

Allotment Program

1

Hélène Cholette-Lacasse
Telecommunication Regulatory Service

$$
\begin{aligned}
& \text { Department of Communication } \\
& \text { Ottawa, Canada } \\
& \text { October, } 1982
\end{aligned}
$$

CONTENTS

I - Purpose of the computer program
II - Overview of the system
III- The input data file "DATAASS"
IV - Overview of the program
V - Program output
Figure 1 : Flow diagram
Appendix A: Glossary
Appendix B: Useful program variables
Appendix C: Program print out [SCOSUHF]
Appendix D: Partial data file print out [DATAASS]
Appendix E: Sample run [XUHF]!
Appendix F : Detailed program logistics

The UHF-TV Channel Allotment Program has been developed to allot a requested number of channels, usually from channel 14 through 69, to a specified set of communities, subject to the following:
(1) Compatability. New allotments must be compatible with each other and with existing allotments.

In the following, the term allotment is used to denote either an approved or existing transmitter for a given channel at a specific site, or a channel planned (by D.o.c.) for a given town. In the latter case the channel does not have a fixed location.
(2) Priorities. The user may specify that certain requests are more important than others.
(3) Minimumimpact. Where a choice exists, the allotment which has the least impact on future spectrum avallability in surrounding communities will be chosen.

II- OVERVIEW OF THE SYSTEM

There are two files that can be accessed by the main source file SCOSUHF : the DATA file or "DATAASS" and an output DUMP file or "UHFOUT".

The DATA file contains distance tables and all the relevant Canadian and U.S. UHF-TV data for regular and low power stations. Both protected channels and new requests are found in that file.

Should there be a need to run just a few cities or a small part of a province, and if the channels selected are acceptable, these channels may be frozen and a partial plan may be built around them. The UHF allotment program will dump at the user's request such information onto an output file listed as "UHFOUT" and the information will appear in the proper format ready to be inserted into that part of the UHF data file where protected stations are listed.

To execute the UHF Allotment Program the user should call upon XUHF. The latter will set all input/ output ports as well as run the program.

III- THE INPUT DATA FILE "DATAASS"

Requests and Protected Channels

100.000	CHRIS	B C	4927001181229	42	1500
101.000	CHRIS	BC	4927001181229	42	1500
102.000	CHRIS	BC	4927001181229	42	1500
103.000	CHRIS	BC	4927001181229	42	1500
1.04 .000					$+0001$
395.000					-0001
396.000					
400.000	26ARMSTRONG	B C	5027001191200	22	1001
401.000	49ASHCROFT	BC	5043001211700	22	1002
402.000	14 CAMPBELL RIVER.	B C	5001001251500	22	1003
403.000	51CAMPBELL RIVER	B C	5001001251500	22	1003
404.000	4 1CASTLEGAR	B C	4919001174000	22	1004
405.000	14 CHILLIWACK	BC	CBUF4906361215047	22	1005

Each request must be entered into the data file according to the following format:

For channel REQUESTS, columns 2 and 3 are left BLANK. For channels which have to be protected, columns 2 and 3 indicate the correct channel.

Columns 24 to 27 are left BLANK to indicate a vacant allotment or are given a four letter call sign to show that a specified site is being proposed. Since it is often the case that the exact location of a transmitter is unknown, it is specified that the transmitter will be anywhere inside a certain circle. The center of the circle is generally the post office location in the town. The diameter of the circle is a program parameter. A diameter of FLEXC (default: 10 miles) is used for co-channel interference; a diameter of FLEXT (default: 5 miles) is used for adjacent channel interference. Maximum flexibility only occurs between two allotments. If one or both have a call sign, the flexibility is reduced to one-half or to nil.

Column 42 indicates the class by a number code: Class C stations are shown as 3 , class B as 2, class A as 1 and Low Power stations appear as 4. A U.S." station is shown as a BLANK but the parameters used are those of a class C by default.

Column 43 contains a 1 or a 2 to reflect the geographical situation of the channel; Zone 1 denotes a "high density" area.

Columns 44 to 48 must show a 5 -digit number. A different number is given to each town; up to 09999 for Canadian towns. 'All U.S. protected channels must have an associated town number equal to or above 13000.

Whenever more than one request exist in the same town it is imperative that the town numbers be identical.

Channel requests can be arranged into as many as 8 different priority groups. This is done by inserting a line containing +0001 in columns 44 to 48 , to separate each priority group. When all requests are entered into the data file, a line containing -0001 (columns 44 to 48) must be inserted, followed by a completely BLANK line. Then the protected channels are entered and they are followed by a completely BLANK line which signals the end of the UHF data file.

Distances

"Taboo Distances" refer to the minimum distance permitted between transmitters.

The first 32 lines of the UHF data file (DATAASS) contain the Canadian Taboo Distances: Presentation of the data is such that the lines represent Taboo Distances from -15 through +15 , line 16 reflecting the cochannel taboo for zone 2 and line 32 reflecting the co-channel taboo for zone 1 . These 32 lines also contain 16 columns. The latter represent the Taboo Distances between each of the four classes of stations and all the other classes alternatively. The order that is followed is $A-A, A-B, A-C, A-L P, B-A, B-B, B-C, B-L P, C-A, C-B$, $C-C, C-L P, L P-A, L P-B, L P-C$ and $L P-L P$ such that the first member of the couple represents the class of the protected channel and the second member of the couple that of the requested channel.

Line 33 of the data file contains the U.S. Taboo Distances in the following order: $\pm 1 ; \pm 2, \pm 3, \pm 4, \pm 5$, $\pm 6, \pm 7, \pm 8, \pm 9, \pm 10, \pm 11, \pm 12, \pm 13, \pm 14, \pm 15$, co-channel zone 1 and co-channel zone 2 .

Lines 34 to 39 of DATAASS contain distance tables from B.P.5, issue 2,1962 ed. which give North-South distance in miles per degree of latitude at a certain latitude and the East-West distance in miles per degree of longitude at a given longitude.

Lines 40^{\prime} to 71 give the Taboo Distances that are required when co-siting of regular or low-power stations (of the same class) is involved. The lines are for Taboo -15 through +15 and the columns are for classes $A-A, B-B$, $C-C$ and LP-LP respectively.

A11 distances contained in the UHF data file are in miles. Furthermore, Taboo Separations are now being revised by D.O.C. and thus are subject to further modifications.

Main program

The program reads and stores information about towns in the study area. It does so by reading the data file where it finds the pertinent information with respect to the protected channels and the new requests as well as the distance tables.

Once the initial conditions (initialization) have been satisfied the program proceeds to satisfy the requests, one at the time. It handles the requests by priority, satisfying all requests at the highest priority first and continuing through lesser priority requests. The highest priority has the lowest priority number. Within each priority the worst: town (the one first chosen for allotment) is the one which has the most unfavourable, hence the lowest, ratio of number of available open channels to number of unsatisfied requests.

The number of available open channels at a town is usually less than the number of open channels because, in general, some open channels would interfere with each other and therefore could not be allotted simultaneously.

The algorithm used to determine the number of available channels is only an approximate of the true value. It takes the' lowest numbered open channel, counts it, blocks out all mutually interfering channels, chooses the next remaining open channel, counts it and so on. The actual number of available channels is not less than the number obtained by the program and not greater than the count of open channels.

Since the algorithm to count the number of available channels is destructive of the VALUE array, the portion of the array needed for this count is copied to a separate vector $\mathbb{T} E S T$ where the count takes place.

If there are no remaining open channels at a town and outstanding requests are present, an error message is produced and the count of requests for that town is reduced to zero and the count of requests at each priority is correspondingly reduced.
"Impacts" follow the "Channel Criteria". A measure of total impact is given for each available channel at the selected town (unavailable channels are given a total impact of zero). This is the total of the impact coefficients corresponding to all allotments which would conflict with the allotment of that channel to the selected town.

The channel selected will be the one with: the lowest positive total impact. If there is a "tie", the lowest channel number will be assigned.

The main program then allots the new channel and reassesses the channel importance and the number of available channels at all towns which are affected by the new allotment.

Program 1imitations

The following parameters limit various aspects of the problems handled by the UHF-TV Allotment Program. Most can be changed by minor program modifications.
(1) Problem size. The maximum number of towns in the study area must.not exceed 150 .
(2) Channels per town. A maximum of eleven new allotments per town is allowed during each run of the allotment program.
(3) Range of channels. The program may allot UHF-TV channels from channel 14 to 83 unless otherwise specified by the user. Usually channel limits range from channel 14 to channel 69.

V - PROGRAM OUTPUT

The program user can choose between two main possible output formats. The maximum output gives the detailed channel impact matrix for each channel and for each town following the priority scheme. The minimum output of the system consists of a simplified progress check on the new allotments. In both cases an additional table giving the channel distribution summary is printed.

A very concise flow diagram summarizing the rationale followed by the UHF-TV Allotment Program is given in Figure 1 . The three subroutines called upon by the main program are referred to as well in figure 1 . They are SUBROUTINES DIST; UPDATE and EVALU.

A - For each priority at which requests exist
B - For all requests outstanding at this priority
C - If town under consideration is different from previous town
D-- For each open channel at the worst town
E-- If print option 1
F- If print option 2

Figure 1 : Flow of the UHF-TV Allotment Program

```
APPENDIX A : GLOSSARY
adjacent channels - two different channels which may interfere with each other
available channels - an estimate of the maximum number of new allotments which could be made at a town without mutual interference
best channel - the open channel at the worst town having the lowest impact
channel impact value - a numeric measure of the relative importance of loosing a given open channel at a given town due to a conflicting new allotment
```

co-channel - two allotments on the same channel
impact - for a given channel at a given town, the sum of the channel impact values of all conflicting open channels
open channel - for a given town, a channel which could be assigned without conflict with existing allotments
request - a number of new allotments desired for a given location
taboo - the minimum distance between two allotments on the same or adjacent channels necessary to avoid interference
town - a location at which one or more channels are allotted or at which new requests have been made. Each town has a unique 5-digit town code, a name and a location (latitude and longitude)
worst town - the town having the lowest non-zero ratio of number of avallable channels to unsatisfied requests
DENOM - Number of open channels which interfere with

RATIO (150) - The ratio of maximum number of channels remaining for allotment and number of new allotments desired for each town i

TEST (56) - Temporary array to hold channel (whose index is i) impact values for a town when counting number of available channels as the counting process is destructive

TIMP (56) - Temporary array to hold channel (whose index is i)impact values for a town when counting the total channel impact as the counting process is destructive

VALUE (56,4,150) - The channel impact values. The inverse of the number of channels at town k which would mutually conflict with the channel whose class is j and whose index is i. If $=0.0$ use of the channel has been precluded by some previous allotment.

APPENDIX C: PROGRAM PRINT OUT (SCOSUHF)

SET F : 201 / UHFOUT ; OUT

Reference

line number

Comments

$8-33.1$

21
$26-27$
$24-45$

46
$47-55$

56 - 61
$61.1-61.2$
$62-73$

Dimensioning of arrays and declaring of parameters

Definition of classes $\left.\right|^{\prime \prime},{ }^{\prime} A^{\prime}, B^{\prime}, C^{\prime},{ }^{\prime} L P^{\prime} \mid$ where ' or "BLANK" represents U.S. station

Enter channel limits (LOW , HIGH)

Initialization of several variables (VALUE = 1)

Elimination of channel 37 from plan (i.e. VALUE $=0$)

Read in Canadian and U.S. Taboo distances

Read in distance tables as listed in B.P. 5 issue 2, 1962
(miles per degree of latitude and miles per degree of longitude)

Read in Canadian Taboo distances allowing for co-siting

Further initialization

159	-	162	Call for subroutine UPDATE
387	-	433	Subroutine UPDATE
		\checkmark	Given a protected channel at a given location determine its effects on the channels in the towns for which there exists a channel request. If the two are mutually interfering, block the channels in those towns
(399.1	-	399.14)	Given the distance between the protected channels and the towns for which there exists a request, if the distance is less than or equal to 40 meters (0.02485 miles) the 2 channels are considered to be c0-sited and their fields at 1 km from the transmitter are not" permitted to differ by more than 0.5 dB
(394	-	397)	Determine if protected channel is in Canada or in the U.S.
(400	-	407)	Determine FLEX (full, half or none) to be used given each couple of protected channel requested channel
(409	-	413)	Determine which Taboo table is to be consulted: * REQ if protected channel is in U.S. * REQD if protected channel and requested channel are in Canada * REQC if co-siting is involved If the protected channel is a U.S. low-power station then the Canadian Taboo table is used. In order to co-site two channels they must be of the same class
(414	-	421)	Check for zone in case of co-channel and read corresponding line of Taboo tables: Lines 16 and 55 for zone 2 in the non co-sited and co-sited case respectively, and lines 32 and 71 for zone 1
(417	-	422)	Given above factors determine exact separation required for each Taboo
(423	-	431)	If actual distance between protected channel and request is less than that required, zero out that channel (i.e. VALUE $=0$)

At this point in the program non zero entries in array VALUE indicate open channels (Initialized VALUE $=1$)

Call for subroutine EVALU

Subroutine EVALU

For each town for which there exists a request, determine the channel impact value for each open channel in that town
(now $\operatorname{VALUE}=1 / \mathrm{DENOM}$)
For each town where there exists a request and for every open channel in that town determine how many other open channels in that town would interfere with it should they be alloted simultaneously. For open channel X , $\operatorname{DENOM}=\frac{1}{(\text { self })}+\sum \begin{gathered}\text { other open channel } \\ \text { Taboo to } X(i n ~ t h a t ~ t o w n) ~\end{gathered}$

Choice of output is given

For each priority, the "channel criteria" are used to select the town to receive the next allotment. Four numbers are reported for each town.
(1) Total number of outstanding requests at the current priority
(2) Total number of requests
(3) Maximum number of channels available at this town *
(4) Ratio of (3) to (2), or zero if (1) is zero

* The algorithm used to determine the number of available channels is only an approximate of the true value. It takes the lowest numbered open channel, counts it, blocks out all mutually interfering channels, chooses the next remaining open channel, counts it, and so on.

Select worst town.
The town selected will have the lowest positive ratio of available-to-requests. If two towns under the same priority have the same ratio, then the one with the most requests is handled first

294 - $\quad 309$
310
$311-323$
324 329
330 - 360
361362

For each and every new allotment reassess the channel importance and the number of available channels at all towns under request which are affected by the new allotment. Thus new allotments are added to the list of protected channels

Do all of the above for next worst town

Formatting and writing of minimum program output i.e. part of option 1 and option 2

Writing new channel allotment on UHFOUT file

Calculate, format and write channel distribution summary

Stop

End

$\operatorname{VALUE}(\mathrm{J}, \mathrm{CLA}, 1)=1.0$

48.000 C
45.000 C
50.000

50
3.000.
55.0001006
57.000
58.000
$59.000 \quad . \quad 100215 \mathrm{~J}=1,2$

READ(1NPU1, 203)(LUN(1), $1=35,75$)
205)((RECC(1, 3),
$62.000 \quad \mathrm{NI}=1$
6. NGKUUP=1
$66.000 \quad \mathrm{NK}=1$
. 1000
$70.000 \quad 718 \operatorname{IF}(\mathrm{MCH}(1, \mathrm{~N} 1)) 10,10,16$
$1.000 \quad 16 \mathrm{TCHA}=\mathrm{MCH}(1, \mathrm{~N} 1)-13$
76.000 5CLASS, MF (2, NR), MF (1,NR)
i9.000 IF(MF(1,NR)-1000)11,11,13
15,15, 114
$82.000 \quad 216$ DO 19 I = 1, iD
$17 \operatorname{NWANT}(1, y)=\operatorname{NWANT}(1, y)+1$
MNAN (1, MGROUP $)=$ NWANI $(1$, NGROUP $)+1$
87.000 GU IU 18
88.000 19 CONTINUE
89.000 210 CR (1, R) ALAD(NR) (ALAM(NR):60. TALAS (NK))/3600.
92.0 $\quad \operatorname{NWANT}(N R, N G R O U P)=1$
93.000

1

APPENDIX E: SAMPLE RUN (XUHF)

(

