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~has been given to most of them [2 3

ABSTRACT |

A very important problem in communications is that of the synthesis

of a net prov1d1ng the required channel capaCities between the variaus

nodes, More spec1f1cally, given the configuration of the system and

~ the expected max1mum flow requirements between any two terminals, the

synthes1s problem deals with determinlng all the nets prov1d1ng the
given channel (flow) requlrements

Although a general answer to thisAproblem has not yet been’ giyen,
several related problems have been considered and a satisfactory answer‘

5,6,7]

In this work, the problem of the synthe31s of a net providing the

_required flows among the various nodes, w1thout “capacity redundanc1es

on the channels 1s cons1dered- the conditions under which such a net-

is realizable are given and taking 1nto account the presence of con-

' straints on the channels, a synthe31s procedure is suggested and 1mple—

mented by a computer program, handling the overall problem,
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- SUMMARY

The present paper.is divided into three sections,

In section l the first two parts, certain elementary mathematical
concepts from set’ and function theory are presented while, in the last -
part, us1ng these concepts, the graph is defined along w1th certain
related concepts, which are further illustrated and discussed in two
examples, |

In section 2, in the first part, the concepts of a net and a communi—
cations net are defined the weighting and terminal capac1ty functions
- are also deflned and, using the weighting function of a net, s1mple
:operations on nets and semicuts are discussed In the second part, certain_
results from the analys1s problem are presented

In sectlon 3, the general synthesis problem 1s first dlscussed.
and the particular synthes1s problem being cons1dered is presented Next,
a theorem on the synthes1s of a (general) net is given, the presence of
constraints on the arcs and their effect on the synthes1s procedure lS_
d1scussed and certain examples, illustrating the synthesis prOcedure,_;
are given‘ In the second part, the solution of the synthesis problem
for a general. net is. applied to the case of a communications net _ h - -

A short description of the computer program written for. ‘the realiza—
tion of the solution of the synthes1s problem, along w1th the program itself,
can be found in “the appendix _ ‘ ‘ ‘

It should be noted‘here,‘that:the.theorems in sections.é;a.a,, 3;l.l.,

3.2.1, and 3,2.2., haye‘been stated slightly different]y,'by Resh[ég
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NOTATION

R the'set‘of real numberse'

e . "beloﬁgs to"

£ | ."QOes>net beleng toh

7° if Z.is a sebset‘of some‘set V, then 7€ will be uséd'td

. denote all'elements of V which do not belong to Z; it is-
: called the ”complement" of 7 (w1th respect to V) '

X-=Y _the set of_the>elementS’of X which-do not belong to Y.
card X- the number of elements in X (X is assumed,finite).

Note: Further detalls on the elementary set operatlons used in prov1ng
certain theorems, can be found in [4] :



Section 1, MATHEMATICAL PRELIMINARIES

In brder_to make this‘paper as self-contained as possible, a

number of elementary preliminaries are presented in this section.

1:!:. ’ Set theo;y |
l;L;l; If X and Y are two sets, thén the set
L Gsy)/xex, yey]
is called the "product" of X and Y and it is. denoted by XXY

l.l.2,: Any subset of the set XxY, is called a "relatlon" from'

X into Y; if, X =Y = v, then any relation from V into V is called a N
relation’ ﬂon" V. . In partlcular, the relatlon Av, deflned as
A\] = 1(1)1)/13\7}

is called the "identity" .or "diagonal" relation on V,

1.2 _ Function theory

1.2.1, A‘fuhction h, defined_on some set X and takiﬁg values

"in a set Y, is dendtedvby

:ic—-)Y _or’_x._)Y -
ligég;_. leen the functlon h and a 'set DCX the functlon
| h D-—ﬁY such that hx(d) = h(d), for every deD
is called the ”restrlctlon" of h to D and 1t is denoted by h/D

1.3. Graph theory

1.3.1.  Any palr (V A) of sets such that V is any set whlle,

A is a relaticn on V,_ls called an "orlented graph" and it is denoted

by & .



..lf V is finite, then G is-called a‘”finite graph”{

If A=VxV, then € is called a "complete graph',

If A=VxV—AV, then € is called a "quasicomplete‘graph". »

If 7 is a non—empty proper subset of V, then ‘the set- S = (ZxZ )(]A
is called a "semlcut" ofo@, while the correspondlng to SZ'setoSZ{JSZc =
[(ZxZ )L}(Z xZ)](\A is called a "cut! of ¢@. Cbserve, that the cuts
correspondlng to the semlcuts SZ and Sy c01nc1de and therefore, 1n.the
case of a finite graph the number of semlcuts is twice the number of
cuts in the graph.- -

h'};élgl. Any f1n1te graphtE*‘(V A) can. be represented deometrlcally
as fblldws |

The elementsdof V are represented by p01nts called "vertlces" of
_ the graph whlle the membershlp relatlon (1,J)eA is denoted by 301n1ng
the vertex i to the vertex J with a llne segment bearlng an arrowhead
wh1ch points to the Vertex J. "Such a (dlrected) llne segment is called
a (dlrected) “arc“ of @, if i3, and a ”loop" ofG, if i=j. |

Referrlng to the geometrlc representatlon of G; we observe that‘a d
semicut SZ of the graph cons1sts of all those arcs ”emanatlng” from
‘the set of vertlces Z removal from the graph of the arcs in SZ, would-
mean o connectlon" from 7 to 7° Since connectlons from Z to Z m1ght
was called a semlcut as opposed to the set

7
S LJS c wh1ch was called a cut, observe that removal from the graph of

yet exlst the. set S

the arcs in the cut S U SZc "separates" the graph 1nto two graphs



Moreover, if the number of vertices in V is‘h, then the number
of the dlstlnct semicuts in 6 is exactly the number of d1st1nct proper

non-empty- subsets of V, that 1s,

2n—l .

(@) ...+ (ah1) = = 2 1

and, therefore, the number of dlstlnct cuts in G, is 2" n-1_ 1.

1.3.3. The notlon of a qua81complete graph w1ll be of particular. °
interest in this work; hence, the following remarks and definitiohs A

Ifg = (V A) 1s a quas1complete graph, then for every non—empty

'proper subset Z of V, we have ZXZ(:A = VxV and, therefore,,‘

= (ZXZ )nA 7x7° and 8 USZc = (ZxZ )U (Z XZ)
On. the other hand, each set of Vertlces 11 cees 1P,‘w1th<1l,# i§,~'
in a quas1complete graph determlnes a set of arcs
= {(4, > h+1) / 1=y Sp—li
called a "path" from 11 to 1P.
To each such path P there cerrespouds'the set of arcs
) P = PU{(I ) 11)&
called the ”c1rcu1t” correspondlng to the path P.
Observe that the set o o
1(1,3) ¢ A/(J:l) € P} i iy 1>\) /1< nsp-1}
is the (“return") path from 1P to is correspondlng to the path P, wh11e
6= P0G 1)) = W3 ¢ /(D) s 6yl
is the clrcult correspondlng to P and that, clearly, PﬂP ‘.ﬁ and
W0 Op- =8 | |
Finally, if the quasicomplete graph ¢ is also finite with n
vertices, it is easy>to see that the number of paths from any vertex

i to any vertex j,VSuchpthat‘i £, is



() QI"’L(nf)l”i“.*(n"e (-3t (75) (ne2):

1.3.4. The follow1ng examples 1llustrate some of the above

graph—theoretlc concepts

Example 1 The graph.

(V A) =

is a finite oriented

(12,3450, 1(1,2), (L), (1,9, @D, (2,3, (2,4),

(3,4), (4,5)])

graph, with the following representation

" The semicut'S

Flgure l

correspondlng to the non—empty proper subset Z = {i,2;5}

of V, can be found as follows

7x7° {1 2, 5}

' fandf SZ = (zxz° )f)A

i 4 = i(l 3), (1 4) (2 3), (2 4), (5 3), (5 4)&
1@, 4) (2,3), (2, )} -

Observe‘thet by remov1ng from & the_arcs 1anZ,-there.still remains

Slmllarly,

= (2

"~ the arc (4 5). "connectlng" the set z° of vertices to the set Z.

X Z)nA: {(4’:5)}

Observe now that by removing from ¢ the arcs in Syc, there still

remain the arcs in S,

1n the cut

ZL}S f

~"connecting™ Z to 7€, while, by remoVing the arcs

1L, (23), (2,4), (4,5)]



there is no arc "conneétingU neither Z to z° nor Z° to % and ¢ is then

"separated" into’the‘following two.graphs." -
= ({1,258}, {(1,2), (1,5), (2,1)} = ({3,4}, {301

The f1n1te qu381complete orlented graph ‘

A Examgle 2
¢ = ({1,2, 3,4i, il 2), (1,3), (1,4), (2,1), (2,3), (2, 4y, (3,1), (3,2),

(3,4), (4, 1): (4,2), (4,3)])

has the following represéntation

!

Figure 2

. - ' . . \ -
Considering the subset Z = {1,2} of V, then ‘
{1,3), (1,9), (2,3), (2,4)]

s = 7xas = il,gy x {3,4} =
i(311))’(3)2)‘7 (471)) (4,2)}

S,e = 2 x% = (3,4} x {1,2} =
C8,US5e = {(1,3), (1,4), (2,3), (2,4); (3,1), (3,2), (4,1), (4,2)]
Again, removal.of fhe ércs in SZL)SZc, would sépaxate_@ into two graphs



Seetion 2, - MWSAM)WMWNMKNEMSNMS

The concepts of a net and a communications net are‘defined in
th1s sectlon, whlle, certa1n results from the analys1s problem, wh1ch
are to be ‘used in the study of the synthes1s problem, are. also pre-

sented.

é;l; vNets and.related concepts |
ig;l;l; Any pair:(é-w) such that' ¢ = (V,A) is a’ flnlte, quas1complete,
or1ented graph (w1th n vert1ces) and wisa real—valued functlon on A, ..
is called a "met, | |
The functlon w 1s usually . referred to as the‘"welghtlng functlon" p
of. the net whlle, for each (1,3) ¢ A,\V(ng))ls referred to as the B
"welght" of the arc. (1,3)
The requlrement, 1n the above deflnltlon, that @ be quas1complete,
is by no means restr1ct1ve, ‘that is, if the graph representlng the actual :
net is not quas1complete, it is a s1mple matter to ad301n to 1t the
" missing arcs, each w1th zero welght, so as to make it quas1c0mplete In
. other words, 1t is always poss1ble to represent any net by a quas1c0mplete
‘graph. p | _ -
| 212 If SZ is _a. semic:ut_ ofl: ¢, in the net".(G,w}, ‘then the real’
number: A _. .: , - :_ _ | | | :
Asgly = =w((5,3)) / (1,3) e 8}
is called ‘the "value" of the semlcut S with- respect to the welghtlng functlon

7.

“w, and whenever no conqu1on should ar1se, |S | w1ll be wr1tten 1nstead

of |S |



. . »2.1.43. The "sum" and the "dlfference" of two nets (@ ,w ) and
(6 ,wg) is defined as V
(@ )wl) + (@ .’WQA)A = (@' le + W2) 5
and, therefore, for any semicut 8, in ¢,
[5ghe o = 1850, 2 18]
Z wy h_we = "Z wl. Z Wy
2.1.,4, For a net (6 ,w), the function
ot A__)R such that t((i,3)) = min tls, \/(:i,j)e‘ 5.}
- is called the "termlnal capacity functlon" of the net,
Two nets (6 ,w ) and (6 ,w ) are called "equlvalent" 1f they have
the same termlnal capaclty function,
To see ‘that the function t is well deflned, it is only necessary
‘ ‘ to- observe that there ex1sts at least one semicut contalnlng (1,3), _
namely, the semicut S{i},>-_and, since ¢ is finite, so 1s‘the number'of _
distinct sémicutsVandﬁthe value of each semicut is finite,
The above definition of the function tAWas motivated by the fact,
_that the max1mum flow whlch can be transferred from i to j-in a given -
net, called the- "termlnal capac1ty from i to j", was shown ([17, page ll)'
tQ be equal to the mrnlmum amcng the values ofzthe semlcuts containing
(L,3). | | o
It should be ncted here, that?what is actually given<in the synthesis
problem is the expected maximum flow—requlrement from any Vertex i to

any vertex 3, that 1s, the functlon t is glven and 1t is requlred to flnd

the arcs and_thelr welghts, that 1s,_the functlon w,A



2,1.5. A net (6,w) in which the function w is non-negative,
is called.a "communications net",

The vertices in a communlcatlons net are usually called "terminals"
or '"nodes" and the arcs, "channels" of the net, ‘while the term "capacity"
(of a chamnnel (i,j)) is more often used,instead‘of the term weight (of
the arc (i,j)). | | | |

2,2, Certain results from the analysis problem

In the anaiysisvproblem,vthe net (G;w) islgiven‘and its properties
_are analyzed, In what follows, after introducing the notat;on and
definitions to.be'used in'the:analysis and,-laterion; in the.synthesis7
problem, certain»interestiné'results from the analysis problemlare -
presented. | | | | o

‘_2.2tl. The follow1ng notatlon and deflnltlons w1ll be used

(1) If t. ...,‘t are, in an 1ncrea81ng order, the dlstlnct Values

17
of the terminal capa01ty functlon t, then the set of arcs in A on whlch ‘

t has the value tu is denoted by A W that 1s,

P* i(lJJ) € A/t((lJJ)) = tu} 3> 1 5 g m,

and 81nce ‘the’ number of arcs in A is n(n—l), obv1ously 1l'<m < n(n—l)
(11) ‘The symbol A* will be used to denote all the arcs in the

sets A

12 {..3 Au l’ that 1s
= : < -
A:i AU l’_l poS mHl
‘ Clearly, Ai ="¢ and A% = A.

mHL

(111) G1ven a c1rcu1t CP in“G and real number a, the-netf(ﬁ,b)i

such that



. o, if (i,jj € CP
b((1,3)) = |--o, if (i,3) e Cp-
o 0, otherwise |
is called the "bicircuit net" in @ , correspondlng to .the pair (CP, a)
Moreover,_two nets ( G,w ) and ( &,w ) are called CP~.equ1valent |
if one of them is the result of the add1t10n to the other of a f1n1te

number of bicircuit néts, -

2.2.2, . TheOrem Given a net ( &,w) with terminal capacity function

 t then for every arc (1,3) in A there exists a semlcut S, conta1n1ng
(1,3) and - such that the restriction t/SZ, of the functlon t, attains its
maximum at the are (i,3). | ‘

Proof There is always at least ene semlcut in 6 ,icontaining‘the
arc (1,3), namely, the semlcut S{ }.% {i} xv{;}c.and since @his finite .
so is the number of-dlstlnct semlcuts containing (i,j); therefore,‘for
some semlcut S among them,accordlng to the def1n1t10n of the functlon
£ t((L,9)) = ls 2l

Now{ from the definition-of t, , )

t((i(,jf>jis |Szl,.f0r every‘arc (i),j’) e S,

Therefore, ._ :_ o h B ) o j | _ AT
| @) = [s,] = €((1,3)), for every ave (14, §4) €8, , QE.D.
Comments
(i) In this haper; given any net ( 6 w), by Saying:thatta‘ semicut
8, in 6 is an "xn—restrlctlon" for some -arc (i,j) (with respect to the function |
t) is meant, that the semlcut S ‘contalns (LJ) and ‘that the restrlctlon

t/SZ, of the functlon t attains its maximum at the arc (1,3) Whenever
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no confusion, concernlng the functlon t, is posslble, it will be stated
simply that S is .an m—restr1ctlon for (1,3) ' .
(ii)For any two arcs (i,j) and (if,j) in the-set Au,the followiné~
equa]lty is true, namely, t((1,3)) = t((i/, 3 )) t&;‘if moreover, this
equallty 1mp11es, that a semlcut in G is an m~restriction for (1,3), if.
and only if, S is an m—restrlctlon for (1 s J’), then it is called an
Messential equallty"
| (111)_F0r‘every semicut S in G, there always exists an arc (i,j)‘
such that S, is an m—restr1ctlon for (i,j); indeed, since the number of
arcs in S is f1n1te; t/S attalns 1ts its maximum value at some arc in S
(1V) The symbol § ‘will be used to denote the set of semicuts in Ej
each of which is an m—restrlctlon for some arc in A .

. l.l: ) o
2.2.3. Theorem G1ven a net (G,w)~whose terminal capacity function-i

t contalns only essent1al equalltles, 1f S is a semlcut 1n ¢ and SZ e 5,
then
(1) S, is an m—restrlctlon for every arc (1,3) in Au and, therefore,

A c:S

(11) If bo< (whlch means tu < t ), then Szfo =p .

(111) S = A U(S nA*)

(ij'SZ_beiné:in'ghlimplies'that there exists an arc (i,ﬁ).in Au.such.
that.S is an m—restriction for-(i,j); but, by'definitionvof.Ag,
t((1,3)) = t((17, j )) for every arc (i7,j7) in A -and 81nce, by -assumption
each such equallty is an essentlal equallty, obv1ously S is an m—restrlctlon

for every arc (i7,j’) in Au.
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(ii) Szibeing ilepR iﬁ@lies that s, isvanfm—restriction'fornSOme o

arc in AM énd, therefore, the maximum value of t on SZ is fu. - Now, if

SZ(\Aufﬁ'ﬂ, this implies there is'some_are‘(i;j)‘in SZ[]AM)\end also

that t((1,3)) = fp/'becauee (i,j)-e'A ,.‘ However, the maximum value of

t in S, is tu and, since (i,j) € S

Z - z’

t((l)J)) S t“') Whlle t((l)J)) = t“‘, .
which is a contradlctlon and, therefore, Z(]A#: = p
(iii) By (1) and (11),
AM.‘ SZﬂA ‘and. (s nAwl)u - U8y nA ) = 725

and, u31ng these relatlons and the dlstrlbutlve law for set operatlons,

(S ﬂA )U(S ﬂA)

1

Auu (-.SZO%)

S ﬂ(A*UA ) =

i

s n(AlU... UA )

(s nAl)U U(SZnA ) =

1"

H'

(SznAl)U“f (S ﬂA ) =

Zﬂ(AlU . UAm)'_:

]l

sZQA:

. = S,

2.2,4, Theorem Given aAnet)(G ,w) and a function t : A—3R, then
t iS‘a‘ferminal capacity function for (E',w), if and only if; for evefy

(1)3) e A,

[(s nA )u;.. <s NA >]u[(sZnAp,+l>u ~UGs;nap T =
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t((i,3)) = min \S ‘/S is an m—restrlctlon for (1,3)} .;v 'tl)

Proof‘ Assume first that (l)‘is true-.then to establish that -t is

the termlnal capaC1ty functlon for (@ w), it is enough to show that 1f SE

is any sem1cut contalnlng (1,3) but w1thout belng m—restrlctlon for (1,3),

then .
| min {\SZ\ /:SZ is an m-restriction for (l,j)} < \S%‘ o (2)
This follows-lmmediately, because if:SE‘is not.an m—restrictidn.
for (1,3), there ls;some (i/,j’) € SE such that (i,5%) # (i;j) and for
which t((1 /)5 )) is. the maximum value of t on SZ’ theretere, o
HEDY < E@EL) N O

HOWever,.bylassumPtiong _
€((1%,37) = minV{\sz\f/.sé.is an m—restriction:for;(i’,j')} L (4)
and;,sinee'SE.is.an n;restrictlon for (i’;jlj,' | ) | B .d‘“
D) < I8yl e
Thus, (3) and (5) y1eld (2), whlch was to be proved o |

Assume next that t is the termlnal capac1ty functlon for (@ ,w); in

order to show that (l) can serve as a definition of t,-1t is enough to

Z
. for (1:3) then, t((l:J)) < \S I

show that 1f S¥ 1s any semlcut conta1n1ng (1,3) W1thout be1ng an m—restrlctlon

Indeed, since S% is not an m—restr1ct10n for (1,3), there exists

an arc (1’,3') € S% such that (i’,3)- # (1,3) and for wh1ch1:(d’,3 )) is the

maximum value of t in SZ Therefore, .



£((1,9) <t((1%,37) =min {s;] / @53 5,0 = Isg|

which implies t((ik,j)) < |S§| and that (1) is an equivalent definition

for t.
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Section 3. A SYNTHESIS PROBLEM

leen a finite quas1complete oriented graph G and a functlon t g A—5R,

the synthes1s problem is,

a)._'does there exist a function W A._>R such that the net (6 w) has

.as termlnal capac1ty functlon the glven function t?

'b). If such functlon(s) w exist how can they be found?

In communlcatlons termlnology (a) and (b) can be phrased as follows

Is 1t poss1ble, and in wh1ch way, to asslgn capac1t1es to the arcs.
of the glven graph representatlon S0 that the max1mum flow between any
Ahtwo terminals is the’ requlred maximum flow?

It should be noted here, that a solutlon to th1s problem, would at
the same time be a synthes1s of the cheapest net, ~meeting the glven requlre—
ments,:under a unlform cost per unit of capaclty (because such a net has
'no capa01ty redundancles on its arcs and therefore, automatlcally has the
“m1n1mum total capac1ty among all poss1ble nets satlsfylng the glven requlre—
ments and hence would be the one hav1ng the minimum cost)

In what follows, the cond1t10ns under which the above synthesls'
problem has a solutlon are glven‘and Varlous constralnts 1n syntheslzlng

such a net are cons1dered.

‘Since the synthesis procedure deals generally with a net, the conditions

under which this procedure yields a communications net are presented,

3,1, Synthesizing a net

3.1.1. gTheorempf Given the finite,:quasicomplete, oriented graph .
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6= (V A) and a:functien t . A-—)R, containing only essential eqhalities_
and such that for _every arc (i,j)\in A there>exists a sehicht Sé i

6 whlch is an m—restrlctlon for (i,j), then a net (& ;w) "fealizing"

-t (that,is, having t.as its terminal capacity‘functien) is~obtained as

- follows @ - |

Define,r

| - x((1,3)) » if (i,3) ¢ A
W A——)R such that W ((1,3)) —‘: B

where, wo((i,3)) =0 for every (1,3) € A and the functlon '
Cox s A (eA Ll .L}Am)f—;ﬂ is such that
2{X((i{j)>/(i3j) S'Au} :’tu:_ min:i\SZ‘wu—i» § }; for
" every @ = 1,';;,;.m;A Then, w_ is the required function. w and the net
is synthesized.
Proof According to theorem in sectiOn'2.2.4., it is enough to -
show that

t((1,3)) = min \S l /S is an m—restrlctlon for (1,3)}
Y S

for every (i,j) e A . | T LT (l).

l)
of showing (l), it ie‘enoagh.to show that for any‘(i,j) € A,

and, since the only values of t on A are the numbers t

<u_—'m1n \S \ =is an m—restriction for‘(i;j)},

for every_u =1, 4., m B o ) ;‘ o (2)

Now, tu.is the value of t on the_a:csvin AM and because t contains

only essentiai'equalities, 5@ is the set of all semicuts which are'm—reetrictions

for (i,j). Then, instead of showing (2) it is only necessary.to show
that o - | |

((1JJ)) ) 1f (1,3) £ AM'

...,.tm,_inStead
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' ‘J.‘—mln lSl '5},foreve1"yu:l,...,m"f~ - (3)
>By the definition of the functlon x it follows B .

2 {x((£,3))/(1,3) e AL +min {]s, l g ¢ %‘ E

1l

. tu

= min {Z»{x(v(i,ij)_)/(i,‘j) ¢ A, ‘S l /SZ Géu} - (4)

~ (because if A 1s a constant, then A + min {y /1A€ I} = mih {)\‘-F'yi/i e T}
On the other hand, for any sem:Lcut S € 5 | | |

ISZle g { ((153))/(153) 8 Szz =

= iw ((1,3))/(1,3) ¢S ZNA ;

(becau'.se .SZc'Aiz Alq""_'UAp,'U Au+iU UA and, by 2 2. 3. (11), S ﬂA -.Fl
SZnAm = yj, therefoi-é,: -S*ZCA‘ U. UA # |-h+l’ "which 1mp11es S ﬂA »,SZ)-
o = 2 (DY (59 e 3,08 + 2l ((1,3))/(1,3) ¢ s nA*Y o
. (because (S (‘\A )U(S nA) i ZQ(A UA*) ZnA d'_‘v o
| (?szAu).ﬂ(SZQA;) s,NA, nA* = sZn[A N, U. LA =

I

| _Sz“ [<AunAl>u ..u@na )] - fzﬁ) |
- z_iw,;x(‘i,q.))/(':i,j) e A1+ wi, ((3))/ 63 o S | .
V(becauise by 2.2;3 (1), SZnAp, = AI-L) | .. | B ‘
=B (LI e AL+ 5 b (D)D) o sZnAee b
(because, (1,3) €8, ﬂA* 1mp11es (1,3) ¢ AZ: and this 1mp11es that (1,3) ;é

AI-LU . UA hence, by deflnltlon of Wl-h’ for such an (1,3), W ((1,3)) =
i ((1,3)) =, = <<1,a>> <<1,a>>)
= Z.{.X(.(i:J))/(},J) eAu} + oy jw ((1,3))/(1,3) € S ﬂA* }



-

‘

(Because, (i;j) € Au implies.(i,j) ¢ Au+1Ll...L)Am whi

the definition of ‘wu, v ((1,5)) = wm_;_l((iéj)) =
every (1,3) oA, 5 w ((L,3) = x((1,3)))

T BB () e 1 \Sz\gu_l‘

(because»J the obvious relations, S

(S,NA%) = 8, inply that,

sgly = E (DY) e 8) -
T

s S (}A*}

but, (i,j) € S - A*‘lmplles (i,3) #‘Aﬁ = AlLJ"'L)Ap—l and, by»the'aéfinition o

of Wy w1 ((1,3) = u_,((5,9) = cee = wp((1,9)) =
'Therefore,_::.

i 1 (E3)/(153) e (8, é-;A‘*)} =

17,

ich impliéé,‘by

= (50
y = (8, - Aﬁ)U»(SZﬂ‘A:i) énd' (8, - Aﬁ)ﬂ |

”~zi ﬁhmnﬂhwe(S—Aﬂ}+Z% gum»me

0, for every_(i,j) e S,

and, hence, .-

wnge iul«%wvum>esnwn.

opel

- Therefore,

-\szlw = ix<<1,a>>/(1,a> ¢ A i v ls |

which, u81ng (4) ylelds relation (3) Q E.D.

Comments

(i) The previous theorems required that the given function t contains.

only essential equdlities; this, however, is not actually a restriction.

— A%,
1
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Indeed, if, while the m—restriction condition is satisfied for every
arc in A, the given function t contains non?essential edualities, it can
be always_pertdrbedfto obtain a‘new'functionhté~(which for small enOugh
real positive numbers e satlsfies thebm—reStriction-condition:for the
arcs and contains onlypessential equalities), in such a way that any
. realizationAof te would reduce to a~realization of t, in the limit'as'ei
.approaches Zero. - | |

Thus,'it is always possible to assume, without loss of generality,'
that the(functlon t to be realized contains only essential equalities-

It should be noted here, that one can f1nd varlous procedures of
obtalnlng the perturbed functlon t (one such procedure can be found in
the appendlx of [6]) However, these procedures are usually not worth
applylng in practlce due to the1r complex1ty Furthermore, in most_
'practlcal appllcatlons, a.net reallzlng a glven'function_t, with a,certain
degree of, tolerance in the values of t, . 1s acceptable therefore, after a
simple 1nspectlon, the requlred values of t can be changed by a small
quantlty, 80 that the essential equality condltlon is sat1sf1ed Th1s
approach will be further dlscussed in one of the follow1ng examples

(11) The m—restrlctlon condltlon, wh1ch is requlred for every pair ,
of vert1ces, cannot be relaxed, it can be eas1ly seen that unless 1t
is satlsfled for every arc, at least one among the sets 5 will be empty
and the function x in. the prevlous theorem is not defined, ThlS, in turn,
means that, in such cases, the, synthes1s procedure glven 1n the theorem

. cannot be applied,
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As an~examp1e, consider the case where the>given graph is>
¢ = (11,2,3), {(12), (1,3), (31), (2,3), (3,1) (3,2)])
and the terminal capacity,function to be realized is such that _
HL,2)) = 6(1,3) = 2 £((21)) < 0, (23 = & T3
= t((3,2) = .
§1 is then empty and one carl. easlly Verlfy (by- s1mply drawing. the graph)

"

that ‘there is no xﬁy of reallzlng t with no- capa01ty redundan01es on the.

arcs,

. 3.1.2, The:constraint function:c

In the synthes1s procedure descrlbed in 3, l i.,.the functlon X, .
used in- the deflnltlon of wu, is clearly, hot uniquely. defined (1t is
50, only in the case where;each.Au has only one element that 1s, only\'
in the'casefwhere there are m- An(n-l) dlstlnct values of the . functlon t)
Th1s, in turn, suggests that posS1bly more than one reallzatlon of

the given functlon t could ex1st In such- cases it .is natural to adm1t

the presence of constralnts on the arcs. of the net, Then, among the possible

realizations, the requlred ones are those satlsfylng the constraints,
.ISuch censtralnts in practlce are, for example, of the follow1ng.type
| (1) The welght of a arc cannot be any real number, partlcularly
in the case of.communlcatlonsvnets, a;11m1ted number of channel capa01ties
is available, - .
(ii)_The presenee’qf an arc in the net to be realizeu_might be

.absolutely_necessary,rwhile the:absence of anOther_might'be'desirable.
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The constraints in the‘synthesis of‘a net can.be convenlently.‘.
described byda ﬁconstraint7function" c'.A;-aﬁ. "grading", in somedsense,p
the arcs, so that in a set of arcs the one with the minimum "grade"
should be chosen Th1s.w1ll be illustrated in ‘one of the examples wh1ch
follows, | o | |

1&929:" The-case where no constraints are present is indicated by

a'constantvconstraint'function, that is, by.equally "grading" all the

arcs,

3 1. 3 : Examples5

In what follows, three eramples 1llustrat1ng the\synthesls procedure
are glven In the‘flrst exampleJ the_functlon t contains only_essentral
equalities ‘and the constraint function(isbconstant, nhlle;.in‘thepsecond'
erample,Hnonéessential-equalitles are'present;iin the third example,.thet
function t of the first example 1s cons1dered in the presence of constra1nts

and a reallzatlon of t, dlfferent than in the first example, is obta1ned

It should be noted here that for conven1ence of notatlonJ any real

functlon g deflned on the set of ares of a f1n1te, quas1completeJ oriented

graph G = (V, A) w1th rlvertices, is usually given in the form of an n x n

matrlx G, whose element at the 1—th row and J—th column is the value of g

-at the arc (1,3) Observe that since no loops are present in G the diagonal

elements of the matr1X'G are not Spec1f1ed

In the case of the functlons w, t and c, the correspondlng matr1ces

W, T and C will be called "welght (or capac1ty) matrlx” Utermlnal“capaclty

matrix' and "constra1nt matrix", respectively. Thus, in the following examples,



. the métrices T and C will be giveﬁ‘and a matrix W "re’aliéing'?.T'dnder the'
constraints in C will be determined. In rhelse examples, e more convenient
notation for semicuts will be also used;.‘for_' examp.le,r-' the semiéut
{(2,1); (é,3),‘(4,1), (4,3)} will be denoted by 24/13.

| Example 1 Construct a capa011:y matrlx W, reaiiziﬁg the -terminal
V capa01ty matrlx | | ' |

~ v o8]
3% 4 6.
37.% 8
3 54 *_J

under 'no 'constrain'ts (that is, ‘the constraint function is eensfant).

. ‘ _ Synthe81s procedure . ‘ _ »
' | Step 1 Determlne t“’, A 3 for every u—l, m and - check if the' ‘

condltlons for solutlon are satlsfled

‘—1.

o
oo
p

1

L3, (13, L) 5§,

1 Ay = = {1/234}
t, =3, 8= (2D, (31, (L)) ,§, = (23#/1]
=4, A= 1@ WD) gy = a3, /)
t, =5, A= @l g, = {1423, 123}
tg =6, A = {(2,4)} s = {12/34, 2/134}
tg =75 g =AY T §g = 13472, 34/12) _
t, =8, A, = 1(3,4)}_ D , $7 :.1123/4, 23/14, 13/24, 3/124}

By simple inspection now, of each triple (tp“, A ,-s ) for b= l,':; L._., 7
we see that 't contalns only essentlal equalltles and that the m—restrlctlon

condition is satlsfled for every arc, Therefore, it is p0831ble to proceed

’ . ' to the synthesn.s of the net,
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Step 2 Determine Wu; for g:1, ...,:7; W. will bé'the‘requifed W .

7
By definition:

¥ 000
0 %00
o 00*0
| 000x|

() ®(@2)) +x((3,9) +x((1,4) =2 - min {0} =2
Taking, x((1, 2)) = 0; x((1,3)) =2, x((l 4)) 0, then one possible
deflnltlon of the functlon X on A 17 is |

¥020
0% 00
100=%0
1o0o0x*

() M@ln+x«&D)+M@ln—3-mm{M:3 _
: Taklng, x ((2,1)) = -3, x((3,l)) = 0, x((4 l)) = 0 then one poss1ble.

'deflnltlon of the functlon x on A 0 tis

x 020
3%¥00
-2 00 *0
000*

()x«ew)+M@3n—4—mmi%ﬂ=2' |
Taking, x ((2,3)) =0, x((4,3)) = 2, then,bﬁe~possible definitioﬁ of
the fuhction X.on Aj,fis. o ‘ ‘
x 020 |
3% 00
100 %0

002 *%




: _ ' 23
x((4,2)) =5 - min {4,2} = 3

Then the only possible definition of the function x on A, is, X ((4;2)) =3,

- yielding,

(%020

3%¥00

4 0 0% 0
*
032

@ x ((2,4)) = 6 - min {2,3} = 4
The only possible definition of x on A, is, x ((2,4)) = 4, yielding,
[* 0 2%0]
seod
B 5 0 0.%0
j L'032*
() *(G23) = 7 = min 13,3) =

The. only possiﬁle definitiohvof X on A6_ié x((3,2)) = 4, yielding, .

o279
3%0 4
04 %0
032 %

b [

We

@ x((3,4)) =8 - min {4,7,4,4} = 4 |
The only possible definition of x on A, is x ((3,4)) = 4, yielding,
[*027]
13*%04
04% 4|

0.3 Ei! :

Step 3 The net has beeh now synthesized; its capacity;matrix .

is W= W,. Using ndw'the capacity matrix,:give.the graph'répreSentatiqn .
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of the corresponding net which, clearly, is one of the (infinitely

many) nets, realizing the given matrix T, under no constraints.

Figure 3

. Examgleleq'Conétruct a capacity matrix W realizing the terminal
capacity matiix ' | g
111
* 65

6 %5
6 6. %

[N O N

under no constraints,.

Synthesis Preceddre Observe that the glven matrlx T contalns non-
essential eQualitiee. Indeed the equallty, t((2 3)) = t((3,2)) 1mp11es
that’ the arcs (2, 3) and (3,2) should be put in the same AM’ whlle no semicut
can contaln both those ares. ) | B

Thus, con81der, 1nstead of the matrlx T the follow1ng perturbed

matrlx » ‘> ) - [x. 1 Hid‘ T;-
A

E v'4 16+el % 5

;:i‘ 6+e:2 6+e3-fd

where, €15 Eps eB.areﬁarbitrary,:very small real humbers,_such.that

<e <ol < .
0 el 62 33



.25

Next, fqllbwing thé'proceduré of example 1, a‘capacify~matrix
W/, realizing T/ under no constraints, is éonstruéted, and letting
€ 62,.63 tend to zero, in the matrix W/, a matrix W is obtained, which

is the one realizing T under no constraints, -

‘Steg I , . |
| =L, A= {(1L,2), (1,3), ML)}, 5, = {1/234§
£, = 4 ,.%?{@A%(&D;@Aﬂ,sé=bﬂﬂ}.‘
tg =5, Ag={(2,4), (3,0)) 55 = {23/14, 123/4]
=6 5 A =HEDY 0§, = {2/13, 12/34)
tg = 6oy, A= {-_(3,-2)}." A 3/124, .13/24}
tg = 6.%?32- SRR 1D {38/12, 134/2}
ty = 6tey 5 Ay ={(4,3)]) T, 8§y = {e/123,.14/23, 24/13, 124/3)
Step 2 By défihifion, A 
[*o0o00
o 1o+xo 0
o= looxo|
000 %

l(::) x( (1, 2)) + x((l 3)) + x((l 4)) =1 - min {o} =1 ; 

Taking, : x((l 2)) 1, x((l 3)) = 0 I’ X((l 4))

'H-

1*x 100}
Joxoo
W= lg0 %0
- Jooox

<> ﬂ@ﬂn x«aﬁ)+ﬂ@1»-4—mmim:4l‘
Taking , x((g,l)) =4, x((3,1)) =0 ; x((4,1)) =

+



x((2,4))

‘x((2,4))

+

il

i

x((3,2)) = 6

it

x((4,2))

- [*100
| 4%00
=l oo0*o0
. 000 *

X((3,4)) = § - min

5, x((3,4)) = 0 -

W" =

3

x(2,3)) = 6= min {9,5]

% 1
4%
00
000

1

o x O O
~ l,* o o ol

x B o

5

{4,0} = 5.

26
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(::) x((4,3)) =6 + e —.mén {gz—él,'l+ee—ei,.5{ 1} = 6 + e +‘ei - 32':

N ol
B 1 4 * 5
Weo=
7 0 6+el * 0
. _ - N - _ *
0 e btester-g

A R —

Step 3 From the matiix w§ = W’ letting €10 &1 &g tend to zero, the

desired capacity ﬁatfix is

*¥*100
4 ¥ 15
06 %0
006 %

and the cqrrésponding net has the following'graph represéntation_ 

A L 4

-  'Figurer4}
Example ‘3 Construct a capacity mafrix W, realizing the matrix T under

the constraints in;C,'r

[®e23] i [* 2 .10 100]

2% e ) * .
 l37+¢8 - l105 % 2
1352 % 1 s 2




‘ - \‘ Synthesis.-procedure} The p'roced&ure to be’ folibwed_ 1s that of
_exampie l,:withithe Only difference that,‘for.the_definitiOn éf.fhe 
function x.on‘fhe set Au(u_i 1, ..., 7) the édnstraint matrix C will be
tékeﬁ into account, |

Step 1 By definition;

%000
0% 00
o looxo
000 *

x((1,2)) +%((1,3)).+ %((1,4)) = 2 - min {0} =2

'and, écédrding to the matrix C, the choice must be . A

_ o Cx((1,2)) = 2,7x((1,3)) =0, x((1,4)) =0, yielding, . -
o ' . . B " loxo0o0
1 )00 *0

| N LR 1 |
Ok x((2,1)) * x((3,1>) +x((4, 1)) =3 - min {0} =3
" and, according to the matrix. C, the ch01ce of the Values of X are

x((?:l)) =0, X((3;1)) = 0, x((4,1))

It

3, yleldlng,

% 2 0
0 %0
2 " loox
3 00

| ¥ © © ol'

(::) x((2 3)) + x((4 3)) = 4 - min {0,3} = 4.
and, according to the matrlx C, the ch01ce of "the Values of x are

X((2 3)) 0, X((4= 3)) = 4; yleldlng;



x((4,2)) = 5

x((3,2)) = 7

x((3,4)) =

w o o *

_min

min’

lwo o *’ -

200
*0 0
0% 0
04 %

29
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Step 3 ~The"required'matrix is therefore, the matrix w=w7 and

the corresponding net has the following graph representation,
’ : 3 : o

e

Eigure,S

,'3'2. "Syntheerziug-é’cbmmuuicatiohs nef_

The>procedure'used'for fhe synthesis of afnet‘"realizing".a“given
terminal capac1ty matrlx T, can be used for the synthe81s of communlcatlons
nets. An obvious practlcal requlrement is that the elements of the matrlx
T be non—negatlve real numbers

However, it is p0831b1e to end up w1th.a capac1ty matrlx w in which
one or more elements are negatlve real numbers (thls is exactly the case
1n.example 3, of the:prev1ous sectlon). _Slpce, in this case, the corres-
ponding. net is not atcemmuﬁications}net, one iS‘inferesfed to anW‘if.there
is an equivalenr cemmuuieétioue net. | |

o In what follows; the condltlons under whlch such.an equlvalent
communlcatlons net” ex1sts, are glven and the procedure of flndlng such a
net is 1llustrated in an example, u81ng the capac1ty matrlx W obtalned.

in example 3 of the previous sectlon




‘ | V | 3. 2‘1 ‘Theorem' If tWo nets are Cé - e(iuiValent then they '-are o
equlvalent (that is, they have the same terminal: capa01ty matrlx)
Proof Let (G W ) and (@,w ) be the two C —equlvalent nets and
‘let - o
(@) = (Gt )
where (@,gl); ..;7(G,gk) are bicircuit nets.

In order to show that these two nets are equlvalent, it 1s enough

to show that for each semlcut Sz in G, 1 'l = |S \ or, S1nce for
eaoh_ SZ |
"‘SZ‘W +g " = ‘S ‘ (by >assumot’ion)-
it is enough to show that for each S 4GN
|s lg-? g:o
1% %k

. ~~(bec;ASe,|slw+g1" —|sl \sl

gl LN ] gl{
It will now“'be shown that, - for 'each‘ SZ in @,

s =0, foreveryX =.1, cees ko
which implies that ‘SZ"glJr.».. 18, = 0.

Since:(G;gX)‘iS u bicirouif net, for>each A= 1, ..., k,

zlg

— oy, 1f (1,3) e G
AR \

B((10) = [y, 3F (13) o O

_ 0, otherw18e _

where; for each A\ =1, ..., k, oz)\ is some real number, wh11e Cp is a circuit
in G, . o , » y -
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Then, for each 8, in @,

®
[92]

E £ (g ((1,3))/(1,3)

il

Zi

_Z‘gx

I

®

= 1 ((L,3))/(4,3) e 8

t-

®

16, (L)) (L3) (5,6, )U(S ne, ) =

igx((l,a))/(l,a)

®

ch ; +3 1g)\((1,3))/(1,3) ¢ 8 oCPX%'

(because, (S f\C )fW(SZf\CP—) S f\(C f]CP ) S f\ﬂ ﬁ)

x'card(s (]C ) + (- ax) car(Sszc )i"lrf_

'H

- a, [card(S [\C ) card(SZ(]CP,)].
T IR
niénq | Q?E.D.'

3.2.2, Theorem A net (G,w) w1th termlnal capac1ty functlon t is

.P—equlvalent (and therefore, equlvalent) to a communlcatlons net,. 1f and
>.only if, t((l,J)):and>W((l,J)) + w((g,l))_are each nonfnegatlve, for each
(i,3) e A, L J | |

" Proof ‘If thé.nef'(e,w) is CP—equivalent_to'a commnnications net, it
is also equivalent'to this-net<(see previons theorem)-and therefore, each
t((1,3)) is non—negatlve, whlle, each sum W((l,J)) + w((J,l)) is also
non—negatlve, as equal to the one of the communlcatlons net

| Next,_suppose that each of the numbers t((1,j)) and w((i,j))‘+
w((j,i)) is non—negatlve for each (1,3) e A In order to show that A

the net (@,w) is C —equlvalent to-a communlcatlons net, it is enough

P
to show that, if (G,w)vcontalnS‘arcs W1thrnegat1ye,we1ghts;.then_lt is
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CP—equlvalent to a net in whlch the number of arcs w1th negatlve
welghts 1s less by at least one (then, repeatlng th1s step, after a.
finite number of steps a net 1s.obta1ned‘wh1ch is CP—equ;valent to

(e,w) and in which every arc has non—negative weight, that is; a

communications net).

To do th1s, 1t is necessary only to show that if (1 ,3 ) € A
is such that w((l 53 o)) < 0, then it is poss1ble to construct a f1n1te

sequence (G,wo), ,..-,j(G,w Y, e ,;(G,w ) of nets, such that‘

- (i) (@,w ) is CP

(11) w ((1,3)) < 0 implies wo l((l,J)) < 0 for each 6=0,1, ..., s,

equlvalent to (G,w), for each 5 = 0, 1, ..., s.

in wh1ch W ((1 53 )) =0,

(property (11) means that, if 7S l((l,J)) = 0, then w ((1,3)) = 03 because,

,otherw1se, W l((l,J)) should be negative). -

In order to show that such a sequence can be constructed we use’
inductlon Taklng d 0, 1t is’ eas11y ver1f1ed that, for w, T W, the net
(65w ) has the requlred propert1es, (i) and (ii). Suppose nekt that the :
net (@ wd 1) has the propert1es (1) and (11),‘moreover, it is assumed
that Wg—l((lo’qo))L< 0, otherw;se, theretwould‘be no next term in the.
sequence, IR -. -

_ It now remains to show that, uslng (G, P l), 1t is poss1ble to |
construct a net (@,w ) hav1ng the propert1es (1) and (11) To. show this,

cons1der a path P # 1(1 23 )}, in (@, W l), 301n1ng i toj, and such

. that no arc in P has zero welght and at least one arc has pos1t1ve

Welght Addltlon then to (@ W of the b1c1rcu1t net correspondlng to

G- l)
the pair (CP,*Q),_where
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¢ =P iy b and o = —min (L)) (5,9) ¢ & w((m)) > o}
ylelds a net (&,w ) wh1ch has the propertles (1) and (ii). |
Finally, it should be shown that for some finite 6 = s, w ((1 ,J )) 20,
To show this, observe that whenever wd_l((lo,Jo)) < 0, a path P, as
defined above, must'exist in (G,wd_l), joining is, t§ jo;-on the bther
hand,vobserve that the number of such paths in (6,w ) is less by at least
one than in (@, We_ l) Therefore, after a f1n1te number of steps, say |
:diz s, no such path w1ll eX1st in (G,w ) which means that W ((1 ,3 )) must

then be non—negatlve, otherw1se such a path should ex1st

3.2.3. An example To-illustrate the procedure descrlbed in

the proof of the prev1ous theorem, refer to. example 3 of sectlon 3.1.3.
Although the elements of the terminal capac1ty matr1x T are non—”u
‘ negatlve, the capac1ty matrix’ W, reallzlng T under the constralnt matrlx
C,- conta1ns one’ negatlve entry, namely w((4 2)) =1,
Since the cond1t10ns requlred by “the prev1ous theorem are satisfied,
a commun1catlons net'(@,wc) equlvalent‘to (G,w) exists and to f1nd this
net, We'proceed as~foliows.v | ' .
| Identifyinénw vwithvwl immediately-gives’the‘net (va ) as the
f1rst net of the sequence, and it is 1mmed1ately apparent that the
path P = {(4 3) (3,2)}, 301n1ng the vertex 4 to the vertex 3, has the
requlred by the prev1ous theorem propert1es ‘ Then, conS1der1ng the

_correspondlng c1rcu1t Cp {(4 3)s. (3,2), (2 4)};and the real number

o = =min: {W((l:J))/(lﬂ) € CP’ W((l:J)) > 0} = "4 and addlng to the -
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net (G,wo) the bicircuit net corresponding to the pair (CP, -4), gives

the net'(@;wl),"with‘graph representation -
s -

Figure 6
which:is obviously the lest term.of-the sequence,:that is, a communications
net (@,w ). equlvalent to the net (e, w)

Observe, however, that the communlcatlons net obtalned does not

necessarily satlsfy the constralnt matrlx C, in the orlglnal problem

Concluding.Remarks ;'

The general synthe81s problem of flndlng an optlmal net, in the

,case of a unlform cost, can be formulated as follows

| Among the nets prov1d1ng glven maximum flow requlrements, flnd
the one(s) w1th the m1n1mum total capaclty (1f such optlmal net(s) ‘exist
at a11). - ‘

The"cuse where such.an~optimal net has, at the'same time,vno
capacity redundancles on the arcs was cons1dered in the present work,
the conditions for its ex1stence were given and a synthe31s procedure
was develoPed and ﬁcomputerlzed" (the computer program along W1th‘a.

short deSCription:isfgiven,in the appendix),
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‘ Although the emphasis was on COmmunication networks it should

be apparent that the- synthes1s procedure cons1dered here: deals w1th

general nets,-llke econom1cs and operatlons research. What remains

to be done, is an approprlate 1nterpretat10n of negative capac1t1es

It should be noted, however, that the results presented in

- this study, apply to systems with completely-tlme—shared requlrements,

that is,‘to systems'whereftime is broken np into~distinct periods and

'durlng any one perlod there is. only one flow on. each channel of the :
system ‘ Thls is by no means a restr1ct10n, s1nce the problem of s1mul— _

- taneous flows in a net,:1s a s1mp1e appllcatlon of the solutlon to the

t1me—shared problem (see [3], page 299)
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