HOUSEHOLD DISTRIBUTION IN THE RURAL

AREAS OF THE ATLANTIC PROVINCES

A Study for
The Rural Communications Program
Communications Canada, Ottawa
by
L. C. MacLean and K. L. Weidon

ACKNOWLEDGEMENT

The investigators would like to express thanks to a number of people who assisted in the various stages of this project. A special thanks to Catherine Tanner, our research assistant, who stayed with the project when it extended well beyond the scheduled time limit. Dr. George Cormack and Mr. Laurent Mougeot of the Department of Communications gave freely of their time and advice, and their efforts were much appreciated.

TABLE OF CONTENTS

Page
SECTION 1 : OBJECTIVES 1
SECTION 2 : METHODOLOGY 2
2.1 Geographic Regions 2
2.2 Community Size Dịstribution by Region 4
2.3 Area of Influence of a Community 5
2.4 Selection of Typical Cells 7
2.5 Estimation of Region Population from Typical Cells 9
SECTION 3 : RESULTS 10
3.1 Geographic Regions 10
3.2 Community Size Distribution 17
3.3 Typical Areas 21
SECTION 4 : VALIDATION 40

LIST OF TABLES

Page
Table 1 (a) : Community Size Distribution by Region - N.S. 17
Table 1. (b) : Community Size Distribution by Region - N.B. 18
Table 1 (c) : Community Size Distribution by Region - P.E.I. 18
Table 1 (d) : Community Size Distribution by Region - NFLD. 19
Table 2 : Community Size Distribution by Region - ATLANTIC 20
Table 3 : Community Size Distribution by Region - ISOLATED 20
Table 4 : Typical Areas 22
Table 5 : Estimation of Region Population 41
Page
Map 1 (a) : Population Density by E.A. (Maritime Provinces). 11
Map 1 (b) : Population Density by E.A. (Newfoundland) 12
Map 2 (a) : Economic Activity by E.A. (Maritime Provinces) 13
Map 2 (b) : Economic Activity by E.A. (Newfoundland) 14
Map 3 (a) : Geographic Regions (Maritime Provinces) 15
Map 3: (b) : Geographic Regions (Newfoundland) 16
Map. $4:$ Typical Area T_{1} 25
Map $5:$ Typical Area T_{2} 26
Map $6:$ Typical Area T_{3} 27
Map $7:$ Typical Area T_{4} 28
Map 8 : Typical Area T_{7} 29
Map 9 : Typical Area T_{8} 30,31
Map 10 : Typical Area T_{9} 32, 33
Map 11 : Typical Area T_{10} 34, 35
Map 12 : Typical Area T_{11} 36, 37
Map $13:$ Typical Area T_{12}. 38, 39

SECTION 1: OBJECTIVES

OBJECTIVES

General: To provide information on household distribution relevant to the costing of broadcast and CATV delivery options.

Specific: 1. To present certain geographic factors which, a priori, would likely. influence household distribution.
2. To select small areas which are representative of each possible combination of geographic factors, and present detailed maps displaying household locations for each such area selected. 3: To determine what portion of the Atlantic region each geographic type occupies.
4. To provide general formulas for estimating certain parameters for the Atlantic Region as a whole, based on the estimation of these parameters for the areas selected of each geographic type. 5. To illustrate the above estimation procedure by calculating the total households in the rural part of Atlantic Canada from household counts in study areas.

SECTION 2: METHODOLOGY

For the original methodology proposal submitted to the Department of Communications (Appendix I), the following factors were suggested as being important, a priori, as determinants of household distribution in a small geographic area (cell):

1. the extent of farming in the cell
2. the population of the community on which the cell is centered
3. the proximity of a major urban centre
4. the presence of natural barriers
5. the number of major through roads in the cell.

To control for these factors the Atlantic provinces were subdivided into geographic regions incorporating 1. and 4. Then within each region cells were defined using 2., 3. and 5.

2.1 Geographic Regions

The construction of regions started from the smallest level of disaggregation available -- the Census enumeration area (E.A.). Using a base map indicating all the enumeration areas in Atlantic Canada, two maps were developed: (i) population density by E.A., (ii) economic activity.
(i) Population Density: Each E.A. was determined by 1976 Census data to be one of three types
(1) density between 1 and 10 people/sq. mile (low)
(2) density between 10 and 100 (medium)
(3) density between 100 and 1000 (high)

A map was then completed indicating those E.A.'s which were of the above types.
(ii) Economic Activity: A map constructed for the Maritime Provinces Economic Council in 1967 outlined areas in the Atlantic provinces for the activities: Farming, Fishing, Forestry and Industry. The farming and fishing regions on these maps were transposed to the enumeration area maps. It was decided that these activities were the important ones effecting household distribution in rural areas.

These two maps were then compared with the objective of defining a small number of geographic regions. Since there was three density levels (low, medium, high) and three activity categories (farming, fishing, other), at most nine regions would result. However, since medium density and farming were in close agreement and high density was urban, the number of regions could be reduced to the following four:

REGION (1): Coastal enumeration areas without inland farming
REGION (2): Coastal enumeration areas with inland farming
REGION (3): Inland enumeration areas with medium density (farming)
REGION (4): Inland enumeration areas with low density.

A map was developed, therefore, indicating the area covered by each of these regions in the Atlantic Provinces. Note that a consideration of density and economic activity led to the control of factors 1. and 4. mentioned previously. Again, the density provided an estimate of the extent of farming and clearly fishing, being a coastal activity, indicated presence of natural barriers.

It would be anticipated that the household distribution within these regions is distinct. That is, the other factors to be considered (communities and roads) would vary from region to region.

2.2 Community Size Distribution by Region

Each of the four regions is now to be subdivided into small geographic areas or cells each of which is centered on a community. The first stage in this process is the determination of the distribution of communities by size in each of the regions. The base line information here is the Federal Electoral District maps for the Atlantic Provinces provided by Statistics Canada. They give the most complete enumeration presently available of comunities by geographic location. Since the area of a cell associated with a community depends upon the size of the community, each of the communities on the Federal Electoral District maps was coded by size as:
(1) population between 50 and 250
(2) population between 250 and 1,000
(3) population between 1,000 and 2,500
(4) population between 2,500 and 10,000
(5) population more than 10,000

The population size was determined from Statistics Canada publications of populations of incorporated and unincorporated communities in 1971.

With each community coded by size, they were then located by geographic region and by province. This step produced a tabulation of the communities by size within each region by province and for the whole of the Atlantic Provinces.

The communities within a region are the centers for the cells constituting the region. So a list of the communities by type is equivalent to a list of the cells by type. It remains to define the area of influence (cell) associated with each community (center).

2.3 Area of Influence of a Community (ce11)

Under the assumption that households are (i) located in communities (ii) along roads between communities or (iii) dispersed, it is necessary to specify what households along roads leading from a community are associated with the community and also to specify what households dispersed between roads are so associated. Suppose we have a configuration of center community and adjacent communities as given below:

If the parameters are defined as:
$D=$ distance along road to adjacent community the influence of the center community extends
$G=$ center of gravity for the closed polygon formed by connected communities

Now specification of D and G enables us to compute the area of influence shown by the shaded area in the diagram. In this study the following estimates were used;
$\hat{D}=\left[\frac{\text { population of center community }}{\text { combined population of center and adjacent community }}\right] \times\left[\begin{array}{c}\text { length of road } \\ \text { between center } \\ \text { and adjacent } \\ \text { community }\end{array}\right]$
$\widehat{G}=\left[\begin{array}{l}\text { point. such that areas of triangles formed by joining } \\ \text { the point to the } \\ \text { corner communities are all equal }\end{array}\right]$

Following this procedure we can subdivide the regions into cells centered on the communities. The shape of the cells is determined by the number of roads and the distribution of adjacent communities.

It should be noted that some communities, mostly in Newfound land, are isolated (no adjacent communities and connecting roads). For these communities the area of influence will be defined as the community itself.

2.4 Selection of Typical Cells

The objective in subdividing the regions into cells is that there will only be a few distinct types of cells. If so, studying typical cells will yield a picture of the whole region. To get typical cells we make the following assumption:

WITHIN A REGION CELLS WITH THE SAME SIZE CENTER COMMUNITY ARE EQUI VALENT.

Therefore, within each region three cells were selected with center community sizes $50-250,250-1000$, and $1000-2500$ respectively. No cells with larger centers are chosen since they would be classified as urban. In addition, three isolated communities of sizes $50-250,250-1000$ and 1000-2500 were selected. "This gives a total of 15 typical cells.

$\begin{aligned} & \text { Community } \\ & \text { Size } \end{aligned}$	Region				
	1	2	3	4	Isolated
50-250	T ${ }_{1}$	T_{4}	T_{7}	T_{10}	T_{13}
250-1000	T2	T_{5}	T_{8}	${ }^{T} 17$	${ }^{T} 14$
1000-2500	T3	T_{6}	T_{9}	${ }^{\top} 12$	T_{15}

Clearly the above assumption is not totally valid. To minimize the resulting error, therefore, typical cells were selected after a consideration of supposedly similar cells. The cell selected was required to have an average number of through roads and a typical distribution of adjacent communities. In this way the cell could be deemed typical.

Once the typical cells were designated then detailed maps illustrating the household distribution within the cells were required. To construct such maps, census enumeration area maps were obtained from Statistics Canada for all the enumeration areas which composed the typical cells. These E.A. maps were pasted together where necessary to form the detailed maps for the typical cells.

2.5. Estimation of Region Population From Typical Cells

Each of the 15 maps for typical cells was studied to obtain a count of the number of households in that cell. Using the number of each type of cell per region by province as a scale up factor, the number of households per cell was blown up to get an estimate of the number of households in the rural part of each province. This figure was compared with the actual household count from the 1976 census as a test of the validity of the typical areas.

SECTION 3: RESULTS

The methodology described in the previous section presented the following sequence of stages in the study of household distribution in Atlantic Canada:

Stage 1: Construction of geographic regions
Stage 2: Community size distribution by region
Stage 3: Selection of typical areas
In the present section the results of these stages are given.

3.1 Geographic Regions

Referring to maps $1(a)$ and $1(b)$ we find the enumeration area density maps for the Atlantic Provinces. Maps 2(a) and 2(b) indicate the farming and fishing areas. The composition of the density and economic activity maps produced the geographic region maps 3(a) and 3(b). So the defined regions are:

REGION' I: Coastal E.A.'s with no adjacent farming E.A.'s
REGION II: Coastal E.A.'s with adjacent farming E.A.'s
REGION III: Inland E.A.'s with high density (farming)
REGION IV: Inland E.A.'s with low density.

POPULATIOI! DEIISITY BY E.A.
(Iiaritine Provinces)

MAP 1(b)
POPULATIOR DEIJSITY BY E.A. (ilevfoundland)

PAP 2(b)
ECOHOMIC ACTIVITY BY E.A. (llevfoundland)

IIAP 3(b)
GEOGRAPHIC REGIO:IS (Hewfoundland)

3.2 Community Size Distribution

With the four regions as defined in Maps 3(a) and 3(b), the number of communities on the Federal Electoral District maps of the size 50-250, 250-1000, and 1000-2500 were tallied. The results for each of the Atlantic Provinces are shown in Tables 1(a), 1(b), 1(c) and l(d). Table 2 gives the community size distribution for the total Atlantic Provinces and finally Table 3 has the size distribution for isolated communities. Tables 2 and 3 will provide the SCALE UP FACTORS to be used in the next section in the estimation of population in rural Atlantic Canada.

TABLE 1(a)
Community Size Distribution by Region NOVA SCOTIA

	Community Size		
Region	$50-250$	$250-1000$	$1000-2500$
I	170	66	10
II	299	85	9
III	171	81	10
IV	146	11	1
Tota 1	786	243	30

TABLE 1 (b)
Community Size Distribution by Region
NEN BRUNSW ICK

	Community Size		
Region	$50-250$	$250-1000$	$1000-2500$
I	--	--	--
II	108	56	17
III	226	95	13
IV	123	15	2
Tota T	457	166	32

TABLE 1(c)
Community Size Distribution by Region
PRINCE EDWARD ISLAND

	Community Size		
Region	$50-250$	$250-1000$	$1000-2500$
I	--	--	--
II	--	--	--
III	337	29	6
IV	--	-	--
Tota1	337	29	6

TABLE 1(d)
Community Size Distribution by Region
NEWFOUNDLAND

	Community Size		
Region	$50-250$	$250-1000$	$1000-2500$
I	170	94	16
II	56	63	14
III	17	17	6
IV	5	--	--
Tota I	248	174	36

TABLE 2
Community Size Distribution by Region
ATLANTIC PROVINCES

	Community Size		
Region	$50-250$	$250-1000$	$1000-2500$
I	340	160	26
II	463	204	40
III	751	222	35
IV	274	26	\because
Total	1828	612	3

TABLE 3
Community Size Distribution
ISOLATED COMMUNITIES

	Communi ty Size		
	$50-250$	$250-1000$	$1000-2500$
Number of Communities	44	8	3

3.3 Typical Areas

A single representative was selected from the communities in each size category and region. The objective at this stage was to obtain detailed maps indicating the household distribution in fifteen typical areas. A list of the typical areas plus a brief description, enumeration area location, map reference and household count is given in Table 4o. The accompanying maps 4 to 13 inclusive provide the detailed household location information for each typical ce11. Since requested maps for types T_{5} and T_{6} were not received. other similar cells were substituted.

A11 maps provided in this report are photographic reductions of large scale maps, copies of which are available on special request through the Director of the Rural Communications Program, 300 Slater Street, Ottawa, Ontario, K1A 0C8. The assistance of the Department of Communications Graphic Arts group in the preparation of these maps is gratefully acknowledged.

TABLE 4
Typical Areas

Area	Region	Description	E.A.'s	Map	Hous eholds
T_{1}	I	A coastal area centered on New Melbourne, Newfoundland. Population in the 50-250 range. A single through road heading east to Brownsdale and west to New Chelsea.	$\begin{array}{\|c\|} 10-001-118 \\ 10-001-119 \end{array}$	4	36
T_{2}	I	A coastal area centered on Cape Broyle, Newfoundland. Population in the 250-1000 range. Roads heading east to Admirals Cove, north to Brigus South and south to Calvert.	$\begin{aligned} & 10-007-069 \\ & 10-007-101 \end{aligned}$	5	181
T_{3}	I	A coastal area centered on Pouch Cove, New found land. population in the 1000-2500 range. Roads heading southeast to Shoe Cove and southwest to Bauline.	$\begin{aligned} & 10-006-203 \\ & 10-006-205 \\ & 10-006-211 \\ & 10-006-212 \\ & 10-006-213 \end{aligned}$	6	414
T_{4}	I I	A coastal farming area centered on Avondale Station, Nova Scotia. Population in the 50-250 range. Roads heading to Barney's River Station, Bailey Brook, Lower Barney's River and Piedmont.	$\begin{aligned} & 12-005-159 \\ & 12-005-160 \\ & 12-005-161 \\ & 12-005-162 \end{aligned}$	7	30
T_{5}	I I	Maps unavailable for Port Maitland, N.S., substitute T_{8}	$\begin{array}{\|l} 12-011-159 \\ 12-011-160 \end{array}$	9	$98\left(T_{8}\right)$
T_{6}	I I	Maps unavailable for Digby, N.S., substitute T_{9}	$\begin{aligned} & 12-011-263 \\ & 12-011-264 \\ & 12-011-265 \end{aligned}$	10	368 (T_{9})

Area	Region	Description	E.A.'s	Map	Hous eholds
T_{7}	III	A farming area centered on Clinton, P.E.I. Population in the $50-250$ range. Roads leading east to New. London, west to Norboro, south to Grahams Road and northwest to Margate.	$\begin{aligned} & 11-004-020 \\ & 11-004-021 \\ & 11-004-101 \end{aligned}$	8	37
T_{8}	III	A farming area (coastal) centered on Abrams Village, P.E.I., with population in the 250-1000 range. Roads Teading to Urbainville, St. Timothy's, Maximville and Egmont Bay.	$\begin{aligned} & 11-002-052 \\ & 11-002-053 \\ & 11-002-054 \\ & 11-002-055 \\ & 11-002-057 \end{aligned}$	9	98
T_{9}	III	A farming (coastal) area centered on Tignish, P.E.I. with population in the $1000-$ 2500 range. Roads leading to Tignish Shore, Ascension, Harper, Norway, St. Felix and DeBlois.	$\begin{aligned} & 11-002-111 \\ & 11-002-112 \\ & 11-002-116 \\ & 11-002-117 \\ & 11-002-118 \\ & 11-002-119 \end{aligned}$	10	368
T_{10}	IV	An inland area with low density centered on Hatfield Point, New Brunswick. Center population in the range 50250. Roads leading northeast to Springfield, northwest to Henderson Settlement and southwest to Lower Kars.	$\begin{aligned} & 13-002-116 \\ & 13-002-118 \\ & 13-002-311 \end{aligned}$	11	126
T_{11}	IV	An inland area with low density centered on Brookfield, Nova Scotia. Center population in the range 2501000. Roads leading to Pleasant Valley, Brentwood, Middle Stewiacke and Hilden.	$\begin{array}{r} 12-005-060 \\ \text { to } \\ 064 \\ 12-005-057 \\ 12-005-058 \end{array}$	12	359

Area	Region	Description	E.A.'s	Map	Hous eholds
T_{12}	IV	An inland area with low density centered on Chipman, New Brunswick. Center population in the 1000-2500 range. Roads leading to Minto, Coal Creek, Bronson Settlement, Newcastle Creek and Gasperaux Forks.	$\begin{array}{r} 13-002-355 \\ 13-002-356 \\ 13-002-362 \\ 13-002-363 \\ 13-002-364 \\ 13-002-365 \\ \text { to } \\ \vdots 368 \end{array}$	13	771
T_{13}	$\begin{aligned} & I \\ & S \end{aligned}$	Community of Mose Ambrose, Newfoundland, population in the 50-250 range.	10-002-155	$\begin{aligned} & N \\ & 0 \end{aligned}$	
T_{14}	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~A} \end{aligned}$	Community of Gaultois, New foundland, population in the 250-1000 range.	10-002-212	$\begin{aligned} & M \\ & A \end{aligned}$	
T_{15}	$\begin{aligned} & E \\ & D \end{aligned}$	Community of Ramea, Newfoundland, population in the 1000-2500 range.	10-002-218	S	

MAP 4

LOCATION:
FED 10001
EA 118 (PART)
119 (PART)

- HOUSEHOLD

REGION I : AREA TI

TYPICAL COMMUNITY SIZE 50-250

MAP 7

[^0]

MAP 9 (PART I)
location:
FED 11002
EA 053

- Household

REGKON III : AREA TE (ENCLOSED)
TYPICAL COMAUNITY SIZE 250-1000

MAP 10 (PART I)

REGON III : AREA T9 (ENCLOSED) TYPICAL COMMUNITY SIZE (1000-2500)

SCALE

MAP IO (PART 2) TIGNISH VILLAGE
location:
FED 10002
EA $\quad 119$

LOCATION :
FED 13002
EA 116 (PART)
REGION N: AREA TIO (ENCLOSED) TYPICAL AREA SIZE: 50-250

- = HOUSEHOLD

SCALE
$\begin{array}{lll}1000 & 0 & 0 \\ & 000 & \\ \text { MILES } \\ \text { METRES }\end{array}$

* SEE PART 2

MAP || (PART 2)

LOCATION:
FED 13002
EA 118 (PART)

SECTION 4: VALIDATION

As a test of the representativeness of the typical cells and of the validity of the scale-up factors, the number of households per typical cell and the number of communities per cell type were used to estimate the rural population in the Atlantic Provinces.

For the isolated communities, the population considered was the Census population (no maps included) since the typical area in this case would actually be the community.

The results of this estimation are shown in Table 5. The actual rural population in the Atlantic Provinces by the 1976 Census was $1,105,948$. The estimated population by scaling up the typical cell data is 933,754 which is about 84% of the actual population. There are a number of factors to consider in this underestimate. First, since E.A. boundaries do not coincide with cell boundaries, 1976 census data for the population per cell (the second column in Table 5) was obtained by multiplying the household count from the enclosed maps by persons/household ratios (for rural portions, to be: N.S.: 3.7., N.B.: 4.2, P.E.I.: 4.5, Nfld: 4.7). Thus the assumption that these numbers are valid for the cells chosen will introduce some error. Furthermore, the question must remain open as to the representativeness of each chosen cell. There is also no doubt some error introduced by the substitution of two other cell examples for T_{5} and T_{6}. Finally, a truly accurate calculation for T_{13}, T_{14} and T_{15} would entail summing the 1976 populations for all isolated communities, rather than simply scaling up the population of the three chosen communities.

Finally, the area surrounding a large town or city will often be allocated to the area of influence of that town. Thus the area attribution method will miss those households that are in rural E.A.s close to large. centers.

TABLE 5

ESTIMATION OF ATLANTIC REGION POPULATION

| Population
 in typical
 area | Scale up
 (Number of
 Communities) | Population for
 Cell type |
| :--- | :---: | :---: | :---: |
| Area | | |

HOUSEHOLD DISTRIBUTION IN THE RURAL AREAS OF THE ATLANTIC PROVINCES... --MacLean, L.C.

|

I
I

 er

I

I
I
I
I
I

I

[^0]: - = HOUSEHOLD

