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ABSTRACT

In this study, techniques in the form of

computatiohaily-feasible Algorithms are presented for

. the optimal synthesis of minimum cost simultaneous

transmission networks and the near optimal synthesis

of minimum cost time shared computer communication

networks. Méthodsiand Algoritth‘are also given fof
the'synthesis of minimum cost n§n¢f10w~rédundant
networks.' | |

| Compufer prégrams wri{ten in Fortran 4 and
compiléd oniaASigma 7_compufer'that implement theée

Algorithms are in the appendices.
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INTRODUCTION

‘The computer 1ndustry reached maturlty 1n the 51xt1es¢7:

“and it now is certain that computer networks will he the

wealth.generators that propel Canada'rnto the 21st century.

An urgent need exists for'computerleStens to share each

others software and hardware resources by counling them -
tOgether with communlcatlon llnks thereby creating whac is
called a computer communlcatlon network

Before costly and major network de51gn commitments

are made, 1t is clear that 51mu1atlons must be undertaken .

to a priori ascertaln the performance and cost of such.large
systems. - This study provides analysis and synthe51s technlquesf *
and algorlthms for the topologlcal de51gn of large computer~ |
communlcatlon networks. o |

An important problem treated in thls study is the
synthesie of a network prov1d1ng the requlred'channellcapa-
cities between various communication éentresritThat'is; |
given the nodal configuration of the\flow:requirements between
all pairs of nodes:(terminals),:the synthesis ﬁroblem deals
with determining the’network(s) thathSatiSfy’the given flow
requirements. A further constralnt con51ders the determ1nac1on
of the network(s) that satlsfy these Lermlnal requlrements
at mlnlmum total cost. | |

It is shown that although classical linear program-

ming can, in.theory, solve the above probilems, in‘reality

klarge scale network problems formulatedhuSing linear

programming w111 lead to untractable computatlonal requlre-

ments, espec1a11y for networks Wlth large number of



terminals. Thus,mlinear programining methods-are.usually

impractical and other.techniqués-to solve this problem

are required.

Although a unlversal and alLernate approach to

linear programming has not yet been developed5

Speclallzed methods{have been given [8311,13,14;15]{ The

. most impoftant.recenf contribution,to‘the synthesis problem

" has been ﬁade by Mayeda [13] who using matrix mepresentations
| gave a solutlon for the synthesis ﬁroblem ﬁlth uniform cost
‘on all the communiCationlchannels. Mayeda also gave

‘necessary'Condifions;for the realizability of such networks.

'However, all of the methods given todate are special cases -

~(uniform cost, unoriented networks, symetric considerations) .

and much work remains to be done to_find a general solution

‘to the synthesis problem. This Study,contributes further

to the existing;work.in this area.
The study is divided ‘into three chapters:—

- The second‘and third sections of Chapter I present

'"certain elementary concepts fyom set and graph theory that

are used.in section 1.4 to formally define a communication

netWork Sectlon 1.5 differentiates beiween 51mulcaneous

\transm1551on and tlme-shared communlcatlon networks; whlle

sectlon 1.6 introduces the analy51s and. synthe31s problems°

Sectlon 1, 7 offers a detalled presentaLlon of che general

analy51s problem whlle sectlon l 8 1ntroduces the constralnts,ip

and varlables of the synthe31s problem. Sectlons-l 7 énd 1.8

also give the detalls of llnear programmlng fornulatlons S0
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that the reader can appreclate the computatlonal d1fr1cu1t1es-

'1nherent in such-an_approach. Chapter I, thus prov1des a

general theoretical;baSisffdr the two chapters that follow,
and also contains an-intreduction to network theory.
Many authors - [3 4 -5 6] have made contrlbutlons

towards the de51gn of networks by developlng varlous 51mu1at10n o

» algorlthms that are based on techniques for 11nd1ng Lhe_shortest

paths between. pairs of terminals in a network. ‘Chapfer II of,'
this study utilizes various shortest path techniques to |
develop some newneynthesis>algorifhms. The "multiterminal
ehortest path" prdblem is solved-in section 2}4fand the algoriﬁhm“
presented that‘impiements the muitiferminal problem is used
| _ A - : ~ o

as the basis for the synthesis algorithms that follow.

-Section 2.5 presents a new'algorithm'for the optimai-synthesis

of slmultaneous transmlssion networks and section 2.6 presents
a sub0pt1na1 synthe51s algorlthm for tlme shared networks.

[ - In this Chapter 1t is also shown that Floyd'
Multltermlnal Shortest Path.Algorlthm [5] is 51mp1y an

extension of_the e1ementary»shortest_path algorithm (from a

-single terminal.tofall.others) and theorems 2.3;4-and 2.4.1

provide the'baeis for’this result.' The synthesrs algorlthms g

as. well as the above mentloned theorems and resulte»as

presented 1n thls study, are given for the flrst tlme, and

are 1mportant and or1g1nal contrlbutlons of thls work

i
Co
[
|
!
i




In Chapter III, ‘a procedure for synthe5121ng a
time-shared communication network that exactly meets a prlorr :f.
glven terminal requlrements is presented Sectlon 3, 2 -
contalns ‘some prellmlnarles.p Sectlon 3.3 contains both the.
algorlthm that construets such a network as well as the
necessary condltlons under which thls can be acuompllshed
In section 3.4, ‘some 111ustrat1ve:examp1es are presented and
in section 3.5, the algorithm.for}eonstructipg a communication
network from some general (having hegative capacitiee) network,
that may arise in the synthesis procedure, is given,

The procedures descrlbed in Chapter IIT were
orlglnally suggested and sketched by Resh [14] The_proofs
given by Reeh were-lnadequate an@ unsatlsfactory. vin fhis~
work formal and new proofs of all these theorems and
algorithms ere given. ; | |

In addltlon to the r-‘ef:urlecl theoretlcal development
of Resh's work the study also contalns useful computer
‘programs that 1mp1ement these network synthesis procedures.‘
These‘programs which Were~developed'as part of this‘study
are now re51dent on the Department of Communlcaulons computlng
1nsta11atlon at Shlrley Bay. One of these programs has
already been used by W L. Hatton [17] for the ana1y51s of

a proposed satelllte communlcatlon network




It should be-appreciatéd:ﬁhat Some of the methods
presented in this study have conétraints, and_therefdre>
thaf the general solution‘relaxing~these constraints

still has not heen found. It appéars pfomisingvthat’ﬁore '

sophisticated shortest path techniques exist that could give

better algorithms allowing the uniform cost restrictions

in the procedures in Chapter III to be extended; These
and other related probléms should form the-Basis'fdrA

further research in this area.
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1.1 SUMMARY

This chapter ﬁfé%ehts*the mathematical preliminaries

that form the basis for the eynthesis techniques given in

ChaﬁtersII,and lll.‘Somecset theory and‘graph theoretic
conceptslare feviewedaand used to formally define a communi-
cation»networki In this frameWOrk, definitions are given for
both‘simultaneous tranSmission‘ahd time-shared communication
networks Flnally, a brief dlscu551on of some - of the problems
that arise in the analy51s and synthe51s of networks is _
presented An explanatlon of . the notatlon used in this study,

is given in Appendlx A,

1.2 MATHEMATICAL PRELIMINARIES

SET THEORY

: Carte31an Product - If X and Y are two sets,

then the set
XxY = ‘{(x;Y)‘J»x;x;_erﬂ}_"j . 4'~7 o (1.2.1)

is called the carte51an product of X ‘and Y

Relatlon - Any subset of XxY is called a relatlon from X 1nto
Y and in partlcular, 1f X =-Y N then any relatlon from N

1nto N is called a relatlon on N

Identlty Relatlon - A relatlon 1n N’~AN’ where

:f{(i,i) pviéN y ﬂ"~H" f 7" | (1.2.2)
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1is called the 1dent1ty relatlon on N

Punctlon - A funcmlon h deflned on some set X and taklng

on values din a set Y 1is . denoted by
"h: XY - o ' (1.2.3)

Restriction —lGiven the function hland a seét DCX, the

function;
‘h* :D>Y 3 h¥*d) = h(d) vdeD, = (1.2.4)

is calledithe restriction.of'h4to‘D and it is denoted by:

h/D.

1.3 GRAPH THEORY

In keep1ng W1th standard practlce,an orlented grap G

1s deflned as
6= WA S @iy

where N is a-non—emptyfpoint set (ﬁofmally a finite set of
points) and A is a relatlon on N._ If A = N'x.N;'G'is'said
to be comglete whlle A =NXx.N - AN:thenvG is said to be .

qua51complete._;'

: For a set ef.points Néc;N;‘é subgraph Gssis-éefined as
= (Ng,A f](Ns-x N - (1.3.2)

If- X is a non-empty proper subset of N then che’
set Sy is called a semlcut of G and Sx X SXC is called a

cut.of G. Then,




{

. | Sy = | (X x;:xcj', ﬂA - | (133)
d | | : SXUSXC = (X x X9 | x®xx) ﬂ Ao (1-.3.-4’)._5

P1ctorally,the graph G 1s.represented as follows. The
-elements of N = {l 2 ---,i,j,===,n} are points on the plane
and are called nodes, centers or.terminals, while the
ordered pairs, (1,3) eA are called arcs, llnks or channels
and are d1rected lrne segments that orlglnate»at~node i and
terminate at‘node j ‘These llne segments each bear an
arrow head polntlng from i to J, hence they are called
dlrected arcs.» An” arc is called a loop if i ? J. |

I

_ ' From the representatlon of G "1t 1s 1mmed1ately apparent
.' . ‘ that a sem1cut S of a graph cons:Lsts of all those arcs
"emanatlng" from the set of nodes X and "enterlng" the set
‘of nodes XC. Removal of these arcs.from‘the.graph Would
destroy the connection‘from X:to.Xc‘ fSince connections
fron.XC.to X.canferist;.the set S ;15 called a semlcut as
opposed to the set SXLJS‘ whlch is. called a cut, that is,
the ‘removal from the graph of the arcs in Lhe cuc SXLJSXC
separates the graph into two dlSJOlnt subgraphs. Moreover,
if the number of nodes in N is n, then the number of dlStlnCL

semlcuts in G 1s exactly the number of dlstlnct proper non-

empty subsets of N, that 15,:y

. R ."__f'cr{_)&.'-_".-'é faTD s -za 20"t @y
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where l< u <y‘<z and vz n

Since there are exactly twice as many semicuts p0531b1e

as there are cuts, the. number of dxstlnct cuts in G is

'2“,1 1.

The notion of a qua51comp1ete graph is 1mportant in

‘thls ~study; and the following. deflnltlons are glven to

1ntroduce this- notlon.
If G = (N A) is a quas1comp1ete graph then for every
non-empty proper subset X of N, 1t'1s obvious that

X x'XCC:A,‘anduthusv

sy = (Xxx) la=@xxxH (1.3.6)

sy U qxc = xxxHYatxx @3
Each set of nodes,_Nk = {nl,nz, -=,0, } .where :
Pp= nl, g= :“ and where Nk is a non- empty subset of ‘the

nodes in the quaslcomplete-graph G, determlnes a set of

1

arcs, B

| called the’ kth E th from P to q.f Then“a 'subpath-fﬁv

Ty = ».f;(ni»nm) [usifysliChpq o (139

Yy -
To each path ng there corresponds a set of arcs,
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. k_ o o _ . o
Ly = The L (q,p) o o (1.3.10)

oD U{q,p_};_. o | .
called the c1rcu1t correspondlng to the path nk

Observe that the set

]qu. = {leJ) e A / (J,l)e npqv_‘}
= gy ni) / Al'f‘,il'SZ_--l}, 222 (1.5.11) ,

1s the return path from:q to P correspondlng to the path

Hpq’ whlle, -

| k
o= (@ g
= {(1:'3) € A,/ (7,1) ¢ nf'ﬁa?.} : : (1.3.12)
T o PP o ' ‘
is the circuit eotresponding to ﬁgi{and"that cleariy,
‘ : : o pq -
Hpq f) uk_‘ =0, - 7 | : (1.3.13)

i
=

npp (} n?p (1.3.14)
Finally, if the qhaéicbmplete graph G is‘also finite
With n node55‘ithis evident that the number of paths from

any node p to any node q suth that,pf#ﬁq is,

EFi v (9 b s AT et e @I (e

(1.3;155



-
The'foliowing:ex;mpies'illustrate some of the ‘
gréph theoretic conéepts-introduced above.
Example 1.3.1 = The graph G = (N,A) where N = {1,2,3,4,5)
and A = {(1,2), (1,4), (1,5), (2,1), (2,3), (2,4), (3,4),
(4,5)} is a finite oriented graph withjthe,follpwing

representation.

’Affigure 1.3.1

The semicut”Sx correspohding ﬁo‘the'non~empty_

proper subset X = {1,2,5} Of”N can be found“asffollows,

X x x&

'CD’
# .

- @ x XD A 2 1(1,4),2,5), 2,4}

212,50 x 13,4} = {(1,5),(1,4),(2,5),(2,8),(5,5),(5,8)},
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Now remov1ng from G the arcs in S

still leaves the arcs in SX connectlng X to XC whlle

renoving the arcs in the cut,
sy USge = 1(1,4);(2,3),(2,4), (4,5},

separatesAthé7gréph G into th»subé}aphs, nameiy{

=
il

= ({1,3,5%, {(1,2), (1i5)’(2>1)}5= (N, AL »

3V
i

- (13,41, t(3;4)}) - (NZ,AZ),

- From' ‘the orlglnal deflnltlon, it can be shown that

both G; and G2 are subgraphs of G. Puttlng NS:= Ny»

.Gs = (leA (}(Nl,x N{))

({1,2,5), A [)({1,2,5} x {1,2,5} ))
T(1,2,50,((1,2), (1,5, (2,1)D)
= Gy

Simiia?iy_it-éan,hé shown:that Gy is;a subgraph of G.

.Example 1.3. 2 -<The f1n1te, qua51comp1ete Orientéd gfaph

G’; (N,A) where N ={1,2,3,4} and A = “(1,2), (1, 3), (1, 4),
(2,1),(2,3), (2, 4),(3,1),(3,2), (3, 4) (4,1), @, 2), (4,3)} hasl

the folloW1ng representatlon
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ffigure'l.s‘.z -

' The number .of p0551b1e paths from a node p to another

node q where p # q and Ps q g N 15,

H
Ut

.(452?)501’“3 + ‘:(4':2)‘...'13 . (u;‘z)z, . Ia2az: .

‘For a glven pair of nodes, p = l.and q = 2, the

flve p0551b1e paths from 1 to 2. are

]




and

1.4

it
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)y,

Mise

L {(1,3), (3,2)},'

152

:{(1;4)3‘(4)2)}) ~_>

ng:é: -‘».{(1;3); (334)3”(4’2)}9:

-
-
e
[}

= LA, (4,3), (3,23

' The circuit corresponding to N3 , is,

= @D = WL, 3,3, (5,2), (2,1))
92_ ’ S E . .

Observe that the;ﬂreturh"jpath corresponding to

isy

5

T = ((2,3), (3,4), (4,1))

1 2
’

that the circuit corresponding to nf is, -
: S1,2
. ] ) ’

H§ 1 ; {tlaz):.(2;3)¥-(354)ac(4,1)}31"

?

“NETWORKS ANb'COMMUNICATION.NETWORKS:'.

In general a nethfk~N; is defined as

N = (G,iwl;iwzflﬁrf wm)s

c1e4.1)




-
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where G is a f1n1te, quasrcomplete, orlented graph w1th

kth

n nodesf: Wy is the real-valued function defined

on - some eet,A, that is
wk :A + R; k¢='1,2,---,mra

. In partlcular, a commualcatlon network is one in
Wthh the wk 'S are non-negative. real valued functions,

namely,

wk : A~ R ; k = 1,2,--;,m;,'

(1.4.3)

(1.4.2) | -

The»function wk'is usually-called the "arc capacity"

or "welghtlng functlon", that is for each arc (i,j) e A,

Wk(l,J) is referred to as the "welght" of arc (1,3), or

the arc capaclty

. ‘The requirement Lhat G be qua51comp1ete is by no means

restrictive. That is, 11 ‘the graph representlng the actual

network is not qua81comp1ete 1t 1s a. 51mple maiter to add

to it the m1551ng arcs, each w1th zero welght, S0 as to make

it qua51comp1ete In other words, it is always pQ351b1e

to represent any network by a qua51comp1ete graph.

If Sy is a semlcut of G then for ‘the network:N,

i

he

(1.4.4)




- 16 -

;15 called the Value of the sem;gut Sx w1th respect to
the weighting functlon Wy . Whenever no confu51on_can arise;
'ISXI will be written instead of lSXI

The Y"sum" and ihe vdif ference" of two networks

N 1v= (G,Wl)'andaNz;

3(99]Wz)ﬁ%§%f¥;15.def1ned as:

i

-‘(?‘, sw), s

(6w,)  (Gw,) s

and, therefore, for any semlcut Sx in G,
' | ' '

| P o R .
ISXI W;iW; ‘A=Q_lSX| Wli [SXI.WZF ) D .(1.4.6}.

The f0110w1ng welghtlng functlons w111 be used in

thls study
LA A+ R (1.4!7?: }j
wéi: £: A~ R" (1~4-85;
o= di A*+ Rt (1.4.9)

.The“fﬁnetion:;,‘is'fheichaﬁnel capécity’functieniand
c(i,3) represents~the+¢hannel capacity of the‘channel‘(i,j).
‘In a communicafien~ﬁroblem, c(i,j) is ueualiy given in
terms of baﬁdwidthfer as a bit rate It rebresents the
maxlmum speed at Wthh a message may be transferred along

the glven channe] (l,J)
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The‘functlon\f iS~the-message‘rate or flow function
:and f(l,]) is the rate: at Wthh a. message is: aCLually being
-transmltted along-arc (1,3) - When subscrlpts are used »_
(1,3), means that a glven amount of flow (see sectlon 1. 5)«
from p "to q 1s taking place along the arc (1,3) and that . |
its value is f (1,3) | o
The functlon diigs called the cost 1unctlon. Usually
d(i,3)~1s elther.the cost.per unlt capac1ty (for,tne |
synthesls problem) or 1t is the cost per un1t flow (for.
'the analysls problem). | |
‘ .
Formally t(1,3) is the maximum flow that can be achleved
1between termlnals 1 and Jj glven that no other flows are
1ntroduced into the network. It'lS by the Ford Fulkerson [7]
theorem equal -to Value of the mlnlmum Valued semlcut |
separating i and J. - ‘ |
For computatlonal:purposes, the funCtions c, f'd.and t
will be represented by - the n by n matrlces C,F,D and T.
Each matrlx entry, c(1,3), f(l,J), d(1,3) and t(1,3) etc.
represent the . respectlve Values of Lhe functlons as
‘deflned above. Since no 1oops are present at thc nodes
of a communlcatlon network the dlagonal elements of

these matrlces are not deflned

1.5 'SCOPE OF THE STUDY,
In this’ study, two large classes of communlcatlon

networks will be discussed. These are,

The functlon t is called the terminal capacity function., - -
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1) Slmultaneous tran$m1551on communication networks,

t2) Tlme shared commun1catlon networks.

- In 51multaneous transmlss1on networks all communi-

catlon centers are able to both transmit and recelve

messages - at the same time. ThlS, for example, is the

‘mode of communlcatlons in the common. telephone system.

It 1s assumed that some form of channel selectlon or

lsw1tch1ng'allows messages with dlfferent or1g1ns~®ﬁ‘f~

and dest1nat1ons to pass along common 1links w1thout

.1nterfer1ng with- each’ other.:.f;h_nlligffhlxl

terminal p to term1nal q in a network is called the

commodity w1th orlgln P and destlnatlon q. This
commodlty may be: d1str1buted among the ‘paths that join
P to q, and the value of the flow of thls commodlty on -
arc. (1,3) is denoted by qu(l,J); .In'addltlon, other
1ndependent message flows, say £ t(l,]) could exist

along the same arc at the same tlme, th1s leads then

to what is called a multlcommodlty flow problem.

In general for an n node communlcatlon network ,

there are. n(n 1) commodltles, two for each node pair

(one in each dlrectlon)

' The total flow lrom p to q is glven in such a. .

network by
,.pg  kép »Pq‘..’; T kfq PO

(1,5.1).
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and the total message flow for all commodltles in arc
'(1,3) 1s, |
£50i,5) = % £ (i,3);
| P4 Tpa
In -contrast to the above, networks engaged in-
. time- shared communications are networks, in Whlch communi=-
catlon .occurs between only a slngle pair of nodes 1n a
partlcular 1nterva1 of time. This system is used in
tlmefshared comput;ng lnstalletions.:,This_is'still a
multicommodity sitoation ahd‘theioommodities are not only
‘ distinct but alsofafe transferredﬁin nonéoverlepping
1ntervals of tlme. 3 | |
| It follows that the total flow from p to d:,f;q
is egaln given by_(l.Sél),-and that thls value is less
thah-or equalhto the;terminal capacity, t(p,q).
Furthermofe the fiow in a’given arc (i,j) is'simply
(1,3) and the capac1ty of arc (1,3) must be large
enough to allow the max1mum of the f (1,])\3 to pass

along,that.arc.,}o'v»

'1.6. THE ANALYSIS AND SYNTHESIS OF COMMUNICATION NETWORKS

' In‘the:folloWing two sections, the:ane;ysésbof

communication networks is discussed and the synthesis

- problem is introduced.

D CWpgare N. (L5 -




In the case where the capacity'and cost fdﬁetioas
c and d for the network || = (G,d,c,f,t) are known,
N is obviouSly a’physieal entity. The analysis problemn,
then, consmsts of obtalnlng Lhe message flow fuﬁetion £,
. and the termlnal capaC1ty funcLlon t.
The contrastlng case is the one in which a network
N = (G,d,c t) is to be synthe51zed That is, G, d
and t are known and ¢ is to be found. It is possible
to have as a result of synthe51s,networks havxng arc
|capac1ty functlons that give termlnal capac1t1es that are
1all ‘larger or at 1east as ‘large as the. apriori spec1f1ed
entr1es in t. These resultlng networks are cons1dered

fea51b1e (not.necessarlly optlmal

have-at:least. enough capa

Capac]_ty requlrements. S
JIn all cases, 't is called the terminal capacity
3
requlrement functlon and the entrles in t'will be called

51mply the termlnal requlrements. 5_

1.7 THE ANALYSIS PROBLEM

| In thevanalYSis problem;"a commuﬁicatien network
iN '—i(GAd‘eAf tj ls giVeﬁ, and the‘ﬁetWofk configuration'
G ‘the arc. costs d (cost per un1t flow) and the arc
capac1t1es c are known | | |

The obtalnlng of the message flow functlon f, eenstitutes
‘the flrst analy51s problem. It is obvious that forﬂany

type of communleatlon network;'sevefalg flow functions are
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feaslble Any flow function that assumes non—negative‘
values that do not exceed the correspondlng arc capacltles,

Among these flow

patterns, there ex1sts at 1easc one’ that is called an
optimal flov pattern.

The.optimality may be basedjon maximum total network

flow, on. m1n1mum netWork cost, aﬁ&ﬁa&imum'fxo

at minimum cost. Thus several posslbllltles exist and for
each one there is a set of constralnts, that is for each

case there 1s a functlon called the obJectlve

that has to be optlmlzed
The folloW1ng observatlons apply to all the cases
con51dered 1n thls study |
1) CAll values of flow in. a. communlcatlon network -
are non—negatlve (that 1s, greater than or equal to

'zero) | | ‘: |
-2) Flow is conserved at all nodes, hence, the sum
total of message flow 1nc1dent on a node 1s equal
to.the sum total flow emanatlng from that node.

'3). The total flow in a. glven arc must not exceed

'jthe capacity of that arc at any time.

- 4) The obJectlve functlon ‘must be expressed in
terms. of the 1ndependent varlables, that 1s, the
entrles in £. | _ | - A

d5) Optlmlzatlon lmplles that the flow functlon is
tojbe.evaluated so that the objective functlon takes .

either its maximum or minimum value. Since the
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~operations are'additiong subtraction or multiplication, . L

this optlmum is well deflned if the 1ndependent
"varlables are . bounded from above and below.

Case 1.7.1 - Single Commodlty - Maximize Flow :

gixgg; A single commodity flow network where

N'= {s, 1 2--~~ ,t} and fst(1,J), (1,3) e A, is the flow
from s to t of the single commodlty on arc (1,3) \
Regulred. -To.f;nd the flow pattern_that maximizes the
.total‘flow;from s to . | S L
.Sblution: _anwingAthat:fst(i,j)’is:thé flow valﬁezon arc.
(i,j) and letting the maximum fléwvf?om s to t be v,.

the constraints may be stated as follows:

£(3,1) 20 5 ¥V (L,i)ed, . @.7.1)-

P

~v if jes,

I fep(k,g) - I fst(j,k) = q 01f Jés,E,  (1.7.2)

B S D R V1

N

£5¢(1,3) 5 c(i,i); ¥(i,5) e A.

(1.7.3)

Observe that (1 7. 2) is 51mp1y the statement of the'
conServatlon of flows. |
Slnce v is to be maxlmlzed the obJectlve function is

z'% v, ‘and z is- maxlmlzed subject to constralnts.

v if j=t; s,teN,s#t,
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' to minimize. z, .
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(1.7.1), (1.7.2) and.(1.7.3), that is,

Maximize z = v 1 o | ’ f S C(1.7.4)

Note thatvall entriee.in £ are bounded and that v

is a function of some of the values in f.

Case 1.7.2 - Single Commodity - Minimize Cost:

Given: A single commodity:flowonetwork,“WﬁQfej

the flow from s to t is V.

Requlred. To f1nd the flow pattern that minimizes the

cost.

Solution: Renembering;that‘the "throughput" v is no

longer a variable but of fixed vaiue and assuming that

a fea51b1e flow pattern correspondlng to v exists then

'~the constralnts are glven by equatlons (1 7.1)5 (1.7.2);

(1.7.3) above. . .
The obJectlve functlon Zz is now dependent upon the

arc costs.._Tovarrlve at»a-solutlon for £ it is necessary

Minimize z = X £.,(i,3).d(i,)5 ¥(i,i)eA.  (1.7.5)

S,y T : »
Obvionely,\the_maximum throdghput at minimuin cost

can be'obtained for.a“given network by adopting the’

above'apprOach ‘ That 1s, by first evaluatlng the max1mum'

flow v u51ng case 1 7 1 and then flndlng the: pattern that

mlnlmlzes the cost given that the throughput is v as

:outllned in ease 1.7,2.
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Given: "An n-node~network-with n(nhl) commodities.
Requlred To flnd the flow patuern that max1m1zes the
sum of all the commodlty flows

Solution: Lettlng v_  be the undetermined commodity

_ . pq
flow value for nodes p and q (P£9, P,qeN), the constraints.
are, ' o ” ‘ :
fpq(1>3) >0 5 ¥(i,j) e A; ¥ p,qeN, p#q, (1.7.6).
Vpqe if jeps
,2. qu(lcaj) " Z. qu(j,k) -l 0, if:jiép,q, (1.7.7)
KA ke B |
qu’ if j=q.’
\ : .
V¥ p,qeN, piq,
. pq(1,3) < c(i,j); V(i,j)eAs Vp,qeN, piq.  (1.7.8)

To arrive at & solution it is necessary to maximize

pq

‘Maximize z = T v ¥ p,qeN, p#q. | f o (1.7.9)

- psa
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Case 1;7;444'Simu1taneous'TransmiSSion>#‘Mﬁlticommodity -

Given: An n node network w1th n(n 1) commodltles where

the magnltude of each commodlty of flow 1s a constanc
qu > O.!3 p#q-e N. ) | ..
Required: = To find the flow pattern.that minimizes the
total network cost. .. | » -.A
Solution: - Bquations (1. 7. 6), (1.7. 7y ‘and (1.7.8) are the
.system constralnts for thls case as well where qu is
no 1onger a varlable quantlty | '
The ObJeCthe functlon however, changes to take

- the arc costs 1nto.account. Then, from (1.5.2),

Minimize z = % d(1,3).£°(1,5)5 (i,i)eA

’;(i,j)
- 3 d(l,J) Cx qu(;fj)»;i' - a.7.10)

(1,3 0 pea
¥ p,qeN,. péq,
to:find the minimumttotal'costeof'the network.

Case 1. 7 5 - Time- shared Multlcommodlty - Max1mum Flow:

Given: An n node network with. n(n 1) commodlcles.
Required: To find the_flow pattern that maximizes the

sum of all the commodity flows.
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‘SdlutiOn‘ Lettlng Voq be the undetermined flow value

for nodes p and q (p,qu péq), the constralnts are

£pq(1,3) 2 05 ¥(i,5)eA; ¥ p,qeN, piq,

o . ‘e
. Z-. qu(k,J) - b} qu(J sk) = A 9 | 0, lf j=‘ps’.q>,
CkE o KA S
| L Vpq>» 1f J=q,

- ¥ p,qeN, P£q’

£,q(1,3) € c(i,3)5 ¥ (i,3) € A; ¥ p,qeN,

piq.

Observe that the constraints for this problem‘are
identical to those of the Simultaneous Transm1351on
Problem in Case 1. 7 3 except for (1 7. 13) In the

tlme -shared case. only one commodlty of flow may appear

in the arc (i,j) at any 1nstant in tlme, hence f (1,])

_could take on a value up to the value of. c(1,3) In

Case 1 7.3 all commodltles appear 51mu1taneously in

(1,3) hence the summatlon in (1.7. 8)

(1.7.1131}

(1.7.12) o

(1.7.13)

| ‘Subject to the constralnts (l.?.ll), (1.7.12) and -

» (1.7;13) the solution is'foand by maximizing;z, namely

Maximize'i #".'E‘Aqu ;‘P@QﬁNsp%Q
| o pa |

(1.7.14)
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Case 1.7.6 - Time-Shared - Multicommodity - Minimum Cost:
givgn;' An n node network witb n(n~1) ;ommoditie55 where
the qu EQ J p#q e N are constants | |

. Required: To find the flow pattern_thateminimizes the

. total network cost. . . ‘.‘ -

Solution: The constralnts are 1dent1ca1 to those of

Case 1.7.5. The solutlon is. found once agaln Sy

minimizing z,

)

Minimize Z = z (1,938 (3,305 ¥(1,1)eh, 1.7.14)

where f*(l,J) is the average flow: value expected in arc

(1,3) 1f each of the commodltles has an "equal chance"

to utilize arc (1,3), then,

e 1,9) = B fpqtdeI) w(i,iyen; poaeN, pla. (1.7:15)
» . n(n-1) i o ‘ o

Conments' |

8] Closer examination of the above cases ‘shows%that.the

complexlty of these solutlons increases ‘very rapidly as

the number. of nodes in the network 1s 1ncreased For

example, for an n node network 1n Case l 7.3, he number

of unknown variables as well as the number of constralnts

is n(n-1) (n? ~n+1)f For case 1.7. 5 the number of unknowns

'1s n(n l)(n2 n*l) and the numberf f;constralnts 1s

Zn?(n—l)z, Slnce the computlng“ﬁ .j:.soiutlon using
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a linear program is dependént ﬁppn the number of
constraints’ as wellias'the.humberiof unknowns,_fhe size

of the task grows aimdsf without-baund.as the ﬁumber of
1nb&es‘iﬁcieases.' Hence the use of”lineér progfams to

solve network prébléms iS«limitéd~by the computer time

the analyst can affprd to spéﬁd.onua giﬁen problem. |

This shortcoming is what has‘prompted the "modern" network
theorists to develop more efficient'graph theoretic based
‘algorithms to obtain sblutions ihétead'of using linear
programmihg, _A1though only some.of these broblems have
‘been solved this ﬁay,ﬁthe onés-that*@#@;gi&éftﬁgfﬁéfﬁork
_anaiyst someluéefﬁl'fpols for modelliné[larger network
?roblems, Some 6f these algorithms are presented in this
study. _ | | ‘ ‘

&2) The second, analysis. problem requires.that_the terminal
capacity function be evaluated. It has heem:shoyn'that t is:
%ependent;uPon Ahbtﬁef_function;.hémgly, the_arcicapacity

.fdnction, that is,
| © t(p,q) = min {i_sxl" /. (p,q) €8y o R S (1.4.10)
Thusfﬁhe'miﬂimum~valued'semiéﬁt.séparatihg nbdes-p

and q, has a value equalﬁtQ tHe-maximum possible flow -

from p to.q. This is exactly case 1.7.5.' Then

t(p,q) = vpd'and t is found ﬁéihg linear programming.
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(3)' The theorem that orlglnally solved the analysrs
problem for finding t, was 1ormu1ated by Ford and

Fulkerson [7]eand has subsequently become the central

theorem in network theory.' Since a formal definition

(1;4.10) of the terminal capaoity.function is essential
for theunetwork synthesis problem;'Ford and Fulkerson's
"Max-Flow, Min-Cut" theorem is stated (without proof],
in additioﬁ; some extensions are. preSented as these
analytlc tools are useful 1n analyzlng networks once

they have been synthe51zed

Theorem 1.7.1 - Maximum-Flow, Minimum-Cut: [6,7,9]

For any’ network N = (G cst) where G is an n node,.
flnlte, qua51complete, orlented graph and where c'is the
capac1ty functlon deflned on the: arcs of G, the maximum
flow from some termlnal p to anOLher termlnal q, called

the termlnal;capac1ty\t(p,q),-ls;equal to the minimum
; _ \ 4

‘valued semieutgcontainiﬁge(p,q).: (see equatiom9(1.4.10)).

‘The direct result'of this theorem is. that algorithms .

can and have been formulated to solve the max1mum flow

'problem u51ng methods other fﬁan 11near proar' ' The

use of thls theorem is 111ustrated in the 1ollow1ng

example.. .
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Example 1.7.1 - Find t&i.S}?;

figure 1.7.1

- Given the'net N.=-(G c t),iwhefe G = (N A) is
qua51comp1ete, f1n1te and orlented N = {1 2, 3 4} and

A =NxN-=- Ag; Lhe capac1ty entrles ‘are noted be51de thev

N

correspondlng arcs’ in flgure 1.7. 1 and 1n the maurlx C.

¢ 8 4 1]
| 5 % 2 4
C = R
0 0. * 0
0 0 10 *

In order to find t(l 3), all semlcd sfS%jﬁﬁ ;;f“'

examlned in Wthh 1eX and SEX Then the values of B

these semicuts are computed and t(l 31Ntakes o;;khz,

mlnlmum of these values. Thus
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X ={1), So| - = 111} x7{2,3,4}] 84441 = 13
X2 =f{1;2},..-5x o= 1{1,2}. x7{3,4}] = ‘4f1i2+9 = 16
) N X \ |
X = {1,4}, ISy | = |{1,4) x £2;3}] = 8+430+10 = 22
o Je T - |
! . .
X, = {1,2,43, 18,1 = |{1,2,4} x {3}] = 4+2#10 = 16
| R sc ' R :

‘Then t(1,3) :‘13, the minimum valued semieut. Q.E.D,.
Comments

The number of semicuts that must be tested for any
termihal peir"is, |

n-

[A]
-

G IR @ - (1.7.16)

Where n is the total'numher:of nodes in the network ‘Again

it is ev1dent that as n 1ncreases, the number of semlcuts
that must be examlned 1ncreases rapldly ‘To‘overcome this
'1neff1c1ency,_many‘authors have developed labelling”

algorlthms that locate these minimum cut$ qulckly. A

_eveloped {wilch is: based

on the theorem of Ford Fulkerson [7] . ThlS algorlthm is
‘presented below and then an example glven to 111ustrate f
its appllcatlon | h

In the Algorlthm 1 7 1 presented below,_fo

_network N , where G is a f1n1te, oriented qua51complete
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graph, N = {p I 2 —--,n 2,q} and the arc capac1t1es

c(i,)) are glven the" maxrmum flow “Exiom’ p to q

is foundf Thls corre5pond5~by_deflnltlon to thei

 terminal capacity t(p,q).

- Algorithm 1.7.1:

Af

Labelling Routine -

1. a) Initially; all nodes are nnlabelled and unscanned

and flows in the arcs are zero., Labels are of the’form

(G, 8(1))" where thlS label corresponds to the

ith node |

b)) - Label node P w1th (p, ,e(p) = °°) Now p is

labelled and unscanned wh11e a11 other nodes: are

'4unlabelled and unscanned

2. _Choose any labelled unscanned node i.

| a) If for some unlabelled nelghbour of J where

'c(J,l) > 0y Jfl, there is a flow. f(J,l) > 0, then
‘label j by (1 ,e(J)) where e(J) | mln{e(l), £(j,i)}.

. b) If for some unlabelled nelghbour of j where

C(l,])>0 and f(l,J) < c(l,J) then label 3 by (1 + 8(3))“

”where e(J) m1n {e(l), c(1,J) - f(l,J)}

Now j 1s 1abe11ed but unscanned Do thls for
all such nelghbours of 1, A |
Now change the label on i by enc1rc11ng the A

"y or M- 51gn.' Node i is now 1abelled and scanned

3. Repeat step_z until either,
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a) q is lahelled then go to routlne B or
,b)

1. let z2 = Q. o
2. a) If for node z the label is (k ,s(Z)) then
1ncrease f(k z) by e(q)

b) If for node A the label is (k, -,e(z)) then
decrease f(k,z) by e(z)..

‘3..-a) If k = p, erase all labels and go to step A (2)

- b)s If k $# p, let z.‘ k and go to step 2 ‘
Observe that upon termlnatlon at: step A-Sb),.the termlnal

capacity, t(p,q) is given by:

t(p,q) = ,§ £(p,§) = §'f(j;q) PV ipaeN  (1.7.17)
and that the mlnlmum semlcut Sx is found by plac1ng the
labelled nodes into the set X.. ' .
: Also note that by executlng this-algorithm'n(n-l)'times )
for all term1nal palrs; the termlnal capac1ty functlon in
the form of 1ts matrix of values 1s found
‘The follow1ng example demonstrates thls algorlthm

Example 1.7.2

The network conf1gurat10n and constants are: 1nd1cated
in flgure 1.7. 2 In the. notatlon "x y" beslde each arc,
 the x»represents the capac1ty of_that~arc and the y

represents,the flow;in_that arc. - Then our initial
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configuration without iabels‘(exgﬁyt;for P) and~without

flows is:

figure 1.7525

Starting‘with routine A; nodes 1 and 2 are selected

and labelled.as neighbours of nodetp, the oniy labelled

. node at this}stepf Consequently, node p has been

scanned.




figure 1.7.3.

This procedure is continued until "breakthrough"

to q has beenvachieved.'




. (pi®l4)

figure 1.7,4
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.~ Now that node q has béen~1abélled; flows are
‘chaﬁged.along the pﬁih~from p.to.q using Routine B

and then the 1abe15'are~allierasedQ

figure 1.7.5

Using Routine A again a’"breakt‘wnﬁgh??iﬁﬁfﬁ#ﬁ@f“
to node q and the following 1abelledy66nfiguratidn_is

obtained.
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{, 8,1

\ .
'

figure 1;7:6 )

‘Routine B gives the.ngxt\flow pattern:

7.0

figure 1.7.7
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Executing Routine A once more gives:

\

(p,®,8) 7,0

figure 1.7.8

The resultant flow pattern is:

figure 1,7.9



- 40 -

Trying toilabel once more does;not succeed,

we have:

figure 1.7.10°

: Observe that the ‘minimum valued semicut is Sx

where X = {p,2} (elements of X are the labelled nodes

. CCp,l) I
¢(2,1) # c(2,4)= 4+1+7 = 12 and t(p,q) = 12. This

that remain at term;natlon). Then . Sx

can be varified by calculating that the sum of the
flows leaving p equals the sum of the floWs.afriving

at q which is again 12.
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_in the analysis problem,.dt:3

« problem as. all nodes can communlc

1.8 THE SYNTHESIS PROBLEM

In the synthesis nroblem5 it is required to construct

the communication' network § = (G,d,c,t) where the network

graph. The costs d(i,j) and the terminal capacities t(i,j)

. are also known. _Theléolution must find'the_vaers‘of the

L3
.

capacity function on all arcs in G, so that t is satisfied; .

. . i e
at the same ‘time the network. 1O

t, knowing c, but in the syntheéiéiproblem ¢ must be found

'given.t.

A first attempt to solve this problem might be

. to construct an arc for'each entry of the terminal capacity
'function, that is, set c(i,j) = t(i,j); V¥(i,j)eA. -The -

'resultant network contains links between'all‘possible

: pairs of nodes; ThlS satlsfles the 31multaneous transmission

: lth-all other:nodes.,

at the same tlme, consequently, the tlme shared case is

certainly satlsfled However, is 1t an opt1ma1 cost

.solutlon? At a glance it is obv1ous that it isn't. -

If arc costs are- not un1form then a glven requ1rement,
can certainly be satlsfled by using a route that may be
cheaper.than the dlrect route. " In the tlme—shared case,
the qua51complete conf1gurat1on allocates a dedlcated
llne.to one termlnal pair. This results in under -

utilization as the-line_is_act1Ve~only.aAvery Small

. configuration G is an n node, finite, oriented, quasicomplete




fraction of the time, remaihihglidie_for.the rest of .
"'the time. These obserfations suggest that optimal
capac1ty assignment requlres thoughtful formulatlon.
CIE the obJect is to satlsfy the requlrements at
minimum total netWork cost,*the most obvious method of -
‘soiution is lineaf programming- As in the ana1y51s

problem, the set of constralnts and the obJectlve A

. function to-be optlmlzed is glven'fhwg~ hgshared case.
" Furthermore each t(p,Q).in t,-represents’a

commodity of flow that is requiredtto flow from p ‘to q.

.Then the flow pattern in the networknfot:eaohkoommodity

_ must Satisfy_theee reduirements without violating the "

"atc capecitﬁes and:at thelsame»time must be such as to

minimize the total network cost,

Only multlcommodlty problems are con51dered here.

:Case 1.8.1 - Simultaneous Transm1551on - Minimum Cost -
Xnthe51s.' '

gizggﬁ' An n node network with'knoWntcosts d and known

reouirehenteht} | ‘; | | | _

Reguited'~ To fin&.the~caﬁaoity function ¢ that satisfies

‘the requlrements at minimum total network cost for the.

51mu1taneous transm1551on problem. |

‘Solutlon' .KnoW1ng‘that~a11‘the network flows’ere positive,

that flow at the nodes obeys the conservatlon laws and

that the flow in each arc must be less than the capac1ty

of that-arc, the constralnts are,.
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£,q 2 05 ¥ (1,3) €A V p,qeN, pia, -

r/

e

p .

k#j kéj .

' - ~t(psq), if'j“Q?
~
¥ p,qeN, Pfq’
| - |

c(i,j) - & £,0(,J) = 0; ¥(i,j)eA; Vp,aeN, phq.

P59 Pq.

' - . [ N
~ An optimal solution is found by minimizing z.

Minimize z = % d(i,j).c(i,j) V(i,j)eA.

(i,3)
o

Case 1.8.2 - Time-Shared - Minimum Cost - Synthesis:

Given: An n node network with known costs d and known

Required: ATo find the éapacity.function'that satiSfiés

requirements t..

g1i:he time—shared'requirements at minimum network cost.

“Solution: ' The constraints for this problem are, -

fpq(i,3) 2 03 ¥(i,j)eA, ¥p,qeN, pka,

‘t(P,Q);“if‘j?P :

,:(1--8-_1;‘:)_ L

g (i) - X £,,00H) = ¢ 0, if 5fp;q.£1.8.2):'*

(1.8.3)

(1.8.4):.

(1.8.5)
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- L
't(p:QJs“;f J=P,-

- e k .'{~ _ )
L R L L A
| FPsa) » 3F J=q,
‘V p’QEN’.péq;
c(i,3) = £,4(1,3) =05 ¥(1,j)eA; ¥ p,qeN, piq. (1.8.7)

Subject to the above constraints . .

‘Minimize z = % d(i,j).€(i,i); ¥(i,jleA. (1.8.8)

(1,3)

The values eflcépacity'genereted‘by‘these solutiqns
are, in general _nbn‘integers. .Since capacity'rentél is
.usually quantlzed, 1mp1ementat10n of 51mu1at10n results
requlres that these non-lntegers be rounded off to their
next largest 1nteger.~ Thus,_excess capaC1ty is left in
the system and ‘the network cost is 1ncreased that is,
the final result is usually suboptlmal even when 11near

programmlng is used.

0, if j#p,q, (1.8.6)




. . \ 1.9 ~ CONCLUSIONS

In the cases presented inbsection 1.8; the.commodity
_!A, ' ~flowsAqu(i;j),'as'well as.the'oapacities c(i,j);;are |
obtained. That is;‘each linear’program solves for a
.large number of unknowns such as flows, that are not
requlred in the network s}nthes1s cases- Moreover~for
large n, the number of unknowns and the number of
onstra1nts is unmanageably large as has already been
pointed out in two of theianalysls cases. Th1s‘leads

to the conclusion‘that methods more efficient than linear

:programming.must be found to arrivejatrpraotical'solutions
vvqulckly and eff1c1ently % | ' | |

‘l’ - It was polnted out that for the analy51s problem
‘certain labelllng techniques can be applied. For the
multlcommodlty synthe51s, since no such methods exist to-
date, it 1s concluded that one must: settle for some sub-

| ontimal synthes;s procedures, In Chapter II.of this’
.study, some shortest path techniques are‘presented that
tend to m1n1m1ze total network cost. In Chapter III, a

',synthes1s procedure is: developed that exactly allows

| the determ1nat1on of c, glven the termlnal requ1rements

and the arc constralnts.
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2.1 SUMMARY |

This chaptef"develbps methods for the synthesis of .

simultaneous transmission.and time-shared communication

networks using yé;jpgﬁishortestgpath techhiques.“‘The'

need for cbmputétiOnally'féaﬁfﬁféﬁﬁéfhdds*waninﬁted

out in Chapter I,"whéfe}it was Sﬁde.that due to the

presence of-hugé.numbefs of consiraints and unknown$, linear

-programmingvformulations for large ngtwoik prbblemslleads

to difficult_and o.fter.;'impossible-computatioﬁal"probléms°
First éertain path definitionSAare given, then

various shortest path aigorithms are developed Easéd 6n

these shortest pafh notibns.i These algorithms permif “

reédily cohpUtable'solutions;to be_found_for these synthesis

probiems. _Tﬁg'simulation programs that implemeﬁt'these

aigorithms fot-fhe,simultanedus tranémiséion.aﬁd3the'timen

shared cases are given in appéndices B and C.

2.2 . MATHEMATICAL PRELIMINARIES |

PATH DEFINITIONS
In Chapter I, the k! path, ngq%, was.defined to be
the;sequenée of ércs,thét join terminal p‘to'tefminal q.

'Here_d(ngq) ' is define& to be the length of:the path_

k
pq

arcs thaﬁ.are'in thét'path. in the synthesis procedures

Il . and iﬁ'is given as the sumuof‘fhe."léngthSﬁ bf the

developed in this éhapter,-these‘lengths_are the arc cbs{:s9 |
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‘namely, the d(i,j). Then,

a ek Ca 4 s .o k.
d(Il;,) = pX d(i,j) y ¥(i,3) ell o
R S ¢ 1 D S Tpa

. Thus, the éhorteSt path -ﬁgq'is defined to be the

one whose length is smallest among all m paths joining p

to q. Thafvis;
d(n-) = MIN Ak 3y}, k = 1, 2, -==, m.
.(Hpq) o (H,pq) ’ | | y Ly o

These definitionsAare illustrated in the follQWing

- example. .

Example 2.2.1 =

;figuref2;2.1: ‘

(2.2.1)

(2.2.2)
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K : . ~ Consider the network shown in figure 2.2.1 with arc
costs (lengths) as_indiéated.'_By‘inspection,'the possible

‘paths and their lengths are:

4]
b .
-

il o= (D, (4,2), (2,01 Ay
i’
pq

I
(%3]
e

RGN GO IR (C <9 B

=
w«
1]

Gy dady

. n
m.
e

=
1
1]
Y
L ]

b3 o g
‘ .-{(Pp:’), (3>C1)}s “ » d(]’[pq)_ »

'5 . , Therefore th‘e'."short,est' path is given by

MIN L& 53, % =1, 2,.3, 4

da .' .
(Hpq) Tk S PqT

so that,

o
I. t

ﬁpq ndq

={ (»P’S-) » (3 ,Q) } ".f
In commuhicétionﬁprqbleﬁéféli}art”costéféfé'néﬁ#ﬂ'
. negative, and:the minimum in:(Z.ZQZ);exists; However,

in many generaiahetwdrk.broblems where these lengths may.
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" be negative, further';onstraints must be‘plaged on the
system so_that,all‘shortest;paths can be well defined. That
.ie; the general‘nroblem for all circuits ng wnere_pEN and

k = i,l25 ---, m, must satisfy
dH . .
(Tpp) 2.0+

If for some c1rcu1t Hip’ it should happen ‘that d(pr)

<0 ~then thlS c1rcu1t is called a negatlve circuit. This

means that if (i,j) ¢ Hk 4aqd if H (u # v # p) is a path
‘where (i,j) € Hh v? then H 13 not well defined, that is,

the minimum iS'an undeflned negative number.'

| The detectlon of negatrve C1rcu1ts is important in
network problems as thelr ‘absence is one check of the valldlty

of a shortest path computatlon.

. 2. 3 THE SHORTEST PATH FROM A GIVEN NODE TO ALL OTHER NODES

IN A NETWORK

leen the network N = (G d) where d is the arc cost func-
tlon, and it is requlred to flnd the shortest paths from a given
node p to all other nodes, 1, 2 —-——— n-i in thlS network |
algorithm 2 3. 1 solves thls problem u51ng a 1abe111ng procedure

that was flrst formulated by Ford and Fulkerson [7]

Algorlthm 2 3 1 - (Shortest Path Algorlthm)

{

Step 1) - Assign toxall'nodee;i iabeis of the form,>
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I d(n )] where d(n ) = o, and d(n ) RN b
d(le) is called an "1ntermed1ate shortest path length"
and Hgl is called an "1ntermed1ate shortest path™,
(In1t1ally the shortest paths to all nodes i # p are

assigned 1nf1n1te length)

Step 2) - Find an arc (i,j) for node j,j#i, such that,

Al *d(E,g) <,§(npj). -. . (2.3.1)

_‘When such ‘an arc is found, put’ d(n ) = d(n '; d(i,j)
and rewrite the label for node j to_read, [i, d(r )]
Repeat this Step‘untiljlabels-can no longer»be changed,
at this point terminate; The intermediate shortest paths

|
‘have become the desired shortest paths and for all nodes

3 7e Aty .
‘ P . |

SteE.S) - To identify the nodes in, the shortest paths
£rom node p to some node J 7 p |

a) Put k ='j;_. _

'b)‘ ldentlfy i from the label [1 d(npk)] on node k.
Then iis ‘a node 1n the shortest path an " If i does not
ex1st there is no shortest path from p to J.

¢) Put k= i, If k = p then termlnate, otherwise

return to“3-b).
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The proof that algorlthm 2.3.1 flnds ‘the shortest
path from a given node p to all other nodes and that it
‘terminates in a flnlte;number of steps is establlshed
in the followingvlemmasfand-theoremsTS]. The lemmss

are stated while theitheorems are proved.

THEOREM 2.3. 1‘7 Step 2 of Algorlthm 2.3.1 termlnates

after a finite number of 1abe111ngs._ :

PROOF- For any node " X p, d(H 33 is either
decreased in value or unchanged Thus the magnltude'of
_the 1ntermed1ate shortest path for node j is bounded from. .
above bylthe 1n1t1a1 valpe." | A.

Due to:the;naturedof the aigorithm;-termination in
step‘Z océuré’when some d(H;j)’tan no longer be reduced
" in value. It oniy remains then to show that for all nodes
J # py d(n* ') has a lower bound, that is, that the labels
cannot ‘be 5educed 1ndef1n1te1y

If there ex1sts some semlcut‘SX_whose value corres-
-ponds to 1nf1n1ty where p € X, it*is clear that for all
j e x° d(n ) = «, that 1s,»a11 shortest paths rrom P
,to.j have rif;nrte.value, In such cases, the algorithm
certainiy'is nof'able to find eome arc thatrreducee
d(n ) to a flnlte value, 'These“d(ﬁgj)' remain.upper

bounded,‘and‘are not.relabelied,~eonsequently,;they cannot
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17« . be reduced indefinitely and they do not affect termin-

atlon
Slnce all the arc 1engths (costs) are pos1t1ve, that
is,; d(i,j) > 0 and initially d( :-) = o then d(np.) is
always either a finite non- negatlve number or an’ arbltrarlly
.1arge~one._‘Thls places a Iower bound on d(H ) of -Zzero and
the theorem is proved | |
Observe that the 1ower bound on, d(nn1) 1mp11es that
1 negatlve c1rcu1ts cannot ex1st This is true for the i

networks consldered 1n thls chapter, since- negatlve arc

costs are not con51dered

. - LEMMA 2 3 2 - If at termlnatlon, the label of node

k, namely d(npk) is f1n1te, then -a node i which is on the

| path»ﬂbk

: the'algorlthm. L

will be found at each 1terat10n of step 3- b) of

From Theorem 2. 3 1 and Lemma 2 3. 1

LEMMA 2 3, 2 - Algorithm 2 3.1 termlnates in a f1n1te
number of steps. 8
' Flnally, it is requlred to show that the shortest

paths are indeed found 1n step 3. of ‘the algor:thm.

THEOREM‘Z‘S 2A-A At termlnatlon of Algorlthm 2.3.1,

the path Hp “found in’ step 3 is the shortest path from P

o, toq._




‘_is found in step’z Suppose ‘that. some: other path nk

path that is, -
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PROOF: On termihatioﬁ_of the‘algorithm, sohe path

n.,.*

pq* 4 # p is found:using step 3 aﬁdﬂits'value, d(n* )

pPq’
pq 4 lqu, ex1sts that 1s'%horter" than Hpq that is

d (I q) < d(H J)+ Then H

ATy = T d(l,]) < d(H* %Y (i,3) K (2.3

(i ,J) i » | pa

But the algorlthm has termlnated and no more relabel—

ling can occur; thus eqTatlon (2. 3 1) cannot ‘be satlsfled

and it follows that,

d(Hpi).+.d(1{J).Z d(nqu, ?(1’3)'§ Toq. | (2.3.5)

" An equation-ofpthe'form (2.345),-¢anvbe written for.
éach‘(i,j) € H%q,'and sdbstituting'dfﬂﬁp)‘5p0’gires,

Xk
(E,3)

However, equatlons (2. 3. 4) and (Z 3 6) contradlct

each other and therefore lqu must be the requlred shortest:

1is proved,;f

THEOREM 2.3, 3 - Any path that is a subpath of a 1

ishortest path is. 1tself a shortest path

3 a6,9) 2 d(n ),vc:,,s) emyg o (2.3.6)
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L PROOF: ~Let-H§ifand:ﬁgj-beisnhpaths'of ﬁpj; If
Hﬁi is not a shortest path‘from p to i then some other
..path Hp , m # ky must ex1st where d(]‘[m ) < d(H ) But

LI h s
Hpi is a subpath of some . other path HPJ # HPJ’

'd(nh ) < d(nh ) But Hpj is the shortest path and thls is

therefore;

a contradlctron. VHence.Hi' must be the shortest path

Ty - , P V"k‘
Slmllarly is can be shown that H ij° Hij and the

: theorem is proved.
;COMMENTS

1. In step 2 0f" the ‘shertest path algorlthm where B
" more than one shortest path 1s present, only the flrst
one encountered 1s selected- Th1s fact- together w1th
Theorem 2. 3. 3 1mp11es that upon termlnatlon of Algorlthm

- 2.3, 1 a tree is formed whose arcs are all members Qf the
’shortest paths,'

2. ‘Computational errors can be detected by checking -
ithe sign of d(n ) If d(n )'is negative then this
1mp11es that a negatlve 01rcu1t exists and the problem

‘is not well deflned

3. Step 2 of Algorlthm 2.3.1 does not pr0V1de a -
-systematlc way of e1ther scannlng each node 3 or searchlng

'for a node i that satlsfles (2 3. 1) “In order to arrive
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' RN

at a solution rapidly the following convention is adopted,

-namély that,.for‘eéch node j =1, 2, ===, (n-1) inequaiifyvr

(2.3.1) is tested for aTl nodes i = D, 1; St (n-1),

i-f j. Algorlthm 2.3.1'can now: be rewrltten as,

o
i
|
i
i

Algorithm-z.s;z -
Step 1) - Same as for Algorithm 2.3.1

Step 2) - a) For j =:1;‘; zg.f.':"","-(n"'l),

| For.i.=}p, 1, ~-- (nﬂl), i# j;i'
| | I£AG) ¢ 4GL9) < drly) then put
i?;; , ‘;:_ ." _  : d(n ) = d(n ) + d(1,J), and the label
} b o L T for node 3 is rewrltten to, read
e S 4, d(n P -

b) If at 1east one 1abe1 is ‘changed in a) then

.repegt Za)._  .Oth§rw;s§ terminate step 2.
.SteébS‘F.Saméuaé for'Aié rithm‘é:s.l.
' dﬁservé\that for each épéiicatlo; of step 2a),~(2;3.1)
is scanned (n -1)%. ‘times. T 3 ' o
 Algorithﬁ 2g3;2.iszndwziiiﬁs;ratéd iﬂithé féiloWing

- example:
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Example 2.3.1° -

: » " The network N = (G, d) is shown in figure 2.3.1.
oo N = {p,l 2,3,4}; A = {(p,l) (p,4), 4,1),(1,2),(4,2), -
(4,3), (3,2)} and the arc costs, d(1,J) ¥ (1,3) € A, are

. 1nd1cated be51de the correspondlng arcs,'
- figure 2.3.1
Step 1 of Algorithm 2.3.1 assigns the labels shown
in the figure ébove,g Theh, th§ first iteration of step
 2a) gives: o J |
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T 1
.
R
» -
-

9

lp,51
s ‘:-,_ :
fygure 2,3.2
'(Note:that_thréé la%elsfhaVe!changed.)-
SEemER e TEEE o
S |
|

g
! i

On scanning ali-fou% nodes once more it is found
that thé~1abels for node$ 1, 2 and 3 have changed and the

'resulting'figure is shoWﬁ below: -
o - TR .



- 59 -

{441
. figure 2.3.3:_

Finally, on termination of step 2:

- [4.4] :
- figure 2.3.4
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g
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-

pézl .{(p54)1€453){(332)}:

Hp,31=‘{(9;4)}(4i3)},

Q.
Aﬁ
oS
(&)
s
i
(%))

~ ~

=1,

i S . | Tp,a = _{(p’?)_ a
: ‘Note that the graph forméd’using only those arcs
that are.invthéSe‘shortesq paths gives'thé tree shown in

figure:2.3;5; This aiéé 4emoﬁstrétesbthe validity of

‘Theorem 2.3.3.

. A . figure 2.3.5
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- - : ‘ UtlllZlng the follow1ng theorem, some further

modlflcatlons on Algorlthm 2. 3 1.can be made.'

B THEOREM 2'3‘4 - For-termination to 0ccur,'step‘2a)

of Algorlthm 2.3, 2 is performed at 1east once and at the

very most n-1 tlmes

.PROOF: Firstvof'all,_observe that step 2a) of

Algorithm 2.3.2 investigates all possibie ways of changing

all labels, exceptifor P, in the"network. AHenCe;-the‘first |

time that 2a) does not get a label change, termination -

occurs in Zb)’ Consequently,oatfthe very'leastg'step.
J{SI,_ o Za) is performed once before termlnatlon. This special

: . case occurs when for some network ISX' = for X = {pl,

that is, node p cannot ‘relabel any of its nelghbourlng

nodes.
: (

Now, the max1mum number of appllcatlon of Za) occurs
if after each appllcatlon at least one node iis 1efc.d
.which can change the label of some other nodes JeN, j#i
# p. Suppose that after ‘the. f1rst 1terat10n some nodes
EjsNi'J # p are relabelled then, 51nce d(H ) > d(H )

V keN k # Py (that is, a11 1ntermed1ate path 1engchs are
greater than . d(H ) = 0.) any appllcatlon of (2 3, 1) cannot
relabel p?;hence P cannothrelabelynodes_after.theﬂflrst
iteration} _In the worst-case;'then3node ii# P is;the

. - -only node that can reiabe»l_-otheir nodes (exclluding p of
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. ‘l' ceurse); and after the eecoﬁd iteration, some_other’hodesA
jeN, j # 1 ¥ p are relabelled. Since all intermediate
path lengths d(npkx keN, k # p# i, are greater than
vd(n;i);hnode i cannot be relabelled u51ng (2 '3.1) and |
hence node i tannotvrelabel any nodes. If at each:
applicationhef Zaj»the&ﬁerstﬂcaééﬁréeults (th&tfis;¢ehlylone
node remains that can relabel other nodes) then it follows
that at~app1icatiohenel,'ﬁ l'hodeS'are relabelled for the

th- node has no nodes 1eft to relabel

[

last time. Since the n
it too is relahelled for the last time. Hence, at ‘the
very most, n-1 applications ' of step 2a) need be performed

and the theorem is proved.

. ' COROLLARY ‘i
. From this theorem it folIOWS that the first 1terat10n
of step Za) puts d(H ) ~d(p i) ror all ‘j .and p e N,
J # p. Performlng thls a551gnment flrst requlres that
only n-2 1terat10ns of step 2a) be: performed to guarantee
a solutlon. | A
| A new notatlon w111 now’ be utlllzed to rewrite the
shortest path algorlthm in more sultable for computer.‘
1mp1ementat10n. | |

: A useful computer programmable representatlon of -
the varlables in thls algorlthm is to arrange them 1n.h

array form. Now it has. been shown that arc: costs d(1,3)

. .~ are entries __1n'the matrlx_ -D, and now the shor‘test path'
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~length arrayg'ip will be defined to be

[d(Hp,i)’ d(Hp’z), ;.n,:d(ﬁp’njl)],

and the shortest path ﬁode array ¢p is ‘defined to be ..

T Dp,10 4,00 »"'f ¢p,(n nl

Observe'that (2.3.7) and (2.3. 8) together present a

convenient way of representlng the labels and that an

.entry for p is unnecessary. Henceforth the entrles of

"1 will be called labels.

Then the required representationﬂof‘the Shortestl

-gpath algorithm is;

Algorithm 2.3.3 -~

Step 1) - a) For j = 1, (n 1), do 1b).
. . *
b) d(Im_. d
) d( pJ? (p,J) R o
If d(p,j) < m_then ¢5n=>p,gotherwise‘¢j =j,

3

Step 2)-- a) For k =1, 2, =-=, (n-2), do 2b) and 2¢).

1, 2, ===, (n-1),

b) For j
1,2, —--, T(n-l),’i £,

>'F6r:i
‘lif:d(n* )+ d(3,3) <)) |
then d(n J) = d(n* ) + d(l,j) and ¢, =

(2.3.7)

(2.3.8)
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c) If no labels have;been‘Changed in 2bj~

terminate step. 2 and initiate step 3.

Step 3) -~ To idéntify-the nodes on the shortéét péthsA |
. momptoifpr -
a) Put k = j. . |
b) . identify_i ffdﬁ_thélvélué ofl¢k. Then if
¢y = k, no shorteSt,path from p to j exists,
otherwngvnode i'iéaoﬁ.path ﬁpj‘
c) Put k = i. -If k = p then terminate, other-

wise return to 3b). . -

Observe that on termination, the pertinent data is

. ‘ stored in the 1 and ¢ arrays. To illustrate ‘the use of
f: f , Algorithm 2;3;3 Example 2.3.1 is;again~worked_out;

Example'2.3.2,F'(With-referenceAto figure 2,3.1

Matrix D) -

P.o[* 5 @ o 1]

1 e * 4 o w

D 2. 2 |o o * o o

5 e @ 1 % w|

- 4 |lw 3 5 2 ¥
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.iP.= [S’m:w»ll ;
and ¢, = [P 2,3,p] .

:Then listihg the values of k;j,'ip and 5p when label

'Changes’bcdﬁtfif:fbiiﬁﬁs'that,

k=1, =1, L= 4,001 5 8= [4,2,3,p]
k=1, =2 I,=046°11, ¢ =1[4,4,307],
k = 1g.j;u 3, ip~=‘[456a331] > $P =,[4{454;P] ’
: k=2,j=2, ~ip = [4;4,3;1]'; 5p =:[433’43p]"
1 .Ak:5'33»j = 4, - ip = [434;391]1; $b~= [4:3$4§p]"

~ (Note that step 2a) is'execdted'threé times before

termination’ occurs) .
‘Iﬁ gives the magnitude of the various shortest paths

and using steﬁ{S_of the‘algorithm,'the‘shortest paths are R

‘extracted from the contents :of ¢b, that is, at termination:

t .

-~

A =, T e, 4, (4,0




the arrays“D':i

#
-

w
=1
1

4, o) 0,0, (4,3,

)
w
“w
=y
1"

A ).

py3 ‘ . p,-s {(ps4):(4:3)};

A, ) =4 Tpe = (B0

The results in this example’are'identical to those

‘in Example 2.3.1.

2.4  ALL SHORTEST PATHSSIN A MULTI-TERMINAL NETWORK

In thls sectlon, a method is. presented for flndlng

- the shortest paths between all palrs of nodes in a glven

network. It is shown that the algorithm that Floyd [3,5]

‘A;originally formulated to solve this problem is:actually

just an extension of Algorithm_2.3.3,

Consider, once;agétmqthexnetwork'N'='(G,d)‘where G

~is an n node finite oriented quasicomplete graph, and d

" is the cost function. Now Algorithm 2.3.3 manipulates

p and’ ¢ in such a way as to leave in 5

and 1_ the shortest paths and thelr values from p to alil

p

.other~nodes in the network It follows then, thatrby
iexecutlng the algorlthm n t1mes, once for each node

's = p,l, --e,(n 1) in .the network that the shortest paths\

from s to all other nodes are'xound for all s, that is,
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" - | ng, for all s,qeN, s # q are~found ape_the multi-terminal
shortest path problem is solved.
After each executlon of Algorlthm 2.3.3 the TOW
vectors 1 and~¢s are generated.A Renumberlng the nodes,
s =1, 2 --—,ﬁ and-pefforminglthis procedure n-timee for.
all SeN gives the follow1ng two matrlces. These are

formed by collectlng the row vectors.

- . . o .|' . %
Ll | amip Y
- | K . N

\ o) |4l v AT

| 1PJA}“_e‘Hﬁyl)d(Hn’2)-a B
i |
- * . ' ]
3 41, e 1,n
% 2,1 " o %2,n
’ -2 PR S . .
‘ _j’n ¢n,1 ¢n,2 ’
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‘Steps 1, 2 and 3 are independent”operations]within
Algorithm 2.3. 2 henoe, each step'may'be executed~n times
to arrlve at a solution for the mu1t1 term1na1 problem.

Then the following Algorlthm can- now be formulated

. Algorithm 2.4.1 -

Step 1) - a)i For 's = 1,2 -éé,n, do 1b).
b) Fof j = 1,2,mm5m, 5 ¢ s,
BECOHRERIGHN
If d(s,J) <<»then ¢ # s; otherwise'¢sj'= j.

1,2,"""',1’1, dO Zb) .

Step 2) - a) " For s

® b ‘ﬁor:k,- 1,2,--=,(n-2), do 2c) and 2d).
v 9 Forj |

1329"'"sns J # 5:

For i = 1,2,---,n, i # j, i #s,

if‘d(n;i) £ d(,5) <Ay

then d(n*j) ='d(H* )+ d(i,5) and 9 5 = i
~d) If no labels have been changed in Zc) then

termlnate step 2 and 1n1t1ate step 3.

Step. 3) - To identify the nodes on the shortest ‘paths

-~

sjr's‘= 1,2 -*-,n, j # s

.o . - a) Plut k=3j. :
b) Identlfy i from the value of Ko k;' Then if

¢Sk_f k, no shortest path from s to j eXlStS»
.- o | ’_otherw:.sevil_ is on pa.th-H_sj- |
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'c)‘ Put k = i; If k:= s then- termlnate, other-
wise return to 3b). »

SteszZa) and 2b) can be interchanged ﬁithout affecting.
the algorithm. This.is'due'to‘the indepehdencexof the
operatlons on each rTow in L, that 1s, any 1terat10n on’
‘;Somevl ‘in L does not affect the calculatlons on some - other
iy,' y # X, hence, the shortest paths from node x.to nodes
j o= 1,2 ---,n j#Fx can be computed ‘in common steps to
those for node y, Consequently the modlflcatlon 1s
Justlfled | H _ |
: Furthermore, in’ step 1, d(nlj) = d(i,j) ¥ Ii,j) e A
and at some 1teratlon of 2¢) some d(nlj), i'¢:$ £3, is
decreased in value. Hence, d(n J)* gvd(l,j)‘thrOughout
the algorlthm. Then replacing d(l,j) with'd(ﬁ;j)‘in
1Step 2¢) certeihiy causes_the'algorithmvto_converge 10

‘less rapidly than before. 'This91eéas to

Algorithm 2.4.2 -

Step 1) - Same as for Algorithm 2.4.1

Step 2) - a) For k = 1,2; ---,(n 2), do zb) and Zf)

b) For s = 1,2 --—,n do 2c)
c)_For'j'=~l 2, ---,n, j #vs,»do Zd);'
©d) For i =1,2,---,nm, i [ETERE do ze).

| e) If d(n* ) d(n 3. < d(n )
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S o ok % __‘.
_then d(ﬂsj) = d(Hsi) + d(Hij) and_¢sj;f71._

f) If no labels have been changed in Ze) then
‘terminate step 2 and initiate step.3.
Step's - To identify the . nodes on the~shortest paths

'Hsj" s = ’1’29,""",11:3.#5‘-_::'

a)'Put h = s and k = 3.
b)-Identify i from the value'of'olk Then if
' .¢1k k, no shortest path from s to j ex1sts,

| otherw1se i is on the path Hsj.'u
.c)~If i#h then h = i and go to step. Sb)
~d) If h = s then termlnate,votherw1se put h

k=i and go to- step 3b) |

Note that step 3 of the algorlthm has been altered

by the substltutlon made for d(l,J) in step 2e) In

' Algorlthm 2.4.1, if the " 1ntroductlon of the node i

decreases the Value of d(n ) then the a551gnment ¢ = i

was made, . that is the second last node in the path" HSJ

(the one before j) is recorded.5 In Algorlthm 2.4;2,
phtting ¢.; =i when d(ﬁ*-) is‘feduced'does notfguarantee

that i is the second last node 1n H J This only occurs

if d(n )'= d(l,J) In general since d(n ) may be

'changed at some p01nt in the algorlthm (that 1s, 1nter-

medlate nodes may be found oh~the~pathAfrom i to j). the
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matrlx ¢ must'be searched fOr all subpaths GE

the 1ntermed1ate nodes

Let the ba51c operatlon in step Ze) be the trlple
(s, 1,3) where i is the 1ntermed1ate node for the path
.isj' By 1nsert1ng statement 2d) before statement Zb)
in the a1gor1thm ‘above, the same tr1p1es are performed
only in a different‘order,.hence'the outcome’is'certainly
‘not altered ThlS modlfled form of the Algorlthm reduces

all labels d(n ) 'S (s,;) € A for each lntroductlon of

3 ;} _ node i, ih= 1 2,--—,n,dand w1th thlS change, Algorlthm
| 2 4 2 1ntroduces each node n-2 t1mes to guarantee solution. lyﬁ
:_f: : It is now proposed that each node need only be 1ntroduced a
‘ ' once to. arrive at the desired. solutlon, that ‘is the
following Algorithm 2.4.3 leads to a program that solres

the_multi-terminal shortest path'problem{

Algorithm 2.4.3 -
Step 1) - Same.as:forfAlgorithm12.4.l;
Step 2 - Forli.=‘1,2;‘4‘,ns
- ‘ For_deil,Z,?--,n,s#i;p.
| | | For j = 1,2,---,n,jfs,j# i,
» ‘_ ’ ‘ . . . * L R *
. . If d(Hgi) +. d(Hij) <;d(nsj)
fl . _ ' - then d(Hsj) N d(]'[s i) ‘.:"': d(nij) and ¢Sj - RS

. ‘ ‘ Ste  3) - Same as for Aligo‘r‘ithmf‘2;4.‘2f.’
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' This is the same algorithm that Floyd presented
to solve the multi-terminal shortest path problem [3,5].
The»followingAtheorem shows that step 2 need not

be perfbrmed n-2}timesito guaranteeesolution{

| THEOREM 24,1 = In’step 2 of Algorithm 2 4;3' each

node - 1,_i = 1,2,-=-,n, need only. be 1ntroduced at most

once to_guarantee that‘allﬁshortest"paths,are found.

PROOF The ptoof is inductive, that is a basic
assumptlon is made for the 1ntroductlon of some node

1=k-1;-then it is proved that from-thls assumptlon 1t'

must also be true for i = kj then if it is true for i=1,

the assumptlon is true for all i and the theorem can be
proved. But first the follow1ng comments are-glven.
Step 2 of the algorlthm contalns every p0551b1e
.tr1p1e prec1se1y once and these trlples are arranged}‘
inn groups, with the kth _group, that correSponds to the
1ntroductlon of node k, con51st1ng of every useful trlple
with 1ntermed1ate node. k Furthermore 1f-after the |
‘1ntroductlon of some node k, sone d(ﬁ;j)‘reaches its

minimum value, then none. of the nodes'i > k can possibly

~ be 1ntroduced to that path since these nodes cannot decrease

the m1n1mum.. Suppose that this algorlthm flnds the shorc-

est paths between all palrs of nodes that have k-1~ as the

h1ghest numbered 1ntermed1ate node. .Further, suppose th15$
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'

§is‘true for all nodesdil< k-1 then"theSe shortest paths
are found after node i= k-1 has been introduced to all
: d(ﬂ ) and before the kth group has been reached

Let k be the hlghest numbered 1ntermed1ate node

on path H then-the subpaths H ; and Hk must»have

uv’ uk
1ntermed1ate fiodes’ that are smaller than k. By assumption

~ -

I and Hkv are . reached before node k is 1ntroduced hence

uk
d(H ) reaches its lower bound at'i = k and the.shortest
paLh Hu' perslsts to-the end._ This assumption_then, ls
true for i = k and. for i = k-1. | '

The first group of tr1ples Wlth 1ntermed1ate node
i = 1 ensures that the shortest path produced by a two
arc path using node 1 as an 1ntermed1ate node 1s obtalned
correctly, Therefore, the assumptlon 1s also»true for : f";
i= 1. By 1nduct10n it also follows. that the.assumptlon ‘ ‘ _”:
‘315 true for all 1eN o . | ‘
_i | Lettlng k + l, 1t follows that all.of'the
%shortest paths w1th 1ntermed1ate nodes i < n are found
before the (n+l) _ group. But these are all of the’
requ1red shortest paths, consequently none of the nodes
'i =1,2,---,n need be re1ntroduced to 1mprove any of the
path lengths, hence the theorem 1s proved

An example that 1llustrates Algorlthm 2. 4 3 is now

presented
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Example 2.4,1 - For the né;work}bf'figure 2.4.1

the values of the cost function d are given as matrix D.
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|

Then'frqm step 1 of the_algoiithm L =D, and ¢ is .

1 3 1]
2 % 2 2
o= | o
11 3 .+ 3
4 4 4 X

Intrdducing nodeil, that is, for iteration i = 1

it follows that

* 1 o 4 e 13 1
e o+ o111 12 + 2 2
I, = 3 ® = -
o 1 % 3 ; 13+ 3
5 o
1 2 3 % ' 4 1 4 ]

"‘Now only d(H:’z) is improved'using hode 1, and

iterating for i = Z,

* 1 122] [ 1 2 2]
I VR IE T. S P
L = o'= |

5 1 % 2 Sz 3% 2

12 3+ 41 4 ]




oy

:-- 76 i

LESEESEES
SR
%
o

%
~
NN N

s » »
w
*

From L and ¢sthe\shorteSt_paths and their values.

are found on inspection of the»entries of L directly and

by appiying stepns_of'the‘algorithm to matrix ¢..-

a@,) =1,

12

n
o1

a(m, 4)
a(m,,) = 2,

() =2,

=i

21

= a2y,

) B

((1,2),(2,4), (4,93,

21,2, 2,0),

 =i{(2£4);t4,1)}$T‘



(1, 4)

Cal.
o
.d(ﬁag).
4, ) =

' d(ﬁu1)'

am,,)

A(T,s)

1 11}

3,
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i.

((2,4),(4,5)1,

(2,0},
{(3,2),(2,4), (4,10},

{((3,2)},

((3,2), (2,3,

e,

(4,1, 1,21,

{4531

2.5 THE SYNTHESIS OF SIMULTANEOUS TRANSMISSION NETWORKS

In this section, a procedure=to“synthesize a simul~

taneous trénsmission network f = (G d C t) is presented

:The termlnal capacity functlon t represents Lhe cermlnal

requirements . that must be 31mu1taneously satlsfled ~the

cost function d is spec1f1ab1e in cost per unit of capac1ty,

‘and the capac1ty functlon c is to be found

The follow1ng program constructs a network that satlsfles
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the requirements, moreover, no chéaper<capacity_configdré

ation can be found to meet the given specifications.
A _ o ' ‘

| Algorithm 2.5.1 -

i — - —=

‘Step 1) - For i = 1;2,---,n,
. o o ,
L For j = 1,2,---,n, j ¥ i,
o B -

c(i,j) = 0.
Step 2) - Usiné_Algorithm 2.4.3 and the cost function d,
P find all theAshortest;pgths_gpquin‘the nétwork.

Step 3) - For p = 1,2,-=-,n,

Fof'q 5-1,2,”’;9n5 q ?(p;_
©(i,3) = c(d,) v t(p,a)y ¥(i,1) € mpy.

Observé,that the algorithm is an'accumulative-process
- l : o

that begins with a network without any capacity on the arcs

and then buiids*enoﬁgh capa¢ity in the network to satisfy

each requirement, one at a time.

© THEOREM 2.5.1: - Algorithm 2.5.1 constructs a network
fthat.exactiy safisfies the termihé1»réquirements:and'does'

so at minimum network cost.

PROOF: Because all terminal requirements must be

satisfied simultaneously, dedicated lines
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i "

must be constructedffo? eachit(p,q);v(p,q)'e A alengl:;

_ specified routes to ensure that messages do not inter-

fere with each other. Step 2 of the Algerithm‘selects

such routes, that is, selects a path ﬁpq for each t(p,q).

~ ‘Suppose that for some SéffﬁfﬁéfCETX”“kéAf%ﬁ%fefére

m termlnal requlrements, such that for each (u, v)eX the

_correspondlng path_nu .contains some 5pec1f1c arc (x,y)

€ nuv for all (u,v) € X; Further, all other paths do

not contain (x;y) as-an element. . Then at ‘the termlnatlon

of step 3, the capac1ty of arc (x,y) contalns m terms,

that is,

CELY) =T tw,v); ¥, e X (.

(U,‘V

i N0~other:requirements utilize arcA(x,y) and c(x,y)

" exactly-satisfies all requirements7as well as the ﬁ(u V),

(u v) a-X' Genera11Z1ng thls arguement to any arc in the

network it follows tha#, all capac1t1es exactly satlsfy the

requlrements;and it only‘now_remalns to,establlsh that

‘the minimum cost network is constructed.

Since';hehalgerithm constructS'afdedicated,path for

"-: each t(p;q) then there is~certain1y no cheaper Way to .

bu11d this path than along the shortest path Hpq‘ Thns,

since thlS is. done for all (p,q) € A, certalnly no lesser

5.1)
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cost network that ex&ctl?‘satisfies all the reqﬁirements

simultaneously can be synthesized.

Observe that the total network cost K can be expressed .

as follows,

. K —

I c(i,i).d(i,3) = I d(i,3) . T _t(p,q)
(i,3) . - :(1§1) (p,a)

¥(i,5)eAs ¥(p,@)3(1,3)el .

The foliowing‘example;illustrates;the use of the

algorithm.

Example 2.5.1 H'A simultaneous transmission network

is- synthesized using Algorithm 2.5.1. Given the commun-.
ication requirements t, the afé costs'dk(cost pef unit
.capacity) and the configuration G, thelcapacity.fuhction
c is to be e&éluatedmfor the‘netwofk N = (G;d,c,t)‘of
figure 2.5.1. | |

Then the matrix T contains the t(i,j).

* 2.6 5
2 ¢ 1 3
T = .
: 6 1 * 4
13 2 *

.

(2.5.2)
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These requireménts are indicated beside the -

corresponding arcs iﬁ'figure 2.5,1. 

| figure 2.5.1

The arc costs are found in the matrlx D and the

d(l,]) are shown in flgure 2. 5 2

* 1 e 4

o 4 * 11 1|

D»: '

L ©w 1 * 3
ERERE NS
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(Note that these are the same costs as in Bxampiel

2.4.1.)

‘fighré_ZJS.Z

Step 1 of Algorithm 2;5;1 initializes all the
unknown capacities to zeleo_7 "' |

As in Example 2.4.1 the magﬁitudes of all the Shori—;
est paths are found in L, Thaiiis,. :

- - -~

* 1 5 .2
2 * 4 1
L= . .
301 % 2
1.2 3 *




and the routes are found

2.4.3.

B
4.*
4 3

83

in ¢ uéing‘stép 3 of Algorithm

4

Then from T, L and & it follows that

t(1,2)

£(1,3)

f(1,4)

t(2,1)

t(2,3)

t(2,4)

t (3‘, 1)

t(3,2)

2,

d(Ty2)

()

d(Ti,)

-’dcﬁ;;,l)
iy 2
d(flp)
d (1T5,1)

d (1Ts,2)

1,

~

fys = ((1,2),(2,8),(4,3)},

~

My = {(1,2), (2,4},

Moy = 1(2,4),(4,1)},

‘H_Z,S =‘{(2’4):(493)};

'- {(234)}:.

1(3,2),(2,4),(4,1)},

((3,2)1,

|
[
-
[ ]
111



_;‘34>_

t(3;4) = '4’ . d(n?»sl_g) :_23,
t(4,1) =1, d(l;1) 7 1,
) _”t(4’2).= 3’

dMy;2) = 2,

t(4:3)“: 29 ‘ d(nﬁ’:-l)_ 3)

Mgy s

~

s

~

Ty 2 ]

~

Ty, 3

103,2), (2,01,

(4,0},

((4,1),(1,2)},

V {(4-’3)}_0-1’ .

Step 3 of Algorithﬁ“z.s.l proceeds to add enough

‘capacity to satiéfy a feQuirement,t(i,j)'aloﬂg.the

shortest path Ijj..

Then for the first two requifements t(l;Z) = 2 and

t(1,3) = 6,2 units of capacity are built aiong arc (i,j)

to satisfy t(1,2) and we add 6 units of capacity alohg

the arcs in Ijs . to sétisfy t(1,3) simultaneously, that

"is, c(1,2) =2 + 6 = 8;Ac(ﬂ,4) =63 c(4,3) = 6. Figure

2.5.3 shows this stage of synthesis.
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‘Proceeding in this way for alifreQuirements in the .

network, the synthesized_network'iS:‘

=12

2+6+¢] +3

; ” figure 2.5.4

and the arc capacity matrix is,

-

[* 160 0},
0o * o 27} .
0 11 * o0}

o jazo o9+

COMMENT:

«Appendix'ngf this study cdntains'the'descriptidﬁ of
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a'computer programjthat implementseAlgorithm Z,S.i. A
‘program iisting and a programmed ekaﬁple'are also giveh-
there. This conversatlonal package offers a convenient
way of solv1ng the smmultaneous transm1551on ‘synthesis

problem for networks contaln;ng‘up to flfteen.nodes.

2.6 THE"SYNTHESIS«OF.TIME-SHAREDQCOMMUNICATION NETWORKS

An algorithm to.solve the tiﬁe;shated specifieations
- for avcommunieations network N =‘(Gﬁt d‘e)-is presented.
The network conflguratlon G the’ termlnal capac1ty
-functlon t and the cost functlon d are all known. In.
addition, it 1s assumed that some system of controls
(multlplex1ng etc. ) allows only one pa1r of nodes to-
communlcate (in one direction) at one time. ‘That is,
‘1n‘a given Ftlme:sllce" onlylone terminal-p may transmit
information to some other'termiﬂsl'q;; It is required
to find a capaCity_funCtion”that setisfies the terminal
capacity'reouireﬁents t. ‘At the same time it is desirable
to keep the constructlon costs as 1ow as p0551ble..‘

An algorlthm that solves thls problem w111 be
presented but flrst some essentlal notation is 1ntroduced

If tl’ - ,t. are 1n decrea51ng order the distinct -
~values of the termlnal_capac;ty funct10n»t, then the set of

arcs in A on which t has the valuthﬂmis.denoted4by Au,
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A= {(5,3)eA[t(1,3) = tu}, 1 suem,  (2.6.1)

and Ap AlPAZU"fUAu-Al , . . | (2'6f?ﬂ;)

"Algorithm 2.6.1 -
SteE-l) - a) Foriea¢h_qf the m distinct values tu in t,
| find‘the set of ércé Ath‘on which t'has‘
E the-value_tu.

¢) For all (i,j)eA put c(i,j) = 0.

. Step 2) - Using5Aigorithm 2,4.3 and_thé cost functioﬁ,d;
v  find all the shoitest‘pathé ﬁpquand“theif
lengths d(I, ) for all (p,q)eA. |
Step 3) - a).IfAAu is not empty then go tofstep.4g
- b) if‘“ =‘m'ﬁheh terminate, otherwise put .

'.u.=‘u+1-

Ste 4) _ Flnd_ the path HUV l‘tha_,t« _satis-fiesl-:._

LAy |l /e (2.3.3)

: SteE-5) - a) If_d(ﬁuv)'= 0 theh:defete‘(u,v) from‘Au
| . and go to step 3. » ' |

b) For all (i,j)el,,) do 5¢).




c) lf c(i,j) = 0 then ccl,J) t“and d(l,J)

) Delete (u,v)~from Ay and go to step 2.

The algorithm then, ~begins‘by arranging the require-
ments (the t(l,J) s) in groups- of distinct values and
puttlng all the cap;c1t1es 1n1t1ally to’ zero. vlt then
- .processes theulargest requlrements-through:to the small-
est in ‘the follow1ng way | |

The requ1rement with the correspondlngly shortest path
nithln a glven group is satlsfled by bu11d1ng capac1ty along
the route where needed the costs along that path are set
“to zero w1th the result: that the cost functlon is modlfled
from the prev1ous step; u51ng the "mod1f1ed" cost functlon,
the next termlnal capac1ty requlrement 1s satlsfled

In step Sa) 1f a glven shortest path is Zero, thls

!

implies that e1ther a) all costs along the path have been

modlfled to zero or}b) that at least one arc along . the
path had zero cost at’ 1nlt1at10n and all other arcs in
the path, if any, have been reduced to zerof If the .
second case. éhould»occur . that is:some d(i,g) = 0 while

t(u v)> 0 where (1,J)EH then the requlrement from

uv’
u to v may not be satlsfred by;thegresultant;network;

However,gsinee for case a) step 5a) gives ahlarge saving
in computation time by avoiding thedrecalculation‘of‘the

shortest path in etep 2, Step‘Sa)ashould be included in
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the algorithm. To avoid error in cases of zero cost
it is necessary to . asslgn a small but flnlte value to
the otherw1se Zero cost arc or exclude step 5a) from the
algorlthm and suffer a loss in elflclency.‘

The follow1ng theorem shows ‘that Algorlthm 2 6 1
generates a network.that satisfies all the given requilre-
ments.. | | |

R
\

THEOREM 2.6.1 - Algorithm 2.6.1 finds a network. .at

satisfies all-the-giVen;terminal-capacity'requirements.of
a time-shared system. “
PROOF: Suppose that at some p01nt durlng the

synthesis procedure v = h and Ai is the subset of arcs

in A that corresponds to the termlnal requlrements that

have been considered up to that polnt. Then all the t(i,j)

that have been considered are those (i,j) = AEUA%;_
“Assume thét all requirements up to this point have

been satisfied._ Then'at step'4 all the shortest paths are

calculated and H 1s selected " Let t(u v) be the next

requlrement that is to be consldered Two cases. can

occur in step 5._, ) If the cost of the path from u to

v is zero, then no capacltles are. constructed at this

step; b) otherw1se,_all arcs on the path from u to v are

cohsidered;,ahd-capacity equal to t(u,v) is built on those

arcs in Huvthat have zero capacity.

¢
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In case a) the cost is zero s1nce stepNSc) has
asslgned zero costs ‘and f1n1te capacltles to all arcs
in ﬁuvf Slnce it has been assumed that all requlrements
considered in prev1ous steps are satlsfled and since all
these requirements are not smaller than t(u,v) all of
tﬁese non¥zeio~capacities-along'ﬁuv_mustvbe at least as
lafge as t(u,v). Then t(u,v) is'satisfied,aftef step 5a)
is completed; | . |

Similarly, in case b), capacity»needtonly be built

on zero valued arcs since all others are at least as large

as t(u,v); consequently;'t(u,v).is‘satisfied after step
5¢). “Since t(u,v) is‘satisfied;.and By the aSSUﬁﬁtion
lthat allArequirements'cohsidered .ptefious'to t(u,v) are
satisfied and . also 31nce the same assumptlon holds true
for the very first terminal requlrement con51dered then
by induction 1t,follows that at termlnatlon all the-

requirements are satisfied and the theorem'is proved.
‘GOMMENTS

ThlS algorlthm constructs one capac1ty value per arc
at the very most and once an 1nd1v1dua1 c(1,3) 1s deter-
mined, it 1s not altered The very worst case, as far\
as total network cost is concerned is if the algorithﬁ'
asslgns values for all c(l,J) (l,J)EA This>occursawhen

c(i,j) = t(l,J).V(l,J)EA, and if for some.tﬁu,v) an. alter-
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.. l >-‘| }

nate route is selected as a path designated_for constfuc_
tion of‘capacities; then the shortest path i uv at all -
subsequent steps 1s not . the dlrect arc (u v) and capaclty
is certalnly not constructed on arc (u v) in any of the
steps that follow' that 1s, the worst case cannot occur.

|
. Assume then, that thls most expensive case is indeed

I

constructed Further, let the capac1ty function on each
arc assume values that are dlStlnCt from all others. If
c(u, v) is the 1ast arc that 1s constructed that is t(u,v)

i

|
is the smallest entry in t; then remov1ng this capaclty

by setting c(u v) = 0 does. not affect the . requlrement |
t(u, v) since all other c(1,3), (1,3)8A i # u, j # v, must
have values that are greater than c(u ) and if n > 2 then
| t(u v) can use one of the’ remalnlng ‘paths to satlsfy the
requ1rement.1 Recalllng that (1 3,15) glves the max1mum
number of paths from one node to another and that this'
occurs in the qua51comp1ete graph it follows that 'the
worst case is not constructed and that: A1gor1thm 2.6. l
y1elds a subopt1mal synthes1s._.~

By deletlng in: 1ncreas1ng order of t(1,3) the o

correspondlng capac1t1es c(1,3), a final capac1ty deletlon

reduces the network to one- that no - longer sat1sf1es all
the timeishared requirements;? This‘occurs_when for_anys
node palr u and V. some path Hk '3«:(i,j) i‘t(u;v)nV(i,j)

evﬁk . cannot be found. . The networkfthat-remains:after;-
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the removal of the redundant arcs (all except the final

deletioh)‘is the one'synthesized by the algorithm in theA

. 'worst case. Thus 1f the optimal network cost 1s known

from a l1near programm1ng formulat1on, a measure of the
'opt1mal1ty can be ‘made by subtractlng th1s value from
:‘the calculated cost of the removed arc capac1t1es.»

| -The follow1ng example 111ustrates how the algor1thm ‘
uses the "mod1f1ed" cost funct1on to f1nd those arcs that

; certaln termlnal requlrements may share.

"Exa*ple 2.6.1 - A t1me-shared commun1cat1ons network -

'*1s to be synthe51zed us1ng Algor1thm 2.6. 1 ' leenfthe[
ftermlnal~requ1rements t -the arc‘costs d and‘the‘configur—
‘at1on G, the capac1ty funct1on c is to ‘be found for the |
vnetwork N (G t,d c) .» :

The matr1x T conta1ns the t(i,j) and these requ1re—“
ments are. 1nd1cated bes1de the. correspond1ng arcs in “

flgure 2. 6 1

R
L .

*

~
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.figure 2f6i1f'

Thé‘arc-cdsté;aré found in the matfix D and the d(i,j) -
are*showh‘inffiguré 2;6;2; : | N

7% 6.

Y
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figufef2;6.2j“:
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=D, 2,9,

tg = 6, A, =
Itét; 4’: Aggéiigstl)rg
t_7.= 2, :‘A.'7,= (401,
. ;é'%"1,1 ;; A f’iré,i);(égéj}, R »-',5. . o

IFOr‘uh% 1; erc (1, 4) is selected.;s.it is\the oniJ
member:in A"_ From the or1g1na1 D matrlx H14;?>{(1,2);
(2 4)} hence,.c(l 2) = c(Z 4) = t(l 4) = tl = 10-andl
the f1rst two capaC1t1es are set ‘to f1n1te values.,'Then,

‘ the D matrlx 1s modlfled to read

o cL - -
CEF 0 =4
7. % 6 0
c @ 1 % 5.
2.8 2 %

- For n =2 1t follows that d(le)
must be- satlsfled and no constructlon 1s needed here.

hence t(l 2)

FOr u = ' 13 selected as the "shorter" path

: _ 5 2 , 4
_ 51nce d(II2 4) < d(Hl 3) But d(HZ 4) 0, therefore,
‘no capaclty a551gnments occur “for t(2 4) ForIH 3

3{(1 2) (2 4) (4 3)}, arc (4 3) ‘has una551gned capaC1ty .




- 96 -

hence c(4 3) = t(l 3) = t3 5:8. :The arc'eosts arewagain

modlfled

£ 0 w4

7 % 6 0

D= e 1 % 5
2 8 o0

_ For uo= 4, d(n3 2} 1‘and-d('ﬁ3 4) = 1;}either may
~ be selected Taklng HS 2 {(3,2)}, theh c(3;2) = t(3,2j
= t47— 7 and upon modlfylng D and recalculatlng the |
.shortest paths glves d(I[3 4) 0, that 1s, capac1t1es ‘need
, not be . bu11t to satlsfy t(3, 4) | A
For H % 5 it is ‘also found that d(H 3) = 0 so that
_t(2 3) 1is already satlsfled however for Hz 1‘f {(2 4),
(4,10} put c(4, 1) = t(2 1) tg =6 to satlsfy the require-
" ment t(2,1). T
For u'=.6,-7,.8,.a11 shortest paths have zero 1ength
hence further capaolty is not added to- the system. |

The flnal network that satlsfles the t1me shared ‘

- requ1rements 1s g1ven 1n flgure 2.6. 3



COMMENTS‘

Constructlon sfops oncewall nodes have paths to
communlcate w1th all others.: ‘_ | o

Appendlx C- of this study contalns the descrlptlon of
a computer program that 1mplements Algorlthm 2.6.1, A
.program 115t1ng and a programmed example is also glven in

.'thls Appendlx.,
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2.7 CONCLUSIONS . .

: In th1s chapter it was shown that shortest path

ztechnlques can be profltably used to flnd solutlons for
communlcatlon network problems, moreover, 1t was shown
that in the case’ of the simultaneous transm1551on networkA
‘a minimum cost conflguratlon could be found along ‘with
“the capaclty functlon. ) | |

The’ t1me shared synthe51s was shown to be an ea511y
.programmed suboptlmal procedure for obta1n1ng a. satlsfac-
tory solutlon. It is suggested that other algorlthms" |
‘employlng the same shortest path technlques be developed
"to find. other subopt1ma1 procedures. Then by comparlng
- the resnlts}from several.such Algorlthms,for.ohe set-of>
reQuirementS'and costs,;the.minimum cost networkhobtained'
could beUselectedhto give_the:beSt suboptinalhsolutiOQVfor

© ‘the time-sharedhproblem.'_ThisfiS'left for further study.
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.3~} SUMMARY
In this chapter, a procedure 1s presented for
{syntheslzlng a tlme-shared communlcatlon network that
exactly meets the term1na1 requlrements, that 1s, the
resultant network has no redundant capac1ty on any of"
its channels.v Thevcondltlons,under which such'a
dnetwork’isvrealizahle are giuen, andvthe:methods.presented'
permit constralnts on the channels to be taken into
account. A computer program that implements the synthesls
pprocedure glven 1n thls Chapter is documented in
'Appendlx D. | o
‘ In any “time- sllce" if there‘is no~excess capacity

p1n the network for a glven termlnal requlrement t(p q),,
”that 1s,1f the maximum f£low from p to q is exactly t(p, q),
then: no network w1th less total capac1ty can be found
that exactly satlsfles the termlnal requlrements. XThls
1mp11es, that 1n the case where the cost per un1t capac1ty ;
is the same for all arcs, the m1n1mum cost: network w111
"be found u51ng the algorlthms that follow.i_ “

A In sectlon '3, 2 sOme necessary prellmlnarles are
xéiVen. ‘The algorlthm for syntheslzlng a general network
115 presented and proved in: sectlon 3 3 In sectlon 3. 4.
:‘some 1llustrat1ve examples are glven and sectlon 3 5
'presents an algorlthm for f1nd1ng the communlcatlon network
A w1th only non negatlve capac1t1es should the general network

"contaln negatlve capac1t1es.
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g It should'be noted thatﬁtheofems 3. 2'1 3.3.1, 3.5.1_

and 3. 5 2 have been stated somewhat dlfferently by '

Resh [14] ‘; R |
o |

3.2 MATHEMATICAL PRELIMINARIES

|
In th1s sectlon, some pre11m1nary def1n1tlons and .

theorems are introduced. Thesewresults_are~essent1a1 to.
‘the deVelopment_that follows. |

be in increasing order, the

Let t ot ,A-ff,Vtm,
d1st1nct values of the terminal capac1ty functlon t.
Then the set of arcs. -in A on wh1ch t has the value tu

will be denoted by A ». thus

DA, = {03 e A/ t(,3) =t} 5 lewsm o (3.2.1)
and since-the'nnmberhof‘arosdinAA is n(n41);.then”
1<m<n(n 1) A D
A* will . denote the set of arcs 1n the unlon of the.-
'sets A ,-A',j¥-¥,”A“‘A, that 1s, |
g 2. '_ . 11‘1 ,
; :x._ A U U --% U A "1‘; susmel 0 (3.2.2)

*. ® 0 A :.",_‘
Clearly A ﬂ and Am+1 'T»'Af(

- G1ven a c1rcu1t ngp in G and a rea1 number a,

the network N _;(G,g) where, |
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e s oan
: oz,,lf (ls-J)VE: pr,
| 0, otherwise,

' is ‘called the'hicirtuit'net in'G‘_correspondlng to the

- pair (n p,a) Further, two networks are called "c1rcu1t

p equlvalent" or Cp-equlvalent 1f one of them 1s the

E result of the - add1tlon to the other of a f1n1te number of .

o Theorem 3.2.1° = leen a network N _o(G c t), for every

L ,‘ . r
o arc (i,j) in A there ex1sts at 1east one sem1cut SX

conta1n1ng (1,3) such that the restr1ctlon t/SX of the

functlon t attalns 1ts max1mum on the arc (1,3)

grooﬁ' There 1s always at 1east one sem1cut 1n G
‘contalnlng arc (1,3),vnamely, the semlcut S{1} {1} x {1}
Furthermore, since G has a- f1n1te number of" nodes, the
'number of d1st1nct semlcuts conta1n1ng (1,3) is f1n1te,>
and for some semlcut Sx-among them (where Sx 1s the

e Te ‘ _m1n1mum valued sem1cut accordlng to the def1n1tlon of

Tfaﬂ : tqhe functlon t 1n (1 4. 10)), 1t follows that 1“
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t(l,Js ]Sx‘ B o d N :'h . | (3.2‘4)'

AiSO-from the_defin;tion_of t;::fQT any (i”,j7) # (i,3),

tc'_i*,j-'-) vcl ,J)as S cs.z.As')f'l’---;_',

and combiﬁing*(3.2g4)”and.(3;2;5),fgives,'d
t(i7,37) ¢ ISX| =t . (3.2.6)
S B A R ‘ ) -
and therefore that t(i”,j°) ® t(i,j).  Q.E.D,

n - restrietion"’for'anyfhetwdrk N (G c t), by saylng

that a semlcut SX 1n G is an mw. - restrlctlon for some

- arc. (1,3) (w1th respect to the functlon t)- 1t is meant
‘that the semlcut SX contalns (1 3) and that the restrlctlon
't/SX of the functlon t attalns its maxlmum at the arc (1,3)
-When no confu51on should arlse, 1t w111 be 31mp1y stated

that Sx is 'an m - restrlctlon for (1,3)

essentlal equallty  for any two arcs (1,3) andA(l 537
" in the set Ar; the,follow1ng equallty is true, namely,_
t(i,j) = ‘t(i’,j’j —'ﬁxl if'this éﬁﬁélity impliee'that
a -semicut 1n G is an m -,restrlctlon for (1,3) 1f and
' only 1f-SX is: an m - restrlctlon for (1 ,3 ), then it

is called an essentlal equallty.~
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Throughout thlS chapter, the symbol f w111 denote

'_the set of semlcuts in G, ‘each of which 1s an -

. m - restr1ct1on for some arc 1n Au

'THEOREM 3.2.2_ Given a network N = (G c t) whose
terminal capacity functlon t contalns only essentlaln
.equalltles, if SX € f 1s a semlcut in G then _
'h i). SX is an m = restr1ct10n for every arc (1,3)
B “in. A and therefore A C::SX and A C::f
ii).lIf u < u “then SX{W.A ;' = Q;, .

_PROOF' _t ) S be1ng 'in f 1mp11es that there exists an

X

- -arc (1,3) in A such that SX is. an m - restr1ct10n for

(i, 3) " By the def1n1t10n of A > t(1,3) = t(1 ,j‘) for
every arc (1 ,J “) in A 'and 51nce each such equa11ty 1s

an essent1a1 equallty, SX is an m'- restr1ct10n for every

_Tarc (i-,37) 1n A-.' Then every element in. Au is an :

-e;ement in S and A. C::SXC::f

(11) Assume that Sy f] Av, o0, Thenxthere'is7
at least one arc (1 J) such that (1,3) € A ,.and (1,3) e S
If (1,3) 1s 1n A -5 then t(1,J) ﬁ, and 1f (1,3) is 1n S

then, since the max1mum value of 't on SX'1s tu t(l,J) <t

'But p<y” makes tu<tﬁ’ and there is a contradlctlon hence,

xﬂAf-ﬂ

LEMMA_S 2.1 Sy = sX (} A%, o
PROOF: By THEOREM 35.2.2 (1) and (i), A AL = Sy ﬂ A

and (sXﬂA )U(sxﬂA )U ---U(sXﬂAm) . Then

Xo

0
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S 0AL, = x N ad U-=UsNypye

."“cs NaYy — U chﬂAm)
Sxﬂ(A U-"UA)

"
I T

520 @ s AL, s AUGN A
i) Aﬁ‘-ﬂ@xn{\;) =¢
'PROOF: R S
(1) A U (¢ ﬂA*) :‘3 (s ﬂA) U (sXﬂA*
»: ;" sX ﬂ Ax.

a4, n:,'(.sxm‘:) wnsny
o A ﬂ(A Uf."—UAu.; o
: (A ﬂA )U““U(A nAu 1.

s ‘a"-'-

K Ut111z1ng the notlon of an m = restrlctlon, the .

f0110w1ng theorem shows that not. all of the semlcuts '

: 1nd1cated in (1 4, 10) need be evaluated to obtaln the

termlnal capac1ty functlon ‘ oL
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eeTHEOREM 3 2,3 < GLVen a network N "’(G c t) for' every

(1,3) e A, the folloW1ng expression is an. equlvalent

deflnltlon of the termlnal capac1ty functlon t.
t(d,3) = minT{{SX‘; S/ Sx is an m - restriction
S . ' c ‘ _ .

| for (1,1 ‘: 'L«'.f - - (3.2.7)

PROOF: Let Si be any semlcut contalnlng (1 3) but

'w1thout be1ng an m - restrlctlon for- (l,J) | Then there
_ 1s some (1 ,J ) € SX R (1 ,j’) # (1,3) for Wthh t(l 537 1s

‘the maX1mum value of t/S*. Therefore

8 t(i,j)k”t(i’;jfji o -:"’_ ~ (3;2:§)!h;

Then from (1.4, 10), since S§ is some semlcut contalnlng

ek ,J )

f(;f,j{jish‘isﬁnlqnas-Enfio;f_ . h‘;”';; B i(3‘2?9)- ;o

_also by (3 24 8), (3 2 9) and the deflnltlon (1 4 10), it

Afollows that-

L9 < minsg| 7 Gie Sgclsgly, (B.2.10)




'whenli- m, the procedure termlnates and then c —-c m? .the
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therefore, those semlcuts that contaln (i, and are

not m -_restrlctlons for (1,3) do not affect ‘the

mlnlmum' hence (3. 2 7) 1is an equlvalent def1n1t1on -

- for the termlnal capaclty functlon.

In the synthesis algorlthms, the capacity

ThiS‘is because'theﬁaigorithm:is'ansaccumulative

process that beglns with a network w1th no- capaclty and

_then -adds’ capaclty on various arcs, Then each ¢ representS'

u
the ralue of the-CaPaCif)’-function.*at 1terat1on us more0ver5T '

jrequlred capaclty functlon.‘

3.3 -ALGORI.T.HM«»FoR't'?sYNTHEsrlz‘ING':iA"-‘NET;WORK'.;;’ |

leen a flnlte, qua51comp1ete, orlented graph

= (N, A), glven also the termlnal capaclty functlon

t: AR such’ that t. contalns only essent1a1 1nequa11t1es
--and that for every arc. (1,3)1n .A there exlsts a semlcut

'Sx in G whlch is an m - restrlctlon for (1,3), then a

| network N = (G c) t) where the capaclty functlon c "reallzes"

t, is obtalned as: followS'.

Algorlthm 3. 3 1.

1., a) For each of the m dlstlnct values t 1n t,‘

flnd the set|of arcs A C::A on Wthh t has the

~ value t ‘!
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b)‘,For-eech.A flnd the set of semicuts fﬁ
where each Sxef is an m - restrlctlon for all
(33) A 3
‘c).‘For all (1,3) € A putc: (1,3) = 0,
.}d) Put i =f1,".
2. ».For‘a11~arcs (1,7) € A,
‘1f (1,3) ¢ A then c (1,3) f'(i,j)"
otherw1se c (1,3) = x(1,3) where;

i

23§x(1,3) / (1,3) € A } ﬁjf*min {jsx!c‘ € f }
C : : HR'ES o
- . e , . : (3. 3 1)
3., Ifns= m then c(1,3) = C. (1,3) and termlnate, otherlse_j SRR

put ﬁ;= u+1 and. go to step 2. '
| ‘ Observe that on’ termlnatlon, em rstthe"reqhired{tapacityi}_r
functlon c. h ‘ | _ | -

| The follow1ng theorem proves that Algorlthm 3.3, 1

"obtalns the capac1ty functlon c: for the network N

THEOREM 3, 3"1 leen the networkN (G [¢ t) as deflned ‘

above, Algorlthm 3 3. 1 flnds the capac1ty functlon c so _':“

that for all. (1,3) € A N
'tci,j);#‘ﬁinifISXI /(5,3 e sg L (1.4.10)
e e T e e T

that is, the term1na1 capaC1ty functlon obtalned by evaluatlng
‘the semlcuts in the resultant network 1s exactly the same

as ‘the term1na1 capac1ty functlon glven before the synthe51s

procedure beglns ;.
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' PROOF:  According to Theorem 3.2.3, it is enough to show

that for all (i,j) e A,

t(i;j)-= mini{lsxi'/_ Sxtisien‘m--'restrietion for

. N R 4

@,y I E (3.3.2)
Now, from step i—a),:the velues of.t‘are the nuhbers _
_ti,--—}t‘ Slnce t contalns only essent1a1 equalltles,
then Sy is an: m - restr1ctlon for all (i,3) ¢ A and the
minimum valued semlcut in (3.3. 2) 1s the same for all arcs
in A y hence 1t is enough to show that for every U= 1 2 .- m,
o |
.t#-=:mrny{lSX| */*SX:is.et:m'ftrestriotioﬁrfor e%y

t
I8 ‘

C(i,3) e A s ‘.; . _’rk}“ S _j (3.3{3jfy:n

Moreover, step 1- b) selects the semlcuts that are
m - restr1ct10ns for (1,3) € A and places them in f
.therefore 1nstead of show1ng (3 3 3) 1t is only necessary
to show that for every u=l ,2 —-r,m,f . | |

e R
For any semlcut S € f thelyalue of SX*canebe written 1;

-as follows. :
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e I,

R

TR S 3.2.1)

Az{cmti,j)}/rﬁi3j)5€_éu

P e [ i) e SIA Gy e

3 2. 2)

Since (1,3) € A 1mp11es that (1,3) ¢ Au+ LJ ---LJ Am’ by

_ ,the_deflnlthn gfteu.ln step_2 for every (1,3) e A ;

1

‘:{Cm(i,j) /‘(i,j)veeSk{j.A** y tby Lemmai

S nCi9) = o LG9 = s ‘c“;;(i;:j.) x5 (.38

o

- Slnce (1,3) e SX[].A* 1mp11es that (1,3) ¢ A LJ ——-_ A ;“'> |

by the def1n1t10n of CU jonce . more, for every (1,3) € SX{”]A“ ’t~’
fcm(i;j),?}ém_lCi;j)ﬁ%‘—;r‘=;cu;j(isj)1";._f- _f' (3.3;6)t

Utilizing (3:3.5) and (3.3,6) yielqsﬁ o

lS | = X{X(l,J) / (1,3) € A }

n}’g{eufl(i;jzA/ (isjjgg'sx_rlAﬁ}ibf-11}? '?:fFi.ﬁfF3;3'7}
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‘ The expreSSLOn for. IS I ~ can be expénded as

'follows by‘u51ng Lemma 3.2.1; ﬁemma 3.2, 2 and by observ1ng

that 51nce~C1,3) € A- then (1,j) ¢ A* =~A;LJT“‘LJ Au_l_an
by the deflnltlon of cu,'-cu Cl,J) eee = c (i,j7) =0

for every (1,3) € A .

Q2

S| = ICe, (D) 7 GL)

m
>
ot

oy (1,3) /()
Y cu-l(i»ji /71,3) e SXfW“Az'}'

B CEA

]

.o

sX{].AuA} (B
ASubstitutiﬁg (3.3.8)‘iﬁto (3.3,7),vfof,every semitut

, SX_in fu,

' _lsxlé‘,= ;{;(i;j) /‘(i,j)¥é Au} Is ] - :, (3.3.9)t:

S . 11"1 ‘ :

From (3.3.1) in_Algorithm'3}3";i,;tu is-giyénfﬁy; '

o+
I

.Z"_{x(i’,‘j.).v/,*(.i*j).-f‘:%}}fi.f min {ls | sye s
. 11"1 ' :

minitxix(i,j)fy,(i,jj ;.Au}‘>'

¥

{IS , . SX. _ fﬁi]~ ..  ;“‘E{' .' © (5.3.10)
pfl ' ‘




- 112 -

since the values in x are real constants (3.3. 9) and

'(3 3.10) together yleld 3.3, 4) Q.E.D.

COMMENTS: |

(i) Theorem 3 2.1 establlshes that in a. network where
¢ is known and t is. obtalned from the semlcuts evaluated

' w1th respect to c, each termlnal capaclty in t has an

m - restrlctlon asSOC1ated with' it. ‘Consequently, if

-a network is to be syntheslzed,_then to‘each of\the_values
_ inpt‘it‘is‘necessaryhthat:there‘c0rreSpond at”least:one

m ~'restrdctedbsemicuti'othermise:the-networkfis not |
reallzable. | - | | .

The synthesls procedure requlres that only essent1a1
‘equalltles be present in the termlnal capac1ty functlon.
.Thls means that any semlcut that is an m - restrlctlon
' for some " arc in A must also be an m4~‘restr1ct10n for
.all other arcs in A : Observe however that 1f the !
V'm_- restrlctlon condltlon is relaxed two termlnal fa
-capaC1t1es w1thout m ~Arestr1ct10ns can st111 be
'essentlally equal J In such a case, at least one among
the -sets f will ‘be.. empty, the functlon x ;in (3 k¥ 1)

“is not deflned and therefore, the synthe51s procedure
cannot be applled | » o ﬁ o

- It the functlon : contaihs non-essential eoualities
1wh11e the m - restr1ct10n condltlon lS satlsfled for a11
iarcs in A' t can always be perturbed sllghtly to obtalnll

a new functlon t Wthh satlsfles the m - restr1ct10n

: condltlon and contalns only essentlal 1nequa11t1es. Thls_j




1s ~done by 1nspect1ng t and changlng the requlred values
:1n t by a small amount to obtaln t _so that “the- essent1a1
equallty condltlon 1s satlslfed‘and the m - restrlctlon

'condltlon is ma1nta1ned Then any rea11zat10n of t€ reduces?”

~to a reallzatlon of t as ¢ approaches zero.;‘ Thls approach
is further dlscussed and 111ustrated in Example 3.4.2.

(11) In the synthe51s procedure of Algorlthm 3.3.1, theh
functlon X used 1n the deflnltlon of c“ is not unlquely
_deflned (1t is so only in- the case where each A has only
one element that 1s, only in the case where there are

m1= n(n l) dlst1nct values of the functlon t) Thls suggestsdi
that p0551bly more than one reallzatlon of the glven functlon
t could ex1st In such cases ‘1t 1s natural to adm1t the.

.presence of constralnts on the arcs of the network Then,

among the p0551b1e reallzatlons, the requlred ones are those
satlsfylng the constralnts on the arcs. of the network ]
This 1s a’ bonaflde opt1mum synthe51s procedure.l o
Suppose that each of the arcs (1 ,J ),A(l ,J Y,
(lk’Jk) 1s an element of A and t(1 ,J ),.t(l ,J ), lli?
t(1k,3k) are essent1ally equal subJect to the m - restrlctlon’~
condltlon then the most 51mple constralnt 1s to select *
._one of these arcs: as one that 1s "preferred" to the others.:i
”Slnce the synthe51s procedure obtalns an optlmal solutlon -

'pfor the unlform cost case the functlon d can be redeflned

oL e
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that is, the COnstraints in the:sYnthesis of a network can be',

convenlently represented by the values in the constraint

'functlon diA > R Hence for the arcs ‘A ch0051ng the

minimum of the values d(;,J), Cl,J) € A is. the optlmlzatlonﬁf

crlterlon ‘that is, x(1,3) ‘takes on the a551gnment in (3.3. 1)'&7$i55
‘such that the arc (1,3) corresponds to the arc in A w1th

~the‘m1n1mum valued constraint. This 1s-111ustrated in

Example 3.4.,3.

"

3.4 SOME EXAMPLES USING ALGORITHM 3.3.1 .

|
e ST
In what fOllows,_three:examples illustrating thei
synthesisipr0cedure aretgiven;"ln the first7examp1e, the
“functioh t contains onlyvessentiai~equa1ities'and-there.is
no constralnt functlon, that 1s, the a551gnment in. (3 3 1)
is. arbltrary when there is. ‘more than one arc-in A L The
second example is one in Wthh t must be perturbed 51nce
"some non- essentlal equa11t1es are present The th1rd
| Vexample con51ders the ‘same functlon t as in the flrst
example except with constralnts. . ! E | ) A.
Matrix. notatlon 1s used for the functlons, that 1s,

d, ¢ and t are represented by the matrlces of values, D,

Ciand~T : A 51mp1er notatlon for semlcuts 1s also used

" for example the semlcut {(2 1), (2 3),_(4 1), (4 3)} is.

“denoted by 24/13 (numbers greater than 9 are not used here

'to represent nodes)
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|
|
o . . , |
.- y . 3 B . . ' . .— ‘
Example 3.4.1 - The capacity matrix C reallzlng the4~ . S
i . .
termlnal capacxty matrlx T under no constralnts 1s obtained i

T i

by u51ng Algorlthm 3.3.1.

Lz oso4owd

» From steps 1 a) and l—b) of the algorlthm, tu,

Au and f are determlned, and are:

«-{ci;ZJ,(lss),c1;4)};sfl {1/2343,

rr
]
N
s
1

]

e =4, A= {cz ), , 3)} ~:'¢Mf_iflz473,zi/13},v”***f3*

t,”ajs,"A..=,fc4,z)}; T g = (1a23,47123)

Cto= 6, A= 2}, . [ =-{12/34,2/134},

|| B

ot 1%77;5"Ai*;3{(3;2)i;'i°“¥,f7 o Lt134/2;34/1z},

'll'

Tt =8, A e[{(s 4)} S N ‘{123/4,23/14, 13/24
g " R N 3/124} '

i-
v
.
i

|

: By 51mple 1nspectlon of each trlple (t A I ) for :

- 'u = 1,7=- 7 t contains. only essent1a1 equalltles and the

m - restrlctlon condltlon is satlsfled for all arcs. -
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‘Therefore, a cdapacity function realizing t can.béfdbfa}ned.

~ Using step 1-c) the initial capacity matrix is

00 % 0

o o o
—

, From step 2 of the algorlthm for po= 1 f . ;‘
x(l 2) + x(l 3) + x(l 4)'— 2 - mln {0} . Then taklng
 x(1 2) =0, x(1,3) 2, x(1, 4) 0, as one p0551b1eA.
defln;tlon o£ thé.funcF1on_x~on-A1'g1ves, R

-

=

*
=
o o o

T o o o
=
*

~ For p 22 x(2 1) + x(3 1) ¥ x(4 1) -3 - ‘min {0}-=
Taklng x(2 1) =3, x(3 1) x(4 1) - 0, then "

{3 % o

o o o
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4 - min {2,3} =2,

 For.11= 3, x(2,3) + x(4,3)

.

2 gives,

Hence -putvti‘n‘g x"'(_Z',VS)' =0, x(4,3)

*
o
l\).‘
o

w
o O un
o
*
o

For W = 4, x(4,2) = 5 .- min (4,2} = 3 and then the
~only definition of the function x oan; is x(4,2) = 3 |
~and," o o - ‘

T —

0o 2z of

® 1

3 0 -
10 0 * 0f
. A

.1;*”

For M = 5, 'x(Z',.L}) = 6 -mln{ 2‘,?3} = 4,

EE * 0 4

0 3 2 *I0 |
For W=6, x(3,2) = 7 -min{3,3}= 4,

 \r;. 

*
o
© & O .

o
LS. e w
=N
*
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‘Finally, for W=7, x(3,4) = 8 - min»f4,7;4;4} =4,
0 2
13 * o

& & o
R |

Then C =.C7_répreseﬁtsﬁthe'capacity matrix that!
realizes the’terminal capacity éntries'in T. From C the

netWork répresentétiOn is;shdwh in»figure13§4.1;

 figure 3.4.17
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Examplé 3.4.2 - The éapaéity matrix C-reaiiZing the "

termlnal capac1ty matrix T is obtalned u51ng the synthe31s

,procedure._ AgalnvnOaconstralntsiare given.

*
-
’_;

- 4. % 6 5
T = | '
< 14 6 * s
: 4 ’ 6 6 * |
.A L . ‘~

i

o However in - thls example the matrlx T‘contalns non-
essentlal equalltles. Indeed, the equallty t(2,3) = t(3 2)
| ‘1mp11es that the arcs (2 3) and (3 2) should be put 1n the‘
h same A whlle no semlcut can contaln both those arcs. |

Then con31der 1nstead the matrlx T ,correSpondlng

to t’ the perturbed term1na1 capaC1ty functlon, ‘ :
\ ® 1 1 1 1
o 4 #0605
,.ZT'E - o
: 4 Tere * 5
4. 6+e Gre ¥

where e;,ez;s; are arbltrarlly small numbers such that‘

0<el<ez<€sl. Now only - essentlal equalltles are present




«

Ct s A S E,D,G0,6,1), S

.ff ,'£'6+€.if, .Av7%'{(3,2)f,f.,;  :‘yj.:. f
b omve, A=),

| t il; ore ,.‘ A, = {(4’3)}3 o P f7

=120 -

Follow1ng the procedure of hxample 3 4 1, a Lapaglty

‘1matr1x c® realxzxng T is constructed Lettlng e_,e and
i SR

'es tend to zero 1n the matrlx C€ the matrlx Cx'reallzlng

T, 15 obtalned

From step l in AigOrithﬁ 3L3.1,

{1/2343,

ot
i
B
-
=
i

5 ,2),0,9),0,0), 1

]

(234/13,

€ =5, A =1{(2,4),(5,)}, £ ={23/14,123/4},

(a3

1]

o .
.
>

1f

(2,97, (2/134,12/343,

o

:{3/124,13/24},»

(34/12,134/2},

I

{4/123,14/23,
24/13,124/3},

";  fd:‘0 .0:‘*

' For s 1 x(l 2) + x(l 3) + x(l 4) = 1 - mln {o}
and puttlng x(l 2) 1, x(l 3) = , x(l 4) = 0
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*
[en]

0 % 0 0
1 do 0 ® 0

. 0o “%J_ -
- For p=2, x(2,1) + x(3,1) * x(4,1) = 4 = min {0} = 4;
‘ ahdvputting-X(Z;l) %54, x(3,1) =0, x(4,1) = 0

T I
0

“-C€~=5‘.H

2. %

o o »

0
00 *

PN —

- For w.= 3, x(2,4) * x(3,4) = 5 - min {4,0}

o
Coon
. .- o

1f x(2,4) =\5'then xf3,45'¥ 0,

o
* 10
x0

0

w
e o &

0 *V

6 - min {9,5} = 1,
1

o
. o
=
=
il
Koy
. -
R
r~ -
N
W
o

0
0 0.0 #{
L7

= 6+e < min {0,1} = 6+¢ ,
R

b
o
=
=
it
921
o
B
.
~.
t




For wu =6, x(4;2) =.6+e - min {6 + cI, 7+ ei}=’€

i

For U

I
=)
+
™

' capacity matrix is,-

7, x(4,3) =6 + ¢

-.min {& -e¢ , 1'% ¢
3 2 17

1o 6+e #

¥

0 e -g "6+g +g =€
. 2 1. 8 1 2 -
) -

1
14 .*"1 .5 R

2

.
=

| Then\leiting'si;~65 ahd e;_tend'tb.zero;;the‘desired' ~

- €

1

, 5,1}
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and this network has the following representation:

f;gure_314.2h

B
1
l

‘ Example 3 4 3 - The capac1ty matrlx C reallzlng the matrlx

T under the constralnts in-D is obtalned as follows

3 7 s gl L1005

L? | 5 ; _4_ g e PRI
’ . The procedure to he followed is that of Example 3. 4 1
w1th the only dlfference belng, that for the’ deflnltlon of

the functlon x on the set A , (u= 1 m—- 7), the constralnt

’matrlx 1s taken into account

100
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Initially, “ :
| - T
= 0 0 .0/
o 0 % ‘0 0
Co = 0 0 * 0
0 0 .0 %
. -

For'u'= 1, x(1,2) + x(1 3) + x(1,4) = 2 « niin {0} =
and 51nce d(l 2) < d(l 3) < d(l 4), puttlng x(l 2)
x(l 3) | 0, x(l 4) =

* 2 0 of
e 0 ¥ 0 0
C. = - o
1 0 0 % 0

0.0 o0 %

- For u = 2, x(z-l)'+»x(3 1)+ x(4,1) = 3 - min {0} =3

,and accordlng to the matrix D we must let x(4 1) 3,
x(2,1) = 0, x(3 1) 0, and therefore |
— =
_ ® 2 .0 0
B 0 ® 0. 0
C' = R -
z 00 * 0
3 0 ‘ 0 %
. =

For w = 3, x(2,3) + x(4,3) =4 - min {0,3} = 4 and
'siﬁce'd(4;3)'< d(Z,Sj,~x{4,3)m$~4AWhile.x(2;3j3¥ 0, and,




For u = 4, x(4,2)‘

For u = 5, x(2,4)

no choice can be made and

i}

-

Lk

}

o
*

L
j

w o o
*®
o o

04w

hrsees —~—d -

-1 4 %

-~ min {6,6,8,6} =2,
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B T RV I

Thefefofe the requlred matrlx 1s C = C7 and

‘the. correspondlng network has the folloW1ng representatlon.

figure 3.4.3 .

3.5~ SYNTHESIZING A COMMUNICATION NETWORK

| The"algerithmvuSed forethe synfhesis ef.a ﬁeiwerki
'Teallzlng ‘the glven termlnal capac1ty functlon Can bé used
for the synthesis of communlcatlon networks It has been

' assumed that the restrlctlon for the communlcatlon network

is that all values of t and c be non negatlve.



'network in whlch some of . the capacltles are negatlve real

. numbers. Slnce, in such cases, the synthes1zed network is’
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As ‘in Example 3 4 3 Algorlthm 3 3.1 may construct a

‘not a communication network, it is of~1nterest‘to know if

there is an equlvalent communlcatlon network

In what follows, ‘the. condltlons under Wthh such an -

_eQuiValent communlcatlon network ex1sts, are glven, an
:algorithm for obtaining‘such a'network*is presented and an

example 111ustrat1ng the procedure is glven. s

THEOREM 3.5.1 - If two networks are Cp;-5equ1va1ent then

.they are equlvalent (that 1s, they have. the same termlnal
'capac1ty functlon) ‘

'PROOE ;. Let‘N' and N be the two Cp - equivalent networks

where,
N =@ ed s No=G ) 'ﬂ(;fi.._~'c3.§.iju:*ﬂ

If N (G,g ,,‘-~—i"Ngv (G,gk) are- the b1c1rcu1t
- k-

nets that are applled to N1 to glve NZ,Athen

C= o kg boemswoge T T (3,5.2)

2 1o

To show that N1 and N2 are equlvalent 1tAis enough

to- show that for each sem1Cut Sx‘ln G,

(3.5.3)
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& ) © But (3.5.2) and (3.5.3) yields,

i

| Xl Cifg;+lf‘¥gk ‘

g Jex . ‘"; ! }Sx|7 S Cs,s;45€§3.f'

1 ; | ‘gk

|
\
|
| . _
\": ' and it is only necessary to shoﬁ~that,
‘ _ISXI __='O,~fer’eve;y'x?=\1,72,,-e—5Ak S ;é'(3,5;5)lffff
‘ S

“to - get (3 5. 3) _ . .
‘u o - 3 It has been shown that N '(G,fgk)-is a7birguif net
. for each A =1, 2 —‘-»—, k, if

-gAi f if (l{J)'E pr;

g (L3 =1y B (G9) e, (3.5.6)

<

, otlierwise,
L . -

where ux‘is some real number and 'ngp’is some ‘circuit in G

correspondlng to By~

: For each SX in G 51nce,
o B f
S H S HI = (3.5.7
- Xﬂ pp) ﬂ ¢ X pp ﬂcnpp ﬂ pr | ’ ( )

:(:; o . ‘then,



w
‘ .
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g, (1,3) 7,5 € Sy

™

SRR A
°x (1 Clyp U Tpp) ?
:“Xﬂﬁnjtf@xﬂa;)}

=g, () /(E,3)

o

o= e (L) 7 (L)

= 2{g, (1,3) / (,5)

(gxf]npp)}+z{gAF1,J)/(1»J)€(qunﬁp)

<oy e (I ¢ Coy cexd (3

A PR o
= éxffjréa?dj(squnpp)‘ﬁ”ca:Qf(erwnpp)]

Thus (3 5. 5) is true and the'theorem‘is proved~

. The followlng algorlthm takes a network w1th some negatlve

capac1t1es on the arcs ‘and obtalns a communlcatlon network that’~’-'

tis equlvalent to that network.

”Algorlthm 3.5.1 :; 1-_h ktw

1-a) . For all (i,3) € A let ¢ (i,3) = c(i,j).
B omewse.

:HZQ 3'"Locate some arc (p q] such that ¢ (p,q)<ﬂ If‘no' '

such arc exists’ then termlnate since c:u 1s the capaC1ty e

'lfunctlon of the requlred communlcatlon network
-k

: Pq-
in the path c(i,j) #.0 and at 1east one such arc

Locate’ some path I (p,q)-é«vnié and for any (1,3)

has p051t1ve capa01ty.
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k

- 1 = D ,
4Ia) Then' _hqu‘l{{q,p)} and Ng.: (G,g) is the

PP |
bicircuit net that correspondshta-the;pair Qnﬁp,u),wheréf”

R S
o =A~ mln'{cu(l,?),/ (lfj)‘e pr, Cu(l’?>‘>j0}'
b) Put ¢, (i,5) = ¢ (i,5) + g(i,§) V(i,5) ¢ A,
c) Put u' u+1 o | A ‘
-d) If c (p,q)~<0 then go to step 3, otherw1se,

“ (1,J) =c (1,3) V(l,J) € A W= 0 and go to;step 2.

‘During the course of the follow1ng theorem,.-

Algorlthm 3.5.1 is shown to be. valld

THEOREM 3.5.2 - A network N = (G,¢,t) is Cp-equlvalent to a.

'communlcatlon network N = (G Cn t ), if and only if, t(1,3)
_and c(l,J) + C(J 1) are’ both non- negatlve for each (l,J) e A.

jPROOF Suppose the: network N is Cp-equlvalent to Npp - Slnce

Nm is a communlcatlon network tm(l,J)EOufOT all (i,j) e.A.‘
By theoren 3.5, 1 ‘N and N are alsofeqnivalent; hencer
¢ (1,3) = t(1,7)20. e o

Now con51der any arc (1,3) in A and - apply to N some”

b1c1rcu1t het N *"(G,g) correspondlng to ‘the pa1r (ng,a) ‘where -

(1,3) €. ng and o 1s a constant. Then cu é\c +g is the

_capac1ty functlon of the resultant network and -since all values

~in c_ are p051t1ve, o (1,3) = c (1,3) g(1,3) ;= cm(l,J) + a,

m
c (J,l) = Cm(J, i)+ g(J, ) =c (J,l) = ay hence, Qu(i,j) AU

c (J,l) = (1,3) +oC (3,1) Slnce a finite number of .

appllcatlons of blCerult nets results 1n N, then, c(l,J)

+ c(J, ) >0,
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Now suppose that.t(i,j)aand c(i,j) +~C(j;i)'are both .

'nonmnegative for-each (i,j) € A, In order to show that N

is Cp-equlvalent and hence equlvalent to N , it 1is enough

to show that if N contalns arcs w1th negatlve capac1t1es,

lthen it is Cp-equlvalent to a network in -which the number

of arcs w1th.negat1ve capac1t1es is one 1ess than the’ number

: of such arcs_ln N. Cont1nu1ng in this manner a negatlve ,

valued capacityfis e11m1nated 1n each new Cp-equivalent
network until all capac1t1es are pos1t1ve and the Cp-equlvalenti;}"
communication . network 1s obtalned Th1s procedure is Just

the one that is performed by Algorlthm 3.5.1, hence, prov1ng

" the above pr0p051t10n also proves the algorlthm

It is only necessary, then to show that if (p,q) e A
such that c(p,q) < 0, then it 1s poss1b1e to construct a f1n1te}t'Ti
sequence N ,N --=, N of nets where N = (G,c ), u= =0,1 -——Vs,fh;{f
such thatﬁ’ 15 Cp-equlvalent to N for each —1 52 ===, S and. e

cs (p,q) > 0~ It 1s proposed then, that Algorltbm 3. 5.1

~ constructs such a sequence.

First of all note that ‘the - algorlthm starts off w1th |
co =c and then bullds new capac1ty functlons by applylng B
selected b1c1rcu1t nets -Hence,rln general N.u (G c ) and
N?il (G ’A ) are ijequlvalent and 1n partlcular, N and N
are. Cp-equlvalent. , N S

In step 4 of the algorlthm, 51nce o 1s always negatlve
(assumlng that an- appropr1ate ng can be found 1n step 3), g

the capac1ty on arc (p,q) is 1ncreased at each 1terat10n~

'_ of step 4 b), that 1s, c (p, q), U= 0 1 ,s,.rncreases



- 133 -

monotonically towards zero. Note however,:thatlif-c(p,q) +

'.c(p,q) <_O,lthen'u cannot be guaranteed to be strictly

negative‘since’c{q;p) may be reduced to zero and' subsequently
c(p,q) cannot be 1ncreased further towards zero Thus ‘
c(l,J) + . c(j,i) > 0 for all (1,3) € A guarantees thlS
monltonlc increase towards zero.

At each iteration of step 4 e1ther a) c (q,p) is the

minimumAvalued capac1ty on’ ng and hence c-' (p’q) is p051t1ve;i7

u+

-ty
its correspondlng capac1ty reduced to zero, It follows then,

and ¢ (q,p} =0 or b) some arc in ng other than‘(q,p) has

that if the capac1ty of arc (p, ) 1s not 1ncreased to a p051t1ve7ﬁ

'Value at iteration u+l,- then there is one less approprlate

path (a path that has no . zero capac1t1es and at 1east one

'pos1tlon capac1ty) ‘at iteratiomn u+l.

It remains only to show that for c (p,q) <0 an
appropriate path can always be found. If thlS is true, since
the number . of paths and hence the number of approprlate
paths, is f1n1te, it follows from the monotonlc property ‘
that Cq (p,q) > 0 for some f1n1te p s; |

Suppose that for o (p q) < 0 no approprlate path can

be’ found Then all paths 301n1ng p to q have elther all

the capac1t1es w1th negatlve values or at least one arc

; w1th_zero capao;tyr Therefore, 51nce <, (p,q) is also
negative; no path from p to q supports pos1t1ve flow;and
't(p,qj <‘Q.h;But thls is‘aLcontradiction'andwitlis‘oonoluded

| that_andappropriate path.can.aluays béf??na}ifgcu(?QQ) <h0.

- ) L - Q.E.D.
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The follow1ng example uses the results from
Example 3.4, 3 to 111ustrate the use of Algorlthm 3.5, 1

- Example 3 5.1 - Prom Example 3 4, 3 we have

-.r*_ 2.2 2| 1= 2 0 0

3 % a4 6 0 % 0 6
T = [ A ‘ T C o= .

| 37 % 8 . 0 6 * 2

{3 54 % 3.1 4 ®

‘Note that although the elements of T-are non-negatlve,

there is ome entry in C, namely c(4,2), that is negatlve.

- Since c(4 2) + c(Z 4)*- 5 is a p051t1ve number, the condltlonsfhpf

of Theorem 3. 5 2 are satlsfled and a communlcatlon network N

‘equlvalent to. the network deflned by T and C, can be found

Step. 1 of the algorithm 1dent1f1es <, = C~as the_flrst o

eapac1ty conflguratlon 1n the sequence and step 2, locates

.arc (4 2) as the flrst (and only one) W1th negatlve capac1ty._
Step 3 1ocates path Hl é (4 1), (L,2)}- as an approprlate

path that 1s, one w1th at 1east one p051tlve capac1ty and no

zero Valued capaC1t1es.p' | .

Step 4.evaluates o,

e
i

S min {eg(4,1), ¢ (1,2); cy(2,4))

= w2 '



;N1‘= (G,¢ ) where,

and the commuﬂicationS'netwak Nﬁf=A(G,‘cﬁ)-has been found...
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and fhen adds to. the net N (G e ) the b1c1rcu1t net

correspondlng to the palr (I[‘2 *2) whlch.glves the network

11 4 %
Since there‘afe'nd‘negatiVe.capacities inC, C_=¢C

1P m 1

This graph representation is shpﬁn.in figure 3.5.1.

figure 3.5.1
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Note however, that the communication network does

not necessarily Satisfyfthe constraint'matrix D in the

~origina1-problem,..'

3.6  CONCLUSIONS

In this chapter an optimal procedure for'synthesizing

a network with un1form cost channels was - formulated It was

' shown that a network exactly satlsfylng the requ1rements is only

Vreallzable under certaln condltlons. Flnally, it Was demonstrated

that a communlcatlon network can be constructed from a general
network given. that certaln restrlctlons are not v1olated
Although the empha51s was on communlcatlon networks, 1t
should be apparent that the synthe51s procedure offered in
Algorlthm 3 3. 1 finds appllcatlon in economics and opera*10ns~';'

research problems where approprlate 1nterpretat10n of negatlve

capacities may ex1st

It rema1ns for further study, to f1nd a method for
obtaining a network that exactly satlsfles the requlrements,

only W1th.aﬁnonﬁun1form cost cr;terlon.
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NOTATION*
'R" '~ :theaSet*of‘rea1 ndmbéfS'x_"
R - the set of non-negative real numbers
e  "belongs to"
¢ - "does hot belong to"

" if ‘X is a subset of some set N, then X©
" will be used to denote all elements of N
;'ﬁhich.doAnot beiohg to X; it'is célled

~ the "éOmplémént""of X-(withirespect to N).

‘X-Y | .ihé set of thé'elements infxfwhich‘do_not'

belong to'Y.

card X the number of elements in X.

. ® Further details on the elementary setrbperatipns.used
. in proving certain theorems, can be found in [12].
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'SHORT 1 (LK)

" 'PROGRAM DESCRIPTION

Program'SHORTl( K)'is a:computer'package that

‘ 1mp1ements the s1mu1taneous transm1s51on synthe51s

presented in Algorlthm 2.5.1. It is. wrltten 1n Extended

FORTRAN IV pror'a"Sigma 7Qtime-shared computer,;nstall—
ation. ” _. | o | .'_

The main line of the program is-shown in the flow-
chart in figure B w1th the aSSOC1ated subroutlnes |

appropriately 1nd1cated Although the Varlables used in

 the chart are those used in. Algorlthm 2 5.1, thls is an
’ equlvalent representatlon of SHQRTl(,K)._:Theltransforma—
’ tion.from the algorithm'topthe progran is achieved by

- referrlng to table B.

Subroutlne NETRED is a generallzed routlne used by

all three synthe51s packages presented in ‘this study

The 1nput program "asks" the user for the pertlnent

Vnetwork data, that 1s,"asks” for the number of nodes N

the,termlnal.requ1rement~matr1va and the arc cost matrix

. D. ProviSion,has also been madeifln all three,packages);

to input thiS'data from a'fiIe prepared on disc-"The
user in -such’ cases, should a531gn thls dlsc f11e to

1og1ca1 dev1ce #1 before executlon.‘
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Subroutines'NETSHORT>and'NETROUTE realize FloYd's
shortest path Algorithm 2,4.3. 'NETSHOﬁT finds L, the
.matrix_containing.the 1engthsxofva11-the-shortest paths,.
and 2, the'correspondingbnode matrix while NETROUTB finds
the shortest-path (the sequence of nodes)rbetween some
specified pair of termlnals » These two. routlnes have
also been 1ncorporated in the main 11ne of SHORTZ( K).

The ma1n feature . of thlS package (as ‘well as the other
two programs) is that 1t ‘is completely conversatlonal due
‘to the t1me shared env1ronment in’ Wthh it res1des Slnceg
no unusual programmlng technlques were used the program ?i
,11st1ng that follows is stralghtforward The user should
note that the program ~as. 1t stands, can handle-a-networkJ‘
of at most 15 nodes and that due to page w1dth 11m1tat10ns,
each term1na1 requ1rement may range from. OOO 0 'to §99 9
and each arc cost entry-mayitake on 1nteger;values_from
0 to 99999 iIt.should be.reaiized'that the program may
be readlly changed to compute 1arger networks by alloca—

ting more storage for the matrlces.‘

N N
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:‘:.i BN N

'-(SHéRT'l(;K) )R

PRINT PROG..
" DESCR. IF
_DESIRED

¥

INTTTALIZE
. ¢=0

¥
\ INPUT
N,T,D

Calculate all shortest

L. .and'é_

.ffom o

1Add capacity Qﬁ‘vaiué

He “al f
e shns 1,

figuye-B‘

. NETRED

paths and’ their values| -

@,_. ie, Find

SUBROUTINE
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B

[

"

 BEV.LEV, = 0.

Example 2.5.1- . : L | i
ALOAD ’ T

ELEMENT FILES: SHORTIB LT e
OPTIONS: L e

Fal
Fo

XEQ? Y

" THIS NETWORK SYNTHESIS PACKAGE IS AT YOUR- COMMAND!
~PLEASE INPUT DATA AS REQUESTED BY THE PROGRAM! -
DO YOU WISH 'TO SEE THE PROGRAM DESCRIPTION? :
"ANSWER YES OR NO . | CoE

WES

THIS PROGRAM SYNTHESIZES A COMMUNICATION NETWORK

. .GIVEN THE COMMUNICATION CENTRES, THE TERMI NAL - CHANNEL _

CAPACITY REQUIREMENTS AND THE. ARC .COST CONSTRAINTS. S
- THE REQUIREMENTS ARE MET qIMULTANEOUSLY AND THEY DO . .

NOT VARY WITH TIME.:SHORTEST: PATH TECHNIQUES ARE USED
"~ TO ARRIVE AT THE SOLUTION. - S

'INPU1° ‘ ’ ' ' :
‘ N-(INTEGER)-THE NUMBER oF COMMUNICATION CENTREs- ~
N IS THE DIMENSIONALITY OF THE MATRICES BELOW. e
- T-(DECIMAL)-THE TERMINAL CAPACITY MATRIX: -
EACH ENTRY, T(I,J)y CONTAINS THE. VALUE OF ST
REQUIRED: CHANNEL CAPACITY FROM TERMINAL I TO TERM— o
INAL J. Coe
D-(INTEGER ) -THE" ARC COST MATRIX°' - s

EACH ENTRY, D(I,J), IS THE COST PER UNIT CAPACITY

ON ARC (Igd)o

QUTPUT: . ° o | L
" C-(DECIMAL)-THE REQUIRED CAPACITY. MATRIX’-'I
EACH ENTRY, C(I,J); IS THE-CHANNEL CAPACITY
_OF ARC (I,J) THAT IS REQUIRED FOR:.THE:SOLUTION. -
TT-(DECIMAL)=TOTAL METWORK COST: . - SR
TT =SUM (C (1 ,J)*DCT 4)) FOR ALL I AND J.“:_ﬁ

ARE THE REQUIR&MENTS AND THE COSTS SYMETRICAL?
"ANSWER YES OR NO -
?NO ' .

lNPUT THE NUMBER OF NODES PLEASEY
24

PLEASE INPUT 16 FLOATING POINT VALUES Co
4 PER LINE TO FILL THE TERMINAL CAPACITY MATRIX!



4
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= PLEASE TNPUT 16 INIEGER VALUES = - f;
4 PER LINE T0 FILL THE ARC COST MATRva :

oo

lo E . ' . . e .
Wy 1,998,4
24,0,11,1 L e ey U
2999,1,8,3 - . b - S
) 4° . -.‘ - S o : - .I
C21,3,3, w L T e

: : IR S ] o
DO YOU WISH TO REVIEW YOUR INPUT? =
ANSWER YES OR NO | L T ST S I

»

~ | L FE
!I' THE TERMlNAL CAPACITY MATRIX°‘1f,> e

o .
®
=

' /.
o leo 0 3.0
ol 4.0

.0
0 T DU T
.0 2.0 0. I

—~ 0 IV

THE ARC COST MATRIX: Lemeo T

_ o1 999 4
4 g - 11 o
i @ -3
3 3 0

DO YOU WISH TO RE-ENTER YOUR. DAlA? , R U R
- ANSWER YES OR NO =~ - _ . o
M0 | : I S o

zi'lHE REQUIRED CAPACITY. MATRIX BELOW PEPRESENTS o
'THE NETWORK THAT SIMULTANEOUSLY SATISFIES THE REQUIREMENTS?

. 0 16,0 o@' _ .ﬂ”
® @ WG OB 27.0
T ‘ow' 'llog‘ _' a@ o@'. .
| 12,0 B 9.0 .0

TOTAL NETWORK COST 1S ss.00
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CHEDIT

l].fammrsanu)o --ﬁ~.;"w 'yJ
N wiSl QQQ . )
\

R, .
S COMMON /C 1 /N, TERM(IS,IS) cosr<15 ls>'l L N
Lo COMMON/C2/IR,JK A AR RN
T COMMON/CA/CAPCIS,15), NODE(! lS),R(lS) KR | S L
S INTEGER COST,R Lo

. DATA YES/'Y'/
IR WRITEC168,115)
{15 FORMATC//% THIS NETWORK SYNTHESIS PACKAGE 1S AT YOUR COMMAND!'
* "x/° PLEASE INPUT. DATA AS REQUESTED BY THE PROGRAMI', -
.~ %/° DO YOU WISH TO SEE THE PROGRAM DESCRIPTION?' -
%/° ANSWER YES OR NO®) - - -~ oo
READ (165, 1@3) ANSWER | ;-:1;,;.v S
TF (ANSWER . NE . YES) GOTO.1 - | .
. WRITECI®8,116) | :
116 FORMAT(//% THIS PROGRAM SYNTHESIZES A COMMUNICATION NETWORK ",
%/° GIVEN THE COMMUNICATION CENTRES, THE TERMINAL CHANNEL',
/' CAPACITY REQUIREMENTS AND THE ARG .:COST CONSTRAINTS.',
/' THE REQUIREMENTS ARE .MET SIMULTANEOUSLY. 'AND THEY DO*, -
s/° NOT VARY WITH TIME. SHORTEST PATH TECHNIQUES ARE. USED” |
%/° TO ARRIVE AT THE SOLUTION.') R ;
o WRITECIB8,117) | o o
117 FORMAT (/' INPUT:', | | ~
s/ N-(INTEGER) ~THE NUMBER OF. COMMUNICATION CENTRES"

||' S+ %/° N IS THE DIMENSIONALITY OF ‘THE MATRICES BELOW,’
e %/% © . T-(DECIMAL)-THE TERMINAL CAPACITY MATRIXe', [ -
.=+ s/". . EACH ENTRY, T(I,J), CONTAINS 'THE. VALUE: OF'“’ ‘
R VA ~ REQUIRED CHANNEL CAPACITY FROM TERMINAL T TO TERM-
SR *x/° INAL . J." . .
x/° . D= (INTEGER) - -THE ARC COST MATRIX:", ‘
*x/% . - EACH ENTRY, DCI, ), IS THE cosr PER UNIT CAPACITY'
*%/° o oN ARC (IgJ)o') o BCTE o

: WRITECIOE,118) . . T ‘ 1--:‘ SR
118 FORMAT(/° OUTPUT: *, ‘ o

%/ " C G- (DECIMAL) ~THE REQUIRED CAPACITY MATRIX°’ o
%/°  © EACH ENTRY,  C(I,J), IS THE CHANNEL CAPACIFY I
_%/° . OF ARC.(I,J) THAT IS REQUIRED:FOR ‘THE SOLUTION.: :
%«/° . TT=(DECIMAL)~TOTAL NETWORK. COSTe ", ;'

%7° TT-SUM(C(I,J)*D(I,J)) FOR ALL I "AND J. )"

1 WRITEC188,901) g '
9@1 FORMAT(//° ARE THE REQUIREMENTS AND TNE cosws SYMETRICAL? ’
%/° ANSW&R YES OR. No' > P e

“IsSWiz :
L READ(I@5 l@é) ANSWER R B o S
e 103 PORMAT(A!) : S R
.. . IF(ANSWER.NE, YES) GOTO 2 D e e o
L, IsSwi=t. - TN - S NS SO :

2 CALL NETRED ~ .~ = . - e
; TofeesT=ae Lty e T -
@  vo3uk-iw

| CAP (1K ,JK>=0.0

IFC(ISWI.EQ.8) GOTO 3 .
TERM(JKIK) =TERM (LK ,JK)
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R COST (K, IK)Y=COST(IK,JK) A A o 4
. 3 CONTINUE . IR BEE
- CALL NETSHORT - S R L '
7 NN=N=ISWI - LT A . Lo
R DO 5 IK=1gNN - T _ - = Cooh
PO LL=IK*ISWi+1 S E S o : B SR
S DO 5 JK=LL,N
YF(IK L EQ.JK) 60TO" 5
~CALL NETROUTE S
KRsKR=1
DO 5 K=1,KR. e
NI=R &) - “_~‘*< o
N2=R (K+1) -
CAP(N1,N2)=CAP(NI, N2)+TERM(IK JK)
IF(ISW1.EQ.@) GOTO 5
~ CAP(N2,N1)=CAP (N 1,N2)
5 CONTINUE
WRITEC108,101)
161 FORMAT(//" THE REQUIRED CAPACITY MATRIX BELOW REPRESENTS' .
*/' THE NETWORK THAT. SIMULTANEOUSLY SATISFIES THE REQUIREMENTS!'/)
DO 6 IK=14N = - T
WRITE (108, 1@2)(CAP(IK JK),JK 1y N) “ugi‘*] h w_". ey
DO 6§ K=1, N L s S R
IF(IK . EQ.K) GOTO & -
R TOTCOST=TOTCOST+CAP (1K, K)*COST(IK K)
e 6§ CONTINUE

.‘ - WRITE (108,104) TOTCOS'I : ' -
184 FORMATC//° TOTAL NETWORK COST IS-‘ ,Flﬁ 2)

102 FORMAT(15(F5.1,1X)) o N :

. 99% WRITE(108,504) . - o

"~ 5@4 FORMATC//° DO YOU WISH TO RESTART THIS PROGRAM? ,

%/° ANSWER- YES OR NO™) o L
READ(105,103) ANSWER
IF (ANSWER , EQ . YES) GOTO. v
END
SUBROUTINE NETRED : -
THIS ROUTINE READS IN THE MATRIX SIZE THE TERMINAL o
CAPACITY MATRIX AND THE ARC COST MATRIX. ‘

aao

COMMON /C1 /N, TERM(15 15),COST<15 15)
INTEGER COST - : .
.~ DATA YES/'y'/
599 WRITE (108,608).
60% FORMAT(//° INPUT THE NUMBER OF NODES PLEASE")
. READ(1085,801)N E
6001 FORMAT(I) e
MN=MkN
: WRITE C108,602) MN, N ' ' o
602 FORMAT(//" PLEASE INPUT ,12,! FLOATING POINT. UALUES /-
% 12, PER LINE TO FILL "THE TERMINAL CAPACITY MATRIX! 17
o DO 683 I1=1,N o
S WRITECIO8,610)1 . |
() 610 FORMATCIZ,':") .
603 READ (1, 604)(TERM(I J),J 1, N)
604 FORMAT(!SF) i , ‘
. WRITECI08,605) MN 4N o f A O
605 PORMAT(//‘ PLEASE INPUT ';IZ;f INTEGER "VALUES '/




48 -

% 12,7 PER LINE TO. FIlL THE ARC COST MATRIX! '77)
DO 686 I =1,N
WRITE (108,611

636 READ (1 6@7)(COST(I,J),J-I N)

&7 FORMAT C151)

WRITE (108, 620)

} €200 FORMATC//° DO YOU WISH 10 REVIEW YOUR INPUT? ’

*/° ANSWER YES OR NO' ) N S
READ (105,621) ANSWER b

33-621 FORMAT (A 1)

IF (ANSWER o NE, YES) COT0648
WRITE(108,623)

623 FORMAT(//' THE TERMINAL CAPACITY MATRIX'-/)~

~ DO 624 I=1,N . .
624 WRITE (108, 625)(TERM(I,J) d-l N)

625 FORMAT(I5(IX F5 13)

WRITE (108, 628). I
626 FORMAT (//° THE ARC COST MATRIX° 7y
DO 627 I=1,N

627 WRITE(i08, szs>ccosr;1,J> J-l N

628 FORMAT (15C15, 1X)) ; T AT -
6§48 WRITE(108,629) | UL
629 PORMAF(//' DO YOU' WISH TO RE- ENTER YOUR DATA? . | |
%/ ANSWER YES OR NO') = | | N
' READ(1#5,621) ANSWER - . - .- <;M-.V.\__ R RE
"IF (ANSWER . NE , YES) GOTO 622 S - R
GOTO 599

622 RETURN f

" END e ' R
SUBROUTINE ‘NETSHORT - R L %

. COMMON/C1/N,DUM1¢225) SHORT(IS 15) S I

COMMON/CA/DUMZ(ZZS) NODF(15 15) DUMS(!G)

INTEGER SHORT .- o G ;
DO 48 IK=1,N ~ -~ . - P
DO 48 JK =1, N . A o

48 NODE(IK,JK) =JK

DO 58 K={,N.
DO 50 IK“I N , ,
DO 50 JK-],N - S
CIF(JKEQ WIKGOR WJKEQ.KLOR, X EQ K). GOTO 5@'3 - L i
NSH 2SHORT (IK,K)+SHORT(K,JK) = . S Lo
'IF(SHORT(IKgdk) LE, NSH) GOTO 5¢° S : '
NODECIK oJK ) =K i
SHORI(IK JK) = NSH
50 CONTINUE ‘
* RETURN
END
SUBROUTINE NETROUTE
COMMON/C2/1K,JK o :
COMMON/C4/DUM2(2?S) NODE(IS 15) P(!S) KR-’
INTEGFR R. : \
K=2
L=}
M=2
RC1)=zIK -
R (2)=JK ‘
54, iF(NODE(R(L) R(M)) EQ R(M)) GOTO 55




55
\57

~-EOF
-

DO 56 1=K ,M,~1
R(I+1)=R (D)

R = NODF(R(L),R(M))"

K =K+1
GOTO 54

TF(MEQ.K) GOTO 57

MzM:1 -
L=L+1

"GOTO 54

KR =K :

RETURN

END o :
HI'T.AFTER 179, .. -

{
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T
SHORT2(,K) '

. PROGRAM DESCRIPTiQN--!

SHORT2(,K) is a package that uses many of the
building blocks foundgin SHORTl(‘K)'to realize the

synthe51s of t1me shared communlcatlon networks. It

' 1mp1ements Algorlthm 2.6.1 in FORTRAN for a Slgma 7 time-

shared computer R . ‘
: Flgure C shows the flow- chart for Algorlthm 2. 6 1

and hence for SHORTZ( K) , Table C provides‘the cross-

‘reference . from the varlable names. used in -the algorlthm

to ‘the varlable names used in ‘the FORTRAN program. Sub«u‘
routlnes NETRED NETSHORT and NETROUTE are descrlbed in
Appendlx B

Subroutlne NETSRT reallzes the procedure in step

-1a) of Algorlthm 2.6. 1
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 PROGRAM
 VARIABLES

-
CAP -
TERM

COST
SHORT

" NODE

KT




Delgte
(u,v) -
From A

(( SHORT- 2(,K))
PRINT PROG.

DESCR. IF
DESIRED

'SUBROUTINE NETRED

——f;_f_;{::>'SUBRQUTINE7NETSRT 4

Calc. All
shortest paths

. SUBROUTINE NETSHORT

remaining ip

yes

SUBROUTINE
" NEFROUTE -

on route

A
Find nodes @ |

from u to v.

C(lsJ)

4, i)

figure C g
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Example 2.6.1-

ILOAD o SR o -
@  :ciemeEwT FILES: SHORTZB e
~ OPTIONS: L L SR
Fs |
s

SEV,LEV., = @
XEQ? Y

THIS NETWORK SYNTHESIS PACKAGE IS AT YOUR COMMAND!
"'PLEASE INPUT DATA AS REQUESTED BY THE PROGRAM! o

DO YOU WISH TO SEE THE PROGRAM DESCRIPIION? o
ANSWER YES OR NO : . L
?YES

THIS PROGRAM SYNTHESIZES A COMMUNICAlION NETWORK o
'GIVEN THE COMMUNICATION CENTRES, THE TERMINAL CHANNEL
CAPACITY REQUIREMENTS AND THE. ' ARC COST CONSTRAINTS., -
THE REQUIREMENTS DO NOT. VARY WITH TIME AND. THEY ARE
TIME-SHARED IN SUCH A WAY. THAT ONLY “TWO- TERMINALS MAY

COMMUNICATE WITH ONE*AND .OTHER .AT ONE: “TIME , SHORT = -
EST PATH TECHNIQUES ARE USED TO- ARRIVE AT THE QOLUTION.W

INPUT¢ ' ‘ ‘ ' ' :
- ,. . » N- (INTEGER) ~THE NUMBER. OF CONMUNICAIION CENTRES'
X N IS THE DIMENSIONALITY OF THE MATRICES. BELOW.
. ‘ T-(DECIMAL)-THE TERMINAL CAPACITY-MATRIX:

" EACH ENTRY, . T(I,J), CONTAINS THE VALUE‘OF R
REQUIRED CHANNEL CAPACIIY FROM TERMINAL I TO. TERM- L
INAL J. A *
D-CINTEGER)-THE ARC COST MATRIX° ‘ '

EACH ENTRY,D (I J), IS THE COST PER UNIT CAPACITY
ON ARC (I J). L . - :

OUTPUT
C- (DECIMAL) THE REQUIRED CAPACITY MATRIX° -
© EACH :ENTRY, - C(I,J),.1S' THE CHANNEL CAPACITY .
. OF ARC(!,J) THAT IS REQUIRED FOR THE. SOLUTION._
TT~(DECIMAL ) -THE TOTAL METWORK COSTe - " - :
TT= SUM(C(I,J)*D(I J)) FOR ALL’ 1 AND Je! n’

INPUT THE NUMBER OF ‘NODES PLEASEY .":;Q-;VI:":f,r o
24 S -

PLEASE INPUT 168 FLOATING POINT - VALUES . '
4 PER LINE ‘TO FILL THE" TERMINAL CAPACITY MATRIXE

) s
We9,8, l@
20
26,0,6,8
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!|P  ‘_?2;7 0,7

21,2,1,0
‘ PLEASE INPUT 16 INTEGER VALUES D
4 PER LINE T FILL THE ARC. COST MATRIXQ. -
ls Lo S f' l-'~ Co
,?@19994 : o )
2“
C27,0,6,2
33
7999, 1,0, 5
. ‘qu
‘?z 8,2,0
Do YOU WISH TO REVIhw YOUR INPUT?
~ ANSWER YES OR NO =
wES
e '_fTHE TERMINAL .CAPACITY MATRIX: =
W G0 5.00 8.00 10.00
6,00 .00 6.00 8.00
4,00 7,00 00 T.00 -
1,00 2.00 1.00. .00
THE ARC COST .MATRIX:
Co I
a 1° 999 4
B AN 6 2
999 .1 @ 5
2 g 2 o
DO YOU WISH TO RE-ENTER YOUR DATA? ‘
ANSWER YES OR NO A o
?NO oo '._‘y a_" T
. THE REQUIRED. CAPACITY MATRIX BEL OV QATISFIES THE |
. | TIME-SHARED REQUIREMENTS AND REPRESENTS THE DESIRED. NETWORK! :
’ Y T R T
i 1 oﬂ ) o o _1@-@
- s an . 79@ . : .@_ L 0.@ .
. 60@ . o_g . 8.@ . .@

TOTAL NETWORK COST IS~ =  65.00
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IEDIT ‘ - \V‘ S | : i {:
*EDIT SHORT2(,K)- . : . '
*TS 1 =999 ’

.
CA
C-,

COMMON/C!/N TERM(15 lS)QCOSTCIS 15)

COMMON/CZ/T(?I@) LE(ZI@) Ec21d, 26) oKT. A
COMMON/CS/X(ZZB) Y(225)9XX YY ‘

COMMON /C.4 /CAP (15, lS),SHORT(lS 15), NODE(15 15), R(lﬁ) KR
COMMON/C5/CT (15, 15) :

INTEGER COST E, X Y XX YY SHORT R CT

DATA YES/7Y° /

WRITE(C108,115) :

" 115 FORMAT (//* THIS NETWORK SYNTHESIS PACKAGE IS AT YOUR- COMMAND!"

*/° PLEASE INPUT DATA AS REQUESTED BY THE PROGRAM! ",
%/° DO YOU WISH TO SEE THE PROGPAM DESCRIPTION?' :
x/' ANSWER 'YES OR NO') =~ ° R .
READ(105,103) ANSWER "~,

IF(ANSWER NE.YES) ‘GOTO -1

WRITE(108,116) . =

TR

116 FORMAT(//' THIS PROGRAM SYNTHESIZES A COMMUNICATION NETWORK" ‘

%/° GLVEN THE COMMUNICATION CENTRES, - THE - TERMI NAL CHANNEL'
. %/° CAPACITY REQUIREMENTS AND THE - ARC.COST :CONSTRAINTS.
%/° THE REQUIREMENTS DO -NOT VARY WITH TIME AND THEY ARE I,
%/° TIME-SHARED IN SUCH A WAY THAT ONLY .TWO. TERMINALS MAY®
%/° COMMUNICATE WITH ONE AND OTHER AT :ONE TIME. SHORT-J
%/° EST PATH TECHNIQUES ARE USED TO ARRIVE AT THE SOLUTION.
WRITEC108,117) : : :
117 FORMATC(/® - INPUT: "

/" o N (INTEGER) -THE NUMBER OF COMMUNICATION CENTRES: °,
~%/° - N IS THE DIMENSIONALITY OF THE MATRICES BELOW.",
%/ ~ T~(DECIMAL)-THE TERMINAL CAPACITY. MATRIX:',
/7 - _EACH ENTRY, = T(I,J), CONTAINS THE VALUE OF'
.%/°" - REQUIRED CHANNEL CAPACITY FROM TERMINAL 1-T0 TERM-
*/° INAL J: %
*/° D (INTEFFR) THE ARC COST MATRIX' o
*/° " "EACH ENTRY,D(I,J), IS THE COST PER UNIT CAPACITY s

%/ ON ARC (I,d)e°)
WRITE (108, 118) . o - _
118 FORMAT (/' OUTPUT: ", - ‘ o o
iR C-(DECIMAL>-THE PEQUIPED CAPACITY MATRIX: °

%/°  EACH ENTRY, CC(I;J), IS THE CHANNEL CAPAGITY'
#/'  .OF ARC(1,J) THAT IS REQUIRED -FOR THE SOLUTION.
%/  TT-(DECIMAL)-THE TOTAL NETWORK: COST: ', = .=
YA T= SUM(C(I,J)*D(I J)) FOR'ALL :1 AND J.
| CALL NETRED - | | “s
TOTCOST =0,
DO 2 JK=1,N
DO 2 IK=1,N

CT(IK JK) = COST(IK,JK)
K=Nx (JK=-1)+IK
X (K)=IK : :
CAP (IK,JK) = @
2 Y(K)“JK :
DO 3 IK=1,90



LE (0K =1
3 TUK)I=0.0
CALL NETSRT. o | o
I=KT L D
50 LP=LECI) - | o
DO. 5 JJ=1,LP
DO 4 1K=1,N
DO 4 JK=1,80 = S e
4 SHORT (IK,JK)=COST(IK, JKY
CALL NETSHORT - | S e ey
MINCOST=10%%6 - -
MINJ =0 -
DO 18 J=l,LP -
LIP=ECI ,0) N
IF(LIP.EQ.B) GOTO 10
XX =X (LIP)
YY=Y(LIP) -
IF (MINCOST.LT .SHORT (XX,YY)> GOTO 10 .
MI NCOST = QHORT(XX YY) ’
MINJ =)

1@ CONTINUE.

IF (MINJ,.GT.0) GOTO. o
. WRITE(108,108) ' Ve
107 FORMAT C° ERROR EXISTS I cosr MATRIX 'y
4 GOTQ 990 B
11 LIP=ECI ,MINJ) I
XX =x(LIPY o
YY =Y(LIP) _ e
- EQ MINDY =@ o
_CALL NETROUTE
KR KR -1
DO 5 K=z1,KR-
CN1=R KD
" N2=R (K+1)
COST(N1,N2)=00 ‘
IF(CAP(N1,N2),GT .7, @@1) GOTO 5
'CAP (N 1,N2)=T(I) .
5 CONTINUE e o
BTN BT o
IFCI.GT .2 GOTO 50 B
WRITE (108, 101) -
101 FORMATC//° THE PEOUIRED CAPACITY MATRIX BELOW SATISFIES THE'
%/° TIME-SHARED REQUIREMENTS AND REPRESENTS THE DESIRED NETwORK!’/)
. DO 6 IK=1,N : ‘
- URITE(I@S,102)(CAP(IK,JK) JK 1 N)
DO 6. K=1,8 .
IFOK.EQ.XK) GOTO 6
TOTCOST= TOTCOGT+CAP(IK x>*crc1x K)
€& CONTINUE : g ‘ o
wRITE<1w8,1m4> TOTCOST =~ - - ‘ S

1§94 FORMAT (//' TOTAL .NETWORK COST IS- ,Flﬁ 2)

102 FORMAT (18(F&.1,2X))

- 990 WRITE(108,504) -
504 FORMAT(// DO vyoU WISH TO RESTART THIS PROGRAM?Y,;-

%/ ° ANSWER 'YES OR NO® )
READ (185, 183) ANSWER
103 FORMAT(AI)




0o

599
800

. 601
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IF (ANSWER . EQ . YES)”anﬁm]

END :
SUBROUTINE NETRFD

THIS ROUTINE READS .IN THE MATRIX SIZE, THE TERMINAL

CAPACIfY MATRIX AND THE ARC COST MATRIXo;

COMMON/C | /N, TERM(IS 15),00@?(15 15>

INTEGER COST . -

DATA YES/'Y"./ . |
WRITE(108,600) . :
FORMAT (//* INPUT. THE NUMBER OF NODES PLEASE! ) i
READ (105,601)N :
FORMAT(I)

WRITE(1®896®2)MN N g

FORMAT(//* PLEASE INPUT ',I2,° FLOATING POINT VALUES A

* 12,° PER LINE -TO FILL THE. TERMINAL CAPACITY MATRIX! //)

DO 603 I=1,N

WRITE (108,610)1 N
FORMAT(I2, s ") . o
READ (1 6@4)(TERM(I,J) d 1 Lb
FORMAT (10F) - .

WRITE (108,605) MN; N

. 6o5. FORMAT(//" PLEASE INPUT | 12,' INTEGER VALUES '/ -
% I2,° PER LINE TO FILL THE ARC cosr MATRIX! /7y

DO 606 I=1,N
WRITE(108, SIG)I -
READ. (l,G@?)(COST(I,J),J~l Ny

687 FORMAT (101)

" WRITE(108,620)"

621

626
627

623
624

625

628
648
629

ZSZQ FORMATC(//° DO YdU'wISH TO REVIEW YOUR INPUT? s
*/° ANSVER. YES OR NO') :

READ (105,621) ANSWER
FORMAT.CA 1) . -

TF (ANSWER o NE, YES) GOT0648 | .
WRITE(108,623) = Lo T
FORMAT(//° THE TERMINAL' CAPACITY MATRIx%'/)» e
DO 624 I=1,N R -
WRITE (108, 625)(TERM(I,J),J-I N>

FORMAT (18C1X,F5.2)) S

WRITE (108,626) = R
FORMAT ( A/ THE ARC. coST MATRIX:®/> -
DO 627 I=1,N L

WRITE (108 628)(COST(I,J),J_I B

FORMAT (40¢1 4,2X)) | .

WRITE (108, 629) :
FORMAT(//° DO YOU WISH-TO RE-ENTER. YOUR DATA? ,

. %/° ANSWER YES OR NO')

- 622

READ(185,621) ANSWER . . -
IF (ANSWER . NE .+ YES) GoTO 622
GOTO 599 A

RETURN

END

AT ATIM P 06 8 PV am e e
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SUBKUUILLNE NEISKL

TERMI NAL VALUES ARE: SORTED INTO ASCENDING ORDER
IN T AND CORRESPONDINDING ARC NUMBERS IN E

COMMON/Cl/N TERM(lS lS),COST(I5 15) N
COMMON/CZ/T(ZI@) LE(ZI@) E(Z!G 2@),KT

'INlEGER E.

K=1

- DO 1l d-l N

DO 11 I=1,N

CIFCIL.EQ. J) GOTO ll

IF(TERM(T,J).NE. @ ) GOTO ‘12

CONTINUE

TCI) =TERM(I ,J) - -
ECl,1)= N*(J-l)+1
JM=d

IMM=1"

- JMM =

DO 5 J=JM,N

T M=1 MM J MM 1

JMM=0 |

DO 5 I=IM,N - EO
TF(I.EQ.J) GO TO 5 o ET
TF (ABS (TERM(I,d)) JLE. O, wm1> Goro>5ug;;yp"'
DO 4 L=l,X o
TF(ABS (TCL)=TERMCI ,J)) - .@@1)8 1yl

IF (TERM(I ,J )4 GT . T(L))GOTO&

DO 16 KK =K JLy=1

LP =LE (KK) -

DO 9 LLEI,LP

‘E(KK+19LL):E(KK§LL)'1.

LE (KK+1)=LE(KK) ~
TK+1) =T XK)
TCLY=TERM(I ,d)

E(L, DN IIDAL

LE(L) l

K=K+1 -

GOTO - 5 o
LECY=LEQWO+1 .
E(L,LEWMLI) = N*(J-l)+1

'GOT05

CONTINUE

K=K+

TCK) = TERM(I J) |
ECR,1)= N*(J-l)+I
CONTINUE

KT=K

RETURN
END
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SUBROUTINE NETSHORT
COMMON/C1 /N, DUML (458)

COMMON/CQ/DUM2(225),SHORT(!5 15) NODE(15 15) DUMS(IG)

INTEGER SHORT

DO 48 IK=1,N

DO 48 JK=1.N -
NODECIK ,JK) zJK = -
DO 50 K=1,N

DO 58 TK=1,N

DO 50 JK=1,N

50

54

56
55

57

~=EQF

IFIKEQ.JIKLORJK EQ.K GR IK EQ K> GOTO 5@

NSH=SHORT (IK,K)+SHORT (KyJK) .

IF (SHORT (1K, JK) LE. NSH) GOTO 50
NODECIK ,JK) =K -

,SHORT(IK,JK) NSH a

CONTINUE
RETURN
END- '

~SUBROUTINE NFTROUTE SR _
-COMMON /C3/DUMA4 (458) ,XX, YY R
;COMMON/CA/DUMSCASZ) NODE(lS 15) R(IS) KR

INTEGER R,XX YY -

X=2 | g ':f3~.~

L=t
M=2
R(l) XX

- R(2)zvY.

IF(NODE(R(L),R(M)) EQ R(M)) GOTO 55 : :‘
DO 56 I=K,M,=1"~ i
R(I+1)=R (I) )

RN = NODE(R(LS,R(M)) ;~-“

K =K+ 1 , :
GOTO 54 \
IF (Mo EQ KD GOTO 57
VELSE

Lzb+1.

GOTO 54
KR=K
“RETURN

END :
HIT AFTER ?56.
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NETSYM(,K)

PROGRAM DESCRIPTION

NETSYM(;K)'is:a program that implements the. syn-

thesis procedure_developed‘in‘chapter:IIi of this study.

It too is'written in FORTRAN for,a Sigma 7’configuration,

From figure D.1 it is obvieus that certain routines.

in the main line are common to those used in'SHORTz('K)

and hence are not descrlbed here (refer to Appendlces B
and C for 1nformat10n on NETRED and NETSRT) Alsoi it

should be'noted that the flow-charts in flgures-D 1 and

D. 2 contaln the var1ab1e names used in Chapter III.

(Refer to table D for the cross references requlred to

‘1nterpret the FORTRAN varlables used in- NETSYM( K)J)

It is 1mportant to note that the maln program
sequentlally executes a 1arge subprogram routlne B.

The maln Ilne 1mp1ements Algorlthm 3 3.1 while the sub~_

| program 1mp1ements Algorlthm 3.5. 1, that»ls,‘lf the

flrst part flnds a general network with negatlve ‘capacit-

ies, routlne B constructs,rlf poss1b1e, a.communlcatlon

‘network.

Note that together, subroutines NETPACK and NETCOMB

generate aliﬁpOSSible semiCUts'containing’the arcs in

-each arc set An and select those that are m- restrlctlons_

for the correspondlng tu

Lt
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. ALGORITHM
\'  VARIABLES

Y oA o =

o

" PROGRAM

VARIABLES

N
CAP
TERM
 GOST
SHORT

NODE

- MINS



( nETSYM (LK)

v

Prog.Descr
if
desired .

¥

Find
EoAypm
from

Initialize:
- C =0
H =1

For A Gen.
All semicuts, selec"

~ INPUT N
. N;T,D T .

- NETRED

]
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SUBROUTINE

. SUBROUTINE
-NETSRT

'SUBROUTINES
NETPACK & NETGOMB

OUTPUT :
C .

)

vRoutine B
(fig. C.Z)j

—Restrf & Place in
U

. Ll = ot 1

For ALl
(i,3)eA

"MESSAGE /

(i ,3) A
4{, j) = min

(No NET)

—( stop | _)

yes
For all

.Flfmin{ls ]/s €f I}

(i,3)

;'C ‘i;" =C
. u(ﬁ i) =

(i,3)

s

- ‘figure D.1.




{ Return to -
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',ﬁ.(i,j)>
- . and . N
c(i,3) *+c(d,1) >0~

o . ! : .

MESSAGE /

bt
Hion
o

no

(@]
i
o

figlre D.2

ves .. (" srop
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Examples 3.4.3 & 3.5.1-

. .. ILOAD : :
\ . ELEMENT FILES‘ NETSYMB
- ' OPTIONS“ : ’
v Fel
 Fe

SEVGLEV. = 0
XEQ? Y

THIS NETWORK SYNTHESIS: PACKAGE IS AT YOUR COMMAND!
PLEASE INPUT DATA AS REQUES?ED BY THE PROGRAM“ '

DO YOU WISH TO SEE THE PROGRAM DESCRIPTION?
ANSWER YES OR NO S : _
?YES :

THIS PROGRAM SYNTHESIZES A COMMUNICATION
NETWORK GIVEN THE COMMUNICATION -CENTERS, THE TERNINAL
CHANNEL CAPACITY REQUIREMENTS AND THE -ARC . CONSTRAINTS, _-‘
~ THE REQUIREMENTS DO NOT.VARY WITH TIME.AND .THEY ARE -~ -
' TIME-SHARED IN SUCH A WAY THAT ONLY TWO.TERMINALS MAY
" COMMUNICATE WITH EACH -OTHER AT:ONE TIME. THE METHOD
. 1S DEPENDENT ON THE PRESENCE' OF REDUNDANT -TERMINAL -
REQUIREMENTS, FURTHER PROGRAM. DESCRIPTION Is AVAILABLE
,.‘ IN THE PROGRAM DOCUMENTATION.;: R .
INPUT: |
' N-(INTEGER)-THE NUMBER OF COMMUNICATION ‘CENTERS: .
N IS THE DIMENSIONALITY' OF THE MATRICES.BELOW.
T-(DECIMAL)-THE TERMINAL:CAPACITY MATRIX® ~ . =
EACH ENTRY, T(I,d), REPRESENTS THE: REQUIRED
CHANNEL CAPACITY FROM TERMINAL (CENTER) I 1o
. TERMINAL J.
D-(INTEGER) ~THE ARC CONSTRAINT MATRIX:
EACH ENTRY, D(I,J), REPRESENTS THE RELATIVE VALUE ;
_OF CONSTRUCTING THE ARC . (IyJ). LOW-VALUES OF D(I,J).
GIVE THOSE ARCS HIGH" CONSTRUCTION PRIORIIIES. L

CouTPUT L o
'C-(DECIMAL )~THE REQUIRED CAPACITY. NATRIX: -

'EACH ENTRY, = C(I,J); REPRESENTS | "CHANNEL CAPA 11';;'-"

‘1a< THAT ‘MUST BE,CONSTR)
ACHIEVE THE: DESIRE




739é94,s_
33

23,7,0,8

40

2B95,4,0

" PLEASE INPUT 16 INTEGER VALUES

4 PER LINE TO FILL ARC CONSTRAINT MATRIX

lg

‘T@ 2,10, IG@

2° : .1..

23,0,3,8

60
100,5,9, 2
40

C21,5,2,0

DO YOU WISH TO REVIEw YOUR INPUT?

ANSWER YES OR NO

'?YES

 THE TERMINAL CAPACITY MATRIX°

n@w 2.00 2.00 2,00
3.80 00 4.00 6,00
3.00 7.00 .00 8.00
3.00 5.00 4.00 00

THE ARC CONSTRAINT MATRIX:.

, 2 e 1es
3 @ 3 g

190 5 g 2
{ 5 -2 .8

DO YOU WISH ‘TO RE=- ENTER YOUR DATA?
ANSWER YES OR - NO .

‘ ?NO
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"THE CAPACITY MATRIX BELow REPRES&NTS THE: NETWORK

THAT EXACTLY QAIISFIES THE TERMINAL REQUIREMENTS!'

o0 2.0 . :am o@.‘
N o O ) Sol 3
@ So@.' ‘-9(7.1 ' ZQZ‘ ) i,
g =1.0 4.0 o :

o
© o

NEGATIVE CAPACIIIES ARE PRESENT ABOVE!

DO YOU WISH TO SEE THE COMMUNICATIOM NETWORK?
(THE NETWORK. WITHOUT NEGATIVE CAPACITIES). :
ANSWER YES OR Not o oo

WES -;" o

THE COMMUNICATION NETWORK THAT EXACTLY. SATISFIES THE.
TERMI NAL REQUIRENENTS IS REPRESENTED BY THE. MATRIX BELOW!

ow

.0 0 2.0
2.0 .0 B 4.0
8. 6.0 0 2.0 {
1.6 1.0 4.0 .0 -

DO-YOU WISH TO SEE. THE CALCULATED TEFMINAL

. CAPACITY MATRIX? ANSWER YES OR NO.

ES 1 |

RESULTANT TERMINAL CAPACITY NATRIX°~'7
0.0 2.0 9.0

o0
So‘gv .ﬂ : 4 Q, G @ " .-
3.0 7.0 .'~ew - Y /A T
.30@ . .

DO YOU WISH TO RESTART THIS PRGGRAM? -
ANSWER YES OR NO o

- ?NO-

*STOPx 0




x
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*EDIT NETSYM( K)
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COMMON/C 1 /N, TERM(IS lS),CONTCIS 15)
 COMMON/C2 /T (218> ,LE 2105 ,E (218) KT
COMMON/C3 /% (225) vczzsa,c<15>,sc15>
COMMON/C4/N2 3L.1,L.2 |

COMMON /C5 /CAP (15, lS),JB(IS) IB(IS)
COMMON/C6/1 .-

COMMON /C 7 /MI NS

COMMON/C8/BUG -~ .

INTEGER C,S ,X,Y,XXsYY, CONT,E.
INTEGER P,Q o :

REAL MINS L -
DATA YES/'vy'/

WRITE(108,800)

:Sﬁﬂ FORMAT(//" THIS. NElWORR SYNTHESIS PACKAGE IS AT YOUR COMMAND"

%/% PLEASE .INPUT DATA AS REQUESTED BY THE: PROGRAM!
%//° DO YOU WISH TO SEE THE PROGPAM DESCRIPTION?'
*/°' ANSWER YES OR.NO°) .
READ (195,982) ANSWER . .
IF(ANSWER NE . YES) COTO 3
. WRITE(1648,801) . ‘
8@! FORMAT(//' THIS" PROGRAM SYNTHERIZES A COMMUNICATION' '
“%/° NETWORK. GIVEN THE COMMUNICATION CENTERS, THE TERMINAL'
~ %/°' CHANNEL CAPACITY REQUIREMENTS AND THE ARC CONSTRAINTS.
%/° THE REQUIREMENTS DO NOT VARY WITH TIME AND THEY ARE", ‘-.
%x/° TIME-SHARED IN SUCH A WAY THAT ONLY TWO TERMINALS® MAY ’
%/ COMMUNICATE WITH EACH OTHER AT ONE TIME, THE METHOD®,
%x/* 1S DEPENDENT ON THE PRESENCE OF REDUNDANT TERMINAL.',. .
x/°' REQUIREMENTS. FURTHER. PROGRAM: DESCRIPTION IS AVAILABLE"
%/° IN THE PROGRAM DOCUMEN!ATION.') cL ,
WRITE(108,802)

802 FORMATC/' INPUT: ',

/% N- (INTEGER) THE NUMBER OF .. COMMUNICATION CENTERS“:

®/° N IS THE DIMENSIONALITY OF ‘THE MATRICES BELON.

*/° ‘ T -(DECIMAL)-THE' TERMINAL CAPACITY MATRIX:',

s/’ ~ EACH ENTRY, . T(I,J), REPRESENTS THE REQUIRED'

x/° "CHANNEL CAPACITY FROM TERMINAL(CENTER) I TO ',_'

x/° o TERMINAL Jo" . _ o C

WRITE (108,804) = - ) '; !

804 FORMATC(*  ° D- (INTEGER) THE ARC CONSTRAINT MATRIX'

YA - EACH ENTRY, D(I,J), REPRESENTS THE RELATIVE VALUE'

cw /0 ~ OF CONSTRUCTIMNG THE ARC (I,J), LOW VALUES OF D(I J)’

*%/° . GIVE THOSE ARCS HIGH CONSTRUCTION PRIORITIES
"WRITE (108, 803) ' , :

- 803 FORMAI(/ "OUTPUT ¢ '

*/° - C= (DECIMAL) ~THE REQUIPED CAPACITY MATRIX‘

*/° A . - EACH ENTRV C(I,J), REPREQENTQ THE CHANNEL CAPACITY

*/° ';: I THAT MUQT BE CONSTRUCTED FROM. B T0 J IN ORDER TO'
o/ : ACHIEVE THE DESIRED QOLUTIO"J :

3 1=0 ' T

DO 12 TK=1, q@ .

" LECIK) =t .

12 TUK)=@.0
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KT=0

CALL NETRED . .

DO 2 J=1,N

26
24

081

9R2

- 986
983"
984

985
50

- 991

992

540

‘DO 2 IK=1,4N .

K =Mk ¢J =1)+1K

X (K)=IK. .

CAP(IK,J)=0.

YKY=d .

DO 989 JEL=1,10

IswWi=a : . : o B

DO 25 L=1,N D ; S

DO 25 J=1,N - ' "

1F.(L.EQ.J)GOTO 25‘_

DO 24 K=1,N '

IF(L.EQ.K) GOTO 24

IF(ABSC(TERM(L ,J)-TERMCK , L)) JGE.D. CCS) GOTO 24 T L
TERM (K ,L) TERM(K L)+0, wl P R
Iswti=1- T ’ R 8 RS .
CONTINUE

DO 25 K=1,N ,

IF¢J . EQ.K) GOTO 25 -

IF (ABSCTERMCL 50 Y~TERMCJ ;K ) . GE C ﬂﬁS) eoro 25

TERM(J,K) =TERMCJ K )+, 01 e
Iswi=y - | - RN
CONTINUE = | T
IF(ISW1.LE.®) GOTO 937 L

CONTI NUE’ |

WRITE(108,988) ‘
-FoRMAIc// TOO MANY ESSENTIAL INEQUALITIES ARE PRESENT! /7).
GOTO 990 . ,

IF(JEL. LEol)POTO 985 o

IF(BUG.NE.YES) GO TO 985 _

WRITEC16i8,981) . . I
FORMAT (/7" ESSENTIAL INEQUALIIIEQ EXISI' DO vOU WISH',.
%/ ' TO SEE THE PERTURBED TERMINAL CAPACITY MATRIX?"
%/° ANSWER YES OR.NO") ,
READ(185,982) ANSWLR

FORMAT(AI)

IF(ANSWER , NE, YES)GOTO qss y

WRITE (108,986) . I ‘
FORMAT(//’ THE PERTURBED TERMINAL CAPACITY MAIRIx- /)
DO 983 L=1,N " : o
WRITE (108 984) (TERM(L,J),J-! N)

FORMAT(!5(!X F5.2)) . - . ¢

CALL NETSRT ,_* ‘:~;-

1=I+1 ' o

"IF( .GT, KT)>GOT O qqq. :

CALL -NETPACK o :

IF(N.EQ. (L1+L2+N2)) GOTO qoz

WRITEC108,991) . - -

FORMAT ¢ ERROR: -ON RETURN FROM NETPACK )

GOTO 990
CALL .NETCOMB R S |
MINCONT = 1@x%6 . . A-~;I;f

IF(MINS LT .999.0) GOTO 27
WRITECI?8,540)

FORMAT(// A NETWOPK THAT EXACTLY GATISFIEq THE GIVEN TERMIHAL.
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CAPACITV PEQUIPEMENTQ',/ 'DOES‘NOT'EXIST!'//)
GOTO 990} e -
27 MINJ =0
LP =1
Jd=I-1 :
IF(ILE. D GOTO 37
- DO 201 Jd=1,dd
201 LP=LP+LEW)Y. - . S e
37 LQ=LE(I)+LP~1_ O
+ DO 200 J=LP,LQ T Sy
XX =X(EC))
YY =Y(E)).
IF(CONT (XX,YY).GE, MINCONT) GO TO zﬁﬁ
MINCONT'CONT(XX YY) s
MI NJ =J

'.,~2@m CONTINUE

" EVALUATE CORRESPONDING CAP VALUE;Q
IF(MINJ  NE.®) GOTO199 - S
WRITE (108,993)
993 FORMAT(//’ ERROR: SOME ENTRIES IN THE RESTRAINT MATRIX ARE",
*/' GREATER THAN 1B%x6 AND THEY MUST BE REDUCED IN SIZE!'//)
GOTO 950 :
199 XXX CEMING)).
‘ YY=Y (ECMINJ)) . -
CAP(XX,YY)=T(I)~ MINS.
GO TO 50 °

999 WRITE(C108,501) -

51 FORMAT(//' THE CAPACITY: MATRIX BELow REPRESENTS THE NETWORK'
k/° THAT EXACTLY SATISFIES THE TERMINAL REQUIREMENTG! //) -
- DO 582 I =1, '
502 WRITE(108, SQS)CCAP(I,J),J-I N)
sws FORMAT(!S(IX F5, 1))
1SWi=0
Do 354 P=lgN
DO 354 Q@=1,N
. IF(P.EQ.Q) GOTO 354
360 IF(CAP(P,Q) . GE.%.). GOTO 354
IFCISWI, GE. 1y GOTO 355
Iswi=t . o
' WRITE (108,356) ‘ ' ' ' o
356 FORMAT(//' NEGATIVE CAPACITIES ARE PRE?ENT ABOVE!'-
«/° DO YOU WISH TO SEE THE COMMUNICATIONS NETWORK? s
‘%/° (THE NETWORK WITHOUT NEGATIVE CAPACITIES). .
%/° ANSWER YES OR NOI°'//)
"~ READC(1#5,512) ANSWER
512 FORMAT(AI) ' o
~ IF(ANSWER (NE, YES) ‘GOTO 9o@ -~
355 IF ((CAP(P,Q)+CAP(Q,P)),GE.+@. @) GOTO 557 _
"WRITE(108,358) ‘
358 FORMAT(//" A COMMUNICATIONS NETWORK DOES NOT EXIST"//)-}
" GOTO 990 . -
357 DO 350 IK=1,N 4
TF(K.EQ.P, OR. IXK.EQ.Q) GOTO 350 :
IF(CAP(P,IK) LT .B.%,0R.CAP (1K,Q),LT.0, @) GOTO. 55@
IF(CAP(P,IK) . GE @ 1 OR CAP(IK Q) GE @.1) GOTO. 351
350 CONTINUE : - .
DO 352 IkK=1, N
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DO 352 JK=1,N
IF(IXK.EQ.JK) GOTO 352 - o _
IF(IK.EQ.P,OR.JK.EQ.Q) GOTO 352 '

" IF(CAP(P,IK) LT .0..0R,CAP(IK,JK).LT «@..0R. CAP (JK, Q).LT @ )GOT0552

IF(CAP(P,IK), GE..!.OR CAP(EK JK) GE..I OR CAP(JK Q) GE..!)GO]OSBS
352 CONTINUE

WRITE(108,353) .

553 FORMATC//' "TOO MANY" NEGATIVE ENIRIES! A COMMUNICATIONS NELWORK'

%/' MAY NOT EXISTI*//)
GOTO 990 - ) ’
351 Z =AMIN(CAP(P,IK) ,CAP(IKj Q);CAP(Q P))
CAP(P,IK) CAP(P IK) =7 .
: CAP(IK Q) CAP(IK Q)-Z
CAP(Q, P) =CAP Q, P)-Z
'CAP(P,Q)=CAP(P,Q)+Z A
CAP(Q,1K) CAP(Q IXKO+Z
CAP(IK P) CAP(IK P)+Z'
GOTO 56@ .

359 7= ﬁMIN(CAP(P lK),CAP(IK,JK),CAP(JK Q),CAP(Q P))

CAP (P, IK) CAP(P IK)=Z
CAP(IK,JK) CAP(IK,JK)-Z-J
CAP (JK,Q) =CAP(JK,Q)=Z
‘CAP(Q,P) =CAP(Q, P)-Z -
CAP(P;Q);CAP(PQQ)+ZT:»,
CAP(Q,JK) =CAP(Q,JK)+Z .
CAP(JK 1K) =CAP (JX, IK)+Z"
CAPCIK ,P) CAP(IK P)+Z ‘
GOTO 35@ :
354 'CONTINUE Lo e
- IFQSWI. LE 2 GOlO 353 '-‘; :
wn11E<1@8 361) ¢ -
361 FORMAT(// THE COMMUNICATIONS NETWORK THAT. EXACTLY SATISFIES THE'
o x/ﬁ TERMINAL. REQUIREMENTS Is PEPRESENTED BY THE MATRIX BELOW"//)
Y DO 362 IK=z=1,N . LT E
362 WRITE (108, 363) (CAP(IK,JK) JK 1, N)
363 FORMAT(15(1X FS.1)) ‘
333 WRITEC108, 510y . ~
519 FORMAT(//' DO YOU wISH TO SEE THE CALCULATED TERMINAL'
/" CAPACITY MATRIX? ANSWER YES OR NO.') T .
"READ(105,585) ANSWER = .. . :
IF(ANQWER NE YES) GOTO 99@ 334‘

I=1-

1(1)-1@ kG R ST S
DO 10 IK=1,N 1:;';»‘¢ T G

DO 18 JK-l, - S .

IF(IK. EQ.JK) GOTO 18- ’ -
SC)=IK - -

S (N Y=JK ‘ ~

LL =0

‘DO 11 KK=1, N o s
IF(KK.EQ . IK . OR KK . EQ KD GOTO | T A O
LL=bb+1 _ N _ s
C (LL)=KK
11 .CONTINUE
© N2=N-2
S Li=t
L2=1..
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CALL NETCOMB S
© TERMCIK ,JK) =MINS S
101 CONTINUE e
 WRITEC108,511) | '
511 FORMAT(//° RESULTANT TERMINAL CAPACTTY MATRIX° 7y
DO 13 IK=1,N | |
15 WRITE (108,503 (TERMCIK; JK),JK 1 N) |
990 WRITECIBS,504)
5G4 FORMATC//* DO ‘YOU WISH T RESTART THIS PROGRAM?"
%/° ANSWER YES OR. NO') =
~ _READ(105,505) ANSWER
565 FORMATCAL)

~ IF (ANSWER,EQ. YFS)GOTO 3"
. END
SUBROUTINE NETRED S |
THIS ROUTINE READS IN THE MATRIX SIZE, THE TERMINAL
CAPACITY MATRIX AND'THE ARC CONSTRAINT MATRIX.

COMMON/C 1 /N, TERMC15, lS),CONT(l5 15) .
common /c8/BUG . ‘ .
INTEGER CONT L LT -
DATA YES/°Y'/ T o o
599 WRITE(108,600) L o
60 FORMAT(//% INPUT THE NUMBER OF NODES PLEASE!')
 READ(185,6@1)N,BUG  .© R
601 FORMATCI,ALY = ‘aﬁ'ATVTA
MNzNeN . S
WRITE (108, 602) MY ;N ' | | - s
602 FORMAT (//" "PLEASE INPUT ,15 N FLOATING POINT VALUES '/
% 1X,12," PER LINE TO FILL TERMINAL CAPACITY MATRTx /7y
DO 603 1=1,N M S
WRITE (108, GIG)I
610 FORMAT(I1X,I12,":")
‘603 READ (1 GQA)CTERM(I,J),JAI,N)
604 FORMAT (15F)" . B
. L WRITE(CI108,685) MN,N - | S
605 FORMATC//" PLEASE INPUT »,IS,' INTEGER VALUES '/
k1X,12,° PER LINE TO FILL'ARC CONSTRAINT MATRIX 733
DO 686 I=1,N . .
WRITEC|08,610)1
606 READ (I, sC7>ccoNTcT J),J~l Ny
607 FORMATC15I) = - . Core
-~ WRITE(108,620) . - - R
620 FORMAT (//* DO YOU WISH TO REVIEW YOUR INPUT?"
*/° ANSWER YES OR MO") . - . | B
- READ(185,621) ANSWER ' = L
621 FORMATCA1). | - x :
IF (ANSWER . NE, YES) GOT0648 ,
‘WRITE(108,623) o |
623 FORMAT(//* THE TERMINAL CAPACITY MATRIX"/
. DO 624 I=1,N :
624 WRITE(108, 625)(TERM(I,J),J,I N>
625 FORMAT(15C1IX,F5.2))
T WRITE(108,626)
626 FORMAT (/7' THE ARC CoNqTRATNT MATRIX°
~ Doe27 I=1, N -
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"6?7 WRITE(1G8 628)(CONT(I,J),J-I N
‘6828 FORMAT(!S(I5 1X)) :

648 WRITE(108, 629)

x/°' ANSWER YES OR NO°).
"READ(185,621) ANSWER - '
IF(ANSNER NE . YES) -GOTO 622 '
GOTO 599 i
622 RETURN . _
END -~ '
: SUBROUTINE NETSRT

- 829 FORMAT(// DO YOU WISH TQ PE ENTER YOUR DATA? ’

' TERMINAL VALUES ARE SORTED INTO ASCENDING ORDER
IN T AND CORRESPONDINDING ARC NUMBERS IN E

COMMON/CI/N TERM(]S 15) CONT(15 15)
COMMON/CZ/T(ZIG) LE(ZI@) E(ZIGT,KT
- INTEGER E .
K=l
LK =1 -
DO 11 J:l
DO 11 I=1, ' .
IF(I. EQ.J) GOTO: 11 ; c
‘ IF(TEPM(I,J) NE o W ) GOTO 12
11 CONTINUE: . :
12 TCL)=TERM(I ,J)
CECE) =Nk~ 1)+
JM=J
IMM=1
JMM= :
DO 5 J=JM,N.
S IM=IMMEJIMME T
C JMM=0 '
DO 5 I=IM,N
IR LER J) ‘GO TO 5 : S
IF(ABS(TERM(I,J)) LE G W@l) GOTO\S :
DO 4 L=1,LK ’
: IF(ABS(T(L) TERM(I )Y LE. @ Q@l) GOTO 8
] IF(TERM(I,J).GT. T(L))GOTO4 o
DO 1@ KK LK sLg=1
TKK+1) = T(KK) o
1 LE (KK+1).=LE (KK)
TL)= TERM(I,J)
LECL)=1" .
LK =LK+1
7T LP=G.. ‘
IFCL, LE.l) GOTO 2
QzL-t
DO 9 IK=!,LQ :
9 LP-LP+LE(IK) . . o , IR
2 LQ:ZLP+1 . R , S o T
DO 3 IK=K,LQ,-1! B o
3 EWK+1DY=EOX)
ELQ) =Mk (J=1)+1 -
K=K+1
- GOTO 5

N
N

'
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LEL)= LE(L)+1 , o
goto 7 - L
CONTINUE: o -

LK =LK+1

CTWK)=TERMCI 0D

K=K+1

E)= N (J = 1)+1
CONTINUE -

KT=LK ’

RETURN

51
52

10

END © -
SUBROUTINE NETPACK C
COMMON/C1 /N, TERM(15,15), CONT(!5 15)
COMMON/Cz/T(Zl@) LF(ZIQ) E(2!ﬂ),KT
COMMON /C3 /X (225) Y(225),C(15) S(l5)
COMMON/C4/N2,L 1, L2 S
COMMON/C&/1 -

INTEGER C,S,X,Y XX,YY E

Ly =0
L1=0 c et
L2=Nel
DO 51 Jzl,N ' '
swor=e
DO 52 J-l N
CJd=J:

LP=1"
Jd=I-1.
IF (T, LE.I) GOTO 12
DO 18 J=1,Jd

LP S PHLEC)) | -
LQ=LEQI)+LP-1 -~ | )
DO 72 J=LP,LAQ SR
XX=X(EW))
YY=YC(EW)) .
1F(L1.EQ.0)GOTO73

- DO 74 LX=1,L1

74

13

IF (XX.EQ. S(LX))GOTO?W
CONTINUE - .
L1=L1+!

CSL1)=XX

70

12

65
59
58

C(XX)=0 . S
IF(YY.EQ.LY) GOTO 72
L2:=L2-1

S(L2) =YY

ceyyd=g@ -

LY =vy "
CONTINUE-

LEFT JUSTIFY NODE NUMBERS IN c.
J1zN-1

DO 58 J=l,d 1

DO 58 J2=J,J1 |
IF(CCJ)YNE.B) GOTO 58

DO 59 IK=J,J1
CCIKY=C(IK+1)

CcCWr=g -

CONTINUE -
DO 68 J=l.N.
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IF(C(J) EQ.2) GOTO §1 -

CONTINUE

N2 =J -1

L2=t-1-L2
"RETURN -

END

SUBROUTINE NETCOMB S
‘COMMON/C1 /N, TERM(15 15)9CONT(!5 15)
5COMMON/C2/T(2!@) LE(ZIQ) E(210) ,KT

| COMMON/C3 /X (225) . Y(225),C(l5),S(l5)

62,

80
43

39

35

'm

comMMoN/Ca/sN2, L1, L2

COMMON/C5/CAP(15 15),JB(15) IB(!5)
COMMON/C6/1 |
COMMON/CT/MINS = =~ . .
REAL MINS . - ‘ o
MINS =13, @%*6

N3=N2+1 |
DO 85 KK=1, NS T R
LI =KK~1 T SR
-LJ =N3.-KK . ' o A VR
TF(N2.EQ.8) GOTO 94
IF(LJ.EQ.B) GOTO 43

DO 80 KL=1,LJ

JB (KLY = N2 LJ+KL

MM =0 :

C M=l ' "’

DO 35 L=1, NZ .

TF (M, GT LJ) GOTO 30 R
IF B MY, GT L) GOTO SW S
M=M-1 IR
GO TO 35°

MM = MM+ 1

1B (MM) =L

‘CONTINUE -

FILL CENTRE PART OF § WITH c -
IFLJJEQ.®) GO TO 93 S
‘DO.9t IK=1,LJ
S(IK+L1)"C(JB(IK))

- IF(LI .EQ.2) GO To 94

DO 92 IK={,LI"

II'LI+LJ+IK

S(II) C(IB(IK))

ri=s
K3=LI1+Ld+1 L

- L3=L1+LJ A
TEST FOR - S‘RESTRICTION . ' L
CALCULATE VALUE oF CUT AND COMPARE TO NINS e
“L3zLi+Ld - -

C L4zL2+LY .

100

DO Iﬂﬂ K!-l LS

DO 100 K2=1,L4 _
‘K3 LLHJ+K2 R
IF(TERM(S(K 1) S(KS)) GT T(I) )GOTO 168
FVAL FVAL+CAP(S(K1) (KS))




@

41

- 40
42
." s

--EOF

IF (FVAL . GE. ML NS ) G0 TO 1@8

MI NS =FVAL

KL=t -

IF(LJ .EQ .8 GO TO 85
IF (JB (KL).GT.KL) GO TO 40
IF (KL.EQ.LJ) GO TO 85
KL=KL+t -

GOTO 41

NA =JB (KL ) =KL =1

DO 42 L=1,KL

JB (L) zL+NA

GO TO 43.

CONTINUE

RETURN

END ‘
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