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FORWORD

This report contains a state-of-the-art survey of Spread
Spectrum Multiple Access (8SMA) techniques in general, but Code Division
Multiple Access (DCMA) in particular. Specifically, Section 1 describes
CDMA signaling concepts and techniques, Section 2 discusses sequences
and their correlation properties, and Section 3 considers the synchron-
ization aspect of CDMA signaling.

Two salient features that are necessary for the successful
operation of a CDMA system are: 1) the code sequences must possess a
very wide signal spectrum and 2) the code must be susceptible to rapid
acquisition. The first feature calls for long sequences which possess
noise-like properties while the second feature favours short sequences.
Thus, these two features represent conflicting requirements. Successful
CDMA operation requires simultaneous satisfaction of both features.
Hence certain suitable compromise has to be incorporated; this is the

direction which is currently under investigation.



1. CDMA' TECHNIQUES

1.1 Introduction
Multiple access communication arises in situations where many users

attempt simultaneous transmission through a common commuﬁication_channel or
share a common central resource facility. The satellite chammel ﬁaving
ample bandwidth and a wide geographicallcoverage is a natural enviromment
for multiple access communication. Ground-radio networks and terrestial
data bus in which user terminals are attached through communication adapters
are also candidates for multiple access. Conventional multiple access
schemes are frequency-division multiple access (FDMA) and time-division
multiple access (TDMA) in which fixed frequencylbands or time slots are
allocated to the users. When the number of users is large FDMA (TDMA) can
run into a problem in bandwidth (time slot) allocation. The effectiveness
of both FDMA and TDMA is thus greatly reduced. Also in an environmént in
which data generation is random and bursty, either FDMA or TDMA would be
inefficient in that a large fraction of the frequency band (or time siot)
may be idle over a certain period of time. Other multiplg'access schemes
are ggmand—ggsignment multiple access (DAMA) and random multiple access
(RMA). DAMAlitself has many derivatives, Two of the more prominent schemes
are'Polling [Konheim and Meistér, 197471 and reservation scheduling [Mark,
1978]. With random multiple access the transmissions by various users

will add to produce a composite signal. Unless there are specific propert-
ies which are built into a relationship amongst the various signals so that
each intended user can discriminate against unwanted signals, the composite

signal just appears as noise to all concerned. Thus, simultaneous trans-
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mission by two or more users can lead to destructive interference and
retransmission must take place. A scheme, known as the ALOHA system
[Abramson, 1970] developed by a group of researchers at the tniversity of
Hawaii, uses this transmission strategy.

When the different user signals are coded so that they form an
orthogonal set, then intended users can extract their own wanted signals
with pnly negligibly small interference. That is, unwanted signals will
appear as wideband noise; the power spectra of unwanted signals spread
over a wide frequency band, hence the term spread spectrum. When the
various singals are coded to form an 6rthogona1 set, or an almost ortho-
gpnal set, which is characterized by a low cross—correlation function, the
modé of spread Speétrum multiple access is called code-division multiple
access (CDMA). It is with respect to sequences possessing good cross-
correlation properties, and hence suitable for CDMA application, that the
present study is directed.
| Spread spectrum as a research discipline spans a rather wide cross-
Sec;ion of the communication field [Dixon, 1975]. To date spread spectrum
multiple access (SSMA) systems have been used mainly in military systems
under various names as frequency hopping. [Nossen, 1974], pseudonoise
systems [Lefande, 19701, jamming systems [Ross, 1974], etc. By far the two
most widely discussed spread spectrum code signais are the following:

i) Direct,seqﬁence (DS) signal with chip time (digit duration) Tc, and
ii) noncoherent fréquency hopping (FH) signai with: frequency separation Af,

?he essantialvingredient in: these two techniques is the code use to»spiead

the bandwidth of unwanted 'signals; hence DS. and FH are known as code-

diﬁision multiple access (CDMA) techmiques.

In the remaining portion of this section we present a. brief
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exposition of DS and FH as spread spectrum techniques. A survey of the
codes or sequences together with their correlation ﬁroperties is given in
Section 2. As in allvother aspects of communication, -synchronization
represents a prominent and indispensible feature in SSMA. Sectioﬁ 3
presents a éurvey of synchronization techniques which pertain to CDMA

applications.

1.2 _Basic»Conceét of Spread Spectrum

Under normal communication situations in which the information is
to be conveyed over a certain dis;ance, the baseband informétion is modula-
téd onto a carrier to avoid excessive propagation gttenuation. When there
is . more than one user involved, simultaneous tranémission by many users
over a‘common channel wiil result in interference. Superposition of a
code,which is known only to the intended receiver, will permit extraction
of the wanted information érovided that the code and the encoding process
have the following properties: 1) at the receiver, signals from unwanted
users will look like noise, and 2) the superposed code is transparent to
the baseband information signal, i.e., removal of the code at the receiver
will not perturb the baseband information. Property 1 is a code design
problem, which we will deal with in Section 2. Property 2 is an:encoding

problem which we discuss below.

Generation of the transmitted signal in a multiple access environment

thus involves two steps: conventional modulation of baseband information onto

a carrier and subsequent encoding of a superposable orthogonal code. At
the receiving end the process is reversed: removal of the code and de-
modulation to reproduce the baseband information. The basic concept of

spread spectrum communication is depicted in Fig. 1.1 [Utlaut, 1978].

—




B W e MM TR MS SN Sm OGN SN S N AN SN AN

g, (£)8, (£)

-5 -
‘Baseband Sl(t)=Al(t) cos(w t+0(t)) :
c .
Information gl(t) Sl(t)
i &= MODULATOR ~ s
m, (t) -
1
?Carrier Spreading Function
A cos wct gl(t)
(a) Transmitter
%EN(t)SN(t)
I(t)
7 (E)
correlator
AN
N
To Demodulator
B BPF P

Spreading Function
g, (t)

(b) Receiver

Fig. 1.1 Basic Spread Spectrum Concept

In Fig. 1.1, Sl(t) is the wanted sighal, Si(t)’ i=2,3,...,N are the (N-1)
unwanted sighals, I(t) is “other interference and n(t) is additive noise.
The intended user will have gl(t) as its despreédiqg function, which is
identical to the spreading functionvemployed to protect the identity of
baseband information ml(t). Let <x,y>aden;te-the inner product of the

variables x and y. It is desired that_<gl(t), gl(t)> =1 and_<gl(t),
N

. gi(t); is#1>=0, i.e.,  {gi(t)} is a set of N orthonormal funcfions,

i=1
and that the spectra of gl(t) I(t).andtgl(t) n(t) will be wide compared to

the baseband information bandwidth. It is possible that the interferer I(t)
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may itself be narrowband, so that it is necessary that the Spreadipg
function gl(t) be of very wideband, since the bandwidth of gl(t) I(t) is
givén by the sum of the bandﬁidth‘of‘gl(t) and that -of I(f). In CDMA
the spreading fﬁnction gl(t) is the code which has a bandwidth Bc >> Bm,
where Bm is the informa;ion bandwidth. The processingigain'Gp is thus

given by the ratio: Gp = Bc/Bm’ so that the output signal-to-noise ratio

is related to the input,éignal—to—noise ratio as follows: (S/N)o = Gp(S/N)i'

For design consideration the signél—to—noise ratio equation is insufficient,
i.e., it is impractical for the signal to be Gp(dB) below the interferer,
since we must take into account a ce?tain minimum oﬁtput.signal—;o—noise
ratio requirement to yield the identity of the information and the losses
incurred by the processor. Let (S/N)o be this output signal-to-noise ratio
requirement and L be the processing loss. The interference margin Mi is
defined as [Dixon, 1965].

Mi = GP + (L + (S/N)o) dB.

1.3 Direct Sequence (DS) Signaling

By a sequence it is meant that its elements assume valugs'from a
finite alphabet. While the alphabet size of the sequences discussed in
Section 2 is arbitrary, for spread spectrum applications the most interest-
ing sequences are those drawh frqm an alphabet of 2 eiements, i.e., in
GF(2). 1In this section we are concerned with binéfy Spreading sequences
or codes. While we can employ the spréad spectrum signal.generation‘as

¢

depicted in Fig. 1.1, in which the information is modulated onto a carrier .
and the moduiated signal is then‘subsequently encoded by modulating the

code onto this RF signal, it is better to first combine the information

signal and the spreading sequence before modulation. If the original

. ),
|y SN o
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information is an analog waveform, combining the information with the
spreading code requires first digitizing the analog waveform and encoding
the result into a PCM signal. Combining the PCM signal with thé spreading
code can then be accomplished using a moduio 2 operatidn which ﬁas the
prpperty thaf

(c®a)®c=a

ihus, if "e" is the code and "a" is the PCM information signal, removal of
the code from the composite sequence c®a can be accomplished by modulo 2
adding to it the code c. It is in this_éontext the spreading code is
transparent to the information signal. |

The process of combining the information sequence "a" with the code
"c" is called code modification. The code "c'" itself is referred to as
the unmodified code. Modulation of the composite seciuence ca onto thé
carrier can be done using a variety of modulation schemes, such as pam
and fsk. However, phase-shift keying (psk) is preferred on account of
1) the modulated signal has a constant envelope so that for the bandwidth
used, the transmitted power is maximized, and 2) psk is equivalent to
double sideband suppressed carrier modulation, so that it is easier to
generate the psk than fsk signal. In fact psk can be accomplisﬁed using

balanced modulation as depicted in Fig. 1.2.

§2§3Zﬂi:ion : - psk modulated
, : Doub .
with rate Ri Ba?l).:nizd sigw_nal
e ————T ) {re t=
~ Mixer
Spreading code ‘ RF carrier

sequence with

rate R >>R
c i

‘Fig. 1.2 Direct Sequence Signaling with psk Modulation
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Binary psk 1s also known as phase reversal modulation. Whenever
the composite code. c®a has a transition from ONE‘to'ZERO or  from ZERO to

ONE, the carrier changes phase by w radians. The phase-shift keying process

is illustrated in Fig. 1.3. If an unmodified code is used at the

Composite\-
Code

RF carrier

psk modulated
signal

Fig. 1.3  psk Waveform

receiver to balance demodulate the psk signal, the recovered signal will

be an information sequence modulated psk, which is at‘the same carrier
frequency as the incéming psk signal. Such a code removal process is

known as in-line correlation, the object of which is to reject interfering
signals. Since the recovered sign;l is at the same carrier frequency as

the input psk, a narrowband interfering signal could conceivably léak
through the COrrelator? defeating the purpose of spréading the spectrum.

A process which generates an output at a center frequency different from
the carrier frequency of the input psk is known as an heferodyne correlator.
The essentiai feature of an hetergdyne'correlator'is that the signal used
for despreading is at a carrier frequency fc + fIF’ where fC is thel
carrigr of the incoming psk and fIF is a chosen IF frequency. The reference
signal is itéelf a psk in which the modulating signal is the code sequence
and thé local carrier is'fc + fIFi The code reﬁoval procegs is depiﬁted

in Fig. 1.4,'in which the reference signal is assumed to be synchronized
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. Received
signal
at f To Demodulator
c | Balanced , IF ‘
(o ‘ i | S Pl
Mixer BPF ‘
Code
sequence Balanced
r————————
Mixer

{
1 Local carrier
+
at fc fIF

Fig. 1.4 Heterodyne Correlator to Remove Code Sequence
with the incoming RF signal. We postpone discussions of synchronization
techniques and the effect of synchronization errors omn correlation to

Section 3.

1.4 TFrequency Hopping (FH)'Signaling:

The principle behind frequency hopbing (FH) signaling is the same

as in direct sequence (DS) signaling; FH differs from DS only in the manner

" with which FH or DS is implemented. Thus, as with DS there is no restrict-

ion on the choice of modulation. The code sequence is used to randomly
sﬁitch the carrier frequency instead of directly modulating the carrier.

A functional block diagram of the transmitter and recelver of an FH signal-
ing system is depicted in Fig. 1.5. Basically, when the local oscillator
(freqﬁency syhthesizer) in the receiver is switched with a synchronized
replica of the transmitted code, the ffequency hops on the received signal
will be removed, leaving the original quulated aignai'untouched. An

offset fIF frequency is applied at the receiver for the same reason .that

- £, 1s used for code removai in DS signaling.

IF
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Information Signal -
' | WIDEBAND
MIXER
!
' Carrier X
LOCAL Code
OSCILLATOR less Sequence

(FREQ. SYNTH.)

' fl’fZ"'°’fn

(a) Transmitter

Received To DEMODULATOR
Signal _ | WIDEBAND S e
MIXER o BPF
)
LOCAL .
OSCILLATOR foogmroee gzdience
(FREQ. SYNTH.) a

£t EytEppe e oo £ g

(b) Receilver
Fig. 1.5 Functional Block Diagram of a Frequency
Hoppipg Signaling System.

Let Af be the fréquency separation between discrete-frequenéies
and N be the number of available frequency choices. If the channel spacing
is contiguous, i.e., nonoverlapping, the spread spectrum bandwidth is BRF
= N Af. The processing gain is then Gp = BRF/Bm’ where Bm is the bandwidth
of thé information. If the frequency separation is chosen sﬁch that
Af = Bm, then Gp = N, which is the number of channels used. A DS signal
requires a high code rate'RC in order to attain a high prdcessing gain
since the baqdwidth of the code is BC = ZRC. A frequency hopping signal,
however, does not require a high hopping rate. Moreover, it is desirable
that the frequency—hopping rate be the same as the information rate. If

the frequency-hopping rate is greater than the information rate, it tends

-‘\ -
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to. spread the spectrum to exceed the received information bandwidth. How-

ever,~thére may result in.a residual pﬂase modulation which méy‘seriously
dégrade the perférmance of subsequent demodulation of the information.

On the othet hand, if the frequency-hopping rate is less than.the inform~
ation rate, -interference from unwanted signals will tend to be coherent.

However, the occurrence of interference will tend to be inter@ittent with
periods of one hop suffering heavy interference and long periods of many

hops being free of interference. This latter feature is depegdent on the
correlation property of the code and the code length.

With frequency hopping it is difficult to maintain carrier co-
herence across the wideband. Thus the signal presented to the demodulator
may change phase each time the system hops to a new frequency. Therefore,
coherent demodulation is not suitable for FH signaling. Instead simple

envelope detection, which does not care about input phase shifts and can

respond qﬁickly to pulsed signals, is most often used.

1.5 FH/DS Signaling:

Hybrid FH/DS signaling extends the spectrum spreading range
attainable by FH or DS alone. Basically FH/DS signaling consists of a
direct sequence modulated signal whose center frequency hops periodically.

The hybrid FH/DS signaling procedure is depicted in Fig. 1.6.

Informatio DS Code ® Information ‘FH/DS Qutput
BALANCED
: fr—
_ T R *=1 MopuLATOR |
‘ . % FH Code
| . CODE . _ | FREQUENCY
7 GENERATOR [~ *1 SYNTHESIZER

Fig. 1.6 Hybrid FH/DS Signaling
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The DS code rate is.normally much faster than the raterf,frequency
hopping. Therefore many bits .of the DS cbde will occur in.a single frequency
channel. Also, the number of channels>ayailable is usually much smaller
than the number of code bits s0 ;hat in thé course of a complete code
length all the frequency channels will have been used many times. The
pattern of ﬁheir use is random depending on the randomness of the éode
itself.
As in DS signaling removal of the code in a hybrid signaling system
also employs heterodyne correlation, the difference being in that the
reference signal is also hybrid FH/DS. A hybrid FH/DS receiver is illust—

rated in Fig. 1.7.

Received FH/DS 'IF Information
Signal — - BPF DEMOD.  |eeeempaer

Balanced -

Modulator DS Code

!
CODE
GENERATOR
FREQUENCY | .
SYNTH.
f1+fIF’f2+fIF""’fN+fIF

Fig. 1.7 Hybrid FH/DS Receiver

The prbcessing gain of a hybrid FH/DS signal in dB is given by

the sum of the. processing gains of the FH and the DS signals, i.e.,

1t

Gp(FH/DS) Gp(FH) + GP(DS)

B

10 1og10(number of channels) + 10 1_og10 ég- dB.
‘m
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To achieve the same processing gain as FH/DS, a DS signal must have a
very high code rate or the FH signal must have a huge number of chanmels.
Because of a reduction in the number of chanmnels and in the code rate,

TH/DS offers simpler implementation possibilitiles.

1.6 Summary:

To attain a reasonably large processing gain the code fate has to
be high compared to the information rate and the code length must be large.
For SSMA applications long codes are essential.

.Although multi-level codes, whiéh lead to m-ary psk signaling, are
interesting in themselveés, the simplicity with which binary psk offers
overrides any advantage multi-level codes may have over binary codes in

SSMA applications [Judge, 1962; Aein, 1964; Gold, 1967].
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2. SEQUENCES AND THEIR CORRELATION PROPERTIES

2.1. Introduction

4

The purpose of this section is to survey the design and analysis of
sequences or sets of seqﬁences with small autocorrelation and crosscorrela-
tion values. While much of the interest is focussed on sequences over the
alphabet'{il}, other alphabets are also considered. In particular the
alphabet consisting of the kth roots of unity for some integer k has been
of interest since this corresponds to the phase coding of sigﬁals.

There are no proofs of any of the results included here and the
construction of the sequences is described in varying amounts of detail,
depending more on the author's interest in them rather than in their assess-
ment of their importance.

There is a wide variation in the literature for the notation of
these problems and in the next section we eStablisﬁ our own nétation for
use throughout the report. Thus readers going from this report to the
original articles will have some translation to do. Some general bounds
and properties of the periodic and aperiodic correlation functions are also
given in the next section. Section 2.3 considers Barker sequences and the
éxistence problem for them. Maximum length sequences are discussed at some
length in Sectioﬂ 2.4, While the basic properties of such sequences have
been known for some time, recent work has considerably extended this know-
ledge particularly on the cross correlation properties of distinct sequences.
A few of these new results are mentioned. In Section 2.5 the construction -
of multiphase sequences with desirable correlation'properties is considered
and in Section 2.6 the cogstruction of sequences (both binary and multi-

phase) which produce correlation functions with certain propérties. At
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+ times these two approaches are quite ambiguéus and so there isméonsiderabie
overlap.. There 1s an obvious connectibn between the design of sequences
with goéd correlatioﬁ pfoperties and the’design of error correcting codes
with good distance properties. This connection is briefly explored in
gection‘2.7. Section 2.8 considers the complementary sequences of Golay
and‘their extensions.

An annotated bibliography has been included as the Appendix as a -
ready reference for readers interested in.the contents of a particqlar paper.
More detailed comments on the paper will be normally found in the text bﬁt
often scattered among varilous sections and perhaps difficult to locate.

The duplication involved in this approach was felt to be worth the conven-
ience. Likewise, all references are by aﬁthor and date to gilve the ;eader

an immediate indication of the historical perspective of the results. i

2.2. The Periodic and Aperiodic Correlation Functions

vV .V v v
Let x = {xo, Xis eees Xn—l}’ v=1,2, ..., Mbe a set of M

sequences of complex numbers of length n. Define the aperiodic cross -

correlation function

n-1-4% v =2 .
c . () = I x, x| 4 =0,1,...,n-1
A i=0 + ‘ VoA=1,2, .00 M
n-1+% v - ' '
T Xy Xq L ==1,-2,...,—(n~-1)
i=0 .

where the overbar indicates complex conjugation. The periodic cross—correl-
ation function is

n-1 v -2

avk(z) = izo Xy Xy0 2 =0,1,...,n~1

cvx(z) + Exv(n—l) = cpk(l) + cvx(z-n)
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since it is readily verified that Evk(z) = ckv(—z). The odd cross-correla—

_tion function is defined by

byx(“) = Cpx(“) - cvk(z—n)
and has been shown to be of significance in the performance of binary
asynchronous phase coded spread spectrum multiple access (SSMA) systems.
Specifically it is important in establishing synchronization when succeeding
binary symbols are different. Reference to it in the literature is limited.
The periodic, odd and aperiodic aﬁtocorrelation functions are
av(z) = avv(l), bv(l) = bvv(z) and cv(z) = cvv(z); L =1,2,...,M
respectively and when only the one sequence is under consideration (M=1),
the subscripts'willibe omitted. Notice that
Acv(—z) = Ev(l) ~ and av(z) = cv(z) + Ev(n—l) .
It is:also easy to show that thg periodic correlation functidn is invariant
under cyclic shifts of the sequence but thé odd correlation function is not.
Much of the work in this report Will bé concerned with sequences
over finite alphabets and usua11y>over thg comﬁlex ﬁFh roots of unity, for
some positive integer m The aim is to design sets of sequences whose off
peak éutocorrelation values and whose cross correlation values for all

shifts are minimized in magnitude. For this reason we define the following

quantities:
m = max max Iav(z)l
1=v=M 1=f<n
and
m' = max max lavk(z)l

BV 0=2<n
i.e., m is the maximum off peak magnitude of theiperibdic autocorrelation
function of any of the M sequences and m;‘is the maximun magnitude of any

of the periodic cross correlations. The quantities m s m{),.mC and.mé denote
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the odd and aperiodicvautocofrelation and crbss—correlation functions. ' The
same notation will be used when there is only oﬁé.séquenée under:considera—

: '
tion, M=1.

Tt is useful to:.derive some general relationships and.inequalities
én these quantities for later use and considér first the work of Welch
(1974). For a set of M sequences of length n let |

a . = Wax (ma, m;)
i.e., a is the maxiﬁum magnitude of the off peak autocorrelation values

and the cross—correlation value for any shift. It can then be shown that,

for any positive integer k,

a2k - 1 Mn -1
max ~ (Mn-1) (n+k-l)
-k

and, in particular for k =1,

a 2 {Min'}l—]llz (2.1)
By appending (n-~1) zéroes to each of the M sequences, to give sequenceé of
length (2n-1), the periodic correiation and cross—correlation functions of
the extended sequences are the apériodic correlations of the original

sequences, Defining Cax for the aperiodic case in the saﬁe manner as for

the periodic case the above bounds, modified by replacing n with 2n-1,

become

2k 1 M(2n-1) -1

Cmax = ((2n-1)M-1) 2nHk~2

-

and for k = 1 this inequality reduces to

' 1/2

M-1
max = [M(Zn-l)—lJ » (2.2)
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Such bounds are useful in evaluating particular sets of sequences.

Pursley and Sarwate (1977a) established the following identity, in

their examination of phase coded SSMA systems: if xu, xn, xv and x are four

sequences of period n then

n-1 _ n-1 ) _ .
QEO aun(z) avx(2+k) = 250 auvfﬁ) ank(2+K)° : (2.3)

A and k = 0 the identity reduces to

il

Notice that if u = v and n

n-1 2 n-1 a o
220 laun(z)l 220 a (1) a () §2.4)

which is an interesting observation on the relationship between cross-
correlations and autocorrelations, noted as proposition 1 in Pursley and
Sarwate (1977b). TFor the case when X, = 1 equation (2.4) reduces to

njl 2 9 n-1
I a (8) =N" 4+ ¥ au(z) an(z)

=0 M =1

and applying Cauchy'sinequality to the right hand sum gives the bounds

: n-1 1/2 ,n~1 1/2 n-1 »
n? - { 3 auz(z)} '{ 3 anz(z) ) < 5 a %) =n% +

g=1 - g=1 g=0 MM
n-1 1/2 ,n-1 1/2
+ { L a 2(2)} { 5 a 2(%) } (2.5)
=1 M g=1 "

This equation is useful in examining the performance of a given set of
sequeﬁces since:We are interested in minimizing both {au(k){, 2+ 0 for
each sequence | for good acquiéitioﬁ and synchrqnization, and laﬁn(z)l,
p-% n for good discrimination betWeen‘users.

" The corresponding results for the- aperiodic correlation function

are: ‘ : L ‘ -
(n—l) ) - ) (n—l) - {

S c. () e (k). = £ - c . (8) c., (&tk)

g=—(n-1) MM .V A =—(n-1) MV na
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and, for binary sequences,

n-1 - 1/2 n-1 2  (n-1)
<

2 2 ) 1/ 2,0 - 2
n% - 2{221 cu(l)} | ,(251 cr (1) } z=~§n-1)c“”(2) <n° +
. -1 1/2 -1 i/2
+ 2 {nz ci(z)} - {Zzl crzl(z)}

=1
In applications 1t is important to have both m and m; as small
as possible and it is known there is a trade—off -- one cannot have a set
‘of sequences with both n, and mé arbitrarily small, Pursley (1978a; 1978b)
examines this trade—off and shows (Pursley 1978b) tﬁat for any set of M

sequences
02

(mé) - n~1 'ma> 6

—_—— —_— —_—f >

2/ T nwn |\ w/F1 (2.6)
and this relation gives a lower bound on one of the parameters m s m;,
when the other is given. It is also shown there that if M = (n+-l)2 then
mé > |(@. It is also shown that equation (2.6) is valid for the aperiodic
correlation: function i.e.,with m , mé replaced with m,, mé. As a consequence
of these results it 1s shown that attempting to reduce the value of (m;)zln
below 1 will imply that the set of sequences will have a substantial in-

2 ' .
crease in (ma) /n above 0. Various sets of sequences are constructed in

Pursley (1978b) and in particular a set of n sequences of length n for which

(m;)z/n = 0 and (ma)zln = n, and a set for which (m;)z/n = 1 and
(ma)z/n = 0, for n odd.
In a slightly different approach Pursley (1978a) defined the quantities
n-1 :
1 2

P. == ¢ |a (2] v # A

VA n2 4=0 VA
and
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-1
1 2
&=z I laml
n 2=0
and showed that
T P .+ I Q. = MM-1)
v
VoA v :

assuming that av(O) = n for each v in the set of size M. Consequently if
P and Q are the maximum values of PvA and Qv respectively then
P+ (K—l)—l Q=1

and again the tradeoff between autocorrelation and cross-correlation peaks
is observed. Similar results are obtained for the aperiodic correlation
case,

In the same spirit as many arguments of coding theory it is natural
to ask the question "how large can a set of binary sequences of length n
be if the maximum off peak aperiodic autoﬁorrelation function is to be less
than no and the maximum aéeriodic cross-correlation function is to be less
than nB?". As in coding .theory, random coding and expurgation-arguments
can be used to prove existence of such sets for certain parameters. Using

this approach Schneider and Orr (1975) proved the following:

Theorem (Schneider and Orr, 1975). Let o and B satisfy 0 < a < 1 and

0 =B <1l. There exists at least one set of bihary»(il) sequences of

length n, Sn’ such that m_<na, mé < nB and

[0 1 u(5Y =1 - 1oaG0)

s, 2
SRS | |
o= lexp, [n(1-BEG)1HI-4n exp, [-n(1-HESS 1)

. As a corollary to this theorem it can be shown that there exist

sets Sn such:that ISnl grows exponentially with n for fixed B, providing o
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does not approéch.zero faster than.l/vn. Similarly it can:be shown that
there-exist sets ‘such that |S | grows as some power of n (the power being

less than unity) providing nelther o nor B approaches zero -faster than

, 1ﬁ/i. Such statements are useful in'evaluating'sets of sequences, . Seguin

(1978) obtalned similar results for skew symmetric binary sequences (ie,,
sequences for Which Xj xn—l—j = (—-l)J‘+l if 4|(n+l) and (—1)j if 4|(n—l) )
using similar methods. -

Moon and Moser (1968) showed that if ¢! = max c (&) where ¢, is the

]
o s
autocorrelation function of a sequence of length n then "for almost all"
sequences of length n
log ca
l-g ¢ mw—— <1+ €.
ol log n

The phrase "for almost all" sequences implies the statement is true for all
but a fraction of the 2" possible sequences, and this fraction tends to
zero as n tends to infinity. In a probabilistic measure theoretic sense
we would say that the probability measure of the set where

L
log cy

tends to zero as n tends to infinity if the measure is uniform on the set
of all possibple sequences. Roefs and Pursley (1977) are able to make the
same statement with ca.replaced by

n o
ey = max cvk(l)

2

for any two sequences zy, 3} drawn from the set of all possible 22n sequences.,

In several places in the report it is necessary to transform a binary

(0,1) sequence x = (xo, Xis eees Xn—l) into a binary (-1, +1) sequence
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y = (yo, Yy veeo yn—l) by the transformation n:0++1l, 1+~1. For this

transformation of n-tuples we will use the notation y = n(x) and

x = n"'l -

2.3. Barker Sequences

The original problem considered by Barker (1957) was concerned with
the design of binary (*1) sequences for which the off centre aberiodic

correlation is either 0 or -1. The sequences he determined are:

n=3 ++ -
n=7 +++--+-
n=1l +++ == =+ == - ’

It has since become conventional to only require that ’c(2)|'5 1% ¢ 0 and,
under. this relaxed condition, the following sequences can be obtained (as
given in Turyn and Storer (1961)):

n=2 ++

b = -+

n

n=5 +++ -+

n=13 +++++ = =4+ -+-+,
For n odd these are in fact the only sequences with the required property

(Turyn, 1961). While a complete brdof of this theorem is beyond the purpose

. of this survey some points established in. it are worth mentioning. Since

we assume that x; = +1 or -1, terms of the formAxi'xi_l_k are also either +1
or -1 and, for any binary sequence we have

n-1-k
I x.x

o (ke (K)) /2 ,
i=0 4 i+1( = ( 1) L ) 1£k<n"'l °

Multiplying two equations of this form yields

(e e (et /2 oy en .

Kok Ferr = D
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Since the sequences under consideration are real

n-1 -

c(k) + c(n-k) = I Xy Kgog
0

and hence

?ﬁl x. x... =1 = (~1) (n~c(k) - c(n-k)/2

implying that c(k) + c(n-k) = n (mod 4). Now for Barker sequences |c(k)Li1
and it follows that for such sequences c(k) = 0 for (n-k) even and c(k) = tl1
for (n-k) odd. It also follows that if n = 2 (mod 4) then n = 2 since if

but ¢, + ¢ =0 % n (mod 4). Thus for n even a

n-2 2 n-2

Barker sequence of length n could exist only for n = 0 (mod 4) and for such

n>2thenc =c¢
n

sequences c(k) + c(n-k) = O.

for

If n is odd then c(k) = 0 for n-k even and c(k) = (_1)(n—1)/2

(n~k) odd and hence the c(k) afe in fact completely determined by these
conditions. |

For n even there is considerable evidence that there are no Barker
sequences of length greater than 4. Historically, Luenberger (1963) showed
that if a binary (#1) Barker sequence of even 1engtﬁ n exists then n must
be a perfect square. Since it ﬁas previously known there is no Barker
sequence of length 16, the only éther possibilities for even length Barker
sequences of lengths less than 100 are for those of lengths 36 and 64.
Turyn (1963) observed that a necessary condition for Barker sequences of
even length n to exist is that a sequence of length n with periodic correla-
tion function a(k) = 0, k # 0O exisf. The nonexistence of such a periodic
sequence implies the nonexistence of the corresponding Barker sequeﬁce.
Everett (1966) observed that the existence of a periodic sequence with the

property that a(k) = constant is equivalent to the existence of a difference
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set with certain parameters. In this setting the nonexistence of Barker
sequences of lengths 16 and 36 was well known.. Turyn himself showed that
Barker sequences of lengths n = 4N2 where N is the power of a prime cannot
exist thus eliminating n = 64 and leaving the smallest unresolved case as
n = 6,684. In fact, the existence of a periodic sequence with zero off
centre correlation is equivalent to a circulant Hadamard matrix and it has
long been conjectured that the only such matrix has order 4.

Turyn (1967) defines the quantity

@) = " T o]

 where the minimum is taken over all sequences of length n. Moser and Moon

(1968) showed that if the binary *1 sequence is chosen independently and at
random then the maximum off peak ﬁalue of c(j)‘will be of the order of |m.
When the constraint that |c(j)| < 1, for Barker sequenceé, is relaxed to, say,
lc(j)‘ < 2 then other sequences are of course found. For example Turyn (1967)
notes that there are binary sequences of lengths 21, 25 and 28 with lc(j)| <2
but none of lengths 22, 23, 24, 26 and 27. Other results achievable when the
conditions to be satisfied by the autocorrelation function are relaxed are
noted in the following sections.

Wé also mention here that periodic sequences with off peak values of
c(j) a éonstant,correépond.to cyclic diffefence sets and the situation With.
regard to these is summarized in Turyn (1967). Again, for periodic sequences

the behaviour of min max |a(j)|'is of interest and it is noted that sequences

“achieving the minimum do not.in general arise from difference sets since such

sets with the requisite values are scarce.

In:section 5 sequences over alphabets of size greater than two.are

© considered. and, in particular, such sequences which satisfy a Barker type
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constraint on their correlation function are constructed. .

2.4, Maximum Length Sequences

' An enormous amount. of effort has éone into the exaﬁination'gf
maximum length séquences ie., sequences geneiated by a 1iﬁear'shift register
whose feedback function is a priﬁitive polynomial, In this section we give
a Brief review of the most important properties of such sequences-and then
consider a few of their properties of particular relevance to this work.

Recall first that since there always exists a primitive polynomial
of dégree m over GF(2), there always exists a maximum length sequence of
length 2m—l, for each positive integer m. For most values of m there will‘
exist more than one such sequence and, in this case, the cross correlation
function can be of interest.

Using the notation of MacWilliams and Sloane (1976) let h(x) bé a
primitive polynomial over GF(2) generating the ﬁaximum length sequence
ao,al,az,...,gzm;z. Clearly any cyclic shift of this sequence is also a

maximum length sequence corresponding to a different initial condition of

the shift register. If h(x) = ? hixi then'each such sequence satisfies the
recurrence relation °
m-1
Biam T jﬁo hiagige

For a maximum length sequence of length 2™-1 any sequence of m consecutive
bits is calléd a window and each possible ﬁon-zero binary (0, 1) m-tuple
occurs exactiy once among the ™1 windows.

It can be shown that in any maximum length sequence theré are 2™

1's and Zm_l—l 0's., The modulo 2°'sum of a maximum length sequence with any
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of its cyclic shifts is again a cyclic shift of the sequence.
Perhaps>one of the most important properties of maximum:length sequences
is the shape of its correlation function. If we transform the binary (0,1
sequence of thé shift register output to the binary (%l) sequence bO’ bl’ ey
b2m_2 where bi = (—l)ai then the periodic correlation function of this sequence
is

)

a(k) = I b, b,
where, as usual, the subscripts are reduced modulo 2™-1 where necessary. Lt

is a simple matter to show that

0

a(k) ={ n N k

1,2,...,2™-2

-1 s k
and of course this is the best possible correlation function in the sense that
no other binary sequence has a correlation function for which max a(k) is

' ‘ k#0
smalle;.

Since a maximal length sequence is generated determiniétically it
cannot be called random and yet it has gertain properties that one might
naturally expect of a truly random sequence. For example if we define a run
in a maximai length sequence to be a maximal string of consecutive identical
symbols, then in any maximal length_sequencg one half of the runs have length
one, oné quarter of the runs have length 2, one eighth of the runs have length
3 and so on. However many other tests of randomness are possible and the
question as to what distinguishes a méximal_length sequence from a truly
random binary sequence is one of some inte;est. One aspect of this question

will be considered later in the section. The relationship between maximum

length sequences, Hadamard matrices and Hamming codes is well known and is

'omitted here.
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If h(x) is the primitive polynomial associéted with a particular

maximum length: sequence and.h*(x) ='xmh(1/x) then-tﬁe generator polynomiél

of the sequence will be defined by g(x) = (xzm—l+l)/h*(x). The polynomial

‘ representation of any'of the 2m—1 possible cyclié shifts of the sequence

can then be described by the polynomial a(x)g(x) for some binary polynomial

a(x) of degfee less than m.

| We Qonsider now some properties of sequences cbtained by employing

techniques such as sampling or interlacing of shift register sequences.

For example if, from the maximum length sequence over GF(p), ao,al,...,apm_l,

a new sequence is defined by the equation bi = a . (k, pm-l) = 1, then

either»another maximum length sequence is obtained or it is a cyclically

shifted version of the original ome. Surb8ck and Weinrichter (1978) consider

the problem when the sampling interval k is a divisor of the period. They

define an elementary sequence as one whose feedback polynomial is an dirreduc-

ible polynomial. If the period of this sequence has period q =TTp?i, the 1

distinct primes, then the sequence can be generated by interlacing elementary

sequences of period pimi. Tempel and Eastman (1971) were concerned with a |

high speed construction method for maximal length sequences. If ao,al,az;...

is a maximum length sequence of period p=2n—1 then the sequences‘{di} are

]

defined by di a for a given integer k, j =0,1,... k=1. When (k,p)'> 1

iktj

define § by § minA{mika=k mod (p)}. Then sequence {di} satisfies a linear

recursion of degree § which is nécessarily some divisor of n and has period
Py = p/(p,k) or some divisor of it. In such a case different ''phases' may,
for the same k, result in sequences which are not cyclic shifts of each
othef. Using these facts Lempel and Eastman (1971) show how a given maximum

length sequence of rate k,R can be realized by a combination of k shift

registers each of length which is a divisor of n.
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In a similar vein we describe the work of Surb8ck and Weinrichter.

Using their notation, define the D-transform of a sequence fo,fl,fz,...

over GF(p) by F(D) = I fiDl. If the feedback polynomial is N(D) then
. Is} ’
F(D) = H(D)/N(D)

where H(D) depends on the initial state of the register. If FéD) is the
product of irreducible polynomials then the sequence F(D) is the sum of the
corresponding elementary sequences. Assume now that N(D) is an irreducible
polynomial éf degree r, the minimal polynomial of aeGF(pr) with exponent L.
The corresponding elementary sequence E(D) = H(D)/N(D) has period L where
Ll(pr—l). If L = (pr—l)/t there exists t different elementary sequences
of period L, all with the same generator polynomial N(D) but different
numerators H(D). Such a collection of sequences will be called a family of
elementary sequences. |

ASsume now ‘that L is nonprime and that q is an arbitrary factor of
L, q = L/s. It is then shown that the elementary sequence E(D) = H(D)/N(D)
wiﬁh period L can be' constructed by interlacing shorter elementary sequences
Fi(D) of period q generated by the same elementary polynomial A(D) where

A(D) is the minimum polynomial of as, o a root of N(D). The application of

this result to the generation of long maximum length sequences, each

genera;ed with the same feedback polynomial, is immediate. This character-
izatioﬁ of maximum length sequences can be used to consider applications to
synchronization problems and to explain certain phenomena on the cross
correlation prdperties of such sequences;-

Milstein.(1977) considers the problem of rapid‘écquisition of

synchronization and performance using suitable sequences. In particular,

it is known that given m maximum length sequences of lengths ng, 1= 1,2,...,m,
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(ni, nj) =1,1i# 3, a compositg-sequence of length N:iéi?i,can be forme@.
To establish ‘synchronization with this composite:séquence it is only
necessary to perform-g ny corrglations as opposed to as many'as § n
correlatiéns for-a maximum 1ength.sequenge of fhis length.

i

On the subject o£ the rapid acquisition of synchronization, Stiffler
(1968) observes that the number X ni‘of correlations required to acquire
the composite sequence is much greater than ;he 1og2N binary decisions
theoretically required. He then constructs séquences which can be acquired
in such a,numBer of decisions for N=2n..-The construction of the sequences
1 2

is as follows. Let bj ='{oj, oj, cees 0?} be the binafy expansion for the

integer j-1, j =_1,2,...,2n where
n oi.
j=1= % (1L~ 7%921"1
i=1

and the 0; is either +1 or -l1. Then the rapid acquisition binary sequence

ds (Bys £y vees B, N-2", is defined by

n
1
g, = 1 4if % o, >0
3 j=1 J
n
-1 4if =X o% < 0.
j=1 J

It is shown how the phase of such sequences can be established by making
only n binary decisions..

Maximum length sequences are also referred to as pseudo-noise
sequences in the literature because of their random-like properties. It
turns out however that not all maximum leﬁgth sequences are "equally random"
and that in applications the notlon of the moments of weight distributions

of subsequences is important in determining the '"good" sequences. Consider

the set of all subsequences of length M (ie., séts of consecutive M bits)
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of the binatry (0,1) maximum length sequence of length N=2"-1. Let Aw be
the number of these sequences of length M of weight w of the binary sequence
agsdqse e and let bO’bl""’ bi = 1—2ai, be the corresponding i} sequence.
If

M-1
S, = ¥ b,,.
k 1=0 ki

then the pth moment of the weight distribution is given by

as quantity which can also be expressed as

P .. ' _ P
S L (M-2w) Aw'

w=1

2| =

Lindholm (1968) showed that the first two moments are

Jd_ M 2 _ _ o (-1),
s =~ N and §° = M(1 N -)

and are independent of the particular maximum 1gngth sequence chosen. An

expression for the third moment is given as

3 .
3..M 44 &L
5 = N+3.(N)33
where B, is the number of trinomials of degree less than M divisible by

3
f(x) the primitive polynomial of the shift register. In general the kth
moment of the distribution depends on Bk’ the number of k-term (ie., k
nonzero coefficients, including the constant and leading term) polynomial

of degree less than M which are divisible by £(x). With the use of these

-moments of the weight distribution, some basis for determining which maximum

length . sequence to use in a given application can be made.
Wainberg and Wolf (1970) give the firstifour moments of all sub-

sequences of length less than 100 for the six maximum 1ength sequences of
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length N = 2231 and.cbnsideredthéékewness-properties of the dintributions
obtéined}e To assist with .this task simple:aigorithmé for the calculation
of the third and -fourth monents are given;,

Fredricsnonv(l975)_also considers the Weight distribution of sub~
sequences of maximum length sequences. This is compared tn an ideal dis~
tribution and a lower bound on the deviation between the actual and ideal
is given. Some comments on the telationship between higher order correla-
tions and the spectral tests nf random sequences. It is also shown that
maximum . length sequences Witn good ngght'distribution and correlation
properties can only exist for'lqng_sequences and a 1owet bound on the
requited length is given.

| For multiple access systems large sets of sequences with low off
peak autocorrelation and crOsscgrtelation values are required. It is of
interest to determine the crosscorrelation values of two maximum length
sequences since theif autocorrelation functions are, in a sense, ideal. TFor
the remainder of the section we consider certain results on this problem.

Gold (1968) examines the problem for certain maximum length sequences,
and these have a coding theory interpretation. If o is a primiti&e element
in GF(Zn) and T(.) is the trace function on GF(Zn) then let x; = T(a~i) bn
a maximal 1enéth sequence. Denote by f£(x) the minimal polynomial of o and
by V(£) the space of linear sequences generated b? f(x) ie.,

iV(f) = {h(x) I h(x) = g(x)/£f(x), degree g < degree f}.

Let S = neT denote the conversion of the binary (0,1) sequences to
the binary(+1é—l)sequencesan&asr&ual,let avk(k) denote the periodic cross-
correlation fnnction between two *1 séquences'zy and g}. Gold (1968) showed
that if x; = S(a_i) and xg = S((a22+1)_i), where it is assumgd that n is

odd and that (%£,n) = 1, then the autocorrelation function is given by
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L (k) = -1 ifx =1
avk <) = k
, vVo_ o
either —(2(n+l)/2+l) or (2(M+l)/2—l) if ) L.

This fact was actually found by Kasami in a University of Illinois report
in coding terms when he established the weight distribution of the (2n—1,2n)

code generated, by linear recursion, by the polynomial fl(x)f ¢ (x) where
‘ 2741

fi(x) is the minimal polynomial of F;. The relationship betweeh sequences
and error correcting codes is explored further in Section 2.7.. For the
present purpose, to describe the results of Gold (1967), we note that the
BCH bound can be described by

n

2
X

1
(x) = +1
glx zcm{fl(x),fz(x),...,ka(x)}

then for any two sequences a, b € V(g), the Hamming weight of a + b is at

least 2k+l. This fact can be used to show that if the integer t is defined

by
(L) /2, n odd

2(n+2)/2+l n even

~and if n—l(gy) e V (fl) and n_l(gé) e V (ft) then lavk(k)l < t for all

k) is the correlation function of the corresponding (*1)

v A
sequences x and x .

k > 0, where aVA(

Gold (1967) further shows that if fland‘ft are a palr of primitive
polynomials, with t as defined above, which generate maximum length sequences
of length 2n—l, then the shift register corresponding to the product poly=-

nomial fl(x)ft(x).will generate 241 different sequences each with period

. 1] . . .
2 =1 and such that the crosscorrelation function satisfies the relation

-Iavx(k)| < t. This result assumes that if n is even then n # 0 (mod 4).

A characteristic sequence of V(f), f irreducible, is a sequence
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he V(£) such that h, =h,, i=1,2,... . Such sequences aré studied

1?
extensively in Goldt(1966). The concept of a cosef'function:of a character-
istic sequence is introduced and the coset functions of all ﬁaximaljlength
seqﬁences are obtailned. Tﬁese notions however lie outside the present
interests.

The recent work of Helleseth (1976b) is an extensive investigation

into the crosscorrelation function between two maximal linear sequences.

The main interest in this work is in determining the values that the cross-

correlation function takes on and the number of times it assumes these
values over a single period. Bbth the case of binary sequences and those
over GF(p) are considered and a few of these results will be mentioned
here.

Recall first that there are W(pgl)/n maximal linear sequences over
GF(p) where @ is Euler's To?ient function that are not equivalent under
cyclic shifts. If‘{aj} is a maximum length sequence then'{adj} is a

maximum length sequence if and only if (d, pn—l) = 1, Furthermore, 1if

'{aj} and {bj} are two inequivalent sequences then there exists an integer

d relatively prime to pn—l such that bj a Thus, so far as the cross-

+k - %aye

correlation function is concerned, it is entlrely determined by the integer
d for a fixed sequence {ai}. The crosscorrelation function between the two

maximal sequences is

=

P -2
aab(t) = ‘E @(aj

o 00 80

where 0(x) =‘§X,’g a complex pth root of unity, & # 1. This correlation

function can be expressed as

a () = =% gTr(cx"xd) = a,(t)
ab xeGF(p™) * d
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where ¢ = q t, o a primitive element of GF(pn) and {bj} = {adj}' Several

interesting results on this crosscorrelation function are obtained and we

o list several of them here:

a) aa(t) is a real number.
b) The values and the number of occurrences of each value of ad(t)

are independent of the choice of &.

c) ad(t) = a l(-dt) Qhere d_l. d = 1 mod (pn—l).
. d”
d) adpj(t) = ad(t)
e) a4 (plt) = ad(t)
)
£) P5% ag(e) =1
t=0
g) al(t) = pn—l , t = 0 mod (pn-l)

-1, t#0mod (p"-1)
h) Over one period ad(t) has at least three values if and only if
d ¢ {1,pye..,p -1},
i) ad(t) is an integer for all t if and only if d = 1 mod (p-1).
j) We have ad(t) = ~1 mod (1) and; furthermore, if ad(t)Ais an

integer then ad(t) = -1 mod (p)..(ﬁ=l—§,$ﬂafpth root of unity.)

I

k) For binary sequences a (t) = -1 mod (4) and, if d é'{-l,—Z,...,-
~2"1} then a4 (t) = -1 mod (8). |

L) The number of distinct values assumed by the crosscorrelation
function of two binary’maximum length.éeqﬁences of period p =-2£—1 can never
exceed the number of cyclotomic césets mbdulo'p; |

The remaiﬁdef of the results in égié interesting paper are. concerned
with the correlation functions‘for“certain values of d, the number of distinct

values they assume and the multiplicities with which they assume these values.

It is encyclopaedic in nature.
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®

2.5. Multiphase Sequences and their Correlation Functions

The values and Behaviour of the.autocorrelaﬁion and crosscorrelation
functions wheq'the alphabet is restricted to ‘be binarylhave-been examined in -
previous sections. 'This section considers this behaviour. when more than
these two phases are allqwed-and we begin with the work of Welti (1960),
apparently the first work on multiphase sequences{

In this work two alphabets are used: a binary alphabet -{a,B} such
that ata=p+p=a, d+ﬁ=B+a=B, aa=B§=l,-aB=Ba=—l: and a quaternary éiphabet
{a,B,Y,0}, also with appropriate addition and multiplicatioﬁ. ~For any
sequence A’éver either‘alphabet'we define multiplication by an integer k as
kA = (a,a,...,a) if k is even and as A if k is odd. The intersection.of

binary letters is given by the ‘tabulation

afla  aNp | « g 3
. = . . (note the non-commutativity)

Bna  BNP a B
and the corresponding intersection of gequenéés'is given by ANB =

(a,Nb ﬂb‘,...,/anﬂbn). The negative of a binary sequence interchanges

1° 2
a and B. The product A B = Zaibi is the usual inmer product.

To construct the class of binary sequences (from which the quater-
nary sequences will be obtained) let éi be a sequence of length 2k, k
fixed and i = 1,2,...,k such fhat the first 21--1 places contain a's, the
next 21“l places contaln B's and so on. Let ZEV be a binary vector which
is the binary expansion of the letter i: Define the sequence g? By

k X oy k k

k | 14 1
_Bi].‘ = ?=1xj éj s i = 1,2,.-.,2 9§i = (Xl ,Xz ,:-.,Xk)

For each k, 2k sequences are obtained with the property that




k k
5 2

Now consider translating this set by the vector

k-1

K=z A nal
j=1 J I i
to form the'sequences
p° = B¥ + ¢k 1=1,2,...,2%

=1 = -
These sequences are also orthogonal and will be referred to as a D-code and

k is the order of Dk and i its rank. The sequences QE and 2? are called

mates if |i—j[ = Zk—l. A mate of QE will be denoted by ﬁ? and clearly
sk kL k. k <l . okl )
Qi = Qi + gk and Qi and Qi agree in the leading 2~ = elements and disagree

in the rest. QE and 2? are called neighbours if ]i—j! =1, max (i,j) odd.

It can be shown that the catenation of a D sequence with its mate is a
sequence of the next higher order and of the same-rank. Other properties
of these codes are also examined.

The quaternary sequences, called E-codes, are obtained from these

D-codes. The sequence Eg is obtained from 2? by replacing even place ad's

_.i

or neighbours 1ff the corresponding D-sequences are mates or neighbours. It

and B's with v's and d's respectively, and the sequences Ek and E? are mates

can be shown that the aperiodic autocorrelation of an E sequence has off

peak values of zero while the crosscorrelation of any two distinct sequences

e

is zero for all shifts. Of course this orthogonality is dependent upon the

multiplication of the quaternary elements which is giVén in the table

T 2 i 3 S 3 £
Py — ——— o
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aa af ay ad ' 1-1 0 0
Ba BB BY Bo| -1 1.0 0
va ¥B vy val T |0 0 1 -1
aa - 3p oy 83| 0 0 -1 .1

Some,cqmments on this choice of mul;iplication téble are given by Welti:
(1960)5 It was in fact chosen to ensure the orthogonality of the cohh’
structed codes.

Frank and Zadoff (1962) commentingjon earlier work by Heimiller
and by Frénk construct sequences of 1ength'N2 over the complex Nzroots of
unity. In his earliervwork Heimiller had required that N be a prime but
this restriction is not necessary. The construction is as follows. Let

£ be a primitive N" root of unity and coqbtrﬁct the following array:
. j

A
4 o

g2 gt b 2N

N _2N _3N N2

NN

wheré the indicéé are taken modulo N. The sequence is then formed by taking
‘thé rows of the array, one row at a time and the periodic correlatioh
function of this sequence is an impulse functionj i.e. is zero for every
off centre éhift.

Frank (1963) later considered a similar construction for sequences
with good aPeriodic correlation properties. ﬁe begins with a variant of

the above array, namely

e mek 2D I B 0N B R B

~
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A
g0 El gz . gN—l
. 2
g0 gN—l.£2(N—l)' . g(N—l)

and observes that the sequence obtained from this array, row by row, has

a periodic correlation which 1s, again, an impulse function. To obtain

sequences with good aperiodic correlation functions, however, one chooses a
starting point in the array and runs through the array once. However, it_is
suggested that simply taking the rows one at a time, beginning with the top
row, as in the previous case, should yield sequences with good aperiodic
correlation properties. Several specific sequences constructed in this manner
are analyzed énd the following observations, which are conjectured to be
always true, are noted:
i) The maximum off peak value of the aperiodic correlation function is
the vector sum of N/2 (or (NW41)/2 if N is odd) unit vectors in the
complex plane, each vector separated‘by 21t/N radians.
ii) For shifts of N, the correlation function is zero (this is of'course
always true). :
iii) For a shift of j where |j—kN| = i the absolute value of the correlation
function is unity.
iv) The correiatioﬁ-function for shiftsof m and Nz—m has the same-magnitude.
v) The side lobe peaks are Ehemselveé individually symmetrical.
;1 Tu%&ﬁ‘(l967) considered thesé_obéervafiéns and was able to show

that if
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then |¢(kMr)| = |c(kMHN-1) | = |c(@-k-1)Nrr) | = |c((N-k~1)N+N-x) |
_ establishing the observed side lobe symmetries. More importantly'hewestab—
lished conjecture 1) above by showing that
: N-1.-
55

el =v =32 &
1=0

1
|

_ an interesting property of sums of complex roots of unity. Properties ii)
and 4ii) above were also established, i.e.

c(kN) = 0 and c(kiHl) = -5t

oo |e() |-= 1)
Chu (1972) constructed a class of sequences of length N over the ﬂjlroots of
unity for which the periodic correlation function is an impulse function.

For N even the sequence i% (ao, al,:,;,aN_l) vhere’

™ ﬁnkz :
a = exp(1i N ) 5, k=0,1,000., N-1, (M,N) =1
and for N odd
o . Mrk(k+1)
a, = exp(i ——Tf———*—)

Golomb and Scholz (1965) were interested in constructing sequences
over the complex numbers, each with magnitude unity, which satisfy the

Barker constraint, namely that Ic(k)|51,k¢0. If (uo;u u —l) is a com~

l,aln, e

plex sequence, |ui| = 1, with aperiodic correlation function cu(k), then
the SequenceE

Vj =y, e 2nij/m s W any nonzero integer
-2nik/m

has the correlation function av(k) = @ cu(k) and hence such a

transformation preserves the "Barker property" of the original sequence.

e

g.\‘




- 41 -

‘In a similar way the transformations

v. = u G2mi(ita)/x
3 3

where a and x are any real numbers and

vj = un—j—l- : (sequence reversal)
and
vj'= Gﬁ : (conjugation)

also preserve the Barker property and take generalized Barker sequences to

generalized Barker sequences. Using such transformations one obtains a
quaternary generalized Barker sequence ffom a binary one. However, a
quaternary generalized Barker sequence of length 15 not obtained in this
manner is also given in this paper (Golomb and Schoiz; 1965) .

_ Thé general question of interest 1is, given p = eZﬁi/B and the
alpﬁabét.{l,p,pz,..,,pﬂ_l}, what are all the values £ such that a Barker
sequence of length. n over this alphabet of size ¢ can be constructed?
A summary of the known results on this problem is given. The sextic

alphabet (£=6) is singled out as being of particular interest. There is

evidence_to suggest that the bnly value of £ for which generalized Barker

' sequence of length 6 exists is #=6. Generalized Barker sequences for all

lengths up to 13 were found over the sextic alphabet.

‘Tufyn (1974) considered the properties of three phase and four
phase Barker sequences. We reprpduce some~pf these intgresting propefties
here. It is first shown that a four phase éarkér-seéuence.of odd length

;ha; a real correlation function and that c(j) =‘i1 for j odd agd that 

c(j) = 0 for j even, j#0.. It follows that for any ternary Barker

sequence in which Xg = xl‘= 1,-xn_2 = _xn~l and X 9 and‘xnrl are real.
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" In fact in any four phase sequence with a real correlation function but

not necessatily with the Barker prope‘rtylxk = + for all k (i.e.

_ 4xn41~k
X£§£~1~k is real). For binary Barker sequences of odd length it is known

,thét S (—1)kﬁ where u = *1 and u = n (mod 4). The equivalent

property for four,phasé Barker sequences- of odd length is that kan~i—k =,
(—l)k+1u;_ u = +1, More detailed properties of generaliéed Barkerfsequences
and their correlation functions are derived in Turyn (1974) but these are
omitted here. It is also shown that'if n is a prime and if 2 is primitive
(mod n) or if n = ~1 (mod 4) and 2 is of order (n~1)/2 ﬁod n, then the only
four phase Barker sequences are équivalent to real ones; hence the shortest
length for such a sequence (of length greater than 13) is at least 12,100.
Using these results it is‘shown that tﬂeré is, up to equivalence, only one’
four phase Barker sequence of length =31, the one of length 15 mentioned in
the paper of Golemb and Scholz (1965), all the others being equivalent to

the binary ones. Using similar techniques it is shown that any cubic

Barker sequence (over the alphabet {I,E,gz} & acubic root of unity) has a

real periodic autocorrelation function and that there are no such sequences

of length n where 9<n<16; It is likely that there are no cubic Barker »
sequences of length greater thanL9 nor any quaternary Barker sequences of
length greater than 15 with the éossible exception of leﬁgth 16.

Chané (1967) and Moharir (1974) construct ternary sequences over
the alphébet,{O,il} which is qﬁite a different pfoblem to the sequences
above., Chang (1967) shows simply_that any maximum length sequence over

GF(3) has a periodic correlation function which is an impulse fumnction.

A few comments on the generation of uncorrelated sequences using the distinct

maximal length sequences and a Hadamard matrix are also given.

‘ .
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Moharir (1974) also considered ternary codes over the alphabet

) l{O,il} but using the aperiodic autocorrelation function. Sequences with

an autocorrelation function of the form

a' . (cn) , k=0
c(k) =

0,1 , k=1,2,...,n-1

were sought and those of length 6,8,9 and 10 displayed. It seems that such
codes will exist for infintely many lengths.

Moharir (1977) defines a generalized pseudonoise sequence as one
whose periodic autocorrelation function is zero for all nonzero shifts.
Now consider two sequences E;=‘(u0,uv...,qg_l)uand v = (VO’vl°°"vm=l)’

t,m) =1, fm'= n. Then X

(xosxl,...,xn_l) is said to be the Chinese
product of u and v if

X, = ug vy

where

i=fg (mod %)
| h (mod m).

The periodic autocorrelation function of the sequence x is then the Chinese -

product of the autocorrelation functions au(.) and av(.). It follows

immediately that the Chinese product of two generalized pseudonoise sequences

with coprime lengths is again a generalized pseudonoise sequence. Such a

- construction can be applied to any generalized pseudonoise sequence over

any real or complex alphabet and in particular to the séquences of Frank

- (1963) and Chu (1972). The relationship between asymmetrically ‘bdnary

-

sequenees'(binary sequences -over an'alphabet {a¢,B} o # ~B) which have an

impulse function for .a periodic correlation function and difference sets -

AY
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is considered.

More recentiy Mdharir*(l977).examinéd ternafy (0,£1) generalized
pseudonoise sequen&es via -combinatorial admissibility conditions to deter—
mine théir-exiétence or nonexistence. Once;againrthevrole of'cyclic differ-
ences sets is'examined.

- Two pther papers of marginal intefest to the present report attempﬁ
to construct Barker sequenées over the alphabet {0,1}, called optical Barker
sequences due tp their applicatdion to optical radar pqlse compression. Cerfain
techniques for the construction of such codes, 1argély ad hoc, are given in Moharir
and Selvarajan (1974) and this work was continued in Moharir and Selvarajan (1974).

Delsarte (1968) introduced the notion of G-sequences which are.of
tangential interest té the present report and will not be considered. In
terms of this report they discuss techniqués, using group rings, of con-
structing ternary {O,il} sequénées with two level periodic autocorrelation

functions. |

Finally, we mention the impulse equivalent pulse trains of
Huffman (1962). These .are coumlei valued sequences, whose coordinates are
not, necessariiy,uof magnitude unlty, and whose cofrelation function (either
pegiodic or aperiodic, depending on the author) are impulse-~like; i.e., the

r'ratio of the centre value to maximum off centre value of the correlation
functién is véry large. We will not consider these sequences here, bﬁt
51mply refer the reader to the work of Golay (1975) and Caprio (1969) .

We now consider some recent work of Scholz and Welch (1978) which ..
uses group characters to define complex sequences over the complex mth
roots of unitf,for some m,with "good" aperiodic autocorrelation and créss—

correlation functions. We consider this work in some detail since the

7
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techniques appear to be promising for further work. Consider two sequences

{ao, ais eees an—l} and b = {bo, bl’ ';°’,bn—l} and let, as usual, c(k)

and a(k) be their aperiodic and periodic correlation functions respectively.

. th . .
Let p be a primitive n h root of unity. The Fourier transform of the

sequence a is then

b 1 "l
I a_ p a =-— %L a p
m=0 = m e o0 X

and we write this as [Fa = a. It is a simple matter to show that

¥ 1
ak s e
/n

n-1 . ~
Y a/b

a. (k) = vn{
ab 2=0

3 |-

If we let a @b = (aobo, albl’ sees @ 1 e 1) ie. componentwise multiplica-

tion then the periodic crosscorrelation sequence between the two sequences
a and b is

(0)9 a (l), L] a (n‘l))

o}
|

/a F Y {Fa 0 Fb).

Now if we could find a class of sequences which is closed under the

operetions i) F and E?_l ii) @ iii) conjugation and such that each
sequence is composed of elements of magnitede 1 then the crosscorrelation
sequence will be n times a sequence in the set (since it is closed under
these operations). Hence the magnitude‘of each crosscorrelation will be
n, Similarly if a = b then

/a w L (L, 1, oees )= (n,o 0y eevy 0),

—ab
an ideal . autocorrelation function for each sequence in the set.
Using the theory of group characters: on M(n), ‘the set of integers
relatively prime to n as.a multiplicative group with multiplication modulo n,

we consider the possibility of constructing such a set of sequences, Much
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of what follows is a tutoridl on character theory.
The order of M(n),issﬁ(n);,Eulef’s Totient function and, as an

Abelian group-it can be expressed éS‘a direct product of cyclic 'groups.

Equivalently we can choose a set of generators in G = M(n), 81> gz; ceesgy ’
. . T . 9

T, : .
gi1 =e, 1=1, 2, ..., o where e 1s the group identity and the r; are not

3

necessarily distinct. - Of course we have

o
6| = pm) = @ r,
1=1

and G is isomorphic to the set'{(il, 12, ceos iu) 0 < ij < ri-l} under

vector ‘additlion, where addition in the jth coordinate position is moﬁulo rj.
A character of any group G is a homomorphism of G into the complex

unit circle. For G Abelian there are precisely [Gl distinct characters

and each character is completely determined by iﬁs values on a set of

generators qf the group. Thus is .

j@“/ r5)

x(gi) = cini, 0 < n; < ri-l, g, = e i=1,2,.000,0

(note that x(gi) must be some rith root of unity) then

74k (8)
o,
‘1

I3

x,.(8) =
1 1=1
and all lG| characters of the group are now clearly visible via the IGI,

choices for n. Distinct characters of the group are closed under conjuga-

tion (X, (g) = x (g)) and multiplication (x (g)X, (g) = X, (2)). The

identity of the charactef group i1s called the principal character xo(').

‘The following are useful properties of group characters:

1 % x (e =|le] 1£n=0
gec I :
0 dif n#0
11) = x (8) X _+(g) = le| s, (orthogonality property)
gec 1 n m
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111). Z_xn(g) = |e| age'
a
~The characters of M(n) are defined only on M(n) and yet it will be

convenient to define them for each integer. We extend the definition as

follows:

ﬂ'x_én)(t) =[x, (t mod n) (tym) = 1
0 o (em) #1
The extendéd characters are closed under the operations of conjugation and
multiplicétion and take on values of magnitude either 0 or 1. The Fourier
transform of these characters will be of interest to us.
The first important theorem can be described as follows: Let p be
‘ a prime and consider the (p-2) non-principal characters, xn(-), n=12,...,

P-2 extended by defining xgp)(O) = 0. Then the periodic correlation

function is given by

Ry = o (p) -
a ) = | g P, n=y
/I; CO X.fll_)$k).s ' n # Y
where’C0 is a constant of unit magnitude and so
an(k) = p-1, k=0
-1, k#0
and
Iaw(k)l = (k,p) = 1
' =1

>(ks P) =

~and thus the (p-2) characters come very close to achieving the bounds of
Welch (1974). -The resuIt is based on the fact that the transform of a

character is a scalar multiple of another. character. These characters
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are determined for‘n composite and once i again applied -to the construction
of sequences with goodwcorrelationwproperties.4 ;

To,conciudé‘the section ﬁe briefly.summarize the results contained
in Turyn (1967) on thé existénce of multiphase periodic sequenées. On:
the question of the existence of periodic sequences_for ﬁhich a(j)‘vaniéheS‘
for j # 0, several observations have already been madé. Tu;yh notes also
the following theorem: |
Theorém: If q is an odd prime power, there exists a sequencé of length q,
with termé which ére qth roots of 1, with a(j) =0, J # 0. For any n thére
also exist sequences of length n2 over<nth roots of 1 for which a(j) = 0,
J# 0.

These latter sequences have, of course,_already been éncountered
as the polyphasé codes of Frank, Zadoff and Chu. Spmé special nonexistence
results caﬁ aléo be acﬁieved. For example, by rather laborious means it
can be established that there is no sequence of length 12 over cube roots
of unity for which a(j) =0, j # 0. Similarly one can state the following:z
Theorem: Let d be a power of a prime and x a sequence over the qth roots
of unity of length qm ﬁith the proﬁerty.that a(j) =0, j# 0. Thenm < 2,

This theorem establishes the unique position of the sequences of the
first theorem. It is also known that there are no sequences of lengths 11,
14, 17, 20, 23, 29, 38 or 41 over the cube roots of unity for which a(j) = -1,
3 #0.

‘ Let'x be a character of order elon GF(q)* ie. e|q—l and xe(g) =1,
geCF(q)*, and define x(O)’= 0. The following theorem constructs sequences

over the éth roots of unity.
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Theorem: - If g is a prime power, el(q~l), £ a primitive eth root of 1,

then x(-1) = 1 if eligéll, ~1 otherwise, then there exist sequences x of
length n = q~2 over the eth roots of 1 which satisfy

-1
xg = xCDx g 48

for which

. - R |
C(J) + cn“'j l g .
These sequences can be obtained as x = x(g;-l) where g is a primitive

element of GF(q)*.

2.6 Multivalued Correlation Functions

In this section we consider constructions which have appeared in
the literature which produce correlation functions with certain properties
eg. two level correlation functions o; correlation‘functions which vanish
at certain points. In certain ways the distinction between this approach
and the approach of the papers considered in the previous section is
blurred and imprecise. It serves nonetheless to divide the papers.

We beginvwith the work of Boehme? (1967). Observing that a(k) =
c(kﬁ + c(n~k) for binary *1 sequénces a necessary but not sufficient

condition for |c(k)| to be small for all k is that |a(k)| be small for

all k. Thus good periodic sequences were first.squght in the hope they

.would also make good aperiodic sequences. All sequences will be of prime

- length p and we assume g is a primitive element mod p. If p = ns+l we

say that the integer k, 1 j_k.f!ﬁ n'1~belqﬁgs«to5résidue-class i if

mn-i
g

constant (i,1) as the number of members .of the residue class i which are

(mod. p) for some integer m, 0 < m-< s-l. ‘Denote the cyclotomic .
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followed by a member of the residue class j ie. the number of solutions
-of the congruence
gvn+i +

1= gun+3 (mod p). .

The sequences wiil then be constructed by assighing a; to be‘+1 if 1 is

in a chosen subset of residue classes.and -1 6therﬁise. ‘The correlatioﬁ
function can. then be determined by a knowledge of‘the cyclotéﬁic constants.
Of the n residue classes éhoose q of them, 1 < q < n to assign +1, and

denote these by ¢4, ¢ "“’.éq' Define x_ by the equation k = g\un~l-xk

29

and recall that members of the residue class c,; are all expressible as

gvn+ci (qu P); 0 < v < s~1., With these definitions it is not hard to show
that
_ q q :
a(k) =p - 4sq+xr T I (egx, cpmxp).
i=1 j=1

The only remaining problem is to decide on the number qs tﬁe number of
residue classes to assign +1 to, and to determine the cyclotomic constants.
Determining the "best" q for a given prime is very much an ad hoc procedure.
When é = 1 and the integers 1 through p~1 are split into 2 residue classes,
the off centre values of the periodic correlation were either -3 6r +1
when (p-1)/2 is even and were -1 when (p-1)/2 is odd. Similar types of
results were obtained by splitting the integers into 4, 6 and 8 residue
" classes and choosing ¢ in some manner. The periodic sequences obtained in
this manner Were tested fér their aperiodic properties. The maximuﬁ off
centre magnitude appears to follow the curve 0.6vVn for a séquence of
length n.

The épproach of Boehmer was followed by Chakrabarti and Tomlinson
(1976) in designing sequences with good aperiodic correlation properties

and aperiodic crosscorrelation properties. In addition to her work

Gk S TS T e
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however Fhey experimented using the technique to find multiphase sequences,
assigning each of the phases to certain residue classes and examining the
peak autocorrelation and crosscorrelation sidelobes. Applications of ;
these sequences to the frequency—timé»coding of signals are considered.
Lempel, Cohn and Eéstman (1977) were able to design binary *lsequences
with two valued autocorrelation functions which are optimal in a sense to be
defined. This result was discovered independently by Sidelnikov (1969)
(as noted by Sarwate) in an earlier paper but we will give the approach
of Lempel et al (1977) first. Let o be a primitive element of GF(p") for.p
an odd prime and m some positive integer and let G = GF(pm)*the multipli-
cative group of GF(pm). For k = (pm—l)/2 define ScG as

s =-{a21+1_

1, i =0,1,...,k-1}
and define the function £ by
£(at) = { 1 ifat e S
-1 if of ¢ s,
s . t
Def}ne the binary sequence <a0’al’°"’a2k-l? by a, = f(@7), t =0,1,...,2k-1,

Then the periodic autocorrelation function of such a sequence satisfies

a(0) = 2k‘and.

a(i) = 2 or =2 if k is odd
0 or -4 if k is even.
n-1 ’
Furthermore this sequence is balanced in that 2 a; = 0 and it can be shown
. i=0

that the periodic.autocorrelation of any balanced binary sequence must have

at least two off centre values which are at least as lafge as those obtained
here. In this sense the sequences constructed are optimal.
Sidelnikov (1969) also constructed. pseudorandom. sequences over the

kth roots of unity and examines nearly equidistant codes obtainable from
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them. The construction is a little more general than that of Lempel et. al

(1977). Let GF(q) be the finite field with q elemeﬁts and assume that

it

, q_E 1 (mod k). Let ¥ be a character.of‘GF(q)*.:,Since q-1 = 0 (mod k),
P(.) is a kth root of uniﬁy. For k =‘2,¢(-) is either 41 or -1 and is
clearly +1 on the set S éescribed by Lempel et al (19775. Notice that
¥(-1) = -1, assuming that q is not a power of 2, iff (q-1)/k = 1 (mod 2).
With this notation Sidelnikov comstructed sequences of length n = q-1 where
n =0 (mod k), (BO;Bl,...,Sn_l) where Bj = w(wj+l) if wj + 1 # 0 and

Bj = +1 if wj + 1 = 0. Then the periodic correlation functipn of this
sequence is such that |a(i)| < 4 for 1 2 0 (mod n). If k = 2 and %-E 1
(mod 2) then a(i} = 2 or -2. The result for-% 2 0 (mod 2) is not explicitly
given in Sidelnikov. |

Golay examined low autocorrelation sequences in a series of three

papers (among many others) which we summarize. Consider the bina?y 1
sequence of odd length (XO’X1’°"’x2n) such that X, takes on the sign of
sin(l xz(i)) where |

x(1) = (/a+l - /3) (4 +%) 1=0,1,...,2n

These -sequences can be shown to be skewsymmetric (ie. Xopi ¥pog = ~-1)

and from this it follows immediately that the aperiodic autocorrelation
c(k) vanishes for k odd.

To this point the quality of a low autocorrelation sequence has
been, impliéitly, the ratio of the maximum magnitude of its sidélobes to
its centre value. Other criteria are sometimes employed and in Golay (19775
the figure of merit used in the investigation of binary sequences is

2

2 % e(k)

—
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In some ways this measure has greater analytic tractability. Using
random arguments Golay (1977) shows that asymptotically it seems reason-—

able to conjecture that for large n, the best sequences will achieve a

- value of F of approximately 2e2. By a similar argument it is shown that

this is. also approximately the value achievable by skew symmetric sequences.
Thus one is sacrificing very little by searching for long skew symmetric
sequences with its attendant savings in search time. A sequence of two

other sieves and then a search algbrithm is given to find long sequences

with high figurés of merit. The second sieve depends on the use and

properties of complementary pairs of sequences. All skew symmetric
sequences up to length 59 with bptimal F-values Wefe found to be determined
by the search algorithms presented here. The results are inconclusive.

A slightly Aifferent figure of merit was used in Golay (1975) where

real skew symmetric sequences (ao,al,.,,,aZn)-were sought for which

2, ]

= ook
YD) ) »sgn(ai)’aiﬁd

k= i=0

is high. The‘vaiues lai[ are not constrained to bé unity as was the case
for so much of this work, and in this respect the study is similar to
that of. the impuise equivalent pulse trains of Huffman (1962). It turns
out however that the sequence of signs of some of the sequénces which had
a high Fh is related to the Barker .sequence of qorfe5ponding'length.

There are two other works of significance to fhis study. They
are however rather detalled and quite Speciaiized and so we merely indicate

‘the contents. of these works here. The first:is by Turyn (1974) whose: main

interest was the construction of Hadamard matrices using Baumert-Hall units
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and quadruples of binary sequences whose nonperiodic correlations add up
to zero (ie. a: set:of 4 complementary sequences ié‘the sense Qf Tseng-and
Liu (1972)). Several such sets of sequences are constructed, 'including

one infinite class. The other work referred to is the doctoral thesis of

G. Seguin. (1971). Once again there is too much information contained there -

to summarize it efféctively. A few of ifs highlights‘will be mentioned
however. Let a(+) and b(.) be the pe?iodic and odd correlation function
of a séquence, respectively. Let m, and m, denote the off centre maximum
mégnitudes of these two correlétion functions and m, be the corresponding
quantity for the aperiodic correlation function. A set of sequénces is
constructed in which b(k} = (—l)k a(2k), where 2k is taken mod n and for
this class

m = max (mé, mb) =m = mg.
The constructiﬁn is eésentially based on properties of the cyclotomic
cosets of integers modulo n. Another construction yields sequences for
which b(k) = (--l)k a(k), 0 <k < n. For another class of sequences it is
shown that ||a(k)] - |[b(k)|] < 2, 0 < k < n.

Lindner (1975) lists the minimum possible maximum absolute value
of offpeak aperiodic autocorrelations for all binary 1 sequence 1engths
up to 40. The number of distinct sequences (up to inverse time and inverse
amplitude) achieving this minimﬁm is élso given. In addition, four other

quantities are tabulated:

n-1
i) . M1 -1 ¥ c(i) , mean of the sidelobes
n-1 .~
i=1
. ' 1 n-1 5 1/2 .
ii) M, ={—=— I ¢ (i) , rms value of the sidelobes
2 n-1 1=1 ,

= ; _ R - ’
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iii) M3 = number of positive sidelobes with maximum absolute
value
ivj M4 = distance from mainlobe of first sidelobe with

maximum absolute value,

and these quantities are generally not achieved by the same seduence.
They are, of course, only given for those sequences achieving the minimum
maximum off centre correlation.

Finally we mentidn two works of perceptual interest to the central
problem. In Schroeder (1970) the problem of how to adjust the phases of
the harmonics in a periodic signal in order to minimize the peak-to-peak
amplitude was considered., One of the results obtained produced a construct-
ion method for sequences with low aperiodic autocorrelation, ie. if the

sequence (ao,al,...,an_l) is chosen such that

2
o1 Uﬁl)J . _
a, = } 2 L—?r_—'mod 9 i=0;1,.00,n-1

the resulting sequence has reasonably good, but not optimal, autocorrelation
properties. Lempel and Greenberger~(l974) investigated the problem of
finding sequences {xo,xl,.,.,xq_l} and({yo,yl,...,yq_l} over some alphabet A

for which the quantity
f
q-1
2 hix(3),y(3+0)1, j + & taken mod q

ny(l) = .

J

where h(x,y) is 0 if x#y and 1 if x=y,is used as the basis for optimization

criteria,

‘2.7 Error Correécting Codes and Sequénces.

Lo - ) '
Let x and y be two binary (0,1) ntuples --atHamming distance d

apart. Let n(x) and n(y) be the corfeSpoﬁding +1 n#t'uples.~ Then the
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cdffeiation between n(x) and,ﬂ(Xj is n-2d., Consequently in a cyclic code
with minimum distance d if one: codeword ié drawvn from each cyclic eduiv—
alence class, thesresﬁltihg sét of codewords,,tfanformed to binary #1
sequences, has the property that each off éentre autocorrelation function
and each crosscorrelation value is not:greater than n—2dtin.abéolute
value,

From this observation a binary cyclic code with miﬁimﬁm distaﬁce d
containing s nonzero weights, and assuming. the all ones codeword is not
in the code, corresponds to a set of sequehces whose autocérrelations and

'crossco£re1ations take on at most s distinct values, not greater'thah n~2d
in absolute value, Similar types of observations can be made for codes
th

over GF(p); p a prime, where the sequences are now over the primitive p

roots of unity.

The cases s = 1, 2 and 3 have received some attention for s = 1,

Z
Semakov and Sinovev (1968) and Semakov, Zinovev and Zaitsev (1969) showed

that every equidistant cyclic code has an irreducible parityicheck poly~
nomial. The cases s = 2 and s = 3 were considered by Helleseth (1976)
and Delsarte and Goethals (1969) respectively. Sidelnikov (1971) also
contalns interesting constructions from a coding theory point of view.
The particular constructions of these codes will not be inclﬁded here.

Masséy and Uhran (1975) make the following observation. Let C

be a binary cyelic code of length n with check polynomial h(x) = (x+1)ho(x),

(x+1)fh0(x) énd distance d, and C, the code with check polynomial ho(x).

0

Then a code ﬁithvwords chosen from different cyclic equivalent classes

has the property that the maximum off peak value of the odd autocorrelation

function and the maximum of the odd crosscorrelation function cannot exceed

P

;|

-
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2.8 Complementary Sequences
Two binary *1 sequences gy and E% are called complementary sequences
if the sum of the off peak aperiodic correlations is zero ie, if

ey (k) + ¢, () =0 © k=1,2,...,0-1.

Such sequences are of use for example in multislit spectroscopy (Golay,
1961) as well as communications. Clearly a pair of such sequences can be

interchanged, reversed or multiplied by -1 and another pair of complement-

~ary sequences will result. It can also be shown that the length of these

sequences must be both even and expressible as the sum of two squares.

If xl =ab = ay58n5ecesd s bl’bZ"'°’bn and §? = 8y585500052

n9

bi,bz,.,.,b' wvhere bi is —bi, where a and h;are complementary sequences
then 3} and 3? are complementary sequences. Similarly the sequences
z} = a;b.asby...ab and z. = alblaZbZ"'a b'! are eomplementary. If
u= uluz,,.um and v = V Ve ooV is another pair of complementary sequences
then
| 2t - ;1 ;2 ;m h"l h"z ;m
and vV v, ul u'
zz im£W1~-ilhl'“hm

are also complementary sequences. Thus given two pairs of complementary
sequences of lengths n and m respectively tﬁen a pair of complementary
sequences of length 2nm can be constructed. These commeﬁts are contained
in the paper by Golay (1961). A construction is given in that paper of

pairs of compiementary sequences whose: length is a power of 2. A pair

of complementafy sequences of length 18 exists. Using, these facts and the
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above constructions it is clear that complementary sequences of lengths

i

110.22.20P can be derived.

The case of length 26'sequenceS'was considered in the paper by

Golay (1961) but was not settled. It was finally determined by Jauregi
(1962) and Golay (1962a) that a pair of complementary sequenceé of
length 26 exists.. Andres and Stanton.showed. that there are no Golay

sequence pairs of lengths 34, 36 and 50. The next unknown case is n = 58

= 32 + 72. The paif of sequences of length 26 can be used to construct

pairs of sequences of length 2 10b 26°.

We note in passing the following comments on the periodic analog

- Wl R o

to the notion of complementary sequences. It was conjectured in a paper

by Levitt and Wolf that if x and y are binary *1 sequences of length n

!

such that b is orthogonal to every cyclic permutation of a then a and b
cannot both have 1east‘period n under cyclic permutation. MacWilliams
(1967) disproves thé conjecturejby a construction and explicitly gives
an example of length 18. Briggs and Godfrey (1976) showed however that
it is impossible to design a pair of sequences with this property if
each sequence is to have an autocorrelation function which is a delta

function.

The existence of pairs of binary complementary sequences was shown

- e = EE =

by Turyn (1963) to be equivalent to the quaternary codes of Welti (1960)
discussed in section 5. Differing slightly from the notation of Welti,
Turyn considered quaterhary codes over the symbols *o and +y with the

a2 = Y2 = 1. He then commented

multiplication rules given by ay = yo = 0,
that the following four notions are equivalent:

i) A pair of complementary binary sequences of length n
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ii) A quaternary code of length 2n with correlation function a
delta function whose elements with odd index are all of the form *u and
whose élements with even index are all of the form *vy.
| iii) A quaternary code of length 2n, with coﬁrelation function a
‘delta function whose first n elements are all of the form *a and whose
last n elements are all of the form +y.

iv) A binary sequence of length 2n whose correlation function is
zero for all even shifts. :

The notion of a pair of complementary sequences was generalized
in Tseng (1971), interested in the phase coding of surface acoustic wave
devices for signal multiplexing. In this work it was shown that if
A= (al,az,...,an) and A' = (ai, aé, ety a;) is a pair of complementary
'éequences then the pair Mi = (—a;, -a;_i, cres —ai) and Mi = (an’an—l’
coos al) are also complementary sequences. Furthermore the sum of the
éperiodic crosscorrelation functions of the sequences A and El and A'

and yi are zero. Tseng and Liu (1972) extended these results. Specifically,

" let éi’ i=1,2,...,p be a set of finite sequences over ilﬂ It is called
a complementary sequence if
P
I ec,.(k) =0 k#0
1=1 M :

A second set of sequences Ei’ i=1,2,...,p is called a mate of the first
set if i) the sequence éi has the same léngth as the sequence éi (it is

not necessary that all sequences in a set have the same length). ii) The

set B., 1 =1,2,.0.,p is a complementary set and iii)-

p
z

(k) =0 _ for any value of k.
1=1 ~

C,.
APy

A collection of complementary sets of sequences'{(éi), (gi), ey (Ei)}
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is called mutually orthogonal if every fwo complementary: sets are mates
of each other. It can be shown' that a complement;ry'set must contain
an even number of sequences. Furthermore, théfévis an even number 6f
sequences. ofﬁeaéh length,in sUchva set. If the length'of each
sequence in a compleﬁentary set is 1n, where n is odd, then the'nﬁmber of
sequences in the set, p, is divisible by 4. A compleﬁentaxy set with only
two sequences must have each sequence of even and identidal length.

The problem of synthesizing a complementary set of sequences is
also considered. For a given sequence A let A_denote the reverse of the
sequence, -A its negation and let

h

A'= (A if ho=+1

I

~A if h

—EL'
Denote by AB the concatenation of two sequenceé and A ® B the interleaving
of twb seQuences, assumed to be of the same lengthf Let A* denote the '
subsequence of A consisting of the elements with odd éubscripts and A%%
the subsequence of elements with even subscripts.

If any number of sequences in a complementary set are reversed,
the result is still a complementary set. Similarly negating any number
of'sequences or negating alternate elements in all sequencés also results

in complementary sets. If'{A:.L i=1,2,...,p} is a complementary set

then.{ég, ég*, i=1,2,...,p} is a complementary set. I?'{éi, i=1,2,...p}

and'{gi, ii= 1,2,...,p} are each complementary sets and mates, then
'{Ai ® Bi’ i =1,2,...,p} is a épmplementary set. Other methods of con-
strucﬁing complementary sets are also given. Similarly methods of
constructing orthogonal sets from a given compleﬁentary set are considered.

For example if éi’ éz, eoes ép is a complementary set where é1 and éQ 5
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A and ép are pailrs of sequences of the same length then

2. 8DE 2y eeee By

&,, fgi,'ﬁ }

Ly "'§39 L] _é_ps -A

-
ié one of its mafes, Tseng and Liu‘(1972) give many other tecliniques of

a recursive natﬁre and note the lack of diréét construction prdcedures
fo;.both complémeﬁtary sets and their mates;

Qn a variation of the same theme Taki et al (1969) investigated
E-sequences, defined as binary £l sequences Qhose aperiodic autocorrelation
function vanishes for all even shifts except for the zero shift. Many
properties of these sequences are established and in fact the D-sequences

of Welti (1960) encountered inSegtionZ.Sform'asubset of these. A mate

of an E-sequence is again an E-sequence with the property. that the cross-

" correlation function between the two is zero for all even shifts, including

the zero shift. Constructions of E-sequences and their mates are given
and it is shown that an E-sequence and one of its mates forms a comple-
mentary pair in the sense ofAGolay.

It is to be noticed that most of the work on constructing comple-
mentary sets or complex sequences is over a restricted alphabet eg, the
complex mth roots of unity for a given m. In the recent work of

M :

Swasﬁaﬁpy (1978) this condition is removed and more arbitrary phases are

allowed. Specifically consider the sequence §N+1 = (SO, Sl’ cossy Sn)

“where

'-Si = exp‘(j(¢0 + ¢1 + ...-+~¢i)){

The aperiodic autocorrelation function for such a sequence is

: N-% N-% :
A8 = (B 8y Spp = I oexpld0y gt et dy00).
*1=0 o 1i=0
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Similarly let C Syl =(CO, Cl"'{" c ) be a second sequence where CLcEas
1+ ves + 0 ) and aperiodic autocorrelatlon function ¢ (T)

As in the work of Golay (l96l) the two sequences will be called comple-

phase (e + 6

mentary if 7/y

cs(&) +,oc(£);=-0 L >0

and this relatioﬁship establishes a conneetion between the phases ei'andv
¢i' ‘For example, working through the equations shows that for N—Z (codes

of length 3) the only conditions necessary for complementarity ares

6, = ¢p + 2
81 = ¢ + (Remm)1/2
0, = ¢; + (tmin)1/2°

7

and hence the two sequences are

3 (éj¢o« ej(¢o'+¢1) ej(¢0+2¢1+m))

w
I

and ’ o : . .
_ (ejeo ej(66+¢1+(£—uﬁn)H/2) ej(60+2¢1+(£+n)ﬂ)

Q
|

where %, m and n are odd integers and 60,.¢0 and ¢1 are arbitrary.
Unfortunately the relationship between the phases is not always so easy
to determine.

A useful recursion techniéue follows from noting that if S and

__N
o comol. J¢
ngare complementary then’the concatenated sequences (§N, e QN) and
(§N, eq(¢+ﬂ)§N) are also complementary of twice the length of the original.

Some attention is also given to the construction of complementary sets of

- sequences and also ‘to mutually orthogonal complementary sets of sequences.
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3.  SYNCHRONIZATION

3.1 ,Introductinn

In all éommunication systems there are two basic modes of’pperation:
that of acquisiﬁion and that of conveying information efficiently. In CDMA
signaling synChronization of the reference code to the incoming signal is
of critiqal importance for the removal of the code. If the reference code

and the incoming signal are not in synchronism the wanted signal may appear

PR

to the receiver as a spread spectrum interferer. Thus, synchronization is
a critical feanure.in maintaining the transparency of the code as mentioned
in Section 1. |

Code phase and carrier frequency uncertainties are the primary
gsources of synchronization uncertainties. Carrier frequency ungertainty
is é manifestation of déppler frequency ghift due to relative motions
between transmitting and receiving stations. Let ft be the transmitted
" carrier frequency, V be the relative velocity between transmitting and
receiving stations, and C be the speed of light. Then the depler shift
frequency is £, = *f Y-and the received carrier frequency is

d t C
f =f (1 % V/C). Code phase uncertainty is due to changes in propagation

r t

path length. The arrival time is unknown and, in severe cases, the code
symbol duraﬁion may be lengthened. Both code phase and cérrier frequency
uncertainties must be resolved before a spread spectirum (CDMA) receiver
can operate satisfactorily. Specifically, the code phase must be resolved
to better than one bit and the center frequency, as seen at the receiver,

must be resolved to the degree that the despread signal is within the

aperture of the postcorrelation filter.

—
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Most synchronization coding studies have been concerned with
ranging applications [Titsworth 19631, [Golomb et al 1964]. Because of
its simplicity in generation and its pseudorandom ﬁroperties, ﬁksequences
or modificationé of M-sequences [Gold 1967] have seen extensive use in
ranging and spread spectrum applications. One of the more stringent‘
reqﬁirements in spread spectrum is that the M-sequence must be long
(perhaps of the order of 220—1). Tor acquisition purposes it is desirable
to combine many short shift register sequences to form one long composite
sequence. Let %i, i=1, ..., P, be the length of the ith component

sequence. ILf the 2i's are relatively prime the length of the resultant

P
composite sequence is & =1  %.. Titsworth [1963] has shown that a total
P i=1
of L= 1% 2i correlations are needed to determine the phase of each of

i=1 o
the component sequences separately. Stiffler [1968] has. devised a scheme

in which only logzz binary decisions, or correlations, are needed for a
given value of &, primarily because the periods Qi of the component
séquencaé are constrained to be relatively prime. Rapid acquisition schemes
such as that described by [Stiffler 1968] look promising for rapid acquisi--
tion in CDMA signaling. Also, the Gold sequences. [Gold 1967] may offer
rapid acquisition possibilities.

There are two stages of synchronization: initial acquisition and
tracking, as depicted in Fig. 3.1. Initial synchronization requires rapid

acquisition. Once the point of synchronization is located, the system

.enters the tracking mode. There are two principle ways of implementing

a tracking loop for a pseudorandom (PN) code: .the delay-lock loop
[Spilker 19631 and the dithering loop [Hartmann 19741. The principle.

of operation of these two types of loops is the. same, i.e., the incoming
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: ‘ " TRACK MODE N
TRACKING
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Fig. 3.1 Diagram Depicting Two-Stage Synchronization

\

code is correlated with an early and a late version of the locally

generated replica of the code. The difference between the two loops lies

in that the delay—lock loop requires two correlators while the dithering

loop requires only a single correlator. In this section we are concern-—
ed with describing the available synchronization techniques rather than
the mathematical analyses of such techniques. Specifically we shall

concern ourselves with the initial acquisition and tracking operations.

3.2 Initiél Synchronization '

Oné of the simplest synchronization schemes is slidinglcorreiation
in which tﬁe incoming code is correlated with a variable fate code
sequence aé depicted in Fig. 3.2. Basically, the feceivihg system, in

searching for synchronization, operates its code sequence generator at an
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Incoming

Signal .| CORRELATOR

Reference Code V
CHANGE CLOCK
REFERENCE RATE IN DIRECTION
CODE o TO MINIMIZE
GENERATOR 1CORRELATION ERROR

Fig. 3.2 Sliding Correlator

initial rate different from that of the transmitter's code generator. The
fwo code sequences slip in phase (sliding past each other) with respect to
each other, stopping only when ﬁhe correlation produces a satischtory
decision. Since the receiver code generator must change its rate, some
mechanism to shift the receiver code generator to different rates is
needed. When the initial phase uncertainty is relatively small, the sliding
correlator approach can yield relatively rapid synchronization. When a
large degree of uncertainty is encountered, however, examination of all
possible code phase positions would “involve a very long search time. It is
ﬁoted that recognization of synchronization, which must occur to stop the
sliding or search process at or near the point of synchronization, is
‘limited in response time by the bandwidth of the receiver system's post-
correlation filter. When the search time is long, the synchronization
scheme becomes impractical.

Another'simple sypchronization technique is the transmission of a

synChronization‘pfeamble: a special code sequence which is short enough to
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allow a search of all possible code positions. Thé preamble 1engthpmust
‘be such that its repetition rate does not fall Wiéhin the informétion
band. To allow rapid acquisitionvéﬁe preamble must be relatively short.
On the other hand a short preamble tends to Be more vulnerable to false
correlations and to possible reproduction by a would be interferer. For
direct sequence (DS) signaling the préamble lengthé are of the order of
several hundred bits to several thousaﬁd bits [Dixon 19761 . Thé minimum
preamble length is bounded by crosscorrelation and interference rejection
requirementé; while the maximum preamble length is set by the maximum
available acquisitioﬁ time.

Synchronization in CDMA depends largely on the signaling method
embloyed,_eg,, frequency-hopping (FH) or direct sequence (DS) signaling.
The code rate associated with frequency-hopping signaliﬁg is substantially'
smaller than thatffor direct sequence signaling (say a ratio of 1: 1000).

)
It is easier to sfnchronize the slower rate FH code than the high rate DS l
code. Let L be the number of DS code bits corresponding to one FH code
bit in length. A good strategy may involve two stages of synchronization
in which the CDMA signal employs a mixture of FH and DS coding such that
the two code sequences are similarly generated. Then the receiver can
first synchronize itself to the frequency hopper. The second stage in
the search only needs to search’'l bits to attain synchronization with the
DS subsystgm. Let L = RDS/RFH’ where RDS and RFH are respectively the
code rate Qf the DS code and the‘FH code. If K bits are needed to synchron-
ize the DS code, then only N = K/L bits are sufficieﬁt for the syncﬁroniza»
tion of the FH code. An additional search of L bits will enable synchron-

ization of the DS code. Thus, by employing two synch loops, only\(N¥L)

)
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“instead of K = NxL bits need to be processed in order to synchronize the

high rate DS code. The employment of FH/DS as a two-layered synchroniza-
tion coding scheme is but one example. It may be possible_fo éuperpose
layers of codes to enhance signal acquisition.

Titsworth [1963] has suggested that a clock—component code, which
employs Easterling's [Golomb et al 1964] déuble loop ranging receiver
(Fig. 3.3), can be used for symbol rate syﬁchronization. The inner looP,

Incoming Signal

Cl x clock TOV-PASS Correlation
%%\r ¢ #% _ == FILTER o= QUtput
Local‘code ______________________ - -
€y : :
’ LOOP
=( )% : =  VCO ey |
‘ FILTER |
{
L 1 90° | l
i :
e _ _ _ _ CLOCK LOOP :
CODE -
GENERATOR '

Fig. 3.3 Double Loop Synchronizer

,or clock-loop, is synchronized to the symbol rate of the incoming code C1

by the presence of a "clock component" iJlCisand the locally generated .
code 02 is slaved to the output of this clock-loop. Whenever the clock-

loop is locked to the clock component of Cl’ the local code 02 is step~

- ‘'wise synchronized to Cl’ The status of synchronization can be monitored

' by observing the correlation output. The error signal that drives the VCO

is given by

e(t) =.J Cl(t) clock -(t) Cz(t+T) clock (t + §'+T)dt
‘ period -
where ‘P is the .period of the clock, and integration is over the period of

!
i
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¢

the code x clock. The correlation output is given by

coy(r) =S 'Cl(t) clock (t)nCZ(t+T) clock (tfr)dt.
period
) ¢, (£) Cy(t+r)delxls clock (t) clock (t+r)del
period : 5 period o :

. " . P ’
R, .(1).R, (& + 1)
o A

where RC.lC2 is the crosscorrelation of Cl and C2 and RC% is the auto-

correlation of the clock.
As mentioned in Section 2, Stiffler [1968] has proposed a coding
scheme whereby only n = logzN binary decisions or correlations need to be

made in order to synchronize a code with length N = 2", The Stiffler code
2
.5

, 3
n-tuple with o) e{1,~1}, by = {111 ...1}, by = {-1 1 1 ...1} and

is constructed as follows: Let bj =A{0;, Oy ooey 0?} be the jth binary

bn = {-1, -1, ..., —-1}. The binary expansion satisfies the identity

n .
T (1L~ o;)Zl_z = j-1. The components of the rapid acquisition binary
i=1 : .
sequence C = {El,Ez,...,EN}, N = 2", is generated by the following:
. n ’i
1 if T or >0
3 n
-1 if % 0, <0
i=1
n
= sgn (I o%)
i=1

Let s, =‘{oi,o§,.,.,o§}; i-=1,2,...,n = log)N. Stiffler has shown that
synchronization of the code C can be attained after n serial correlations

of the form

©
[
It
w
[
@
(@]
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whiere the éymbol. @ denotes correlation. It is observed that 8y is a
square wave with the period 2+ T/N, where T is the period of the code C.
The correlation between s 1 and C can have only one of two values, either

p, or —Dia Stiffler [1968] shows that

1
¢ / n—l
—-—i_l (n—l) n odd

2 )

1/
L\ e (Il) n even.
2 2
For large values of n, application of Stiriing's formula yields’

. 1/2 ~-1/2
0 = (2/m) (logZN)

The correlator output, after T seconds of integration, has mean

ValueiDAT, where A is the amplitude of the received binary signal, and

" the + and - signs are the results of in-phase and out of phase conditionms,

respect;ively. In the presence of white Gaussian noise with two-sided
spectral density 1\10/29 the correlator output is Gaussian distributed with
a variance 0’2 = NOT/Z. The probability of a correct decision at the ith
stage of the search is

1/2

(21r02) J exp[-(&-n) 2/202]dg

I

PC(i) = PO

o

I

%-[1 + erf (—)]
_ V26 .

where U = pAT. Since n = logzN decisions are required, the probability of

a correct acquisition is

n
. n
P = I P (i) =P .
C i=1 C o
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If the probability of error, ?e = 1;P

Pos is small, the integration time T

is approximately. given by:
T = (ﬂNO/ZA ) 1og2N-2n (J_ogzN/Pe)°

The total seardh'time is therefore

TS = TxlogzN

= (nNO/zAz) (1ogzN)2 an (1og2N/Pe)
On tﬁe dther-hand, if N~cyclic permutations of the code C were to be
qorréiétédxwith the received -signal, the total search time required would
be appréximately given by

J -9 Y
T = (4N /A7) (W/2) tn (W/P)

| .
where Pe is the probability of error associated with the N correlation

strategy. In spread spectrum applications, N may have to be of the order

20

. 1 ,
2”7 . The difference between T_. and TS is therefore substantial.

S
Stiffler’s cbde is nqt strictly applicable to spread spectrum
since the local reference sequences s, =‘{oi, 0;, oess0 ;} do not them~
selves possess a Wide spectrum to spread possible narrowband interferers.
That 1is, the correlgtor output bandwidth is given by the sum of the band~
widths of thevincoming signal and the local reference. If this sum band-
width is comparable to the postcorrelation filter bandwidth, the interferer
will penetrate through the receiving system.
Angther drawback of the Stiffler code is that each binary decision

requires an N bit correlation. In view of the fact that N is so large,

the correlation time is still too long.
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3.3 Tracking

. The¥e are two principle imﬁlemenﬁations of tracking loops: the
delgy«lock loop and the dithering loop. The principle involved with the
operation of the delay-lock loop was first discussed by [Spilker 1963] and
anal&zed in detail by [Gill 1966]. All discussions concerning the
operation of the delay-lock loop have been centered on the M-sequence,
mainly because of the ease with which M-sequences can be generated and
because the M~sequence possesses a reasonably good crosscorrelation
property. The basic delay-lock loop is depicted in Fig. 3.4 in which
the incoming code sequence is correlated with an early and a late version
of the locally generated code. The difference signal between the two
correlations ié used to drive the VCO. Ward [1967]>has considered the

delay-lock loop tracking problem using sequence inversion modulation.

Incoming
Sequence

< FILTER

TN

) | ' VCo
0

n on—-l g = )

CODE_GENERATOR

~Fig. 3.4 Delay-Lock Loop
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The dithering loop,.depicted in Eig;:3.5,-also operétes on the

principle of correlating the incoming signal with an early and late v

version of a locally generated code sequence; except that the ‘correlation

is done by a single correlator.on an alternate basis. As a result the

signal-to-noise performance of the dithering loop is about 3 db worse than

the delay-lock loop [Hartmann 1974].

operation of the dithering loop is as follows:

Received Signal

r(t)=s(t)+n(t) u(t) BPF A o] DEMODULATOR
c(t—%iAT)
GEN. - B(E) e
\
sirerei [~ veo [ FTLTER

Fig. 3.5 Dithering Loop

Let the received

with

where

rt)
s(t)
PS =
m(t) =

c(t) =

T ‘ =

w =
[+

n(t) =

signal be

s(t) + n(t)

VZPS m(t-T) c(t~T) cos Wct

power of the incoming signal

information message sequence

code sequence

phase of received code clock

carrier frequency

white Gaussian noise with two-~sided power spectral

density NO/Z watts/Hz.

With reference to Fig. 3.5 the

Information
OQutput’
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The Signél portion of the output from the BPF is alternately

To =|T - AT|
w, (t) = V2P m(t-T) cos w t
-+ s TC (o]
and
. T, -t + aT|
w (t) = V2P m(t-T) cos w.t
- TC o

where TC is the chip duration, T = T - T, T is the phase estimate of the

reference code, and AT is the amount of dither. Let

x, (£) [W+(t)]

demdd“

x () = W_(O)],

demod ° .
Multiplication by the wave q(t) leaves the sign of x+(t) intact and inverts
the sign of x_(t). In the track mode the clock phase error is close to
zero. For ‘T‘ < AT the loop filter input is proportional to the phase
err;r, i.e.,

y(t) = kl T/TC
where kl is a proportionality constant. The VCO d.c. control is préscribed
by

230(E) = ¥(£) @h(r)
where ® denotes convolution and h(t) is the impulse response of the loop

filter. When the loop is tracking without error, Tt = 0 and w+(t) =‘W_(t).

3.4 Summary

For spread spectrum applications, any coding strategy to enhance

‘ rapid'acquisition must preserve the coding transparency.. Since the code

length for CDMA signaling is expected to be long (order -of 220), composite

‘codes as discussed by [Titsworth 19631, [Milstein 19761, which require

P
iZ1 &y

correlators, are unlikely to be fast enough for initial synchronization.
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The Stiffler approach is intriguing and warrants further investigation.
The two-layered FH/DS coding strategy coupled with good rapid acquisition

codes. may prove important.
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ANNOTATED REFERENCES

T.H. Andres and R.G. Stanton, Gday Sequences, Lecture notes in Math-
ematics, volume 622, Springer Verlag, Berlin, (1977) 44-54,
It is shown that there are no Golay sequences of lengths 34, 36
and 50 hence the only occurrences up to length 50 are 2, 4, 8, 10, 16, 20,
26, 32 and 40. By recursive techniques sequences of lengths 2% 108 267,
6, B, 7Y > 0 can be constructed, ‘ '

A.M, Boehmer, Binary Pulse Compression Codes, LEEE Trans. Information
Theory, 13 (1967), 156~167.

" An interesting construction technique for low autocorrelation
sequences based on residue number classes and cyclotomic constants,
There is some seadrching involved to find the subset of residue classes
which lead to the best sequences. :

P.A.N. Briggs and K.R. Godfrey, Design of Uncorrelated Signals, Electronics

Letters, 12 (1976), 555-556.

It is shown that it is impossible to design uncorrelated signals
with the same period with autocorrelation functions of the delta function
form. The example of MacWilliams (1967) gave a pair of uncorrelated
binary sequences of the same period, but not with impulse like auto-
correlation functions. '

J.R. Caprio, Strictly Complex Impulse = Equivalent Codes and Subsets
with Very Uniform Amplitude Distributions, IEEE Trans. Information
Theory, -15 (1969), 695-706.
The paper is concerned with constructing complex sequences
{P. s Pis ocoes Ppnt Wwith very uniform amplitude distributions {Ip l, |p1|, coos
|p§|} and impulse like antocorrelation function (IRp(k)| << Rp(g)).

N.B. Chakrabarti and M. Tomlinson, Design of Sequernces with Specified
Autocorrelation and Cross Correlation, IEEE Trans. Communications,
24 (1976), 1246~-1251.

- The method of designing sequences with good auto and cross cor-
relation depends on first finding good periodic sequences using the method
of Boghmer (1967). These sequences are then tested for their aperiodic
.correlation properties.

J.A. Chang, Ternary Sequences with Zero Correlation, Proc. IEEE, 55 (1967),
1211-1213.
It is shown that certain ternary m~-sequences have a periodic
correlation function which vanishes for values not a multiple of sequence
length,

D.C. Chu, Polyphase Codes with Good Periodic Correlation Properties, IEEE

Trans, Information Theory, 18 (1972), 531-532.

Sequences of any length over NthiOOtS of unity of length N with
an autocorrelation function which is an impulse function are given. This
is claimed to extend,the work of Frank and :Zadoff. (1962) and Heimiller -
whose lengths were N™ over a primitive Nt root of 1.

P, Delsarte, Orthogonal Matrices over a Group and Related Tactical
Configurations, M.B.,L.E. Laboratoire de Recherches, Brussels,
Belgium, 1968, Report R90.
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A Class of matrices, whose non-zero.elements are from a group
is defined as well as a concept of orthogonality. Speclal cases of this
class are generalized Hadamard matrices (the only, éase of interest here):
and conference matrices (one zero per row). The relationship of these
matrices to.group divisible designs, . balanced 1ncomplete block designs,
orthogonal arrays and finite geometries, is examined.

P, Delsarte and,J. M. Goethals,uTri—Weight Codes and_Generalized
' Hadamard Matrices, Information and Control, 15 (1969), 196-206.
A class of generalized Hadamard matrices over the complex pth.
roots of unity is constructed and- the}r connections with a class of tri-
weight extended ECH cides of lfngth p~, dimension 2m #+ 1 and minimum
welght (p -1 p p is given,

P, Delsarte and J.M. Goethals, On-Quadratic Residue Like Sequences in
Abelian Groups, Report R 168, MBLE Laborat01re de Recherches,
Brussels, Belgium, July, 1971.

The construction of G-sequences in certain Abelian group algebras
over the integers is considered. Such sequences are ternary over the

. alphabet 0, %1, and are connected with periodic. ternary sequences with

1mpulse like perlodic correlation functions. .

D. Everett, Periodic Digltal Sequences with Psendonoise Properties,

‘G.E.C. Jour. Science and Technology, 33 (1966), 115-126.

A pseudonoise sequence here is defined as one for which the off
centre periodic autocorrelation function is comstant., It is shown that
pseudonoise sequences, difference sets and cyclicBIBD'S are coexistent.
The sampling of pseudonolse sequences is considered and the relationship
of multipliers of different sets to thls problem examined. Some known
classes of pseudonoise sequences are displayed, including those derived
from quadratic, blquadratic and octic residue sequences, twin prime
sequences, Hall sequences maximum length sequences (including some
interesting sampling properties of them) and finite projective planes.

R.L, Frank, Polyphase Codes with Good Nonperiodic Correlation Propertles

IEEE Trans. Information Theory, 9 (1963), 43-45,.

A simple class of polyphase (N phases Niarbitrary) having good
nonperiodic correlation properties is described, The procedure is some-
what arbitrary in that there is an element of search involved. The-
superiority of the polyphase codes. in the sense of higher centre peak to
side peak ratio 1s established. Several conjectures on the behaviour of

the correlation function for such sequences, are given. (see also Turyn
(1967)).

R.L. Frank and S.A. Zadoff, Phase Shift Pulse Codes with Good Periodic
Correlation Properties, IRE Trans. Information Theory, 8+ (1962),
381-382.,

It is pointed out that the code sequences described in an earlier
paper by Heimiller were identical to those found by Frank nine years
earlier (no reference given) and contained in a patent by Zabouff and
Abourek - except those by Frank do not contaln the restriction that code
lengths be the square of the power of a prime., Heimiller comments on
this note, immediately following it, agreeing with this observation and

providing a proof of the only theorem in his paper which does not hold by

removing this restriction.

'




S.A. Fredricsson, Pseudo-Randomness Properties of Binary Shift Register
Sequences,, IEEE Trans. Information Theory, 21 (1975), 115-120.
This paper is concerned with measuring the randomness of

maximum length sequences over and above the original criterion given by

Golomb. In particular the M-tuple weight distribution and high order

‘correlations of these binary maximum length sequences are considered.

J.M. Goethals and J.J. Seidel, Orthogonal Matrices with Zero Diagonal, Canad.
J. Math; 19 (1967), 1001-1010.
~ Symmettric and Skew-symmetric matrices C of order v with diagonal
elements 0 and off diagonal elements *1 with the property that ccT = (v11I
are constructed. ~ v

M.J.E. Golay, Complementary Series, IEEE Trans. Information Theory, 7 (1961),
82~87.

A pair of binary sequences will be called complementary if the sum
of their nonperiodic correlation functions is zero, except for the zero
shift. General properties of such sequences are established and various
constructions which double the length of a given complementary sequence
given° It is sQown that the length n of such series must be even and that

m-p~-~qQ)"+(p ~ q) where p .and q are the numbers of 1l's in the
two sequences. A construction method for such sequenc g when n is a power
of two is given from which sequences of length 10,2%.20” can be constructed,
since sequences of length 10 also exist. Sequences of length 18 are not
possible while lengths 26 and 34 were left undecided (see Andres and Stanton
(1977)) . ’

M.J.E. Golay, A Class of Finite Binary Sequences with Alternate Auto-
correlation Values Equal to Zero, IEEE Trans. Information Theory,
18 (1972), 449-450, ‘ A
Binary (1) sequences of odd length are constructed with the :

property that values of the correlation function at odd integers are zero.

Comments on the ratio of peak sidelobe to centre values are also given.

M.J.E. Golay, Notes on Impulse Equivalent Pulse Trains, IEEE Trans., In-
formation Theory, 21 (1975a), 718-720.
The impulse - equivalent pulse trains of Huffman are defined as
finite, complex-valued.sequences, having the property that

n-k
% c1 Ci+k 0, O <k < N,° Only the case where the C are real is
)
N 2
considered here and the figure of merit is E/C max where E = 3% C, ,
i
8]

Sequences are examined in the 1ight of this restriction and criterion.

M.J.E. Golay, Hybrld Low Antocorrelation Sequences, IEEE Trans, Information
Theory, 21 (1975b), 460-462. :
Skew symmetric sequences of- length . (2n+l) (a 5. 815 ooay &, ) are
described for which the figure of merit 1 2n

(Z | 2n 2n-k 2
a, |) /12 i ( i sgn(ay) « agy )7}
is high, where a s = (-1)s a st Many comments on the structure and



properties of such "good" sequences are discussed.

M.J.E. Golay, -Sieves for Low Autocorrelation‘BinaryuSequences, IEFE,
" Trans. Information Theory, 23 (1976),. 43~51,

The ratio of central to sidelobe enérgies-is taken as the figure
of merit in the search for optimal‘sequences with low autocorrelation.
Sieves are employed in the search, the first based on the conclusion that
there exist long skew symmetric sequences with approximately the same.
figure of merit. A second sieve is based on the use of complementary
sequences., Third and fourth sieves are based on certain properties of
complementary sequences.

R. Gold, Characterisitc Linear Sequences and their Coset Functions,

J. SIAM Appl. Math., 14 (1966), 980-985.

The vector space’ V(f), of all sequences satisfying the linear
. recursion n

r £(k) h(lwk) 0 for all i = n, deg £ = n, £(0) # 0, is n’

k=0 , : Sl
dimensional° A characteristic sequence of V(f) is a sequence h € V(f)
such that h(2k) = h(k) for all k. Some characterizations of the character-
istic sequences of V(f) are given. In the final section the coset se-
quences of all maximal sequences of a given prime period are determined.

R, Gold, Optimal Binary Sequences for Spread Spectrum Multiplexing, IEEE
Trans. Information Theory, 13 (1967), 619-621.
The construction of preferred pairs" of polynomlals which lead
to two maximum length sequences with low cross correlation is given. It
is shown that the product of these polynomials gives rise to 2™l different
(non maximum length) sequences of length 2™-1 whose cross correlation is
bounded.,

R. Gold, Maximum Recursive Sequences with 3-~Valued Recursive Cross-—
Correlation Functions, IEEE Trans, Informatlon Theory, 14 (1968),
154-156.

A construction of a pair of maximal linear . sequences is given
for which the periodic cross correlation is two valued. The results have
an interesting 1nterpretat10n in terms of a class of tri—weight cyclic
codes.

S.W. Golomb and R.A. Scholz, Generalized Barker Sequences, IEEE Trans.
Information Theory, 11 (1965), 533-537.
Several transformations which preserve the propertles of generalized
Barker sequences are given and these are used to establish the existence
of such sequences. Much of the work was established using a combination of
computer search and these properties,

M. Griffin, There are no Golay Complementary Sequences of Length 2. 9 ’
Aequationes Math, g 15 (1977), 73~ 77,
The passibility of the existence of complementary sequences with
length of the form 2.9t is eliminated.

D.A, Huffman, The Generation of Impulse-Equivalent Pulse Trains, IRE Trans.
Information Theory, 8 (1962), 510-516.
An impulse equivalent pulse train is one that has an autocorrelation




function as close as is theoretically possible to that of a single pulse.
Such sequences are pulse trains whose amplitudes are chosen from a
continuum rather than from a finite set. It is shown that such sequences
exist for all lengths and that the number of classes of these sequences
is exponentially related to their length.

T. Helleseth, Some Two-Weight Codes with Composite Parity-Check Poly-
nomials, IEEE Trans. Information Theory, 22 (1976a), 631-632.
A famlly of nonbinary cyclic codes, with ‘composite parlty check
polynomials, which have only two nonzero weights is described.

T, Helleseth, Some Results about the Cross Correlation Function between
Two Maximal Linear Sequences, Discrete Mathematics, 16 (1976b),
209-232,

The cross correlation function between two maximal length
sequences is studied in considerable detail. A survey of known results
is given, Many of the results dre concerned with the values that the
cross correlation function can have and the number of times in one
period it takes on each possible value.

A, Lempel, M. Cohn and W. Eastman, A Class of Balanced Binary Sequences

with Optimal Autocorrelation Properties, IEEE Trans. Information

- Theory, 23 (1977), 38-42.

For an odd prime p, a balanced (sum is zero) *1 sequence of length p |
is constructed with the property that aj; = *2 for (p™1)/2 odd and
ag = 0 or -= 4 when (p™-1) (2 is even). The optimality of such a correlation
function is established in the sense that every balanced binary sequence has
at least two distinct out of phase correlation values, and these must be at
least as large as those constructed here. The construction given in this
paper is actually a special case of one given by Sidelnikov (1969), as p01nted
out by Sarwate.

A Lempel and W.L. Eastman, High Speed Generation of Maximal Length Sequences,
: IEEE Trans. Computers, 20 (1971), 227-229.
A method for generating binary maximum length sequences of length
= 2Kk-1 at a rate k times faster than the shift rate is given. The method
is valid for any positive integer k which is not a multiple of p.

A Lempel and H. Greenberger, Families of Sequences with Optimal Hamming -
Correlation Propertles, IEEE Trans. Information Theory, 20 (1974),
90-94,
Let X = {x(§)}, Y = {y(§)} be two sequences of length q over an
alphabet A, |A] = a. Define

,H (1) = qZ h [x(3), y(j+T)}, 0 < T < q where hix,y] = ny and

let S be the set of all sequences over A. ‘Let H(x) = Omax {H (T)}
T

H(x,y) - max {un (T)}and M(x,y) =max {H(x), H(), H(x,y§} Then x is
0<t<q

-called an optimal sequence of H(x)"< H(x') for all x'eS. The pair x,y is

called optimal if M(x,y) £ M(x',y') for all x',y' €S. A subset



F of S is an optimal family if every pair of distinct elements is an
optimal pair. A method of constructlng -optimal sequences is given for
q = pP-1 and a = k for a given prime E -and positive integers k,n,
l1=k=n, Optimal families of size p¥ are also .constructed and each
sequence in the family is optimal..

J.H. Lindholm, An Analysis of the Pseudo~Randomness Properties - of
Subsequences of Long m-Sequences, LEEE Trans. Information Theory,
14 (1968), 569~576.
Let A_be the number of ﬁubsequences of length M, from an
m-sequence, of weight w. . The p~ moment of the weight dlstrlbutlon isg
M
WP =<%- b WPAW. It is shown here that the first two mements of the
w=1 ‘ '
weight distribution does not depend on the particular m-sequence or
equivalently, its characterisitc polynomial. The third moment however -
depends on the quantity B,, the number of trinomials of degree less than
M divisible by £(x), and éheir degrees. Similar results hold for higher
moments, For the third mement the notion is related to coset functions
and characteristic sequences,

J. Lindner, Binary Sequences up to Length 40 with Best Possible Auto-

correlation Function, Electronic Letters,'l._]_.-(l975)9 507

A special purpose minicomputer was used to find all optimal
sequences of length 40 or less, where optimality is measured by minimum
pbsolute sidelobe value., For each given length, the number of optimal
sequences is given, as well as the mean of the sidelobes, rms value of
the sidelobes, the number of sidelobes with maximum absolute value and
. the distance from the main lobe to the first sidelobe with maximum
absolute value (although it is not clear for which optimal sequence these
last four values are computed, or whether they are invariant over all
optimal sequences) .

D.G. Luenberger, On Barker Codes of Even Length, Proc. LEEE, 51 (1963),
- -230-231L., ' '
It is shown that the length N of a Barker sequence (in the sense
of Turyn) of even length must be a perfect square. It is noted that there
does not exist such a sequence of length 16 (Russian reference),

F.J. MacWilliams, An Example of Two Cyclically Orthogonal Sequences with

Maximum Period, IEEE Trans. Information Theory, 13 (1967),

338-339,

In 1966 Levitt and Wolf made the conjecture: 1If a, b are two n
place *1 vectors such that b is orthogonal to every cyclic permutatlon of
a, then a and b cannot both have least period n under cyclic permutation.
This conJecture is disproved here by showing the existence of a family of
such sequences using cyclotomic polynomials. The smallest case is for n = 18
and this case is worked out in detail.

F.J. MacWilliams and N.J.A..Sloane, Pseudo-Random Sequences and Arrays,
Proc. IEEE, 64 (1976), 1715-1729.
An extensive  and interesting survey of the properties and
applications of pseudo~random sequences (binary, 0,1) is given. It is then




shown how such a sequence can be displayed as an n, x n, array where

klk2 k
=2 1, n = 2 -1, nz:n/nl and (nl, nz) = 1. Such arrays then

have properties which are two dimensional analogs of properties: enjoyed

- by the sequences. In particular, if b is the array and A is the number

of positionsin which b and b shifted i places down and j positions to the
right agree, and D the number of positions in which they disagree, then
the correlation function for arrays, in general, is defined as

A-D

n i3 =0, %1, izs oo

p(i,3) =
For the arrays derived from the pseudo-random sequences, p(0,0) = 1 and
p(i,j) = =1/n, 0 = i<n, 0=7j < 0y, (i,3) # (0,0). Only the periodic
correlation function is considered. “Other sections consider non-binary
sequences and arrays and transmission functions (a type of generalized
autocorrelation function). :

J.L. Massey and J.J., Uhran, Sub-baud Coding, Proceedings, 13th Annual

Allerton Conference on Circuit and System Theory, (1975), 539~547.

The importance of both the even and odd correlation functions in
sub-baud coding is demonstrated. While the even autocorrelation function
is invariant to cyclic shifting while the odd function is strongly de-
pendent on its phase., The auto and cross correlation functions of
cyclically distinct maximum length sequences are considered. Expressions
for the peak off centre autocorrelation and cross correlation for both
the even and odd functions for codes derived from the cyclic equivalent
classes of a cyclic code are given. The .construction of a class of
asymptotically good codes, for which the ratio of off centre value to
length tends to zero with length, is given.

L.B. Milstein, Some Statistical Properties of Combination Sequences,

IEEE Trans. Information Theory, 23 (1977), 254-258,

Combining sequences with a Boolean function has long been a
technique used to derive long sequences with good autocorrelation
properties. This paper also considers the cross correlation of the long
sequence with its components for use as rapid acquisition sequences, It
is assumed that the sequences involved are chosen at random and all
arguments are probabilistic. '

P.S. Moharir, Ternary Barker Codes, Electronics Letters, 10 (1974), 460~461.

Ternary (0,*1) sequences of length N with aperiodic correlation
function p(k) = Nl < N if k = 0 and O or ¥l, k # 0 are discussed and a
table of such sequences of length less than ll glvenq Good binary

sequences are obtained from the termary. -

P.S. Moharir, Generalized PN Sequences, IEEE Trans. Information Theory,

23 (1977a), 782-784.,

A generalized PN sequence is defined as one whose off—centre
periodic correlation function is identically zero. Attention is focussed
on the ternary (0,xl) case where certain combinatorial admissibility
conditions are derived which are satisfied by certain cyclic difference
sets and lead to new generalized PN sequences,




P.S. Moharir, Chinese Product Theorem for Generalized PN Sequences,

Electronics Letters, 13 (1977b), 121-122.

A product~type - theorem, which relates the.periodic correlation
function of the product sequence to.the correlation’functions of the two
component sequences, is given based on the chinese remainder theorem.
Some relationships between different sets and asymmetrically binary gpn
sequences are given.

P.S. Moharir and A. Selvarajan, Optical Barker Codes, Electronics Letters,
10 (1974), 154-155.
The notion of optical Barker codes is introduced. These

sequences are (0,1), begin and end with 1 and have an off peak non-periodic
correlation function of magnitude less than or equal to unity. A sufficient

condition for the existence of such a sequence of length m with n units
in it is given, a quasi-search technique.

P.S. Moharir and A. Selvarajan, Systematic Search for Optical Barker Codes
with Minimum Length, Electronics Letters, 10 (1974), 245-246.
An earlier quasi-search technique of the authors for optical
Barker codes 1s slightly extended.

J.W. Moon and L. Moser, On the Correlation Function of Random Binary
Sequences, SIAM J. Appl. Math, 16 (1968), 340-343.
An upper and lower bound on M(s_), the maximum absolute value of
the off peak nonperiodic correlation of anbinary (£1) sequence of length
n, valid for "almost all" such sequences. is given.

R.J. Pettit, Pulse Sequences with Good Autocorrelation Properties,
Microwave J., 10 (1967), 63-67. :
An elementary survey article on the subject.

M.B. Pursley and D.V. Sarwate, Evaluation of Correlation Parameters for
Periodic Sequences, IEEE Trans. Information Theory, 23 (1977a),
508-513.
Three types of correlation functions are considered; the auto-
correlation, cross correlation and odd correlation function for both the

.periodic and aperiodic.cases. Several properties of these functions useful

in analyzing their application to CDMA and SS systems are given and the
amount of computation required to determine them discussed.

M.B. Pursley and D.V. Sarwate, Performance Evaluation for Phase-Coded
Spread-Spectrum Multiple—Access Communication - Part II:
Code Sequence Analysis, IEEE Trans., Communications, 25 (1977b),
800-803, ,
Bounds on the important parameters of the code sequences for
SSMA are given, including auto-cross— and odd correlation functions, are
given, as well as some computational techniques to determine them.

H.F.A. Roefs and M.B. Pursley, Correlation Parameters of Random Binary
Sequences, Electronics Letters, 13 (1977), 488-489.
The performance of random binary sequences in terms of their
correlation parameters, is examined in multiple access systems.
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D.V. Sarwate, Cross-—Correlation Properties of Sequences with Applications
to Spread-Spectrum Multiple—Access Communications, to appear

(1978a) .

The trade-off between autocorrelation and cross correlation
properties of binary sequences is studied via an inequality on the sum of
squares of the two functions. Both the periodic and aperiodic cases are
considered.,

D.V. Sarwate, Bounds on Cross-~Correlation and Autocorrelation of Sequences,
to appear (1978b)
If 6 and 6 are the maximum of the off-centre periodic auto-

correlation and crosscorrelatlon values respectively of a set of complex—
valued sequegces, it is shgwn that

. > ry . i
= ) + N(K ) € ) 2z 1. Thus by specifying one of the values

this relatlonshlp gives a lower bound on the other., Similar results are

‘obtained for the aperiodic correlation functions. Certain optimum or

asymptotically optimum periodic sequence sets are constructed.

D.V. Sarwate and M.B, Pursley, New Correlation Identities for Periodic

Sequences, Electronics Letters, 13 (1977), 48-49.
The main result of the paper is to show that

N-1 Ceu N-1
k) = © C 2) €. (%k) = T C_(R) C_(#tk
wy (07 B Gy 9 Gy (B0 = B0, () O

This quantity was showi to be useful in determining the signal-to-noise
ratio in spread spectrum multiple access systems and permits considerable -
.computational simplification since only autocorrelations are involved.

K.S. Schneider and R.S. Orr, Aperiodic Correlation Constraints on large

Binary Sequence Sets, IEEE Trans. Information Theory, 21 (1975),

79-84.

An existence type theorem, proved by random coding and expurgatlon
techniques, is proven which allows an examination of the relationships
between the length n, maximum off centre autocorrelation k and maximum
crosscorrelation B. A new proof of the Gilbert bound of coding theory
is also given. :

R.A. Scholtz and L.R. Welch, Group Characters: Sequences with Good
Correlation Properties, IEEE Trans. Information Theory, 24 (1978),
'537-545.
The theory of group -characters of Abellan groups and some trans-—

form theory is used to construct complex sequences with good periodic

autocorrelation and crosscorrelation functions. A computer study of

truncated versions of some of these sequences considers their aperiodic

correlation functions.

M.R. Schroeder, Synthesis of Low Peak Factor Signals and Binary Sequences '
' with Low Autocorrelation, IEEE Trans, Information Theory,

16 (1970), 85-89.

The problem of ‘how to adJust the phase angles and amplitudes of
harmonics of a periodic signal to minimize the difference between the
maximum and minimum values is considered. . A "'generally good" technique
is proposed, 'with little proof, and its application to the construction
of binary sequences with low autocorrelation considered,
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G. Sequin, Binary Sequences with Specified Correlation Propertiee9
Technical Report No. 7103 (1971), Department of Electrical
Engineering, University of Notre Dame, Notre Dame, Indiana.
The notion of a cyclotomic sequence is defined and their

correlation properties examined. Similarily construction methods and

correlation properties of self-dual sequences: are givenu A weakly

Barker sequence is defined as one for which IF . [ <=1, 0 <k < (ntl)/2,

where F, is the non—periodlc correlation function with a.shift of k.

Some properties of sequences obtained from.Arlthmetlc codes are examined,

G. Sequin, Large Sets of Skew—Symmetric Sequences with Small Auto-and

Cross~Correlations, to appear.

It is shown that there exsits large sets of skew symmetric
binary sequences with low auto- and cross—correlations. The proof
techniqu@ is that of skew symmetric binary sequences chosen at random,
whose maximum off peak auto-correlation is less than. o and. whose maximum
cross—correlation is less than B, is found. This lower. bound increases
exponentially with n, :

V.M, Sidelnikov, Some k-Valued Pseudo-~Random Sequences and Nearly

Equidistant Codes, Problems of Information Transmission,

5 (1969), 12-16.

Two classes of sequences over the kth. roots of unity, depending
on whether n, their length, is 0 or 1 mod k, are constructed which have
autocorrelation functions with precisely two off peak’'values. These were
later independently discovered by Lempel et al (1977). In a similar vein
some nearly equidistant codes over the kth #foots of unity, using Hamming
distance, are constructed where the term nearly equidistant implies the
minimum distance is within 1 or 2 of the Plotkin bound.

V.M. Sidelnikov, On Mutual Correlation of Sequences, Soviet Math. Dokl.,
R 12 (1971), 197-201.

peaks of complex sequences over the kth. roots of unity are established.

Sets of sequences whose peaks come close to achieving these bounds are

described using a coding-theoretic approach.

R.Sivaswamy,Mhltiphase Complementary Codes, IEEE Trans. Information
Theory, 24 (1978), 546-552.
Let [SN+l] = [So’ Sl’ cooy SN] be a sequence of complex

numbers of ' magnitude 1 with aperiodic autocorrelation function X(t) and
[CN+1] = [CO, Cl, erey G ] a second such sequence with autocorrelation

function Y(t). The two sequences are termed complementary if the sum of
their autocorrelation functions is an impulse function, as in the original
work of Golay for binary sequences. The condition of complementarity can
be used to establish a relationship between the phases of the elements of
the two sequences. Several examples of solving the required matrix
equations are given, It is shown that if [SN] and [C,.] form a multiphase
complementary (MPC) code then so .do [S.C._], [S T. Eere the bar indicates
phase reversal, Thus if an MPC code pair of leng?h N exists so does one of
length N.2K, Some comments on the generation of MPC code sets (of size
larger than 2), whose autocorrelations add up to an impulse function are
given,

Lower bounds on the periodic autocorrelation and cross—-correlation
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J.J. Stiffler, Rapid Acquisition Sequences, IEEE Trans. Information

Theory, 14 (1968), 221-225,

A class of binary sequences of length N = 2%, for all integer
values of n, is presented which permits the phase of any of these
sequences to be determined in every case after only n=log,N binary decisions.
This compares, for example, with L = } p4 binary decisions required when
using a maximum length sequence of lefigth N_plp2 eoP s (p p.) =1, i # j.
An argument as to the optimality.of these sequernces s glvén°

F, Surbock and H. Weinrichter, Interlacing Properties of Shift-Register

Sequences with Generator Polynomials Irreducible over GF(p),

IEEE Trans. Information Theory, 24 (1978), 386-389.

The properties of elementary sequences gemerated by irreducible
(but not primitive) polynomials are examined. It is shown that each such
elementary sequence can be constructed by interlacing shorter elementary
sequences generated by the same polynomial. Three applications of this
characterization are given, the last concerning the cross—correlation
properties of equal length m—sequences.

Taki, H. Miyakawa, M. Hatori and S. Namba, Even-Shift Orthogonal Sequences,

IEEE Trans., Information Theory, 15 (1969), 295-300.

An F-sequence is a binary (*1) sequence whose autocorrelation
function vanishes for all even shifts, except for the zero shift. The
D-sequence of Welti 1969 form a subset of E~sequences. The length of an
E-sequence is a multiple of 4 and is twice the sum of at most two squares,
a consequence of the construction of an E-sequence from a pair of
complementary sequences of Golay. If there exists two E-sequences of
length m and n respectively then there exists an E-sequence of length mn.
An E-sequence C is called the mate of the E-sequence S if the cross
correlation function is zero for all even shifts, It is shown that if
g=(x:y) (x = all odd members_of S and y all even members) then the only
mates are (¥°; - x Ry and (—yR' %Ry . From an E-sequence and its mate, a
complete functlon set can be defined. Finally it is shown that an :E-
sequence and one of its mates forms a complementary pair in the sense of
Golay.,

C.~C., Tseng, Signal Multiplexing in Surface Wave Delay Lines Using
Orthogonal Pairs of Golay Complementary Sequences, IEEE Trans.
Sonics and ultrasomics, 18 (1971), 103-107.
The notion of orthogonal pairs of Golay complementary sequences
is defined and their use to improve the coding eff1c1ency of surface wave
delay lines examined.

CoiC, Tseng and C.L. Liu, Complementary Sets. of Sequences IEEE Trans.,
Information Theory, 18 (1972), 644-652.
The concept of a. complementary pair of sequences due to Golay
(1961) is generalized to allow for more than two sequences not necessarily
all of the same length. The.mate to such-a set is a second set. whose
corresponding sequences have the same length such that the sum X wﬂi Bl(k)

is zero for all k, A1 the ith sequence in the first set and B1 the ith
sequence in its mate° A collection of complementary sets is called
mutually orthogonal if any 2 distinct sets are mates, Numerous properties
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-complementary.sets.andxmutually orthogonal sets. are established.and many
recursive constructions.given. .Applications to the. signal. processing of
one and two dlmen51onal arrays of. real numbers are dlscussed.

Ro Turyn, Ambigulty Functions of Complementary Sequences, IEEE Trans,

Information Theory, 9 (1963a), 46-47. ,

The ambiguity function of a (not necessarily binary) sequence
of length n is defined by

n~k A
A kW) = 1§1 SR

The properties of this function, and the sum of such functions for ‘two
sequences, is studied.

i

R. Turyn, On Barker Codes of Even Length, Proc. IEEE, 51 (1963b), 1256,

This paper extends the results of Luanberger by showing that
if a periodic sequence of length n=4N2 s G+ = 0 does not exist then
a Barker sequence of length n cannot. exls§ IE is shown that such
sequences for N the power of a prime cannot exist and it is noted that '
the cases for N=6, 10, 12 and others have also been disposed of. The
result for N = 2 (n = 16) was, in this manner, first observed by Hall
(although not in this context).

R.J. Turyn, The Correlation Function of a Sequence of Roots of 1, IEEE
Trans. Information Theory, 13 (1967), 524-525.
The conjedturengf Frank (1963), that
|c | £b = |.—gf16i| ‘
m' ~ "n i

=0

is established, for the multiphase codes of Frank.

R.J. Turyn, Sequences with Small Correlation, in Error Correcting Codes,

H.B. Mann ed., John Wiley and Sons Inc., New York 1968,

195-228,

A detailed survey of the existence and properties of se-
quences, both binary and over higher roots of unity, with low periodic
or aperiodic correlation. The paper is difficult to read but contains
most of the important results on the subject to that date, as well as
Some New ones.

R.Jo. Turyn, Hadamard Matrices, Bammert-Hall Units, Fdur Symbol Sequences
and Surface Wave Encodings, J. Comb. Theory, 16A (1974a),
313-333,

, ‘The construction of n~symbol é-codes, a generalization of
Golays complementary sequences, using combinatorial structures called
Baumert-Hall units, is given and many properties of such codes shown. In
particular many results on ternary codes are established.,

R.J. Turyn, Four~Phase Barker Codes, IEEE Trans. Informatlon Theory, 20
(1974b) , 366-371. : ,
Three phase and four phase Barker sequences are investigated.
Many details on the structure of four phase Barker sequences are given
and it is shown that there is only one such sequence that is of length 15

H
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(found by Carley and referred to in Golomb and Scholz (1965)) apart from
those equivalent to the real sequences. It is also shown that the cor-
relation function of a cubic Barker sequence must be real.

RoJ. Turyn and J, Storer, On Binary Sequences, Proc. Amer, Math. Soc.,
12 (1961), 394-399. . ' ' ,
Properties of the aperiodic correlation coefficient are given.,

These are then used to show that sequences of odd length, for which

|c | <1, k > 0, must possess certain periodicities. TFrom these it is

concluded that n = 13 i.,e, there are no Barker sequences of length

greater than 13,

S. Wainberg and J.K. Wolf, Subsequences of Pseudo. Random Sequences,
IEEE Trans. Communications Technology, 18 (1970), 606-612.
Lindholm (1968) noted that the first two moments of the weight

distribution of subsequences of m~sequences did not depend on the

particular m—-sequence chosen. Here the third and fourth moments of sub-
sequences of lengths M < 100 of 6 particular m~sequences are considered
in detail. Algorithms for determining these moments are given,

L.R. Welch, Lower Bounds on the Maximum Cross Correlation of Signals,

IEEE Trans. Information Theory, 20 (1974), 397-399.

By considering bounds on the cross correlation function of
arbitrary sets of vectors in an L dimensional vector space over the com-
plex numbers, lower bounds on the maximum value of either the cross
correlations or the off centre autocorrelation, for both the periodic
and aperiodic cases, are established.

G.R. Welti, Quaternary Codes for Pulsed Radar, IEEE Trans. Information

Theory, 6 (1960), 400-408.

An algofffhm for generating quaternary codes with an impulse
autocorrelation function is described. Additionally each such code has a
mate and the cross—correlation between a code and its mate is identically
zero. The construction method is based on first constructing binary codes
(and their "mates" and "neighbours" and then converting these by simple
rules for quaternary codes. The generation of these waveforms for use in
radar is considered. ' '
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