
QA 
601 
V35 
1981 

Pdne11111 

eig  Government of Canada 	 Gouvernement du Canada 
111 	Department of Communications 	Ministère des Communications 

ELEMENTS OF TRANSFORMATION METHODS 

by 

G. J. van der Maas 

September 1981 

Service de la Réglementation 

des Télécommunications 



I 
II 

l 

I 
il 

il 

z1/4.--, , 19B1 

umlle- 11121.1[1firreW 

September 1981 

II Teittectramectieua 

ftweeen nirvits 
Service di la Riplementation 
des Télikommunications 

II 

1  

QA 	1 
601 
V35 
1981 

Governrnent of Canada Gouvernement du Canada 
Deportment of Communications  Ministre  des Cornmunications 

I I  

l 

il 
I (A)  

ELEMENTS OF TRANSFORMATION METHODS 

by I I  
G. 	van' der Maas 

I 

I 



PL. 	tc-c)(70 
1(2 0 

r( 



ELEMENTS OF TRANSFORMATION METHODS  

Operational Calculus and the corresponding field of Integral 

Transformations have become more and more powerful and indispensable 

tools in many branches of Pure and Applied Mathematics. The mathema-

tical procedures used originated in the work of Oliver Heaviside 

(1800-1925), who for the first time seems to have made a systematic 

use of operational methods in the solution of problems in Physics and 

Technology. 

Since the two-sided Laplace Transform method is almost isomor-

phic to the operational method used by Heaviside, some writers base 

their transform techniques mainly on this Transform and the closely 

related General Fourier Transform. Laplace and Fourier Transforms 

are integral transforms  of the type 

n•n 

f(x) = f f(u)K(x,u)du. 
a 

K (x,u) is called the Kernel of the Transform. For some well-known 

transforms these kernels are of the following type: 

exp(-ux) 	FOurier and Laplace Transform 

uJn (xu) 	Haenkel Transform 

x-1 
u 

 Mellin Transform 

1 	Hilbert Transform 
u(x-u) 

This transform is a special case of a 

class of transforms called convolutions 

with kernel g(x-u), i.e.: 

g(x-u) 	Convolution Transform 

(1) 
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1 
(3)  

(4) 

The corresponding integral in a convolution transform is called a 

convolution product. 

Singularity functions  

By the introduction of singularity functions it is possible to 

define all the convolution integrals over an interval (-00,+co) by 

defining the integrands in the integral transformation outside their 

interval of definition as identical to zero. So e.g., a function f(t) 

defined in 0:5_ t < +co could be defined as f(t) 1J1-(t) 

where 	U (t)= 0 for t < 0 

U+(t)= 1 for t > 0 

Basically the most important singularity functions can be derived from 

the 'signum function', defined as 

sign  t-1 for t<0 

 s ign t = 0 for t = 0 

sign  t=+1 for t>0  

In tetms of this function we may define 

Witt) = 1+ â sign t - â sign 2  t 

0 
U (t)= (l+sign t) 

U(t) = â sign t+ â sign 2  t 

We summarize the relevant functions described above in the following 

table 

(2) 

Table 1 

U- (t) 	U44) 	
0 	

sign t 	sign 	t t U(t) 	
2 

	

<0 	0 	0 	0 	-1 	+1 

	

=0 	0 	1 	à 	0 	0 

	

>0 	1 	1 	1 	+1 	+1 



(5)  

(6)  
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If we define 	tt=0 for t= 0 we also have 

=t sign t 

The well-known gaussian symbolUidefined by 

LtJ 	largest integer< t (integral part of t) 
— 

may be written as 

W ee
lc
, ff' e(t-k) 	ke I 
= -co 

The U functions and the sign function have many interesting 

applications, both in mathematics and technology. So we verify 

easily 

f(t) sign f(t) 	 'full wave rectifier' 	 (7) 

f(t) (l4-sin  f(t)) 'half wave rectifier' 
2 	 ( 8 ) 

b
1
1-(f(t) - b

1
) sign

2 
(t-a

1
) 

(9) 

formally may be used to redefine a point (al , f(a1)) as 

(al , bl ) 

An operator of the form 

f(t){ U (t-a) - U (t-b)1 	a< b 	 (10) 

will redefine f(t) outside (a,b) as zero and will give 

various values in a and b, depending on the choice of the 

U-functions. We call such an operator on f(t) a truncating  

operator.  This operator makes it possible to replace integrals 

of the formf(u) du by f f(u) (U (t-a) -U (t-b)) du 

Thus all functions of real variables can formally be defined 

in an interval (-010,.+00) without loss of generality. 



That this is more than a formal concept we will illustrate by the 

following example: 

Problem: Find the volume of an n-dimensional sphere. 

Solution: Let sphere have equation 

	

2 	2 	2 
x  +x2 	+ 	+ x = 

	

1 	2 	' • • 

+00 	-Fop 	n 	2 
Vn(t)= 	

f • • • •. 

	U(t- E x. ) dx
1 

dx
2 

. . . dx
n -co 	- OD  

Use double-sided L-transform on t 

4 

L(vn (t))= eici (s) = 

_ 1 ( vr. 
 s 

	

4.00 	2 	2 	2 

	

/jer- e 	1 	e 	2 . . . e 	n dx
n 

. .
1 

1. /4( • • • 	
-sx 	-sx 	-sx 

- CO 

Transforming back we obtain 

n  

	

L-1 rn (s)_  4i t 	e r n  7 

re + 1) 

	

2 	2 

- 
Taking n=1, 2, 3, . . . we find V

1 
 = 2r; V

2
=TIT

2 
 ; V

3 
 =.A- ¶ r3 ; . . . 
 3 



(11)  

(12) 

(13)  

1 
The  cS -operator  

1 
For every finite h>0 the function {U(t) - U(t-h)} 	is well 

defined (assuming the U-function to be specified). Essentially it 

is a 'pulse' with width h and height 	, so that its area is 1. 

The pulse lies right of the origin of the t-axis. 

Now consider more generally 

f(t)  {U(t-a) - U(t-a-h)} 

h 

The limit of this product would not exist in the t-domain. But if 

we take the L-transform of this product, we get 

1 
f
a -1-11 	-su 	f(a+ oh) 	-s(a÷oh) h  

f(u) e IT a 	du = 
h O< 6 < 1 

For h -› 0 this integral would have the limit f(a) e-sa . We therefore 

formally associate with this limit an operator S(t-a) and write 

L (3(t-a) f(t) = f(a) e-sa  

Note that we must define 

f(t) 6(t-a) = f(a) 6(t-a) 

We also have 

+ OE)  
f(u) S(t-u)du = f(t) 

,r 
In a similar way operators u 

(k) 
 (t) can be introduced, corresponding 

to the limit of the k
th 

order differences of U-functions. It should be 

noted that the signum function and the U-functions are indeed functions, 

but the 6(1) (t) symbols are to be treated as operators, though in many 
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1 
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applications they are called l functions'(Diraa -functions; impulse 

functions). They correspond to the inverse generalized L-transforms of 

s
k • 
 So we may formally write 

k=.0, 1, 2 . . . 	(14) 

Though the theory of distributions makes the use of these 'impulse 

functions' no longer necessary, a formal use of the 6's as operators 

is still permissible, provided that all the operational rules are 

checked rigorously. 

Other functional transforms  

Besides the Laplace and Fourier Transform the Hilbert Transform  

is playing an important role in communications. The Hilbert Transform 

of a function f(t) is defined by 

Hf(t) = 1  f -00f(u)  du 
t-u 	 (15) 

Since this transform is of the convolutional type, and convolution 

products f
1
(t) * (f

2
(0 in the 'object space' correspond to ordinary 

products(101 
	1 
(s) (PI 

2 
 (s) in the 'result space', one would expect that 

f  

this transform would formally be a product of two transforms. 

Using the Fourier Transform, we have indeed 

If F(f(t)) = o4(1)) - j 	(w) 

then FH(f(t))=-j sign w (ot(to) -jf3(w)) 	 (16) 

L {ô 	 (t)} s
k 
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(17) 

So with 1 we may associate the Fourier Transform -j signw : 
nt 

1 
F(--) = 	j sign w 

iTt  

Hilbert Transform and Fourier Transform are therefore closely related. 

Indeed, if we form «OA- jllf(t), we have 

F(f(t) 	jllf(t)) =(1+ sign w) (a(w) 	i3(w) 	 (18) 

This Fourier Transform is zero for negative frequencies and plays an 

important role in sampling theorems. f(t)i-jHf(t) is often referred 

to as the analytic signal.  This expression gives a natural extension 

to the frequency concept for an arbitrary signal.  Calling Hf(t)= g(t) 

and writing the analytic signal in the polar form we get: 

1f7-7 j tan  -1 11  
f(t)lBjg(t) = 	4- g 	e 	f 

w instantaneous can then be defined as: 

d tan 
List= 	-  1 	fg' - 	_ fg'-gf' 

dt 

	

1 +-Fa- 	
f
2 

g
2 

	

2 	
f 

 

f
2 

Note that for f=A cosWo ; Hf=A sinwo t and winst reduces tow() , 

as is immediately verified. 

Of all the integral transforms available, the two-sided (bilateral) 

Laplace Transform and corresponding generalized Fourier Transform are 

probably the ones most used in applications. Since they are essentially 

not different, it is irrelevant which of the two is used. It is 

important to notice that the one-sided L-transform may be written as 

a two-sided L-transform by using the U function: 
00 	 +00 

o
f f(t)e-stdt = f f(t)U (t)e-stdt 

-00 

-1 g_ 

( 19) 

(20) 



(21) 

and more generally 

1  

r 	s(es-l) r  
r=0, 1, 2 

One is led to another type of Transforms by considering the 

Lrtransforms of the functions of type f{[xj} ('entier T functions), 

where rx] is the largest integer  <X.  

We find 44 - 	 
s(e -1) 

8 

Using Newton's difference formula, we get formally: 

L f (tx.31= f (0) -F .  g(1) - f(01 	g(2) _2f(i) 	f(0)} 

s(es  - 1) 	s(e
s 

- 1)
2 

(22) 

1 
 Except for factor 7this is formally a power seri 	

1  
es in 

(e
s 	

1) 

We also have formally 

co 	 (23) 
1 	-s 

L «bar= -s (1-e )(Zf(n)e
-ns 

) 
n=0 

Again we have essentially a power series in e-s . This leads us to 

consider a type of transform where the 'object' function is a function 

of a discrete integer-valued argument n, which may range over the set 

of all integers. In interpolation and sampling problems we meet these 

entier functions; consider for instance g(x)= g(x 0 -1-tAx) = f(t). Taking 

f(Ct» we have the function g(x) sampled at intervalsAt. We will call 

a function like f(r:Q)refn
a sequence. We usually write n as a subscript 

and call it index.  Also in many cases we consider only the 

) 



-n (24) 

Ln (t) A 	 + 

L 

(25) 

(26)  

(27)  

1 
1 
1 
1 

li  

1 

1 

1 

1 

1 

argument values  nO. Particularly we will define as Z-transform 

of the sequence fn : 

F(z) 	E 	f z 
0 n  

i.e. a formal power series in 

The Z-transform is also sometimes defined in positive powers of z: 

OD 

(z)= E f zn 
 n=0 n 

We will choose the definition given in (24). 

Both F and Ér generate fn  and can be called generating  functions 

for f
n

. This concept of generating function is more familiar for 

the case where f
n 

is also a function of a continuous real variable t. 

f 	f 
 n n
(0 	K and F(z) and z) are especially used for the generation 

of these functions f
n
(t). Further extensions of these concepts 

are often found. A combination of Laplace and/or Fourier transform 

methods makes it sometimes possible to find such generating functions, 

as illustrated by the following example for the Laguerre polynomials: 

2 	t
3 

t 
 

( 3 ) 	+ 

1 	n - 1 	 1 
( + (2 ) 	• • • s 	- 	) 

s2
n  

co 	co 
1  

L {E z
n
L (t) }  = 

1
- E zn  (1- 1: n= 

n=0 n 	s n= 0 	s (1-z) z 

-Z 

n, 	1 	1-z 
n 

z 	= 	e 

9 

00 

2! 

1 
1 1 



(28)  

(29)  

(30)  

So AB
n

= (P-Q
2 

+. , . +(- 
- 

4 	+ • • .) t
n n-1 

2 
(31) 

- 	
4. (1) n {(t.I.n) n 

 • 	• 	• (n+1) 
- (n1 )  ( t + (n-1) + • } (32) 

10 

This example illustrates how transform methods may even be formally 

used to find a possible answer to a problem, which is itself a 

transformation problem. Such heuristic techniques are often extremely 

powerful. 

Consider for example the Bernoulli polynomials: 

n 
B(t) =Pu tn 	Bi (ni) t 

n-1 
-I- B2 ( 	

n-2
2) t 
	. 

For which the well known relations hold 

AB(t) = B
n
(t +1) - B(t) = nt -1 = Dtn 

Now the operators  Land D are formally related by 

42 	A3 A  = e
D 
-1; D:=1n (11-4) = A 

• 2 	3 

This leads formally to 

n 	n+ 	n 	
(4.) n A  n tn  

Bn (t) = t 	t 	3  t - . . . (n +1) 

i . e . 

t3  
Bn (t) = tn  - 	{ (t +1)n 	

il}+ 1 	{ ( t 2) n  - 2(t -F 1) n  + tn} + 

which is perhaps not such a well known, but indeed a correct formula 

for generating these polynomials. 

For an efficent use of transform methods it is essential to 

have at one's disposal a list of corresponding 'object' and 

result' functions ('dictionary') and a list of corresponding 
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operators in 'object' and 'result' space ('grammar'). The way 

in which transforms then make it sometimes possible to find a 

solution S to a problem P is by transforming the problem P from 

'object' space into a problem P in 'result' space. If a 

solution S in 'result' space can be found and S can be transformed 

back uniquely into S, we have solved our problem. It is interesting 

to note that even when rigorous 'looping' around to the solution of 

the problem may not be possible, a formal application of the trans-

formation rules may not lead to the correct solution, buy may give us 

a good hint with respect to its format. In this way transformation 

methods become a heuristic tool for finding solutions to problems. 

So summarizing, Transformation Methods sometimes can be used 

rigorously to find the correct solution to a problem, or sometimes 

heuristically to help find a solution. 
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