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NOTE  

The opinions expressed in this report are entirely 

the author's and are not necessarily those of the Department 

of Communications. 
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INTENT  

This study is an attempt to provide a pragmatic yard-

stick for resolving often repeated but usually 

semantic statements, such as "my system is more reliable 

than yours etc." The author has attempted to develop 

purely analytical techniques for analyzing, synthesizing 

and comparing communication-computer systems with arbitrary 

but specifiable reliability. 
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Abstract  

In this report methods are given for obtaining the 

reliability function, and moments of the first time to failure 

for a general class of complex systems. 	The class of complex 

systems considered are all those systems that have subsystems 

(any number) with known (constant) failure and repair rates. 

This class for all practical purposes includes tele-

communication systems, such as microwave systems, etc., as 

well as most telecommunication-computer (computer-utility) 

systems. 	In addition the methods given are also applicable tO 

many stability problems 	in economic systems. 

Specifically, complex systems composed of any finite number 

of subsystems are considered. 	The complex system at any time, 

can be in any one of r(r.> 1) 	acceptable states or in any one of 

m(m.?...l) 	failed states. 	The methods presented for the reliability 

modelling of such complex systems, assume a state behavior that 

is characterizable by a stationary Markov process (also called 

Markov chain) with finite-dimensional state space and a discrete 

time set. 

It is shown that once the matrix of the constant failure 

and repair,rates of the subsystems is known, and the state 

assignment is made, then  it  is a straightforward matter to 

obtain the probabilistic description of the complex system. 



Introduction  

It is well known (I), (2) , that the reliability modelling 

of complex systems that operate in a repair environment, and whose 

subsystems have known constant failure and repair rates, 

can be accomplished via a linear matrix calculus and use of 

elements of the theory of stationary Markov processes. The 

methods that exist for modellingsuch complex systems may be 
*) 

summarized as follows: Let the complex system have r acceptable 

states A
i 
( i = 1, 	r),which form 	the set A, and let all failed 

states be lumped into a single failed state F. 	Then methods exist 

for obtaining a time dependent reliability functipn R(n), defined 

as the probability that the complex system is in some acceptable 

state in A at time n. 	Methods also exist, which allow computation 

of the moments of the first time to failure, that is, the moments of 

the first time ltatthe complex system passes from acceptable 

states in A to the single lumped failed state 	F. 	These methods 

all suffer from a number of obvious limitations, fiTst of all the 

lumping of failed states into a single failed state conceals the 

relative importance of the different types of failure modes that 

are present in any complex system. 	Secondly, no techniques 

provided for computing the important moments of the first time the 

complex system passes from specified acceptable states to 

specified failed states. 

are 

*) See definition I. 
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In this paper, the above approach is extended to include 

complex systems having m(m%el ) failed states in the set 	F. 

Methods are presented for obtaining a time dependent reliability 

function for such complex systems,as well as for obtaining the 

moments of first time to (a particular) failed state, as 'well as 

the moments of the first time to failure (any state). 

The construction of a model for predicting the behavior of 

such a complex system poses three distinct problems. 	The first 

two are in effect  spécification  problems. 	The first of these is the 

"state assignment" problem, that is the enumeration of the states 

that suffice to characterize the various operating modes of the 

complex system. 	The method for making such a state assignment will 

depend on the specification of the structure and operation of the 

given 	complex system. 	The second problem involves the determination 

of meaningful numerical estimates of the one step state transition 

*) 
probabilities 	. 	This is the, so called "general inference" 

( 3 , pp 69-70) **) 
problem 	 for Markov processes. 	The third problem 

which is the one this paper solves 	involves the application of 

techniques from the theory of stationary Markov process to develop 

methods for obtaining apriori, state probability functions, a 

reliability function, and estimates of the moments of the first 

time that it takes the complex system to pass from one state to 

another. 	We have assumed that the solution to the "state assignment" 

problem as well as the "general inference" problem is known. 	That is 

there exists a state characterization of the complex system and the 

matrix 	IMI 	of one step state transition probabilities. 

*) 	The one step state transition probabilities are dimensionless and 

are obtained by multiplying the failure or repair rates, (which-

ever are appropriate) by the "unit of time" (for example, I hour, 

I  day, etc.). 

**) Numbers in superscript brackets refer to the references. 
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In section I, the basic definitions of the elements of the 

Markov model of a complex system are presented. 	It is shown that 

*) 
the matrix 	1M1 of one step state transition probabilities, 

that is of 	the failure and repair rates of the subsystems, can 

sections it is shown that such partitioning is sufficient to use 

all the methods presented herein. 

In section 2, it is shown that the state probability 

functions s (n) are obtained simply by taking the n th power of 

the matrix 1M1 . 	Then once the set A of acceptable states is 

known, the time dependent reliability function 	R(n) is shown to 

be the sum of these state probability functions over the set A. 

Thus the reliability function R(n), is the probability that at 

time n, the complex system is operating acceptably. 

In example ( I), at the end of the paper, it is shown that 

another possible interpretation of R(n), in the context of a tele-

communication network, is to interpret R(n) as the probability that 

two points i and j within a complex telecommunication network will 

remain connected for time n. 

In section 3, the steady state transition failure probabilities 

P 	are derived. 	p 	is the probability that the complex sY stem, will 

eventually pass from acceptable state A. to failed state  F. 	A 

theorem is presented which shows that the (r x m) matrixl pi , of 

these steady state failure probabilities is obtainable directly in 

terms of the matrices IBI ,  Il I 	and 	1AI , which are the partitions 

Capital letters in square brackets denote matrices; the bar 

on top of a letter denotes a vector. An explanation of the 

notation is given after the references. 

* ) 
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of MI . 	The concept of an evolution diagram, as introduced by 

Girault (6) 
is utilized to prove this theorem. 	These evolution 

diagrams provide a useful conceptual aid for establishing many 

interesting results in the theoryof stationary Markov processes. 

In section 4, the steady state transition probability 

failure functions 	p(n) are derived. 	p
ij

(n) is the probability 

that the complex system will pass after n units of time from 

acceptable state A. to failed state  F . . 	A theorem is presented 

which shows that the (r x m) matrix 	IP(n)1 	of these transition 

probability failure functions is expressible directly in terms of 

the matrices IAI 	and 1BI . 

In section 5, a method is presented for obtaining the(pseudo) 

generating functions
i  

g. (z) that give the time moments 	i- 1 (k) of 
j 

the random variables 	T..5 "first time from acceptable state A. to 
j 

fail e d 	state F ". 	It is shown that these moments are obtained in 

the usual manner, that is, by differentiating the (pseudo)generating 

functions. 	A theorem is presented, which shows that the (r x m) matrix' 

of these generating functions is a simple linear function of the 

matrices IA I , IB land  I  I  I • 

In section 6 the exit probability functions  w 1 (n) are derived. 

w (n) is the probability that the complex system will pass from the 

successful state 	A
1

, into any failed state in F in time 	n. 	A 

theorem is presented which shows that the (r x I) column vector 

w(n) of the exit probability functions is a simple function of the 

matrices 1AI and I B I • 

G(z)1 
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In section 7, a method is presented for computing the 

generating functions c.(z) that give the moments T i (k) of the 

random variables T. E "first exit time from acceptable state A. 

into the class F". 	A theorem is presented which relates the 

generàting function 	g 1 (z) of section (5) to the generating 

function 	c(z). 	Another theorem is presented which shows that 

the (r x I) vectorc7(z) of these generating functions is a simple 

linear function of the matrices 	Al1 	,1 B1 andll 1 . 

Almost all of the results presented in this paper, appear 

(as far as the author is aware) for the first time in the context 

of reliability prediction theory. They are applicable to a large 

class of diversified systems, including economic systems, control 

systems and computer-communication systems etc. 



1 

2 
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I. 	Preliminaries  

In developing the reliability model we shall use 

a 	stationary Markov process 	S(.), defined on a discrete finite 

dimensional state space AUF, and a discrete time set T. 	The 

random variable S(n) is called "state of complex system at time n". 

We will derive for each state A E A and F EF , state probability 

*) 
functions 	s(n), s (n), defined as 

Prob 	{S(n) = A. } 	, 	n ET 

s
j
(n) 	E 	Prob 	{S(n) = F } 	, 	n ET 

It is well known 
(6,8), 

that if the set of states in 

A, are a transient class (ie, are acceptable states), and if the 

states in F are absorbing states (ie, are failed states), then 

the one step transition probabilities between the states A 	A, 

A -›>F, F 	F and F 4-  A can be defined as fol  lows.  

A ± 	A 

The one step state transition probabilities between 

states A
i' 

A
k 

of A denoted by a.
1k' 

are the  elements of a(rxr)matrix 

Al and are defined as 

a. 	= 	Prob 	{S(n+1) = A
k 	

S(n) = A. 1 ik -  , 	i=1,--,r. 

k =1,--,r. 

*) 
The subscript i, (i=1,--,r) refers to states in A and the 

subscript j, (j=1,--, m) refers to states in F. 
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A 	F 

The one stepstate transition probabilities from 

transient states A
i 

E A to absorbing (failed) states F E F, 

denoted by b ij are the elements of a (rxm) matrix I BI , and 

are defined as 

bij = 
	Prob 	{S(n+1) = F 	1 	S(n) = A. } 

j = 1 , --- ,m 

FF  

The one step state transition probabilities between 

absorbing (failed) states F j' Fu of F denoted by
'  (5 	are the ju 

*) 
entries of a(mxm)unit 	matrix H I , and are defined as 

PrOb 	{ S(n+1) = F 	
= 1,i=u 

U 	
S(n) = F.  = cS iu  

= 0, u j 

F ÷ A 

Since transitions from failed states in F to transient 

(acceptable) states'in A are nàt permitted, the one step state transition 

probabilities 	from 	F E F to A
i
E A are all zero. 	That is they 

form a (mxr) null matrix 101 , because 

Prob 	S(n+1) = A. 1 S(n) = F } = 0, for all F. C F 
and 	J 

for all A. E A 

* The methods presented in this paper could be further generalized 
by allowing transitions among the failed 	states of F. 	That is 

by replacing the matrix 11 1 by some general matrix. 

5 

6 
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Thus, we have that the one step transition matrix 'MI 

for the Markov processes S(.) with state space AUF, can be partitioned 

into four matrices 	Al1 	, 1131 	, 1 ii 	, 101 	as 

± A 

-› A { 

1 A 1 	1 B 1 

I 0 	I 	I 	I 

} A ÷ 	F 

} F 	F 

7 

The following definitions make it possible to interpret 

equations (3) to (7) in the context of the reliability model of a 

complex system having A., 1=1,---r acceptable states and F.,j=1,---,m 

failed states. 

Definition 1 	Acceptable State  The transient state A. E A is called 

an acceptable state, if it characterizes some acceptable working mode 

of the complex system. 

Definition 2 	Failed State 	The absorbing state F  CF  is called a failed 

state, if it characterizes some unsatisfactory mode of operation of the 

complex system. 

2. 	State Probability & Reliability Functions  

Let s(n), be the (lx(r+m)) vector of state probabilities 

defined by equations (I) and (2). 	Then it is well known
(6, Page 56) 

that 

7(n) = s(o) 	I MI n  

where -g(o) is the vector of the initial (time  no)  state probabilities. 

We can now immediately define a reliability function R(n) for the complex 

system as 
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Definition 3 	Reliability Function R(n) 	The reliability function 

R(n) is the probability that time n the complex system is operating 

acceptably, that is, is in some acceptable state, thus 

R(n) = 	Prob 	{S(n) E A } 	 9 

alternatively then 

R(n) -- 	E 	s 1 (n) 

1= 1 

Thus in order to obtain R(n), it is necessary only to raise the 

matrix 1 M 1 to the n th power, multiply by s(o) and then sum the 

elements of the set {s (n), There are several 

. 
well known methods 

(11, 12,13) ytelding 	closed form expressions 

for' Mi n  and therefore for 	s(n) and R(n) 

3. 	The Steady State Transition Failure Probabilit'ies  

In this section, a method is presented for computing 

the steady transition probabil.ity p ..,(1=1,--,r;j=1,--,m) that a 
j 

complex system that starts in acceptable state A i  will eventually 

end up in a specified failed state  F.. 	In what follows, it will 

be shown that once the partition of 	IMI  has been carried out as 

shown in ( 7), it is a simple computational matter to obtain these 

1 0 

probabilities. Formally, defining Pij 	as 

p.. = Prob {  S(œ) 	= F. 1 S(n) 	= 	A.
1 
 1 11 

and denoting the (r x m) matrix 	I p j by 	111 , we have, 
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Theorem I 	For a complex system with r acceptable states and m 

failed states operating in a repair environment, and having subsystems 

with known constant failure and repair rates (that is, with known 

matrix I MI  ), the (r x m) matrix IPI satisfies 

1 1'1 	= 	III 	- 	
-1 

1 	AI 	1 	1131   12 

Proof 	The proof of this and other theorems presented herein, 

is facilitated by formally introducing evolution diagrams
(6 pp 74-78) 

Consider therefore Evolution Diagram 1, which shows the eventual 

possible 	evolutions from state A.e A to state 	F, E F. 

Evolution Diagram 	I 
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From the above diagram, summing the transmittances 

of the paths incident on node F. 	from A i , 	gives 

r 	. 
E  

ij 	
a 	kj 	

+ 	b 	( j= I ,----,. 	13 
i k 	P  

k--- 1 

obviously such a diagram can be constructed for every A i  e A and 

everyF.CF and therefore equation (13) can be written in matrix 

form as 

11'1 	= 	I AI 	I Pi 	+ 	1131 

HI 	- 	A 11 I PI 	= 	1BI 

which completes the proof 	 QED. 

4. 	The Transition Probability Failure Functions 

In this section, a method is presented for computing 

the transition probability failure functions p ii (n), i=1,---,r; 

j=1,---,m. Specifically,p ii (n) is the probability that at time 

n, the complex system is in failed state F i c F given that at time n=0, 

it was in acceptable state A i e A. 

Formally 

p..(n) = Prob { S(t+n) 	= F. 1 S(t) 	= A.} , 	j=1,---,m 
ij 

or or 14 

15 



16 

it is immediately apparent 

i Min  
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and denoting the (r x m) matrix'  P(n) l 	by 	IP(n) I 	we have 

Theorem 2 	For a complex system with r acceptable states and m 

failed states, and having subsystems with known constant failure 

and repair rates (that is with known matrix 1M1 ), the (r x m) matrix 

1 P(n) 1 	satisfies 

1P(n) 1 	= 	1A 1 " -I  18 	P(n - 1 )  

Proof 

Comparing equations (4) and (15), 

IP(I)I 	a 	BI 

Then from (7) 

17 

1  AI 	L  1P(n  

101 	1 	ii  

taking the n th  power of 1 M1 , using (17), we find 

1P(n)1 	= 	1 1 1 	+1A1 	+ 	1A1 2  + 	+I Ai n-I lIBI 

which can also be written as (16) 
QED 

18 
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Comments 

(a) 	p..(n), is the probability that the complex 
j 

system will pass from acceptable state A i  to failed state F. 

in n units of time. 	Thus letting 	T
ij be the (pseudo) random 

variable "time taken to go from state A i to state  F.",  we 

have that p..(n) is the probability distribution function of 	T ii ; that is j 

p ij (n) = Prob { T.. = n j 

(h) 	Since 	I PI  = 	limit 	IP(n)I, from (18) we find 

n 	co 

1PI 	c; 	IA I n 	I BI ; 	I AI ° 	E.. 	Ill  
n=0 

this is an infinite geometric series whose sum is 

IP I= 	1 	- 	I AI I -I  1B I 

which is equation (12) as obtained previously 

19 



j 

, k = I,2,... n 
21 
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5. 	Moments •of the First Time to Failed State  

In this section expressions are derived for the (pseudo) 

generating functions g. (z) for the moments t
ij
(k), k=1„--n, of 

ij 

the (pseudo) random variables T
i 
 , These random variables are 
j 

defined as, 
I i j 

E 	"first time from acceptable state A. to failed 

state F.". 

These moments are the moments of the first time the 

complex system passes from state A
i 

E A to failed state F.e F. 

Since the discrete time approach 	is being used, it 

is standard practice to define the generating function g..(z) for 
ij 

these moments in terms of its one sided z-transform. 	That is, the 

generating function 	9U(z) is defined as 

CO 

D 	(n) 
j 

n=1 

Definition 4. 	Moments of First Time to Failed State  

The momentsT 
i

(k), k=1,...n, of the first time to failed state, are 
j 

defined as the moments of the first time the complex system Passes 

from acceptable state  A.  EA to failed state  F. EF. These moments 

are obtained from the generating function (20) 

20 

in the conventional way 

d 	
k T 	= ..(k) 	(g /j (z)) 

IJ 
dz

k 

z= 1 

The fol lowing  theorem shows that it is possible to 

 obtain the (pseudo) generating functions g ij (z) in terms of matrices 

I A I and I B I , without the need for evaluating infinite series of the 

form (20). 



z= 1 

IT(k)1  
dkl  G(zq 

dz
k  

k = 	1,2  ..... n  
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Letting IG(z) 	be the (r x m) matrix of the 

generating functions 	I g ij  (z)1 , we have 

Theorem 3  . Let 1 t(k)1 	be the (r x m) matrix of the k th , k=1,---,n 

moments T 	(k). 	For a complex system with 	r acceptable and ij 

m failed states and having subsystems with known constant failure 

and repair rates, (that is with known matrix I MI  ), the moments 

IT(k) 1 are 

23 

= 

where 

-1 
IG(z)I 	= 	z I hi - z 	IA11 	BI 	22 

where 1A111Iand 1131 are the partitions of the I MI  matrix, as given 

in equation 	(7) 

Proof 	(See reference 9, page 16) 

6. 	The Exit Probability Functions  

In this section equations 	are derived for the exit 

probability functions w i (n), defined as 

w.(n) = 	Prob 	{S(ri+t) E F  j 	S(t) = A. } 

Prob 	iS(n+t) 	= F 	1 S(t) = A.} -- 24 
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Thus, w i (n), is the probability that the complex 

system will pass from acceptable state A 	into the set F 

in 	n 	units of time. 	Obviously comparing (15) and (24), we have 

w.(n) 	= 	E 	p ..(n) 
1J 

= I 

Equation (25) states that w ( n )  is the sum of the 

• probabilities p.
1 
 (n) on the set F. 
j 

Letting W(n) be the (r x I) column vector of 

the exit probability functions, we have 

25 

Theorem 4  tion The exit probability functions equa 	(23), satisfy 

w(1) 	= 	b. 	1=1,- --,r   26 

= I 

ii(n) 	= 	iAl -17 (n-1)   27 

Proof  

Result (26)  fol lows  by equating (4 ) and (24) after 

letting 	n=1, An (25).To prove (27). conaider Evolutton Diagram 2. 
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••••11 •nn• ••••n•• a.M, elm. eat«. ••••• •n•n nn•n••• Cm» 

«le •n•n 

time t 

\ 	f 	 I \\ 

time t+ 	 A r  

Ol••n 
île 

A s" 

time t+n___Y 1  (n=1) _ 

VI • 

Evolution Diagram 2 

The above diagram enumerates the possible evolutions in 	n steps 

from any state A i  e. A to the class 	F of failed states. 	Then, 

summing 	the transmittances of the paths incident on F, gives 

for each of the r states 	A
i 

E,  A, an expression for w .(n), namely 

• 

w 1 (n) 	= 	E 	a.
k 	w k  (n-1), 	i=1,---,r i  

k= 1 

QED. 



28 
n=1 

z
n 

w.(n) c 1(z) 	= 
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7. 	Moments of the First Exit Time From Acceptable Class A  

In this section ectuations 	are derived for the 

generating functions c.(z) for the moments r(k), k=1,---,n of the 
1 

random variables 	T. a "first exit time from acceptable state A. 

into failed class F". 

Obviously w i (n) is the probability distribution function 

of this random variable T., that is 
1  

w.(n) 	= 	Prob {  T1  = 

The moments, T (k), 	k=1,---,n are the moments of the 

first time the complex system passes from state A i  E A into the class 

of failed states 	F. 	In the reliability literature, these moments are 

*) 
called moments of the first time to failure 

Since the discrete time approach is being used, we 

again define the generating function c i (z) in terms of its one 

sided z transform. 	The generating function 

Co 

c (z) is therefore 
i 

Definition 5. 	Moments of the First Time to Failure  

The moments of the first time to failure, are defined as 

the moments of the first time the complex system passes from acceptable 

state A to any failed state in F. These moments are obtained from 

the generating function (28) as 

*) 	In particular, the first moment, is the mean time to first failure. 



29 

30 

31 

32 

d 

dz
k  

z= 1 

(c. (z)) N1 	...n 

1=1,....r 

- , o - 

The fol  lowing  theorem establishes the relation- 

ship between the generating functions g 1 (z) and c i (z) or, equivalently, 

the relationship between 	T 	(k) 	and T.(k). 
i j 	1 

Theorem 5  The generating functions 	g
ij

(z) and  c ( z) are related as 

c.(z) 	= 	E  

j= 1  

or equiValently 

T 1 (k) 	= 	E 	T
ij

(k) 

j =1  

Proof  

Substituting (25) rnto (28) gives 

co 

7 1 (z) 	= 	E 	E 	zn p(n) 

n=1 	j=1 

Interchanging the order Of summation in (31) 

co 

c(z) 	= 	E 	E 	z
n
p li (n) 

j=I 	• n=1 

substituting (20) into (32) we obtain (29). 	Equation (30) follows, 

by definition. 
QED. 



generating functions we have 

dz k  
z = 1 

T (k) 
d k  (C(z)) 

- 1 
-   33 

*) 	The # in 	1- - - I 	# , means "transpose". 
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Comment  

Equation (29) 	can be computed directly once (21) 

has been evalUated, or directly, in terms of the matrices IAi  and 

1BI , as given in theorem 6 below. 

Letting 	(z) be the (r x I) column vector of the 

Theorem 6 	Let T(k) be the (r x 1) vector of the moments  

For a complex system operating in a repair environment and having 

r acceptable and m failed states and known matrix I MI  , these moments 

are 

witn 

*) 
where 

è. (z) 	= 	
z 	- z 
	1 A 1 

U' 	= 	I b 

and 

b! 	= 	E 	b.. 
ij ,  

j= I 

Proof 	(See reference 9, page 22) 

i=1,---,r 
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Example I  

This example illustrates how the theory presented in the 

paper can be used to obtain a probabilistic description of the 

complex systems (a) and (h) below. 	It will be shown, that the 

reliability modelling of these two different systems leads to 

identical analytical expressions for their reliability functions, 

moments of the first time to failure, etc. 

(a) 	The Telecommunication Network (Figure 1) 

(h) 	The Parallel Standby System (Figure 2) 

um am 1 	 % 

Figure 	I 

Figure  2 

- _ • 

am am,  n••• • • 
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(a) State/Word Description of the Telecommunication Network  (Figure 1) 

The network consists of two channels between i and j. 

Channel I, is in continuous use, and channel 2 provides a standby path, 

that is always available for use whenever channel 1 fails. 	For the 

purposes of this example, we assume channel 1, fails whenever system 

S 	fails and channel 2 fails whenever systems S
21 

or S 22 
fail. 	The 1 

operation of the network requires that whenever S I  fails, channel 1 

is closed down and channel 2 immediately begins to handle traffic. 

Repair crews may not be immediately available to start repairing S i  

and there is therefore usually a delay before work starts. 	The net- 

work is then considered to be in a failed state,when either system S 2I  

or S 	fails before work has been started on S
I 
or before work has 22 

been completed on S I . 

The reliability function R(n), is then the probability 

that the transmission path will exist between points i and j in the 

network (Figure 1) for time n. 

From the above verbal description, it is possible to make 

the state assignment shown in Figure (3). 	In keeping with the 

notation used above, the acceptable states are labelled A., i=1,2,3 
, 

and the failed states are label  led F 	j=1,2,3,4. 
j ' 
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State Assignment  

State 	 Word 	Description 

A
I 	

Both 	channel 	I 	and 	channel 	2 	are 	operating, 	that 	is 

systems 	S I 	and 	S 91 	and 	S 92 	are 	operating. 

A . 	 S
I 	fails 	(that 	is 	

channel 	I, 	closes 	down 	and 	channel 	2, 
L 

immediately 	begins 	to 	operate. 

A
3 	

Service 	begins 	on 	system 	S I 	
of 	channel 	I.  

F I 	
System 	S 2I 	of 	channel 	2 	fails 	before 	service 	to 

system 	S I 	
begins. 

System 	S 22 	of 	channel 	2 	fails 	before 	service 	to 	S I  

begins. 

F
3 	

System 	S 21 	falls 	before 	service 	to 	system 	S I 	is 

complete. 

F
4 	

System 	S 22 	fails 	before 	service 	to 	system 	S 	is 

complete. 

Figure 	3 

(h) 	State/Word Description of the Parai lei  Standby System  (Figure 2) 

The parai lei  standby system (Figure 2), consists of 

an on line system S I , and a standby system S 2 . 	System S 2  acts as 

a perfect spare, that is, S 2  cannot fail while it is on standby. 

Although system S 2  performs the same functions as system S I , it 

fails if its subsystems S
21 or S 22 

fail. 	The operation of the 

system requires that on failure of S I , the system S 2  immediately 

goes on line. 	Repairs crews may not be immediately available to 
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start repairing S I  and there is usually a delay before work starts. 

The system is considered to be in a failed state when either S 2I  

or S fails before work has been started on S I 
or before work has 

22 

been completed on S 1 .  

The two systems S I  and S 2  are not identical and there-

fore have different failure and repair rates. 

From the above description, it is possible to make the 

state assignment shown in Figure(4). In keeping with the notation 

used above, the acceptable or working states are labelled 

1=1,2,3 and the failed states are label  led F 	j=1,2,3,4. 

State Assignment  

State 	 Word 	Description 

Both 	systems 	S I 	and 	S 2 	are 	operating 

A
2 	

S I 	fails 	and 	S 2 	
immediately 	goes 	on 	line 

A
3 	

Service 	begins 	on 	S- 1  

F
I 	

fails 	before 	service 	to 	S
I 	
begins 

F
2 	

S 22 	fails 	before 	service 	to 	S 	begins 

F
3 	

S21 	fails 	before 	service 	to 	S I 	is 	
complete 

S 22 	fails 	before 	service 	to 	S I 	
is 	complete 

Fi gure 
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Obviously, since both the systems (a) and (h) have 

equivalent state assignments (See Figures 3 and 4), then 

they will have the same transition Graph (Figure 5) and 1 M 1 

matrix 	(Figure 6). The methods presented can no- be applied to 

-Find R(n) etc. 

Figure 5 

matrix can be copied directly from Figure (5), it is 

time t+1 
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( 10) 
Example 2  

Consider the following simplified version (Figure 7) 

of the telecommunication network (Figure I). 	This network operates 

in exactly the same way as the network of (Figure 1), eXcept that 

system  5 2  is not decomposed into two systems S 2I  and S 22 . 

Channel I 

-H>--  Chonn3I 2 

• 

• . 

Figure 7  

The state/word assignment for this system is shown 

in Figure (8). 

State Assignment  

State 	 Word 	Description 

A
I 	

Both 	S 	and 	S
2 	

provide 	a 	path 	from 	i 	to 	j 

A
2 	S

I 	
fails 	and 	the 	only 	path 	is 	provided 	by 

S
2. 	

Repairs 	to 	S
I 	
are 	not 	yet 	started. 

A
3 	Repairs 	to 	S

I 	
start. 	S, 	is 	still 	providinç 

4 

the 	connections 	between 	1 	and 	j 

r 1 	S2 	fa ils 	before 	repairs 	to 	S I 	have 	begun. 

F
2 	

S2 	fails 	before 	repairs 	to 	S I 	are 

completed. 

Figure 8  

n 

•.4 
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For ease of numerical computation we assume that the 

failure and repair rates of S
I 
and S 	are equal and are respectively 

.002/hr. 

.004/h r.  

Likewise we define a delay rate p as 

average time before repairs begin 

= .2/hr. 

Taking the one step transition probabilities as 

*) 
characterrzing the state behaviour of the system for one hour, we 

can draw the transition graph (Figure 9) and from it obtain the 

MI matrix 	(Figure 10). 

Figure 	9 

See footnote on Page 3.  
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1 
A , 
L 

A 
3 

Now the equations (12) and (22) are 

IPI 	= 	1 1 1 1 	= 	IBI 

IG(z)I = 	z 	h ii 	- zIA1 	-I  

Performing the matrix inversion in (22) givesi N(z 

(I -.8z)  (I-z ), 	.002z(1-z), - .0004z 

.0008z
2 	(I-z) (I-z), 	.2z(I-z) 

.004z(I-.8z), .000008z
2 

, (I-z)x 
(I -8z)  

comparing (12) and (22) it is obvious that 

pl = 	I  N(z)I 	IBI 

z= I 
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Thus, 

	

.03 	.97 

	

.03 	.97 

	

.02 	.98 

From 	WI , it is seen, that the small delay 

( p = 	.2/hr.) of average duration 5 hours, before repairs 

start to S 
1 
does not seriously affect the long r un  operating 

performance of the overall network. Specifically it is seen 

that failure  WI Il  usually occur to state F 2  rather than F1. 
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SUMMARY  

It has been shown, that the reliability modelling of 

complex systems with many failed states presents no particular 

problem, once the matrix 1 M lof failure and repair rates of 

the component systems of the complex system is known. 

The only computations required are simple linear 

14)13 12, 	, operations on Matrices 
(11, 	

and thus all the methods 

presented are ideally suited for digital computer computation. 
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EXplanation of Notation  

S( • ) 

A 

A. 

a
ik 

iAl 	a 

Stationary Markov process characterizing the 

state of the complex system. 

The(r + m)square matrix of the one step 

transition probabilities. 

Set inclusion. 

Set union. 

The set of r acceptable states. 

The acceptable state A i  E A, i = 1, 	r. 

The one step transition probability between 

acceptable states A i  and A k . 

The r square matrix of the one step transition 

probabilities between the • r acceptable states. 

The class containing the m failed states. 

The failed state 	F 	E F, j = I, ....,m. 

1 I 	The m square matrix of the one step transition 

probabilities between the m 	failed states. 

This is by definition the unit (m x m) matrix. 

The one step transition probability between 

acceptable state A i  and failed state  F.  

- 	The (r x m) matrix of the one step transition 
j 

probabilities from the class A of acceptable 

states to the class 	F of failed states. 

IC) I 	The (m x r) null matrix. 

The probability that at time n, 	the complex 

system is in state  A.  

The probability that at time n, the complex 

system is in state F 

b.. 
t j 

J.  
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The 	lx(r+m) 	vector of the state probability 

functions. 

The reliability function. 	R(n) is the probability 

that at time n, the complex system is operating 

acceptable, that is, in some acceptable state in A. 

The steady state transition failure probability. 

This is the probability of going eventually from 

acceptable state A. to failed state  F.  

The (r x m) matrix of steady state transition 

failure probabilities. 

The transition probability failure function. 

This is the probability that the complex system 

goes from acceptable state A to failed state F, 

In n units of time. 

IP(n)1 =
j (n)1 	The (r x m) matrix of the transition probability 

failure functions. 

The random variable "first time the state of the 

system is failed state F given that the network 

initially started in acceptable state A i ". 

Ti j
(k) 	The k th  moment of T. • 	k = 1, 2, ... 

1 T (k) 1 alt
ij

(k) 1 ' The (r x m) matrix of the k th moments of T...  

g ii (z) 	The generating function for the moments T. (k). 

IG(z)la Ig ii (z)1 	The (r x m) matrix of the above generating functions. 

w i (n) 	The probability that after n units of time the 

complex system will be in some failed state in F, 

given that it initially started in acceptable state  A. 

This is called the exit probability function. 

Ti 
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T.(k) 

- 

T(k) 
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The (r x I ) column vector of the exit 

probability function. 

The random variable "first exit time from 

acceptable state A i  into the failed class F". 

The k th  moment of T • k = I, 2, . 

The (r x 1) column vector of the k
th 

moments 

of T.  

The generating function for the moments T i (k). 

The (r x 1) vector of the above generating 

functions. 



86021 

i QUEEN TK 5102.5 .M48 1971 	ex 
De Mercado, John, 1941- 	m 
Probabilistic studies of com 

I 

TK  
5102.5 

î 

DATE DUE 
DATE DE RETOUR 

• 	t 

LOWE-MARTIN No. 1137 




