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INTENT

This.sfudy is an attempt to provide a pragmatic yard-
stick for resolving often repeated but usually
semaanc statements, such as "my system is more reliable
than yours etc." The author has attempted to develop
purely analytical techniques for analyzing, synthesizing
and comparing communicéfion-compufer syéfems with arbitrary

but specifiable reliability.
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Abstract

In this report methods are given for obtaining the
“reliability function, and moments of the first Time to failure
for a éeneral class of complex sysfems. The class of complex
sysfems considered are all those systems that héve sﬁbsysfems
(any number) with known (constant) failure and repair rates.
This class for all practical purposes includes tele-

communication systems, such as microwave systems, etc., as

well as most telecommunication-computer (computer-utility)
systems. |In addition the methods given are also applicable to
many stabilifty problems in economic systems.

Specifically, complex systems composed of any finite number
of subsystems are considered. The compliex system at any *time,
can be in any one of r(r>= |) acceptable states or in any one of
m(m=21) failed states. The methods presented for the reliability
model ling of such complex systems, assume a state behavior that
is characterizable by a stationary Mafkov process (also called
Markov chain) with finite-dimensional state space and a discrete
time set.

It is shown that once the matrix of the constant failure
and repair. rates of the subsystems is known, and the state
assignment is made, then it is a straightforward matter to

obtain the probabilistic description of the compliex system.



Introduction

[t is well known C(, (2)

, that the reliability modelling
of complex sysfems that operate in a repair environment, and whose
subsystems have known constant failure and repair rates,

can be accomp!ished via a linear matrix calculus and use of
elements of the theory of stationary Markov processes. The
methods that exist for mode | | ingsuch complex systems may be
summarized as follows: Let the éomplex system have r accepTablg)
states Ai( i =1, ..., rhwhich form +the set A, and let all failed
states be lumped into a single failed state F. Then methods exist
for obtaining a time dependent reliability function R(n), defined
as the probability that the compliex system is in some acceptable
state in A at time n. Methods also exist, which allow computation
of the moments of the first time to failure, that is, the moments of
the first time thatthe complex system passes from acceptable
sTaTeg inAto the single lumped failed state F. These methods
all suffer from a number of obvious limitations, first of all the
lumping of failed states into a single failed state «conceals the
relative importance of the different types of failure modes Thaf.
are present in any complex sys%em. Secondly, no techniques are
provided for computing the imporTanT moments of the first time the
complex system passes from specified acceptable states to

specified failed states.

*) See definition 1.



in this paper, the above approach is extended to include

complex systems having m(m=21 ) failed states in the set F.

Methods are presented for obtaining a time dependent reliability
function for such complex systems,as welil as for obtaining the
moments of first time to (a particular) failed state, as well as

Thevmomenfs of the first time to failure (any state).

‘The construction of a model for predicting the behavior of
such a complex system poses three distinct problems. The first
two are in effect specification problems. The first of these is the
"state assignment" probiem, that is the enumeration of the states
Tha+ suffice to characterize the various operating modes of the
complex system. The method for making such a state assignment will
depend on the specification of the structure and operation of the

given complex system. The second problem involves the determination

of meaningful numerical estimates of the one step state transition

*)

probabilities This is the, so called "generél inference"

3 - * % '
(>, pp 69-70) ) for Markov processes. The third problem

problem
which is the one this paper . solves involves the applicafion of
techniques from the theory of stationary Markov process to develop
methods for obtaining apriori, state probability functions, a
reliability fuhction, and estimates of the moments of the first

time that it takes the complex system to pasé from one state to
another. We have assumed that the solution to the "state assignment"

problem as well as the "general inference" problem is known. That is

there exists a state characterization of the complex system and the

matrix |M| of one step state transition probabilities.

¥) The one step state transition probabilities are dimensionless and
are obtained by multiplying the failure or repair rates, (which-
ever are appropriate) by the "unit of time" (for example, | hour,

| day, etc.). ,
¥¥) Numbers in superscript brackets refer to the references.



In section |, the basic definitions of the elements of the

Markov model of a complex system are presented. It is shown that

" the mafrix*)|Ml of one step state transition probabilities,
that is of the failure and repair faTes of the subsystems, can
be partitioned into four matrices [A| ,| Bf , 0] , [I| . In later

sections it is shown that such partitioning is sufficient to use
all the methods presented herein.

In section 2, it is shown that the state probability
functions s (n) are obtained simply by taking the nfh power of
the matrix |[M| . Then once the set A of acceptable states is
known, the time dependent reliability function R(n) is shown to
be fhé sum of these state probability functions over the set A.
Thus the reliability function R(n), is the probability that at
time n, the complex sysTem is operating acceptably.

In example (1), at the end of the paper, it is shown that
another possible interpreation of R(n), in the context of a tele-
communication network, is to interpret R(n) as the probability that
two points i and j within a complex telecommunication network will
remain connected for time n.

In section 3, the sfeadyAsTafe transition failure probabilities

p are derived. P.. is the probability that the complex system, will

iJ iJ
eventually pass from acceptable state Ai to failed state Fj‘ A

theorem is presented which shows that the (r x m) matrix| Pl , of

these steady state failure probabilities is obtainable directly in
terms of the matrices [B| , |I| and |A| , which are the partitions
* _ ,

) Capital letters in square brackets denote matrices; the bar

on top of a letter denotes a vector. An explanafion of the
notation is given after the references.



of |M] . The concept of an evolution diagram, as introduced by

(6), is utilized to prove this theorem. These evolution

Girault
" diagrams provide a useful conceptual aid for establishing many
interesting EesuITs in the theoryof stationary Markov processes.
in section 4, the steady state transition prébabilify
failure functions pij(n) are derived. pij(n) is the probability

that the complex system will pass after n units of fime from

acceptable state A_i to failed state Fj' A theorem is presented

which shows that the (r x m) matrix |P(n)| of these transition
probabi ity failure functions is expressible directly in fterms of
the matrices |A| and | B|

In section 5, a method is presented for obtaining the(pseudo)
generating functions gij(Z) that give the time moments Tij(k) of
the random variables Tiji "first time from acceptable state Ai to
faileq state FJ"‘ |+ Is shown that tThese moments are obtained in
the usual manner, that is, by differentiating the (pseudo) generating
functions. A theorem is presented, which shows that the (r x m) maTrile(z”
of these generating functions is a simple linear function of the
matrices lA ], [B land |1 |.

In section 6 the exift prbbabilify functions wi(n) are derived.
wi(n) is the probability that the comple% system will pass from the
~ successful sfa{e A, info any failed sTaTe‘in F in tfime n. A
theorem is presenfed.which shows that the (r Q 1) column vector
W(n) of the exit probability functions is a simple function of The

matrices | Al and |B |.



In section 7, a method is presented for computing the

generating functions Ci(Z) that give the moments Ti(k) of the

"

random variables T "first exit time from acceptable state Ai
intfo the class F". A theorem is presented which relates the
generating function gij(Z) of section (5) to the generating
function Ci(Z)' Another theorem is presented which shows that
the (r x |) vector(C (z) of these generating functions is a simple
linear function of the matrices |A| ,| B and||| .
'AlmosT all of the results presented in this paper, appear

(as far as the author is aware) for the first time in the context
of reliability preditfion theory. They are applicable to a large
class of diversified systems, including economic systems, control

systems and computer-communication systems etc.



_Preliminaries

In developing the reliability model we shall use

a stationary Markov process S(-), defined on a discrete finite

dimensional state space AUF, and a discrete time set T. The

random variable S(n) is called "state of complex system attime n'",

We will derive for each state AJ e A and Fj geF , state probability
*
functions si(n), sj(nL defined as )
s.(n) = Prob {Stn) = A. } , ner TTTTTToTS

s.(n)

Prob  {S(n) = F. } , nNeT oo

It is well known (6’8), that if the set of states in

A, are a transient class (ie, are acceptable states), and if the
states in F are absorbing states (ie, are falled states), then
the one step transition probabilities between the states A > A,

A >F, F> F and F > A can be defined as follows.

The one step state transition probabilities between

states A, A of A denoted by a, are theelements of a (rxr)matrix

ik?

| Al and are defined as

aj, = Prob {stn+1) = A | stm) = A}, i=l,--,r.
k=1l,=--,r
*) Th . . .
e subscript i, (i=l,=--,r) refers to states in A and +the

subscript J, (Jj=l,--, m) refers to states in F.



The one step state transition probabilities from
transient states A, € A to absorbing (failed) states Fj e F,
denoted by biJ are the elements of a (rxm) matrix | B| , and

are defined as

by; = Prob {sin+) = i | sty =AY,  i=lm--,r
. Jj=1,=-==,m

F > F

The one step state fransition probabilities between
absorbing (failed) states FJ’ Fu of F denoted by 6Ju’ are the

' *)
entries of a (mxm unit matrix l|| , and are defined as
. = |, j=u
Prob {S(n+1) = F | S(n) = F} = »J
ul n } 6JU ( L 5
= 0, UFj

F > A

Since transitions from failed states in F to transient
(acceptable) states 'in A are not permitted, the one step state ftransition
probabilities from Fje F to A, €A are all zero. That is they

form a (mxr) null matrix |O| , because

Prob 1 Stn+1) = A, | s(n) = F.} =0, for all F. €F
! Jo and oo el 6
for all Ai € A

* The methods presented in this paper could be further generalized
by allowing transitions among the failed states of F. That is

by replacing the matrix I by some general matrix.



Thus, we have that the one step fransition matrix | M|

for the Markov processes S(-) with state space AUF, can be partitioned

into four matrices |A| , |B| , || , lo] as
1
A > AL | [Al1]B] YA > F
|
L R el = 7
F o> A{ lo|:|||| }F o> F
]

The following definitions make it possible to interpref
‘equations (3) to (7) in the contfext of the reliability model of a
complex system having Ai’ i=|l,-=--r acceptable states and Fj,j=l,---,m

failed states.

Definition | Acceptable State The transient state Aie A is called
an acceptable state, if it characterizes some acceptable working mode

of the complex system.

Definition 2 Failed State The absorbing state F.é F is called a failed
j
state, if it characterizes some unsatisfactory mode of operation of the

complex system.

2. State Probability & Reliability Functions

Let s(n), be the (x(r+m)) vector of state probabilities

defined by equéfions 1) and (2). Then it is well known(6’ Page 56)

that

s(n) = s(o) [M|"  e-mmeeemmmoooo- 8
where T(o) is the vector of the initial (time n=0) state probabilities.
We can now immediately define a reliability function R(n) for the comp lex

system as



Definition 3 Reliability Function R(n) The reliability function

R(n) is the probability that time n the complex system is operating

acceptably, that is, is in some acceptable state, thus

R(n) = Prob {S(n) e A} ----mm----mo 9

alternatively then
r
R(n) = z 5. (N) mmemccmmm e ————— [0

Thus in order to obtain R(n), it is necessary only to raise the

matrix | M| to the n'" power, multiply by S(o) and then sum the
elements of the set {si(n), i={,-=--,r}. There are several
well known methods (h, 1z, 13) yielding <closed form expressions

forl Mln and therefore for s(n) and R(n)

3. The Steady State Transition Failure Probabilities

In this section, a method is presented for computing

the steady transition probability pij,(i=1,--,r;j=|,--,m) that a

complex system that starts in acceptable state Ai will eventually
end up in a specified failed state Fj‘ In what follows, it will
be shown that once the partition of |M| has been carried out as

shown in (7)), it is a simple computational matter to obtain these

probabilities, Formally, defining PiJ as
Py = Prob { s(w) = Fpl stmy = Ay Jrmmmmmoooeee
and denoting the (r x m) matrix lpijl by |P| , we have,



Theorem | For a complex system with r acceptable states and m

" failed states operating in a repair environment, and having subsystems
with known constant failure and repair rates (that is, with known
matrix |[M| ), the (r x m) matrix |[P]| satisfies

CY R N R Y I IR T E— 2

Proof The proof of this and other theorems presented herein,
is facilitated by formally introducing evolution diagrams(6 PP 74-78),
Consider therefore Evolution Diagram |, which shows the eventual

possible ewlutions from state Aie A to state Fj e F.

Evolution Diagram |




From the above diagram, summing the transmittances

of the paths incident on node Fj from Ai’ gives

r
P = 3 aik Pk + bij’ (j=l,====, M ===
S :
obviously such a diagram can be constructed for every Ai € A and
every FJ €F and therefore equation (13) can be written in matrix
form as
|
Pl = Al 1Pl + |8
or ‘ e e K
T P N R
which completes the proof QED.
4, The Transition Probability Failure Functions
ln this section, a method is preéenTed for computing
the transition probability failure functionsp i.(n), i=1,===,r;

j=l,=-=--,m. Specifically,pij(n) is the probability that at time

‘n, the complex system is in failed state FJE F given that at time n=0,

it was in acceptable state Ai€ A.

Formally.

p..(n) = Prob { S(++n) = F | | s(t)



and denoting the (r x m) matrix| p (n)| by |P(n)| , we have

Theorem 2 For a complex system with r acceptable states and m
failed states, and having éubsysTems with known constant failure
and repair rates (that is with known matrix [M| ), the.(r x m) matrix

| P(n)| satisfies

[P(n) | Al PR+ PGa-1)

Probf

Comparing equations (4) and (i15), it is immediately apparent

PC1) | | Bl e 17

Then from (7)

i

]
]
Il ™ = LAl L k-l
!
]
]

taking the nth power of | M| , using (17), we find
|P(n)| = || slal + Ial?+ -- +|A|”"“B|

which can also be written as (16)
QED



Comments

(a) ‘pij(n)’ fs the probability that the complex
sysfem‘will pass from acceptable state Ai to failed s+a+evF.
in nunits of time. fhus letting T ‘be the (pseudo) random
variable "time taken to go from state Ai to state F.", we

have that pij(n) is the probability distribution function of

Pij(n) = Prob { Tip =0 } e - 19
(b) Since |P| = timit |P(n)|, from (18) we find
n -+ o )
fpl = t A" |8l al® ol
n=0

this is an infinite geometric series whose sum is

-1
e f= 0 b - [all 1B

which is equation (12) as obtained previously

T

that

is



- |5 -

5. Moments of the First Time to Failed State

In this section expressions are derived for the (pseudo)

generating functions gij(Z) for the moments +t..(k), k=1, ,--n, of

iJ
the (pseudo) random variables Tij’ These random variables are
defined as, T, = "first time from acceptable state A, to failed
state F.M",
J

These moments are the moments of the first time the
complex system passes from state Ai € A to failed state Fje F.
"Since the discrete time approach is being used, it
is standard practice to define the generating function gLJ(z)‘for
these moments in terms of its one sided z-transform. That is, the

generating funcfibn gij(Z) is defined as

Definition 4. Moments of First Time to Failed State

J.(k), k=l,...n, of the first time to failed state, are

defined as the moments of the first time the complex system Passes

The momenfsri

from acceptable state A} eA to failed state FJ eF. These mohenfs

are obtained from the generating function (20) in the conventional way

.. (k) = d (g (z)) , k=1,2,...n

z=| ' !

The following theorem shows that it is possible to
obtain the (pseudo) generafihg functions gij(Z) in terms of matrices
| Aland |B |, without the need for evaluating infinite series of the

form (20).



Letting | 6(z) | be the (r x m) matrix of the

generating functions lgij(Z)I , we have

Theorem 3 . Llet | T(k)| be the (r x m) matrix of the k", k=l,---,n

moments tT..(k). For a complex system with r acceptable and

iJ
m failed states and having subsystems with known constant failure
and repair rates, (that is with known matrix | M ), the moments

[T(k) | are

K
Ity = 9 IG(ZH' K= 1,2,....n

dzk
z=|
where
- )

R e N T 2 .Y I O - O —— 22
where |Al|i]and |B| are the partitions of the |M| matrix, as given
in equation (7)

Proof (See reference 9, page 16)

6. The Exit Probability Functions
In this section equations are derived for the exit

probability functions wi(n), defined as

witn) = Prob {stn+t) e F | sct) = A} ------- 23
m !
= z Prob- {S(n+t) = i | s(t) = Ay -- 24



- |7 -
Thus, wi(n), is the probability that the complex
system will pass from acceptable state Ai' into the set F

in n units of time. Obviously comparing (I5) and (24), we have

m
wioln) = z P. . (N) —-mmmemmmccee———ma 25

Equation (25) states that wi(n) is the sum of the
probabilities pij(n) on the set F.

Letting W(n) be the (r x I) column vector of

the exit probability functions, we have

Theorem 4 The exit probability functions €auation (23 <atisty

wi(lf

1)
™M
[}

-

!

1
!

-
35

!
]
1
!

!

[}

!
N
(@)

Win) = |A] W (n-1) L T TR 27

Proof
Result (26) follows by equating (4 ) and (24) after

letting n=1, /in (25).To prove (Z7) consider Evolution Diagram 2.



- . — e e

fime  tn.— W1 0z1) F

/

~ -
~~__’_’

Evolution Diagram 2

The above diagram enumerates the possible evolutions in n steps
from any state Aie, A to the class F of failed states. Then,
summing the transmittances of the paths incident on F, gives
for each of the r states A. €A, an expression forw i(n), name]y

w.(n) = T a

ik Yk (n=-1), i=1,=--=,r

QED.



- 19 -

7. Moments of the First Exit Time From Acceptable Class A

In this section equations are derived for the
generating functions Ci(Z) for the moments Tﬁk), k=|,=-==-,n of the
random variables T = "first exit time from acceptable state A,

into failed class F",
Obviously wi(n) is the probability distribution function

of this random variable T, that is

w}(n) = Prob { T o= n}

The moments, T k), k=l,--=-,n are the moments of the
first time the complex system passes from state Ai€ A into the class

of failed states F. In the reliability |i+efa+ure,+hese moments are

called moments of the first time to failure ..

Since the discrete time approach is being used, we
again define the generating funcTion'Ci(z) in terms of its one

sided z fransform. The generating function ¢ (z) is therefore
R

Definition 55 Moments of the First Time to Failure

The moments of the first time to failure, are defined as
the moments of the first time the complex system passes from acceptable
state A, to any failed state in F. These moments are obtained from

the generating function (28) as

*) In particular, the first moment, is the mean time to first failure.



The following theorem establishes the relation- -
ship between the generating functions gij(Z) and Ci(Z) or, equivalently,

the relationship between 1 (k) and T;(k).
N

Theorem 5 The generating functions gij(Z) and Ci(Z) are related as

m
Ci(Z) = pX gij(Z) ------------------- 29
J=1
or equivalently
m
Ti(k) = z Tij(k) ————— St 30

Proof

® m
Ttz o= z z z" p oy mmmmmmmoes 31
n=| j=1
Interchanging the order of summation in (31)
m ®
c,(z) = z 3 znpij(n) ------------- 32
J=l n=|

substituting (20) into (32) we obtain (29). Equation (30) follows,

by definition. 0ED.



Comment

Equaffon (29) can be computed directly once (21)
has been evaluated, or direcTIy,‘in-Terms of the matrices ]A] and
|B| , as given in theorem 6 below.

Letting C (z) be the (r x |) column vector of the

genérating functions ci(z); we have

Theorem 6 Let T(k) be the (r x |) vector of the moments Ti(k)'
For a complex system operating in a repair environment and having

r acceptable and m failed states and known matrix |[M| , these moments

are
- dk _—
T(k) = (C(z))
dzk z=|
with
Clz) = z ||1] -z |A|' B! ©  emm—mmemee- 33
*)
where
B! = |b|" ’b'l#
and : m ‘
b! = z i= —-
Py i=1, ,r
J=1
Proof (See reference 9, page 22)

*) The # in - - - # means "transpose",.
. ?




Example |

This example illustrates how the theory presented in the
paper can be used to obtain a probabilistic description of the
complex systems (a) and (b) below. |t will be shown, that the
reliability modelling of these two different systems leads to
identical analytical expressions for their reliability functions,
moments of the first time to failture, etc.

(a) The Telecommunication Network (Figure 1)

(b) The Parallel Standby System (Figure 2)

Channe! | x”

\
N
N
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- T -
e _-—.\ -
4 \‘_-I-- - "—-— - o > =re
’ - /
4
c' ’
’
-—--"\ - /
-~ - - -
DU ‘l-—-————— -— -
¢ - - \\
,' [N
/
Figure |




(a) State/Word Description of the Telecommunication Network (Figure 1)

The network consists of two channels between i and j.
Channel |, is in continuous use, and channel 2 provides a sTandby path,
that is always available for use whenever channel | fails. For the
purposes of this example, we assume channel |, fails whenever system:"

SI fails and channel 2 fails whenever systems S2| or 522 fail. The
operation of the network requires that whenever S| fails, channel |
is closed down and channel 2 immediately begins to handle traffic.
Repair crews may not be immediately available to start repairing 51
and there is therefore usually a delay before work starts. The net-
work is then considered to be in a fai]ed state.when either system S

21

or 522 fails before work has been started on S| or before work has
been completed on S'.

The reliability function R(n), is then the probability
that the ftransmission path will exist between points i and j in the
network (Figure 1) for time n.

From the above verbal description, it is possible to make
the state assignment shown in Figure (3). |In keeping with the
notation used above, the acceptable states are labelled Ai’ i=1,2,3

and the failed states are labelled FJ.', j=1,2,3,4.




State Assignment

State ‘ 4 Word Description

Al Both chénnel | and channel 2 are operating, that is
systems SI and S2| and 872 are operating.

A S, fails (that is channel 1|, closes down and channel 2,

4 I
Z
‘ immediately begins to operate.

Ag ‘ ‘Service begins on system S, of channel I.

Fl System S2I of channel 2 fails before service to
system Sl begins.

FZ. Sysfem 822 of channel 2 fails before service ‘o SI
begins.

F3 System 521 fails before service to sysTem'Sl is
compiete.

Fa System S,, fails before service to system S, is
complete.

Fiqure 3

(b) STaTe/Word Description of the Parallel Standby System (Figure 2)

TheAparaIIeI standby system (Figure 2), consists of
an on line system SI’ and é sTandby'sysfem 82. System 82 acts as
a perfect spare, ThaTris, 82 cannot fail while it is on standby.
AIThough system 82 performs the same functions as system SI’ it
fails if its subsystems SZl'or 822 fail. The operation of the
system requires that on failure of S', the system 82 immediately

goes on line. Repéirs crews may not be immediately available to



start repairing S, and there is usually a delay before work starts.

The system is considered to be in a failed state when either 82|

or 522 fails before work has been started on SI or before work has

been completed on S'.

The two sysfems Sl and 52 éhe not identical and there-
fore have different failure and repair rates.

From the above description, it is possible to make the
state assignment shown in Figure(4). In keeping with fhe anaTion
used above, the acceptable or working states are labelled
A., i=1,2,3 and the failed states are labelled FJ, j=1,2,3,4.

State Assignmenf

State : Word Description

AI Both systems SI and 82 are operating

AZ SI fails and 82 immediately goes on line
A3v Service begins on SI

F ’ Sy fails before service to S, begins

F2 522 fails before service to S} begins

F3 S2| fails before service to SI is complete
F4 , 822 fails before service to SI is complete

Figure 4



Obviously, since both the systems (a) and (b) have
equivalent state assignments (See Figures 3 and 4), then

they will have the same transition Graph (Figure 5) and | M|

matrix (Figure 6).

The methods presented can no: be applied to

find R(n) etc.

The ,Ml matrix can be copied directly from Figure (5), it is
time t-+| |
"MetN Al Ap A3 F Fp F3 Fy
(A fay ez o JoJoJo]o
[A] (A2 |0 |9g2 |923]ba[bep|0 |0 (8]
A ,A3 az; 1 O a olo b33b34
- My e e
o {ojo|ofo]i]ofo $
[O]<F3 ol o o|o o1 |0 [']
\Ffl o] o0 o<ho olofi| ) ... .




' (10)
Example 2

Consider the following simplified version (Figure 7)
of the telecommunication network (Figure I). This network operates

in exactly the same way as the network of (Figure |), except that

system 52 is not decomposed into two systems S2I and 522.
Chcmn AT o
Oy ) o
@ —
\\4 [
S
-, .- - N
» \—_— --“- “'---'- _'\~-~>~-~>. -
Figure 7

The state/word assignment for this system is shown

in Figure (8).

State Assignment

State Word Description
Ay Both S, and S, provide a path from i to j
A, s fails and the only path is provided by
’ S,. Repairs to SI are not yet started.
A Repairs to S, start. S, is still providing
3 | 2
the connections between i and j
a S, fails before repairs to S, have begun.
Fs 52 fails before repairs to Sl are
completed.

‘Figure 8
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For ease of numerical computation we assume that the

failure and repair rates of SI and 52 are equal and are respectively

>
]

=
H

.002/hr.

.004/hr.

Likewise we define a delay rate p as

average time before repairs begin

= .2/hl". i

Taking the one step transition probabilities as

. *
characterizing the state behaviour of the system for one hour) we

can draw the transition graph (Figure 9) and from it obtain the

| M| matrix (Figure

10).

Figqure 9

e

See footnote on Page 3.
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-2.82+2.62%~.82

Pl =

!
\ N(z) |

3

I8

! 3 | 2
.998 .002 0 0 0
0 .798 .2 .002 0
.004 0 .994 0 .002
BEREY
Tolo
0 0 0 0 I
Figure o
Now the equations (12) and (22) are
Pl= | T N =Y I 12
I |1 |Al I
6| = z |1l - zall "' 18l = zlncorllsl ==m--- 22
the matrix inversion in (22) givesl N(z*
(1-.8z) (l-z ), .002z(l-z), - .0004z
' .00082% (1-2), .2z(l-2)

0042(1~-.82), .000008z° , (I-2)x

comparing (12) and (22) it is obvious that

(1-82)

2




Thus,
F F)
A .03 97
ip| = A, .03 .97
A3 02 98
From IPI , it is seen, that the small delay
(p = .Z2/hr.) of average duration 5 hours, before repairs

start to Si does not seriously affect the long run operating

performance of the overall network. Specifically it is seen

that failure will usually occur to state F2 rather fhan FI'




SUMMARY

It has been shown, that the reliability modelling of
complex systems with many failed states presents no particular
problem, once the matrix IM {of failure and repair rates of
the component systems of the complex system is known.

The only computations required are simple linear
(11,12,13,14)

operations on Matrices and thus all the methods

presented are ideally suited for digital computer computation.
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Explanation of Notation

Sfafiohary Markov process characterizing the
state of the complex system.

The(r + m)square matrix of the one step
transition probabilities.

Set inclusion,

Set union,

The set of r acceptable states.

The acceptable state Al g A, i - I, weey .

The one step transition probability between
acceptable states Ai and Ak'

The r square matrix of the one step transition
probabilities between the r acceptable states.
The class containing the m failed states.

The failed state F_J e F, j =1, «oco,m.

The m square matrix of the one step transition
probabilities between the m failed states.

This is by definition the unit (m x m) matrix.
The one step tfansi+ion probability between
acceptabie state A, and failed state Fj‘

The (r x h) matrix of the one step transition:

probabilities from the class A of acceptable

states to the class F of failed states..

The (m x r) null matrix.
The probability that at time n, the complex
system is in state Ai'

The probability that at time n, the complex

system is in state Fj-



s(n)

R(n)

[P(n) ] = |p..(n)|

rJ

The Yx(r+m) vector of the state probability

functions.

The reliability function. R(n) is the probability
that at time n, the complex system is operating
acceptable, that is, in some acceptable state in A,
The steady state transition failure probability,
This is the probability of going eventually from
acceptable state AI to failed state Fj'

The (r x m) matrix of steady state transition
failure probabilities.

The transition probability failure function.

This is the probability that the complex system

to failed state F.

goes from acceptable state Ai j

in n units of time,.

The (r x m) matrix of the transition probability
failure functions.

The random variable "first time the state of the
system is failed state FJ given that the network
initially started in acceptable sTaTe'Ai".

The k™M

moment of TiJ; k =1, 2,

Th

The (r x m) matrix of the k moments of Tij'

The generating function for the moments Tij(k)'
The (r x m) matrix of the above generating functions.
The probability that after n units of time the
complex system will be in some failed state in F,

given that it initially started in acceptable state Ase

This is called the exit probability function.



W(n)

The (r x| ) column vector of the exit
probability function.

The random variable "first exit time from
acceptable state Ai into the failed class F",.

The k™ moment of T.; k = 1, 2,

)
|

th

The (r x 1) column vector of the k moments

of Ti.

The generating function for the moments Ti(k)'

The (r x 1) vector of the above generating

functions.
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