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ABSTRACT 

A very important problem in communications is that of the synthesis 

of a net providing the required channel capacities between the various 

nodes. More specifically, given the configuration of the sYstem and 

the expécted maximum flow requirements between any two terminals, the 

synthesis problem deals with determining all the nets providing the 

given channel (flow) requirements. 

'Although-  a . general answer to this problem has not yet béen . given, 

several related problems have been considered and a satisfactory answer 

has been given to most of them. [2 Y 3 ) 5 ) 6 -77] 

In this work, the problem of the synthesis of a net providing the 

required flows among the various nodes, without capacity redundancies 

on the channels is considered; the conditions under which such a net 

is realizable are given and, taking into account the presence of con- 

straints on the channels, a synthesis procedure is suggested and imple-

mented by a computer program, handling the overall problem. 

• 



'SUMMARY 

The present paper is divided into three sections, 

In section 1, the first two parts, certain elementary mathematical 

concepts from se-band function theory are presented, while, in the last 

part, using these concepts, the graph is defined along with certain 

related concepts, which are further'illustrated and discussed in two 	' 

examples. 

In section 2,. in the first part, the concepts of a net and a communi-

cations  net are defined; the weighting and terminal capacity functions 

are also defined and,'using  the  weighting function'of a net, simple 

operations on nets and semiéuts are discussed. In the second part, Certain 

results from the analysià-problem are presented. 

In section 3, the general'synthesis problem is first discussed 

and the particular synthesis problem being considered is presented. Next, 

,a theorem on the synthesis of a (general) net is'given, the presence of 

constraints on the arcs and their effect on the synthesis procedure is 

discussed and certain èxamples, illustrating the synthesis,prOcedure, 

are given. In the second part, the solution of the synthesis problem 	, 

for a  general net iè applied to the Case of a communications net. 

A short description of the computer program written for the,realiza- , 

tion of the solution of the synthesis problem, along with the program itself, 

can be found in -thé  appendix. ' 

• 	It shOuld be noted here; that the theorems in sections 2.2.2.; 3:1.1., 

[6] 3.2.1. and 3.2.2., have'been stated slightly differently, by Resh . 



NOTATION 

the set of real numbers' 

e . 	"belongs to" 

"does not belong to," 

if Z is a subset of some set V, then Z
c 
will be used to 

, denote all'. elements of V which do not belong-to Z;.it is • • 
. called the "cemplement" of Z (with respect to-V). -• 

X-Y 	the set of the elements of X which do not belong to Y. 

card X the umber Of elements in X (X is assumed . finite 

Note: Further details, :on the elementary set operations Used in proving 
certain thebemS,• can be found in [4 ]. - 

lii 



Section 1.  MATHEMATICAL PRELIMINARIES  

In order to make this paper as self-contained as possible, a 

number of elementary preliminaries are presented in  this  section. 

1.1. . 	Set theory  

1.1.1. 	If X and Y are two sets, thén  the set  

1(x)37 )/mX, S'el 

is called the "product" of X, and Y and it is denoted by XxY.. 

1.1.2. 	Any subset of the set XxY is called a "relation" from 

X into Y; if, X = Y = V, then any relation from V into V is called a 

relation "on" V. In particular, the relation 	defined as• 

= 1(i,i)/ieVI 

is called the "identity" or  "diagonal" relation on V. 

1.2 	Function theory  

1.2.1. 	A function h, defined on some set X and taking values 

in a set Y, is denoted by 

h : X 	Y 	or 	X 
h 

 

1.2.2. 	Given the function h and a set DcX, the function 

h* : D--)Y such that h*(d) = h(d), for every deD 

is called the "restriction" of h to D and it is denoted by h/D 

1.3. 	Graph theory . 

1.3.1. 	Any pair (V,A) of sets such that V is any set, while, 

A is a relation on V, is called an "oriented graph" and it is denoted 

by e. 
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If V is finite, then 0 is called a "finite graph"; 

if A=VxV, then 0 is called a "complète graph". 

If A=VxV-Av , then 0 is called a "quasicomplete graph". 

If Z is a non-empty proper subset of V, then the set'S z  = (ZxZe )rIA 

is called a "semicut" of,  0, while the corresponding to S z  set S zUSzc = 

[(ZxZe5(i(exZ)1(1 A is called a "cut" of C. Observe, that the cuts 

corresponding to the.semicuts S  and Sc  coincide and, therefore; in the 

case of a finite graph, the number of semicuts is twice the.number of 

cuts in the graph.. 

-1.3.2. 	Any finite graph C-= (V,A) can be represented -gedmetrically 

as follOws. 

• The eleMents of V are represented by points called "vertices" of 

the graph while the MeMbership relation (i,j)eA is denoted by joining , 

the vertex i to  the vertex j with a line segment bearing an arrowhead. 

which points to the vertex ,j. Such a (directed) line segment ià called . 

a (directed)  "arc" of  C., if i7j ,  and a "loop".  of ,. if i=j. 

Referring to the geometric representation of C; we observe that a-

semicut.S of the graph, consists of.all those arcs "emanating" from 

the set of vertices.Z. l'emoval from the graph of the arcs in S,  would' , 

c - Mean "no connection" frôm Z to Z 	Since connections from Z to Z might • 

yet exist, the , set -S.  was called a semicut as, opposed tc5 the 'set Z - 
. 	. 

S Z.LIS  c which was Called - a , cut; observe that reMoval from the graph.of  Z 

the arcs in the Cut SLIS 
- 	Zc 

IIseparates" the graph into two graphs. 



Moreover, if the number of vertices in V is n, then the number 

of the distinct semicuts in 0 is exactly the number of distinct proper 

non-empty subsets of V, that is, 

-1 
(1) + 	+ (n-1) = 2

n 
- 2 = 2(2n  - 1) 

n-1 and, therefore, the number of distinct cuts in 0, is 2 	- 1. 

1.3.3. 	The notion of a quasicomplete graph will be of particular 

interest in this work; hence, the following remarks and definitions. 

If = (V,A) is a quasicomplete graph, then for every non-empty 

proper sub  set  Z of V, we have ZxZcA = VxV and, therefore, 

S = (ZxZc
)

( 
= ZxZc and 

SZ 
US

Zc  = (ZxZe)U(exZ) 	- Z  

On the other hand, each set of vertices i1 ,  " 	
i,  with i

1 
 i, " p 	p 

in a quasicomplete graph, determines a set of arcs 

1 	X 	.P-1 1 

called a . "path" from  i' 	i • 	. 	. 1 	p. 	, 	. . 

' 	To . each suéh path P there corresponds the set of arcs  

C = PUI(1- , '1 i )1 

called the "circuit" çorresponding to the path P. 	. 

Observe that the set 

P = 1(i,j) e A/(j,i) e PI = 1(iil , i ) / 1 	p-11 X 	X 

is the ("return") path, from i to i
1  , corresponding to the path P, while p  

Ci )1 	10-,1) e A/(j,i) e P- 	p 

is the .circuit corresponding to P-  and that, clearly, PnP-  = p and 

C rIC 	= P P- 

Finally, if the quasicomplete graph e is also finite with n 

vertices, it is easy to see that the number of paths from any vertex 

i to any vertex j, such that i ,4 j, is 

3 
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2) 	+(n-2)1,. 	(n-3)  + 	(n-2): 
1 	n-3  

remain:the arcs in S "connecting" Z to • 	, 
c

, while 

1.3.4. The following examples illustrate some of the above 

graph-theoretic concepts. 

Example 1  The graph. 

G = (V,A) = (11,2,3,4,51, 1(1,2), (1,4), (1,5),(2,1), (2,3), (2,4), 

(3, 4 ), ( 4 , 5 )D 

is a finite oriented graph, with the following representation 

Figure 1 

The semicut S corresponding to the non-empty proper subset Z 

of V, can be found as follows 

Zxe = 11,2,51 x 13,41 = 1(1,3), (1,4), (2,3), (2,4), (5,3), (5,4)1 

and 	S =(ZxZe)(1A = 1(1,4), (2,3), (2,4)1 

Observe that by removing from 0 the arcs in S z , there still remains 

the arc (4,5) "connecting" the set Zc  of vertices to the set Z. 

Similarly, 

= (Z x Z)r)A, = 1(4,5)1 S ze  

Observe now that by removing from 0 the arcs in Sze, there still 

by removing the arcs 

in the cut 

1(1,4), (2,3), (2,4), (4,5)1 
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there is no arc "connecting", neither Z tb Ze  nor Z e  to Z and 0 is  then 

"separated" into the following two graphs. 

e 1 - (1 1 , 2 , 5 1, 1( 1 , 2), ( 1 , 5 ), ( 2,1)1 	e2 - ([3, 4 1', 1(3,4)1) 

Example 2  The finite quasicomplete oriented graph 

e = (11,2,3,4}, 11,2), (1,3), (1,4), (2,1), (2,3), (2,4 

(3, 4), (4 , 1), ( 4,2), ( 4,3)1) 

has the following representation 

, (3,1), (3,2), 

Figure 2 

Considering the subset Z = 11,21 of V, then 

= ZxZd  = 11,21 x 13,41, = 1(1,3), (1,4), (2,3), (2,4)1 

eXZ = 13,41 X 11,21 = 1(3,1 ) , (3,2), (4,1), (4,2)1 

. 	 S z USze  = 	(1,4), ( 2,3), ( 2 , 4), (3, 1 ), (3, 2), ( 4 , 1), (4 , 2 )1 

Again, removal of the-arcs in S z.0 Sze,. would separate.0 into two graphs. 



Section 2. 	mns.Aio COMMUNICÙIONS NETS 

The concepts of a net and a communications net are defined in 

this section, while, certain results from the analysis problem, which 

are to be used in the study of the synthesis problem, are also pre-

sented. 

Nets and related concepts  

 	Apy pair .  (g j w) àuch that; e. (v,A) is 	quasicomplete, 

oriented graph (with 'n verticeè) and w ià a real-valued function  on A, 

is called a "net". ' • . 

The function Wi8 usually referred to as the "weighting function" 

of.the . net , while,• for-each (i,j) e A, wneis referred to as the• 

"wei ght" of the arc.(i,j). 

The requireMent, in the above definition, that 0 be quasicomplete, 

is by no means restrictiVe;'that is, if the graph representing the actual 

net ià not quasicoMplete, it is a simple matter to adjoin to it the 	. 

missing arcs, each'with zero weight, so as to Make it quasicomplete...  In 

 other words, it is always possible to represent.any - net by a quasiçomplete 

graph. 

2.1.2. 	If S 7  is a semicut of @, in the net (e,w), then the real, 

number 

w -= - Etw((ien) [(i'1) è Szl 	- 	, . . 
	, 	

. 

is called the "value" bf the semicut S with •respect to the weighting function 
..Z. 

	

w, and whenever no confusion should arise, IS I will be written instead 	- Z 

of IS 
Zw' 	. 	: 	: 	- 	- 	. 	• 	. 	. 

6 
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ql, 	2.1.3. 	The "sum"' and the "difference" of'two nets (G,w1
) and 

(0 ,w2) is defined as 

' wl) 	'w2)  = e.4  ' wl 	w2 

and, therefore, for any semicut S in e, 

Is z l w 	w 	Isz l w  ± Isz l w  
—. 2 	1 	2 

2.1.4. 	For a net (0 ,w), the function 

t A--e such that t((i,j)) = min HSz l/(i,j)e S z  

is called the "terminal capacity function" of the net. 

Two nets (0 ,w1) and (g ,w2) are called "equivalent" if theY have 

the same terminal capacity function. 

To see that the function t is well defined, it is only necessary 

to observe that there exists at least one semicut containing (i,j), 

namely, the semicut S(.1, and, since G is finite, so is the number of 

distinct semicuts and the value of each semicut is finite. 

The above definition of the function t was  motivated by the fact, 

that the maximum flow which can be transferred from i to j in a given 

net, called the "terminal capacity from i to j", was shown ([1], page il) 

to be equal to the minimum among the values of the semicuts containing 

(i,j). 

It should be noted here, that what is actually given in the synthesis 

problem is the expected maximum flow-requirement from any vertex i to 

any vertex j, that is, the function t is given and it is required to find 

the arcs and their weights, that is, the function w. 

• 



2.1.5.  A net (0,w) in which the function w is non-negative, 

is called a "communications net". 

The vertices in a communications net are usually called "terminals" 

or "nodes" and the arcs, "channels" of the net, while the term "capacity" 

(of a channel (i,j)) is more often used instead of the term weight (of 

the arc (i,j)). 

2.2. Certain results from the analysis problem  

In the analysis problem, the net (GM is given and its properties 

are analyzed; In what follows, after introducing the notation and 

definitions to be used in the analysis and, later on, in the synthesis 

problem, certain interesting results from the analysis problem are 

presented. 

2.2.1. The following notation and definitions will be used. 

(i) If tl , 	t are, in an increasing order, the distinct values 

of the terminal capacity function t, then the set of arcs in A on which 

t has the value t is denoted by A that is, 
P 

e et((i,j)) 	, 1 S p, s m. 
g 

and since the number of arcs in A is n(n -1), obviously 1 s m s n(n -1). 

(ii)The symbol A* will be used to denote all the arcs in the 

sets A1 , 	A -1' that is p  

A* = A U...UA ' 
 1 s g s m-1-1 

P 	4-1  

Clearly, AI = 0 and A:1(i +1  =A. 

(iii)Given a circuit C in 0 and real number a 7 the net (e 7  b) p  

such that 



j' ) 
Q. E. D. (i,j)), for every arc t ((i 	' ) ) 

b((iej)) 

-- •  a, if (i,j) e Cp  

---a, if (i,j) e Cp_ 

L- 0, otherwise 

is called the "bicircuit net" in 0 , corresponding to the  pair (C a). 

Moreover, two nets ( 0,w1) and ( 0,w2 ) are called Cp - equivalent 

if one of them is the result of the addition to the other of a finite 

number of bicircuit nets. 

2.2.2. 	Theorem  Given a net ( 0,w) with terminal capacity function 

t then for every arc (i,j) in A there exists a semicut S z  containing 

(i,j) and such that the restriction t/Sz, of the function t, attains its 

maximum at the arc (i,j). 

Proof  There is always at least one semicut in 0 , containing the 

( 	c arc (i,j), namely, the semicut S(.1 = Ii} x ill and since 0 is finit e 

so is'the number of .distinct semicuts containing (i,j); therefore, for 

some semicut S among them,according to the definition of the function 

t, t((i,j)) = IS I Z • 

Now, from the definition of t, 

t((i',j 1 )) 	IS7 1, for every arc (i',j 1 ) 

Therefore, 

Comments  

(i) In this paper, given any net ( g,w), by saying that a semicut 

S in g is an  "m -restriction" for some arc (i,j) (with respect to the function 

t) is meant, that the semicut S z  contains (1,j) and that the restriction 

t/Sz , of the function t, attains its maximum at the arc (i,j). Whenever 
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no confusion, concerning the function t, is possible, it will be stated 

simply that S is an m-restriction for (i,j). 

(ii)For any two arcs (i l l) and (i1 ,j') ln the set A ,the following 
4 

equality is true, namely, t((i,j)) = t((i', j')) = t; if, moreover, this 
4 

equality implies, that a semicut in G is an m-restriction for (i,j), if 

and only if, Sz  is an m-restriction for j/), then it is called an 

ttessential equality". 

(iii)For every semicut S in G, there always exists an arc (i,j) 

such that S is an m-restriction for (i,j); indeed; since the number of 

arcs in S is finite
' 
 t/S attains its its maximum value at some arc in S. 

Z' 

(iv)The symbol 

	

	'will be used to denote the set of semicuts in 0, 
4 

each of which is an m-restriction for some arc in A . 
' 4 

2.2.3.  Theorem  Given a net (G,w) .  whose terminal capacity function 

t contains only essential equalities, if S is a semicut. in G and S e 	, 

then 

(i) S is an .m-restriction for every arc (i,j) . in A and, therefore, .Z 	 .4 	. 
A c S 

p, 	Z 

(ii) If 4  < 4./ . (Which means
' 
 ), then S

Z 
 nA 

(iii)S = A U(S rIA*) z 	g 	Z 4  

Proof  

(i) S being in .5 implies that there exists an arc (i,j) in A such 
4 

that S is an m-restriction for (i,j); but, by definition of A, 
4 

t((i,j)) = t((i', j.")) for every arc (i',j') in A and since, by assumption 
4 

each such equality is an essential equality, obviously S z  is an m-restriction 

for every arc (i',j') in A . 
4 

• 



(ii)S z being  in,  implies that S
z 

is an iii-restriction for some 

arc in A and, therefore, the maximum value of t on S is t . Now, if Z 	p 

S ()A 	p, this implies there is some arc (i,j) in S
Z 
 flA

/ 
 and also Z p 	 4 

that t((i,j)) = t because (i,j) e  A,.  However, the maximum value of 

t in S is t and, since (i,j) e Sz , Z 	p 

t((i,j)) 	t 	while t((i,j)) = t 
4' 

which is a contradiction and, therefore, S z flAw  

(iii)By (i) and (ii), 

A = SZ  (IA and (S ()A p+1 — )UU(SZnAm) p 	4 	Z  

and, using these relations and the distributive law for set operations, 

11, 

A u (sZ  rIA*) 	(S Z  r)A 	(SZ  ()A*) = p, 	.  

• 

• • 	: 	= S
Z  (.1 (A*LJ A ) - 

, • 	s r) (A u... 1.)A ) = . 	z 	p 	. 

= (Sz() Ai)U 	li(Sz()A11 ) 

- 	[(Szr1A1)11..1.)( 8z nA4)h)[(5z nAm..  

(SznAi)U 	ii(SznAm) = 

= Sz r)(AiU 	U Am) = 

= s (IA — 	z 

S
z  

u(s z'riAm)1 

2.2.4. 	Theorem  Given a net (e ,w) and a function t 	then 

t is a terminal capacity function for (0 ,w), if and only if, for every 

(i,j) e A, 
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j) 

(3)  

(4)  

(5)  

t((i,j)) = min 1lSz l/S z  is an m-restriction for ( 

Proof  Assume first that (1) is true; then to establish that t is 

the terminal capacity function for (e>7), it is enough to show that if S* 

is any semicut containing (i,j) but without.being m-restriction for 

then 

min 11S / S is an m-restriction for (i,j)1 	IS*I Z 	Z 

This follows immediately, because if S* is not an m-restriction 

for (i,j), there is some (ii,j/) e S* such that (ii,j/) 	(i,j) and for 

which t((i 1 ,j 1 )) is.the maximum value of t on S* ' 
 . therefore, 

Z 

(1) 

(2) 

t((i, i) ) <t((i /, i')) 

. 	. However, by-assumption, 

t((i',j 1)) = min 11S I /.S .  .is an m-restriction for-Z 	Z 

and, since S* is an m-restriction for (ii,j 1 ), 

IS* 1 

Thus, (3) and (5) yield (2), which was to be proved. 

Assume next that t is the terminal capacity function for (e,w); in 

order to show that (1) can serve as a definition of t, it is enough to 

show that if S* is any semicut containing (i,j) without being an m-restriction 

for (i,j) then, t((i,j)) < 1S*1. 

Indeed, since S* is not an m-restriction for (i,j), there exists 

an arc (i',j 1 ) e g such that (i',je) 	(i,j) and for whicht(P,j')) is the 

maximum value of t in S*
° 
 Therefore, 

Z 



t((i,j)) <t((r,j')) = min IlSz i / (i i ,j 1 ) e S z  

which implies t((i,j)) < lSl  and that (1) iS an equivalent definition 

for t. 

13 
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1 • Gien.a finite quasicomplete oriented graph e and a function t : A--->6%, 	• 
1 .1 the synthesis Problem is, 	 , 

. a). 'does there exist a function w A__> R, such that the net ( G,w) has 
• .,ae terminal. capacity functibh the given function t? 

b). If such function(s) w exist how can they be found? 

In communications terminology (a) and (b) can be phrased as follows. 

Is it possible, and in which way, to assign capacities to the arcs 
, . 	. _ 

of the given graph representation so that the maximum floW between any 

two terminals is the'required maximum flow? 

It should be noted here, that a solution to this problem, would, at 

the same time be a synthesis of the cheapest net, meeting the given require-

ments, under a uniform cost per unit of capacity (because such a net, has 

no capacity redundancies on its arcs and, therefore, automatically has the 

minimum total capacity among all possible nets satisfying the given require-

ments and hence would be the one having the minimum cost). 

In what follows, the conditions under which the above synthesis 

problem has a solution are given and various constraints in synthesizing 

such a net are considered. 

Since the eynthesis procedure deals generally with a net, the conditions 

under which this procedure yields a communications net are presented. 

3.1. 	Synthesizing a net  

3.1.1.  Theorem  Given the finite, qdasicomplete, oriented graph 



• 
Define, 

w.: A-->R, such that  w( 

t , instead • • • , 

11, 

(2) 

(V,A) and a function t A--->g, containing only essential equalities 

and such that for every arc (i,j) in A there exists a semicut Sz  in 

0 which is an m-restriction for (i,j), then a net:(0 ,w) "realizing" 

• t (that is, having t as its terminal capacity function) is obtained as 

•follows: 

15 

[ix((i/j)) / if (i/j) e A4  
j)) = 

w 1  ((i/j)) / if (i/j) ié A p- 

where, Wo ((i,j)) = 0 	for every.(i,j) e A and the function. . 

x : A (=Aïl.J....LJAm)-7->R is such that 

tlx((i,j))/(i,j) e A 	= - t - I 	-/ S 	1, for 
p-1 

Then, wm  is the required function w and the net  

is synthesized. 

Proof  According to theorem in section 2.2.4., it is enough to 

show that  •  

t((i,j))-= min IISl w  /Sz  is an m-restriction for (i,j)1 

for every (i,j) e A 

évery p = 1, ... 

(1 ) 

and, since the only  values oft on A are the numbers tl , 

of showing (1), it is enough to show that  for  any .(i,j) 

t -= min HS
Z I W / Sz  is an m-restriction for 

for eVery p = 1, 

Now, t is the value of t on the arcs in A and because t contains 
4 	 4 

only essential equalities, 	is the set of all semicuts which are m-restrictions 
4 

for (i,n. Then, instead of showing (2) it is only necessary to show 

that 
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t = min IS z l w  / s z  e e 	, for every = 1, 	m 
4 	 m 

By the definition of the function x it follows: 

t = E lx((i,j))/(i,j) e A } + min IIS
Zw4-1/

S e Z 

= min lElx((i,j))/(i,j) e  A 	+ IS z i w 	/Sz  e 	 (4) 
4-1 

(because if X is a constant, then X + min  y./i . e ij= min IX yi/i e ij  

On the other hand, for any semicut S z  e 

Iszl w  = E 1wm((iej))/(iA) g y - 
m 

:=- E Iwm((i,j))/(i,j)  C  Sz nA*44  

(3 ) 

(because Szc. A = 	U 	..UA and, by 2. 2. 3. (ii), s nA 	= 0 , z 4+1 

Sz nAm  = 0; therefore, -  Se1 l)...UA4  = A)4 41 ,'which implies Sz (lAil u  = , Sz) 

Iwm((i,J))/(i,J) - é : sz riA4 1 + Elwm((i,j))/(i,j) é sz n-p041 	- 

(S z nApj)U(Sz nArd =S z ()(A II IJA*4) =. S z nArb 1a  and:  

	

(S,,nA‘ )n(s Z  nA*) 	S
Z 
 nA ne s n[A n(A1  •••vA ]_)] 

p, 	p, 	p, 	p, 	Z 	p,  

= SZ n  [(A  A1.  )u 	u (A n A
p,

•
-1 )] =  0) 

A
4

I . 	é.szciA 	} 	• 

(becauSe by 2.2.3 (i), S z ()A4  = 

• 	.= s 	e  

(because, (i,j) e S r,r)Ax.  implies (i,j) e  M and this implies that (i,j) 
1-b 

(because 

znA4*.- 1. 

(i,j),  A U... LJAm, hence, by definition of  w, for such an 
4 	 4 

wm_1((ien) = 	((i,i)) 	w 1  ((i,i))) p,- 	 . 

'Elx((iej))/(i,j)eAll- Elw. ((iej))/(i)j . 	4 	g-1 e  ezne 



j)) and for w4 ( ( 

0, for every 

and,  hènce,  

,j) e S z  

(because, (i,j) e A4  implies (i,j) 	which implies, by 
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the definition of w w ((i j)) = wm1  ((i,j)) = m 	- 

j) 	A 	w ((i3i))  • g 	4 
every ( 

= 'elx((i,j))/( 1 5j) e  A+  ISzLi 4 	4-1 

= (SZ  - A*)1j(SZ 
 fIA*) and ( g 	g 

(SZ  nA*) = 0, imply that, 
g 	, 

•IS szl w 	= E Iw((41))/(i,j) e-Sz l 

(because,  the  obious  relations,  - A-x-)n 

but, (i,j) e 

((i,j))/(i,j) e (S z 	A*) "E.  4 
S,()A*1; g 

- A* implies (i,j) e A* = A
1 
 U...1.)A 	and, by the definition g 	g-1 

w 1  ((i,j) ) 	 w 	((i,j) ) 	 = wo ((i,j)) = p,-  

Therefore,. 

- 	E.((iA))/(ii 	Z Ç1i) e (S 	1 = 4-1  

= . E lw. 1 ((iej))/( 1 ,1) e SznA* 1). 
11-1- • 

-Therefore, 

ISzI w  = Ek((iej))/(i,j) e  AI 	ISz l w  
4-1 

which, using (4) yields relation (3) Q.E.D. 

of w , 

Comments  

(i) The previous theorems required that the given function t contains 

only essential equalities; this, however, is not actually a restriction. 
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Indeed, if, while the m-restriction condition is satisfied for every 

arc in A, the given function t contains non-essential equalities, it can 

be always perturbed to obtain a new function t
e 

(which for small enough 

real positive numbers e satisfies the m-restriction condition for the 

arcs and contains only essential equalities), in such a way that any 

realization of t
e 
would reduce to a realization of t, in the limit as e 

approaches zero. 

Thus, it is always possible to assume, without loss of generality, 

that the function t to be realized contains only essential equalities. 

It should be noted here, that one can find various procedures of . 

obtaining the perturbed function t (one such procedure can be found in 

the appendix of [6]). However, these procedures are u tsually not worth 

applying in practice due to their complexity. Furthermore, in most 

practical applications, a net realizing a given function t, with a certain 

degree of,tolerance in the values of t, is acceptable; therefore, after a 

simple inspection, the required values of t can be changed by a small 

quantity, so that the essential equality condition is satisfied. This 

approach will be further discussed in one of the following examples. 

(ii) The m-restriction condition, which is required for every pair 

of vertices, cannot be relaxed; it can be easily seen that, unless it 

is satisfied, for every arc, at least one among the sets 	will be empty 

and the function x in the previous theorem is not defined. This, in turn, 

means that, in such cases, the synthesis procedure given in the theorem 

cannot be applied. 
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As an example, consider the case where the given graph is 

= (11 , 2 ,31, 1( 1 , 2 ), ( 1,3), ( 2 , 1 ), ( 2,3), (3, 1) (3, 2 )1) 

and the terminal capacity function to be realized is such that 

t((1,2)) = t((1,3)) = 2, t((2, 1)) = 0, t((2,3)) = 4, t((3,1)) 

t((3,2)) - 3 

is then empty and one can easily verify (by simply drawing the graph) 

that there is no loy of realizing t with no-capacity i.edundancies on the 

arcs. 

The . constraint function'c  

In the synthebis procedure described in 3.1.1., the function x,. 

used in the definition of w,  is clearly, not uniquely defined (it-is 
4 

so, only in the case where each A has only one element, thatis, only 
4 	. 

in the case -where there are m = n(n-1) distinct values of the :function t). 

This, in turn, suggèsts that possibly.more than one realization of 

the given function t could exist. In such cases it is natural-to admit 

the presence of conatraints on the ares of the net. Then,-among the possible 

realizations, the required ones are those satisfying the'constraints. 

Such constraints in practice are, for example «, of the following type. 

(i)The weight.of ai arc cannot be any real number; particularly 	. 

in the case of communications nets, a limited number of channel capacitres 

is available. 

(ii)The presence of an arc in the net to be realized might be 

absolutely necessary,.while the absence of another might be desirable. 
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The constraints in the synthesis of a net can be conveniently 

described by a "constraint function" c: A--R, "grading", in some sense, 

the arcs, so that in a set of arcs the one with the minimum "grade" 

should be chosen. This will be illustrated in one of the examples which 

follows. 

Note: The case where no constraints are present is indicated by 

a constant constraint function, that is, by equally "grading" all the 

arcs. 

3.1.3. Examples  

In what follows, three examples illustrating the synthesis procedure 

are given. In the first example, the function t contains only essential 

equalities and the constraint function is constant, while, in the second 

example, non-essential equalities are present; in the third example, the 

function t-of the first example is considered in the presence of constraints 

and a realization of t, different than in the first example, is obtained. 

It should be noted here that for convenience of notation, any real 

function g defined on the set of arcs of a finite, quasicomplete, oriented 

graph e (V,A) with nvertices, is usually given in the form of an n x n 

matrix C, whose element at the i-th row and j-th column is the value of g 

at the arc (i,j). Observe that since no loops are present in 0, the diagonal 

elements of the matrix C are not specified. 

In the case of the functions w, t and c, the corresponding matrices 

W, T and C will be called "weight (or capacity) matrix", "terminal capacity 

matrix" and "constraint matrix", respectively. Thus, in the following examples, 
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the matrices T and C will be given and a matrix W "realizing" Tunder the 

constraints in C will be determined. In these examples, a more convenient 

notation for semicuts will be also used; for example, the semicut 

1(2,1), (2,3), (4,1), (4,3)1 will be denoted by 24/13. 

Example 1  Construct a capacity matrix W, realizing the terminal 

capacity matrix 

* 2 2 2—  

3 *  4 6 . 

3 7 * 8 

3 5 4 * 

under no constraints (that is, the constraint function is constant). 

Synthesis  procédure  

Step I Determine  t, A , 	for every p=1„..., m and check if the 
4 4 4 

conditions for solution are satisfied. 

ti  = 2,  Ai  = 1(1,2), (1,3), (1,4)1 	= 11/2341 

t2  = 3 , A2  = 1(2,1), (3,1), (4,1)1 , 	= 1234/11 

t
3 
 = 4 , A

3 
 = 1(2,3), (4,3)1 	, 3  = 1124/3, 24/131 

t
4 
 = 5 ' A

4 	 , = 1(4,2) 	= 114/23, 4/1231 
sr 4 

ts  = 6 , As  = 1(2,4)1 	112/34, 2/1341 

t
6 
 = 7 	A

6 
 = 1(3

' 
 2)1 	, 	= 1134/2, 34/121 

'  

t
7 
 = 8  , A

7 
 = 1(3,4)1 	, 7  = 1123/4, 23/14, 13/24, 3/1241 

	

By simple inspection now, of each triple (t , A , S ) for g = 1, 	7, 

we see that t contains only essential equalities and that the m-restriction 

condition is satisfied for every arc. Therefore, it is possible to proceed 

to the synthesis of the net. 



* 0 0 0 

0 * - 0 0 

0 0 * 0 

0 0 0 * 

W -= 
1 

* 0 2 0 

0 * 0 0 

0 0 * 0 

0 0 0 * 

* 0 2 0 

3* 0 '0 

00 *0 

0 0 2 * 
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Step 2  Determine W
' 
 for g=1 

4 

By definition: 

W
o 

will be the required W. 

Taking, 

x((1,2)) + x((1,3)) + x((1,4)) = 2 - min 101 = 2 

x((1,2)) = 0, x((1,3)) = 2, x((1,4)) = 0, then one possible 

definition of the fUnction x on Al, is 

nnnnnn 

x((2,1)).+ x((3,1)) + x((4,1)) = 3 - min 101 = 3 

Taking, x ((2,1)) =-3, x((3,1)) = 0, x((4,1))  =0,  then one possible 

, definition of the function x on A
2'  is 	

' 

* 0 , 2  0 

3 * 0 0 

0 0 * 0 

0 0 0 * 

(5) x((2,3)) + x((4,3)) = 4 -.min 12,31 = 2 

Taking, x ((2,3)) = 0, x((4,3)) = 2, then one possible definition of 

the function x on A
3' 
 is 



The only possible definition of x on A is x ((3,4)) = 4, yielding, 

--1 

* 0 2 0 

3 * 0 4 

0 4 * 4 

2 3 

(11) x((4,2))  ='5 - min 14,21 = 3 

Then the only possible definition of the function x on A4  is, x ((4,2)) = 3, 

yielding, 

_ 
* 0 20 

3 * 0 0 

0 0 4  0 

0 3 2 * 

x ((2,4)) = 6 - min 12) 31 = 4 

The only possible definition of X on As  is, x ((2,4)) . = 4, yielding, 

.*0 20 

3 * 0 4 

0 0 * 0 

0 3 2 * 

O x((3,2)) = 7 - min 13,31 = 4 

he only possible definition of x on A6  is x((3,2)) = 4, yielding, 

* 0.2 0 

3 * 0 4 

0 4 4. 0 

0, 3:2 * 

x((3,4)) 	8 - min 14,7,4,41 = 4 

10 3 2 *I 

Step 3  The net has been noW synthesized; its capacity matrix 

is W = W
7
' Using now the capacity matrix, give the graph representation 
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of the corresponding net which, clearly, is one of the (infinitely 

many) nets, realizing the given matrix T, under no constraints. 

Figure 3 	. 

Example 2  Construct a càpacity,matrix W realizing the terminal 

•• capacity Matrix 

--»* 1 1 

4 * 6 5 

4 6  * 5 

4 6 6 * 

under no constraints. 

Synthesis procedure  Observe that the given matrix T contains non-

essential equalities. Indeed, the equality, t((2,3)) = t((3,2)) implies 

that'the arcs (2,3) and (3,2) should be put in the same  A,  while no semicut 
P 

can contain both those arcs. 

T=  

matrix 

Thus, consider, instead of the matrix T, the following perturbed 

• 	'It' = 	4  * 	6 	5 

4 .6+0 * 	5 1 
4 6+6

2  6+e 3  * 

where, Cl,  e2 , e 3  are arbitrary, very small real numbers, such that 

0 < e < 	< e . 1 	2. 	3 



Taking, 

Taking , 
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Next, following the procedure of example 1, a capacity matrix 

W / , realizing T/ under no constraints, is constructed, and letting 

e 	e
2  e3 

 tend to zero in the matrix le,  •a matrix W is obtained, which 
'  

is the one realizing T under no constraints. 

Step 1  

= 1 . 	, Al  = 1(1,2), f1,3), (1,4)1 , 	11/2341 	, 

= 4 	A2  = 1(2,1), (3,1), (4,1)1 	= 1234/11 . 

t 3  = 5 	, A3  = 1(2,4), (3,4)1 . 	, 	= 123/14, 123/41 

t4  = 	A4  = 1(2,3)1 	• , 	= 12/134, 12/341 - 

t 5 -  6+ei• ,- A5 =  1(3 ) 2)1, 	,
•
= 13/124,-13/241 

t«6  = 6+e2  , A6  =1(4,2)1 	, 6  = 134/12', 134/21 

t 7  = 	A7  .1(4,3)1 	• 	, 7  = 14/123, 14/23i. 24/1 3, 124/3 

Step 2  By definition, 

o 

o *  00  

0 	o o * o 

0 0 0 * 

x((1,2)) .  + x((1,3)) + x((1,4)) = 1 - min 101 = 1 

1 , x((1,3)) = 0 	x((1,4)) = 0, 

• 

* 1 0 0 

	

0 * 0 0 	• .•' 

- W /  
1 	0 0 * 0 

	

• 0 . 0 0 * 	• 	. 

x((2,1)) Éx((3,1)) 	x((4,1)) = . 4 - min 101 = 4 

x((2,1)) = 4 - , x((3,1)) =-0 	x((4 ',1)) = 0, 
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=5 • 

—7e 1  05 

4 * 1 5 

0 0 * 0 

0 0 0 * 

W /  

Dc((2, 3)) =  6.—  min 19; 5 } =1  

Taking, 

--* 1 

oo 

oo*o 

000* 

x( ( 2,4)) + )c( ( 3,4)) = 5 — min,  14,0 

x( ( 2,4) ) = 5, x( (3,4)) = 0 

* 1 0 0 

4 * 0 5 

0 0 * 0 

0 0 0 * 

W e  = 
'3 

+ e — min 10,11 = 6  + el 1 

*1 00 

4* 

o 6+6 *, 9 

00 	0 -* 

x((4,2)) = 6 + e2  — min 16+ el , 7 + el l = e2  — el  

*1 , 0.0 

4* 15 

0 6+el * 0 

0 



À 

x((4,3)) = 6 +e- min le -o , 1+e -e 	5, 11 = 6 +e+e- e 
3 	2 1 	2 l' 	3 	1 	2 

*1  

4*  

and the corresponding.  net  has the following graph representation 

T C=  

* 	2.10  100 

3 	• 	3 	8 

.1005 	* 2  

1 5 2 * 

222  

3 * 4 6 

3  71  8 
: 3 5  4 * 
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1 	5 

0 6+61 	0 

o €2—el 6+ e3 +€1-€2 *  

Step 3  From the matrix 
W7 	2' 3 
/ = W e, letting e , e 	6 tend to zero, the 1  

desired capacity matrix is 

-1 

--* 1 0 0 

4 * 1 5 

0 6 * 0 

,0 0 6 * 

Figure 4 . 

Example 3  Construct a capacity matrix W, realizing the matrix T under 

the èonstraints  in C.  



Synthesis procedure  The procedure to be followed is that of 

example 1, with the only difference that, for the definition of the 

function x on the set A (1.1 = 1, ..., 7) the constraint matrix C will be 
P 

taken into account. 

Step 1 By definition, 

-7 
* 0 0 0 

0* 0 0 
W= 
o 0 0 * 0 

0 0 0 * 

x((1,2)) ± ((l,3))  ,+ X((1,4)) . = 2 . - min 101 =.2 

and, according to the matrix . C, the choice must be 

=.2,'X((1,3)) = 0, x((1,4)) = 0, yielding,,. 

28 

* 2 0 0 

0 * 0 0 

0 0 * 0 

0 0 0 * 

x((2,1)) 	x((3,1)) 	x((4,1)) = 3 - min 101 = 3 

and, according to the matrix:C,' the choice of the values of x are 

x((2,1)) = 0,' x((3,1)) = 0, x((4,1)) = 3, yielding, 	• 

* .2 0 0 

0 * 0 0 

0 0 * 0 

3 0 0 * 

(5) x((2,3)),+ X((4,3)) = 4 - min 1 .0,31 = 4 

and, according tothe matrix .C, the choice of'the values of x are 

x((2,3)):= 0, x((4,3)) = 4, yielding, 	• 	' 



29 

* 2 0 

0  *o  0 

0 0•* 0 

3 0  4*  

CD x((4,2)) - min  t6,7  = -1, 

x( (2, 4) ) - min 10,01 = 6, 

*  20  0 

0  *o  6 

0 0 * 0 

3 -1 4 *, 

x( (3, 2) ) - min 11,2 

0 x((3,4)) 	8 - min 16, 6, 8, 6} = 2, 

*  200   

0 * 0 6 
W 

7 	0 6 * 2 

3 -1 4 * 



• 

O 

Step 3.  -The requiredlnatrix is therefore, the matrix W=W 7  and 

the cOrresponding net has the following graph representation, 

Figure 5 

3 .2. • SynthesiZing à 'communications net  

The procedure used for the synthesis of a net "realizing" a given 

terminal capacity matrix T, can be used for the synthesis of communications 

nets. An obvious practical requirement is that the elements of the matrix 

T be non-negative real numbers. 

However, it.is possible to end up with a capacity matrix W, in which 

one or more elements are negative real numberà (this is exactly the case 

in example 3, of the previous section). Since, in this case, the corres- 

ponding net is not a communications net, one is interested to know if there 

is an equivalent communications net. 

In what follows, the conditions under which such an equivalent 

communications net exists, are given and the procedure of finding suéh a 

net is illustrated in an example, using the capacity matrix W obtained 

in example 3 of the previous section. 

• 
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if (i,j) e Cr.?:  

3.2.1. Theorem  If. two nets are C -equiValent, then they are 

equivalent (that is, they have the saMe terminal Capacity matrix). 

Proof _Let (0,w1 ) and '(0,w2) be the two Cr-equivalent nets and 

let 

("2)  = (e ' w
1
÷g1 +*•• +gk)  • 

where (0,g1),..., (Œ,gk) are bicircuit nets. 

In order to show that these two nets are equivalent, it is enough 

to show that for each semicut S in e,. Is I • - IsZ  I w  or, since for Z w,  
2 

each S 

I s 	 IS I 
wffg1 +'" +gk 	w2 

it is enough to Show that for each Sz  in e 

Is o 
Z 
 g1+...+gk 

(because, IS I 	= IS 	+ IS 	). 
Z 	+gk 	Z 	Z 	+gk  

It will now be shown that, for each S in 0, 

IS I = 0, for every X = 1, 	k Z gx  

which implies that IS 7 I_ 	= 0. 
ek 

Since (0,g ) is a bicircuit net, for each X = 1, 
X 

r  ax, if (i,i) 

(by assumption) 

where, fbr each X ='1, -  ..„ k, 

0, otherwise 

a is some real number ,  while C is a circuit 
X 

X 
in 0. 



a  

Then, for each S in 0, 

sz
gx 

l 	= 	- Igx ((i,j))/(i,j). ,é s i i = 

(because, 

E Igx((i)j))/( 1 ,j) e sz fl(cp  L)cp_)i-= 
x 

E Igx ((i,j))/(i,j)  e  (y)Cp  )1J(S‘z r1Cp-)1 
'X 	. 	• X 

. 	E Igx((i,j))/(i,j) e sz f) cp 	±  E làx((i,j))/(i,j) e S z nCp_l 
X 	. 

nCp  )n(S znCp_) = SZ n(CPX n er). SflØ= 0) 
 X 	Z 	• 

= .ax . card( S, (-) C, ) + (-a x ) • car( S, n Cp_ .) - . • rx 	X - 

=- a [card(S nc 	- card(S (IC _PX)] k 	Z P 	Z X  

=0 	Q. E. D. 

3.2.2. T'Seorem  A net (0,w).with terminal capacity function t is 

C -equivalent (and, therefore, equivalent) to a communications net, if and 

only if, t((i,j)) and w((i,j)) + w((j,i)) are each non-negative, for each 

(i,j) e A. 

• 	Proof  If the net (0,w) is C -equivalent to a communications net, it 

is also equivalent to this net (see previous theorem) and, therefore, each 

t((i,j)) is non-negative, while, each sum w((i,j)) + w((j,i)) is also 

non-negative, as equal to the one of the communications net. 

Next, suppose that each of the numbers t((i,j)) and w((i,j)) + 

w((j,i)) is non-negative for each (i,j) e A. In order to show that 

the net (0,w) is C -equivalent to a communications net, it is enough 

to show that, if (CM contains arcs with  négative  weights, then it is 
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0 implies 1/.5_1((i,j)) < 0 for each 6 = 0, 1, s. • • • .• 

induction. Taking (5=0, it is easily verified that, W the net for. wo 

the pair (Cp , 

Cp-equivalent to a net in which the number of arcs with negative 

weights is less by at least one (then, repeating this step, after a 

finite number of steps a net is obtained which is Cp-équivalent  to 

(0,w) and in which every arc has non-negative weight, that is, a 

communications net). 

To do this, it is necessary only to show that if (i , oj o 

is such that w((i o  ,j o)) < 0, then it is possible to cônstruct a finite 

( 0 .0/0 ), 

-equivalent t 

e A 

sequence 

( i) ( wo.) 

( ii) w,((i,j)) < 

• • .• (0,w ) of nets, such that 

for each d = 0, 1, 	s. 

in which ws
((i :J)) 	0  

(property (ii) means that; if'wc5_1((i,j)) 	0, then wd ((i,j)) 	0; beéause, 

otherwise; w 1  ((i ' 
 j)) should be negative). . 	, 	- 	. 6- 	- 

In order to  show  that such a sequence can be constructed, we use . 

(0,w .) has the required properties, (i) and (ii). Suppose next that:the 

net (0,wd_i ) has the properties (i) and (ii); moreover, it is assumed 

that w
1 
 ((i o  ,j o )) < 0 

otherwise there would be no next term in the 
6-  

sequence. 

It now remains to show that, using (
'

0 w6-1'  ) it is possible to 

construct a net (0,w
6 

 ) having the properties (i) and (ii). To show this, 

consider a path P 	I(i ,j )1, in (@' w6-1'  ) 
joining i to j o  and 

such 
o  

that no arc in P has zero weight and at least one arc has positive 

weight. Addition then to (0,w1 _1) of the bicircuit net corresponding to 
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0 C =P 	o ,j o 	and ce = -
min .iw((i,j))/(i,j) e C 	w((i,j)) 

yields a net (g,w
o
) which has the properties (i) and ( 

Finally, it should be shown that for some finite  C = s, w 
s 
 ((i 

 o 
 ,j 

o
)) 	O. 

To show this, observe that whenever wcs_1((i0 ,j 0)) < 0, a path P, as 

defined above, must exist in (0,w6_1), joining is, to j o ; on the other 

hand, observe that the number of such paths in (,w6)  is less by at least 

one than in (0,w
6-1

)
' 

Therefore, after a finite number of steps, say 

C = s, no such path will exist in (g,w
s
), which means that w ((i ,j )) must 

s o o 

then be non-negative, otherwise such a path should exist. 

3.2.3. An example To illustrate the procedure described in 

the proof of the previous theorem, refer to example 3 of section 3.1.3. 

Although the elements of the terminal capacity matrix T are non-

negative, the capacity matrix W, realizing T under the constraint matrix 

C, contains one negative entry, namely w((4,2)) = -1. 

Since the conditions required by the previous theorem are satisfied, 

a communications net (0,w
c
) equivalent to (g,w) exists and to find this 

net, we proceed as follows. 

Identifying w with wl  immediately gives the net (g,w0 ) as the 

first net of the sequence, and it is immediately apparent that the 

path P = 1(4,3),(3,2)1, joining the vertex 4 to the vertex 3, has the 

required by the previous theorem properties. Then, considering the 

corresponding circuit C = 1(4,3), (3,2), (2,4)1 and the real number 

). 

= -min: 1 ((i,j))/(i,j) e Cp, w((i,j)) > 01 = - and adding to the 
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net (0,w0 ) the bicircuit net corresponding to the pair (C,  —4), gives 

the net (0,w
1 
 ), with graph representation 

a 

Figure 6 

which is obviously the last term of the sequence, that is, a communications 

net (0,w ) equivalent to the net (0,w). 

Observe, however, that the communications net obtained does not 

necessarily satisfy the constraint matrix C, in the original problem. 

Concluding Remarks  

The general synthesis problem of finding an optimal net, in the 

case of a uniform cost, can be formulated as follows. 

Among the nets providing given maximum flow requirements, find 

the one(s) with the minimum total capacity (if such optimal net(s) exist 

at all). 

The case where such an optimal net has, at the same time, no 

capacity redundancies on the arcs wus considered in the present work, 

the conditions for its existence were given and a synthesis procedure 

was developed and "computerized" (the computer program along with a 

short description is given in the appendix). 



Although the ,emphasis was on communication  networks it should 

be apparent that the synthesis procedure considered here deals with 

general nets, like economics and operations research. What remains 

to be done, is an appropriate interpretation of negative capacities. 

It should be noted, however, that the results presented in 

this study, apply to systems with completely time-shared requirements, 

that is, to systems where time is broken up into distinct periods and 

during any one period there is only one flow on each channel of the 

system. This is by no means a restriction, since the problem of simul-

taneous flows in a net, is a simple application of the solution to the 

time-shared problem (see [3], page 299). 
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