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FORWORD  

This report contains a state-of-the-art survey of Spread 

Spectrum Multiple Access (SSMA) techniques in general, but Code Division 

Multiple Access (DCMA) in particular. Specifically, Section 1 describes 

CDMA signaling concepts and techniques, Section 2 discusses sequences 

and their correlation properties, and Section 3 considers the synchron-

ization aspect of CDMA signaling. 

Two salient features that are necessary for the successful 

operation of a CDMA system are: 1) the code sequences must possess a 

very wide signal spectrum and 2) the code must be susceptible to rapid 

acquisition. The first feature calls for long sequences which possess 

noise-like properties while the second feature favours short sequences. 

Thus, these two features represent conflicting requirements. Successful 

CDMA operation requires simultaneous satisfaction of both features. 

Hence certain suitable compromise has to be incorporated; this is the 

direction which is currently under investigation. 
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1. CDMA! TECHNIQUES 

1.1  Introduction 

Multiple access communication arises in situations where many users 

attempt simultaneous transmission through a common communication channel or 

share a common central resource facility. The satellite channel having 

ample bandwidth and a wide geographical coverage is a natural environment 

for multiple access communication. Ground-radio networks and terres  tial 

data bus in which user terminals are attached through communication adapters 

are also candidates for multiple access. Conventional multiple access 

schemes are frequency-division multiple access (FDMA) and time-division 

multiple access (TDMA) in which fixed frequency bands or time slots are 

allocated to the users. When the number of users is large FDMA (TDMA) can 

run into a problem in bandwidth (time slot) allocation. The effectiveness 

of both FDMA and TDMA is thus greatly reduced. Also in an environment in 

which data generation is random and bursty, either FDMA or TDMA would be 

inefficient in that a large fraction of the frequency band (or time slot) 

may be idle over a certain period of time. Other multiple access schemes 

are demand-assignment multiple access (DAMA) and random multiple access 

(RMA). DAMA itself has many derivatives. Two of the more prominent schemes 

are Polling [Konheim and Meister, 1974] and reservation scheduling [Mark, 

1978]. With random multiple access the transmissions by various users 

will add to produce a composite signal. Unless there are specific propert-

ies which are built into a relationship amongst the various signals so that 

each intended user can discriminate against unwanted signals, the composite 

signal just appears as noise to all concerned. Thus, simultaneous trans- 
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mission by two or more users can lead to destructive interference and 

retransmission must take place. A scheme, known as the ALOHA system 

[Abramson, 1970] developed by a group of researchers at the bniversity of 

Hawaii, uses this transmission strategy. 

When the different user signals are coded so that they form an 

orthogonal set, then intended users can extract their own wahted signals 

with only negligibly small interference. That is, unwanted Signals will 

appear as wideband noise; the power spectra of unwanted signals spread 

over a wide frequency band, hence the term spread spectrum. When the 

various singals are coded to form an orthogonal set, or an almost ortho-

gonal set, which is characterized by a low cross-correlation function, the 

mode of spread spectrum multiple access is called code- 

access (CDMA). It is with respect to sequences possessing good cross- 

correlation properties, and hence suitable for CDMA application, that the 

present study is directed. 

Spread spectrum as a research discipline spans a rather wide cross-

section of the communication field [Dixon, 1975]. To date spread spectrum 

multiple access (SSMA) systems have been used mainly in military systems 

under various names as frequency hopping. [Nossen, 1974], pseudonoise 

systems [Lefande, 1970], jamming systems [Ross, 1974], etc. By far the two 

most widely discussed spread spectrum code signals are the following: 

i) Direct sequence (DS) signal with chip time (digit duration) Tc , and 

ii) noncoherent frequency hopping  (PH)  signal with frequency separation Af. 

The essential ingredient in these two techniques is the code use tospread 

the bandwidth of unwanted signals; hence DS and FH are known as code-

division multiple access (CDMA) techniques. 

In the remaining portion of this section we present a brief 

division multiple 
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exposition of DS and Fil as spread spectrum techniques. A survey of the 

codes or sequences together with their correlation Properties is given in 

Section 2. As in all other aspects of communication, synchronization 

represents a prominent and indispensible feature in SSMA. Section 3 

presents a survey of synchronization techniques which pertain to CDMA 

applications. 

1.2 Basic Concept of Spread Spectrum 

Under normal communication situations in which the information is 

to be conveyed over a certain distance, the baseband information is modula-

ted onto a carrier to avoid excessive propagation attenuation. When there 

is .more than one user involved, simultaneous transmission by many users 

over a common channel will result in interference. Superposition of a 

code,which is known only to the intended receiver, will permit extraction 

of the wanted information provided that the code and the encoding process 

have the following properties: 1) at the receiver, signals from unianted 

users will look like noise, and 2) the superposed code is transparent to 

the baseband information signal, i.e., removal of the code at the receiver 

will not perturb the baseband information. Property 1 is a code design 

problem, which we will deal with in Section 2. Property 2 is an encoding 

problem which we discuss below. 

Generation of the transmitted signal in a multiple access environment 

thus involvestwo steps: conventional modulation of baseband information onto 

a carrier and subsequent encoding of a superposable orthogonal code. At 

the receiving end the process is reversed: removal of the code and de-

modulation to reproduce the baseband information. The basic concept of 

spread spectrum communication is depicted in Fig. 1.1 [Utlaut, 1978]. 
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Fig. 1.1 Basic Spread Spectrum Concept 

In Fig. 1.1, Si (t) is the wanted signal, S i (t), i = 2,3,...,N are the (N-1) 

unwanted signals, I(t) is -other interference and n(t) is additive noise. 

The intended user will have g1
(0 as its despreading function, which is 

identical to the spreading function employed to protect the identity of 

baseband information m1
(t). Let <x,y> , denote the inner product of the 

variables x and y. It is desired that <gi (t), gi (t)> = 1 and <gl (t), 

g(t), i 	1> = 0, i.e., {g.(t)} 	is aiset of N orthonormal functions, 
i=1 

and that the spectra of g1 (t) I(t) and  g1 (t) n(t) will be wide compared to 

the baseband information bandwidth. It is possible•that the interferer I(t) 



may itself be narrowband, so that it is necessary that the spreading 

function  g1 (t) be of very wideband, since the bandwidth of  g1 (t) I(t) is 

given by the sum of the bandwidth of  g1 (t) and that of I(t). In CDMA 

the spreading function  g1 (t) is the code which has a bandwidth  B 	B , 

where Bm is the information 
bandwidth. The processing gain G is thus 

given by the ratio: G = B /B , so that the output signal-to-noise ratio c m 

is related to the input signal-to-noise ratio as follows: (S/N) o = G (S/N) i 

For design consideration the signal-to-noise ratio equation is insufficient, 

i.e., it is impractical for the signal to be G (dB) below the interferer, 

since we must take into account a certain minimum output signal-to-noise 

ratio requirement to yield the identity of the information and the losses 

incurred by the processor. Let (S/N) 0  be this output signal-to-noise ratio 

requirement and L be the processing loss. The interference margin Mi  is 

defined as [Dixon, 1965]. 

M. = G + (L + (S/N) 0 ) dB. 
1 	p 

1.3 Direct Sequence (DS) Signaling 

By a sequence it is meant that its elements assume values from a 

finite alphabet. While the alphabet size of the sequences discussed in 

Section 2 is arbitrary, for spread spectrum applications the most interest-

ing sequences are those drawn from an alphabet of 2 elements, i.e., in 

GF(2). In this section we are concerned with binary spreading sequences 

or codes. While we can employ the spread spectrum signal generation as 

depicted in Fig. 1.1, in which the information is modulated onto a carrier 

and the modulated signal is then subsequently encoded by modulating the 

code onto this RF signal, it is better to first combine the information 

signal and the spreading sequence before modulation. If the original 
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information is an analog waveform, combining the information with the 

spreading code requires first digitizing the analog waveform and encoding 

the result into a PCM signal. Combining the PCM signal with the spreading 

code can then be accomplished using a modulo 2 operation which has the 

property that 

(c CO a) E0 c = a 

Thus, if "c" is the code and "a" is the PCM information signal, removal of 

the code from the composite sequence cffla can be accomplished by modulo 2 

adding to it the code c. It is in this context the spreading code is 

transparent to the information signal. 

The process of combining the information sequence "a" with the code 

"c" is called code modification. The code "c" itself is referred to as 

the unmodified code. Modulation of the composite sequence cffla onto the 

carrier can be done using a variety of modulation schemes, such as pam 

and fsk. However, phase-shift keying (psk) is preferred on account of 

1) the modulated signal has a constant envelope so that for the bandwidth 

used, the transmitted power is maximized, and 2) psk is equivalent to 

double sideband suppressed carrier modulation, so that it is easier to 

generate the psk than fsk signal. In fact psk can be accomplished using 

balanced modulation as depicted in Fig. 1.2. 
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Binary psk is also known_ as phase reversal modulation. Whenever 

the composite code cea has a transition from ONE to ZERO or from ZERO to 

ONE, the carrier changes phase by n radians. The phase-shift keying process 

is illustrated in Fig. 1.3. If an unmodified code is used at the 

Fig. 1.3 psk Waveform 

receiver to balance demodulate the psk signal, the recovered signal will 

be an information sequence modulated psk, which is at the same carrier 

frequency as the incoming psk signal. Such a code removal process is 

known as in-line correlation, the object of which is to reject interfering 

signals. Since the recovered signal is at the same carrier frequency as 

the input psk, a narrowband interfering signal could conceivably leak 

through the correlator, defeating the purpose of spreading the spectrum. 

A process which generates an output at a center frequency different from 

the carrier frequency of the input psk is known as an heterodyne correlator. 

The essential feature of an heterodyne correlator is that the signal used 

for despreading is at a carrier frequency fc 
+ f

IF' 
 where f

c 
is the 

carrier of the incoming psk and fIF 
 is a chosen IF frequency. The reference 

signal is it4elf a psk in which the modulating signal is the code sequence 

and the local carrier is fc 
+ fIF' 

The code removal process is depicted 

in Fig. 1.4, in which the reference signal is assumed to be synchronized 
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with the incoming RF signal. We postpone discussions of synchronization 

techniques and the effect of synchronization errors on correlation to 

Section 3. 

A 
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I 

1.4 Frequency Hopping  (PH)  Signaling: 

The principle behind frequency hopping  (PH)  signaling is the same 

as in direct sequence (DS) signaling;  PH  differs from DS only in the manner 

with which  PH or OS  is implemented. Thus, as with DS there is no restrict-

ion on the choice of modulation. The code sequence is used to randomly 

switch the carrier frequency instead of directly modulating the carrier. 

A functional block diagram of the transmitter and receiver of an FH signal-

ing system is depicted in Fig. 1.5. Basically, when the local oscillator 

(frequency synthesizer) in the receiver is switched with a synchronized 

replica of the transmitted code, the frequency hops on the received signal 

will be removed, leaving the original modulated signal untouched. An 

offset fIF 
frequency is applied at the receiver for the same reason that 

fIF is used for code 
removal in DS signaling. 



- 10 - 

WIDEBAND 
-MIXER 

MOD 

Spread Spectrum 
Signal Information 1 

Carrier 

(a) Transmitter 

Code 
Sequence 

To DEMODULATOR 

f f 	f l' 2" n 

Received 
Signal WIDEBAND 

MIXER 
IF 
BPF 

‘ammesasemEmacemafflousema■aasel 

Code 
Sequence 

LOCAL 
OSCILLATOR 
(FREQ.SYNTH.) 

111 
1 I 

I 
111 

f
1
+f

IF'
f
2
+f
IF''

f
n
+f

IF 

(b) Receiver 

Fig. 1.5 Functional Block Diagram of a Frequency 
Hopping Signaling System. 

Let àf be the frequency separation between discrete frequencies 

and N be the number of available frequency choices. If the channel spacing 

is contiguous, i.e., nonoverlapping, the spread spectrum bandwidth is BRF  

= N àf. The processing gain is then G = BRF
/B
m

, where Bm 
is the bandwidth 

of the information. If the frequency separation is chosen such that 

If  = B , then G = N, which is the number of channels used. A DS signal 

requires a high code rate'Rc in 
order to attain a high processing gain 

since the bandwidth of the code is Bc 
= 2Rc

. A frequency hopping signal, 

however, does not require a high hopping rate. Moreover, it is desirable 

that the frequency-hopping rate be the same as the information rate. If 

the frequency-hopping rate is greater than the information rate, it tends 



TH  Code  

FREQUENCY 
SYNTHESIZER 

Information DS Code ED Infôrmation --,TH/DS.Output 
BALANCED 	 

-MODULATOR 

CODE 
GENERATOR 

- 11 - 

to spread the spectrum to exceed the received information bandwidth. How-

ever, there may result in a residual phase modulation which may seriously 

degrade the performance of subsequent demodulation of the information. 

On the other hand, if the frequency-hopping rate is less than the inform-

ation rate, interference from unwanted signals will tend to be coherent. 

However, the occurrence of interference will tend to be inter±ittent with 

periods of one hop suffering heavy interference and long periods of many 

hops being free of interference. This latter feature is dependent on the 

correlation property of the code and the code length. 

With frequency hopping it is difficult to maintain carrier co-

herence across the wideband. Thus the signal presented to the demodulator 

may change phase each time the system hops to a new frequency. Therefore, 

coherent demodulation is not suitable for PH  signaling. Instead simple 

envelope detection, which does not care about input phase shifts and can 

respond quickly to pulsed signals,is most often used. 

1.5 FH/DS Signaling: 

Hybrid FH/DS signaling extends the spectrum spreading range 

attainable by  PH or DS alone. Basically FH/DS signaling consists of a 

direct sequence modulated signal whose center frequency hops periodically. 

The hybrid FH/DS signaling procedure is depicted in Fig. 1.6. 

Fig. 1.6 Hybrid FH/DS Signaling 



DEMOD. 
Information Received FH/DS 

Signal 

Balanced 
Modulator 

FREQUENCY 
SYNTH. 

DS Code 

CODE 
GENERATOR 

- 12 - 

The DS code rate is normally much faster than the rate of frequency 

hopping. Iherefore many bits of the DS code will occur in.a single frequency 

channel. Also, the number of channels available is usually much smaller 

than the number of code bits so that in the course of a complete code 

length all the frequency channels will have been used many times. The 

pattern of their use is random depending on the randomness of the code 

itself. 

As in DS signaling removal of the code in a hybrid signaling system 

also employs heterodyne correlation, the difference being in that the 

reference signal is also hybrid FH/DS. A hybrid FH/DS receiver is illust-

rated in Fig. 1.7. 

tc■immotexcosseesescasaereasartimasa 

f1+fIF' f 2+fIF' fN+f IF 

Fig. 1.7 Hybrid FH/DS Receiver 

The processing gain of a hybrid FH/DS signal in dB is given by 

the sum of the processing gains of the FH and the DS signals, i.e., 

G (FH/DS) = G (FH) + G (DS) 

= 10 log10
(number of channels) + 10 1og10 	dB.  4m 
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To achieve the same processing gain as FH/DS, a DS signal must have a 

very high code rate or the FH signal must have a huge number of channels. 

Because of a reduction in the number of channels and in the code rate, 

FH/DS offers simpler implementation possibilities. 

1.6 Summary: 

To attain a reasonably large processing gain the code rate has to 

be high compared to the information rate and the code length must be large. 

For SSMA applications long codes are essential. 

Although multi-level codes, which lead to m-ary psk signaling, are 

interesting in themselves, the simplicity with which binary psk offers 

overrides any advantage multi-level codes may have over binary eodes in 

SSMA applications [Judge, 1962; Aein, 1964; Gold, 1967 1 . 
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I 2. SEQUENCES AND THEIR CORRELATION PROPERTIES 

2.1. Introduction  

The purpose of this section is to survey the design and analysis of 

sequences or sets of sequences with small autocorrelation and crosscorrela-

tion values. While much of the interest is focussed on sequences over the 

alphabet {±1}, other alphabets are also considered. In particular the 

alphabet consisting of the k
th 

roots of unity for some integer k has been 

of interest since this corresponds to the phase coding of signals. 

There are no proofs of any of the results included here and the 

construction of the sequences is described in varying amounts of detail, 

depending more on the author's interest in them rather than in their assess-

ment of their importance. 

There is a wide variation in the literature for the notation of 

these problems and in the next section we establish our own notation for 

use throughout the report. Thus readers going from this report to the 

original articles will have some translation to do. Some general bounds 

and properties of the periodic and aperiodic correlation functions are also 

given in the next section. Section 2.3 considers Barker sequences and the 

existence problem for them. Maximum length sequences are discussed at some 

length in Section 2.4. While the basic properties, of such sequences have 

been known for some time, recent work has considerably extended this know- 

ledge particularly on the cross correlation properties of distinct sequences. 

A few of these new results are mentioned. In Section 2.5 the construction 

of multiphase sequences with desirable correlation properties is considered 

and in Section 2.6 the construction of sequences (both binary and multi-

phase) which produce correlation functions with certain properties. At • 
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, times these two approaches are quite ambiguous and so there is considerable 

overlap. There is an obvious connection between -alb design of sequences 

with good correlation properties and the design of error correcting codes 

with good distance properties. This connection is briefly explored in 

Section 2.7. Section 2.8 considers the complementary sequences of Golay 

and their extensions. 

An annotated bibliography has been included as the APpendix as a 

ready reference for readers interested  in the contents of a particular paper. 

More detailed comments on the paper will be normally found in the text but 

often scattered among various sections and perhaps difficult to locate. 

The duplication involved in this approach was felt to be worth the conven-

ience. Likewise, all references are by author and date to give the reader 

an immediate indication of the historical perspective of the results. 

2.2. The Periodic and Aperiodic Correlation Functions  

Let xv  ={xv  xv , 	.' x
v 

1, v = 1, 2, ..., M be a set of M 

sequences of complex numbers of length n. Define the aperiodic cross- 

correlation function 

n-1-£ 
✓ -A 

cvX
(£) =r E x. x. • 1+£ 

1=0 

n-1+£ 
✓ -A E x. 	X.  

i=0 
1-£ 1 

where the overbar indicates complex conjugation. The periodic cross-correl-

ation function is 

= c
vÂ

(£) + c Xv
(n-£) = c (£) + cv2t

(£-n) 
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since it is readily verified that c
vX

(JO =  c(-0. The odd cross-correla- 

tion function is defined by 

b
vÂ

(9,) = cvÂ
(£) -  c 1 (9,-n) 

and has been shown to be of significance in the performance of binary 

asynchronous phase coded spread spectrum multiple access (SSMA) systems. 

Specifically it is Important in establishing synchronization when succeeding 

binary symbols are different. Reference to it in the literature is limited. 

The periodic, odd and aperiodic autocorrelation functions are 

a
v
(Q) = a (9,), bv (9„) = b (9„) 

and c (9,) = c (9,), 	=  
vv 	 vv 	 vv 

respectively and when only the one sequence is under consideration (M=1), 

the subscripts will be omitted. Notice that 

and 	av
(£) = c

v
(X) + c

v
(n-2,) . 

It is also easy to show that the periodic correlation function is invariant 

under cyclic shifts of the sequence but the odd correlation function is not. 

Much of the work in this report will be concerned with sequences 

' 
over finite alphabets and usually over the complex m

th 
 roots of unity, for 

some positive integer m The aim is to design sets of sequences whose off 

peak autocorrelation values and whose cross correlation values for all 

shifts are minimized in magnitude. For this reason we define the following 

quantities: 

ma = max 	max 	lav
(9,)1

lvM 	1.1<n 

and 

	

m' = max 	max 	lavX. a 

	

vX 	02<n 

i.e., ma  is the maximum off  peak magnitude of the periodic autocorrelation 

function of any of the M sequences and m is the maximum magnitude of any 
a 

of the periodic cross correlations. The quantities mb ,m,.mc 
andin'  denote 



1/2 M-1 
a
max - 

(2.1) 
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the odd and aperiodic autocorrelation and cross-correlation functions. The 

same notation will be used when there is only one sequence under considera-

tion, M=1. 

It is useful to derive some general relationships and inequalities 

on these quantities for later use and consider first the work of Welch 

(1974). For a set of M sequences of length n let 

amax 
= max (m , m') a a 

i.e. ,  a
max 

is the maximum magnitude of the off peak autocorrelation values 

and the cross-correlation value for any shift. It can then be shown that, 

for any positive integer k, 

1 	[ 	M n  
a
2k > 
max - (Mn-1) 	in+k-1) 

\ k / 

and, in particular for k = 1, 

-1] 

By appending (n-1) zeroes to each of the M sequences, to give sequences of 

length (2n-1), the periodic correlation and cross-correlation functions of 

the extended sequences are the aperiodic correlations of the original 

sequences. Defining cmax for the 
aperiodic case in the same manner as for 

the periodic case the above bounds, modified by replacing n with 2n-1, 

become 

- 	 - 
2k 	1 	M(2n-1)  

C 	> 	 -1 
max - ((2n-1)M-1) 	pl-Fk-2) 

k k - 	 _ 

and for k = 1 this inequality reduces to 

1/2 
M-1  

emax ?'" [14(2n-1)-1] 
(2.2) 
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Such bounds are useful in evaluating particular sets of sequences. 

Pursley and Sarwate (1977a) established the following identity, in 

their examination of phase coded SSMA systems: if x11 , xn , x  and  x are four 

sequences of period n then 

n-1 	 n-1 
E a (£) -

vX
(£+k) = E a (£)

r1À
(£+k). 

90 Pn 	 90 Pv.  
• 

Notice that if p = v and n =  X and k = 0 the identity reduces to 

n-1 	2 	n-1 

	

E la (£)1 	= 	E a (£)  a (£) 
z=0 Pn  

HI 

1  

1  

1 

I. 

which is an interesting observation on the relationship between cross-

correlations and autocorrelations, noted as proposition 1 in Pursley and 

Sarwate(1977b).Forthecadewhenx.=±1 equation (2.4) reduces to 

n-1 	2 	 n-1 
É a 	(£) = N2 + E a (£) a (£) 
z=0 Pn 	 P  

and applying Cauchy'sinequality to the right hand sum gives the bounds 

n-1 	1/2 n-1 

	

21£`j À E a 2( 50 	 ( 
1/2 n-1 

5_ E a 
2 £) 	n + 2 

-E a ii  . / 	 n  . / 	 un  st=0 

n-1 	)1/2 n-1 	2 	}1/2 
+ 	E a 

2
(£) 	E a

n 
(JO 

2,=1• £=1 

This equation is useful in examining the performance of a given set of 

sequences since we are interested in minimizing both la (£)1,£# 0 for 

each sequence p for good acquisition and synchronization, and la (£)1, 
un 

p n for good discrimination between users. 

The corresponding results for the aperiodic correlation function 

are: 
(n-1) 	 (n-1) 
. E 	c .  (£)  c ,(£+k)-= 	E 	c 	c 

(2.5) 



(n-1)  
5 	E 	c

2 
 "(£) 5 n

2 + 

n-1 . 	1/2 E c 2 (9,‘  1 

£=1 
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and, for binary sequences, 

n-1 	1/2 n-1 
n2 - 21 E c2 (£)/ 	I E c2(£ )  1

1/2 

£=1 P  ) 	4=1 ri 

n-1 	1/2 
+ 2 f E c2 (£) '? 

£=1 

In applications it is important to have both ma  and m as small 

as possible and it is known there is a trade-off -- one cannot have a set 

of sequences with both ma  and 	arbitrarily small. Pursley (1978a, 1978b) 

examines this trade-off and shows (Pursley 1978b) that for any set of M 

sequences 

,2 
m
2 

( ma ) + 	n-1  ( 	> 
ni 	n(M-1) 	ni  

and this relation gives a lower bound on one of the parameters  m,   
a a 

when the other is given. It is also shown there that if M (n41)
2 

then 

ma _ 
TR. It is also shown that equation (2.6) is valid for the aperiodic 

correlation function i.e.,with m , m' replaced with m , m'. As a consequence 
a a 	 c c 

of these results it is shown that attempting to reduce the value of (m 1 ) 2 /n 
a 

below 1 will imply that the set of sequences will have a substantial in-

crease in (ma) 2 /n above O. Various sets of sequences are constructed in 

Pursley (1978b) and in particular a set of n sequences of length n for which 

(m l ) 2 /n = 0 and (ma) 2/n = n, and a set for which (m T ) 2 /n = 1 and 
a 	 a 

(ma)
2
/n = 0, for n odd. 

In a slightly different approach Pursley (1978a) defined the quantities 

2.6) 

n-1 1 
= 9 	E 	la 1 (£)1 2 

v 	À 

and 
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n-1 1 
Qv = 	l av (1)12  n 	2,=0 

and showed that 

E P 	E Q
v 

?» M(M-1) 
v,À v  
N)Â 

assuming that  a(0) = n for each v in the set of size M. Consequently if 

P and Q are the maximum values of Pv1 
and Q

v 
respectively then 

-1 - P + (K-1) 	Q 1 

and again the tradeoff between autocorrelation and cross-correlation peaks 

is observed. Similar results are obtained for the aperiodic correlation 

case. 

In the same spirit as many arguments of coding theory it is natural 

to ask the question "how large can a set of binary sequences of length n 

be if the maximum off peak aperiodic autocorrelation function is to be less 

than na and the maximum aperiodic cross-correlation function is to be less 

than nS?". As in coding theory, random coding and expurgation arguments 

can be used to prove existence of such sets for certain parameters. Using 

this approach Schneider and Orr (1975) proved the following: 

Theorem (Schneider and Orr; 1975). Let a and S satisfy 0 5 a 5 1 and 

0 5 5  5 1. There exists at least one set of binary (±1) sequences of 

length n, Sn , such that mc<na, m' < nS and 

1-a 
0 if H(---) 1 2 	

log(4n) 

1 . 	 - 
16n {exp2  [n(1-H(12 (3 ))]}{1-4n exp

2 [-n(1-H(12(1)11 

As a corollary .to this theorem-it can be shown that there exist 

sets Sn such:that ISn I grows exponentially with n for fixed S, providing 
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does not approach zero faster than 1/Vri. Similarly it can,be shown that 

there exist sets such that ISn 1 grows as some power of n (the power being 

less than unity) providing neither  Œ  nor 8 approaches zero faster than 

lbrit. Such statements are useful in evaluating , sets of sequences. Seguin 

(1978) obtained similar results for skew symmetric binary sequences (ie., 

sequences for which x. x-l-j = (-1) j+1 if 41(n41) and (-1) .1  if 41(n-1)) 
j n 

using similar methods. 

Moon and Moser (1968) showed that if c' = max cv CO where  c 
	the 

n. Z>o 

autocorrelation function of a sequence of length n then "for almost all" 

sequences of length n 

log c' 
1-6 < 	

n < 1 4. 6.  
1 
2

-  log n 

The phrase "for almost all" sequences implies the statement is true for all 

but a fraction of the 2n  possible sequences, and this fraction tends to 

zero as n tends to infinity. In a probabilistic measure theoretic sense 

we would say that the probability measure of the set where 

log c' 
1 	 

{ I, 	11 > 	} 
7 log  n 

tends to zero as n tends to infinity if the measure is uniform on the set 

of all  possible  sequences. Roefs and Pursley (1977) are able to make the 

same statement with c replaced by 

c" = max cvX (£) , n • 

for any two sequences x
v , x drawn from the set of all possible 22n sequences. 

In several places in the report it is necessary to transform a binary 

(0,1) sequence x = (xo 
x
1 , 	

xn-1
) into a binary (-1, +1) sequence 



i0<k<n -2. 
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= (yo , yl , 	yn..1 ) by the transformation n:091-1, 1÷-1. For this 

transformation of n-tuples we will use the notation y = n(x) and 

-1 
x = n (I) • 

2.3. Barker Sequences  

The original problem considered by Barker (1957) was concerned with 

the design of binary (±1) sequences for which the off centre aperiodic 

correlation is either 0 or -1. The sequences he determined are: 

n = 3 + + - 

n = 7 + + + - - + - 

n = 11 + + + - - + - - + - 

It has since become conventional to only require that Ic(£)1 < 1  2,  # 0 and, 

underthis relaxed condition, the following sequences can be obtained (as 

given in Turyn and Storer (1961)): 

n = 2 ++ 

n = 4 + + + -; + + - + 

n = 5 +++-+  

n = 13 +++++--++-+-+   

For n odd these are in fact the only sequences with the required property 

(Turyn, 1961). While a complete proof of this theorem is beyond the purpose 

of this survey some points established in it are worth mentioning. Since 

weassmethatx.=+l or -1, terms of the form x.x. are also either +1 i+k 

or -1 and, for any binary sequence we have 

n-l-k 
x.x 	= (-1) (n-k-c(k))/2 

i+k i=0 

Multiplying two equations of this form. yields 

x
11,k 

x
k+1 

= (-1) n-k-(c(k)+c(k+1)+1)/2 
-  

1<k<n-1 
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Since the sequences under consideration are real 

n-1 
c(k) + c(n-k) = E x x. i i+k 

and hence 

n-1 
.jr  X. x. 	=1=  1 i+k 
0  

(n-c(k) - c(n-k)/2 

implying that c(k) + c(n-k) E n (mod 4). Now for Barker sequences le(k)1<1 

and it follows that for such sequences c(k) = 0 for (n-k) even and c(k) = ±1 

for (n-k) odd. It also follows that if n E 2 (mod 4) then n = 2 since if 

n > 2 then en = en-2 
but e

2 
 + cn-2 

= 0 e n (mod 4). Thus for n even a 

Barker sequence of length n could exist only for n E  O  (MOd 4) and for such 

sequences c(k) + c(n-k) = O. 

If n is odd then c(k) = 0 for n-k even and c(k) = (-1)
(n-1)/2 for 

(n-1 )  odd and hence the c(k) are in fact completely determined by these 

conditions. 

For n even there is considerable evidence that there are no Barker 

sequences of length greater than 4. Historically, Luenberger (1963) showed 

that if a binary (±1) Barker sequence of even length n exists then n must 

be a perfect square. Since it was previously known there is no Barker 

sequence of length 16, the only other possibilities for even length Barker 

sequences of lengths less than 100 are for those of lengths 36 and 64. 

Turyn (1963) observed that a necessary condition for Barker sequences of 

even length n to exist is that a sequence of length n with periodic correla-

tion function a(k) = 0, k 0 exist. The nonexistence of such a periodic 

sequence implies the nonexistence of the corresponding Barker sequence. 

Everett (1966) observed that the existence of a periodic sequence with the 

property that a(k) = constant is equivalent to the existence of a difference 
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set with certain parameters. In this setting the nonexistence of Barker 

sequences of lengths 16 and 36 was well known.. Turyn himself showed that 

Barker sequences of lengths n = 4N
2 
where N is the power of a prime cannot 

exist thus eliminating n = 64 and leaving the smallest unresolved case as 

n = 6,084. In fact, the existence of a periodic sequence with zero off 

centre correlation is equivalent to a circulant Hadamard matrix and it has 

long been conjectured that the only such matrix has order 4. 

Turyn (1967) defines the quantity 

b(n)  . min max ce  im 
n 	j>0 I 

where the minimum is taken over all sequences of length n. Moser and Moon 

(1968) showed that if the binary ±1 sequence is chosen independently and at 

random then the maximum off peak value of c(j) will be of the order of 4.E. 

When the constraint that Ic(j)1 < 1, for Barker sequences, is relaxed to, say, 

kW! < 2 then other sequences are of course found. For example Turyn (1967) 

notes that there are binary sequences of lengths 21, 25 and 28 with Ic(j) I < 2 

but none of lengths 22, 23, 24, 26 and 27. Other results achievable when the 

conditions to be satisfied by the autocorrelation function are relaxed are 

noted in the following sections. 

We also mention here that periodic sequences with off peak values of 

c(j) a constant, correspond.  to cyclic difference sets and the situation with 

regard to these is summarized in Turyn (1967). Again, for periodic sequences 

the behaviour of min max la(j)I is of interest and it is noted that sequences 
n j 

achieving the minimum do not in general arise from difference sets since such 

sets with the requisite values are scarce. 

In section 5 sequences over alphabets of size greater than two are 

considered and, in particular, such sequences which satisfy a Barker type 
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constraint on their correlation function are constructed. 

2.4. Maximum Length Sequences  

An enormous amount of effort has gone into the examination of 

maximum length sequences ie., sequences generated by a linear shift register 

whose feedback function is a primitive polynomial. In this section we give 

a brief review of the most important properties of such sequences and then 

consider a few of their properties of particular relevance to this work. 

Recall first that since there always exists a primitive polynomial 

of degree m over GF(2), there always exists a maximum length sequence of 

length 2m-1, for each positive integer m. For most values of m there will 

exist more than one such sequence and, in this case, the cross correlation 

function can be of interest. 

Using the notation of MacWilliams and Sloane (1976) let h(x) be a 

primitive polynomial over GF(2) generating the maximum length sequence 

a
0' 

al' a2'.•.'a2m-2' 
Clearly any cyclic shift of this sequence is also a 

maximum length sequence corresponding to a different initial condition of 

the shift register. If h(x) = E h.xi  then . each such sequence satisfies the 
0 1  

recurrence relation 

m-1 
= E h.a. 
j=0 j  

For a maximum length sequence of length 2m-1 any sequence of m consecutive 

bits is called a window and each possible non-zero binary (0, 1) mr-tuple 

occurs exactly once among the 2m-1 windows. 

a . 1 

It can be shown that in any maximum length sequence there are 2
m-1 

l's and 2
m-1

-1 O's. The modulo 2 sum of a maximum length sequence with any 
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of its cyclic shifts is again a cyclic shift of the sequence. 

Perhaps one of the most important properties of maximum length sequences 

is the shape of its correlation function. If we transform the binary (0,1) 

sequence of the shift register output to the binary (±1) sequence 13 0 , b l , 
a
i b 2m-2 where 

b = (-1) 	then the periodic correlation function of this sequence 

is 

2m-2 
a(k) =Ebb 

j=0 j j+k  

where, as usual, the subscripts are reduced modulo 2m-1 where necessary. It 

is a simple matter to show that 

	

a(k) = n 	k = 0 

	

-1 	, 	k = 1,2,...,2
m-2 

and of course this is the best possible correlation function in the sense that 

no other binary sequence has a correlation function for which max a(k) is 
k0 

smaller. 

Since a maximal length sequence is generated deterministically it 

cannot be called random and yet it has certain properties that one might 

naturally expect of a truly random sequence. For example if we define a run 

in a maximal length sequence to be a maximal string of consecutive identical 

symbols, then in any maximal length sequence one half of the runs have length 

one, one quarter of the runs have length 2, one eighth of the runs have length 

3 and so on. However many other tests of randomness are possible and the 

question as to what distinguishes a maximal length sequence from a truly 

random binary sequence is one of some interest. One aspect of this question 

will be considered later in the section. The relationship between maximum 

length sequences, Hadamard matrices and Hamming codes is well known and is 

omitted here. 
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If h(x) is the primitive polynomial associated with a particular 

maximum length sequence and h*(x) = xmh(1/x) then  the  generator polynomial 

2m-1 
of the sequence will be defined by g(x) = (x 	+1)/h*(x). The polynomial 

representation of any of the 2
m
-1 possible cyclic shifts of the sequence 

can then be described by the polynomial a(x)g(x) for some binary polynomial 

a(x) of degree less than m. 

We consider now some properties of sequences obtained by employing 

techniques such as sampling or interlacing of shift register sequences. 

For example if, from the maximum length sequence over GF(p), a a 	a m 0' I" p -1
, 

 

a new sequence is defined by the equation b i  = aki , (k, p
m-1) = 1, then 

either another maximum length sequence is obtained or it is a cyclically 

shifted version of the original one. Surb8ck and Weinrichter (1978) consider 

the problem when the sampling interval k is a divisor of the period. They 

define an elementary sequence as one whose feedback polynomial is an irreduc-

ible polynomial. If the period of this sequence has period q 	the pi  

distinct primes, then the sequence can be generated by interlacing elementary 

m . 
sequences of period pi 	Lempel and Eastman 

(1971) were concerned with a 

high speed construction method for maximal length sequences. If a0 ,a
1'

a
2'

... 

isamaximumlengthsequenceofperiodp=2 n-Ithenthesequences{d'I } are 

defined by di =aik+j 
 for a given integer k, j = 0,1,... k-1. When (k,p) > 1 

defineâby(3=min{mlek=kmod(0 } .Thensequence{d. } satisfies a linear 

recursion of degree (3 which is necessarily some divisor of n and has period 

pk = p/(p,k) or some divisor of it. In such a case different "phases" may, 

for the same k, result in sequences which are not cyclic shifts of each 

other. Using these facts Lempel and Eastman (1971) show how a given maximum 

length sequence of rate k,R can be realized by a combination of k shift 

registers each of length which is a divisor of n. 
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In a similar vein , we describe the work of Surb8ck and Weinrichter. 

Using their notation, define the D-transform of a sequence  

o'ver G(p) by F(D) = E f.D i . If the feedback polynomial is N(D) then 
o 1  

F(D) = H(D)/N(D) 

where H(D) depends on the initial state of the register. If F(D) is the 

product of irreducible polynomials then the sequence F(D) is the sum of the 

corresponding elementary sequences. Assume now that N(D) is an irreducible 

polynomial of degree r, the minimal polynomial of aEGF(pr) with exponent L. 

The corresponding elementary sequence E(D) = H(D)/N(D) has period L where 

Ll(pr-1). If L = (p
r-1)/t there exists t different elementary sequences 

of period L, all with the same generator polynomial N(D) but different 

numerators H(D). Such a collection of sequences will be called a family of 

elementary sequences. 

Assume now that L is nonprime and that q is an arbitrary factor of 

L, q = L/s. It is then shown that the elementary sequence E(D) = H(D)/N(D) 

with period L can be . constructed by interlacing shorter elementary sequences 

F(D) of period q generated by the same elementary polynomial A(D) where 

A(D) is the minimum polynomial of as , a a root of N(D). The application of 

this result to the generation of long maximum length sequences, each 

generated with the same feedback polynomial, is immediate. This character-

ization of maximum length sequences can be used to consider applications to 

synchronization problems and to explain certain phenomena on the cross 

correlation properties of such sequences. 

Milstein (1977) considers the problem of rapid acquisition of 

synchronization and performance using suitable sequences. In particular, 

itisknownthatgivenmmaximumlengthsequencesoflengthsn.,i =  
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(n., n.) = 1, i j, a composite sequence of length N 	1 ,can be formed. j 	 i=1  
To establish synchronization with this composite sequence it is only 

necessary to perform E n. correlations as opposed to as many as H n 
1 1 	 1 i  

correlations for a maximum length sequence of this length. 

On the subject of the rapid acquisition of synchronization, Stiffler 

(19 68) observesthatthenumberEn.of correlations required to acquire 

the composite sequence is much greater than the log2N binary decisions 

theoretically required. He then constructs sequences which can be acquired 

in such a number of decisions for N=2n .  •The construction of the sequences 

is asfollows.Letb e the binary expansion for the 
J 

11 
integer j-1, j = 1,2,...,2n  where 

j-1 = 
 i!1 

 (1 —/)2 1.-1" 2 

and the al.' is either 41 or -1. Then the rapid acquisition binary sequence 

is l' 2' 	N' ) N-2
n , is defined by 

= 	1 if E a, > 0 • i=1 

-1 if E a. < O. 
1=1 J 

It is shown how the phase of such sequences can be established by making 

only n binary decisions. 	 11 

Maximum length sequences are also referred to as pseudo-noise 

sequences in the literature because of their random-like properties. It 

turns out however that not all maximum length sequences are "equally random" 

and that in applications the notion of the moments of weight distributions 

of subsequences is important in determining the "good" sequences. Consider 	11 

the set of all subsequences of length M (ie., sets of consecutive M bits) 
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of the binary (04 ) maximum length sequence of length N=2r-1. Let A be 

the number of these sequences of - length M of weight w of the binary sequence 

a0' al' ... and let b0' i 	ai, b 	b = 1-2 	be the corresponding ±1 sequence. 

If 

M-1 
Sk = E bk+i 

i=0 

then the p
th 
 moment of the weight distribution is given by 

N-1 p 1 
—
S = 	E S

i
p 

N.  

as quantity which can also be expressed as 

M 
SP  = 	E (M-2w) P  A . 
— N 	 w  

W=1 

Lindholm (1968) showed that the first two moments are 

= 	 (M-1) and  S2 = M(1 	.) 

and are independent of the particular maximum length sequence chosen. An 

expression for the third moment is given as 

M3 N+i B N 	3 

where B3 is the number of trinomials of degree less than M divisible by 

f(x) the primitive polynomial of the shift register. In general the kth 

moment of the distribution depends on Bk , the number of k-term (ie., k 

nonzero coefficients, including the constant and leading term) polynomial 

of degree less than M which are divisible by f(x). With the use of these 

moments of the weight distribution, some basis for determining which maximum 

length sequence to use in a given application can be made. 

Wainberg and Wolf  (1970) give the 'first four moments of all sub-

sequences of length less than 100 for the six maximum length sequences of 
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• 
length N = 2 23-1 and considered theskewness properties of the distributions 

obtained. To assist with this task simple algorithms for the calculation 

of the third and fourth moments are given. 

Fredricsson (1975) also considers the weight distribution of sub-

sequences of maximum length sequences. This is compared to an ideal dis-

tribution and a lower bound on the deviation between the actual and ideal 

is given. Some comments on the relationship between higher order correla-

tions and the spectral tests of random sequences. It is also shown that 

maximum length sequences with good weight distribution and correlation 

properties can only exist for long sequences and a lower bound on the 

required length is given. 

For multiple access systems large sets of sequences with low off 

peak autocorrelation and crosscorrelation values are required. It is of 

interest to determine the crosscorrelation values of two maximum length 

sequences since their autocorrelation functions are, in a sense, ideal. For 

the remainder of the section we consider certain results on this problem. 

Gold (1968) examines the problem for certain maximum length sequences, 

and these have a coding theory interpretation. If a is a primitive element 

inGF(21 )andT (.,)isthetracefunctiononGF(2 11)thenletx\!=T(a i ) be 

a maximal length sequence. Denote by f(x) the minimal polynomial of a and 

by V(f) the space of linear sequences generated by f(x) ie., 

V(f) = {h(x) 1 h(x) = g(x)/f(x), degree g < degree fl. 

Let S = noT denote the conversion of the binary (0,1) sequences to 

the binary(+1,-1) sequences  and as  usual, let a
vX

(k) denote the periodic cross-

correlation fgnction between two ±1 sequences x v 
and x

X
. Gold (1968) showed 

X that if x\.)  = S(a ) 
. and x. = S((a

2£ 
 +1) -1 ,) , 

where it is assumed that n is 
-1  

odd and that (,,n) = 1, then the autocorrelation function is given by 



a (k) = 	-1 	if xv  = 1 
vX 

either -(2
(n+1)  

+1) or (2
(M+1)/2_1) if x\  /2 	 i)c  = -1. 

either -(2 (n1) 
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This fact was actually found by Kasami in a University of Illinois report 

in coding terms when he established the weight distribution of the (211-1,2n) 

code generated, by linear recursion, by the polynomial f1 (x)f 	(x) 
where 

2'+1 

f(x) is the minimal polynomial of ui . The relationship betwee ti  sequences 

and error correcting codes is explored further in Section 2.7.. For the 

present purpose, to describe the results of Gold (1967), we note that the 

BCH bound can be described by 

xell
+1  

g(x) = tcm{f
1 (x),f2 (x),...,f 2k (x)} 

then for any two sequences a, b e V(g), the Hamming weight of a + b is at 

least 2k+1. This fact can be used to show that if the integer t is defined 

by 

e 

2(n
4
.2)/2

+I. 	
n even 

and if n-1 (xv ) e V  (f1) and n-1  (x) E  V (f
t
) then la

v?■
(k)1 < t for all 

k > 0, where  a(k)  is the correlation function of the corresponding (±1) 

X 
sequences xv and x . 

Gold (1967) further shows that if f1 and f t are a pair of primitive 

polynomials, with t as defined above, which generate maximum length sequences 

of length 211-1, then the shift register corresponding to the product poly- 

nomial f
1
(x)f t (x) will generate 

2n+1 different sequences eabh with period 

2n-1 and such that the crosscorrelation function satisfies  the relation  

la
vX

(k)I < t. This result assumes that if n is even then n 0 (mod 4). 

A characteristic sequence of V(f),•f i'rreducible, is a sequence 

t = n odd 
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h E V(f) such that h
2i = h i = 1,2,... . Such sequences are studied 

extensively in Gold (1966). The concept of a coset function of a character-

istic sequence is introduced and the coset functions of all maximal length 

sequences are obtained. These notions however lie outside the present 

interests. 

The recent work of Helleseth (1976b)is an extensive investigation 

into the crosscorrelation function between two maximal linear sequences. 

The main interest in this work is in determining the values that the cross-

correlation function takes on and the number of times it assumes these 

values over a single period. Both the case of binary sequences and those 

over GF(p) are considered and a few of these results will be mentioned 

here. 

Recall first that there are y(p111)/n maximal linear sequences over 

GF(p) where lp is Euler's Totient function that are not equivalent under 

cyclicshifts.lf{a. } is a maximum length sequence then  {a.}  is a d 

maximum length sequence if and only if (d, p11-1) = 1. Furthermore, if 

{a. } and{b. } are two inequivalent sequences then there exists an integer 

d relatively prime to  p"-1 such that bj+k =adj. Thus, so far as the cross-

correlation function is concerned, it is entirely determined by the integer 

d for a fixed sequence 

maximal sequences is 

1.
1. The crosscorrelation function between the two 

p
n
-2 

a
ab (t) = E 	0(a. ) 5(13.) j-t j=0 

where 0(x) = 	, 	 th E a complex p root of unity, 	# 1. This correlation 

function can be expressed as 

aab
(t) = 	E 	Tr(cx-x

d ) 
= ad xeGF(pn)* 
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where c = a
-t

, a a primitive element of GF(pn ) and {b j } = {adj  } . Several 

interesting results on this crosscorrelation function are obtained and we 

list several of them here: 

a) a
d 
 (t) is a real number. 

b) The values and the number of occurrences of each value of ad
(t) 

are independent of the choice of 

-1 c) ad (t) = a 1 (-dt) where  d. d E 1 mod  
d- 

d) ai(t) = ad (t) 

e) ad  (ps t)  = ad (t) 

n 
a (0 = 1 

t=0 	d 

) al (t)  = r pn_i 	t.omod (pn _1) 

-1 	t 0 mod (pn-1) 

h) Over one period  ad(t)  has at least three values if and only if 

d  

i) ad (t) is an integer for all t if and only if d = 1 mod (p-1). 

j) We have ad (t) E -1 mod (H) and, furthermore, if ad (t) is an 

integer then ad (t) E -1 mod (p) CIT=1-Ç, a pth root of unity.) 

k) For binary sequences ad (t) E -1 mod (4) and, if d  

-2n-1 } then ad (t) E -1 mod (8). 

,e) The number of distinct values assumed by the crosscorrelation 
• 

function of two binary'maximum length sequences of.period .p =. 2 -1 can never 

exceed the number of cyclotomic cosets modulo p. 

The remainder of the results in this interesting paper are concerned 

with the correlation functions for certain values of d, the number of distinct 

values they assume and the  multiplicities with which they assume these values. 

It is encyclopaedic in nature. 
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2.5. Multiphase Sequences and their Correlation Functions 

The values and behaviour of the autocorrelation and crosscorrelation 

functions when the alphabet is restricted to be binary have been examined in 

previous sections. This section considers this behaviour ,  when more than 

these two phases are allowed and we begin with the work of Welti (1960), 

apparently the first work on multiphase sequences. 

In this work two alphabets are used: a binary alphabet la,p1. such 

that a+a=p+p=a, a1-=+a=, aa=p13=1, aP=Pa=-l: and a quaternary alphabet 

also with appropriate addition and multiplication. For any 

sequence A over either alphabet we define multiplication by an integer k as 

kA = (a,a,...,a) if k is even and as A if k is odd. The intersection of 

binary letters is given by the tabulation 

[ana anp I 
pna Onp [a 

 a p] 
p 

(note the non -commutativity) 

and the corresponding intersection of sequences is given by AnB = 

(a,nbl'  a2 nb 2" a nb ). The negative of a binary sequence interchanges .n n 

a and p. The product  AB  = Zabi  is the usual inner product. 

To construct the class of binary sequences (from which the quater-

nary sequences will be obtained) let A. be a sequence of length 2k, k 

fixed and i = 1,2,...,k such that the first 2i-1 places contain a t s, the 

next 2
i-1 places contain - Ps and so on. Let Xk. be a binary -vector which 

is the binary expansion of the letter  I.  Define the sequence Bk by 

k 	k 	 k k 	i 
• 	-1 j=1 

For each k,  21  sequences are obtained with the property that 
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= { o  iej 

Now consider translating this set by the vector 

k k B 	B. 

 

k k-1 1  
C = 	Ae  n A k  

j=1 	-1+1  

to form the sequences 

k k k 1,2,...,2k 
— 

These sequences are also orthogonal and will be referred to as a D-code and 

k is the order of D
k 

and i its rank. The sequences  D' 	D. are called 
-1 

k 	 -k 
mates if li-jI = 2k-1 . A mate of D. will be denoted by D. and clearly 

-k 	k 	k 	k 	-k k-1 
Di  = D. 4. Ak  and D. and D. agree in the leading 2 	elements and disagree 

k 
in the rest. D

I. 
and D. are called neighbours if Ii-j1 =1, max (i,j) odd. 

-i 	-1 

It can be shown that the catenation of a D sequence with its mate is a 

sequence of the next higher order and of the sanie  rank. Other properties 

of these codes are also examined. 

The quaternary sequences, called E-codes, are obtained from these 

D-codes. The sequence E is obtained from D
k by replacing even place (I's 

and p's with y's and a's respectively, and the sequences E
k 

and E. are mates 
-3 	-1 

or neighbours iffthe corresponding D-sequences are mates or neighbours. It 

can be shown that the aperiodic autocorrelation of an E sequence has off 

peak values of zero while the crosscorrelation of any two distinct sequences 

is zero for all shifts. Of course this orthogonality is dependent upon the 

multiplication of the quaternary elements which is even in the table 

k . 2 	i=j 
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1 -1 0 0- 

 -1.  1 0 0 

.0 0 1 -1 

0 0 -1 J. 

[ aa ap ay aa- 

Pa PP PY Pa 
Ya YP 'YY YP 

âa ap 8y 8 -8 _ 
Some comments on this choice of multiplication table are given by Welti 

(1960). It was in fact chosen to ensure'the orthogonality of the con-' 

structed codes. 

Frank and Zadoff (1962) commenting on earlier work by Heimiller 

and by Frank construct sequences of length N
2 
over the complex N

2roots of 

unity. In his earlier work Heimiller had required that N be a prime but 

this restriction is not necessary. The construction is as follows. Let 

be a primitive Nm  root of unity and construct the following array: 

23 	
• • • 

2 	4. 	6 2N 

2 
N 2N 3N 

• • •
N 

where the indices are taken modulo N. The sequence is then formed by taking 

the rows of the array, one row at a time and the periodic correlation 

function of this sequence is an impulse function; i.e. is zero for every 

off centre shift. 

Frank (1963) later considered a similar construction for sequences 

with good aperiodic correlation properties. He begins with a variant of 

the above array, namely 
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• 	. 
012 

• • •
N-1 

* 

0 	N-1. 2(N-1) 
 

and observes that the sequence obtained from this array, row by row, has 

a periodic correlation which is, again, an impulse function. To obtain 

sequences with good aperiodic correlation functions, however, one chooses a 

starting point in the array and runs through the array once. However, it is 

suggested that simply taking the rows one at a time, beenning with the top 

row, as in the previous case, should yield sequences with good aperiodic 

correlation properties. Several specific sequences constructed in this manner 

are analyzed and the following  observations,  which are conjectured to be 

always true, are noted: 

i) The maximum off peak value of the aperiodic correlation function is 

the vector sum of N/2 (or (N+1)/2 if N is odd) unit vectors in the 

complex plane, each vector separated by 2n/N radians. 

ii) For shifts of N, the correlation function is zero (this is of course 

always true). 

iii)For a shift of j where 1j-kNI 	1 the absolute value of the correlation 

function is unit. 

iv) The correlation function for shiftsof m and N2-m has the samemagnitude. 

v) The side lobe peaks are themselves individually symmetrical. 

Turyn (1967) considered these observations and was able to show 

that if 

N
2
-1-m 

c(m) = 
i=0 i+m 
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then id(kN+01 = Ic(kN+N-01 = IcOEN-k-1)N4-01 = ic((N-k-1)Ni-N-r)1 

establishing the observed side lobe symmetries. Mo're importantly he 'estab-

lished conjecture i) above by showing that 

N-1 L-T-1 
le(m) I 	b =I  Z 

i=0 

an interesting property of sums of complex roots of unity. Properties 

and iii) above were also established, i.e. 

c(kN) = 0 and c(kN+1) .  ( ...7..1c(kN4-1)H 1) 

Chu (1972) constructed a class of sequences of length N over the N roots of 

unity for which the periodic correlation function is an impulse function. 

For N even the sequence is (a
o , 

a1'aN-1) 
 where 

ak  = e 	
2 Mnkxp(i N  ) , k = 0,1,..., N-1, (M,N) = 1 

and for N odd 

Mnk(k+1)
) ak 

= exp(i 

Golomb and Scholz (1965) were interested in constructing sequences 

over the complex numbers, each with magnitude unity, which satisfy the 

Barker constraint, namely that Ic(k)11,ke0. If (u0 011 ,...,u) is a com-

plex sequence, II ui , = 1, with aperiodic correlation function cu(k), then 

the sequence 

2nij/m v. = u. e 	, m any nonzero integer 

has the correlation function a 	-2nik/m
v (k) = e 	n(k) and hence such a 

transformation preserves the "Barker property" of the original sequence. 
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In a similar way the transformations 

v.=e 
ui  

2111(ji-a)/x 

where a and x are any real numbers and 

v. = u 
3 

and 

V. 	U.  

(sequence reversal) 

(conjugation) 

also preserve the Barker property and take generalized Barker sequences to 

generalized Barker sequences. Using such transformations one obtains a 

quaternary generalized Barker sequence from a binary one. However, a 

quaternary generalized Barker sequence of length 15 not obtained in this 

manner is also given in this paper (Golomb and Scholz, 1965). 

The general question of interest is, given p = e211
1/Z 

 and the 

alphabet II,p,p
2 ,...,p 11, what are all the values L  such that a Barker 

sequence of length n over this alphabet of size  L  can be constructed? 

A summary of the known results on this problem is given. The sextic 

alphabet (L=6) is singled out as being of particular interest. There is 

evidence to suggest that the only  value of L for which generalized Barker 

sequence of length 6 exists is e=6. Generalized Barker sequences for all 

lengths up to 13 were found over the sextic alphabet. 

Turyn (1974) considered the properties of three phase and four 

phase Barker sequences. We reproduce some of these interesting properties 

here. It is first shown that a four phase Barker sequence of odd length 

has a real correlation function and that c(j) = ±1 for j odd and that 

c(j) = 0 for j even, je0. It follows that for any ternary Barker 

sequence in which x0 
= x1 = 1, x 	

= 	and x
n-2 

and x
n-1 

are real, n-2 	n-1 
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' In fact  in  any four phase Sequence with  a  real correlation function but 

not necessarily with the Barker property-xk =n..4-k for all k (i.e. 

xkxii_i_k  is real). For binary Barker sequences of odd length It is known 

that xx 	k = (-1)k  u where u = ±1 And u s n (mod 4). The equivalent n-l- 

property for four. phase Barker  séquences of  odd length is that x..x 
k n-l-k 

(_l)k+lU.  u = ±1. More detailed properties  of  generalized Barker sequences 

and their correlation functions are derived in Turyn (1974) but these are 

omitted here. It is also shown that if n is a prime and if 2 is primitive 

(mod n) or if n s -1 (mod 4) and 2 is of order (n-1)/2 mod n, then the only 

four phase Barker sequences are equivalent to real ones; hence the shortest 

length for such a sequence (of length greater than 13) is at least 12,100. 

Using these results it is shown that there is, up to equivalence, only  one  

four phase Barker sequence of length 5.31, the one of length 15 mentioned"in 

the paper of Golomb and Scholz (1965), all the others being equivalent to 

the binary ones. Using similar techniques it is shown that any cubic 

Barker sequence (over the alphabet {W2 }  acubic root of unity) has a 

real periodic autocorrelation function and that there are no such sequences 

of length n where 9<n<16. It is likely that there are no cubic Barker 

sequences of length greater than 9 nor any quaternary Barker sequences of 

length greater than 15 with the possible exception of length 16. 

Chang (1967) and Moharir (1974) construct ternary sequences over 

the alphabet 10,±11 which is quite a different problem to the sequences 

above. Chang (1967) shows simply that any maximum length sequence over 

GF(3) has a periodic correlation function which is an impulse function. 

A few comments on the generation of uncorrelated sequences using the distinct 

maximal length sequences and a Hadamard matrix are also given. 
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Moharir (1974) also considered ternary codes over the alphabet 

{0,±1} but using the aperiodic autocorrelation function. Sequences with 

an autocorrelation function of the form 

n' 	(ez n) 	k=0 
c(k) = 

0,±1 	 k=1,2,...,n-1 

were sought and those of length 6,8,9 and 10 displayed. It seems that such 

codes will exist for infintely many lengths. 

Moharir (1977) defines a generalized pseudonoise sequence as one 

whose periodic autocorrelation function is zero for all nonzero shifts. 

Now consider two sequences u = (u o ,uv ...,ue_i) .and v = (v09v1 ...,v
m-1

), 

(e,m) = 1, £m = n. Then x = (x0'1 ... ,x)  is said to be the Chinese  n-1 

product of u and v if 

X = u v i 	gh  

where 

= : g  (mode) 

, h (mod m). 

The periodic autocorrelation function of the sequence x is then the Chinese 

product of the autocorrelation functions a
u
(.) and a

v
(.). It follows 

immediately that the Chinese product of two generalized pseudonoise sequences 

with coprime lengths is again a generalized pseudonoise sequence. Such a 

construction can be applied to any generalized pseudonoise sequence over 

any real or complex alphabet and in particular to the séquences of Frank 

(1963) and Chu (1972). The relationship between asymmetrically binary 

sequences'(binary sequences over an alphabet {ae }  a -13) which have an 

impulse function for ,a periodic correlation function and difference sets 
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is considered. 

More recently Moharir (1977)  examined ternary (0, -11) generalized 

pseudonoise sequences via combinatorial admissibility conditions to deter-

mine their existence or nonexistence. Once,again the role of cyclic differ-

ences sets is examined. 

Two other papers of marginal interest to the present report attempt 

to construct Barker sequenCes over the alphabet {0,1}, called optical Barker 

sequences due to their application to optical radar pulse compression. Certain 

techniques for the construction of such codes, largely ad hoc, are given in Moharir 

and Selvarajan (1974) and this workwas continued in Moharir and Selvarajan (1974). 

Delsarte (1968) introduced the notion of G-sequences which are.of 

tangential interest •to the present report and will not be considered. In 

terms of this report they discuss techniques, using group rings, of con-

structing ternary {0,±1} sequences with two level periodic autocorrelation 

functions. 

Finally, we mention the impulse equivalent pulse trains of 

Huffman (1962). These.are comeex valued sequences, whose coordinates are 

not, necessarily, of magnitude unity, and whose correlation function (either 

periodic or aperiodic, depending on the author) are impulse-like; i.e. the 

ratio of the centre value to maximum off centre value of the correlation 

function is very large. We will not consider these sequences here, but 

simply refer the reader to the work of Golay (1975) and Caprio (1969). 

We now consider some recent work of Scholz and Welch (1978) which 

uses group characters to define complex sequences over the complex mth 

roots of unity,for some m,with "good" aperiodic autocorrelation and cross-

correlation functions. •We consider this work in some detail since the 

1 
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techniques appear to be promising for further work. Consider two sequences 

a = {a
0' 

a1, ..., 
an-1

}  and b = {b0' b1 , 	bn-1
} and let, as usual, c(k) 

and a(k) be their aperiodic and periodic correlation functions respectively. 

Let p be a primitive n
th root of unity. The Fourier transform of the 

sequence a is then 

n-1 .  
ak = —

1 1171 
a p

-km 
a = 1 	E a pkm 

in m=0 m 	 in. k=0 

and we write this as Pa = a. It is a simple matter to show that 

, n-1 
.a b (k) 	

E  a 17). 

ilng,=0  

If we let aCb = (a0b0' a1b ' an-1bn-1) ie. componentwise multiplica-

tion then the periodic crosscorrelation sequence between the two sequences 

a and b is 

a 	= (a
ab 

 (0), a
ab 

 (1), ..., a
ab 

 (n-1)) 
-ab  

-1 

Now if we could find a class of sequences which is closed under the 

operations i) V and 1U 1 ii) @ iii) conjugation and such that each 

sequence is composed of elements of magnitude 1 then the crosscorrelation 

sequence will be n times a sequence in the set (since it is closed under 

these operations). Hence the magnitude of each crosscorrelation will be 

n. Similarly if a = b then 

a = 	IF
-1 

b 	
(1, 1, ..., I) = (n, 0, 0, ..., 0), 

-a 

an ideal autocorrelation function for each sequence in the set. 

Using the theory of group characters on M(n),  •the set of integers 

relatively prime to n as,a multiplicative group with multiplication modulo n, 

we consider the possibility of constructing such a set of sequences. Much 
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of what follows is a tutorial on character theory. 

The order of M(n) is en), Euler's Totient function and, as an 

Abelian group it can be expressed as • a direct product of cyclic , groups. 

Equivalently we can choose a set of generators in G = M(n), gi , g2 , 

r. 
gi  = e, i  =1,  2, ..., a where e is the group identity and the ri  are not 

necessarily distinct. Of course we have 
a 

IGI = en) =  11H r. 
i=1 1  

and G is isomorphic to the set {(ii , i2 , 	ia) 0 <  i  < r.-1 }  under 
- 	- 1  

. vector  addition,  where addition in the j th  coordinate position is modulo r.. 
3 

A character of any group G is a homomorphism of G into the complex 

unit circle. For G Abelian there are precisely 101 distinct characters 

and each character is completely determined by its values on a set of 

generators of the group. Thus is 

42711r. 
X • = a• ni, 0 < n. < ri   (gi) -1- i 

(notethat. X(gi) must be some r.
th root of unity) then 

i=1,2,...,a 

l iki (g) 
) = H a. 

i=1  

a k. g=llgi 
1=1 i  

and all IGI characters of the group are now clearly visible via the IGI 

choices for n. Distinct characters of the group are closed under conjuga-

tion (x (g) = x (g)) and multiplication (x
n
(g)x

n'
(g) = x

n+n
,(g)). The 

-n 

identity of the character group is called the principal character  0 

The following are useful properties of group characters: 

i) E x n (g) = f ICI if n = 0 
gEG 

0 	if n 74  0 

ii) E Xn (g) X n t(g) = 1 0 ! 6  nn gEG ."-L > 

(orthogonality property) 
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iii) E x (g) = IGI ge •  
n 

The characters of M(n) are defined only on M(n) and yet it will be 

convenient to define them for each integer. We extend the definition as 

follows: 

(n) 
X 	(t) = x (t mod n) 	(t,n) = 1 

0 	 (t,n) # 1 

The extended characters are closed under the operations of conjugation and 

multiplication and take on values of magnitude either 0 or 1. The Fourier 

transform of these characters will be of interest to us. 

The first important theorem can be described as follows: Let p be 

a prime and consider the (p-2) non-principal characters,  x1()  n = 1,2,..., 

p-2 extended by defining x (1) (0) = O. Then the periodic correlation 

function is given by 

a (k) = 
nY 

(p) v- xo 	(k), = 

where C0  is a constant of unit magnitude and so , 

and 

	

la 
y
(k)I =I Vi; 	 (k,p) = 1 

n 

	

0 	 (k,p) = 1 
k 

and thUs the (p-2) characters come very close to achieving the bounds of 

Welch (1974).  •The resuit is based on the fact that the transform of a 

character is a scalar multiple of another .  character. These characters 
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are determined for n composite and onbeiagain appliecUto the construction 

of sequences with good correlation properties. 

To conclude the section we briefly summarize the results contained 

in Turyn (1967) on the existence of multiphase periodic sequences. On 

the question of the existence of periodic sequences for which a(j) vanishes 

for j # 0, several observations have already been made. Turyn notes also 

the following theorem: 

Theorem: 	If q is an odd prime power, there exists a sequence of length q, 

with terms which are q
th roots of 1, with a(j) = 0, J # O. For any n there 

also exist sequences of length n
2 
over nth  roots of 1 for which a(j) = 0, 

J  4  O. 

These latter sequences have, of course, already been encountered 

as the polyphase codes of Frank, Zadoff and Chu. Some special nonexistence 

results can also be achieved. For example, by rather laborious means it 

can be established that there is no sequence of length 12 over cube roots 

of unity for which a(j) = 0, j # O. Similarly one can state the following: 

Theorem: 	Let q be a power of a prime and x a sequence over the q
th roots 

of unity of length qm  with the property that a(j) = 0, j # O. Then m < 2. 

This theorem establishes the unique position of the sequences of the 

first theorem. It is also known that there are no sequences of lengths 11, 

14, 17, 20, 23, 29, 38 or 41 over the cube roots of unity for which a(j) = -1, 

• j0. 

Let x be a character of order e on GF(q)* je. elq-1 and  Xe ( 8) = 1, 

geGF(q)*, and define x(0) = O. The following theorem constructs sequences 

th over the e roots of unity. 
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Theorem: 	If q is a prime power, el(q-1), 	a primitive eth  root of 1, 

then x(-1) = 1 if el 1 otherwise, then there exist sequences x of 2 ' 	 — 

length n = q-2 over the e
th roots of 1 which satisfy 

x. =  

for which 

c(j) + an-j = 

These sequences can be obtained as xi 
= x(g -1) where g is a primitive 

element of GF(q)*. 

2.6 Multivalued Correlation Functions  

In this section we consider constructions which have appeared in 

the literature which produce correlation functions with certain properties 

eg. two level correlation functions or correlation functions which vanish 

at certain points. In certain ways the distinction between this approach 

and the approach of the papers considered in the previous section is 

blurred and imprecise. It serves nonetheless to divide the papers. 

We begin with the work of Boehmer (1967). Observing that a(k) = 

c(k) + c(n-k) for binary ±1 sequences a necessary but not sufficient 

condition for Ic(k)1 to be small for all k is that la(k)I be small for 

all k. Thus good periodic sequences were first sought in the hope they 

would also make good aperiodic sequences. All sequences will be of prime 

length p and we assume g is a primitive element mod p. If p = ns+1 we 

say that the integer k, 1 < k < p 1 belongs , toxesidue class i if 

k = gmn+i (mod p) for some integer m, 0 
bié 

s-1. Denote the cyclotomic 

constant (i,j) as the number of members.of the residue class i which are 
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followed by a member . of the residue class j ie. the number of solutions 

,of  the congruence  

vn+i 
+ 1 = g

pn+j 
(mod p). 

nesequenceswilitheribeconstructedb y assigranga.to be +1 if i is 

In a chosen subset of residue classes and -1 otherwise. The correlation 

function can then be determined by a knowledge of the cyclotomic constants. 

Of the n residue classes choose q of them, 1 < q < n to assign +1, and 

denote these by c e 2,  ... ' cq . Define xk  by the equation k = g
Ian+xk 

andrecallthatmembersoftheresidueclassc.are all expressible as 

vn+ci (mod p), 0 < v < s-1. With these definitions it is not hard to show 

that 
q q 

a(k) = p 	4sq + r E 	E (ci-xk , c.-
k

x_). 
j  

i=1 j=1 

The only remaining problem is to decide on the number q, the number of 

residue classes to assign +1 to, and to determine the cyclotomic constants. 

Determining the "best" q for a given prime is very much an ad hoc procedure. 

When q = 1 and the integers 1 through p-1 are split into 2 residue classes, 

the off centre values of the periodic correlation were either -3 or +1 

when (p-1)/2 is even and were -1 when (p-1)/2 is odd. Similar types of 

results were obtained by splitting the integers into 4, 6 and 8 residue 

classes and choosing q in some manner. The periodic sequences obtained in 

this manner were tested for their aperiodic properties. The maximum off 

centre magnitude appears to follow the curve 0.6V; for a sequence of 

length n. 

The approach of Boehmer was followed by Chakrabarti and Tomlinson 

(1976) in designing sequences with good aperiodic correlation properties 

and aperiodic crosscorrelation properties. In addition to her work 
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however they experimented using the technique to find multiphase sequences, 

assigning each of the phases to certain residue classes and examining the 

peak autocorrelation and crosscorrelation sidelobes. Applications of 

these sequences to the frequency-time coding of signals are considered. 

Lempel, Cohn and Eastman (1977) were able to design binary ±Isequences 

with two valued autocorrelation functions which are optimal in a sense to be 

defined. This result was discovered independently by Sidelnikov (1969) 

(as noted by Sarwate) in an earlier paper but we will give the approach 

of Lempel et al (1977) first. Let a be a primitive element of GF(pn ) for p 

an odd prime and m some positive integer and let G = GF(p
M  ) the multipli- 

cative group of GF(pm). For k =  (p
in 
 -1)/2  define ScG as 

s = la
2i+1-1,  i  = 0,1,...,k-11 

and define the function f by 

	

f(t) = I 1 	if at  E S 

	

-1 	if a t e S.  
Define the binary sequence (a0'al''a2k-1)  by at 

= f(at ), t = 0,1,...,2k-1. 

Then the periodic autocorrelation function of such a sequence satisfies 

a(0) = 2k and 

n-1 
Furthermore this sequence is balanced in that E a. = 0 and it can be shown i=0  

that the periodic autocorrelation of any balanced binary sequence must have 

at least two off centre values which are at least as large as those obtained 

here. In this sense the sequences constructed are optimal. 

Sidelnikov (1969) also constructed pseudorandom sequences over the 

k
th 

roots of unity and examines nearly equidistant codes obtainable from 

{. 

a(i) = 	2 or -2 if k is odd 

0 or -4 if k is eve 0 or -4 	k is even. 
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them. The construction is a little more general than that of Lempel et al 

(1977). Let GT(q) be the finite field with q elements and assume that 

q E 1 (nod k). Let * be a character of GF(g)*. Since q-1 E 0 (mod k), 

•11)(.) is a kt h  root of unity. For k = 2,*(.) is either +1 or -1 and is 

clearly +1 on the set S described by Lempel et al (1977). Notice that 

*(-1) = -1, assuming that q is not a power of 2, iff (q-1)/k E 1 (mod 2). 

With this notation Sidelnikov constructed sequences of length n = q-1 where 

n E 0 (mod k),' l'n-1 f3 	) where 	= *(w41) if wi  + 1 # 0 and 
0  

13. = +1 if wi  + 1 = O. Then the periodic correlation function of this 

sequence is such that la(i)1 < 4 Èor i 0 (mod n). If k = 2 and E 1 

(mod 2) then a(i) = 2 or -2. The result for -1.2-1  E 0 (mod 2) is not explicitly 

given in Sidelnikov. 

Golay examined low autocorrelation sequences in a series of three 

papers (among many others) which we summarize. Consider the binary ±1 

sequence of odd length (x0'xx2n)  such that xi 
takes on the sign of 

sin(11 x2 (i)) where 

x(i) = (1171.+1 - Ai) (i +) 	i = 0,1,...,2n 2 

These sequences can be shown to be skewsymmetric  (je. xn  . x i  = -1) +1 n- 

and from this it follows immediately that the aperiodic autocorrelation 

c(k) vanishes for k odd. 

To this point the quality of a low autocorrelation sequence has 

been, implicitly, the ratio of the maximum magnitude of its sidelobes to 

its centre value. Other criteria are sometimes employed and in Golay (1977) 

the figure of merit used in the investigation of binary sequences is 

i l  
1 
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In some ways this measure has greater analytic tractability. USing 

randomurguments Golay (1977) shows that asymptotically it seems reason-

able to conjecture that for large n, the best sequences will achieve a 

value of F of approximately 2e
2 . By a similar argument it is shown that 

this is also approximately the value achievable by skew symmetric sequences. 

Thus one is sacrificing very little by searching for long skew symmetric 

sequences with its attendant savings in search time. A sequence of two 

other sieves and then a search algorithm is given to find long sequences 

with high figures of merit. The second sieve depends on the use and 

properties of complementary pairs of sequences. All skew symmetric 

sequences up to length 59 with optimal F-values were found to be determined 

by the search algorithms presented here. The results are inconclusive. 

A slightly different figure of merit was used in Golay (1975) where 

real skew symmetric sequences (a0 ,a1 ,...,a2n).were sought for which 

[ 2n 
E 	

2 

i=0 
2 

ishigh.Thevalueslalare not constrained to be unity as was the case 

for so much of this work, and in this respect the study is similar to 

that of, the impulse equivalent pulse trains of Huffman (1962). It turns 

out however that the sequence of signs of some of the sequences which had 

a high Fh  is related to the Barker sequence of corresponding length. 

There are two other works of significance to this study. They 

are however rather detailed and quite specialized and so we merely indicate 

the contents of these works here. The first is by Turyn (1974) whose,main 

interest was the construction of Hadamard matrices using Baumert-Hall units 

F = h 	2n 	f2n -k 
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and quadruples of binary sequences whose nonperiodic correlations add up 

to zero (ie. a set of 4 complementary sequences in the sense of Tseng and 

Liu (1972)). Several such sets of sequences are constructed, including 

one infinite class. The other work referred to is the doctoral thesis of 

G. Seguin (1971). Once again there is too much information contained there 

to summarize it effectively. A few of its highlights will be mentioned 

however. Let a(.) and b(.) be the periodic and odd correlation function 

of a sequence, respectively. Let na 
and mio  denote , the off centre maximum 

the corresponding 

quantity for the aperiodic correlation"function. A set of sequences is 

constructed in which b(k) = (-1)
k a(2k), where 2k is taken mod n and for 

this class 

m = max (m 	=m  = m . 
a 	b 	a 	0 

The construction is essentially based on properties of the cyclotomic 

cosets of integers modulo n. Another construction yields sequences for 

which b(k) = (-1)
k 

a(k), 0 < k < n. For another class of sequences it is 

shown that ila(k)i - ib(k)II < 2, 0 < k < n. 

Lindner (1975) lists the minimum possible maximum absolute value 

of offpeak aperiodic autocorrelations for all binary ±1 sequence lengths 

up to 40. The number of distinct sequences (up to inverse time and inverse 

amplitude) achieving this minimum is also given. In addition, four other 

quantities are tabulated: 

n-1 1 
Mi - 	E c(i) , mean of the sidelobes 

n-1 1=1 

n-1 	1/2 
= 	E c

2
(i) 

) 
, rms value of the sidelobes 

n-1 1..1  

I. 

1 
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iii) 	M3  = number of positive sidelobes with maximum absolute 

value 

M4 = distance from mainlobe of first sidelobe 
with 

maximum absolute value. 

and these quantities are generally not achieved by the same seduence. 

They are, of course, only given for those sequences achieving the minimum 

maximum off centre correlation. 

Finally we mention two works of perceptual interest to the central 

i 
II problem. In Schroeder (1970) the problem of how to adjust the phases of 

the harmonics in a periodic signal in order to minimize the peak-to-peak 

1/ , 	\ 
amplitude was considered. One of the results obtained produced a construct-

II ion method for sequences with low aperiodic autocorrelation, ie. if the 

sequence (a0 ,a1 ,...,an_i ) is chosen such that 

= 1 - 2 Li+1) 	

2 

n lmod2 

the resulting sequence has reasonably good, but not optimal, autocorrelation 

properties. Lempel and Greenberger (1974) investigated the problem of 

finding sequences {x0 ,x1 ,...,xcl_1} and {y0 ,y1 ,...,yq-1 1 over some alphabet A 

for which the quantity 

i = 0,1,...,n-1 

q-1 
H (Z) = E b[x(i),Y(j+ 9,)], xy j=0 

j + t taken mod q 

where h(x,y) is 0 if x#y and 1 if x=y,is used as the basis for optimization 

criteria. 

2.7 Error Correcting Codes and Séquences  

Let x.and y:be two binary (0,1) n-tutles - -aUiamming distance d 

apart. Let 11(x) and 11(y.) be the corresponding ±1 n,-tuples.. Then the 
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1 

correlation between 11(x) and.1(y) is n-2d. Consequently in a cyclic code 

with minimum distance d if one codeword is drawn from each cyclic equiv-

alence class, the:resulting set of codewords,, tranforMed to binary ±1 

sequences, has the property that each off centre autocorrelation.function 

and each crosscorrelation value isonot , greater than n-2d in.absolute 

value. 

From this observation a binary cyclic code with minimum distance d 

containing s nonzero weights, and assuming the all ones codeword is not 

in the code, corresponds to a set of sequences whose autocorrelations and 

crosscorrelations take on at most s distinct values, not greater than n-2d 

in absolute value. Similar types of observations can be made for codes 

over GF(p), p a prime, where the sequences are now over the primitive p
th 

roots of unity. 

The cases s = 1, 2 and 3 have received  soue attention for s = 1, 

Semakov and Sinovev (1968) and Semakov, Zinovev and Zaitsev (1969) showed 	
4E  II 

that every equidistant cyclic code has an irreducible parity check poly- 

nomial. The cases s = 2 and s = 3 were considered by Helleseth (1976) 

and Delsarte and Goethals (1969) respectively. Sidelnikov (1971) also 

contains interesting constructions from a coding theory point of view. 

The particular constructions of these codes will not be included here. 

Massey and Uhran (1975) make the following observation. Let C 

be a binary yclic code of length n with check polynomial h(x) = (x+1)h0 
 (x), 

(x4.1)11h0  (x) 
and distance d, and C0  the code 

with check polynomial h 0  (x). 

Then a code with words chosen from different cyclic equivalent classes 

has the property that the maximum off peak value of the odd autocorrelation 	
It 

function and the maximum of the odd crosscorrelation function cannot exceed 

1 
1 
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n-d+2. 

2:8 'CoÈplementary Sequences  

Two binary ±1 sequences x and x are called complementary sequences 

if the sum of the off peak aperiodic correlations is zero ie, if 

c(k) 	c (k) = 0 	 k = 1,2,...,n-1. 

Such sequences are of use for example in multislit spectroscopy (Golay, 

1961) as well as communications. Clearly a pair of such sequences can be 

interchanged, reversed or multiplied by -1 and another pair of complement-

ary sequences will result. It can also be shown that the length of these 

sequences must be both even and expressible as the sum of two squares. 

If x1 =ab=al' a2'.° 
 .a,b  b 2' 

 ...,b and x
2 

= a
1'

a2' ... ' an' — — 	 n 	 n 	— 

where b is -b
i

, where a and b are complementary sequences 

then x and x
2 
are complementary sequences. Similarly the sequences 

/ = a1b1a2b 2 ...anbn  and /
2 

= a1bia2q...anbi'l  are complementary. If 

u = u
1
u2° ..0m and 

v = v
1
v
2°

..vm is another 
pair of complementary sequences 

then 

u  u 	
u v v 	y 

'1 	l 2 	m 1 	2 	m  
z  =a 	a 	,..a 	b 	b 	b 

■■••■■ 

V v m m-1 	vl  1 	m a 	a 	... a 	. 	..• — — 	 — 	— 

are also complementary sequences. Thus given two pairs of complementary 

sequences of lengths n and m respectively then a pair of complementary 

sequences of length 2nm can be constructed. These comments are contained 

in the paper by Golay (1961). A construction is given in that paper of 

pairs of complementary senuences whose length is a power of 2. A pair 

of complementary sequences of length 18 exists. Using, these facts and the 

and 
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above constructions it is clear that complementary sequences of lengths 

10.2
a
.20

b 
can be derived. 

The case of length 26 sequences was considered in the paper by 

Golay (1961) but was not settled. It was finally determined by Jauregi 

(1962) and Golay (1962a) that a pair of complementary sequences of 

length 26 exists. Andres and Stanton showed that there are no Golay 

sequence pairs of lengths 34, 36 and 50. 'The next unknown case is n = 58 

= 3
2 
+ 7

2
. The pair of sequences of length 26 can be used to construct 

pairs of sequences of length 2
a 

10
b 
 26

e 
. 

We note in passing the following comments on the periodic analog 

to the notion of complementary sequences. It was conjectured in a paper 

by Levitt and Wolf that if x and z are binary ±1 sequences of length n 

such that b is orthogonal to every cyclic permutation of a then a and b 

cannot both have least period n under cyclic permutation. MacWilliams 

(1967) disproves the conjecture by a construction and explicitly gives 

an example of. length 18. Briggs and Godfrey. (1976) showed however that 

it is impossible to design a pair of sequences with this property if 

each sequence is to have an autocorrelation function which is a delta 

function. 

The existence of pairs of binary complementary sequences was shown 

by Turyn (1963) to be equivalent to the quaternary codes of Welti (1960) 

discussed in section 5. Differing slightly from the notation of Welti, 

Turyn considered quaternary codes over the symbols ±a and -1-1 with the 

multiplication rules given by ay = ya = 0,'Iu
2 

= y
2 

= 1. ,He then commented 

that the following four notions are equivalent: 

i) A pair of complementary binary sequences of length n 
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ii) A quaternary code of length 2n with correlation function a 

delta function whose elements with odd index are all of the form -1.- (1 and 

whose elements with even index are all of the form ±y. 

iii) A quaternary code of length 2n, with correlation function a 

delta function whose first n elements are all of the form ±a and whose 

last n elements are all of the form ±y. 

iv) A binary sequence of length 2n whose correlation function is 

zero for all even shifts. 

The notion of a pair of complementary sequences was generalized 

in Tseng (1971),.interested in the phase coding of surface acoustic wave 

devices for signal multiplexing. In this work it was shown that if 

A = (a
1'

a
2'

... ' an) and Ai = (a'
l 
 a' ... a') is a pair of complementary ' 2 	n 

sequences then the pair M 
1 = 

(-a', -a'
n-1 	

-al) and Ml = (a
n
,a
n-1

, 
-  

' a
1
) are also complementary sequences. Furthermore the sum of the 

aperiodic crosscorrelation functions of the sequences A and Mi  and A' 

and M'1  are zero. Tseng and Liu (1972) extended these results. Specifically, - 

let A '  i = 1,2,...,p be a set of finite sequences over ±1. It is called -1 

a complementary sequence if 

E c(k) = 0 	 k # 0 
i=1 

A second set of sequences B., i = 1,2,...,p is called a mate of the first 

set if i) the sequence A. has the same length as the sequence B (it is 

not necessary that all sequences in a set have the same length). ii) The 

set B., i = 1,2,...,p is a complementary set and iii) 

E c
A'B. (k) = 0 	 for any value of k. 

1=1 I i 

A collection of complementary sets of sequences  {(A.), (Bi), 	 (F.)) 
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is called mutually orthogonal if every two complementary sets are mates 

of each other. It can be shown that a complementary set must contain I/ 

an even number of sequences. Furthermore, there is an even number of 	

11 sequences of each length in such a set. If the length of each 

sequence in a complementary set is n, where n is odd, then the number of 

sequences in the set, p, is divisible by 4. A complementary set with only 

two sequences must have each sequence of even and identical length. 	 11 
The problem of synthesizing a complementary set of sequences is 

- 
also considered. For a given sequence A let A denote the reverse of the 

sequence, -A its negation and let 
ir 

A
h = 	A if h = +1 

-A if h = -1 . 

Denote by AB the concatenation of two sequences and A B the interleaving 

of two sequences, assumed to be of the same length. Let A* denote the 

subsequence of A consisting of the elements with odd subscripts and A** 	I. 
the subsequence of elements with even subscripts. 

	

If any number of sequences in a complementary set are reversed, 	11  

the result is still a complementary set. Similarly negating any number 

of sequences or negating alternate elements in all sequences also results 

incomplementarysets.If{A.i= 1,2,...,0 is a complementary set 	
11 

then {A*, A**, 	= 1,2,...,0 is a complementary set. If {A., i = 
—a. --a. 

and {B.,  i=  1,2,...,0 are each complementary sets and mates, then 	 11 
{A. 0,  B., i = 1,2,...,0 is a complementary set. Other methods of con- 

It 
structing complementary sets are also given. Similarly methods of 	 11 
constructing orthogonal sets from a given complementary set are considered. 

For example if Al' A ..., A is a complementary set where A1  and A - 	—29 
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A and A ... A 	and A are pairs of sequences of the same length then -4' 	' -p-1 	-10 

2e —Àle :144e 	°°°e 4e 74_1 1  

is one of its mates. Tseng and Liu (1972) give many other techniques of 

a recursive nature and note the lack of direct construction prdcedures 

for both complementary sets and their mates. 

On a variation of the same theme Taki et al (1969) investigated 

E-sequences, defined as binary -11 sequences whose aperiodic autocorrelation 

function vanishes for all even shifts except for the zero shift. Many 

properties of these sequences are established and in fact the D-sequences 

of Welti (1960) encountered in Se_ction2.5 form a subset of these. A mate 

of an E-sequence is again an E-sequence with the property that the cross-

correlation function between the two is zero for all even shifts, including 

the zero shift. Constructions of E-sequences and their mates are given 

and it is shown that an E-sequence and one of its mates forms a comple-

mentary pair in the sense of Golay. 

It is to be noticed that most of the work on constructing comple-

mentary sets or complex sequences is over a restricted alphabet qg.,the 

complex m
th 

roots of unity for a given m. In the recent work of 

Swaswaqèy (197 8 ) this condition is removed and more arbitrary phases are 

allowed. Specifically consider the sequence S 	= (S0' S 	S
n

) 

where 

0 	 4)1)  

The-àperiodic autocorrelation function for - such a sequence  is  

N-£ 
c (SG) = .E S "g 	= E ex p(-j(cp  
S 	 i i ft 

i=0 



and 
6'+4) + (2,-mr-fn)11/2) 	j(0 
o 1 	 o 1 e 

' 	j0 	j 
= (e  o , e  
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Similarly let %I., ('CO3  C1 , 	CN) .  be a second- sequence. where Ci  has 

phase (6 0.+ 61+ 	+ 0i) and aperiodic autocorrelation function .0 (T). 

As.in the work of Gola (1961) the two sequences will be called comple-

mentary'if 

j >0  c  (R) + ,d (JO = 0  S , 	,C 

andthisrelationshipestablishesaconnectionbetweentheemsese.and. 

For example, working through the equations shows that for N=2 (codes 

of length 3) the only conditions necessary for complementarity are: 

4) 2  = 1  

= fi_ + (9,-m+n)11/2 

= 	+. 
1 	

(2,+m+n)11/2 

and hence the two sequenees are 

(P i • 

S = (e 	e 
j(4) 	-1-2,11) 

e  o 1 

where 2,, m and n are odd integers and 0,  4) and 4)
l 

are arbitrary. 
o o 

Unfortunately the relationship between the phases is not always so easy 

to determine. 

A useful recursion technique follows from noting that if S and 
-N 

C are complementary then the concatenated sequences (' S 	eil)C ) and 
--N 	 -N 	-N 

j0-1-11) (S 
 ' e 
	C ) are also complementary of twice the length of the original. 

-N 

Some attention is also given to the construction of complementary sets of 

sequences and also to mutually orthogonal complementary sets of sequences. 
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3. SYNCHRONIZATION 

3.1 Introduction 

In all communication systems there are two basic modes of operation: 

that of acquisition and that of conveying information efficiently. In CDMA 

signaling synchronization of the reference code to the incoming signal is 

of critical importance for the removal of the code. If the reference code 

and the incoming signal are not in synchronism the wanted signal may appear 

to the receiver as a spread spectrum interferer. Thus, synchronization is 

a critical feature in maintaining the transparency of the code as mentioned 

in Section 1. 

Code phase and carrier frequency uncertainties are the primary 

sources of synchronization uncertainties. Carrier frequency uncertainty 

is a manifestation of doppler frequency shift due to relative motions 

between transmitting and receiving stations. Let ft be the 
transmitted 

carrier frequency, V be the relative velocity between transmitting and 

receiving stations, and C be the speed of light. Then the d9ppler shift 

V 
frequency is fd 

= -±f
t 
u and the received carrier frequency is 

f
r 

= f
t 

(1 ± V/C). Code phase uncertainty is due to changes in propagation 

path length. The arrival time is unknown and, in severe cases, the code 

symbol duration may be lengthened. Both code phase and carrier frequency 

uncertainties must be resolved before a spread spectrum (CDMA) receiver 

can operate ,satisfactorily. Specifically, the code phase must be resolved 

to better than one bit and the center frequency, as seen at the receiver, 

must be resolved to the degree that the despread signal is within the 

aperture of the postcorrelation filter. 

Ii 
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Most synchronization coding studies have been concerned with 

ranging applications [Titsworth 1963],[Golomb et al 1964]. Because of 

its simplicity in generation and its pseudorandom properties, M-sequences 

or modifications of M-sequences [Gold 1967] have seen extensive use in 

ranging and spread spectrum applications. One of the more stringent 

requirements in spread spectrum is that the M-sequence must be long 

(perhaps of the order of 2
20

-1). For acquisition purposes it is desirable 

to combine many short shift register sequences to form one long composite 

sequence. Let Li , i = 1, ..., P, be the length of the ith component 

sequence.Ifthe£.'s are relatively prime the length of the resultant 

composite sequence is 9, = H ft.. Titsworth [1963] has shown that a total • 
i=1 1  

of L = E 	correlations are needed to determine the phase of each of 
i=1 1  

the component sequences separately. Stiffler [1968] has devised a scheme 

in which only log2£ binary decisions, or correlations, are needed for a 

given value of L,  primarily because the periods  2 	the component 

sequences are constrained to be relatively prime. Rapid acquisition schemes 

such as that described by [Stiffler 1968] look promising for rapid acquisi-

tion in CDMA signaling. Also, the Gold sequences [Gold 1967] may offer 

rapid acquisition possibilities. 

There are two stages of synchronization: initial acquisition and 

tracking, as depicted in Fig. 3.1. Initial synchronization requires rapid 

acquisition. Once the point of synchronization is located, the system 

enters the tracking mode. There are two principlè ways of implementing 

a tracking loop for a pseudorandom (PN) code: the delay-lock loop 

[Spilker 1963 1 and the dithering loop [Hartmann 1974 1 . The principle 

of operation of these two types of loops is the saine, i.e., the incoming 
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,CONTINUE WITH SEARCH 

Incoming 
Signal SWITCH TO 

'TRACK MODE 

TRACKING 
LOOP 

Fig , 3.1 Diagram Depicting Two-Stage Synchronization 

code is correlated with an early and a late version of the locally 

generated replica of the code. The difference between the two loops lies 

in that the delay-lock loop requires two correlators while the dithering 

loop requires only a single correlator. In this section we are concern-

ed with describing the available synchronization techniques rather than 

the mathematical analyses of such techniques. Specifically we shall 

concern ourselves with the initial acquisition and tracking operations. 

3.2 Initial Synchronization 

One of the simplest synchronization schemes is sliding correlation 

in which the incoming code is correlated with a variable rate code 

sequence as depicted in Fig. 3.2. Basically, the receiving system, in 

searching for synchronization, operates its code sequence generator at an 
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Incoming 
Signal CORRELATOR 

YES 

NO 

Reference Code 

REFERENCE 
CODE 

GENERATOR 

CHANGE CLOCK 
RATE IN DIRECTION 

TO MINIMIZE 
CORRELATION ERROR 

Fig. 3.2 Sliding Correlator 

initial rate different from that of the transmitter's code generator. The 

two code sequences slip in phase (sliding past each other) with respect to 

each other, stopping only when the correlation produces a satisfactory 

decision. Since the receiver code generator must change its rate, some 

mechanism to shift the receiver code generator to different rates is 

needed. When the initial phase uncertainty is relatively small, the sliding 

correlator approach can yield relatively rapid synchronization. When a 

large degree of uncertainty is encountered, however, examination of all 

possible code phase positions would -involve a very long search time. It is 

noted that recognization of synchronization, which must occur to stop the 

sliding or search process at or near the point of synchronization, is 

limited in response time by the bandwidth of the receiver system's post-

correlation filter. When the search time is long, the synchronization 

scheme becomes impractical. 

Another simple synchronization technique is the transmission of a 

synchronizatiorupreamble: a special code sequence which is short enough to 
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allow a search of all possible code positions. The preamble length must 

be such that its repetition rate does not fall within the information 

band. To allow rapid acquisition the preamble must be relatively short. 

On the other hand a short preamble tends to be more vulnerable to false 

correlations and to possible reproduction by a would be interferer. For 

direct sequence (DS) signaling the preamble lengths are of the order of 

several hundred bits to several thousand bits [Dixon 1976] . The minimum 

preamble length is bounded by crosscorrelation and interference rejection 

requirements, while the maximum preamble length is set by the maximum 

available acquisition time. 

Synchronization in CDMA depends largely on the signaling method 

employed, eg., frequency-hopping  (Fil) or direct sequence (DS) signaling. 

The code rate associated with frequency-hopping signaling is substantially 

smaller than that for direct sequence signaling (say a ratio of 1: 1000). 

It is easier to synchronize the slower rate Fil code than the high rate DS 

code. Let L be the number of DS code bits corresponding to one FH code 

bit in length. A good strategy may involve two stages of synchronization 

in which the CDMA signal employs a mixture of PH and DS coding such that 

the two code sequences are similarly generated. Then the receiver can 

first synchronize itself to the frequency hopper. The second stage in 

the search only needs to search L bits to attain synchronization with the 

DS subsystem. Let L = R__DS /RFH , where R._ and R._ are respectively the 
DS 	rH 

code rate of the DS code and the FH code. If K bits are needed to synchron-

ize the DS code, then only N = K/L bits are sufficient for the synchroniza-

tion of the FH code. An additional search of L bits will enable synchron-

ization of the DS code. Thus, by employing two synch loops, only (N+L) 
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• instead of K = NxL bits need to be processed in order to synchronize the 

high rate DS code. The employment of FH/DS as a two-layered synchroniza-

tion coding  schème  is but one example. It may be possible to superpose 

layers of codes to enhance signal acquisition. 

Titswo±th [1963] has suggested that a clock-component code, which 

employs  •Easterling's [Golomb et al 1964] double loop ranging receiver 

(Fig. 3.3), can be used for symbol rate synchronization. The inner loop, 

Incoming Signal 
C1 x clock  

Correlation 
LOW-PASS 	  Output 
FILTER 

Fig. 3.3 Double Loop Synchronizer 

,or clock-loop, is synchronized to the symbol rate of the incoming code C1  

by the presence of a "clock component"  in C1 , and the locally generated 

code C 2 
is slaved to the output of this clock-loop. Whenever the clock-

loop is locked to the clock component of C1' 
the local code C 2 

is step-

wise synchronized to Cl . The status of synchronization can be monitored 

by observing the correlation output. The error signal that drives the VCO 

is given by 

e(T) = f 	c1  (t) clock (t) c2 (t+t) clock (t + —
4 
+T)dt 

Period 

where P is the period of the clock, and integration is over the period of 
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the code x clock. The correlation output is given by 

Y(T) = f 	- C (t) clock (t),C 2
(t+t) clock (ti-T)dt. 

1 
period 

= [f 	C
1 
 (t) C 2 (t+T)dtlx[f 	

clock (0 clock (ti-r)dt] 
period 	 period 

•- 	• P 
= R 	(T).R 

	

C1C2 	ce 4 

where R 	is the crosscorrelation of C1 and C 2 and R , is the 
auto- 

C1C 2 	
C9 

 
• correlation of the clock. 

As mentioned in Section 2, Stiffler [1968] has proposed a coding 

scheme whereby only n = log 2N binary decisions or correlations need to be 

made in order to synchronize a code with length N = 2n . The Stiffler code 

1 2 
is constructed as follows: Let b = {a., a., ... an}  be the jth binary 

J 	J 	j 

n-tuple with a. e{1, -1 } , b1 
= {1 1 1 ...1}, b 2 = {-1 1 1 ...1} and 

bn = {-1, -1, ..., -11. The 
binary expansion satisfies the identity 

i-2 

	

E (1 - a.)2 	= j-1. The components of the rapid acquisition binary 
i=1 

	

sequence C = 	 N = 211 	generated by the following: 

n . 
. 	1 	if 	E 	>0 

	

1=1 	— 

n 

n 
= sgn ( E a.) . 

i=1 

i 
Let s. 	{4,4 , . ..,a}, i= 1,2,...,n = log2N. Stiffler has shown that 

synchronization of the code C can be attained after n serial correlations 

of the form 

1 = s. 0 C .  

1 = — E 
N j=1  3 

i=1 i=1 



n odd 

n even. 

HI 
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w 	 a 

square wave with the period 21  TIN,  where T is the period of the code C. 

The correlation between si and C can have only one of two 
values, either 

(D1  or -P 	Stiffler [1968] shows that 1 

n-1 

j 
1  

2'
-1  

2 1 P. = P 	, = 	Pi = 
i=1 	1 	( 

	

■, 2
n 	7) 

For large values of n, application of Stirling's formula yields 

1/2 	-1/2 
P = (2/70 	(log2N) 

The correlator output, after T seconds of integration, has mean 

value ± PAT, where A is the amplitude of the received binary signal, and 

the + and - signs are the results of in-phase and out of phase conditions, 

respectively. In the presence of white Gaussian noise with two-sided 

spectral density N0 /2, the correlator output is Gaussian distributed with 

a variance a
2 = N0  T/2. The probability of a correct decision at the ith 

stage of the search is 
1/2 œ

P (i) = Po = (2na
2) 	f exp[-(- i)

2/2a 2]« 

1 
= 	[1 + 

where p = PAT. Since n = log2N decisions are required, the probability of 

a correct acquisition is 

P =  II P (1) = P
n 

11 C 	o 
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If the probability of error, = 1-P
C' 

is small, the integration time T 

is approximately given by: 

T = (71N0/2A
2) log2N Zn (log2N/Pe). 

The total search time is therefore '  

T 	mclog2N 

= (nN0/ 2A2) (log2N) 2  Zn log2N/2e) 

On the other hand, if N-cyclic permutations of the code C were to be 

correlétédwith thereceived signal, the total search time required would 

be approximately given by 

Ts = (4N0/A
2 
 ) (N/2) £n (N/P e) 

where P
e 

is the probability of error associated with the N correlation 

strategy. In spread spectrum applications, N may have to be of the order 

2
20

. The difference between T and T is therefore substantial. 

Stiffler's code is not strictly applicable to spread spectrum 

i 
sincenelocalreferencesequencess.—[a

1, a2''a N } do not them- 

selves possess a wide spectrum to spread possible narrowband interferers. 

That is, the correlator output bandwidth is given by the sum of the band-

widths of the incoming signal and the local reference. If this sum band-

width is comparable to the postcorrelation filter bandwidth, the interferer 

will penetrate through the receiving system. 

Another drawback of the Stiffler code is that each binary decision 

requires an N bit correlation. In view of the fact that N is so large, 

the correlation time is still too long. 
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3.3 Tracking 

There are two principle implementations of tracking loops: the 

delay-lock loop and the dithering loop. The principle involved with the 

operation of the delay-lock loop was first discussed by [Spilker 1963] and 

analyzed in detail by [Gill 1966 1. All discussions concerning the 

operation of the delay-lock loop have been centered on the M-sequence, 

mainly because of the ease with which M-sequences can be generated and 

because the M-sequence possesses a reasonably good crosscorrelation 

property. The basic delay-lock loop is depicted in Fig. 3.4 in which 

the incoming code sequence is correlated with an early and a late version 

of the locally generated code. The difference signal between the two 

correlations is used to drive the VCO. Ward [1967] has considered the 

delay-lock loop tracking problem using sequence inversion modulation. 

Incoming 
Sequence 

Fig. 3.4 Delay-Lock Loop 
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The dithering loop, depicted in Fig. 3.5, also operates on the 

principle of correlating the incoming signal with an early and late 

version of a locally generated code sequence, except that the correlation 

is done by a single correlator on an alternate basis. As a result the 

signal-to-noise performance of the dithering loop is about 3 db worse than 

the delay-lock loop [Hartmann 1974]. With reference to Fig. 3.5 the 

operation of the dithering loop is as follows: 

Fig. 3.5 Dithering Loop 

Let the received signal be 

r(t) 	= s(t) 	n(t) 

s(t) 	= /F m(t-T) c(t-T) cos wc
t 

= power of the incoming signal 

m(t) = information message sequence 

c(t) = code sequence 

= phase of received code clock 

= carrier frequency 

n(t) = white Gaussian noise with two-sided power spectral 

density N0 /2 watts/Hz. 

wc 
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The signal portion of the output from the BPF is alternately 

T, -IT 	ATI 
1 	 m(t-T) cos wot 

T
c 

-jr + ATI 
w 	= 1/5- 	 m(t-T) cos w-t 

Tc  

where T is the chip duration, T = T T, T is the phase estimate of the 

reference code, and àT is the amount of dither. Let 

x
+ 	= [W4.(t)] demod 

x (t) = tw (t)] • demod 

Multiplication by the wave q(t) leaves the sign of x+(t) intact and inverts 

the sign of x_(t). In the track  mode the clock phase error is close to 

zero. For IT1 < àT the loop filter input is proportional to the phase 

error, i.e., 

y(t) = k1  T/TC  

where k1 is a proportionality cc:instant. 
The VCO d.c. control is prescribed 

by 

z
dc

(t) = y(t) ®h(t) 

where 0 denotes convolution and h(t) is the impulse response of the loop 

filter. When the loop is tracking without error, T = 0 and  w+(t)  =y_(t). 

3.4 Summary 

For spread spectrum applications, any coding strategy to enhance 

rapid acquisition must preserve the coding transparency. Since the code 

length for CDMA signaling is expected to be long (order of 2
20

), composite 

codes as discussed by [ritsworth 1963], [Milstein 1976], which require 

E g correlators, are unlikely to be fast enough for initial synchronization. 
i=1 
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The Stif fier approaCh is intriguing and warrants further investigation. 

The 'two-layered FH/DS coding strategy coupléd with good rapid acquisition 

codes may prove important. 
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ANNOTATED REFERENCES  

T.H. Andres and R.G. Stanton, Gday Sequences, Lecture notes in Math- 
ematics, volume 622, Springer Verlag, Berlin, (1977) 44-54. 
It is shown that there are no Golay sequences of lengths 34, 36 

and 50 hence the only occurrences up to length 50 are 2, 4, 8, 10, 16, 20, 
26, 32 and 40. By recursive techniques sequences of lengths 	10 26Y, 

'24 (3 ,  y  > 0 can be constructed. 

Boehmer, Binary Pulse Compression Codes, IEEE Trans. Information 
Theory, 13 (1967), 156-167. 
An interesting construction technique for low autocorrelation 

sequences based on residue number classes and cyclotomic constants. 
There is some searching involved to find the subset of residue classes 
which lead to the best sequences. 

P.A.N. Briggs and K.R. Godfrey, Design of Uncorrelated Signals, Electronics 
Letters, 12 (1976), 555-556. 
It is shown that it is impossible to design uncorrelated signals 

with the same period with autocorrelation functions of the delta function 
form. The example of MacWilliams (1967) gave a pair of uncorrelated 
binary sequences of the same period, but not with impulse like auto-
correlation functions. 

J.R. Caprio, Strictly Complex Impulse - Equivalent Codes and Subsets 
with Very Uniform Amplitude Distributions, IEEE Trans. Information 
Theory, 15 (1969), 695-706. — 
The paper is concerned with constructing complex sequences 

{p 	pl , 	pml with very uniform amplitude distributions {lp I, 11)11, 
!
ell and impulse  like autocorrelation function (IRp

(k)1 << Rp (8)). - N 

N.B. Chakrabarti and M. Tomlinson, Design of Sequences with Specified 
Autocorrelation and Cross Correlation, IEEE Trans. Communications, 
24 (1976), 1246-1251. 
The method of designing sequences with good auto and cross cor-

relation depends on first finding good periodic sequences using the method 
of Boemer (1967). These sequences are then tested for their aperiodic 
correlation properties. 

J.A. Chang, Ternary Sequences with Zero Correlation, Proc. IEEE, 55 (1967), 
1211-1213. 
It is shown that certain ternary m-sequences have a periodic 

correlation function which vanishes for values not a multiple of sequence 
length. 

D.C. Chu, Polyphase Codes with Good Periodic Correlation Properties, IEEE 
Trans, Information Theory, 18 (1972), 531-532. 
Sequences of any length oveFN throots of unity of length N with 

an„autocorrelation function which is an impulse function are given. This 
is claimed to extend2

the work. of Frank ana Zadoff. (1962) and Heieller - 
whose lengths were N over a primitive Nt  root of 1 0  

P. Delsafte, Orthogonal Matrices over a Group and Related Tactical 
Configurations,  M.B.L.E. Laboratoire de Recherches, Brussels, 
Belgium, 1968, Report R90 0  
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A Class of matrices  w  whose non-zero,elements are from a group 
is defined as well as a concept of orthogonality. Special cases of this 
class are generalized Hadamard matrices (the.only Case of interest here) 
and conference matrices (one zero per row). The relationship of these 
matrices to group divisible designs, balanced incomplete block designs, 
orthogonal arrays and finite geometries, is examined. . 

P. Delsarte and J. M. Goetflals, Tri-Weight Codes and Generalized 
Hadamard Matrices, Information and Control, 15 (1969), 196-206. 
A class of generalized Hadamard matrices over the complex pth. 

roots of unity is constructed and thee connections with a class of tri-
weight extended  CH cîdes of lIngth,p m, dimension 3m A- 1 and minimum 
weight (p 1) p m 	- pm  - is given. 

P. Delsarte and J.M. Goethals, On Quadratic Residue Like Sequences in 
Abelian Groups, Report R 168, MBLE Laboratoire de Recherches, 
Brussels, Belgium, July, 1971. 
The construction of G-sequences in certain Abelian ygroup algebras 

over the integers is considered. Such sequences are ternary over the 
alphabet 0, il, and are connected with periodic ternary sequences with 
impulse like periodic correlation functions. 

D. Everett, Periodic Digital Sequences with Psendonoise Properties, 
G.E.C. Jour. Science and Technology, 33 (1966), 115-126. 
A pseudonoise sequence here is defined as one for which the off 

centre periodic autocorrelation function is constant. It is shown that 
pseudonoise sequences, difference sets and cyclicBIBD'S are coexistent. 
The sampling of pseudonoisg sequences is considered and the relationship 
of multipliers of different sets to this problem examined. Some known 
classes of pseudonoisg sequences are displayed, including those derived 
from quadratic,biquadratic and octic residue sequences, twin prime 
sequences, Hall sequences maximum length sequences (including some 
interesting sampling properties of them) and finite projective planes. 

R.L. Frank, Polyphase Codes with Good Nonperiodic Correlation Properties 
IEEE Trans. Information Theory, 9 (1963), 43-45. 
A simple class of polyphase (N piTases,Narbitrary) having good 

nonperiodic correlation properties is described, The procedure is some-
what arbitrary in that there is an element of search involved. The 
superiority of the polyphase codes. in the sense of higher  centre  peak to 
side peak ratio is established. Several conjectures on the behaiour of 
the correlation function for such sequences, are given. (see also Turyn 
(1967)). 

R.L. Frank and S.A. Zadoff, Phase Shift Pulse Codes with Good Periodic 
Correlation Properties, IRE Trans. Information Theory, 8 (1962), 
381-382. 
It is pointed out that the code sequences described in an earlier 

paper by Heimiller were identical to those found by Frank nine years 
earlier (no reference given) and contained in a patent by Zabouff and 
Abourek - except those by Frank do not contain the restriction that code 
lengths be the square of the power of a prime. Heimiller comments on 
this note, immediately following it, agreeing with this observation and 
providing a proof of the only theorem in his paper which does not hold by .  
removing this restriction. 
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S.A. Fredricsson, Pseudo-Randomness Properties of Binary Shift Register 
Sequences, IEEE Trans. Information Theory, 21 (1975), 115-120. 
This paper is concerned with measuring the randomness of 

maximum length sequences over and above the original criterion given by 
Golomb. In particular the M-tuple weight distribution and high order 
correlations of these binary maximum length sequences are considered. 

J.M.Goethalsand J.J. Seidel, Orthogonal Matrices with Zero Diagonal, Canad. 
J. Math; 19 (1967) ., 1001-1010. 

. Symmetric and Skew-symmetric matrices C of order v with diagonal 
elements 0 and off diagonal elements ±1 with the property that CCT = (v-1)Iv 
are constructed. 

M.J.E. Golay,Complementary, 	Series, IEEE Trans. Information Theory, 7 (1961), 
82-87. 
A pair of binary sequences will be called complementary if the sum 

of their nonperiodic correlation functions is zero, except for the zero 
shift. General properties of such sequences are established and various 
constructions which double the length of a given complementary sequence 
given. It is gown that the length n of such series must be even and that 
n = (n - p - q) + ( p q) 2  where p and q are the numbers of l's in the 
two sequences. A construction method for such sequences when n is a power 
of two is given from which sequences of length 1002a020b  can be constructed, 
since sequences of length 10 also exist. Sequences of length 18 are not 
possible while lengths 26 and 34 were left undecided (see Andres and Stanton 
(1977)). 

M.J.E. Golay,A Class of Finite Binary Sequences with Alternate Auto-
correlation Values Equal to Zero, IEEE Trans. Information Theory, 
18 (1972), 449-450. 
Binary (±1) sequences of odd length are constructed with the 

property that values of the correlation function at odd integers are zero. 
Comments on the ratio of peak sidelobe to centre values are also given. 

•Golay,  Notes on Impulse Equivalent Pulse Trains, IEEE Trans. In-
formation Theory, 21 (1975a), 718-720. 
The impulse - equivalent.pulse trains of Huffman are defined as 

finite, complex-valued sequences, having the property that 
n-k 

e real is i4k 
2 

 
N2  

considered here and the figure of merit is E/C, max where E = E C 
i 

Sequences are examined in the light of this restriction and criterion. 

M.J.E. Golay, Hybrid Low- Antocorre1ation Sequences, IEEE .Trans. Information 
- 	Theory, 21 (197 5b), 460-462. 	. 	 . 

. Skew symmetric Sequences of length (2n+1) (ao ,. al' ..., a
2n

) are 
described for which the figure of merit 

2n 	
2- 	2n ,,2n-k 	 . 

' 	(E 14)./{2 E ( E sgn(a ) . a. )
2
1 1 	 i 	11-k 	 . o 	 1 	o  

is high, where  an .  = (-1)s anis ‘ Many comments  on 'thestructure and 
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properties of such "good" sequences are discussed. 

M.J.E. Golay, Sieves for Low AutocorrelationlBinary Sequences, IEEE, 
Trans. Information Theory, 23 (1976),,43-51. 
The ratio of central to sidelobe energies is taken as the figure 

of merit in the seardh for optimal sequenc'es with low autocorrelation. 
Sieves are employed in the search, the first based on the conclusion that 
there exist long skew symmetric sequences with approximately the same 
figure of merit. A second sieve is based on the use of complementary 
sequences. Third and fourth sieves are based on certain properties of 
complementary sequences. 

R. Gold, Characterisitc Linear Sequences and their Coset Functions, 
J. SIAM Appl. Math., 14 (1966), 980-985. 
The vector'space'V(f), of all sequences satisfying the linear 

recursion n 
E f(k) h(i-k) = 0 for all i n, deg f = n, f(0) 	0, is n 

k=0 
dimensional. A characteristic sequence  of  V(f) is a sequence h E V(f) 
such that h(2k) = h(k) for all k. Some characterizations of the character-
istic sequences of V(f) are given. In the final section the coset se-
quences of all maximal sequences of a given prime period are determined. 

R. Gold, Optimal Binary Sequences for Spread Spectrum Multiplexing, IEEE 
Trans. Information Theory, 13 (1967), 619-621. 
The construction of "preferred pairs" of polynomials which lead 

to two maximum length sequences with low cross correlation is given. It 
is shown that the product of these polynomials gives rise to 2n+1 different 
(non maximum length) sequences of length 2n-1 whose cross correlation is 
bounded. 

.R. Gold, Maximum Recursive Sequences with 3-Valued Recursive Cross-
Correlation Functions, IEEE Trans. Information Theory, 14 (1968), 
154-156. 
A construction of a pair of maximal linear .sequences is given 

for which the periodic cross correlation is two valued.  The  results have 
an interesting interpretation in terms of a class of tri-weight cyclic 
codes. ' 

S.W. Golomb and R.A. Scholz, Generalized Barker Sequences, IEEE Trans. 
Information Theory, 11 (19.65), 533-537. 
Several transformations which preserve the properties of generalized 

Barker sequences are given and these are used to establish the existence 
of such sequences. Much of the work was established using a combination of 
computer search and these properties. 

Length  

sequences with 

M. Griffin, T4ere are no Golay Complementary Sequences of 
Aequaeiones Math,,15 (1977), 73-77. 
The possibility of the existence of complementary 

length of the form  2.9e  is eliminated. 

D.A. Huffman, The Generation of Impulse-Equivalent Pulse Trains, IRE Trans. 
Information Theory, 8 (1962), 510-516. 
An impulse equivalent pulse train is one that has an autocorrelation 



q where h[x 9 y] = (3 
xy 

 and 

H(x) = max {H (T)}, 
0<T<q xx 

H(x;y)}. Then x is 

all x ° ES. The pair x,y is 
,y °  cS. A subset 

function as close as is theoretically possible to that of a single pulse. 
Such sequences are pulse trains whose amplitudes are chosen from a 
continuum rather than from a finite set. It is shown that such sequences 
exist for all lengths and that the number of classes of these Sequences 
is exponentially related to their length. 

T. Helleseth, Some Two-Weight Codes with Composite Parity-Check Poly- 
nomials, IEEE Trans. Information Theory, 22 (1976a), 631-632. 
A family of nonbinary cyclic  codes,  with composite parity check 

polynomials, which have only two nonzero weights is described. 

T. Helleseth, Some Results about the Cross Correlation Function between 
Two Maximal Linear Sequences, Discrete Mathematics, 16 (1976b), 
209-232. 
The cross correlation function between two maximal length 

sequences is studied in considerable detail. A survey of known results 
is given. Many of the results are concerned with the values that the 
cross correlation function can have and the number of times in one 
period it takes on each possible value. 

A. Lempel, M. Cohn and W. Eastman, A Class of Balanced Binary Sequences 
with Optimal Autocorrelation Properties, IEEE Trans. Information 
Theory, 23 (1977), 38-42. 

For an odd prime p, a balanced (sum is zero) ±1 sequence of length pm-1 
is constructed with the property that ak = ±2 for (pm-1)/2 odd and 
ak = 0 or - 4 when (p11 -1) (2 is even). The optimality of such a correlation 
function is established in the sense that every balanced binary sequence has 
at least two distinct out of phase correlation values, and these must be at 
least as large as those constructed here. The construction given in this 
paper is actually a special case of one given by Sidelnikov (1969), as pointed 
out by Sarwate. 

A Lempel and W.L. Eastman, High Speed Generation of Maximal Length Sequences, 
IEEE Trans. Computers, 20 (1971), 227-229. 
A method for generating binary maximum length sequences of length 

p = 21 -1 at a rate k times faster than the shift rate is given. The method 
is valid for any positive integer k which is not a multiple of p. 

A Lempel 

alphabet 
• 

H (T) = ceilh [x(j), Y(J -1-01, 0 < T < 
0 

let S be the set of all sequences over A. Let 

H(x,y) = max {11 (T)land M(x,y) = ,max {H(x), 
OsT<q xY  

called an optimal sequence of H(x).5. H(x ° ) for 
called optimal if M(x,y) 5 M(x ° ,y ° ) for all x °  

and H. Greenberger, Families of Sequences with Optimal Hamming - 
Correlation Properties, IEEE Trans. Information Theory, 20 (1974), 
90-94. 
Let X = {x(j)}, Y = ly(j)} be two sequences of length q over an 
A, IAI = a. Define 
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F of S is an optimal family if every pair of distinct elements is an 
optimal pair. A method of constructing optimal sequences is given for 
q = pu-1 and a = pk for a given prime p and positivè integers k,n, 
1 k 5 n. Optimal families of size plc are also constructed and each 
sequence in the family is optimal.. 

J.H. Lindholm, An Analysis of the Pseudo-Randomness Properties of 
Subsequences of Long m-Sequences, IEEE Trans. Information Theory, 
14 (1968), 569-576. 
Let A be the number of subsequences of length M, from an tn m-sequence, oY weight w. The .p moment of the weight distribution is 

p _ 1 	p 
W - - E w A

w
. It is shown here that the first two moments of the 

w=1 
weight distribution does not depend on the particular m-sequence or 
equivalently, its characterisitc polynomial. The third moment however 
depends on the quantity B,, the number of trinomials of degree less than 
M divisible by f(x), and eheir degrees. Similar results hold for higher 
moments. For the third mement the notion is related to coset functions 
and characteristic sequences. 

J. Lindner, Binary Sequences up to Length 40 with Best Possible Auto- 
correlation Function, Electronic Letters, 11 (1975), 507-. 
A special purpose minicomputer was used to find all optimal 

sequences of length 40 or less, where optimality is measured by minimum 
î4bsolute sidelobe varti.e. For each given length, the number of optimal 
sequences is given, as well as the mean of the sidelobes, rms value of 
the sidelobes, the number of sidelobes with maximum absolute value and 
the distance from the main lobe to the first sidelobe with maximum 
absolute value (although it is not clear for which optimal sequence these 
last four values are computed, or whether they  are invariant  over all 
optimal sequences). 

D.G. Luenberger, On Barker Codes of Even Length, Proc. IEEE 51 (1963), 
.230-231. 
It is shown that the length N of a Barker sequence (in the sense 

of Turyn) of even length must be a perfect square. It is noted that there 
does not exist such a sequence of length 16 (Russian reference). 

F.J. MacWilliams, An Example of Two Cyclically Orthogonal Sequences with 
Maximum Period, IEEE Trans. Information Theory, 13 (1967), 
338-339. 
In 19,66 Levitt and Wolf made the conjecture: If a, b are two n 

place ±1 vectors such that b is orthogonal to every cyclic permutation of 
a, then a and b cannot both-have least period n under cyclic permutation. 
This  conIectgil; is disproved here by showing the existence of a family of 
such sequences using cyclotomic polynomials. The smallest case is for n = 18 
and this case is worked out in detail. 

F.J. MacWilliams and N.J.A. Sloane, Pseudo-Random  Séquences and Arrays, 
Proc. IEEE, 64 (1976), 1715-1729. 
An extensive and interesting survey of the properties and 

applications of pseudo-random sequences (binary, 0,1) is given. It is then 
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shown how such a sequence can be displayed as an n, x n2  array where 
k k 	 k1 

n = 2 1 2- 1 n1 = 2 - 1 n21 
and (n1, n2) = 1. Such arrays then 

have properties which are two dimensional analogs of properties enjoyed 
by the sequences. In particular, if b is the array and A is the number 
of positions in which b and b shifted i places down and j positions to the 
right agree, and D the  numbe-r of positions in which they disagree, then 
the correlation function for arrays, in general, is defined as 

A-D 
P(iej) 	Ti  i,j = 0, ±1, ±2, 

For the arrays derived from the pseudo-random sequences, p(0,0) = 1 and 
P(i,j) = -1/n, 0 5 i < n1, 

0 j < n2' (i,j) 54  (0,0). Only the periodic 
correlation function is considered. Other sections consider non-binary 
sequences and arrays and transmission functions (a type of generalized 
autocorrelation function). 

th 
J.L. Massey and J.J. Uhran, Sub-baud  Coding, Proceedings, 13 Annual 

Allerton Conference on Circuit and System Theory, (1975), 539-547. 
The importance of both the even and odd correlation functions in 

sub-baud coding is demonstrated. While the even autocorrelation function 
is invariant to cyclic shifting while the odd function is strongly de-
pendent on its phase. The auto and cross correlation functions of 
cyclically distinct maximum length sequences are considered. Expressions 
for the peak off centre autocorrelation and cross correlation for both 
the even and odd functions for codes derived from the cyclic equivalent 
classes of a cyclic code are given. The construction of a class of 
asymptotically good codes, for which the ratio of off centre value to 
length tends to zero with length, is given. 

L.B. Milstein, Some Statistical Properties of Combination Sequences, 
IEEE Trans. Information Theory, 23 (1977), 254-258. 
Combining sequences with a Boolean function has long been a 

technique used to derive long sequences with good autocorrelation 
properties. This paper also considers the cross correlation of the long 
sequence with its components for use as rapid acquisition sequences. It 
is assumed that the sequences involved are chosen at random and all 
arguments are probabilistic. 

P.S. Moharir, Ternary Barker Codes, Electronics Letters, 10 (1974), 4 60-461. 
Ternary (0,±1) sequences of length N with aperiodic correlation 

function p(k) = N1  < N if k=  0 and 0 or ±1, k 0 are discussed and a 
table of such sequences of length less than 11 given. Good binary 
sequences are obtained from the ternary. 

P.S. Moharir, Generalized PN Sequences, IEEE Trans. Information Theory, 
23 (1977a), 782-784. 
A generalized PN sequence is defined as one whose off-centre 

periodic correlation function is identically zero. Attention is focussed 
on the ternary (0,±1) caSe where certain combinatorial admissibility 
conditions are derived which are satisfied by certain cyclic difference 
sets and lead to new generalized PN sequences. 
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P.S. Moharir, Chinese Product Theorem for Generalized PN Sequences, 
Electronics Letters, 13 (1977b), 121-122. 
A product-type theorem, which relates the'periodic correlation 

function of the product sequence to the correlation'functions of the two 
component sequences, is given based on the chinese remainder theorem. 
Some relationships between different sets and asymmetrically binary gpn 
sequences are given. 

P.S. Moharir and A. Selvarajan, Optical Barker Codes, Electronics Letters, 
10 (1974), 154-155. 
The notion of optical Barker codes is introduced. These 

sequences are (0,1), begin and end with 1 and have an off peak non-periodic 
correlation function of magnitude less than or equal to unity. A sufficient 
condition for the existence of such a sequence of length m with n units 
in it is given, a quasi-search technique. 

P.S. Moharir and A. Selvarajan, Systematic Search for Optical Barker Codes 
with Minimum Length, Electronics Letters, 10 (1974), 245-246. 
An earlier quasi-search technique of the authors for optical 

Barker codes is slightly extended. 

J.W. Moon and L. Moser, On the Correlation Function of Random Binary 
Sequences, SIAM J. Appl. Math, 16 (1968), 340-343. 
An upper and lower bound on M(s ), the maximum absolute value of 

the off peak nonperiodic correlation of anbinary (±1) sequence of length 
n, valid for "almost all" such sequences is given. 

R.J. Pettit, Pulse Sequences with Good Autocorrelation Properties, 
Microwave J., 10 (1967), 63-67. 
An elementary survey article on the subject. 

M.B. Pursley and D.V. Sarwate, Evaluation of Correlation Parameters for 
Periodic Sequences, IEEE Trans. Information Theory, 23 (1977a), 
508-513. 
Three types of correlation functions are considered; the auto-

correlation, cross correlation and odd correlation function for both the 
periodic and aperiodic cases. Several properties of these functions useful 
in analyzing their application to CDMA and SS systems are given and the 
amount of computation required to determine them discussed. 

M.B. Pursley and D.V. Sarwate, Performance Evaluation for Phase-Coded 
Spread-Spectrum Multiple-Access Communication - Part II: 
Code Sequence Analysis, IEEE Trans. Communications, 25 (1977b), 
800-803. 
Bounds on the important parameters of the code sequences for 

SSMA are given, including auto-cross- and odd correlation functions, are 
given, as well as some computational techniques to determine them. 

H.F.A. Roefs and M.B. Pursley, Correlation Parameters of Random Binary 
Sequences, Electronics Letters, 13 (1977), 488-489. 
The performance of random binary sequences in terms of their 

correlation parameters, is examined in multiple access systems. 
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D.V. Sarwate, Cross-Correlation Properties of Sequences with  Applications 
to Spread-Spectrum Multiple-Access Communications, to appear 
(1978a). 
The trade-off between autocorrelation and cross correlation 

properties of binary sequences is studied via an inequality on the sum of 
squares of the two functions. Both the periodic and aperiodic cases are 
considered. 

D.V. Sarwate, Bounds on Cross-Correlation and Autocorrelation of Sequences, 
to appear (1978b) 
If 0 and 0 are the maximum of the off-centre periodic auto-

correlation ana crossCorrelation values respectively of a set of complex-
valued sequeq.ces, it is shell that 

04 	 04  
N-1  ( 

a
) 
 N(K-1) 	

1. Thus by specifying one of the values 
N 

this relationship gives a lower bound on the other. Similar results are 
obtained for the aperiodic correlation functions. Certain optimum or 
asymptotically optimum periodic sequence sets are constructed. 

D.V. Sarwate and M.B. Pursley, New Correlation Identities for Periodic 
Sequences, Electronics Letters, 13 (1977), 48-49. 
The main result of the paper is to show that 

N-1 1Y3 	N-1 
(k) = 	E 	C 	(2.) C 	(9A-k) = 	E 	C

x
(£) C (9.1-k) 

x,y 
=l-N x'Y 	'x'Y 2=1-N 	Y 

This quantity was shown to be useful in determining the signal-to-noise 
ratio in spread spectrum multiple access systems and permits considerable 
computational simplification since only autocorrelations are involved. 

K.S. Schneider and R.S. Orr, Aperiodic Correlation Constraints on large 
Binary Sequence Sets, IEEE Trans. Information Theory, 21 (1975), 
79-84. 
An existence type theorem, proved by random coding and expurgation 

techniques, is proven which allows an examination of the relationships 
between the length n, maximum off centre autocorrelation k and maximum 
crosscorrelation S. A new proof of the Gilbert bound of coding theory 
is also given. 

R.A. Scholtz and L.R. Welch, Group Characters: Sequences with Good 
Correlation Properties, IEEE Trans. Information Theory, 24 (1978), 
537-545. 
The theory of group characters of Abelian groups and some trans-

form theory is used to construct complex sequences with good periodic 
autocorrelation and crosscorrelation functions. A computer study of 
truncated versions of some of these sequences considers their aperiodic 
correlation functions. 

M.R. Schroeder, Synthesis of Low Peak Factor Signals and Binary Sequences 
with Low Autocorrelation, IEEE Trans. Information Theory, 
16 (1970), 85-89. 
The problem of:how to adjust the phase angles and amplitudes of 

harmonics of a periodic signal to minimize the difference between the 
maximum and minimum values is considered. As "generally good" technique 
is proposed, ,with little proof, and its application to the construction 
of binary sequences with low autocorrelation considered. 
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G. Sequin, Binary Sequences with Specified Correlation Properties, 
Technical Report No. 7103 (1971), Department of Electrical 
Engineering, University of Notre Dame, Notre Dame, Indiana. 
The notion of a cyclotamic sequence is defined and their 

correlation properties examined. Similarily construction methods and 
correlation properties of self-dual sequences are given. A weakly 
Barker sequence is defined as one for which 

 'ç-k' 
 5. 1, 0 < k < (n+1)/2, 

where Fk  is the non-periodic correlation function with a shift of k. 
Some properties of sequences obtained from Arithmetic codes are examined. 

G. Sequin, Large Sets of Skew-Symmetric Sequences with Small Auto-and 
Cross-Correlations, to appear. 
It is shown that there exsits large sets of skew symmetric 

binary sequences with low auto- and cross-correlations. The proof 
technique is that of skew symmetric binary sequences chosen at random, 
whose maximum off peak auto-correlation is less than a and whose maximum 
cross-correlation is less than B, is found. This lower bound increases 
exponentially with n. 

V.M. Sidelnikov, Some k-Valued Pseudo-Random Sequences and Nearly 
Equidistant Codes, Problems of Information Transmission, 
5 (1969), 12-16. 
Two classes of sequences over the kth roots of unity, depending 

on whether n, their length, is 0 or 1 mod k, are constructed which have 
autocorrelation functions with precisely two off peak'values. These were 
later independently discovered by Lempel et al (1977). In a similar vein 
some nearly equidistant codes over the kth toots of unity, using Hamming 
distance, are constructed where the term nearly equidistant implies the 
minimum distance is within 1 or 2 of the Plotkin bound. 

Sidelnikov, On Mutual Correlation of Sequences, Soviet Math, Dokl., 
12 (1971), 197-201. 
Lower bounds on the periodic autocorrelation and cross-correlation 

peaks of complex sequences  'over  the kth roots of unity are established. 
Sets of sequences whose peaks come close to achieving these bounds are 
described using a coding-theoretic approach. 

R. Sivaswamy, Multiphase Complementary Codes, IEEE Trans. Information 
Theory, 24 (1978), 546-552. 
Let [ 5N-1-1 ] = [So' 

S1,0°' SN ] be a sequence of complex 

numbers of magnitude 1 with aperiodic autocorrelation function X(T) and 
[C
N
+1] = [C

0, 
C 	C

N
] a second such sequence with autocorrelation 

function  ET).  The two sequences are termed complementary if the sum of 
their autocorrelation functions is an impulse function, as in the original 
work of Golay for binary sequences. The condition of complementarity can 
be used to establish a relationship between the phases of the elements of 
the two sequences. Several examples of solving the required matrix 
equations are given. It is shown that if [SN ] and [Cm] form a multiphase 
complementary (UC) code then so ,do [SN  CN  ]' [SN

C
N

] Aare the bar indicates 
phase reversal. Thus if an MPC code pair of length N exists so does one of 
length N.2k. Some comments on the generation of MPC code sets (of size 
larger than 2), whose autocorrelations add up to an impulse function are 
given. 
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J.J. Stiffler, Rapid Acquisition Sequences, IEEE Trans. Information 
Theory, 14 (1968), 221-225. 
A class of binary sequences of length N = 211 , for all integer 

values of n, is presented which permits the phase of any of these 
sequences to be determined in every case after only n=log2N binary decisions. 
This compares, for example, with L = ps_ binary decisions required when 
using a maximum length sequence of lerigth N=p1p 9  ..p 	(p. p 4 ) =.1, i # j. 
An argument as to the optimality-of these seeefices h giThn  

F. Surbock and H. Weinrichter, Interlacing Properties of Shift-Register 
Sequences with Generator Polynomials Irreducible over GF(p), 
IEEE Trans. Information Theory, 24 (1978), 386-389. 
The properties of elementary sequences generated by irreducible 

(but not primitive) polynomials are examined. It is shown that each such 
elementary sequence can be constructed by interlacing shorter elementary 
sequences generated by the same polynomial. Three applications of this 
characterization are given, the last concerning the cross-correlation 
properties of equal length m-sequences. 

Taki, H. Miyakawa, M. Hatori and S. Namba, Even-Shift Orthogonal Sequences, 
IEEE Trans. Information Theory, 15 (1969), 295-300. 
An E-sequence is a binary (±1) sequence whose autocorrelation 

function vanishes for all even shifts, except for the zero shift. The 
D-sequence Of Welti 1969 form a subset of E-sequences. The length of an 
E-sequence is a multiple of 4 and is twice the sum of at most two squares, 
a consequence of the construction of an E-sequence from a pair of 
complementary sequences of Golay. If there exists two E-sequences of 
length m and n respectively then there exists an E-sequence of length mn. 
An E-sequence C is called the mate of the E-sequence S if the cross 
correlation function is zero for all even shifts. It is shown that if ' 
s=(x;y) (x = all odd members of S and y all even members) then the only 
mates are (yR; xR) and (-yR: XR). From an E-sequence and its mate, a 
complete function set can be defined. Finally it is shown that an E-
sequence and one of its mates forms a complementary pair in the sense of 
Golay. 

C.-C, Tseng, Signal Multiplexing in Surface Wave Delay Lines Using 
Orthogonal Pairs ofGolay Complementary Sequences, IEEE Trans. 
Sonics and ultrasonics, 18 (1971), 103-107. 
The notion of orthogonal pairs of Golay complementary sequences 

is defined and their use to improve the coding efficiency of surface wave 
delay lines examined. 

C. 1C. Tseng and C.L. Liu, Complementary Sets of Sequences IEEE Trans. 
Information Theory, 18 (1972), 644-652. 
The concept of a complementary pair of sequences due to Golay 

(1961) is generalized to allow for more than two sequences not necessarily 
all of the same length. The mate to such a set is a second set whose 
corresponding sequences have the same length such that the sum E  4 	. (k) Al 13, 1  
is zero for all k, A. thé ith sequence in the first set and B. the ith 
sequence in its matj A collection of complementary sets is Called 
mutually orthogonal if any 2 distinct sets are mates. Numerous properties 
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complementary setsand,mutually orthogonal sets are * establisheeand.many 
recursive  constructions  given. , Applications  to the,.signal,processing of 
one and,two'dimensional arrays of real numbers are discussed. 

Ambiguity Functions of Complementary Sequences, IEEE Trans. 
Information Theory, 9 (1963a), 46-47. 
The ambiguity functi-on of a (not necessarily binary) sequence 
n is defined by 

n-k 
i A (x,k,w) = E 	x.x. w 

i=1 1 11-k  
The properties of this function, and the sum of such functions for two 
sequences, is studied. - 

R. Turyn, On Barker Codes of Even Length, Proc. IEEE, 51 (1963b), 1256. 
This paper extends the results of Luenberger by showing that 

if a periodic sequence of length n=4N2 , Ct.+C k  = 0 does not exist the-n, 
a Barker sequence of length n cannot exist.  It  is shown that such 
sequences for N the power of a prime cannot exist and it is noted that 
the cases for N=6, 10, 12 and others have also been disposed of. The 
result for N = 2 (n = 16) was, in this manner, first observed by Hall 
(although not in this context). 

R.J. Turyn, The Correlation Function of a Sequence of Roots of 1, IEEE 
Trans. Information Theory, 13 (1967), 524-525. 
The conjecture (g Frank (1963), that 

lcm l 	b
n 

= 	.E el 
i=o 

is established, for the multiphase codes of Frank. 

R.J. Turyn,Sequences with Small Correlation, in Error Correcting Codes, 
H.B. Mann ed., John Wiley and Sons Inc., New York, 1968, 
195-228. 
A detailed survey of the existence and properties of se-

quences, both binary and over higher roots of unity, with low periodic 
or aperiodic correlation. The paper is difficult to read but contains 
most of the important results on the subject to that date, as well as 
some new ones. 

R.J. Turyn, Hadamard Matrices, Bammert-Hall Units,  Four  Symbol Sequences 
and Surface Wave Encodings, J. Comb ,  Theory, 16A (1974a), 
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