 

corresponding path ;Iv  contains some specific arc (x,y) 

E Huv  for all (u,v) s X. Further, all other paths do 

not contain (x,y) as an element. Then at the termination 

of step 3, the capacity of arc (x,y) contains m terms, 

that is, 

c(x,y) = 	E t(u,v); V(u,v) s X. 	 (2.5.1) 
(u,v) 

No other requirements utilize arc (x,y) and c(x,y) 

exactly satisfies all requirements as well as the t(u,v), 

(u,v) E X. Generalizing this arguement to any arc in the 

network it follows that . all capacities exactly satisfy the 

requirements and it only now remains to establish that 

the minimum cost network is constructed. 

Since the algorithm constructs a dedicated path for 

each t(p,q) then there is certainly no cheaper way to 

bundedspathelanalongtheshortestpathThus, Hpq . 

since this is done for all (p,q) E A, certainly no lesser 
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cost network that exactly satisfies all the requirements 

simultaneously can be synthesized. 

Observe that the total network cost K can be expressed 

as follows, 

K = 	E c(i,j).d(i,j) = 	E d(i,j) .E t(p,q) 
(i)j) 	 (i,j) 	(p,q) 

V(i,j)EA; V(p,q)D(i,j)Elipq . 	(2.5.2) 

The following example illustrates the use of the 

algorithm. 

Example 2.5.1  -A simultaneous transmission network 

is synthesized using Algorithm 2.5.1. Given the commun-

ication requirements t, the arc costs d (cost per unit 

,capacity) and the configuration G, the capacity function 

c is to be evaluated.for the network N = (G,d,c,t) of 

figure 1.5.1. 

Then the matrix T contains the t(i,j). 

[* 2 6 5 

2 * 1 3 

6 1 * 4 

1 3 2 * 

T 

•••■■■ 
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These requirements are indicated beside the 

corresponding arcs in figure 2.5.1. 

figure 2.5.1 

• 	The arc costs are found in the 'matrix D and the 

'd(i,j) are shown in figure 2.5.2. 

* 	1 co 4--  

4 * 11 1 

00 1 	* 	3 

1 3 3 * 

D = 

• 
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(Note that these are the same costs as in Example 

2.4.1.) 

figure 2.5.2 

Step 1 of Algorithm 2.5.1 initializes all the 

unknown capacities  •to zero. 

As in Example 2.4.1 the magnitudes of all the short-

est paths are found in L, That is, 

[* 1 5 2 

2 * 4 1 

3 	1 	*• 2 

1 2 3 * 

L=  
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and the routes are found in 0 using step 3 of Algorithm 

2.4.3. 

2 

4 2 

* 2 

A 	* 
•••■1 

Then from T, L and 	it follows that 

4 

4 

. t (1 , 2.) = d(j42) . 1,  

t(1,3) = 6, 	d(i) = 5, 	Ille s 

t(1,4) = 5, 	d611 ,4 ) = 2, 	= {(1,2),(2,4)}, 

t(2,1) = 2, 	d(112") = 2, 	112, 1  = { (2,4), (4,1)}, 

t(2,3) = 1, 	d612,D = 4, 	112 , 8 7-  {(2,4),(4,3)}, 

t (2 ,4) = 3, 	.41%,4 ) = 1, 

6, • d(n 3 , 1 ) { (3,2), (2,4), (4,1)1, 

t(3,2) = 1, 	d(n4,2) = 1, f13,2  



6 

figure 1 2.5.3 
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t(3,4) = 4, d(n3,4 ) = 140'4 = {( 3 , 2  2, 4)1, 

t(4,1) = 1, d( H 4, 1 = 1 •  T41  =  

t(4,2) = 3, 	d6I 4  2) 	2 ,  • i'142 = 

t(4,3) - = 2; 	d(114,3) II  3, 	114,3 	{(4,3) } . 

Step 3 of Algorithm 2.5.1 proceeds to add enough 

capacity to satisfy a requirement t(i,j) along the 

shortest path Hi j . 

Then for the first two requirements t(1,2) = 2 and 

t(1,3) = 6,2 units of capacity are built along arc (i,j) 

to satisfy t(1,2) and we add 6 units of capacity along 

the arcs in 1113 to satisfy t(1,3) simultaneously, that 

• is, c(1,2) = 2 4. 6 - 8; c(2,4) 6; c(4,3) m 6. Figure 

2.5.3 shows this stage of synthesis. 
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Proceeding in this way for ail: requirements in the 

network, the synthesized network is:  • 

figure 2.5.4 

and the arc capacity matrix is, 

* 16 0 0 

0 * 0 27 

0 11 * 0 

12 0 9 * 

C 

COMMENT 

Appendix B of this study contains the description of 
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a computer program that implements Algorithm 2.5.1. A 

program listing and a programmed example are also given 

there. This conversational package offers a convenient 

way of solving the simultaneous transmission synthesis 

problem for networks containing up to fifteen nodes. 

2.6 THE 'SYNTHESIS OF .TIME-SHARED-COMMUNICAT ION NETWORKS  

An algorithm to solve the time-shared specifications 

for a communications network N -,t,d,c) is presented. 

The network configuration G, the terminal capacity 

function t and the cost function d are all known. In 

addition, it is assumed that some system of controls 

(multiplexing etc.) allows only one pair of nodes to 

communicate (in one direction) at one time. That is, 

in a given "ttme slice" only one terminal p may transmit 

information to some other terminal q. It is required 

to find a capacity ,  function that satisfies the terminal 

capacity requirements t. At the 'same time it is desirable 

to keep the construction costs as low as possible. 

An algorithm that solves this problem will be 

presented but first some essential notation is introduced. 

If t,---,t are in decreasing order the distinct 1 	m 

values of the terminal capacity function t, then the set of 

arcs in A on which t hus the value t is denoted by A 
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Ap = {(i,j)eAlt(i,j) 	tpl, 1 <p<m, 

and Ail = 

(2.6.1) 

(2- .6,;Z) 

Algorithm 2.6.1  - 

Step 1)  - a) For each of the m distinct values t in t, 

find the set of arcs A eA on which t has 

the value t„ 

b) Put p = 1. 

c) For ail (i,j)eA put c(i,j) = O. 

find  ah l the shortest paths H
Pq 
 and their 

lengths d(Hpq  ) for all (p,q)eA. 

Step 2)  - Using Algorithm 2.4.3 and the cost function d, 

Step 3)  - a) If Ap is liot empty then go to step 4. 

b) If p = m then terminate, otherwise put 

p = 11+1. 

Step 4)  - Find the path that satisfies : 

(2.3.3) d(H) = minfd(H 	' ..)/(i j)EA } ij 	V 

. Step 5)  — a) If. d(n) = 0 then delete (u,v) from A 

. 	and go to step 3. 

b) For all (i, j)EHuv) do 5c). 
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c) If c(i,j) = 0 then c(i,j) = tti and d(i,j) = O. 

d) Delete (u,v) from A and go to step 2. 

The algorithm, then, begins by arranging the require-

ments (the t(i,j)ts) in groups of distinct values and 

putting all the capacities initially to zero. It then 

processes the largest requirements through to the small-

est in the following way: 

The requirement with the correspondingly shortest path 

within a given group is satisfied by building capacity along 

the route where needed; the cOsts along that path are set 

to zero with the result that the cost function is modified 

111, 	 from  •the previous step; using the "modified" cost function, 

the next terminal capacity requirement is satisfied. 

In step Sa) if a given shortest path is zero, this 

implies that either i a) all costs along the path have been 

modified to zero or b) that at least one arc along the 

path had zero cost at initiation and all other arcs in 

the path, if any, have been reduced to zero. If the 

second case should occur, that is some d(i,j) = 0 while 

t(u,v)> 0 where (i,j)cii , then the requirement from 

u to v may not be satisfied by the resultant network. 

However, since for case a) step Sa) gives a large saving 

in computation time by avoiding the• recalculation of the 

shortest path in step 2, step Sa) should be included in 
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the algorithm. To avoid error in cases of zero cost, 

it is necessary to assign a small but finite value to 

the otherwise zero cost arc or exclude step Sa) from the 

algorithm and suffer a loss in efficiency. 

The following theorem shows that Algorithm 2.6.1 

generates a network that satisfies all the given require-

ments. 

THEOREM 2.6.1  - Algorithm 2.6.1 finds a network Lat 

satisfies all the given terminal capacity requirements of 

a time-shared system. 

PROOF:  Suppose that at some point, during the 
1 

synthesis procedure P = h and Ah  is the subset of arcs 

in A that corresponds to the terminal requirements that 

have been considered up to that point. Then all the t(i,j) 

that have been considered are those (i,j) e A uA l . 
P h 

Assume that all requirements up to this point have 

been satisfied. Then at step 4 all the shortest paths are 

calculated and uvis selected. Let t(u,v) be the next 

requirement that is to be considered. Two cases.can 

occur in step 	If the cost.of the path from u'to 

is zero, then no capacities are constructed at this 

step; b) otherwise; all arcs on the - path froM U to V are 

Considered; ; and capacity equal to t(u,v) is built on those' 

arcs in ji that have zero capacity. uv 



- 90 - 

In case a) the cost is zero since step Sc) has 
• 

assigned zero costs;: and finite 'capacities,to all arcs 

in 'if 	Since it  lias  been assumed that'all . reqUirements 

Considered in previbus steps are satisfied . and since all 

these requirements are not smaller than t(u,v) all of 

these non_zerocapacitiesalongII 	must be at least as 

large as as t(U,v). Then t(u,v) is satisfied after step Sa) 

is completed... 	 • 

. Similarly, in case b), capacity need,only be built . 

on zero vàlued arcs sindà all others are at least'as large 

as t(u,V); consequently, t(U,v) is satisfied after step 

Sc): -Since t(u,v) iS satisfied,.and by the asSuMption 

that all requirementS_ considered e .p±,evious to t(u,v) are 

satisfied, and.also since the same assUmption holds true 

for the . very first terminal requirement cohsideréd, then 

by induction it. follows that at termination all the -

requirements are satisfied  and the theorem is proved. 

* COMMENTS  

This algorithm constructs one capacity value per arc 

at the very most and once an individual c(i,j) deter- 

mined, it is not altered. The very worst case, as far 

as total network cost is concerned, is if the algorithm 

assigns values for all c(i,j),(i,j)EA. This occurs when 

c(i,j) = t(i,j) V(i,j)EA; and if for some t(u,v) an alter- 
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nate route is selected  as a path designate“or  construc-

tion oUcapacitieS, then thé shkitteSt path Îluv  at. aWL 
l• 	• 

subsequent steps is.not the direct arc tu,v) - and capacity 

is certainly not constructed on arc (u,v) in any of thé 
' 	I 

steps that follow'; that is,the worst case cannot occU ir.! 

. Assume  then, thet this most expensive case is indéea 
! 

constructed. Further i  let the'capacity flinction on eaéh 

arc assume values that are distinct from all others. 1f 

c(u,v)..is the last arc that is constructed, that iS . t(i,v) 
! 

is the smallest entry in t; then removing this capacity 

by setting c(u,v) = 0 does not affect the requirement 1 

t(u,v) since all other c(i,j), (i,j)cA,  i, 	u, j 	v, must 
! 

have values that are greater than c(u,v) and if n > 2 then 

t(u,v) can use one of the remaining paths to satisfy the 

requirement. Recalling that (1.3.15) gives the maximum 

number of paths from one node to another and that this 

occurs in the quasicomplete graph, it follows that the 

worst case is not constructed and that Algorithm 2.6.1 

yields a suboptimal synthesis. 

By deleting in increasing order of t(i,j) the 
1 

corresponding capacities c(i,j), a final capacity deletion 

reduces the network to oine that no longer satisfies all 

the time-shared requirements. This occurs when for any 

node pair u and v some path 11
k 
uv

c(i,j) > t(u,v) V(i,j) 

e  1I .cannot be found. !..Th é network that!remains after. ! uv 
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the removal of the redundânt arcs (all except the final 

deletion) is the one synthesized by the algorithm in the 

worst case. Thus if the optimal network cost is known 

from a linear programming formulation, a measure of the 

optimality can be made by subtracting this value from 

the calculated cost of the removed arc capacities. 

The following example illustrates how the algorithm 

uses the "modified" cost function to find those arcs that 

certain terminal requirements may share. 

Example 2.6.1 - A time-shared communications network 

is to be synthesized using Algorithm 2.6.1. Given-thel 

terminal requirements t, the arc costs d and the configur-

ation G, the capacity function c is to be found for the 

network N = (G,t,d,c). 	 ' 

The matrix T contains the t(i,j) and these require-

ments are indicated beside the corresponding arcs in 

figure 2.6.1 
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figure 2 . 6'. 1 

The arc costs are found in the matrix D and the d (i , j ) 

are shown in figure 2 .6 . 2 . 
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figure 2,6.2 

Step la) of the algorithm gives: 

= 10, 	 A 	{(14)}, 
e 

'4)1, 



t
5 	

6
'  

= 2, 

( (3,1)}i 

= 

' 1 , 	AQ  

For p - 1, arc (1,4) is selected as it is the only 

member in Al . From the original D matrix hi4  = {(1,2), 

(2,4)) hence, c(1,2) = c(2,4) = t(1,4) = t i  = 10 and 

the first two capacities are set to finite values. Then, 

the D matrix is modified to read: 

• • 

11 7. :2 it f011ows-that d(1112).0  hence t(1,2) 

must be satisfied and no construction is rnee4ed here. 

For p = 
' 24 1I 	is selected as the "shorter" path 

since d(h 2,4) < d(11, ,). But d(h24) = 0, therefore 1,J 
no capacity . assignments.occur‘for 

{.(1,2),(2,4),(4,3)1,  arc (4,3) lâas Unassigned capaCity . 

For 



4 

0 
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henc,e c(4,3) = t(1.,3) =t 3  = 8. The arc .  costs are again .  

modified. 	• 

For P = 4, d(ii3.2 ) = 1 and d(îl 3,4) = 1, either may 

be selected. Taking fi3 2 = {(3,2)1, then c(42) = t(3,2) 

= t
4 
 = 7 and upon modifying D and recalculating the 

shortest paths gives d(n 3,4 ) = 0, that is, capacities need 

not be built to satisfy t(3,4). 

For 11  = 5 it is also found that d(H 2 3) = 0 so that 

t(2,3) is already satisfied, however for H2 	=  

(4,1)1 put c(4,1) = t(2,1) = t s  = 6 to satisfy the require-

ment t(2,1). 

For p=.  6, 7, 8, all shortest paths have zero length, 

hence further capacity is not added to the system. 

The final network that satisfies the time-shared 

requirements isl given in figure 2.6.3. 



figure.  

COlve4ENTS  

Construction stops •once all nodes have paths to 

communicate with all others. 

Appendix C of this study contains the description of 

a computer program that implements Algorithm 2.6.1. A 

program listing and a programmed example is also given in 

this Appendix, 
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2.7 CONCLUSIONS  

In this chapter it was shown that shortest path 

techniques can be profitably used to find solutions for 

communication network problems; moreover, it was shown 

that in the• case of the simultaneous transmission network 

a minimum cost configuration could be found along with 

the capacity function. ' 

The time-shared synthesis was shown to be an easily 

programmed suboptimal procedure for obtaining a satisfac-

tory solution. It is suggested that other algorithms 

employing the same shortest path techniques be developed 

• to find other suboptimal procedures. Then by comparing 

the results from several such Algorithms for one set of 

requirements and costs, the minimum cost network obtained 

could be selected to give the best suboptimal solution for• 

• the time-shared problem. This is left for further study. 



*CHAPTER ' •III  
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3.1 SUMMARY  

In this chapter, a procedure is presented for 

synthesizing a time-shared communication network that 

exactly meets the terminal requirements; that is, the 

resultant network has no redundant capacity on any of 

its channels. The conditions under which such a 

network is realizable are given, and the methods presented 

permit constraints on the channels to be taken into 

account. A computer program that implements the synthesis 

procedure given in this éhapter is documented in 

Appendix D. 

In any .  "time-slice", if there is no excess capacity 

in the network for a given terminal requirement t(p,q), 

that is,if the maximum flow from p to q is exactly t(p,q) 

then no network with less total capacity can be found 

that exactly satisfies the terminal requirements. This 

implies, that in the case where the cost per unit capacity 

is the same for all arcs, the minimum cost network will 

be found using the algorithms that follow. 
1 

In section 3.2, some necessary preliminaries are 

given. The algorithm for synthesizing a general network 

is presented and proved in section 3.3. In section 3.4 

some illustrative examples are given, and section 3.5 

presents an algorithm for finding  the communication network 

with only non negative capacities should the generalnetwork 
• 	 . 

contain . negatiWcapacities. 
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in the union of the 
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It should . be  noted . that theorems 3.2.1, 3.3.1, 3.5:.1 

and 3.5.2 have been.stated somewhat differently by - 

Resh [14]. ' 	 • 	. 	- 

3.2 MATHEMATICAL PRELIMINARIES  

In this section, some preliminary definitions and 

theorems are introduced. These results are essential to 

the development that follows. 

Let t , t , 	tm, be in increasing  order, the 
1 	2 

distinct 'values of the terminal capacity function t. 

Then the set of arcs in A on which t has the value t 
li 

will be denoted by A,, thus 

(3.2.1) 

and since the number of 'arc' 	A is n(n-1), then 

1<m<n(n-1). - 

A* will denote the set of arcs 

sets A, A , ---, A , that is, 
1 	2 	 11 - 1 

Given a circuit H 	in G and a real number 
PP 

the network N = (G g) whére 



g(i,j) 

bicircuit  nets.  

• is called the bicircuit net  in G, corresponding to the 

•pair (Il k
' 
 a) . Further, two networks are called "circuit 

PP  
p equivalent" or 	-equivalent  if  one of them is the 

result of the :addition to the other:, of 4 finite number ' of 

Theorem 3 . 2 .1 - Given a network N = (G,c,t) , for every 

arc (i, j) in A, there e)cists at least one semicut Sx  

containing (i , j) such that the restriction t/Sx  of the 

function t , attains its maximum on the arc (i , j) . 

Proof  : There is alWays .at lea:st one semicut in 

containing arc (i, j) , namely, the semicut S {1}  - . 	{i }  x {i } c 
- 

Furthermore , since G hàs a finite number of nodes , the 

number of distinct semicuts containing (i , j) is finite , 

and for some semicut S among them (where S is the 
X 	 , 	X 

minimum valued semicut according to the definition of 

the function t in (1. 4 .10)) , it follows that, 



I Sx i c  (3.2.6 

and therefore that  :t(i t(i,j). 	Q.E. ') 
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sx 3.2.4) ,i) = 

Also from the definition of t, for any (i',j')• 

t(i". e i"- ) 	ISx1 	; 	 Sx 	 (3.2.5) 
I c 

and combining (3.2.4) and (3.2.5) , giv-es 

m - restriction:  for any network N = (G,c,t), by saying 

that a semicut S X G is an m - restriction  for some 

arc (i,j) (with respect to the function t) it is meant 

that the semicut S contains (i,j) and that the restriction X 

t/Sx  of the function t attains its maximum at the arc (i,j). 

When no confusion should arise, it will be simply stated 

that S is an m - restriction for (i,j). »X 

essential equality:  for any two arcs (i,j) and (i",j') 

in the set A , the following equality is true, namely, 

t(i,j) = t(i',j') =t . if this equality implies that 
, 

a semicut in G is an m - restriction for (i,j) if and 

only if Sx  is an m - restriction for  (1,J'),  then it 

is called an essential equality. 
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Throughout this'chapter, the symbol f will denote 

• the set of semicuts in G, each of which is an 

m - restriction for some arc in  A. 

THEOREM  3.2.2 	Given a network  N=  (G,c,t) whose 
terminal capacity function t contains only essential 

equalities, if Sx  E !p is a semicut in G then: 

i) S is an m - restriction for every arc (i,j) X 

in A and, therefore A (:: Sx  and A Clf.. 

ii) If p < p" then s, n A . 	0. 
A 	P 

PROOF:  (1).. 	being in f implies that there exists an X 
arc (i,j) in A such that S is an m - restriction for X 

(i,j). By the definition of A, t(i,j) = t(i",j') for 

every arc (i',j') in A and since each such equality is 

an essential equality, Sx  is an m - restriction for every 

arc (i',j') in A . Then every element in A is an 

element in S and A CISX  C__f . X 	p p 

(ii), Assume that S, n  A , e 0. Then there iS 
A 	 P 

at least one arc (i,j) such that (i,j) c A , and (i,j) E  S. 

If (i,j) is in A..,  then t(i,j), and if (i,j) is in S p 	 X 

then, since the maximum value of .t on. Sx  is 	t(i,j) < t p . 

	

and(s, n  A +) H 	n  A 	H 
A 	 P 	\--/ 	A  

1-1+2  

But p<p"makes 

SX  n A 	0.  p 

a contradiction, hence, 

LEMMA 3.2.1 	Sx  = Sx  rI  A71  
PROOF:  By THEOREM 3.2.2 (i) and (ii), A 

(sx n Am)  



LEMMA 3 . 2 . 2 • (i) 

(ii) 

PROOF:  

n (sx n A*)  
A, u (sxfl  AI*1 ) 

11+1 

x n Ap*)  x 	A.„) 

x n A*  
(Afl  

(A i  

(A , r1  A ) H 
p U (A n 1.1 	-1 )  

A* 
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s, n A* 
A 	11+1 (sx  ft1) L) 	(s, 	Li 0 

(sx  n. 	u 	(sx n 
rl (Al Li --- (J 	' 

Utilizing the notion of an in - restriction, the 

following theorem shows that not all of the semicuts 

indicated in (1.4.10) need be evaluated to obtain the 

terminal capacity function. 



is some (i',j') 

also by (3.2.8), (3.2.9) and the definition (1.4.10), it 

follows that 

(3.2.10) 

3.2.9) 
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•THEOREM 3.23  -.GiVena netwdrk  N=  (G,c,t) for'éirery 

(i,j) 'c A, the fdllowing expression is an-equivalent' 

definition of the terminal 'capacity function t. 

j) = min aSx 1 	/ S, is an m' - restriction 

for (i,j)} 	 (3.2.7) 

PROO: 	Let S* be any semicut containing (i,j) but X 
without being an m - restriction for (i,j) 	Then there 

, (i",j') 0 (i,j)• for which t(i - ,j') is 

the  maximum  value of tiq. ',Therefore, 

• 	 - 

Then from (1.4.10), since Seeis some-semicut containing - 

(3.2.8) 
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therefore, those semicuts that contain (i,j) and are 

not m restrictions for (i,j) do not affect the 

minimum; hence, (3.2.7) is an equivalent definition 

for the terminal capacity function. 

In the synthesis algorithms, the capacity 

function is subscripted, that is c : A.+R, 	0,1,---,m. .11 
This is because the algorithm is an accumulative 

process that begins with a network with no capacity and 

then adds capacity on various arcs. Then each  C  represents 

the value of the capacity function at iteration p; moreover 

when p= m, the procedure terminates and then c = cm , the 

required capacity function. 

• 3.3 ALGORITHM FOR - SYNTHESIZING A NETWORX. 

Given a finite, quasicomplete, oriented graph 

G = (N,A); given also the terminal capacity function 

t : A÷R such that t contains only essential inequalities 

and that for every arc (i,j) in A there exists a semicut 

S
x 

in G which is an m - restriction for (i,j); then a 

network N = (G,ct). where the capacity functiOn c. rrealizes" 

t, is obtained  as foilows: 	 : 

Algorithm 3.3 -.1  

1.. a): 'FOr - eachof:the.m - distinCtsvalues t' in t,. 	• 

- 	.find the set! Of arCs - A- CIA on ,Whicht has':the - 

Value -  ,t 



E {x(i,j) / (i,j) e A }= 

11-1: 
(3.3.1) 

3. 	If p= m then c(i,j) = cm (i,j) and terminate, otherise 

- min  {(S  1, f 1. 

(1.4.10) 
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b) For each A find  the set of semicuts 

where each S efp  is an m- restriction for all X  

E A 31 . 

c) For all (i,j) c A put c o Ci,j) = 0. 

d) Put 	=1. 

2. 	For all arcs (i,j) e A, 

if (i, j) 	A then C „ Ci,j) = C 	(.i e j) 
P 

otherwise c •(i,j) = x(i,j) 'where, 
. 	• 	11  

put p = 31+1 and go to step 2. 

- Observe that on - termination, 

function c. 

. 	The'.fOliowing theoreuL proves that Algorithm 3.3.1 

- obtains  the  capacity_ functiOn» for the:lietwork s 	1 

THEOREM 3.3.1 	Given the inetwOrk N =(G , ç ,t) as defined 

above Algorithm - 3.3.1, finds  the  capacity function c sO 

that , for all 

:In is the required capacity 

that is , the terminal capacity function obtained by evaluating 

the semicuts in the resultant network is exactly the same 

as the terminal capacity function given before the synthesis 

procedure begins. 



(3.3.2) 

A 

, m ,  

(3.3.4) 

For any semicut S 

as follows: 

the value of S v  can be written 
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PROOF: 	According - te:Theerem  3L2.3, it is énOugl:tOskow 

that for all (i,i) E A, 	•• 

. • 	 = min{1Sx 11 Sx  isan m - restriction for 

,j)} 

Now, from step 1-a), the values of t are the numbers ' 

t 	t . Since t contains only essential equalities, m 
; 

then Sis an lm - restriction for all (i,j) e A 	and the X 
minimum valued semicut in (3.3.2) is the same for .all arcs 

in An , hence it is enough to show that for every p=1, 

t
P  -= . 

min {iS XI n 
I J . -S, is  an m 	. restriction .for any 

Moreover, step 1-b) selects the semicuts that are 

m - restrictions for (i,j) c A and places them in f ; 

therefore instead of showing (3.3.3) it is only necessary 

to show that for every p=1,2,---,m, 



i sx  

=E 

c (i,j) =  c_ 

(i,j) 

= x( i,j ) 

(3.3.6) 
11- ,j). 
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= E{cm (i,i) / (i,J) e sxn  A* } 
11+1 

+ E{Cm (is,i) 	(i p i) 	S x  r 1 Apee } 

Since (i,j) e A implies that (i,j) ÇZ A 

the definition of c in step 2, for every 

j 

Since (i,j) e Sx  n Ap* implies that (i,j) 	A U 
11 

by the definition of c i , once more, for every (i,j) 

(by Lemma 
3.2.1) 

A m' 
n A* 

1, 

=•E{ cm  

Utilizing (33.5) and (3.3,6) yields: 



AILJ --- LJ Ap-1 
= c o (i,j) = 0 

and 

, j )  •/ (i, j) 
- 1 c 

P - 1 

E{ 
P-1 

= E{X(iyi) / (iej) E 	px  Isx1 (3.3.9) 

From (3.3.1) in Algorithm 3.3.1, is given Y-p 

{I 
- 1 1 

E f (3.3.10) 
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The expression for.IS,I can  be expanded_as 
I 	c111 

follows by Using. Lemma 3.2,1, Lemma  3.2.2 and  by observing 

that since (i,j) e A then  i,j) e A* = 

by the definition of c, c 	(i,j) = 
P 	P - 1 

for every (i,j) e  A. 

• • • 

E{ c 
P - 

ej) / (i,j) E A 

,j) 	(i->j) E A* } 

{ c 
P - 1 i, j ) / ,j) E nA*, (3.3.8) 

Substituting (3.3.8) into (3.3.7), for ,every semicut 

in f 
P' 

t=  E{X(i,j) / (i,j) E A 1 
• p  

min { I Sx  I 

P - 1 

= min [E{x(i,j)  Ï.  (i,j) c A} 
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since the values in x are real constants,C3.3.9) and 

(3.3.10).together'yield C3.3.4). Q.S.D. 

COMMENTS .  . • 

(i) . Theorem' 3.2.1 establishes that in a network'where 

c is1mown and t iS'obtained froni. the semicuts evaluated • 
• 

with respect to c, each terminal capacity in t has an 

m - restriction associated with it. Consequently, if 

a network is to be synthesized, then to each of the values 

in t it is necessary that there correspond at least one 

m - restricted semicut, otherwise the network is not 

realizable. 

The synthesis procedure requires that only essential 

equalities be present in the terminal capacity function. 

This means that any semicut that is an m - restriction 

for some arc in A must also be an m - restriction for 

all other arcs in A . Observe however'that if the 
- 

m - restriction condition is relaxed, two terminal 

capacities without m 	restrictions can still be 

essentially equal. In ,such a case, at least one among•

the sets f will be empty, the function x,in (3.3.1) 

is not defined and therefore, the synthesis procedure 

cannot be applied. 

If the function t contains non-essential equalities 

while the m - restriction condition is satisfied for all 

arcs in A; t can always be perturbed slightly to 'obtain 

a new function  t  satisfies the m - restriction 

condition and contains only essential inequalities. This 
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is done  bÿ  inspecting t and changing the required values 

in t by a small amount to obtain t e  so that the essential 

equality condition is satisifed and the m - restriction 

condition is maintained. Then any realization of te  reduces 

to a realization of t as c approaches zero. 	This approach 

is further discussed and illustrated in Example 3.4.2. 

(ii). In the synthesis procedure of Algorithm 3.3.1, the 

function x used in the definition of c is not uniquely 

defined (it is so only in the case where each A has only 

one element, that is, only in the case where there are  • 

m = n(n-1) distinct values of the function t). This suggests 

that possibly more than one realization of the given function 

t could exist. In such cases, it is natural to admit the 

presence of constraints on the arcs of the network. Then, 

among the possible realizations, the required ones are those 

satisfying the constraints on the arcs of the network. 

This is a bonafide optimum synthesis procedure. 

Suppose that each of the arcs (i 

(i k ,jk) is an element of Ap  and t(i o i )  
j  1 )   

t (i
2 
 ,j 
 2 

t(ikPik) are essentially equal subject to  •the m - restriction 

condition; then the most simple constraint is to select 

one of these arcs as one that is "preferred" to the others. 

,Since the synthesis procedure obtains an optimal 

for the uniform cost case the 

solution 

redefined, functiOn d can be 
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that is, the constraints in the synthesis of a network can be 

conveniently represented by the values in the constraint  

function  d:A 4. R . Hence for the arcs A , choosing the 

minimum of the values dCi,j), (i,j) E A 	is the optimization 

criterion; that is, xCi,j) takes on the assignment in (3.3.1) 

such that the arc (i,j) corresponds to the arc in A with 

the minimum valued constraint. This is illustrated in 

Example 3.4.3. 

3.4 	SOME EXAMPLES USING ALGORITHM 3.3.1  

In what follows, three examples illustrating  the 

 synthesis procedure are given. In the first example, the 

function t contains only essential eqUalities and there is 

no constraint function, that is, the assignment in (3.3.1) 

is arbitrary when there is :more than one arc in A . The 

second example is one in which t must be perturbed sinte 

some non-essential equalities are present. The third 

example considers the 'same function t as in the first 

example except with constraints. 

Matrix notation is used for the functions, that is, 

d e  c and t are represented by the matrices of values, D, 

C and T. A simpler notation for semicuts is also used; 

for example the semicut {(2,1), (2,3), (4,1), (4,3)1 is 

denoted by 24/13 (numbers greater than 9 are not used here 

to represent nodes). 



by using Algorithm 3.3.1. 

=.1(1,2 l,4)}, : f = {1/234 }, 
1 

2, 
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Example  3.4.1-  The capacity matrix C realizing the , 

terminal capacity matrix T under no constraints is obtained 

From steps 1-a) and 1-b) of the algorithm, t, 

and f_ are . detertined and are 

= t(24),(3:,1),(4,1) y, 

= 

(S;2 )1; 

, - 

{234/1},* 

{124/3,24/131,' 

{14/23,4/123} 

- {12/34,2/134 }, 

{134/2,34/121, 

{123/4,23/14,13/24, 

3/1241. 

By simple inspection of each triple (t ,A ,f ) for 
P 

= 1,---,7,  t contains only essential equalities and the 

m - restriction condition is satisfied for all arcs. 



For 	= 2 

Taking x(2,1) = 

2,1) + x(3,1) + x(4 -,1) = 3 - min •{0} =,3. 

x(3,1).= 0, x(4,1) = 0, then, 

S. 

0 

0 
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Therefore, a Capacity function realizing t can be obtained. 

Using step 1-c) the initial capacity matrix is 

O .  

0 

:0 • 

From step 2 of the algorithm,  for . p = 1, 

x(1,2) + x(1,3) + x(1,4) = 2 - min {0} = 2. Then takin'g 

x(1,2) = 0, x(1,3)  =2, x(1,4) = 0, as one possible 

definition of the function x 'on .A  gives, 
1 

0 0 

00 

0 



For p=  3, x(2,3) + x(4,3) =  4-  min {2,3}  =2.  

Hence putting x(,2,3) = 0, x(4,3) = 2 gives, 

20  

0 0 

00  * 0 
C4 

-min , {  2 

* 0 

2. 

,3,3 

0 

min 

3 

:.= . 
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For 1-1  = 4, x(4,2) = 5 - min {4,2 }  = 3 and then the 

only definition of the function x on A. is x(4,2) = 3 
4 

and, 
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Finally, for p x(3,4) 	8 - min {4,7,4,4} 

Then C = C7  represents the capacity matrix  that 

 realizes the terminal capacity entries in T. From C ihe 

network representation is shown in figure 3.4.1. 
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Example  3.4.2-  The Capacity matrix C realizing the' 

terminal capacity matrix T is obtained using the synthesis 

Frocedure. Again no constraints are given. 

* 1 1 1 

4 * 6 5 

4 6 * 5 

4 6 6 * 

However in this example the matrix T contains non-

essential equalities. Indeed, the equality t(2,3) = t(3,2) 

implies that the arcs (2,3) and (3,2) should be put in i  the 

same A while no semicut can contain both those arcs. 

Then, consider instead the matrix T e  corresponding 

to t e  , the perturbed terminal capacity function, 

where E ,E ,E are arbitrarily small numbers sùch that 

	

2 	3 
O<E <E <E 	Now only essential' equalities are present. 2 	3 



4 . ,;• 
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Following the procedure of Example 3.4.1, a capacity 

matrix C e  realizing T e  is constructed. Letting E ,E and 
1 	2 

e tend to zero in the matrix C c , the matrix C realizing X 

T,is obtained. 

From step 1 in Algorithm 3.3.1, 

={1/234},  

{ (2,1),  , 	 = .{234/11, 

1 = {23/14,123[4 } , 
3 

= {2/134,12/34 }, 

= {3/124,13/24 } , 

= {34/12,134/2}, 

{4/123,14/23, 

24/13,124/3 }, 

For 1-1 = 1, x(1,2) + x(1,3) + x(I,4) = 1 - min {0} = 1; 

and putting x(1,2) = 1, x(1,3) 	0, x(1,4) 

{(2,4)  ,(3  

= { (3,2) } , 

= 

,4)1, 



= 5  J. 

For  p'=  5, x(3,2) = 6+E‘ 
1 

- min {0,1} = +E 
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0 * 0 0 

0 • 0 	* , 0  

0 0 0 * 

For  p=  2, x(2,1) + x(3,1) + x( .4,1) = 4 - min {0} = 4; 

and putting x(2,1) = 4, x(3,1) = 0, x(4,1) = 

* 	1'O  0 

4 * 0 0 

0 0 * 0 

00 

•" For 	3,. x(2,4) + x(3,4)  

If x(2,4) =, 5 then x (3,4) 

CC C 
1 

C e  
2 



O 

5 

0 

+E- min {E -E ,1+E-E,5,1 }  
2 	1 	 2 	1 

* 	1 

6+E * 
1 

E - E 
2 	1 

C e  = 
6 

For  p'= 6, x .(4,'2)  
' 	2  

min {6+  

x (4 , 3) = For 

E 
1 

e } = 

4 

" 	7 

capacity matrix is, 

9.1 •••• 
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= 6 +'.c 	E •:« 	E 
1 	2 

E .  - E 	6+s -Fe 
2.1. 	3 	1 	2 

Then letting E 	E and e • tend to zero, the desired 
1 	2 	 3 
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and this network has the following representation: 

figure 3.4.2 

Example 3.4.3.  - The capacitYfiatrix-C, realizing the matrix 

T under the çonstraints in  :D iscibtainedasfol'lows: 

The procedure to be followed is that of Example 3.4.1 

with the only difference being, that for the definition of 

the function x on the set Â (p=1,---,7) the constraint 

matrix is taken into account. 



0 

0 

0 

0 	0 

0 	0 

* 	
•
0 

0 	* 
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Initially, 

0 	0 

For p = 1, x(1,2) + x(1,3) 	x(1,4) = 2 	min {0 }  = 2 

and since d(1,2) < d(1,3) < d(1,4), putting x(1,2) = 2, 

x(1,3) = 0, x(1,4) = 0, 

For 	= 2, x(2 1) + x(3,1) x(4,1) = 3 - min (0) = 3 

and according to the matrix D we must let x(4,1 

x(2,1) = 0, x(3,1) = 0, and therefore 

3, 

For p = 3, x(2,3) + x(4,3) = 4 - min (0,3) = 4 and 

since d(4,3) < d(2,3 ) , x(4,3) = 4 while x(2,3) = 0, and, 
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For p = 4, x(4,2) .  = 5 	{6,7} = -1, that  

no chOice can be  made and, - 

For P = 5, x(2,4) = 6 -  - min'{0,0}, = 

* 	0 	6 

5 	00 	* 	0 

	

-1_ 	4 	* 

For p = 6, x(3,2) = 7 - min {1,2} = 6, 

For p = 7, x(3,4) = 8 - min {6,6,8,6} 
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Therefore, the required matrix is C = C and 

the corresponding network.  ha s thé following representation. 

figure 3.4.3 

3.5 SYNTHESIZING A COMMUNICATION NETWORK 

The algorithm used for the synthesis of a network 

realizing the given terminal capacity function, can be used 

for the synthesis of communication networks. It has been 

assumed that the restriction for the communication network 

is that all values of t and c be non-negative. 



(3.5.1) = 

C.  +  • g 	+ 	- 
1 	1 

(3.5.2 

(3.5.3) 
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As in Example 3.4.3, Algorithm 3.3.1 may construct a 

network in which some of the capacities are negative real 

numbers. Since, in such cases, the synthesized network is 

not a communication network, it is of interest to know if 

there is an equivalent communication network. 

In what follows, the conditions under which such an 

equivalent communication network exists are given, an 

algorithm for obtaining such a network is presented and an 

example illustrating the procedure is given. 

THEOREM 3.5.1  - If two networks are C - equivalent, then 

they are equivalent (that is, they have the same terminal 

capacity function). 

PROOF: Let N and N be the two C - equivalent networks 
1 	2 

where, 

If N 	(G,g ), - gi 	1 
nets that are applied to 

N 	(G,g ) are the bicircuit 
gk 	k 

to give N 2  then ' 	' 

To show that N 1 	2 and N are equivalent, it is enough 

to show that for each semicut S in G, X 



X  
1 

= 

(G, g,) is a bircuit net 
S À 

(3.5.6) 

is some circuit in G and n h 
PP 

(3.5.7) = S 

then, 
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But (3.5.2) and (3.5.3) 'yïelds, 

and it is only necessary to show that, 

to get (3.5.3). 	. 

. 	It has been shoWn'that 

for 9ach À = 	 k, if 

where a
X  is some real number.  

corresponding to g 

For each S, in G since, 



•i,i) / 	c 
X n C PIY.LJ "TIPP )}  

= E{ g x (i,j) • / (i,j) 

) card (sx(111,) 

card' ( Xf11111  ) - card ( 
 DP n npup )  
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= 	 '/' Ci,j) e Sx  

re  r) uh. 
fd card (...0x1 I-pp 

h 	,-,7,7ff 
xn llpp ) 	(sxH ilpp)}  

(sxn llphp)}+E{g,(i, ; )/(i,J
)
c(sxr,llpp  

Thus (3,5.5) is true and the theorem is proved. 

The following algorithm takes a network with some negative 

capacities on the arcs and obtains a communication network that 

is equivalent to that network. 

Algorithm 3.5.1  

. FOr all (i,j) lèt c (i,j) = c(i,j). 

•b) 	Put p = 0. 	 • , 

2- Locate some arc (p,q) such that c (p,q)<0. If no 

such arc exists then terminate since c is the capacity 

function of the required communication network. 

'k 3- Locate some path H
q 
 (p,q) fé H

Pq 
and for any (i,j) 

P  
in the path, c(iii) 	0 and at least one such arc 

has positive capacity. 
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4-a) Then H 	= rik 	{(q,p)} and N = (G,g) is the pp 	pq v 	 g 

bicircuit net that corresponds to the pair Ce a) where 
PP' 

• 
a = - min {c 	(i,j)E H. 	c (i

' 
 j).>'0}. 

• PP'  

b) Put c 	(i,j) = c (i,j) + g(i,j) V(i,j) E A. P+1 	p • 
c) Put p-= p+1. 

d) If c (p,q) < 0 then go to step 3, otherwise, 

C 0  (i,j) 
= C 	V(i)j)  11  A-,,11 - = 0 and go to..step 2. 

During the course of the following theorem, 

Algorithm 3.5.1 is shown to be valid. 
.• 

THEOREM  3.5.2  - A network N = (G,c,t) is C -equivalent to a 

communication network N = (G, cm , tm) , if and only if, t(i,j) 

and c(i,j) + c(j,i) are both non-negative for each (i,j) E A. 

PROOF.:  Suppose the network N is C -equivalent to Nm  . Since ,  

Nm  is a communication network, t (i,j)>0 for all (i,j) E A. 

By theorem 3.5.1, . N and N are also equivalent, hence 

tm (i,j) = t(i,j)>0. 

Now consider any arc (i,j) in A and apply to N some 

bicircuit net N 
g 

= (G,g) correspohding to the pair (Il k  a) where 
PP" 

(i,j) .k and a is a constant. Then c = c +g is the 

	

PP 	 P 	m 
capacity function of the resultant network and since all values 

in cm are positive, c Ci j) = cm  (i j) + g(i,j) = c (i,j) + a, y 	, 

cp (j,i) = cm (j,i) + g(j,i) = cm(J1) - a, hence, c p (i,j) + 

cli (j4)=C111 (i,j)+c(J,i). .Since a finite number of 

applications of bicircuit nets results  in N,  then, c(i,j) 

	

c(iyi) > 0 . 	 . 



• 

• 
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Now suppose that t(i,j) and c(i,j) + c(j,i) are both 

non-negative for each (i,j) e A. In order to show that N 
is C -equivalent and hence equivalent to Nm' it is enough 

to show that if N contains arcs with negative capacities, 
then it is C -equivalent to a network in which the number 

of arcs with negative capacities is one less 'than  the number 

of such arcs in N. Continuing in this manner, a negative 

valued capacity is eliminated in each new C -equivalent 

network until all capacities are positive and the C -equivalent 

communication network ià obtained.  This  procedure is just 

the One that is performed by Algorithm 3.5.1; hence, proving 

the above proposition, also proves the algorithm. 

It is only necessary, then, to show that if (p,q) E A 

such that c(p,q) < 0, then it is possible to construct a finite 

sequence  1 0 N 1 	N5  of nets Where N = (G,c ) p=0,1 ' 	
s 

. 	 • 	 .. 	 .p - 	 p 	 . 	• 	•  

such thatS! is C-equivalent to U for each =1,2,---,s and 
- 

c s (p,q) >  O.  It is pràposed, then that'Algoritbm 3.5.1 

constructs such a sequehce. 	 . 	 . 

First of all note that the 'algorithm starts off with 

co = c and then builds neW capacity functions by applying 

selected bicircuit  nets 	Hence, in .generaI, N 	(G,c ) and . 	. 	 P 	• 
-c .-). aro C

1) 
-equivaientand inpartiCular, N and N s  P- I 	 , 

are C -equivalent. 

In step 4 of the algorithm, since a is always negative 

(assuming that an appropriate H q  can be found in step 3), p  

the capacity on arc (p,q) is increased at each iteration 

of step 4-b), that is, c (p,q), p=0,1,---,s, increases 



O 
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, 

/IMP- 

monotonically towards zero. Note however, that if c(p,q) + 

.c(p,q) < 0, then a cannot be guaranteed to be strictly 

negative . since c(q;p) may be reduced to zero and, subsequently 

c(p,q) cannot - be increased further towards zero. Thus 

c(i,j).: + c(j,l) > 0 for all 	e A guarantees this 

monitonic increase towards zero. 

At each iteration of step 4 either a) c (q,p) is the 

minimum valued capacity on Hk and hence c
+ 
 (p,q) is positive 

PP 	 111 
and c

-1- 
 (q,p),  = 0 or b) some arc in Hk  other than (q,p) has 

P1 	 PP 
its corresponding capacity reduced to zero. It follows then, 

that if the capacity of arc (p,q) is not increased to a positive . 

value at iteration p+1, then there is one less appropriate 

path (a path that has no zero capacities and at least one 

position capacity) at iteration p+1. 

It remains only to show that for c (p,q) < 0 an 

appropriate path can always be found. If this is true, since 

the number of paths and hence the number of appropriate 

paths, is finite, it follows from the monotonic property 

that cs (p,q) > 0 for some finite p = s. 

Suppose that for c (p,q) < 0 no appropriate path can 

be found. Then all paths joining p to q have either all 

the capacities with negative values or at least one arc 

with zero capacity. Therefore, since c (p,q) is also 

negative', no path from p to q supports positive flow and 

t(p,q) < O. But this is a contradiction and it is concluded 

that an appropriate path can always be found if c (p,q) < O. 

Q.E.D. 



2 0 
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The following example uses the results from • 

 Example 3.4.3 to illustrate the use of Algorithm 3.5.1. 

Example 3.5.1 - From Example 3.4.3 we have: 

Note that although the elements of .T :are  non-negative, 

there is one entry in 	namely c(4,2), that is negative. 

• Since c(4,2) 	c(2,4) =  •5 is a positive number, the conditions 

of Theorem 3.5.2 are satisfied and,a communication network N 
equivalent to the network defined by T and C, can be found. 

Step 1 of the algorithm identifies c = c as the first 
0  

capacity configuration in the sequence and step 2, locates 

arc (4,2) as the first (and only one) with negative capacity. 

Step 3 locates path  , 111. .=  C(4,1), (1,2)} as an appropriate 
, 4 2 

path, that is, one with at least one positive capacity and no 

zero valued capacities. 

Step 4 evaluates a, 
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and then adds to the net No  = (ç,é o ) the bicircuit net 

corresponding to the pair (11' ,-2) which gives the network 
4 2 

N . 	CG,C ,) where. , 

* 	0 2 

2 * 0 4 

0 6  *2  

114   * 

Since there are no negative capacities in C , C = C 
1 	m 	1 

and the communications network N = (G, c m. ) has been found. - 	m  

This graph representation is shown in figure 3.5.1. 

figure 3.5.1 
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Note however, that the communication network does 

not necessarily satisfy the constraint matrix D in the 

original problem. 

3.6 	CONCLUSIONS  

In this chapter, an optimal procedure for, synthesizing 

a network with uniform cost channels was f6rmulated. It was 

shown that a network exactly satisfying the require9ents is only 

realizable under certain conditions. Finally, it was demonstrated 

that a communication network can be constructed from a general 

network given that certain restrictions are not violated. 

• Although the emphasis was on communication networks, it 

should be apparent that the synthesis procedure  •offered in 

Algorithm 3.3.1 finds application in economics and operations- 
 •  

research problems where appropriate interpretation of negative 

capacities may exist. 

It remains for further study, to find a method for 

obtaining a network that exactly satisfies the requirements, 

only with a non-uniform cost criterion. 
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NOTATION*  

the set of real numbers 

R the set of non-negative real numbers 

"belongs to" 

"does not belong to" 

if  .X is a subset of some set. N, thèn X c  

. wilLbe.used to denote ail elementS of N 

which .do.not belàhg to X; it is called 

the "Cômplèment" of X- (dithrespèct to N). 

X-Y 	the set of the elements in X which do not 

belong to Y. 

card.X the number of elements in X. 

Further.details.On the ,élementar)i se -upperations.used 
in proving:Certain theoreMs .  Can be found in [12].  
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'SHORT 1 (,K)  

. -PROGRAM DESCRIPTION  

Program SHORT1(,K) is a computer package that 

implements the simultaneous transmission synthesis 

presented in Algorithm 2.5.1. It is written in Extended 

FORTRAN IV H for a Sigma 7 time-shared computer install-

ation. 

The main line of the program is, shown in the flow-

chart in figure B with the associated subroutines 

appropriately indicated. Although the variables used in 

the chart are those used in Algorithm 2.5.1, this is an 

equivalent representation of SHORT1(,K). The transforma-

tion from the algorithm to the program is achieved by 

referring to table B. 

Subroutine NETRED is a generalized routine used by 

all three synthesis packages presented in this study. 

The input program "asks" the user for the pertinent 

network data, that is,"asks" for the number of nodes N, 

the terminal requirement matrix T and the arc cost matrix 

D. Provision has also been made (in all three packages) 

to input this data from a file prepared on disc. The 

user in such cases, should assign this disc file te 

logical device #1 "before exectition. 
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Subroutines NETSHORT and NETROUTE realize Floyd's 

shortest path Algorithm 2.4.3. NETSHORT finds L, the 

matrix containing the length of all the shortest paths, 

and (I), the corresponding node matrix while NETROUTE finds 

the shortest path (the sequence of nodes) between some 

specified pair of terminals. These two routines have 

also been incorporated in the main line of SHORT2(,K). 

The main feature of this package (as well as the other 

two programs) is that it is completely conversational due 

to the time-shared environment in which it resides. Since ,  

no unusual programming techniques were used, the program , 

listing that follows is straightforward. The user should 

note that the program, as it stands, can handle a network 

of at most 15 nodes and that due to page width limitations, 

each terminal requirement may range from 000.0 to 999.9 

and each arc cost entry may take on integer values from 

0 to 99999. It should be realized that the program may 

be readily changed to compute larger networks by alloca-

ting more storage for the matrices. 
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. 	 - 

ALGORITHM  •. 	 PROGRAM 
VARIABLES 	VARIABLES 

CAP 

TERM 

D 	 COST 

SHORT 

0 	 NODE 
A 



Calculate 
paths and 
ie , Find 

L and 

all shortest 
their values 

\ 
DESCR. IF 
DESIRED 

PRINT PROG. d  

<SHORT  I( ;K) 

•  V  

SUBROUTINE 
NETRED 
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SUBROLTTINE 
NE TSHORT 

For 
all 
(Peg) 

Find,Route 
for  II 

Pq 
from (1)  

_V 

eFi Add capacity of valu 
t (p ,q ) along It 

pq 

figure B 

'SUBROUTINE 
NETROUTE 
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Example 2 . 5 . 1-  

!LOAD 
11/ ELEMENT FILES: SHORT1B 

OPTIONS:  
Ft 1 
F . 

SEV..LEV. 	9). 
XEQ? y 

THIS NETWORK SYNTHESIS PACKAGE IS AT yOUR  COMMAND!  
PLEASE  INPUT DATA AS REQUESTED BY THE PROGRAM! 
DO you WISH  TO  SEE THE PROGRAM DESCRIP.TI ON? 
ANSWER YES OR NO 

?YES 

THIS PROGRAM SYNTHESIZES A COMMUNICATI ON NETWORK 
GI VE.N THE COMMUNICATION CENTRES, THE TERMI NAL CHANNEL 
CAPACITY REQUIF?EMENTS AND THE .-ARC COST CONSTRAINTS, 
THE REQUIREMENTS ARE MET SIMULTANEOUSLy AND THEY DO 
NOT VARY WITH TIME.. SHORTEST . PÀT1+ TECHNIQUES- ARE USED 

• Tb  ARRIVE AT THE SOLUTION. 

• INPUTS 
, N- (I NTEGER )-THE NUMBER OF COMMUNICATION CENTRES:, 

N IS THE DIMENSIONALITY OF THE MATRICES BELOW... 
• T-(DECIMAL )-THE TERMINAL CAPACITY MATRIXf 

EACH ENTRY, Ta ,J ) 9 .  CONTAINS: THE VALUE OF 
REQUIRED CHANNEL CAPACITY FROM .TERMI NAL L  I TO .  TERM-
INAL  J. 	 ••• 	• 	• 	• 

D-(i NTEGER )-THE ARC COST MATRIX.: 
. 	EACH ENTRY, D (1 9 J.), IS THE 'COST PER UNIT. CAPACITY 

ON ARC (1 9 J ). 

OUTPUT: 
C-(DECIMAL )-THE REQUIRED CAPACITY MATRIX: 

EACH ENTRY, 	C (I ,J ) IS THE CHANNEL CAPACITY 
OF ARC (I ,J) THAT IS REQUIF?ED FOR THE SOLUTION. 

TT -(DECIMAL ) -TOTAL NETWORK COST: 
TT =SUM (C (I „J )*D (I J )) FOR ALL I AND J. 

ARE THE REQUIREMENTS AND THE COSTS SYMETRICAL? 
A NSWER YES OR NO 

?NO 

INPUT  THE NUMBER OF NODES PLEASE! 

•PLEASE  INPUT 16 FLOATING 'POINT VALUES 
4 PER LINE TO FILL THE  TERMINAL  CAPACITY MATRIX! 



PLEASE  INPUT 16  INTEdER .VALUES 
A PER LINE TO FILL THE. ARC COST MATRIX! 

1:
 ?09  1 9 99 9 9 4 

2:  
•74 9 0 9 11 9  1 
• 3: 
1999 9 1 9 0 9 3 

4: 
?1, 3 , 3 9 0  

- 

DO YOU WISH TO REVIEW YOUR INPUT? 
ANSWER YES OR NO 

?Y ES  

THE  .TERMINAL,CAPACITYMATRIX  . 

	

.0 	2.0 	6.0 	5.0 

	

2.0 	.0 	1 0 0 	3..0 

	

. 6.0 	1..d 	.0 	4,0 

	

1 0 0 	3.0 	2.0 

THE ARC COST MATRIX: 

0 	1 	999•  

4 	0 	11 
999. 	1 	0 

1 	3 	• 	3 •  

DO • YOU WISH TO RE-ENTER YOUR DATA? 
ANSWER. YES. OR NO 	 - 	• 

?NO 

lad 

1 
3 

• 0 

	

.0 	1.6.0. 	.0 • II› 	.0 	 .0 27.0 

	

.0. 11.0 	.0 	.0 .  
. 	12.0 	.0 	9.0 	• ,0 

TOTAL NETWORK COST IS, 	93.00' 
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1:  
?0 9 2 9 6 9 5 
2:  

I 72 9 0 9 1 9 3 
• 3: 

- 	76 9 1 9 0 9 4 
4: 

?1 9 3 9 2 9 0 

THE REQUIRED CAPACITY:MATRIX. BELOW 'REPRESENTS.... 	 • 
THE NETWORK THAT SIMULTANEOUSLY SATISFIES' THEREQUIREMENTSI 
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!EDI T 
*EDI T SHORT! (9K ) 

;= .1.S 1 .7999 	. • 

COMMON/CI /N 9 TERM(15 9 15) 9 COST(15 9 15)' 
COMMON/C2/IK 9 JK 
COMMON /C 4'/CAP (15 9 15) 9  NODE (15 9 15) 9 R (15) 
I NT EGER C OS T 9 R 
DATA YES/ v y 9 / 

• WRITE(108 9 1( 15) 
115 FORMA T ( //. THIS NETWORK SYNTHESIS PACKAGE IS AT YOUR COMMAND ! 

*/ 9  PLEASE INPUT DATA AS REQUESTED BY THE PROGRAM! " 9  
/U DO YOU WIS)-t T 0 SEE THE PR OGRAM  DESCRIPTION? ',  

/9  ANSWER YES OR NO') 	 , 	 • 
P.EAD(105 9 103) ANSWER 	 i 
I F (A NSWER NE .yES) GOT 0 1 

• WRITE(1089116) 
116 FORMAT ( // 9  THIS PROGRAM SYNTHESIZES 'A COMMUNICATION.  •NETWORK 9 9 

 *19  GIVEN THE COMMUNICATI ON CENTRES, THE TERMINAL CHANNEL " .9  
• */ ' CAPACITY REQUIREMENTS AND THE ARC COST CONSTRAINTS • 

*/ THE REQUIREMENTS ARE MET SIMULTA NEOUSLY: AND THEY De, 
• NOT VARY WITH TIME . SHORTEST PATH TECHNIQUES ARE USED' 

/V  TO ARRIVE AT THE SOLUTION.') 
WRITE(108 9 117) 

117 .  FORMAT ( / I NPUT: 9 9 
*/ 	N-(I NTEGER ) -THE NUMBER  OF COMMUNICATI ON CENTRES: ' 9 , 

• */ 	N IS THE DIMENSI . ONALI TY OF THE MATRICES BELOW. 
*/ 9 	T -(DECIMAL ) -THE TERMINAL CAPACITY, MATRIX:' 9 9  , 

.*/ 	EACH ENTRY, T(I ,J ) 9  CONTAINS THE VALUE OF 9 , 
*1 9 	REQUIRED CHANNEL CAPACITY FRQM  TERMINAL  I TO TERM- 1 , 
*/ 9 	I NAL J 9 9  

NTEGER ) -THE ARC COST MATRIX: 9 , 	 " 
EACH ENTRY, D(I ), IS THE COST PER UNIT CAPACITY ' 9  

*1 ' 	ON ARC (I 9 J ) ° ) 
WRITE(1089118) 	 . 

118 FORMAT(/' OUTPUT: 9 9  
*1 0 	•C - (DECIMAL ) -THE REQUIRED CAPACITY MATRIX: 

EACH ENTRY, 	C (I 9 J ) IS THE CHANNEL CAPACITY 
*1 0 	OF ARC (I 9 J ) THAT IS REQUIRED ..FOF? THE  SOLUTION.', 
• e 	1 TT -(DECIMAL ) -TOTAL NETWORK .COST: 	 , 
*/ 	 TT =SUM (C (I 9 J )*D (I 9 J ) ) FOR ALL I A ND J9 ) 

.1 WRITE(108 9 901) 	• 
901 FORMAT (// 9  ARE THE REQUIREMENTS AND THE COSTS SYMETRICALV 

• ANSWER YES OP NO ) 
ISW120 
READ(105 9 103)' ANSWER 

103 FOR MA T (A 1) 
IF(ANSWER .NE.YES) GOTO 2 
ISW1::1 

2 CALL NETRED 
TOTCOST:.-0" 	' 
DO 3 IK7.1 9 N 

• DO 3 JK::1 9 N • 

CAP(IK 9 JK) ---.0.0 
• IF(ISW10EQ-00) GOTO 3 

• TERM(JK 9 I1()=TERM(IX,J1() 
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COST (..1K 9 IK):COST(IK9JK) 
3 CONTINUE 

CALL NETSHORT 
7 NN::NISW1 

DO 5 IK ::1 9 NN 
LL zIK*ISW1+1 
DO 5 JK:LL 9 N 
IF (IK 0E0 	) GOTO 5 
CALL NETROUTE 
KR ;KR -1 
DO 5  K:1  "KR 
N1L-R 
N2::R  (X+1)  
CAP (N1 9 N2)::CAP(N1 9 N2)+TERM(IK ,JK ) 
IF(ISW1.EQ.0) GOTO 5 
CAP(N201):CAP(N1,N2) 	- 	 - 

5 CONTINUE 
WF7ITE(108 9 101) 

101 FORMAT ( // THE REQUIRED CAPACITY MATRIX BELOW -  REPRESENTS 	. 
*/ THE NETWORK THAT SIMULTNEOUSLY SATISFrES THE REQUIREMENTS ! '/) 

DO 6 I1( .21 9 N 	- 	. 
WRITE(108 9 102)(CAP(IG9K),JK: -1,N) 
DO  G  K =. 1 9 N 
IF (LK .EC .K ) GOTO 6' 	- 
TOTCOST:TOTCOST+CAP(IK "K )*COST (IK 

6 CONTINUE 
WRITE(1089104) TOTCOST . 

104 FORMAT (// TOTAL NETWORK COST IS- ' 9 F10 .2) 
102 FORMAT(15(F501 9 1X)) 
990 WRITE(108" 504) 
504 FORMAT (// ° DO you WISH 

14/ 9  ANSWER yEs OR  N (V )  
READ(105 9 103) ANSWER 
IF (ANSWER .EQ.YÈS) GOTO 1 
END 
SUBROUTINE NETRED 

C 	THIS R OUTI NE READS IN THE MATRIX SIZE" THE  TERMINAL'  
C 	CAPACITY MATRIX AND THE ARC 'COST MATRIX. 	' 

C OMMON 	1 / N T ER fig 5 1 5) . s, C. :OST•(.1:5. 9  15). 
I NT EGER COST 	• 	r: 

• DATA . YES/ 	/ 	, 	 . 
599 WRITE(108 9 600). 	 1. 	• 
600 .FORMAT'(// INPUT THE NUMBER 'OF NODES PLEASE! W Y 

• READ (105" . 601)N 	 • 	I r 	 r  . 
-.601 FORMAT (I )•.- 	• 

MN=N*N 
• • 	WRI TE (1089602) MN" N 	 • - 	• 
602 FORMA T ( // PLEASE  INPUT  '12'FLOATING  POINT..  VALUES */ 

.* 	PER LI NE • TO FILL- 1. HE :TERMINAL CAPACITY MA TR I X ! '11) 
DO 603 '.I 1 "N 	' 
WRiTe(108"610),1 	• 

610 FORMAT.(I 2 9  • '

• ) 

	 • 
603 • READ (1 9 . 604) (TERM(I ,L1 ) 9J r.1,S) 
604 FORMAT ( -15F) 

WRITE(108 9 605)MN-9N.• 	• 	• . 	. • 	• 
605 FORMAT ( // 9  PLEASE. -.INPUT '029.7 INTEGER -  VALUES9/ 

TO RESTART THIS PROGRAM?'" 



pER LINE TO FILL THE ARC COST MATRIX!.'//) 
DO 606 I r1 9 N 
WRITE(108 9 610)I 

606 READ (1 9 607) (COST (I 0.1)› 9J 
607 FOR MA T (151 ) 

WRITE(108 9 620). 
620 FORMAT ( // DO YOU WISH TO REVIEW youR I NP .LIT ? 

*1° ANSWER YES OR NO ') 
READ (105 9 621) ANSWER 

621 FORMAT (A 1) 
IF(ANSWER.NE.YES) 'G0T0648 
WRITE(108 9 623) 

623 FORMAT ( // THE TERMINAL ÇAPACITY MATRIXi 	. 
DO 624 I r1 9'N 

624 WRITE(108 9 625) (TERM(I 9J) 9.1 2,1 9 N) 
625 FORMAT(15(1X 9 F.5.1)) 	 S `. 

WRITE(108 9 626). 	1 	 - 
626  FORMAT(//'  THE ,ARC COST MATR,IX: '1) 

DO 627 I:-. 1,N 
627 WRITE(108,628)(COST(i 9J) 9J:I 9 N) 
eàà FOR.MAT(15(I 5 - 9 1X)) • 
648 WRITE(1,08 9. 629) 	, 	 • 
629 FOR MA Tt( // DO YOU WISH  TORE—ENTER  YOUR D ATA ?' 

	

A NSWER YES  OR  NO') 	• 
' READ•(1.05 9 621) ANSWER 

IF (ANSWER . NE ,YES) GOTO 622 
GOTO 599 

622 RETURN 
. • END 	, 

SUBROUTINE NETSHORT 
• COMMON /C 1/N 9 DUM1 (225) ' SHORT (15 9 15) 

COMMON/C4/DUM2 (225) 9 N0DE (15 9 15) "DUM3 (16) 
I NT EGER.  SHORT  
DO' 21 8  Il(r.:1 9 N 
D048 Jit::1 9 N 

48 NODE(IX . 9 .1K) r.e11( 
- 'DO 50 K:.-1 9 N. 

DO 50 IK:1 9 N 
DO  50,J1(-.:1 9 N 
IF (JK"..EQ .JK .EQ .1( ‘OR ) poTo 50 
NSH :.'.SHORT(IK 9 K )+SHORT (1( 9 J() 	 . 

'IF (SHORT (IK 9 ,1K ) 9 LE,ASH) .  GOTO 50 	 -• 

NODE(IK 9 JK ) r.1( 
SHORT (I K 9 JK ) :NSH 

50 CONTINUE 
' 	RETURN 

END 
SU13ROUTI NE NETROUTE 
COMMON/C2/IK 9 JK 

S  COMMON/C4/DUM2 (225) 9SODE(15 9 .15) 9 1? (1,5) ' KR 
I NT EGER , R 
K 7.2 
L.71 	• 
11:2 
R (1 ) 	 • 
R (2)=J1( 

54. IF (NODECR 	,R (M)) .EQ 	(M)) GOT() .55 
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DO 56.1.:}( 9 M,-1 	. 
56 R (I g-1)=R (I) 

R (M)::NODE(R (L. ). 9R (M)Y 
r.K-1-1 

.GOTO 
55 IF(M.EQ.K) GOTO 57 

M4-1 	. 	• 

• GOTO 54 
57 KR t.-1( 	• 

RETUR N 
END 	' 

—EOF HIT s.A . FTER 179. 
.* 
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PROGRAM DESCRIPTION. 

SHORT2(,K) is a package that uses man'y of the 

building blocks found in SHORT1(,K) • to realize the 

synthesis of time-shared communication networks. It 

implements Algorithm 2.6.1 in FORTRAN for a Sigma 7 time- 
• 

shared computer. 

Figure C shows the flow-chart for Algorithm 2.6.1 

and hence for SHORT2(,K). Table C provides the cross-, 
reference from the variable names used in the algorithm 

to  •the variable names used in the FORTRAN program. Sub-
! 

routines NETRED, NETSHORT and NETROUTE are described in 

Appendix B... 	. 

Subroutine NETSRT realizes - the procedure in step 

.1a) of Algorithm 2.6.1. 
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ALGORITHM 	 PROGRAM 
VARIABLES 	 VARIABLES 

CAP 

TERM 

D ' 	 COST 

L 	 SHORT 

(I) 	 NODE 

H 

A 	 • 

KT 
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(SHORT 2(,K)) 

PRINT PROG. 
DESCR. IF 
DESIREE) 

FIND 
m SUBROUTINE NETSRT 

INITIALIZE 
C 0 

=  SUBROUTINE NETSHORT 

Delete 
(u,T) 
From A 
 	1-1  

Delete 
(u, y)  
From A 

Can.. All 
shortes t paths 
froM D: 

L and•!`D 

Find nodes 
on route 
from u to v. 

PRINT 

For all 
( 11) e 

11V.1 

SUBROUTINE 
NnikOUTE 

yes 

c(i,j) = 
d ,J = o 

SUBROliTiNE .NETRED 
INPUT 

N,T,D 
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Example 2 . 6 . 1-  

tiLOA D e 	ELEMENT FILES: SHORT2B 
OPTIONS: 

« 	F2 I 
F?, 

SEV.LEV. 
XEQ? Y 

THIS NETWORK SYNTHESIS PACKAGE' IS AT YOUR COMMAND! 
PLEASE INPUT DATA AS REQUESTED B y• THE PROGRAM! 
DO yOU WISH TO SEE THE PROGRAM DESCRIPTION? 
ANSWER YES OR NO 

?Y ES  

«nu s PROGRAM SYNTHESIZES' A COMMUNICATION NETWORK 
GIVEN THE COMMUNICATION CENTRES 9  THE TERMINAL CHANNEL 
CAPACITy REQUIREMENTS AND THE ARC COST CONSTRAINTS. 
THE REQUIREMENTS DO  14011  VARY WITH TIME AND. THEY ARE 
TIME-SHARED IN SUCH A WAY THAT ONLY TWO TERMINALS.  MAY 
COMMUNICATE WITH  ONE  AND OT1-fER AT ONE - TIME,e  SRORT- 
EST PATH 'TECHNIQUES ARE USED TO ARRIVE AT ,THE .  SOLUTION. 

• INPUT: 
N-(INTEGE1R)-THE NUMBER OF COMMUNICATION CENTRES: 

N IS THE DIMENSIONALITY OF THE MATRICES•BELOW. 
T-(DECIMAL)-THE TERMINAL CAPACITy MATRIX: 

EACH ENTRY, 	T(I 9 J) 9 CONTAINS THE VALUE OF 	' 
REQUIRED CHANNEL CAPACITY•FROM TERMINAL I. TO TERM-, 	I NAL J. 

D-(INTEGER)-THE ARC COST MATRIX: 
EACH ENTRY 9 D(I 9 J) IS THE COST PER UNIT CAPACITY 

ON ARC (I  J) 	 •• 
 

OUTPUT: 
C-(DECIMAL)-THE REQUIRED CAPACITY MATF?IX: 

EACH ENTRY, 	C(I 9J) 9 IS ,  THE CÉIANNEL CAPACITY 
OF ARC(I 9 J) THAT IS REQUIRED FOR THE 'SOLUTION. 

1i-(DECIMAL)-THE TOTAL NETWORK COST: 
TTL- SUM(C (I 	9. J)*D(I J)) FOR ALL I AND J • 

INPUT THE NUMBER OF NODES PLEASE t 
74 

PLEASE INPUT 16 FLOATING POINT VALUES 
4 PER LINE TO en.L. THE TERMINAL CAPACITY MATRIx! 

■ 

1:
 ?0,.9 9 8 9  10 • 

2:
 769 0 9 6 9 8 



.0 

.0 

.0 
6.0 

.0 

.0 

.0 
8.0 

10.0 
.0 

7.0 
.0 

• 0 
10.0 

.0 

.0 
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3: 
74 9 7 9 0 9 7 
42 

71 9 2 9 1 9 0 

PLEASE INPUT 16 INTEGER VALUES 
4 PER LINE TO FILL THE ARC COST MATRIX! 

1: , 
70 9 1 9 999 9 4 
2:  

77 9 0 9 6 9 2 
3:  

7999 9 1 9 0 9 5 
4:  

72 9 8 9 290 • 

DO you WISH TO REVIEW YOUR INPUT? 
ANSWER YES OR NO 

?YES 

'THE TERMINAL CAPACI TY MATRIX: 

.00 9.00 8.00 10,00 
6.00 	.00 6.00 8.00 
4.00 7.00 	.00 7.00 
1.00 2,00 	1.00, 	.00 

THE ARC COST MATRIX: 

	

0 	1 	999 	4 

	

7 	0' 	6 	2 

	

999 	1 	0 	5 

	

2 	8 	2 	0 

DO you WISH TO. .RE-ENTER YOUR DATA? 
ANSWER ,YES OR NO 

7NO.:  

• THE REQUIRED CAPACITY MATRIX BELOW SATISFIES THE 
TIME-SHARED REQUIREMENTS AND REPRESENTS THE DESI'RED. NETWORK! 

TOTAL NETWORK COST IS- 	65.00 
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!EDIT 
*EDIT SHORT2(,K) 
*TS 1-999 
C 
C 	, 

• 

,COMMON/C1/N„TERM(15,15) ,C OST (15, 15) 
CpMMON/C2/T (210) ,LE (210)  9 E,(210,20) ,KT 
COMMON/C31x (225)  9 Y(225)  9XX9YY 
COMMON/C4/CAP(15,15),SHORT(15,15),NODE(15,15),R(15),KR 
COMMON/C5/CT (15,15) 
INTEGER COST,E,X,Y,XX,YY,SHORT,R ,CT 
DATA YESrY"/ 
WRITE(108,115) 

115  FORMAT(//' THIS NETWORK SYNTHESIS PACKAGE IS AT youR COMMAND! ° s, 
*ÏJ PLEASE  INPUT  DATA AS REQUESTED BY THE PROGRAM! 1 , 
*/u DO YOU WISH TO SEE THE PROGRAM DESCRIPTION?", 
*/ f  ANSWER YES OR  NO') 	' 

READ (105,103) ANSWER 
IF(ANSWER.NE.YES) GOTO 1 
WRITE(108,116) 

116 FORMAT ( // THIS PR OGRAM SYNTHESIZES A COMMUNICATION NETWORK ° , 
*/ ° GIVEN THE COMMUNICATI ON  CENTS,  THE TERMI NAL CHANNEL 
*1 • CAPACITY REQUIREMENTS AND THE ARC COST CONSTRAINTS. ', 
*1° THE REQUIREMENTS DO NOT VARY WITH TIME AND THEY ARE v ie 
*/ TI ME—SHARED I N SUC )-t  A WAY THAT ONLY TWÔ TERMI NALS MAY 

COMMUNICATE WITH ONE AND OTHER AT ONE TIME.  SHORT  —' 9  
*/ 9  EST PATH TECHNIQUES ARE USED TO ARRIVE AT THE SOLUTION.')  

WRITE(108 9 117) 
117 FORMAT(/'  INPUT:', 

N — ( I NTEGER ) -THE NUMBER OF COMMUNICATI ON CENTRES: 
*/ 	 N IS THE DIMENSI ONALITY OF THE MATRICES BELOW. 
*/ 	T— (DECIMAL ) —THE TERMINAL CAPACITY MATRIX: „ 
*/ 	 EACH ENTRY, 	T (I ,J ) CONTAINS THE VALUE OF 
*/ ° 	REQUIRED CHANNEL CAPACITY FROM  TERMINAL  I TO TERM- 
*/' 	• 	 I NAL J. 9 9 
*/ 	D (I NTEGER ) —THE ARC COST MATRIX: ', 
*/ •° 	EACH ENTRY,D (I ,J ) IS THE COST PER UNIT CAPACITY 9 
*/ 	ON ARC (I ,J ). ') 

WRITE(108,118) 
118 FORMAT (/ '  OUTPUT : ' ,  

*/ 9 	• C — (DECIMAL ) —THE REQUIRED CAPA'CITY MATRIX: 1 9 
*/' 	EACH ENTRY, 	C (I ,J ) IS THE CHANNEL CAPACITY 

° 	OF • ARC (I ,J ) THAT IS REQUIRED FOR THE SOLUTION. 
*1' 	TT —(DECIMAL ) —THE TOTAL NETWORK COST: ", 
*/' 	TT :SUM (C (I ,J )*D(I 9 .1)) FOR ALL I AND J. ' ) 

1 CALL NETRED 
TOTCOST 
DO 2 JK:7.1 9 N 
DO 2 IXt7.1,N 
CT (IK ,JX)=COST(IK,JK) 
K :N*(JK —1)+IK 
X(K)--:IK 
CAP (IK ,J)< )70. 

2 Y(X)::JK 
DO 3 IX:-.1 90 9- 
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LE(no.. 
• 3 T(IK):--.0.0 

•CALL NETSRT •  

I :KT 
50 LP =LE (I ) 	• 

DO, 5 JJ.,::1 9 LP 
ZI IK:1 9 N 

DO 4 JK.:1 9 N 
4 SHORT(IK 9 JK)COST(IK 9 JK) 

CALL NETSHORT 
MI NC OS T ::10**6 
MI NJ :0 	 • 
DO 10 J .:1 9 LP 
LIP :E(I 9 J ) 
I F (LIP 0EQ .0) GOTO 10 
XX :X (LIP) 
YY .:Y (LIP) ' 
I F(NINCOST.LT .SHORT (XX 9 YY)-) GOTO 10 
MI NC OST:SH OR T (X,( 9 YY) 
MI NJ rj 	• 

10 cowrimug 
IF (MI NJ GT.0) GOTO 11

• WRITE(1089100) 	 •
• 

100 FOR . MA .T(U  ERROR EXISTS . 1N COST MATRIX 1 ) 	 - 
GOT° 990 

11 LIP =E (I  9 MI NJ) 
XX .:X (LIP) 	 ;• 

• YY :Y(LIP) 	 •• 

E(I 9 MINJ )=.0 
• • CALL NETROUTE 

•
• DO 5 K :1 9 KR 	 • 

1\11:R (K) 
• N2 	(KA-1) 

COST(N1 9 N2)=0 
IF(CAP(N1 9 N2),,GT.0.001) GOTO 5 

' CAP (N 102 )7..T (I) 	 . 
5  CONTINUE  

1 :1-1 	 • 

IF (I aGT .0) GOTO 50 	 •• 

WRITE(108 9 101) 
101 FORMAT ( // THE RE ( UIRED CAPACITY MATRIX BELOW SATISFIES  THE ' , 

*I TIME-SHARED R EQUIR,EMENTS  AND  REPRESENTS THE DESIRED NETWORK ! "1) 
• DO 6 IK.:1 9 N 

WRITE(108 9,102) (CAP(IK 9 J() 9 JK=1 9 N) 
DO 6 Kr-1 9 N 
IF (IK .E0 .K ) GOT`O 
TOTCOST:TOTCOST+CAP (IK 9 K )*CT (IX 9 K ) 

6 CONTINUE 
WRITE(108 9 104) TOTCOST 

1 •04 FORMAT ( // TOTAL NETWORK COST IS- 9 F10 .2) 
102 FORMAT (10(F6.1 9 2X)•) 
990 WRITE(108 9 504) 
504' FORMAT ( // DO YOU WISH TO RESTART THIS PROGRAM? ' 9  

>ki° ANtWER YES OR NO' )• 

• READ (105 9 103) ANSWER 
103 FORMAT (A 1) 
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IF(ANSWER.EQ.YES) GOTO 1 
END 
SUM? OUT I NE NETRED 

C 	THIS ROUTINE READS  • IN THE MATRIX SIZE. THE TERMINAL 
CAPACITY MATRIX AND THE ARC COST MATRIX. 

COMMON/C 1•/N 9 TERM (15. 15) 9 C OST (15.15) 
INTEGER COST . 
DATA YES/ 'Y .  / 

599 WR.ITE(108.600) 
600 FORMAT (// I NPUT. THE NUMBER OF NODES PLEASE! °) 	. 

READ(105 601)N , 	 9 

601 FORMAT (I ) 
• MN:-.N*N 
• WRITE(108.602)MN.N 
602 FORMAT (// ° PLEASE INPUT ' 9 12. FLOATING POINT VALUES ./ 

* 12 9  PER 'LINE TO FILL THE TERMINAL CAPACITY MATRIX! "//) 
DO 603 I1-.1,N 	 , 	 • 
WRITE (108 9 610)I 

610 FORMAT(I2 9 ': ') 
603 READ (1 9 604)(TERM(I .J ) 9 ,17.1.N) 
604 FORMAT(10F) 

WRITE (108.605) MN.N 
605 FORMA T ( // ' PLEASE 1 NP UT ' 2, 	NTEGER VALUES / 

* 12 9  PER LINE TO FILL THE ARC COST MATRIX! 1 //) 
, 

 

0.0 1  606 I r.1 9 N 
WRITE(108.610)I 

606 READ (1 9 607) (COST(I 9 J).Jr.:1 4 N) 	 . 
607 FORMAT (10I ) 

WRITE(108 e 620) 
620 FORMAT(// 9  DO YOU WISH TO REVIEW YOUR I NPUT ? 

* / ° A N'S WER .Y ES  OR N 0 ) 
READ (1059 621) ANSWER 

621 FOR MA (A 1) 
I F (ANSWER . NE YES ) 'G 0T0648 	' 
WRITE.(108 9 623) 

623 FORMAT (// THE TERMINAL CAPACITY MATRIXi''/) 	' 
DO 624 I 1 9 N 

624 WRITE(108 9 625)(TERMI,J),Jr-1 9 N) 
625 FORMAT <10(1)(07 5.2)) 

WRITE(108,,626) 
626 FORIVIeT(fir THE ARC COST MATRIX: '/) 

• DO 627 I 7.1.11 
627 WRITE(108 9 628) (COST (I ,...1) 9 J 
628 FORMAT (40(I 4 9 2X) ) 
648 WRITE(I08,629) 
629 FOR MA_T (// DO YOU WISH TO RE-ENTER YOUR DATA ? 

*1 A NS WER yEs OR NO') 
READ (105 9 621) ANSWER. 
I F (A NSWER .NE.YES) GOTO 622 
GOT() 599 

622 R ET UR N 
END 	« 
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llb UU 1. I NE IM 15I1 

TER MI NAL VALUES ARE SORTED I NT 0 ASCENDING ORDER 
C . 	IN T AND CORRESPONDINDING ARC NUMBERS IN E 

COMMON/C1/N,TERM(15,15),COST(15,15) 
COMMON/C2 /T (210) ,LE (210) ,E (210,20) ,KT 
I NTEG ER E 
K:1  
DO 1 , 1 J t°1 9 N 
DO 11 Inl,N 

• IF CI .E0 .J) GOTO 11 
IF (TERM(' 9 ,1 ) NE.0.) GOTO 12 

11 CONTINUE 
12 T(1)TERM(ï ,J) 

E(1,1)::N*(J-1)+I 

IMM::I• 
JMM::1 
DO 5 Jr.JM,N 
I M MM*J M11+ 1 
JMM:0 
DO 5 I =IMO 

.J) GO TO 5 
IF (ABS (TERM(' ,J)).LE.0,001) GOTO , 
DO 4 L-:1,K 
I F(ABS(T(L)-TERMO ,J ))-.001)8,1 

1 IF (TERM(I 9 ,1 ).GT•T(L))GOTO4 
3 DO 10 K1(.7.1( ,L 9 -1 

LP :LE (KK 
DO 	9 11.:1 9 1..P 

9 E(KK+1 9 11)::E(KK,LL) 
LE(KK-F1) ----LE(KK) 

10 T<KK+1):::T(K10 
T(L):TERM(I ,J ) 
E(L 9 1)::N*(J-1)+I 
LE (L)::-.1 	• 

GOT() 5 
g LE (1, ) 	)+1 

E(L 9 LE(L)):N*(J-1)+I 
GOTO5 
C ONTI NUE 

, 	K 	' 
7 TO01- TERM(I ,J) 

E (1( p )=> <J -1 ) +I 
5 CONTINUE 

XT::1( 
RTURN, 
END 
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SUBROUTINE NETSHORT 
COMMON/C,1/N 9 DUM1 (450) 	 , 	 ' 
COMMON/C4/DUM2 (225) ' SHORT (15, 15) ' NODE (15, 9 15) ,DUM3 (16) 
I NT EGER  SHORT 
DO 48 I K :1 9 N 
DO 48 (.1K:-.1 9 N 
NODE(IK 9 JK) =JK 
DO 50 K 1.1 9 N 
DO 50 IKr.1 9 N 
DO 50 JK ::1 9 N 
IF(JK.EQ.IK .0R.JK.EQ.K wOR.IK•EQ.K) GOTO 50 
NSH :SHORT (IK )+SHORT (1( 9 JK) 
IF (SH)RT (IK 9 	• • JK) LE NSH) GOTO 50 ,  

NODE(IK 9 JK):1( 
SHORT (IK 9 JK ) ::NSH 

50 CONTINUE 
, 	RETURN 

END 
SUBR OUTI NE NETR OUTE 

, COMMON/C3/DUM4 (450) 9 XX 9 YY 
COMMON/C4/DUM5(450) 9 NODE (15 9 15) ,R (15) 

• INTEGER R 9 XX 9 YY 
,1(72 

54 IF (MODEM (1, ) 9R (M)) sal .R (M)) GOTO 55 
DO 56 I :1( 9M 9 1 

56 R (I+1)::R (I ) 
R (M) NOD E (R (L ) 9R (M )) 
Kr.K+1 
GOTO 54 

55 I F (M0E0 .K ) GOTO 57 
Mr-M-1-1 

GOTO 54 
57 KR t'l< 
• RETURN 

,END 
EOF' HIT AFTER '256. 
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NETSYM(,K)  

PRQGRAM DESCRIPTION  

NETSYM(,K) is a program that implements the syn-

thesis procedure developed in chapter III of this study. 

It too is written in FORTRAN fora Sigma 7 configuration. 

From figure D.1 it is obviouS that certain routines 

in the main line are common to those used in SHORT2(,K) 

and hence are not described here (refer to Appendices B 

and C for information on NETRED and NETSRT). Also, it 

should be noted that the flow-charts in figures D.1 and 

D.2 contain the variable names used in Chapter III. 

(Refer to table D for the cross-references required to 

interpret the FORTRAN variables used in NETSYM(,K).) 

It is important to note that the main program 

sequentially executes a large subprogram, routine B. 

The main Ilne implements Algorithm 3.3.1 while the sub- 

program implements Algorithm 3.5.1, that is, if the 

first part finds a general network with negative capacit-

ies, routine B constructs, if possible, a communication 

network. 

Note that together,subroutines NETPACK and NETCOMB 

generate all possible semicuts containing the arcs in 

each arc set Ap and select those that are m-restrictions 

for the corresponding  t. 
 



D 

0 

A 

MINS 

- 163 - 

ALGORITHM 	 PROGRAM 
VARIABLES 	 VARIABLES 

CAP 

TERM 

COST 

SHORT 

• NODE 

rn 	 KT 

1-1 

a 
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\\ N,,T7 	
C-.) SUBROUTINE 

• NETRED 
Routine B 
(fig. C.2) 

yes 

•SUBROUTINE 
. NETSRT 

SUBROUTINES 

NETPACK & NETCOMB 

For A Gen. 	. . 
All. semicuts, selec 
m-Restr, ASr Place in 

J 

For All 
(i9j)EA 

( STOP 
C 	_ 

figure D.1 
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Examples 3.4.3 & 3.5.1- 
. 	1LOAD 

II ELEMENT FILES: NETSYMB 
 OPTIONS: 

F: 1 
F: 

SEV.LEV.' = 0 
XEQ? Y 

THIS NETWORK SYNTHESIS PACKA.GEHIS ,AT YOUR; C'OMMA.ND! 
PLEASE INPUT DATA AS REQUESTED BY  THE PROGRAMt. 

DO you WISH TO. SEE THE PROGRAM:DESCRIPTION?, 	• 
ANSWER YES OR NO 

?YES 	. 	••• 

THI'S PROGRAM SYNTHESIZES A COMMUNIC.ATION . ..:-. -  
NETWORK GIVEN THE. COMMUNICATION •ICENTERS'; - 111E...reRmIN'AL' . • • 
CHANNEL CAPACITY REQUIREMENTS AND: THE ..ARC . ,,',CONSTRAINTS." 

. 
 

THE  REQUIREMENTS DO•NOT.•VARY WITH TIME. - AND;riFy:  ARE  
" TIMESHARED IN  SUCH  A WA•Y 'THAT:ONLY TWOTERMINALS MAY 

COMMUNICATE WITH EACH . . OTHER..H'AT,',, ONE-TIME. , THE :'METHOD.- 	• 
• IS DEPENDENT ON THE PRESENCE.•by...REDUNDANT',TERMI:NAL 	• 

•REQUIREMENTS, FURTH.ER  PR,OGRALeSCRIPTI,ON•AS : ::..A.VAILABLE•: - 
 W • IN THE PROGRAM DOCUMENTATION.:• •;•., 	 '• 

INPUT: . • 
N-(INTEGER)-THE NUMBER OF COMMUNICATION 'CENTERS: 

N IS THE DIMENSIONALITY . OF THE MATRICES,BELOW. 
T-(DECIMAL)-T,HE TERMINAL!CAPACITY MATRIX:: 

EACH ENTRY, 	T(I,n, REPRESENTS, THE REQUIRED 
CHANNEL CAPACITY FROM' TERMINAL(CENTER) ( 1 TO 
TERMINAL J. 	 - 

D-(INTEGER)-THE ARC CONSTRAINT MATRIX: 
EACH ENTRY, Da ,J), REPRESENTS THE RELATIVE VALUE 

. OF CONSTRUCTING Ise ARC (ryJ). Low VALUES OF D(I,J) 
• GIVE THOSE'ARCS 1711t1U , CeNSTRUCTLON:',PRIORTTIES. • • 

OUTPUT: 	. 	 • 	 „ 	, 
C-(DECIMAL)rTHE REQUIRECAPACITY. MATRIX: 

EACH ENTRY, 	o(I: e .));>;;Ï:.'Rg,PFiEsEiuts7TRE,: CHANNEL :cApAe'Vry 
THAT MUST BE.,CONSTRUC,tElY:-:.FROM, 	 ORDER, 

	

„ 	 . 	 . 
:ACHIEVE •THE'DESTRED'»:0L1ITI . ON' 

INPUT. ' THE' NUMBER ,OF NODES Pii.p)g 
.?4 

dok - PLEASE INPUT 16 FLOATING POINI'V 
1111.. 	4 PER LINE TO FILL TERMINAL CAPA 



167 

1:  
?0 9 2 9 2 9 2 

2:  
?3 9 0 9 4 9 6 

?3 979 0 98 
4: 

73 9 5 9 4 9 0 

• PLEASE INPUT 16 INTEGER VALUES 
4 PER LINE TO FILL  • ARC CONSTRAINT MATRIX 

1:
 709 2 9 10 9 100 

2:  
73 0  3 

3:
 7100 9 5 9 0 9 2 ' 

4:  
?1 9 5 9 2 9 0 

DO YOU WISH TO REVIEW YOUR  • INPUT? 
ANSWER YES CR NO 	 . 	• 

?yES 

THE TERMINAL CAPACITY MATRIX: 

.00 2,00 2.00 2.00 
3.00 	.00 4.00 6,00 
3,00 - 7,00 	.00 8.00 
3.00 5.00 4.00 	.00 

THE ARC CONSTRAINT MATRIX: 

	

2 	10•10,0 
3 	• 0: 	• 3 	8 

100 	5 	0 	2 
1 	5 	2 	0 

DO YOU WISH TO RE-ENTER, YOUR' DATA? 
ANSWER YES  OR  '.NO . 	. 	, ?NO 



- 168 

THE CAPACITy MATRIx BELOWREpRESENTS' THE NETWORK 
THAT ExACTLy SATISFIES THE TERMINAL REQUIREMENTS! 

	

.0 	.0 	.0 	2.0 

	

2.0 	.0 	.0 	4.0 

	

.0 	6.0 	.0 	2.0 

	

1.0 	1.0 	4.0 	.0 

	

.0 	2..0 	.0 	.0 

	

.0 	.0 • .0 	6.0 

	

.0 	6.0 . 	,.0 	2.0 

	

3.0 -1.0 	4.0 	.0 

NEGATIVE CAPACITIES ARE PRESENT ABOVE! 
DO yOU WISH To SEE THE COMMUNICATION ,  NETWORK? 
(THE NETWoRK WITHoUT NEGATIVE CAPACITJES). 
ANSWER- yES OR NO! 

?YES 

THE COMMUNICATION NETWORK THAT ExACTLY SA .,USFIES THE 
TERMINAL REQUIREMENTs IS REPRESENTED By,THE. MATRIX BELOW! 

DO yOU WISH, TO SEE THE CALCULATED' TERMINAt; 
CAPACITy MATRIx? ANSwER yES OR NO. 

?Y ES  

RESULTANT TERMINAL CAPACITy MATRIX: 

	

.0 	2.0 	2.0 	. 2.0 

	

3.0 	.0 	4.0 	e.0 

	

3.0 	7,0 	„0 	8.0 

	

3 0 0 	5.0 	4.0 	.0 

Do yOU wIsH To RESTART TfiIs PROGRAM? 
ANSwER yES OR No 

?No 
*STOP*  • 0 
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!DIT  
*EDIT NETSYM(iK) 
*TS1-999 	 • 

COMMON/C1/N,TERM(15 9 15),CONT(15,15) 
COMMON/C2/T(210),LF(210),E(210) 9KT 

• COMMON/C3/X(225) 9 Y(225) 9C(15),S(15) 
COMMON/C4/N2 9 L1 9 L2 
COMMON/C5/CAP(15,15) 9JB(15),IB(15) 
COMMON/C6/I 	 ' 
COMMON/C7/MINS 
COMMON/C8/BUG 
INTEGER C„S„X,Y,XX,YY,CONT,E 
INTEGER P,Q 
REAL MINS 
DATA  ŸF/'Y/ 

. 	WRITE(108,800) 
gge FORMAT(//' THIS NETWORK SYNTHESIS PACKAGE IS AT YOUR COMMAND! 

'PLEASE INPUT DATA AS REQUESTED BY THE PROGRAM', 	. 
*// DO YOU WISH TO SEE THE  PROGRAM DESCRIPTION?', 
*/' ANSWER YES ( R NO') 	 , 
READ(105 9 982) ANSWER 
IF(ANSWER.NE .YES) GOTO 3 

. 	WRITE(108,801) 	 • • 
801 FORMAT(//' THIS PROGRAM SYMTHESIZES A COMMUNICATION 

*/' NETWORK GIVEN THE COMMUNICATION 'CENTERS, THE TERMINAL', 
*/' CHANNEL CAPACITY REQUIREMENTS AND THE ARC  • CONSTRAINTS.', 
*/' THE REQUIREMENTS DO,NOT VARY WITH TIME AND THEY ARE', 	« 
*/' TIME-SHARED IN SUCH A WAY THAT ONLY TWO TERMINALS MAY', 
*/' COMMUNICATE WITH EACH OTHER AT ONE' TIME.'THE METHOD', 
*/' IS DEPENDENT ON THE PRESENCE OF REDUNDANT TERMINAU, . 
*/' REQUIREMENTS. 'FURTHER PROGRAM DESCRIPTION IS AVAILABLE', 
*/' IN THE PROGRAM DOCUMENTATION.') 
WRiTE(108«9 802) 

802 FORMAT(/' IMPUT:', 
*/' • 	N-(INTEGER)-THE NUMBER OF COMMUNICATION  CENTERS:' e 
*/ 9 

 */ ° 
*I 
*/ 

99 

•N IS THE DIMENSIONALITY OF 'THE MATRICES BELOW. 
T -(DECIMAL)-THE` TERMINAL CAPACIT'Y MATRIX: 9 , 

EACH ENTRY,  •Ta ,j) REPRESENTS THE REQUIRED 
CHANNEL CAPACITY ,FROM TERMINAL(CEMTER) I TO 9 9 

*1 9 	TERMINAL J °) 
WRITE(108,804) 

804 FORMAT( 	D-(INTEGER)-THE ARC CONSTRAINT MATRIX: °, 
.):Cr 	 EACH ENTRY, D(I 9 .1 ), REPRESENTS THE RELATIVE  VALUE',  
*/' 	OF CONSTRUCTING THE ARC (I ,t1 )‘. LOW VALUES OF Da ,J) 
*/ 	 GIVE THOSE ARCS HIGH CONSTRUCTION PRIORITIES. ̀ ) 
WRITE(108,803) 

803 FORMAT (/, OUTPUT: 9 9 
*/ 9 	C-(DECIMAL )-THE REQUIRED CAPACITY MATRIX: 9 9 
*1 e 	 EACH ENTRY99 C (I J ) f REPREqENTS• THE CHANNEL CAPACITY 

*1`1  
•*/ 9  
31::~  
• DO 12 - IK7_1 9 90 

LE(IK)=1 
12 T(IK)=0.0 

THAT:MOST Be CONSTRUCTED FRDMA 70 JAN ORDER:TO', 
ACHIEVE  THE  DEWED SOLUTION .„ 

9 
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KT 7.0 

CALL NETRED 
DO 2 Jr.1 9•N 
DO 2 IK:1 9 N 
K rN*(J —1 )+IK 
X(K):IK 
C AP (I X 9c1)=.0. 

2 Y OOJ  

DO 989 JEL 9  10 
ISW1:0 
DO 25 L:11 9 N 
DO 25 Jr.1 9 N 
IF(L.EO.J)GOTO 25 

• DO 24 K 	9 N 
IF(L.EQ.K) GOTO 

• IF (ABS (TERM(L 9 t1 ) —TERM (K 9  L)) »GE 90.005) GOTO 24 
26 TERM(K 9 L):TERM(K,L)+0.01 

•ISW1::1 
24 CONTI NUE 

DO 25 K 9 N 
IF(J.EQ.K) GOTO 25 	•' 
IF (ABS (TERM(L 9 t1 ) —TERM 9 10 ) . GE .0.005) GOTO 25 

23 TERM(J 9 K ) =TER M(J 9 10+0.01. 
• ISW1::1 

25 CONTINUE 
IF (ISW1 .LE . 0) GOTO 987 

989 CONTINUE 
WRITE(108 9 988) 

988 FORMAT ( // TOO MANY ESSENTIAL I NEQUALITIgS ARE PRESENT 1 //) 
GOT 0 990 	/ 

987 IF(JEL.LE.1)GOTO 985 	' 
IF(BUG.NE.YES) GO TO 985 
1gRITE(108 9 981) 

981 FORMAT (// ESSENTIAL I NEC1UALITIES EXIST ! DO YOli WISH 
*/ 	TO SEE THE PERTURBED TERM' NAL CAPACITY MATRIX? 
*/' A NS WER Y ES OR N 0 ' ) 

READ (105 9  982) A NSWF,R 
982 FORMAT (A 1) 

• I F (ANSWER NE . YES ) GOT 0 985 
• WRITE(I08,9,86) 

986 FORMAT ( // " THE PERTURBED  TERMINAL  CAPACITY MATRIX: '1) 
DO 983 L:1 ,N 

983 WRITE(108 9 984) (TERM(L 90),L1r.1,N) 
984 FORMAT(15(1X 9 F5.2)) 
(185 CALL NETSRT 
50 :1+1 

IF (I .GT .(T )GOT 0 999 
CALL •NETPACK 
I F (N .EQ .(Ll+L2+N2)) GOT 0 9,92 

• WRITE(108;991) 
991 FORMAT ( ' ERROR : ON RETURN FROM NETPACK ) 

GOTO 990 
992 CALL . NETCOMB 

MI NC ONT 1 0**6 
IF (MI NS .LT .999.0) GOTO 27 
WRITE(108, 540) 

540 FORMAT(//' A NETWORK THAT EXACTLY SATISFIES THE GIVEN TEF?MINAL 
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* CAPACITY P EQUIPEMENTS / 'DOES NOT EXIST ! '//) 
GOT 0 990 

27 MI NJ 
LP :I 

JJ:I -I 
• IF (I .LE,1) GOTO 37 
DO 201 J•21 9 JJ 

201 LP .7.1P+ LE (J 
37 IA rLE (I )+LP -1 

DO 200 JrLP 9 LQ 
, XX 	(E (J ) ) 

yy::y(E(J)) 
IF(CONT(XX,YY),GE,MINCONT) GO TO 200 
MI NCONT rCONT (xx st Yy) 
MI NJ rt1 

200 CONTINUE 
EVALUATE C ORF'ESPOND I‘NG CAP VALUE 
IF(MINJ .NE.0) GOT01, 99 
WRITE(108,993) 

'993 FORMAT (// ' ERROR : SOME ENTRIES 
*1'  GREATER THAN 10**6 AND THEY 

GOTO 990 	• 
199 X):X (E (MI NJ ) ) 

YY 	(E(MISJ)) 
C AP (XX,YY ) r•T (I ) -MIMS 
GO TO 50  r. 

	

999 WRITE(I08 9 501) 	 • 
501 FORMAT (//' .THE CAPACITYr MATRIX BELOW REPRESENTS THE NETWORK 

*/ ° THAT EXACTLY SATISFIES THE TERMI NAL. REQUIREMENTS ! //) 
DO 502 I r.1 9 N 

502 WRITE( I 08 9 503) (CAP (I. 9 ,1 ) 9 Jr1 9'N) 
503 FORMAT(1 5 (1X,F 5 01)) 

ISW1:0 
DO 354 P 9 N 
DO 354  ~ 1,N  
IF (P 	0Q) GOTO 354 

360 I F (CAP (P 9 Q) 	) GOTO 354 
IF (ISW1.‘GE.1) GOTO 355 
IS111:1 
WRITE(108 9 356) 

356 FORMAT ( // NEGATIVE CAPACITIES ARE PRESENT ABOVE! ' 9 
 */ DO YOU WISH TO SEE THE COMMUNICATIONS NETWORK V, 

'*1'  (THE NETWORK WITHOUT NEGATIVE CAPACITIES) 
*1'  ANSWER YES OR NO! / ) ) 

READ (105 9 512) ANSWER 
512 FORMAT(A1) 

IF(ANSWER.NE.YES) GOTO .990 
355 IF ( (CAP (P,Q)+CAP(Q,P) ).GE.0.0) GOTO 357. 

WRITE(108 9 358) 
358 FORMAT ( // A COMMUNICATI ONS NETWORK DOES NOT EXIST! '//) 

GOTO 990 
357 pO 350 IK::1 9 N 

IF(IK.EO.P.OR.IK.EQA) GOTO 350 
IF (CAP(P 9 IK )0LT .0.00OR .CAP (IK,Q) .LT .0.0) GOTO 350 
IF (CAP (P 9 IK) .GE.0.1.0R .CAP(IK 9 Q) .GE.0.1) GOTO 351 

350 CONTINUE 
DO 352 Ilerl„N 

IN THE RESTRAINT MATRIX ARE 
MUST BE REDUCED  IN  SIZE! '//) 
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DO 352 JX=1,N 
IF (IK •EQ•JK) GOTO 352 
IFCIK.E0.P.OR.JK•EQ.0) 001 .0 352  

• I F (C AP (P , I K ) • LT..0 • • OR •ÇA'P -,(t.K.•,•J.K.)..LT • ,0 • •OR •CAR(JK ,Q) •LT .0 ..) . GOT0352 
IF (CAP (PO X) • GE• .1. OR •CAP•UK`.,J .K) •GE1.•OR..C.APC,IX Q . ) GE • I . ) GOT0359 . 	 •. 	• • 

352  CONTINUE 	 •••• • 	• 	• 
- WRITE(108,353 .). 	• 	• - 	• 	• 	.• •••• 	• 	 . 

353 FOR MA T // TOO MA NY NEGATI-E:..ENTRIES t:i••: COMMUNICATIONS  NETWORK 
•*/," MAY  NOT •EXIST ! "//). 	• 	. 	• 	• • 	• 	• • 

GOTO 990 . • 
351 Z.:AM N (CAP ( 3  ' TX ) ,CAP(IK,0) . ,•,CAP(Q.,P)); • 

•CAP (P,TK) =CAP (P-,110.-Z 	.•• 	• 
• CAP(IK 9 Q)=CAP(IK,0).7Z 

CAP (6) 9 P) =CAP CO ,P1-Z- • • 
. • CAP (P 0 0 ) =CAP (P ,Q)+Z 

CAP (Q 	) =CAP (0 ,IK ) .+Z • 
,. 	CAP (IX ,P) =CAP (IK ,P)+Z 

GOTO 	360 	• . • 	• 
•359 Z =A MI N (CAR ( ).  ,IK-) ',Ç AP (IK IJK) ,CAP (JE,•Q) •,C,AP (Q.,P)) 

CAP (P IX ) =CAR(P 
CAP(IK',JK)=CAP(IK,JK)-Z • 
CAP (..1K ,Q.) =CAP (JK 9 0) .7 .-Z 

•C AP (Q ,P) =CAP (Q .,P.) 
•. CAP (P,0);CAR(P ,0)+Z.: .  • 
• CAP (Q ,JK ) =CAP (QijK) .4-Z 
• CAP(JK,IK)=CAP(a,IX.)±t• 

- 	CAP (IK ,P) =CAP ('IK,R). +Z 
. GOTO - .360 	• 	• 	• 

354 'CONTI NUE• • 	. 	• 	r, 
• I F. (IS.W1•LE.0) GOTO 333 
• - WRITE(108,361) • ' 

361 FORMAT (//.' THE  COMMUNICATIONS  NETWORK . THAT. EXACTLY SATISFIES . TH E' 
.)c/v T ERMINAL. R EQUIREMENTS IS PEPRES.EN iTE1).•.• BY: , THE MA,•TRI•X BELOW ! '//) 
• • 

 
DO  362 IX =1 . 9 N • 	• 	•• 	• 	•• 	 • • 	•'• • 	• . 

362 •WRITE-(108,363) (CAPOK 	 .•* 	• 	. 	• 
363• FORMAT (1•5(1X,F5.1)) 	• 	- 
333 WRIT.E(108 9 510) .• 	 - 
5•10 FORMAT (//'.- DO you WU1-1 TO SEE THE 

*/ CAPACITY- MATRIX?..A.NSWER . YES OR 
•R EAD.(105,505) • ANSWER 	• . 

• I F(A P/SWER • NE'. YES ) GOT 0 ,990 
. 	=1 	• 	. 	. 1 	• 

T(I)±10.0**6 . 
. DO 10 I}(.1 ,N 

DO 10 JK=1,N: 
IFUR •E(' ..JK) GOT() 10... 

. 	S(1)=IX 
S(N• * . 
LL-=.0 	 • 

'DO 11 KK=1,N 	• • 	, 
• IF(KK•EQ•IK•OR.KK•EQ4K).. -GOTO .11 

LL =LL+.1 • 
C (LL )=KK• 

• 11 .CONTINUE. 
.- 	N2 =111-2 

- L1=1 . 
L2=1•. • 
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CALL NETCOMB 
• TER MUM 9 J10 r-MI NS 	 , 

, 	10 CONTINUE 
4 	 WRITE(108 9 511) 

511 FORMAT ( // ° RESULTANT TERMINAL CAPACITY MATRIX: V) 
e 	 DO 13 IX:-.1 9 N 

- 	 13 WRITE(108,503) (TEP.M(I1( 9 J10 9JK r1 9 N) 
990 WRITE (108 9 504) 
504 FOR MAT (// DO  YOU  WISH  TO  RESTART  THIS  ,PROGR AM V 9  

>/Q  ANSWER YES OR NO') 
READ (105,505) ANSWER 

505 FORMAT (A 1) 
IF (ANSWER .EQ .YES)GOT 0 ) 3 

. END 
SUBR OUT' NE NETRED 
THIS R OUTINE READS IN THE MATRIX SIZE, THE TERMINAL 	r. 
CAPACITY MATRIX AND THE ARC C014STRAINT MATRIX. 

COMMON/C1/N 9 TERM(15 9 15) 9 C ONT(15 9 15) 
COMMON/C8/BUG 
I NTEGER CONT 	 . 	- 
DATA YES/ 'Y' / 

59 9  WRITE(108 9 600) 
600 FORMAT ( // INPUT  THE NUMBER OF NODES PLEASE! ') 	. 

READ (105 9 601) N 9BUG 
601 FORMAT (I  9 A 1 ) 	

. 

tmtrRNI:TN*E N(108,602) MN 9 N 
1 	602 FORMAT (//‘ PLEASE INPUT '03 9  'FLOATING POINT VALUES V 

* 1X 9 I 2 9  PER LINE TO FILL TERMINAL CAPACITY MATRIX 1 //) 
DO 603 I 1 9 N 	 • 	 ' 
WRITE(108 9 610)I 

610 FORMAT(1X 9 I 2, '•. ") 
603 READ (1 9 604 .) (TERM (I 9 J ),.1.7:1 9 N) 
604 FORMAT (15F) 

WRITE(108 9 605) MO 
605 FORMAT ( // PLEASE  INPUT 9 9 . 1 39 9  I NTEGER .VALUES / 

*IX,' 2 9  PER LINE TO FILL ARC CONSTRAINT MATRIX 1 //)' 
• DO 606 I r.1 9 N 

WRITE(108 9 610)I 
606 READ (1 9 607) (C ONT (I 9 J ) 9 ,1=1 9 N) 
607 FORMAT(15I) 	 , 

WRITE(108 9 620) 
620 FORMAT ( // DO YOU WISH TO REVIEW YOUR 'OUT? ' 9  

*Ïu ANSWER YES OR  NO')  
READ(105 9 621) ANSWER 

621 FORMAT (A 1 ) 
F (A NS WER . NE yEs) G0T.0648 	 , 

11RITE(108 9 623) 
. 623 FORMAT ( // THE TERMINAL CAPACITY MATRIX: '/) 

DO 624 1:-.1 9 N 
624 WRITE(108 9 625) (TERM(' 9 c.1 ) 9J :1 9 N) 
625 FORMAT(15(1X 9 F5.2)) 

WRITE(108 9 626) 
626 FORMAT ( // THE ARC CONSTRAINT MATRIX: '/) 

DO' 627 I :1 N 9 	 ' 
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C. 
C 

	

	TERMINAL  VALUES ARE SORTED I NT 0 ASCENDING ORDER 
IN T AND CORRESPONDINDING ARC NUMI3ERS IN E 

C OMMONIC 1/N 9 TER M (  15, 15),;C ONT (15 9 15) 
C OMMON/C2/T (210) LE (210) E (210 )  t K T 
I NTEGER E 
K 
LK r.1 
DO 11 Jr_1,N 
DO 11 I=1 9 N 
IF(' .EQ•J) GOTO 11 
IF(TERM(I I J ). NE.0.) GOTO 12 

11 CONTINUE> 
12 T(1)=TERM(1 9 J) 

E(1)=N*(J-1)+I 
JM=0 
IMM=I 
JMM=1 
DO 5 J=JM 9 N 
I M =IMM*JMM+ 1 
JMM=0 
DO 5 I =IM N 9 

IF(I.EQ.J)  GO TO 5 
IF (ABS (TERM(I 9 ,1 ) ) e LE.0,001) 	GOTO 5 
DO 4 L=1 9 LK 
I F (ABS (T (L)-TERM(I 9 J) )0LE .0,001) GOTO g 

1 IF(TERM(I',J).GT.T(L))GOTO4 
DO 10 KX =LK 9 L 9 -1 
T(K1( .+1)=T(KK) 

10 LE (K1(+1)=LEC(K) 
T(L )=TERM(I 9 J ) 
LE (L )=1 
LK 7-11(+1 

7 LP 
IF(1.LE.1) GOTO 2 

• LQ:11-1 
DO 9 Ii<=1 9 L(1. 

9 LP =LP+ LE (II( ) 
2 LQ 	. 

DO 3 IK:l< pLQ 9 -1 4, 	3 E(I1(+1)=E(I/0 
E (L0 	(J )+I 

=.1(+1 
GOT 0 5 

627 WRITE(108 9.628) (CONT (I pJ),J:10) 
628 FORMAT (15(15 b()) 
648 WRITE(108 9 629) 	 • 
629 FORMAT ( // DO you •WISH TO RE...ENTER youR  DATA?' , 

*/* ANSWER YES OR NO") 
READ(105 9 621) ANSWER 
IF(ANSWER.NE .YES) GOTO 622 
GOT 0 599 

622 ,R ET UR N 
END 
SUBROUTINE NETSRT 
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8 LE (1, )=LE (L )+1 
GOT 0 7 

4 CONTINUE 
LK :LK +1 
T(LK):TERM(I 9 J) 

5 CONTINUE 
KT=LK 
RETURN 
END 
SUBROUTINE NETPACK 
COMMON /C1 /N 9 TERM( 15 9 1.5) 9 C ONT (15 9 15) 
COMMON/C2/T (210) 9 LE (210) 9 E (2.10) 9 1(T 
COMMON/C3 /X(225) ,Y (225) 9 C (15) 9S (15) 
COMMON/C4a2 9 L1 9 L2 
COMMON/C 6/I 

NTEGER C 9 S 9 X 9 Y 9 XX 9 YY,E 
LY 
L1:0 
L2:N1-1 
DO 51 J ::1 9 N 

51 S (J )7.0 
DO 52 (1=1 9 N 

52 C (J 
LP =1 
JJ:I -1  
IF (I .LE.1) GOTO 12 
DO 10 J :1 9 JJ 

10 LP L-LP+ LE (J ) 
12 LQ 	(I )+LP -1 

DO 72 J .:LP 9 LQ 
XX:X(E(J)) 
YY ::y (E (J ) ) 
IF (L1 .EQ.0)GOT073 
DO 74 LX :1 9 L1 
IF (XX .EQ .S (LX) ) GOT070 

74 CONTINUE 
73 Ll:I1+1 

S(L1):::XX 
C (XX) 

70 IF (YY .EQ.,LY) GOTO 72 
L2=1.2-1 	 , 
S(L2)::YY 
C (YY):.0 
LY:YY 

72 CONTINUE 
LEFT JUSTIFY NODE NUMBERS IN C 
J1r-N-1 
DO 58 J :1 9 J 1 
DO 58 J 2.:J 9 J 1 

65 IF(C(J).NE.0) GOTO 58 • 	DO 59 IK r:J 9 J 1 
59 C(IK)=C(IK+,1) 

58 CONTINUE 
DO 60 
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IF(C(J) eFfi .0) GOTO 61 
• 60 CONTINUE 

61 N27,1-1 
L2.:N4-1-L2 
RETURN 
END 

• SUBR OUTI NE NETCOMB 
C OMMON/C1 /N,  TER M (15, 15) 9 C ONT (15 9 15) 
COMMON/C2 /T (210) ,LE(210) p.E(210)  ,KT  
COMMON /C3 /X(225) (225) se (15) 9 S (15) 

• COMMON/C4/N24.1 9 L2 	 • 	. 
C OMMON/C5/CAP (15 9 15) 0.18 (15) 9 113(15) 

• COMMON/C6/I 	 • 

COMMON /C 7/MI NS 
I NTEGER •C 9 S t X 9 Y 9 XX,YYpE t C ONT 
REAL MI NS 

62 MISS r.10.0**6 
N3 =N2+1 
DO 85 •KK =103 
LI ::KK -1 

•Lt.) r. N3 -K 	. 
F (N2 RI »0) GOT 0 94 

IF (LJ »EQ .0) GOTO 43 
DO 80 KL.7.1 9 LJ 

80 JB (KL)::N2 -LJ+KL 
•43 MM 7:0 

Nr..1 
DO 35 L.::1 9 N2 

• F ( M. GT 	) GOTO 30 
I F(JB (M) GT.L) GOTO 30 

GO TO 35 
30 MM MM+1 

IB (NM) 
35  CONTINUE  

C 	FILL CENTRE PART OF S WITH C 
6 ir(u.e.a) GO TO 93 

DO 91 IK::19LJ 	 •  

91 S(IK+LI)::C(JB(IK)) 	• 
93 IF (LI »E(1.0) GO TO 94 	• 

DO 92 IK 	,LI 	• 

II :.-.L1-FLI-FIK 
92 S(II)=C(I'B ( IK)) 
94 FVAL =0. 

I I 
K3 :-.1-1+1,1+1 
L3:71-1-FL.1 

C 	TEST FOR S-R ESTRICTI ON 
C 	CALCULATE VALUE OF CUT AND COMPARE TO MI NS 

' L3 .7:1-1+LJ •  

LÀ .7:1..2+ LI 
DO 100 K1=1,1-3 
DO 100 K2=1,L4 
K3 -4114-1,..1+K2 
IF(TERM(S(K1),S(K3)).GT.T(I) )GOTO 108 

100 FVAL=FVAL+CAP(S(K 1) ,S,(,K 3)) 



I F (FVAL . GE. MI NS ) GO TO 108 
• MI NS :-.FVAL 

108 	rl 
IF (1..J .EQ .0) GO TO 85 

41 IF (JB (KL ). GT .KL ) GO' TO 40 
• IF (1(1...E(.LJ) GO TO 85 

KL :=K1-+1 
•GOTO 41 	 • 

40 NA :- .1}3(KL)-KL -1 
DO 42 1..7:1 9 KI. 

42 JB 	NA 
GO TO 43 	 •  

85 CONTINUE 
RETURN 	 •  

END 
--EOF HIT AFTER 463. 	• 
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