
1

1

91
C655
B634
1982

•

UNIVERSITÉ DE MONTRÉAL

Formal Description Techniques for Protocols

Final Report for WC contract No. CR-CS-1982-0033

by Gregor V.(Bocftrrrihn

Département d'informatique et
de recherche opérationnelle

Université de Montréal

loarch 1982

—
Inciustry 	a

DÉPARTEMENT D'INFORMATIQUE

ET DE RECHERCHE OPÉRATIONNELLE

Faculté des arts et des sciences

Université de Montréal

C.P. 6128, Succursale "A"

Montréal, P.Q.
H3C 3J7

P

91
C655
B634
1982

' Formal Description Techniques for Protocols

Final ReportAor DDC contract No. CR-CS-1982-0033

I.

byi/Gregor V.LBoe ann)

Département d'informatique et
de recherche opérationnelle

Université de Montréal

March 1982

- — I lic71 al: FF6'â .ri—C-la a
Library Queen

lJUL 1 7 1998

Industrie Canada
Bibliothèque Queen
--a— 	—.,

'

TABLE OF CONTENT

1. Introduction 	1

2. Overall view of the contract activity 	2

2.1. Standardization activities 	2

2.2. Translator for formal specifications into

implementations 	3

3. Proposal for future work 	4

4. More detailed account of the standardization activities 	5

4.1. Work within ISO TC97/SC16/WG1 ad hoc group on FDT 	6

4.1.1. Meeting in Washington, DC,

September 21-25, 1982 	6

4.1.2. Work within Subgroup A 	6

4.1.3. Work within Subgroup B 	7

4.2. Work within the CCITT Rapporteurs group

on Question VII/39 (FDT) 	7

4.2.1. Rapporteurs meeting in Ottawa,

September 19-27, 1981 	7

4.2.2. Rapporteurs meeting in Melbourne,

March 9-16, 1982 	7

ANNEX 1 Concepts for describing the OSI architecture

(Working Draft, Ispra, Nov. 1981) 	9

ANNEX 2 A FDT based on an extended state transition model

(Working Draft, Bost, Déc. 1981) 	 26

ANNEX 3 Formal specification of a Transport Service 	 48

ANNEX 4 Comments on a possible compromise on the Syntax for

extended state transition descriptions 	 65

ANNEX 6 Syntax for linear form of FDT: comparison of ISO

proposal:and SDL-PR 	 70

ANNEX 7 Proposal for a Programme-like FDT 	 81

ANNEX 8 Proposal on Different Forms of FDT 	 83

ANNEX 9 The Translation of the ISO linear FDT into

graphical SDL 	 87

ANNEX 10 A Method for Specifying Module Interconnections 	 91

ANNEX 11 Examples of Transport Protocol Specifications 	 95

ANNEX 12 Meeting reports 	 129

ANNEX 13 Un compilateur pour la traduction de spécifications de

protocoles en Pascal 	 134

- 1 -

Formal Description Techniques for Protocols

Final Report for DOC contract No. CR-CS-1982-0033

I
by regor V. (13ochman

Département d'informatique et

de recherche opérationnelle

Université de Montréal

March 1982

1. Introduction

COMMUNICATIMIS C-AtIA-DAI

NOV 5 Fece

MAO OIBLIIREMIE

The importance of formal description techniques (FDT)

for the design and documentation of computer communication

protocols and services has been acknowledged by the ISO/TC97

Subcommittee on Open System Interworking (SC16) through the

establishment of a Rapporteur's Group on FDT within Working Group

1. 	A Rapporteurs group for studying this question has also been

established within the Study Group VII of the CCITT. 	The work

under this contract was principally aimed at contibuting to the

work of these study groups, and has resulted in a number of

contributions to the Canadian and international standard

committees working on these questions. It is a continuation of

previous work of this author in the area.

1!,

•
ta

q(

(e
/ 1V),

2

During its first meeting in Chicago (January 1980) the

ISO Special Rappl;rteur's Group on FDT established a program of

work which foresees the selection of one or more FDT's for use

within SC16. The purpose of these FDT's is to provide a means for

precisely specifying protocols and services of the different

layers of Open Systems. These formal specifications should be

unambiguous and helpful for the implementation and for the

verification of the protocols. Contibutions were asked for on

proposed FDT's and their application to the test cases of the

Transport protocol and service.

2. Overall view of the contract activity

It is noted that the "statement of work" of the contract

foresees (under point 1) the development of a formal specification

for the Teletex Session and Document protocols. With the

agreement of the scientific authority of the contract, this work

was replaced by the activities.described in section 2.1 below,

which appeared to be of higher priority.

2.1 Standardization activities

Within the framework of this contract, the author was a

delegate at two meetings of the CCITT Rapporteurs Group on

Question VII/39 in Ottawa and Melbourne. Since the contract did

not provide sufficient travel funding for the meeting in

Melbourne, the travel expenses for this meeting were paid for

- 3 -

through a DOC contract with Dendronic Decisions Ltd. 	The author

was also delegiate at a ISO TC97/SC16/WG1 meeting on FDT in

Washington and at meetings of the Subgroups A and B of the ad hoc

group on FDT. The author is editor for the working papers of both

subgroups (see annexes 1 and 2) and chairman of Subgroup A. The

work under this and a previous contract had a strong influence on

the development of the extended state transition FDT of Subgroup B

of the ISO TC97/SC16/WG1 ad hoc group on FDT. Much of the effort

during this contract period was aimed at bridging the gap between

this FDT and the FDT developments in CCITT. The author

represented the ISO ad hoc group on FDT at the CCITT meeting in

Ottawa, and SC16/WG1 at the CCITT FDT meeting in Melbourne. He

was also a Canadian delegate at the Melbourne meeting and

presented several contributions (see annexes 7 through 11). The

contributions FDT 33 and 34 (CAN COM 39 and 40, annexes 7 and 8)

were discussed in detail and supported by the Canadian ad hoc

group on questions VII/5, 27 and 39 and NSG VII.

We think that our contributions have advanced the

development of FDT's for the specification of Open Systems

protocols and services. However, further work is required for

obtaining a FDT which is accepted by both ISO and CCITT.

2.2. Translator for formal specifications into implementations

A program:was developed that translates formal protocol

specifications given in terms of a preliminary FDT syntax (which

4

was submitted to the ISO TC97/SC16/WG1 ad hoc group on FDT in

January 1981) inio program fragments written in Pascal, which can

be combined with .support packages to from a complete Pascal

program implementing the protocol. This translator program is

documented in Annex 13. It has been tried out with some relatively

simple example protocols. In addition, it was used within a course

project (fall 1981) for the specification of the Teletex Document

protocol, and its translation into a Pascal implementation.

3. Proposal for future work

We tilink that a natural continuation of the work

performed under this contract would be a continuing support of the

ISO and CCITT discussions on FDT's. We think that Canadian input

would be much welcome in view of its past participation.

In order to increase the usefulness of the proposed FDT,

the following additional reseach activities are proposed:

a) To apply the method to several protocols and services at

levels higher than the transport layer in order to test its

applicability in all areas of OSI.

b) To develop a protocol implementation tool which would partly

automate the production of a protocol implementation from the

formal specification of the protocol. (It is noted that the

program descrit;ed in section 2.2 and Annex 13 is only a

initial attempt at approaching this problem; 	it should be

5

adapted to the final syntax of the FDT, and could be improved

as far as the translation process is concerned).

c) To develop a testing tool that would be helpful to test a

protocol implementation for conformance with the protocol

specification. Such a tool could be 	useful 	for 	the

certification of communication software and systems.

d) To 	develop a protocol simulation tool that would make

simulations of communication subsystems based on the formal

specifications of the protocols to be used in the system.

Such a tool would be useful during the development of

protocol 	standards 	for analyzing the behavior of the

protocol, finding eventual malfunctions (deadlocks, etc.),

and determining the efficiency of its operation.

4. More detailed account of the standardization activities

The following subsections list the different meetings

that were attended, and the contributions prepared for these

meetings, as well as other activities related to these

standardization meetings.

-6-

4.1. Work within ISO TC97/SC16/WG1 ad hoc group on FDT

4.1.1. Meeting in Washington, DC, September 21 - 25, 1982.

Submitted contributions:

WASH-9 : "Formal specification of a Transport service" 	(G.

Bochmann, E. Cerny, and C. Lacaille) (see Annex 3)

WASH-10: "Comments on a possible compromise on the syntax for

extended state transition descriptions" (Canada) (see

Annex 4)

WASH-11: "An extended state transition model as a FDT" (G.

Bochmann)

These contributions were discussed during the Subgroup B meeting

in Washington.

4.1.2. Work within Subgroup A

The author is chairman of Subgroup A on "Architecture".

The working document WASH-1 was elaborated by correspondence

during summer 1981, and discussed during the Washington meeting.

The revision of the document was edited by the author.

A Subgroup A meeting vas held in Ispra (Italy) in

November 1981 (see Annex 1 for the minutes). The resulting working'

document (see Annex 1) was again revised in the recent FDT meeting

in Enschede (Holland) . , April 1982.

- 7 -

4.1.3. Work within Subgroup B

The author participated in the work of Subgroup B on

"Extended State Transition Model FDT" as contributor, and as the

editor of the working document.

The author participated in the Subgroup B meeting held

in Boston, December 1981. The Subgroup B working document

resulting from this meeting is included as Annex 2.

4.2. Work within the CCITT Rapporteurs group on Question VII/39

(FDT)

4.2.1. Rapporteurs meeting in Ottawa, September 19 - 27, 1981

Submitted contributions:

FDT-2 : "Formal specification of a Transport protocol" (Canada)

FDT-21: "Formal specification of a Transport 	service" 	(G.

Bochmann et al.) (see Annex 3)

FDT-27: "Time sequence diagrams as FDT" (G.Bochmann) (see Annex 5)

FDT-28: "Syntax for linear form FDT: Comparison of ISO proposal

and SDL-PR" (G. Bochmann) (see Annex 6)

4.2.2. Rapporteurs meeting in Melbourne, March 9 - 16, 1982-

Submitted contributions (see Annexes 7 through 10):

8

FDT 33 (D 205, CAN COM 39): "Proposal for a programme like FDT"

(see Annex . 7)

FDT 34 (D 206, CAN CON 40): "Proposal on different forms of FDT"

(see Annex 8)

FDT 47 (D 207, CAN COM 42): "Translation of the ISO linear FDT

into graphical SDL" (see Annex 9)

FDT 48 (D 129, CAN CON 43): "A method for specifying module

interconnections" (see Annex 10)

FDT 49 (D 131, CAN CON 41): "Examples of Transport protocol

specifications" (see Annex 11)

ANNEX 1

To 	: Members of ISO/TC97/SC16/WG1 ad hoc group on FDT

J. Day, chairman of ad hoc group
H. Zimmermann, chairman of WGI

cc 	: T. Steel, CCITT Rapporteur on Question VII/27
G. Dickson, CCITT Rapporteur on Question VII/39

From : G.V. Bochmann, chairman of Subgroup A

Re 	: Last meeting of FDT Subgroup A on "Architecture"

Please find enclosed the minutes of the last FDT Sub-
group A meeting in Ispra. The result of this meeting is the
revised working document "Concepts for describing the OSI
architecture", which is enclosed. It is the desire of the
Subgroup to give a wider circulation to this working document
in order to get a broader feedback for its next revision.

Sincerely

(7-; .t/ _Y

G.V. Bochmann

P.S. In the spirit of collaboration between ISO and CCITT,
copies are sent to the CCITT Rapporteurs who work on
related problems.

Title: Minutes of the meeting of Subgroup A of the ISO/TC97/SC16/WGI
ad hoc group on FDT, Ispra, November 20, 1981

From : Subgroup A

The following people attended the meeting:

A. Endrizzi 	 Italy
G.V. Bochmann (chairman) 	Canada
F.H. Vogt 	 W. Germany
P.F. Linington 	 U.K.
J.P. Ansart 	 France
A. Faro (secretary) 	 Italy
G. Messina 	 Italy

The only item of work was the revision of the working paper
"Concepts for describing the OSI architecture" which was distri-
buted several weeks before the meeting in the version, edited by
G.V. Bochmann based on the work during the Washington meeting in
September.

Three contributions were presented:

- two papers from LeMoli (COMPUNET/CREI/80/17 and COMPUNET/
CREI/80/16) concerning general comments on the Washington working
paper and a proposal of entity structure.

- a technical report by Bochmann and Raynal concerning "struc-
tured specification of communication of systems" which was presen-
ted as a contribution to the topic of section 3.3 of the working
paper, to be discussed at the next Subgroup A meeting.

The chairman proposed to revise the working paper page by
page. The major points of discussion were the nature of module
interections and interection mechanisms. However the section 4
on "Definition of service, protocol and interface specifications"
was discussed in order to take into account the proposal of LeMoli.
Some minor editorial changes were left to the discretion of the
editor (G.V. Bochmann), who will distribute the new version of the
working paper.

It was agreed among the members of Subgroup A that it is de-
sirable to distribute the new version of the paper also outside
the ad hoc group on FDT in order to get a wider feedback.

G.V. Bochmann

From: 	Subgroup A on "Architecture" of ISO TC97/SC16/WG1 adhoc
group on FDT

Title: Concepts for describing the OSI architecture (Working
Draft, Ispra, Nov. 1981)

1. Introduction

The scope for formal description techniques (FDT) 	in 	the
development of OSI standards is described in "Statement of scope
of the FDT group" (N). The present document may serve
the following purposes:

(a) Provide a more precise model for the Guidelines (N 380 and
 N381), and

(b) define certain basic concepts that are used by the formal
description techniques developed by subgroups B ("Extended finite
state transition models") and C ("Sequencing expressions, temporal
logic") of the FDT Rapporteur's Group.

The document is divided into several sections, discussing the
concepts of system components (called "modules") and their
specification, their interconnection and the description of an
architecture, the definition of service, protocol and interface
specifications, and possible subdivisions of modules for
specification purposes.

2. Modules and their interactions

2.1 Module interactions

A module is a unit of description, and is specified by its
interactions* with other modules within the specified system or
its environment.

In previous work the terms "message" and "command" have been
used to denote interactions, but they are not used in OSI
documents because the variety of previous uses has obscured
their meaning.

2

Other 	terms 	have 	been 	used . for this concept, such as
IIIspecification .unit", "abstract machine" It system part" ,
"interlocutor" . , etc. An entity is a particular case of a module
(see also sections 4 and 5). An abstract spécification is
considered; implementation issues are addressed in section 4.4.

A module is specified in terms of its interactions. For example,
if the module is an N-entity, then the module interacts through
N-service-primitives* (N-SPr, see section 4.1) and (N-1) - SPr's*
with other local modules (respectively, the (N+1) -entity and the
(N-1)-entity).

In general, three time instants are important for the execution of
an interaction between two modules:

1) the moment that the interaction is initiated ("called") by

one (i.e. the first) of the modules;

2) the moment that the interaction begins, i.e. the moment
that the other module agrees to the execution of the
interaction;

3) the moment when the interaction ends.

Each interaction carries explicit information (parameters) only in
one direction: from the source module to the sink module. The
source module is not necessarily the initiating module.

Depending on the model used for the interactions between modules,
the distinction between all of those three instants may not be
necessary. At least, instants (2) and (3) are considered as
always relevant. It is noted, however, that other models may
require the identification of instant (1). Moreover in situations
where it is important to know which module is waiting (for
example, performance considerations), it is proposed to
distinguish between "source initiated" and "sink 	initiated"
interactions.

Service primitives are either expressed directly or in more
detail by using interface data units (IDU).

MM. 3 •••

The types of interaction considered for specification purposes are

called "interaction primitives". They are abstract interactions

in the sense that their implementation by the interface between

the interacting - modules is not specified. Examples of interaction

primitives are:

- open connection to remote address with options;
- send data on connection
- send data to remote address;

where "connection" is a local connection identifier, "remote
address" is the destination address, "options" is a list of

facilities, "data" is an information which has to be transferred

unchanged to "remote address".

In an implementation, the abstract interactions are realized

through the real interactions of a real interface (see section

4.4).

The following points are important properties of interaction

primitives:

(1) Each occurring interaction belongs to exactly one type; i.e.

interaction primitive.

(2) Each interaction primitive is characterized by a number of

parameters.
For example "remote address" and "options" parameters for the

"connection establishment request" interaction.

(3) For each occurrence of an interaction, the value of each

parameter of the interaction primitive is determined by the source

module.

(4) The range of possible parameter values is specified for each

interaction parameter e.g. by a data type definition.

(5) There are some models in which the execution of 	an

interaction by a module may be considered as an atomic action

(which excludes any other action by that same module at the same

time). 	Parallel interactions by the same module (for example

concerning different connections handled by the same module) are

modelled 	by 	assuming 	an 	arbitrary 	order between these
interactions. Alternatively, there are models that do not make

these 	assumptions. 	In specifying any particular model the
assumptions made about atomicity and synchronization must be

clearly stated.

4

We assume that all primitive interactions involve a rendez-vous

technique*, but.it may be useful, as an aid to understanding, to

introduce compound interactions consisting of a primitive

interaction between the initiator and a queuing module, followed

by a primitive interaction between the queuing module and a

receiver.

Note: Further study is required to identify all the necessary

compound interaction types and to demonstrate that they can be
specified as indicated above.

In the following, when modules are components of the same entity,

it is generally supposed that the receiving module sees exactly

the same interaction as the initiating module: the case in which

the "received" interaction is not the same as the "sent" one

happens when two modules are connected by an unreliable
communication medium: this is one of the reasons for which

protocols are built, and it will be supposed that this case does

not happen also in the connection among the modules used for

modelling entitites performing protocols.

For certain purposes, it may be useful to specify how the

interaction primitives are realized by the interface between the

interacting modules. In the following, the term "real interaction"
is soinetimes used for the interface interactions that implement an
abstract interaction primitive (see section 4.4).

2.2 Elements for the specification of a module

Within the OSI architecture the concept of module specification is
used to describe layer services, protocols, management services,

etc. The specification of a module contains the following parts:

* 	A rendez-vous interaction is one in which the two (or more)

modules that participate in the interaction execute the

interaction during a "rendez-vous", i.e. for an interaction to
occur it is necessary that all participating modules execute
"their part" at the same time. The interaction implies a
close synchronization of the modules. One module has to wait
for the other, in general.

5

2.2.1 Enumeration of possible interaction primitives
(types of interactions and parameters)

They are specified considering the points enumerated above. 	For
each module, all the interaction primitives for which it is the
sink are enumerated: this list is the "input dictionary" of the
module. 	Analogously, for each module the list of all the
interaction primitives for which it is the source: 	the list is
the the "output dictionary" of the module. The specification
should be structured by interaction points, as explained in
section 3.2.

It is assumed that the interaction parameter values are determined
by the source module. It is useful for many purposes to specify
for each interaction primitive which module is the source. For
example in the Transport service specification, the convention of
distinguishing between "requests" and "indications" for the
service specifications serves this end.

2.2.2 Specification of possible execution sequences

Each module follows certain rules (constraints) on the execution
of the interactions in which it is involved. Such rules could
involve the parameter values of the interactions, as well as the
order in which the interactions are executed. For example, a
Transport entity module will execute a connection establishment
indication only after it has received a connection request from a
peer entity, and the remote address parameter of the indication
will correspond to the value contained in the request. Such rules
must be specified to determine the behavior of a module. The set
of rules describes the behaviour of the module: more exactly, the
behaviour of a module is known when it is known how the sequence
of output interactions of the module depends on the sequence of
input interaction. The set of rules which a module follows in
producing its output interaction may be called the "procedure" of
the module. Different specification techniques may be used for
this purpose. Possible techniques are developed by the subgroups B
and C of the FDT ad hoc group.

2.3 Language for module specifications

The content of this section is being studied by Subgroups B and C.

- 6 -

3. Interconnections of modules

The architecture of a system is defined by the modules out of
which the system is built, and the structure by which they are
interconnected.

The interactions of a module with other modules or with the
environment of the system (as defined in section 2) occur over the
interconnections between the modules. In a real system, such an
interconnection is realized by a real interface. In this section
we are not concerned with the specification of module interfaces,
but only with the abstract properties that any real interface for
a given module-to-module interconnection must satisfy. These
properties may be called the "abstract interface" between two
modules.

3.1 Interaction points

An "interaction point" is a useful concept for the description of
the OSI architecture. It is related to the notion of "abstract
interface" (see above).

The concept serves for

(a) the partitioning of the interactions of a given module into
separate groups concerning different parts of the environment,
(ensuring that the module has contact with the outside word only
through a well defined set of "interaction points"), and

(b) the specification of the interconnections between 	the
different modules within a system (or the sub-modules within a
module). An interconnection could be specified by naming an
interaction point of one module and an interaction point of
another module with which the former is to be interconnected.

For example, typical interaction points of a layer 	entity
executing the layer protocol are: (a) the service access point
serviced, (b) the access point(s) of the layer below through which
the underlying service is accessed, (c) an (abstract) interface to
the local system management module, and possibly a local
interaction point through which local services such as buffer
management, time-outs, etc. can be obtained.

X X

3.2 Abstraction and step-wise refinement

Abstraction and (inversely) step-wise refinement is supported by
the concepts of interaction points and their interconnection.
Figure 1 shows an example of a module consisting of three sub-
modules interacting with one another. The system may be
considered (at a more abstract level of description) as a module
that interacts with its environment through three interaction
points. If these interaction points are connected with the
interaction points of other modules, the given module may be used
for the construction of more complex system architectures.

More examples on possible substructures for larger entities are
given in Annex 1.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXXXXXXXXXXXXXX

X XXXXXXXXXXXXXXXX 	 XXXXXXXXXXXXXXXX X
X X 	 X 	 X 	 X X
X X module A X 	 X module B X X
X X 	 X 	 X 	 X X
X XXXXXXXXXXXXXXXX 	 X 	 X X
X 	 * 	 XXXXXXXXXXXXXXXX X
X 	 XXXXXXXXXXXXX 	 * 	 X
X 	 X 	 X 	 * 	 X
X 	X module C X********************* 	 X
X 	X 	 X 	 X
X 	XXXXXXXXXXXXX 	 X
X 	 * 	 X
X 	 X
XX

Figure 1

3.3 Description techniques for the specification of interaction
points of modules and their interconnections

Further study is required to establish the necessary description
means. This study might be based on the conclusions of Subgroups B
and C. Simple graphical techniques, such as that used in figure
1, may provide an initial approach to the problem.

4. Definition of service, protocol, and interface specifications

Descriptions of service, protocol and interface specifications are
given in the "Introduction to the Guidelines: Overall view of OSI
specifications" (N 380). The purpose of this section is to make
these descriptions into precise definitions, and to put them into
the framework of the specification model outlined in the sections
above.

4.1 Service specification for layer N

The service of a layer consists of a set of elementary services of
this layer. The service specification for layer N is a
specification of a module, consisting of the entities of the layer
N and the layers below,'given in an abstract view showing only the
interactions at the (N)-service-access-points, as indicated by
figure 2. The interaction primitives executed at the service
access points are called "service primitives". (N)-service-data-
units (SDU's) are exchanged as parameters of particular kinds of
service primitives (by the T-DATA requests and indications of the
Transport service, for example). These interactions would be given
for any one of the elementary services and for their
interrelations. We note that in this figure and the following, a
double arrow represents the interactions taking place between two
interaction points of two interacting modules. The name written
close to it indicates the kind of interaction primitives.

N-SPr

Figure 2

9

4.2 Protocol specification for layer N

The protocol specification for layer N is the set of the
specifications of the modules which represent the entities of
layer N: if all such entities have the same procedure (that is,
the protocol is symmetric), then the protocol specification
coincides with the specification of one module. This module(s)
represents an (N)-layer entity providing service through one (or
more) (N)-service-access-points, and accessing the service of the
layer below through one (or more) (N-1)-service-access-points. For
example, the modules A and B in figure 3 are such modules.

The protocol specification should be consistent with the service
specification, i.e. the abstracted view of the system shown in
figure 3 (ignoring the interactions at the (N-1)-service-access-
points) should satisfy the contraints defined by the (N)-service
specification.

Figure 3

4.3 Abstract protocol specification

An "abstract protocol specification" is a part of a protocol

specification which assumes a "mapped" (N-1)-service for the
exchange of (N)-PDU's between the peer entities, and relevant
control information relating to the (N-1)-service. This is a

useful technique because any particular protocol may not use all
aspects of the supporting service. The mapped service might, for
example, provide for connection establishment and data transfer
only.

The complete mapping from (N)-PDU's and control information into
(N-1)-service- primitives is not specified directly, but in terms
of the mapped service. The specification of the mapped

(N-1)-service consists of the specification of a mapping from each
of its elements to some element of the (genuine) (N-1)-service and

(e) (le)

- 1 0 -

visa versa.

The situation is as shown by the diagram (a) of figure 4.
Alternatively, the diagram (b) is sometimes used to indicate an
abstract protocol specification, where the single arrow indicates
the use of the mapped service.

N SPr

	I

N-PDU
Lebd•ot ig4ormtd-ion

Figure 4

4.4 Implementations and real interfaces

For the module specifications considered (and in particular for
protocol and service specifications) the module is assumed to
interact with the other modules in a system through interaction
primitives. An implementation of such a module, however, will
interact by "real interactions" (of hardware or software nature)
realized by a real interface. One real interface per interaction
point is usually foreseen.

An implementation of the interactions over a given interaction
point includes the definition of a mapping from the abstract
interaction primitives into the real interaction at the interface.
It defines a correspondence between the real interactions and the
Interaction primitives, which are not necessarily explicitely
visible in the implementation. Figure 5 shows the correspondence
between an abstract module specification (a) and its
implementation (b).

- 1 1 —

(tD)

Figure 5

5. Definition of terms

...for further study...

Preic c

I N - ?Du -f-

.N- t)

Figure 6

— 12 —

Annex : Examples of entity substructures

For specification purposes, it seems to be useful to consider a

substructure of an entity. Different kinds of substructures may

be considered depending on the nature of the entity to be

described. Some possible substructures are discussed in the
following subsections. Further work is needed for identifying

appropriate substructures for protocol specifications.

As far as the work of the FDT ad hoc group is concerned, it seems
to be necessary to determine a description technique for defining

a substructure. A possible approach to this end is the use of the
concepts and methods described in section 3, such that the entity

is considered a module which consists of several interconnected
submodules.

1. Identification of a "mapping" submodule

The concept of an abstract protocol specification (see section

4.3) suggests a substructure of an entity as indicated in the
figure 6.

SPr

;it fieer4cClic-t

2. A possible entity substructure

Other entity substructures may be considered, such as 	the
following: an entity X, or each of the submodules shown in figure
6, may be subdivided into the submodules shown in figure 7 below.

— 13 —

XSPrH

1

XTH

\i

X

XPH XFH

1

A

r\--
is` 	 \ 1

: 	\ i______. _____T. \
______> X 	XTH

1
. 	, 	/

XSPrH

Figure 7

In this figure, the submodule X' executes the abstract protocol
of the module X (and processes the control information contained
in the input interactions); XFH (X Format Handler) are modules
for handling Input/Output format problems for module X; XTH (X
Test Handler) are modules for handling user data, e.g. for
segmentation, reassembling, store for retransmission, etc., and
XSPrH (X Service Primitive Handler) are modules for handling
service primitives which interact with module X.

3. Possible identification of submodules

The concept of an abstract protocole specification (see section
4.3) suggests a substructure containing separate submodules for
mapping and abstract protocol.

N-entity

-N-PDU and (N-1) service
control information

— 14 —

Moreover there may be cases in which the complexity of the service

suggests to introduce a third box called "additionnai service" and
leads to the fo.ilowing structure.

NOTES

1. The boxes located at the top and the bottom are optionnal.
Thus, depending on the entity to be described the structure
may be different.

2. Only the "protocol box" is mandatory in all cases: thus the
structure can be reduced to a single protocol module.

3. The concepts described above are only suitable for description
purpose and do not have to be introduced in the model for OSI
as generic concepts.

4. Examples of the use of the "Additionnai Service" box can be
the quarantining or blocking services at the session layer or
some manipulation or transformation of the data store at the
presentation layer.

5. This section 3 is more general than section 1 of this annex.
Due to lack of discussion, it has been included as a separate
section. It may superseed section 1 in the future.

ANNEX 2

To: 	Members of IS0TC971SC16/WG1

From: Subgroup B of ad hoc group on FDT

Title: A FDT based on an extended state transition model (Working

Draft, Boston, Déc. 1981)

1. Introduction

This document describes a FDT for the specification of
communication protocols and services. The specification language
is based on an extended finite state transition model and the
Pascal programming language.

2. An Extended State Transition Model

2.1. -Introduction

A system comprises interconnected modules, each of which
is an extended finite state transition machine, which is described
as explained below.

2.2 The model of interactions

The extended state transition model described in section
3 assumes a model of interaction where each interaction of the
specified module with its environment can be considered an atomic
event. The transition model distinguishes between interactions
that are initiated by the environment and received by the module
(inputs), and interactions initiated by the module (outputs).

The reception of an interaction from the environment
produces, in general, a state transition of the specified module
which may give rise to other (output) interactions.

t.

For the interaction between two modules, the model
allows for the queuing of the outputs from one module before they
are considered.as input by the other. Queues of infinite or
finite (usually zero) length are possible. The length of the
queue is determined when the modules and their interconnection are
instantiated (see "Concept for describing the OSI architecture"
(working document of Subgroup A), section 3). It is noted that
zero buffer length means a rendez-vous type of interaction (see
"Concepts...", section 2.1).

2.3 A state transition model

In order to define the possible orders in 	which
interactions may be initiated by the entity, the state transition
model introduces the concept of the "internal state" of the entity
which determines, at each given instant, the possible transitions
of the entity, and therefore the possible interactions with the
environment.

The possible order of interactions of a module (or
entity) is given in terms of

(a) the state space of the module which defines all (internal)
states in which the module may possibly be at any given time, and

(b) the possible transitions. For each type of transition, the
designer specifies the states from which a transition 	of 	that
type may take place, and the "next" state of the module. A
transition may also involve one or more interactions of the module
with its environment (see below).

Since finite state diagrams or equivalent methods often
lead to very complex specifications when a complete protocol
specification is required (partial specifications, can be more
readily comprehended) the following approach to the specification
of modules in the extended state transition model is used.
This approach combines the 	simple 	concept 	of states and
transitions with the power of a programming language.

The state space of the module is specified by a
set of variables. A possible state is characterized by the values
of each of these variables. One of the variables is

 called "STATE". It represents the "major state" of the module.

The 	possible transitions of the module are defined by
the specification of a number of transition types. Each transition
type is characterized by

(a) an enabling condition: This is a combination of a boolean
expression depending on some of 	the 	variables 	defining 	the
module state, and (possibly) the specification of an input. A
transition may occur in a given state only if the enabling
condition has the value true, and the interaction in question (if
it exists) is initiated by the environment.

(b) an operation: this operation is to be executed as part of
the transition. 	It may change the values of variables, and may
specify the initiation 	of 	output 	interactions 	with 	the
environment. The operation is assumed to be atomic.

The model is non-deterministic in the sense that in a
given state (at some given time) and a given input interaction,
several different transitions may be possible. Only one of these
transitions is executed, leading to a next state which determines
which transitions may be executed next. If several transitions
are possible at some given time, the transition actually executed
is not determined by the specification model. An implementation of
the module could choose any of these possibilities.

In many cases, the specification of a module may be
deterministic, in the sense that (at most) one transition is
specified in any reachable state and given input.

3. Language elements

This section gives an introduction to the different
elements of the specification language based on the extended state
transition model described above.

The language is largely based on the syntax 	and
semantics of the Pascal programming language (ISO DP7185, formally
TC97/SC5 N595, see also Jensen and Wirth: "Pascal: User manual and
report", Springer Verlag, 1974), and uses the general approach of
using type definition facilities and type checking for allowing
the implementation of automatic consistency checking, which
usually detects a large proportion of those errors 	in 	a
speCification that connot be found by syntax checks.

A complete definition of the syntax is contained in
section 4.

3.1 Language elements taken from Pascal

The following 	language 	elements 	of 	the 	Pascal
programming language are included in the specification language
without any change in syntax and semantics:

(a) Type and constant definitions including
scalar types, including enumeration types
subranges
record types
array types

Predefined types:
boolean
integer
character (defined by some ISO standard)

(b) Procedure and function definitions

(c) Statements

3.2 The specification of interactions

The following examples are considered. The (N)-service
is provided to the entities in the layer above by the interactions
through the service access points between the service providing
module and its environment. The interaction model is also useful
to dèfine interactions between different entities (or "modules")
of an (N)-layer subsystem. For example, it may be used for
defining the timer or data buffering services used in the
(N)-layer protocol.

	

In 	the 	following the term "channel" denotes the
interactions between the given module and another module in its
environment. For example, a serivce access point is a channel
between the service providing module and the entity using the
service through this access point. It should be noted that the
abstract properties of these channels are discussed here only to
the extent that they are concerned with service and protocol
specifications.

The specification of a channel of a module is given by
enumerating the possible interaction primitives that—may occur
over the channel (including possible parameter values (determined
by the module initiating the interaction), and indicating whether
the module, its environment, or both may initiate the
interaction).

Session layer

entity

Session layer

entity Transport
service

access point -r Session layer

Transport
t layer rTransport layer

entity
Transport layer

entity

I 	 I

The language allows the specification of the possible
interactions through a channel withciut explicitly defining the
modules that Interact through the channel. However, it is
necessary to rèfer to the roles that these modules play in this
interaction.

As an example we consider the abstract interface through
which the Transport service is provided at some Transport service
access point. The diagram below shows the entities involved.

Using the syntax defined in section 4, the possible service
primitives may be enumerated as follows.

interaction

TS_access_point(TS_user,TS_provider) is

by TS_us'er:

T CONNECT_req(TCEle_identifier 	: TCEP_identifiertype;
to_T_èdress 	: Taddress_type;
from T_address' : T_address_type;
QQTS_request 	: guality_of_TS_type;
TS....connect_data : TS_connect_data_type);

T ACCEPT_req(TCEP_identifier 	: TCEP_identifiertype;
QOTS_request 	'clualityof_TS_type;

' 	options , 	 option_type;
TS_accept'_data 	e TS_accept_data_type);

T_DISCONNECT_reg etc.

by TS_provider:

T CONNECT_ind

etc.

This specification states that a module that interacts
through a Transport service access point must take the role of a
"TS-user", or a "TS-provider". Depending on its role it may•
initiate a certain number of interactions (indicated by the BY
clause), for 'example a user may initiate requests for connection
establishment or disconnection, or the sending of a fragment of
user data.

The same notation may also be used for defining the
interactions between several entities within the same layer, or
between an entity and some locally provided services, such as
timers or buffer management. An example is the following
definition of the timer services used by the Transport entity
implementing the Transport protocol.

interaction
timer-interface (user, server) is

by user:
start (period: integer);
stop;

by server:
time-out;

We note that the possible orders of interactions are not
specified. However, it is understood that the time-out interaction
will only be initiated by the server "period" seconds after it has
received a start interaction and no subsequent stop interaction.

3.3 Module interconnection

It is useful to separate the specification of the
characteristics of channels from statements that certain modules
use certain types of channels. For example, the characteristics
of the (N)-service access points are relevant for the (N)-service
specification, the (N + 1) - layer entities, as well as for-the
(N)-protocol specification. This leads to a specification method
in which channel types may be defined independent of their use,
and the specification of a module includes an enumeraiion of all
the interaction -points through which it interacts with its
environment, with an indication of the channels type for each of
these interaction points. The syntax for these specifications is
given in section 4.

7

The language must be enhanced for specifying how the
interaction points of the different Modules and entities within an
Open System are connected through channels. These considerations
are for further study.

To demonstrate these ideas, the following lines show the
general outline of Transport service and protocol specifications.
It is noted that the Transport service access point definitions
are used by the service as well as by the protocol specifications.
The PDU and timer interface definitions are only used by the
protocol specification and therefore included in that section.

Specification of the Transport layer service:

module TS(access_points : array[T_Address type] of TS_access_point
(TS_provider));

<global constraints of the Transport service>

Specification of a Transport protocol (balanced class):

type
max_TPDU_size type •.

interaction
TPDU (NLcalling, N_called) is etc.

interaction
local_buffer(user,buffer) is etc.

module Transport_entity (TSAP : TS;_access_point(TS_provider);
: TPDU(N_calling,N_called);
: timer-- interface(user);

out buffer,
in Uuffer

,
 : local_buffer(user));

<global constraints of the Transport entity>

The specification of the Transport entity states that
such an entity interacts through an interaction point, called
"TSAP", which uses a channel of type "TS-access-point", where it
takes the role of a service provider, and also through a timer
interface, where it is a user. It also interacts with a Transport
mapping submodule (see "Concepts...", Annex, section 1) through
the interaction point called "N" by using the interactions defined
as TPDUs. The <global constraints of the Transport entity> are
specified wdth the state transition model as described below.

3.4 Overview of the externally visible properties of a module

The'external behavior of a module is determined by the
following:
(a) 	enumeration of the interaction points through which the
module interacts with its environment. The specification of each
interaction point includes the following information:

(al) enumeration of the interactions that may occur through the
interaction point;

(a2) a set of rules that determine the order in which these
interactions may occur.

(h) 	global constraints on the order in which the interactions
through different interaction point of the module may occur. 	(In
the case of service specifications, these constraints define how
the interactions at the two end-points of a connection relate to
one another. In the case of a protocol specification, these
constraints specify the order in which different PDU's may be
sent, and how the interactions at the (N)-service access point of
the entity relate to the sending and receiving of PDU's through
the (N-1)-layer interface).

While (al) is explicitly defined by the interaction -
definitions (see section 3.2) points (a2) and (b) are implicitely
determined by the state transition model (see section 3.5.).

3.5 Specification of a module in the state transition model

The state space of the module is specified by a set of
variables. A possible state is characterized by the values of each
of these variables. One of the variables is called "STATE". It
represents the "major state" of the module.

As an example, the following lines specify the state
space of an entity implementing the Transport protocol:

var
state : (idle,wait_for CC,wait_for_T ACCEPT_req,data_transfer
local_reference : TP_reference_type;
remote_reference Tp_reference_type;
TPDU_size :max_TPDU_size_type; 	 _-
QOTS_estimate quality_of_TS_type;

The possible transitions of the module are defined by
the specification of a number of transition types. Each
transition type is characterized by:

(a) the enabling condition: this includes
- the present major state (FROM clause)
- the input 	 (WHEN clause)
- the "additional enabling condition" (or "predicate")

(PROVIDED clause)
- the priority of the transition type (PRIORITY clause)

(b) the operation of the transition: this includes
- the definition of the next major state (TO clause)
- the "action" (BEGIN statementof the <block>) including the

generation of output.

As an example, the following lines specify some transition types
for a Transport entity:

from idle
when TSAP.T CONNECT_reg

provided ...(* Transport entity able to provide the quality of
service asked for *)

to wait_for_CC
illetÀ;b1

local_reference := ...;
TPDILsize := ...;
N.CR(0,1ocal_reference,class_0,normal,variable.....part_to_send);

end;

from date_transfer to same
when TSAP.T_DATA req

provided ... 	flow control from user ready *)
begin

out.....buffer.append(user_data);
end;

when out.....buffer.next-fragment
provided 	(* Network layer flow control ready *)

begin
N.DT(data-fragment);

end;

- 10 -

3.6 User guidelines

4. Syntax overview

This section defines the syntax of the specification
language. Large parts of the language are taken from the Pascal
programming language (ISO DP.7185).

Elements of the Pascal programming language are used for
the specification of constants, data types, procedures and
functions, and the declaration of the state variables.

This section defines the extensions to Pascal, as well
as certain restrictions.

4.1 Syntactic extension

Notation: Extended BNF where "+" means one or more
occurrences, "*" means zero, one or more
occurrences of 	an 	expression, 	and
separates alternatives". "**" means that the
construct is the same as in Pascal.

A service or protocol specification consists of a specification of
the interaction points and primitives (see section 4.1.1) and one
or more module specifications (see sections 4.1.2 and 4.1.3).
Only the definition of a module type is given here. Language
elements for the declaration of module instances within a system
and their interconnection is for further study.

4.1.1 Interaction points and primitives

The <channel definition> defines a type of interaction point.

<channel definition>eal <constant definitions>*
<type definitions>* <channel type def>

- 1 1 -

The possible interactions at a given type of interaction
point are enumerated by a definition of the following
form:

<channel type def> ::= INTERACTION <channel type id>
(<role list>) 	<interactions>

<role list>::= <role id>
1 	<role list> , <role id>

<interactions>::- <BY clause>
1 <interactions> <BY clause>

<BY clause> ::= BY <role list> : <interaction list>
<interaction list> ::= 	<interaction>

1 <interaction list> <interaction>
<interaction> ::= <interaction id> <interaction parameters> ;

The declaration of <interaction parameters> is in the
same form as function parameter declarations in Pascal
(i.e. for each parameter its name and type).

<interaction id> 	 <identifier> 	(*Notel*)
<channel type id> 	::= 	<identifier>

Note -1: Alternatively, the form of an <interaction id> could
indicate whether the interaction is, for instance, a
request, indication, response, or confirmation (for
further study).

4.1.2 Modules and their interaction points

The definition of a module type contains the declaration of
all abstract interaction points through which a module of
this type interacts. This includes the service access
points through which the communication service is provided
as well as the system interface for timers, etc. and the
access point to the layer below, through which the PDU's
are exchanged.

<module type definition>= MODULE <module type id>
(<interaction points>) ;
<module body>

<interaction points> ::= <interaction point declaration>
1 <interaction points> ; <interaction point

declaration>
<interaction point declaration> ::= <interaction point id> :

<channel type id>
(<role id>)

- 12 -

The <role id> indicates which role the entity plays as far
as the declared interaction point is concerned. We note
that the distinction of these roles permits the checking
that the - invocation of interactions in the conditions and
actions of transitions is consistent with the possible
exchanges defined in the channel definition.

4.1.3 Extended state transition model

<module body> ::= <label definitions>**
<constant definitions>**
<type definitions>**
<variable declarations>**
<major state declaration>
<state set definition>*
<procedure and function definition> (*Notes 2 and 3*)
<initialization>
<transition>+
END.

<major state declaration> ::= STATE : <enumeration type> ;
<state set definition> ::= 	<state set id> = <set definition>** ;

(*Note 4*)
<initialization> 	 <state initializer> <begin statement>** ;

<transition>:›
ANY <identifier> : <type identifier** DO <transition>+ (*Note 5a*)
WITH <variable>** DO <transition>+ (*Note 5b*)
WHEN <interaction point id> • <intraction id> <transition>+ (*Note 5c
FROM <major present state> <transition>+ <*Note 5d*)
TO <major next state> <transition>+ (*Note 5e*)
PROVIDED <expression>** <transition>+ (*Note 5f*)
PRIORITY <priority indication> <transition>+ (*Note 5g*)
<block>** ;

<priority indication> ::= <identifier>** (*constant of some
enumeration type*)

1 <integer>**
<major present state> ::= <major state value>

I <state set id>
<major next state> 	::= <major state value>

I SAME
<major state value> 	::= <identifier>** 	(*must be element of the

enumeration type of the <major
state declaration>*)

<output statement>::= <interaction point id> • <interaction id>
<effective parameter list>** (*Note8*)

- 13 -

Note 2 : Within a transition, "..." may be written for an
expression that is implementation dependene (not defined
by the specification). The body of a procedure or
function that is implementation dependent (not defined
by the specification) is written in the form "PRIMITIVE"

fl uL 	•
Note 3 : A boolean function X(<parameters>) with no side effects

may be declared in the form "predicate X(<parameters>)".
Note 4 : The elements of the set must be included in the

---enumeration type of the <major state declaration>.
Note 5a: These transitions may not include a ANY clause.
Note 5b: These transitions may not include a WITH clause.
Note 5c: These transitions may not include a WHEN clause.
Note 5d: These transitions may not include a FROM clause.
Note 5e: These transitions may not include a TO clause.
Note 5f: These transitions may not include a PROVIDED clause.

The expression must be boolean.
Note 5g: These transitions may not include a PRIORITY clause.
Note 6 : Each <block> must be preceeded by a FROM and a TO

clause.
Note 7 : To refer to the input parameters, 	the 	parameter

identifiers of the interaction in the <channel type
definition> are used.

Note 8 : This kind of statement (for producing 	an 	output
interaction) is an extension of Pascal.

4.1.4 Other extensions

(a) A comment that starts with the word "property"
describes properties 	that 	are 	part 	of 	the
specification.

(b) A facility for describing optional parameters is
introduced. To indicate that a parameter (or field
of a record) is optimal, its type definition is
preceeded by the keyword OPTIONAL, 	the value
UNDEFINED means that the parameter (or field) is not
present. A default value may be associated with the
type definition by a succeeding "DEFAULT=<constant>"
clause.

4.2 Removal of certain restrictions

4.3 Elements of Pascal not used

5. Definition of the semantics

6. Conformity rules for checking implementations

- 14 -

II

7. Verification rules for checking that an (N)-service
is rendered by an (N-1)-service and an (N)-protocol.

Annex A: Terminoiogy

1

— 16 —

Annex B: Relation to Rraphical description techniques

1. Introduction .

Graphical description techniques are often used to give
an overview of a protocol or service specification, and sometimes
are enhanced to provide a complete specification. Different
graphical representations of extended state transition models are
in use. Some of these representations are shown in section 2.
The systematic translation of linear specifications written in the
FDT described in this document, into graphical representations is
discussed in section 3.

2. Different graphical description techniques

The following subsections present overviews of the
Transport protocol class 0 connection establishment phase (a
complete specification is given in Annex D) using different
graphical description techniques. This may be used for a
comparison of these graphical techniques.

2.1 Common state transition diagrams

The diagram of Figure 1 gives an overview. It specifies
the major states and the types of transitions, indicating for each
transition only the kind of the relevant input and output. A
similar 	description 	technique 	is 	used 	in several CCITT
Recommendations, such as X.25, etc.

2.2 Enhanced state transition diagrams

The diagram of figure 2 contains the basic information
of figure 1, but it also includes some additional information
about conditions and actions of transitions relating to the
interaction paiameters and additional state variables of the
extented state transition model. Such a description technique is
used in several 8C6 documents, such as SC6 N42,2$1

2.3 The System Description Language (SDL) of CCITT SOXI

The diagram of figure 3 contains the same information as
figure 2, using the SDL of CCITT.

- 17 -

3. The translation of the linear FDT into graphical form

The trafislation is relatively straightforward if the
linear specification contains the transitions sorted by major
present states (FROM clause), input interactions (WHEN clause) and
additional conditions (PROVIDED clause), as in the example below.
Any specification may be put into this form by a simple
rearrangements of the order of the different transitions. The
following example is considered:

(*transitions*)
from A

when AP.reql
provided Cl

to B
begin Actionl; AP.indl end;

provided C2
begin Action2; AP.ind2 end;

when AP.req2
to C
begin Action3; AP.ind3 end;

The translations of these three transitions into the different
graphical representations are shown in figures 4, 5 and 6.

3.1 Translation into common state diagrams

All states shown in the diagram are declared in the
<major state declaration> part of the linear specification. Each
defined transition gives rise to an arrow in the diagram, as shown
in figure 4 (using the information of the FROM and TO clauses).
The information for the annotation of the arrows is taken from the
WHEN clause and the BEGIN statement of the transition <block>.
This statement must be scanned to extract the <output statements>
which are used for the annotation of the arrows.

3.2 Translation into enhanced state transition diagrams

While in the overview diagrams of common state diagrams
the information of the PROVIDED clauses and the BEGIN statement
(except for the output) is usually lost (see figure 1), this
information may be included in the enhanced transition diagrams,_
as shown in figure 5. The translation process is similar to the
case of common state diagrams.

— 18 —

3.3 Translation into SDL

The prôcess of translating a linear specification into
SDL is closely related to the embedded structure of the linear
specification (see example above). Each FROM clause corresponds
to a "large" graphical state symbol. Each WHEN clause, within a
given FROM clause, corresponds to a graphical input symbol
connected to that state symbol. If for a given WHEN clause, there
are embedded PROVIDED clauses, then a graphical decision symbol
represents the choice betweeri these alternative transitions, as
shown in figure 6. The BEGIN statement corresponds, in general,
to an action symbol and possibly some output symbols. (The
relevant outputs must be extracted from the BEGIN statement, as
explained in section 3.2). The TO clause corresponds to a "small"
state symbol which terminates a transition.

ANNEX 3

R 	coNeter..Z•ei

"1- etet er_
c g

/I % . sc _;„4
7225c- eel

/ N-11 sc

CoNeeT. ecci

/r sc4

(11".

4cc tier
wC. _ 4 r -

CC

Ce

cR ID R

Cc-
\l-r_Aaner_ ;mci

N_
sc _

/T. AccreY_

/cc

au ,

sfe

.4,c 2_

1

1
1
1 l

) wall_f Dr..

'F.. Acce?)-

ril
>r-lasc,_

I

1 	/
I cite)

cc

(c1,.y„

I

1-- Arreler

1

1
1

17.115c —
tt.,ct

he _
rev: ele

SCI. Wit

wet- for_ cc

YeS

1
\ 	

1 	

1 	
a

Cidte

r rei

I

Lelie j

N.:1 1SC-

/ 	41‘e(

f -r-11 sc.>

*T:

À
tuei

Aztec,- -371

it:m.

A-4 C

4 .4 cz

1
1

1
1
1

1

ir

L.b,pt z

z

1

rei 1

3 C I

/Itch eh, I eter,i_ 2_

f ite1 t

W4St1 cJ -

To: ISO/TC97/SC16/WG1 	Rapporteur's group on FDT

Source: G.V. Bochmann, E. Cerny, C. Lacaille (Canada)

Title: Formal specification of a Transport Service

1. Introduction

The annex gives a specification of the Transport service using
the extended state transition model described in "Tutorial on formal
description techniques (FDT)" (SC16 N..., and TUB-11). It is intended
as an example of the use of this FDT.

We note that the first part of the annex (specification of
the types and service primitives) was already given in annex 1 of
N706 ("Formal specification of a Transport protocol").

AliNEX 1

II type
T address_type = ...; .(* note 1 *)

sept 81 Transport Service Specification

TCEp_identifier_type = ...; (* note 2 *)

quality of TS_type = record
throughput_from average 	: integer;
throughput_to_average 	: integer;
throughput_from minimum 	: integer;
throughput_to_minimum 	: integer;
transit_delay_from average : real;
transit_delax_to_average 	: real;
transit_delay_from maximum : real;
transit_delay_to_maximum
residual_error_rate
set_up_delay
resilience_of_TC
acceptable_cost
security_level_of_TC
connectionassurance
priority_level

real;
: real;
: real;
: real;
: real;
: integer;
: reàl;
: integer;

(* bps *)
(* bps *)
(* bps *)
(* bps *)
(* seconds *)
(* seconds *)
(* seconds *)
(* seconds *)
(* probability *)
(* seconds *)
(* seconds *)
(* some monetary unit *)
(* ??? *)
(* seconds *)
(* ??? *)

end;

option...type = (normal,fast_connect_disconnect,with_expedited); (* see note 10 *)

TS_connect_data_type = ...; 	(* string of octets of limited length *)

TS_accept_data_type = ...; 	(* string of octets of limited length *)

TS_expedited_data_type = ...; (* string of octets of limited length *)

fragment_length_type = ...; 	(* implementation dependent *)

data_fragment_type = record
last_fragment_of_TSDU : boolean;
length : fragment_length_type; 	(* length of string *)
data : ...; 	 (* string of octets *)

end;

- 1 -

TSdisconnect_reason_type = (rS_user_initiated_termination,
lack_of_local_resources,

«inability_to_provide the_quality_of_service_asked_for,
inability_to_maintai; quality_of_service,
misbehavior_of TS user,
reference overflow,
mismatched_reference,
local congestion
remote_congestion,
empty,
...);

TS_user_reason_type = ...; 	(* string of octets of limited length *)

1

T_DISCONNECT_req(TCEPI
TS_user_reason

: TCEp_identifier_type;
: TS user_reason_type);

T DATAreq(TCEPI
TSDU_fragment

TCEp_identifier_type;
: data_fragment_type); 	(* note 3 *)

II interactions

TS_acces_point(TS_user,TS_provider) is

by TS_user:

T_ÇONNECT_req(TCEPI
to Taddress
from Taddress
QOTS—request
optiO-Us
TS_connect_data

T ACCEPT_req(TCEPI
QOTS_request
options
TS_Accept_data

: TCEP_identifier_type;
: Taddress_type;
: T_Address_type;
: quality_of TS_type;
: option type;
: TS__connect_data_type);

: TCEp_identifier_type;
: quality_of TS_type;
: option type;
: TS_accept_data_type);

T EXDATA_req(TCEPI 	 : TCEp_identifiertype;
TS._expedited_data : TS_expedited_data_type);

- 3 -

4

by TS_provider:

T_ÇONNECT_ind(TCEPI
to Taddress
from Taddress
QOTS request
options

 TSconnect_data

T ACCEPT_ind(TCEPI
QOTS._request
options

 TS_accept_data

: TCEP identifier_type;
: T_adUress_type;
: T_Address_type;
: qualit_of TS_type;
: optiontype;
TS._connect_data_type);

: TCEP_identifier_type;
: qualit_of_TS_type;
: option_type;
: TS_Accept_data_type);

T DISCONNECT_ind(TCEPI 	 : TCE_identifier_type;
TS_disconnect_reason : TS_disconnect_reason_type;
TS_user_reason 	: TS_user_reason_type); 	(* note 4 *)

: TCEP_identifier_type;
: data_fragment_type); 	(* note 3 *)

T_EXDATA_ind(TCEPI 	 : TCEp_identifier_type;
TS__expedited_data : TS_expedited_data_type);

end TS._access_point;

T DATA ind(TCEPI
TSDU_fragment

-5

I .

message buffer(user,buffer) ib 	(* note 5 *)

by user:

clear(in fragment_size : integer;
out_fragment_bize : integer);

append(data_fragment : data_fragment_type);

by buffer:

get_next(data_fragment : data_fragment_type);

end messagebuffer;

1 6

I .
•

'module TS (AP1,AP2:TS_access_point(TS_provider);
buffer12,buffer21: message_buffer (user));

tar
statel,state2: (idle,wait foracc,datatransfer,disconnect);

(* major states (note 67 *)

TS_reason:TS_disconnect_reason_type; 	(* TS provided disconnection reason *)
user reason:TS_user_reason_type; 	(* TS user provided disconnection reason *)
TCEE;T:TCEP_identifier_type; 	 (* local TS user identifier (note 4) *)
TCEP2:TCEp_identifier_type;
caller:T_address_type; 	 (* TS address of API (caller) *)
called:T_Address_type; 	 (* TS address of AP2 (called) *)
TCEPl_QOTS_estimate:quality_of TS_type; (* quality of service requested by API user *)
TCEP2_90TS_estimate:quality of_TS_type; (* quality of service agreed by AP2 user *)
options:option_type; 	 (* option initially requested by API. user *)

and finally agreed by AP2 user *)
connect_data:TS_connect_data_type; 	(* connect data sent by the calling (API) user

during the connection establishment phase *)
accept_data:TS_Accept_data_type; 	(* data returned by the called (AP2) user

during the establishment phase *)

1r * Global constraints *)

ITnitia lissoî:. idle;
state2:=idle;

1
1

1

7

1
Ilransitions

11

hen (statel=idle) and (state2=idle) do
when AP1.T_CONNECT.req(TCEPI,to_T_Address,from Taddress,

QOTS_request,requested_options,TS_connect_data)
when ... (* no congestion *) do

begin
statel:=wait_for_acc;
state2:=id1e
TCEP1:=TCEPI;
caller:=from_T_address;
called:=to Taddress;
options:=requested options; (* see note 10 *)
connect_data:=TS_connect_data;
buffer21.clear;
buffer12.clear;

end
else (* congestion *)

begin
statel:=idle;
state2:=idle;
AP1.T DISCONNECT_ind(TCEPI,...(* congestion (note 8) *),empty)

end;

/hen (statel=wait_for acc) and (state2=idle) do II
when ... (* The connection request reaches the called user *) do

11 	

begin
statel:=wait_for_acc;
state2:=wait_for_acc;
TCEP2:=...i (* some unique identifier *)

II 	
TCEP2_QOTS_estimatet=...; (* see note 7 *)
AP2.T_ÇONNECT_ind(TCEP2,called,caller,TCEP2_QOTS_estimate,

connect_data,options)

Il 	
end;

when ... (* internal problem (note 9) *) do
begin

II 	 state2:=idle;
statel:=idle;

_ 	AP1.T DISCONNECT_ind(TCEP1,... (* congestion (note 8) *),empty)
end;

Il 	
else;

1

1

"hen (statel=wait_for acc) and (state2=wait_for_acc)
when AP2.T_ACCEPT_req(TCEPI,OOTS_request,requasted_option

(* *see note 10 *),TS_accept_data)
and(TCEPI=TCEP2) do

begin
staten-wait_for_acc;
state2:=datatransfer
options:=requested_options; (* see note 10 *)
accept_data:=TS_accept_data;

end

1

1

when AP2.T DISCONNECT_req(TCEPI, TS_user_reason)
and(TCEPI=TCEP2) do

begin
statel:=wait_for acc;
state2:=disconnect;
TS__reason:=TS user_initiated_termination;
user_reason:=TS user_reason

end;
when ... (* internal problem (note 9) *) do

begin
staten=wait_for acc;
state2:=disconnect;
TS_reason:=...; (* note 8 *)
user_reason:=empty;
AP2.T DISCONNECT_ind(TCEP2,TS_reason,user_reason)

end;
when ... (* internal problem (note 9) - alternative transition *) do

begin
statel:=disconnect;
state2:=wait_for acc;
TS_yeason:=...; -(..* note 8 *)
user_reason:=empty;
AP1.T DISCONNECT_ind(TCEP1,TS_reason,user_reason)

end;
else;

-8-

when (statel=wait_for acc) and (state2=data_transfer)
when ... (* the accept indication reaches the caller *) do

begin
statel:=data_transfer;
state2:=data_transfer;
TCEP2_QOTS_estimate:=...; (* note 7 *)
AP1.T ACCEPT_ind(TCEP1,TCEP1_QOTS_estimate,

options,accept_data)
end;

when AP2.T DATA req(TCEPI,TSDU_fragment)
and ... (i flow control to Transport Entity is ready *)
and(TCEPI=TCEP2) do

begin
statel:=wait_for_acc;
state2:=data_transfer;
buffer21.append(TSDU_fragment);

end;
when ... (* internal problem (note 9) *) do

begin
statel:=disconnect;
state2:=data_transfer;
TS_reason:=...; (* note 8 *)
user_reason:=empty;
AP1.T DISCONNECT_ind(TCEP1,TS_reason,user_reason);

end;
when ...(* internal problem (note 9) *) do

begin
statel:=wait_for_acc;
state2:=disconnect;
TS_reason:=...; (* note 8 *)
user_yeason:=empty;
AP2.T DISCONNECT_ind(TCEP1,TSreason,user_reason);

end;
else;

9

1

Ilhen (statel=data_transfer) and (state2=data_transfer) do
when AP1.T DATA req(TCEPI,TSDU_fragment)

and... (iFflow control to Transport Entity is ready *)
and(TCEPI=TCEP2) do

begin
statel:=data_transfer;
state2:=data_transfer;
buffer12.append(TSDUragment)

end;
when buffer12.get_next(data_fragment)

and (*flow control to user is ready *) do
begin

staten=data_transfer;
state2:=data_transfer;
AP2.T DATA_ind(TCEP2,data_fragment);

end;
when AP2.T DATA_req(TCEPI,TSDU_fragment)

and •..(* flow control to Transport Entity is ready *)
and(TCEPI=TCEP1) do

begin
statel:=data transfer;
state2:=data transfer;
buffer21.append(TSDU_fragment);

end;
when buffer21.get_next(data_fragment)

and (* flow control to user is ready *) do
begin

statel:=data_transfer;
state2:=data_transfer;
AP1.T DATA_ind(TCEPI,data_fragment);

end;

- 10 -

1
1

1
1
1

1
1
1

1

when AP1.T DISCONNECT_req(TCEPI,TS_user_reason)
and(TCEPI=TCEPI) do

begin
statel:=disconnect;
state2:=data_transfer;
TS_reason:=TS user_initiated_termination;
user_reason:=TS_user_reason;

end;
when AP2.T DISCONNECT req(TCEPI,TS_user_reason)

and(TCEPI=TCEP2)—do
begin

statel:=data transfer;
state2:=disconnect;
TS_reason:=TS user_initiated_termination;
user_reason:=TS user_reason;

end;
when •.. (* internal problem (note 9) *) do

begin
statel:=data_transfer;
state2:=disconnect;
TS_reason:=...; (* note 8 *)
user_reason:=empty;
AP2.T DISCON1ECT_ind(TCEP2,TS_reason,user_reason)

end;
when •.. (* internal problem (note 9) — alternative transition — *) do

begin
statel:=disconnect;
state2:=data_transfer;
TS_reason:=...,(* note 8 *)
user reason:=empty;
API:717 DISCONNECT_ind(TCEP1,TS_reason,user_reason)

end;
else;

-11 -

when (statel=disconnect) and ((state2=data_transfer) or (state2=wait_for_acc)) do
(* the disconnect reaches the called user *)
begin

statel:=idle;
state2:=idle;
AP2.T DISCONNECTind(TCEP2,TS_reason,user_reason)

end;
else;
when ((statel=data_transfer) or (statel=wait_for_acc)) and (state2=disconnect) do

(* the disconnect reaches the calling user *)
begin

statel:=idle;
state2:=idle;
AP1.T DISCONNECTind(TCEP1,TS._reason,user_reason)

end;
else;
end; (*transitions*)

note 1 : An object of this-type must be able to contain the network and country code
(4 bytes) and the national subscriber number (12 bytes), which together form
the Network address, and also possibly some space for subaddressing in the
Transport layer

note 2 : A connection endpoint identification mechanism must be provided to allow a
Transport Service user to distinguish between several Transport connections
at the same Transport Service access point; this identification
has local significance only

note 3 : Since TSDUs are of unlimited length, they may be exchanged over the Transport
Service access point in several fragments; the maximum length of fragments
is implementation dependent and may be different for different interfaces of
a given Open System

note 4 : The 	TS_userreason 	parameter 	is 	significant 	only 	when
TS_disconnect_reason = TS user_initiated_termination

note 5 : "clear" is a request to empty the buffer ;"append(fragment)" adds the data
fragment after the data already in the buffer (if any); "get_next(fragment)"
occurs when the buffer sends a data fragment to the Transport Entity.

- 13 -

1
Il te 6 : The variables statel and state2 are associated with the two access points API.

and AP2 respectively. The major state of a TS module is thus defined by a
pair <sl,s2> where si stands for the state as seen at API and s2 for the
state as seen at AP2.

1
note 7 : The quality of service value indicated to the user is not precisely defined.

11

1
note 8 : The value of TS_reason is returned to both users. The choice of the value is

not defined formally.

1
' note 9 : Some internal problem causes the termination of the connection.The problem

could be due to a Transport Entity malfunction or to unrecovered problems of
the Network Service.

1
11

te 10: The acceptable set of values for the item "options" depend on the maximum
class of Transport protdcol available to both users.Only "normal" is allowed
with class O.

1

1

1
1

1
1

- 14 -

ANNEX 4

W,tsf fo

To: SC16 WG1 Rapporteur's group on FDT

Source: Canada

Title: Comments on a possible compromise on the syntax for extended
state transition descriptions

1. Introduction

A possible compromise between TUB-11 and TUB-17 on the syntax
of specifications in the extended state transition model could be as
follows:

(1) specifications of the interactions: as in TUB-11

(2) overall form of transitions: as in TUB-17, i.e. a transition
is of the form:

< next state > 	< present state> < incoming interaction >
{and 	additional conditions >1 begin < actions > end ;

The additional conditions are optional.

(3) references to the parameters of interactions: as in TUB-11, but
no parameters are mentioned for the incoming interactions, references
to these parameters in the conditions and actions use the parameter names
defined in the interaction specifications (see point (1)).

2. Comparison of the possible compromise with the proposal in TUB-11.

Advantage of compromise:

(1) The first part of each transition contains the information about
the major state and the incoming interaction in a more concise form.

Disadvantages of the compromise:

(1) Embedding of several transitions with similar conditions or the
same incoming interaction is not possible. A result of this seems to
be the need for distinguishing between different priorities of transitions
(for normal operation and error processing), which is less important
when embedded transitions can be specified.

(2) The syntax of the compromise gives the major state variable a special
role, while in the syntax of TUB-11 the major state is represented by a
variable without any special status. The results of this special role
are the following:

(a) For service specifications this syntax is not very convenient, since
one needs typically two major state variables (one for each end of the
connection), and not one as provided by the syntax.

(h) Additional syntax rules are needed for the following points:
-- "sanie state"
-- sets of states (with TUB-11, the standard Pascal syntax may
be used for this purpose)
-- declaration of possible major state values (if desired)

3. Some possible improvements for the syntax of TUB-11.

(1) For an action, write "begin...end when" instead of "do begin...end"

(2) Write "end when" instead of "else".

(3) Drop the parameter list for incoming interactions. The parameter
names given in the interaction specification could be automatically
made available for reference in the conditions and actions of the tran-
sition.

4. Importance of formatting

It is noted that a concise format for the major state information of a
transition (similar as in the case of the "compromise") may be obtained
by appropriate formatting, as in the following example:

when state = present and SAP.incoming

and <additional condition >
begin
< additional actions >

end when;

state := next_state;

With the syntax of the compromise, this could be written in the form:

next state < --- present : SAP:incoming
and < additional condition >
begin

< additional actions >
end)

5. Conclusion

It seems that a syntax as described in section 3 above would
be a better choice than the one described in section 1.

ANNEX 5

Time seeuence diagrams as FIIT

Time seeuence diagrams seem to be a useful too) for describing
service and protocols bY examples of their behavior. This note
proposes a notation for the use of such diagrams for
service descriptions, and defines the meaning of the
diagrams.

The notation and its meaning is explained , with the
• foliwoing examPlet

le The two vertical l.ines represent two access points of the
service.

.2. The execution of service primitives is indicated b%e arrows;
.inward arrows -represent reeuests, outward arrows represent
indications. 	•

3. The order of execution of service -P'r-imitives is indicated bY
pointed arrows, A Pointed a'rrow from primitive A to primitive 1%
means that primitive 1 is executed after primitive A.
The pointed
arrows g ive a relation between the primitives in
'1Ogical time' (see Lamport, Comm. ACM). Al) relevant
orders are indicated bv po.inted arrows. •

4. Information about the local state of an access point
nias be indicated close to the vertical li rie rePresenting the
access point: between the arrows rePresenting the execution
of 'service primitives.

ANNEX 6

Syntax for linear form of FM: comparison. of ISO proPosal and SDL-PR

1 , Introduction

This document gives a comparison of the ISO syntax.in F11T-16
for the linear form of the FDT, and the smntex of SDL-PR (see for
example FDT- il, and.Annex A to new Question 7 1XI).
This comparison could be the
basis for an evaluation of the two.

An overview comparison is given in the sections 	and 4 which contain
the smntax of the two proPosals with comparing annotations, The
annotations are as follows:
-- The underlined terminal and non-terminal symbols have a correspondence '
in the other language (non-underlined smmbols have no
corresPondense in the other language).

-- For those non-terminals that have a corresponding symbol . in the
other language with a euasi-identical meaning, the corresPonding
symbol is written on the left marin, of the paPer, where the
symbol is defined. Where such e smmbol is used without hein
explicitelm defined, the corresponding smmboi is written close
to it with an arrow indicating the correspondence. For examPle,
<process> and <module type definition> correspond to one another,'
as well as 'TO <procesS name>> and <interaction point id>.

Enumeration of differences:

le Design goals:

The design goal .for the 160 syntax was to use as much as possible the
»elements of standard Pascal. Pascal is a- high-lèVea modern ,i.6g.rammine;
language. Its design Ë08.1s were among others,. timplicitm, ease of
use for program design and implementation, and the support of
the 'structured Programming' aPproach.

The design goals for SDL-PR are
(see Annex A to new Question 7/X 1 , section 5.1):
'This Recommendation defines a Program-like form of the SDL (SDL/PR)
whose primarm purPose us to allow the mecanical production of
draPhical SDL presentations (SDL/GR).....'

It therfore seems that SDL-PR is primarily designed to lead to
comprehensive specifications in the graphical form. while the
ISO syntax is designed to lead to comprehensive specifications
in the linear form..

2. Comments

The ISO smntax allows comments, written '(* (text Phrase> *)',
anywhere between
symbols of a specification. The SDL-PR syntax allows comments
onlm in certain places of a ,specification, written ''COMMENT <text phrase>,
(for details see section 4).

3. Different keywords (reserved identifiers)

The kemwords chosen for delimiting the different elements of a sPecificatig
are different in the two languages. A comParison of.corresPonding Kemwords
is given bm the annotations in sections 3 and 4.

4, Identifiers -- names

To identify different elements of a specification (e.g. interactions,
-interaction points, processes, etc.) the ISO smntax uses 'identifiers'
(i.e. character strings without sPaces nor special characters (excePt '_')
while SDL-PR in addition uses >names> (arbitrary character strings).
It is noted that the SDL-PR *names' are the text to be printed inside
the corresPonding graPhical swmbol in the SDL-GR form of the specification

5. Interaction Points vs. Process, names

The source and destination of interactions (i.e. signals)
are indicated by refering to the interaction points declared in the
module (i.e. ProceSs) sPecification in the case of the ISO syntax,
while they are indicated by refering to the r ames of the processes
(i.e. module occurences) in the case of SDC-PR. A result of this is
that the specification of a process in SDL-PR must be changed when
the names of the other processes in the system are changed.-

6. State sets

The ISO syntax supports the concept of .'state sets' which, means that
it is possible to defined a single transition that is enabled in
a certain situation (for' exemple a given input, or a particular internal
condition) • for a Certain set of (major) states (for examPle in all
data transfer states, there ma y be several such states). This concept
is not suPported bw SDL-PR.

7 , Prioritle

The ISO syntax supports the distinction of several levels of priority
for different transitions, for example, high prioritY transitions 	_
for detection of PDU coding errors; andlow Priority transitions -
for normal processing (the coding errors M8M thé>n be igno.red
in the specification of the normal processing trensitions)..
This concept is not suPPorted bY SDL-PR.

8. PROVIDED

The ISO swntax uses the keyword PROVIDED to define a condition
(depending usually on input parameters and/or state variab) es)
tlat must he satisfied when a transition is executed. In SDL-PR
such a situation can usually be modeled by a DECISION. However, the
PROVIDED ma w also be used to introduce nàn-determinism into
the specifification. In SDL-PR, for this purpose,
fictitious inputs must he assumed. 	•

9. GOTO Programming

The assignment of the next (major) state ira the state transition
model (of both Proposals) is a kind of 'GOTO programming'
(in the sense of the
GOTO statement in mana y programming languages, which leads to
a new Program (control) state). (lt is noted that '60 10 programming'
is considered harmful for the design of easily understandable programs
by most experts in software engineering). It seems that in addition, the
GOTO Statement of Pascal is not needed in the case of the ISO
syntax for the sPecification of communication services or Protocols.
In the case of SDL-PR, use of GOTO programming is encouraged
(by use of the constructs JOIN and LABEL)due to the flow chart approach of
structure of the DECISION construct.

- „

10* Possible next states

In SDL-PR severa) different (major) states * may be possible next states
after a given input signal, if use of the DECISION construct is made*
In the case of the ISO swntax, there j5 only one possible next (major)
state after a given transition (the next major state is indicated
bm the TO construct)* It is noted that there is in SDL no clear

--cc-rrespondence to -the-transi-ti-on-concept-of-the ISO syntax)* 	. --
This restriction (of a single next state) was introduced on
PurPose* It could be avoided by allowing explicit assignments to the
STATE variable in the DEGlN *** END statement of the transition*

11* Additional concePts in the ISO syntax

A number of concepts are suPPorted by the ISO sYntax, which are
not considered in SDL-PR, such as
-- definitions of interactions and their parameters
-- definition of types of interaction points (<channel definition>)
-- additional state'variables-
-- data tes
-- Procedures and functions
-- initialisations
As shown in FDT-11, these concepts (with the exception of the
interaction Points* see difference 5)

- can be added to SDL-PR without
affecting much the other elements of the language*

(I

S..ezt:,, 3
Annex to minutes of Subgroup B meeting in Washington, Sept. 1981

Working Draft

Syntax of an extended state transition specification language

Notation: Extended BNF where "+" means one or more

occurrences, "*" means zero, one or more

occurrences 	of 	an 	expression, 	and

separates alternatives • "**" means that the

•
construct is the same as in Pascal.

<module>: := <channel definition>+<module type definition> (*Note9*)
-

<channel definition>::=<constant definitions>**

yp e d in it iii n's>

The possible interactions at a given type of interaction

point are enumerated by a definition of the following

form:

<channel type def):::INTERACTION <channel type id>

(<role list>) 	<interactions> ;

<role list> ::. <role id>

1 	<role list> , <role id>

<interactions>::=<BY clause>

1 <interactions> <BY clause>

<BY clause> ::= BY <role 	: <interaction list>

• .. 	 • .

I.
<interaction list> ::= 	<interaction>

1 <interaction list> <interaction>

<interaction> ::= <interaction id> <interaction parameters> ,

The declaration of <interaction parameters> is in the

same foria as function parameter declarations in Pascal

(i.e. for each parameter its name and type).

'<interaction « id>
• 	.• 	• 	.

<idènd.n.er> 	(*Notel*)

<channel type id> 	::= 	<identifier>

The definition of a module type contains the declaration

of all abstract interaction points through which a

'. :.module of this type interacts. This includes the service

access points through which the communication service is

provided as well as the system interface for timers,

etc. and the access point to the layer below, through'

which the PDU's are exchanged. The following syntax is

proposed:

<module type definition>::=MODULE <module type id>

PR (<interaction points>) ;

aes

<module body>

<interaction points> ::= <interaction point declaration>

1 <interaction points> ; <interaction point

declaration>

state declaration>

<state set definition>*

(z, e,L., 14 	--1,4-(ef

k)

•
<major

<interaction point declaration> ::= <interaction point id> :

<channel type id>

(<role id>)

The <role id> indicates which role the entity plays as '
-

far as the declared interaction point is concerned. We

note that the distinction of these roles permits the

checking that the invocation of interactions in the

.. conditions and actions of transitions is consistent with

the possible exchanges defined in the channel

definition.

<module body> ::= <label definitions>**

definitions>*.* _ 	 . 	 .

<type definitions>**

<variable declaations>**

<procedure and function definition>4e(*Notes 2 and 3*)

<initialization>

<transition>+

END.

‘\..EkreRt9C-r5 S <rcecs t et.144 e>

<major state declaration> ::= STATE : <enumeration typs;

<state set definition> 	::= 	<state set id> = <set definition>**

(*Notes4*)

<initialization> 	::= 	<state initializer> <begin statement>** ;

1
1

<major present state> ::= <major state value>

,r<state.set id>

'

1
1

<transition> ::= <transition part>+ <begin statemen_t>** ; (*Note5*)

::= FROM <major present state>

1 TO <maior next state>

1 WHEN <interaction point id> . <interaction id>
'

lee" "FReet<rou,›-> 	 (*Notes 6,7*) çsser-e

1 PROVIDED <expression>** 	(*must be boolean*)
«.

1 PRIORITY <priority indication>

<transition part>

<priority indication> ::= <identifier>** (*constant of some

enumeration type*)

1 <integer>**

1

<major next state> 	::= <major state valUe>

1 SAME

<major state value> 	::= <identifier>** 	(*must be element of the

enumeration type of the <major

state declaration*)

<output statement>:.:=<interaction point id> . <interaction id>

<effective parameter list>** (*Note8*)

Note 1: Alternatively, the form of an <interaction id> could

indicate whether the interaction is, for instance, a

• request, indication, response, or confirmation (for

further study).

1

Ii

Note 2: The body of a 	procedure 	or 	function 	that 	is

impleientation 	dependent 	(not 	defined 	by 	the

specification) is written in the form "PRIMITIVE" or

It 	It • • 	•

Note 3: A boolean function X(<parameters>) with no side effects

may be declared in the form "predicate X(<parameters>)".

Note 4: The elements of the set must be included in the

enumeration type of the <major state declaration>.

Note 5: There should be at most one of each parts defined in the

rule below. 	And there should be at least the parts

FROM, TO, and WHEN. A consistent ordering throughout a

specification is desirable. The possibility of nesting

is for further study. 	 •

Note.5a: Within a transition, "..*." may be written for an

expression that is implementation. dependent (not defined

by the specification).

Note 6: The possibility of spontaneous transition, i.e. without

an input (WHEN part) is for further study.

Note 7: To 	refer 	to the input parameters 	the parameter

identifiers of the interaction in the <channel type

definition> are used.

Note 8 	This 	kind 	of statement (for producing an output

interaction) is an extension of Pascal.

Note 9: Only the definition of a module type is given here-

Language elements for the declaration of module

instances within a system and their interconnection is

for further study.

ANNEX 	 Representation of the SDL/PR Syntax
in the Bac kus Maur Form*

1.1 	. Preliminaries to the Backus Naur Form Representation

The context-free syntax is defined in this Annex by a context-free
grammar using an extension of the Backus Naur Form (1).

Syntactic categories are indicated by one or more English Words, typed
in italic characters, enclosed between the angular brackets <and>. This is
called a non terminal element. Each non terminal category is defined by an
expression of termIcal and non-terminal elements on the right hand side of the
symbol ::=.

Sometimes a non-terminal element includes an underlined part, This
underlined part does not'form part of the context...free description, but define's
a semantic sub-category. For example: <state name> is identical to <name> in . -
the context free sense, but semantically it defines only names of the
sub-category "state".

Syntactic elements may be grouped together by using the curly brackets
(and]. Repetition of a curly bracketed group is indidated by an asterisk (*) or
plus (+). An asterisk denotes thaz the group may be repeated zero or more
times, a plus that the group may be repeated one or more times. {A } * stands
for any sequence of A's including zero, while (A} + stands for any sequence of
at least one A. If syntactic elements are grouped using the square brackens
[and], the group is optional. Groups of syntactic elements may be separated by
vertical bars 1 ; . this represents alternative groups any one of which may be
chosen.

The lexical elements of SDL/PRare: the keywords, identifiers
(<ident›), text strings (<text>) and note strings (<note›). Spaces may be used
to delimit the lexical elements of. SDL/PR. For instance BLOCKCALLHANDLING will
be taken as one identifier insteâd of the start of a functional block
identified as CALLHANDLING. Contiguous spaces have the same delimiting effect

• as a single space.

A note may be inserted at all places in a program where spaces are
allowed as delimiters. A note has the sanie delimiting effect as a space.

Other delimiters are the colon, the semicolon and the comma.

A.2 	Syntax of the basic SDL/PR
•

<functional block> :: = BLOCK <block name> [<comment>]; (<process>1
+ ENDBLOCK <block name> [<comment>];

»faut.E 	/.4.44-14>

Il 44,44,4 4Dr eir4e

<process> :: = PROCESS <processilame> [<comment>]. (<state>1 + 	•
ENDPROCESS <Process name< [<comment>].;
ehe

<state> :: = STATE <state name> [<oomment>]; [<state picture>]
7.<717e> 1 <input>) * ENDSTATE <state name>
[<comment>]; •

* This annex is taken from CCITT Study Group XI, Contribution No. 1,
Period 1981-1984, pp. 73-75, Appendix A to Draft Recommendation Z.105.

1
5c..%Àe UQ1A1

4/.4-st
1

-Pefra

./WtibAi 	• Z:t•teme -e.«. W.>
<input> :: = INPUT <mallÈ> f, <:LUzaral.. name>1 * [INTERNAL]

1Tier<orocess name>) [<comment>]; <transition string>

1

4241

1
1
1

1.01mdel 411 —7.1Wer 	 •

• • /- . 	• (<join> 1 <next state>1 .

<save> 	= SAVE <signal, name> (, <signal name>1 *
1. 	 • (FROM <orocess naine>) [<comment>);

<transition string> :: = [[<label>) <transition element>) *

<transition element> :: = <task> : <output> 	<null task> 1
. 	 <decision>

<task> 	= TASK <task name> [<comment>];

.64,i,ei„„A > <output> :: = OUTPUT <sieznaretame>.[INTERNAL] 	• 	.

	

.. 	.

• •. 	(7:0 <-rocess name>) [<comment>]; 	. .
. 	 .14„,... p..:.-1 Mi..--

-

<decision> :: = DECISION <decision naffie> [<comment>]; 	.
. • , 	(<result name> {, <resùlt name>) *)
• : <transition string> [<join> : <next state>)
.. • . 	, 	{(<result name) {, <result name>} *) - - 	• 	•

:'<transition string> [<join> 1 <next state>]]
•

<null task>:: = <comment›;
» 	 -- - 	 ,„-

4a.cz

11

--P44c,d .1e,4Z

•
. 	END DECISION;

• - 	 .

<join> i: = JOIN <label ident> [<comment>);

<nextstate> :: = NEXTSTATE <state name> [<comment>];

<label> r: = <label ident> : 	 L/ e >
<name>:: = (<ident) [<text>) I <text>)

<comment> :: = 223MEIVIL<text> ,
• &

<text> :: =. ' <text phrase> '

<text Phrase> :: -= {char} +

<ident> 	= kletter> 1 <digit> I 	+

<state picture> :: = see section 5.6

<char> :: = <letter> 1 <digit> 1 <specials>

<specials> :: = 	1,1 ! ?:$1&:/:> <1.= 	; 	,
■■••■ 	

<letter> :: =

<digit> :: 	Oili2i31 1115:617:8:9 •

ANNEX 7

CAN COM VII/39

International Telegraph and Telephone
Consultative Committee

- (CCITT)

Period 1981 -1984 	 Original: English

Question : 39/VII 	 Date: December 1981

STUDY GROUP VII - CONSTRIBUTION No.

SOURCE: CANADA

TITLE : PROPOSAL FOR A PROGRAMME—LIKE Fin.

1.0 	Considering that;

	

1.1 	Different approaches to the development of a programme-like FIT were discussed
during the last Rapporteurs meeting on Q39/VII at Ottawa during Oct 1981,

	

1.2 	The ISO TC97/SC16/WG1 ad-hoc group on FDT has develloped, after two years of
intensive study, a programme-like FDT for communication protocols and service*
which is based on the PASCAL programming language, and seems suitable for the

11 	purposes of SGVII's FDT requirements,

	

1.3 	There are important advantages in adopting the same FDT in CCITT and ISO,

	

1.4 	The adoption of a FDT based on PASCAL has many other advantages, as explained
in the attached ANNEX 7 of the minutes of the last Rapporteurs meeting on
Q

	

1.5 	The systematic translation from a programme-like FDT given in the form
proposed by ISO into graphical form, and in particular into graphical
SDL, is possible as discussed in ANNEX B of the recent ISO document.

	

2.0 	It is proposed that the CCITT and ISO adopt a common programme-like FDT
based on PASCAL along the lines of the present ISO proposal*.

* ISO TC97/SC16/WG1 - ad hoc group on FDT, Subgroup B. - Title: A FDT based on
an extended state transition model (Working Draft, Boston, Dec. 1981)

ANNEX 8

Question : 39/VII Date: December 1981

CAN COM VII/40
International Telegraph and Telephone

Consultative Committee
(CCITT)

Petiod 1981 -1984. 	 Original: English

f

STUDY GROUP VII - CONTRIBUTION No.

SOURCE: CANADA

TITLE: 	PROPOSAL ON DIFFERENT FORMS OF FDT

1. Different forms of FDT are useful, such as graphical and programming-language-like
forms. Some are intended for giving overviews of specifications, or may be used
for both overviews and complete specifications.

2. A complete specification in the programming-language-like form should always be
. 	given and should be regarded as the authoritative specification.

3. For the programming-language-like specifications of services an approach similar
to the one for protocols should be used. A possible extension for describing the
local rules for the execution sequences at service access points is described in
the annex.

4. The use of time-sequence diagrams, as explained in section 2 of Annex 5 of the
report of the last Rapporteurs meeting on Q 39/VII should be retained for overviews
of typical interaction sequences.

5. Common state diagrams, similar as used in X.25, should be retained for' overviews
of protocol and service specifications.

6. SDL-GR seems appropriate for a more detailed graphical specification than is
possible with state diagrams.

.../2

: TCEP identifier type;
: T adaress type;
: T—address —type;
: qUality_o7 TS_type;
: option type;
: TS_conact_data_type);

' 	 I

.../2

• Annex: Specifying local rules for interactions at an access point

The example below shows how the elements of the program-like FDT developed by
ISO* could be used to specify, the local rules that determine in which order the service

primitives may be executed at one given access point. The syntax of this example

assumes that the symbol <interactions> in the syntactic rule for <channel type def>
in the FDT* is replaced by the two symbols <interactions> <constraints>, and the
new symbol <constraint> is defined by

<constraint> 	empty
I <module body>

It is also assumed that the <block> of a <transition> is optional.

The example below is the specification of a Transport.service access point (for
a single connection, for simplicity). The first part of the specification defines the

service primitives with their parameters, while the second part defines the order in
which they may be executed at an access point, using the state transition model.
(For instance, the first transition reads: From the "idle" state a "T_CONNECT_req"
interaction will lead to the "wait _ for_ conf" state).

It is important to note that such a specification is not a complete service
specification. A service specification should include the information given here,

as well as the global end-to-end properties of the service which relates the interac-

tions taking place at different access points.

* ISO TC97/SC16/WG1 - ad hoc group on FDT, Subgroup B. - Title: A FDT based on
an extended state transition model (Working Draft, Boston, Dec. 1981).

Example

interaction

TS_access_point(TS user,TS_pro .vider) is

by TS...user:

T CONNECT_req(TCEPI
to T address
fra—T address
QOTS—riquest
optias
TS_connect_data

T ACCEPT_req (etc.

T_DISCONNECT_req(etc.

T DATA_req(etc.

T_EXDATAreq(etc.

• ../3

•••/3

by TS_provider:

TÇONNECT_ind(etc.

T ACCEPT ind(etc.

T DISCONNECT_ind(etc.

T_DATA_ind(etc.

T_EXDATAind(etc.

var state : (idle, wait_for_conf, wait_for_response, data_transfer);

from idle 	 •
when UONNECT req 	to wait_for_conf;
when T_CONNECT_ind 	to wait_for_response ;

from wait_for_conf

when T_DISCONNECT_ind 	to idle;
when T ACCEPT_ind 	to data_transfer;

from wait_for_response

when T_DISCONNECT_req 	to idle;
when T ACCEPT_req 	to data transfer;

from data_transfer

when T_DATA_req 	to same;
when T_DATA_ind 	to same;
when T EXDATA_req 	to sanie;
when T_EXDATUnd 	to same;
when T_DISCONNECT_req 	to idle;
when T_DISCONNECT_ind 	to idle;

end.

ANNEX 9

International Telegraph and Telephone
Consultive Committee

(CCITT) CAN COM VII/42

Original: English
Period 1981-1984

Date: February 1982
Question : 39/VII

For submission to the SC VII Rapporteurs meeting on FDT,
Mèlbourne

Title: The translation of the ISO linear FDT into graphical SDL

Source: CANADA

1. Introduction

At the last Rapporteur's meeting on FDT in Ottawa it was concluded .
that it would be desirable to adopt the ISO proposal for a linear FDT
(working document of subgroup B of the ad hoc group on FDT of
TC97/SC16/WG1) for the linear form of FDT, and to consider SDL as a
possible graphicalform. This paper shows how a specification given in
the linear form of ISO can be translated into a graphical
representation using SDL. It is noted that this translation is already
considered in Annex B of the ISO working document (Dec. 1981). The
same . approach is used in the following, and more detailed
considerations are given. It is assumed that the graphical form is to
be as complete as possible. In the case that only overview information
is required, the traditional state diagrams, as in X.25, seem to be a

. preferable graphical representation.

2. A control structure convention simplifying the translation

The following structure simplifies the translation. (It is noted,
however, that this structure does not necessarily represent the best
structure for obtaining readable specifications; sorting the
transitions by input interactions (WHEN clauses) may be preferable):

The different transitions of the specification are sorted by
- major present state (FROM clause),
- input interaction (WHEN clause),
- additional conditions (PROVIDED clause)

and then contain the TO clause (next major state) and the <block>. It
is assumed in the following that the <block> does not contain loops
nor GOTO statements. It is not clear where the information about
variables and procedures declared within the <block> (if such exist)
should be displayed in the graphical form.

3. The translation process

The basic approach to the translation process and a simple example are
descibed in the ISO working document. The following considerations are
added.

2.

3.1. The SDL decision symbol is used for the following purposes:

(a) to represent the different choices that are described by different
transitions (in the linear form) having different PROVIDED clauses,
but otherwise identical conditions (present state value and input
interaction).

(b) To represent the diffèrent choices of a Pascal CASE or IF
statement within the BEGIN .. END part of the transition <block>.

3.2. The BEGIN ... END part of the transition <block> must be parsed
by the translator and the following actions must be performed,
depending on the statements encountered:

(a) An output statement is to be translated into an SDL output symbol.
The text within the symbol could simply be the text of the output
statement.

(b) A sequence of statements which are neither output nor IF or CASE
statements, are translated into a single SDL action symbol. The text
within the symbol could simply be the text of the encountered
statements.

(c) An IF or CASE statement is translated into an SDL decision symbol,
where the different alternate statements of the IF or CASE statement
are translated into different branches following the decision symbol.
The branches could be annoted by "TRUE" and "FALSE", or the
disciminant values of the CASE variable.

(d) At the end of the translation of the BEGIN ... END part of a
transition, an SDL state symbol is added to each open branch of the
resulting SDL diagram, which represent the next major state of the
system. The symbol should be annotated by the state value given in the
TO clause of the linear specisfication.

4. The inclusion of informal specification elements

A distinction is made in the ISO working document (section 4.1.4 point
a) between informal specification elements that are part of the
specification (although expressed in an informal, natural language
format), and a comment that is merely some text which is only included
for ease of understanding. This distinction seems to be an important
one. In SDL such a distinction has not been made; most texts written
within SDL symbols are effectivly informal specification elements,
since they are written in natural language.

If informal specification elements are written with the linear syntax
<informal specification element text> # then the information of

the SDL diagram below (taken from CCITT Rec. Q.704, figure 8) may be
represented in the linear form as follows.

module signalling_route_management (
to_STP : 	

From
adjacent -
STP

ansfer
prohibled
message

Transfer
allowed
message

Route se

ge

l

essa
test

m

From
adjacent
STP

Intorm
signalong
trafficman
agement

Smnalling
route

uoavadablE

S,gnaffing
mute

evadable_

Start route
set test

procedure

Stop route
set test

procedure

Route
aver able

Yes

Transfer
wobbled
message

To
tesbng

SP

To
teMmg

SP

Inform
aJgnalling
traffic man
agement

Tr an s er
allowed
m es sa ge

(t) can.35821

3.

to_signalling_traffic_managment : 	
tester :); 	•

var
state : (idle);

from idle to idle
when to_STP. # transfer prohibited #

begin
to_signalling_traffic_management. # signalling route unavailfi

start route set test procedure #
end;

when to_STP. # transfer allowed #
begin

to_signalling_traffic_management. # signalling route availit ;

stop route set test procedure #
end;

when tester. # route set test #
begin

if # route available #
then tester. # transfer prohibited #
else tester. # transfer_allowed #
end;

/Q U4

route management o ■ enie» diagram

ANNEX 10

International Telegraph and Telephone
Consultive Committee 	 •

(CCITT)
CAN COM VII/43

Original: English

Period 1981-1984
Date: February 1982

Question : 39/VII

For submission to the SG VII Rapporteurs meeting on FDT,
Melbourne

Title: A method for specifying module interconnections

Source: Canada

1. Introduction

The working paper of Subgroup A of the ad hoc group on FDT of ISO

TC97/SC16/WG1 (N....) identifies the following elements of formal

specifications for communication protocols and services:
(a) enumeration of possible interaction primitives (section 2.2.1),
(b) specification of possible execution sequences (section 2.2.2),

and
(c) specification of interaction points of modules and their

interconnecions (section 3.3).

It is noted that the subgroups B and C of the ISO ad hoc group on FDT
work on different approaches to point (b); and the approach of the

CCITT SG VII on FDT is related to the one of the ISO Subgroup B. It is
desirable that unique approaches to (a) and (b) could be developed by
ISO and CCITT which are compatible with the different approaches for

point (b).

It is noted that the syntax developed by Subgroup B contains some
elements for the specification of interaction points (this is part of
point (c)).

The other aspect (the interconnection of modules) is usually
represented in graphical form by diagrams, such as shown in figures 1

and 2. This paper presents a possible linear form for such
specifications which could be useful for certain purposes. The
application of this linear specification technique to the OSI
Reference Model, as shown in figure 1, is also given.

2. A possible syntax for specifying module sub-structure and module
interconnections

For the specification of a module type, the syntax of section 4.1.2 of

the Subgroup B working document is assumed. For the specification of a
refinement (implementation) of a module in terms of a number of sub-
modules and an appropriate interconnection of these sub-modules, the

following syntax may be used.

REFINEMENT <name of refinement> FOR <name of refined module type>
IS 	 •

<list of sub-modules>
INTERNAL CONNECTION <list of internal connections

between sub-modules>
EXTERNAL CONNECTION <list of connections of sub-modules

to ports of refined module>
END;

Each sub-module is declared as
<name of sub-module occurence> : <name of sub-module type>

Each connection is written in the form
<(sub-) module name> • <name of interaction point> =

<name of other (sub-) module> • <name of interaction point>
An example is given in the following section.

3. Linear form for the structure shown in figure 1

3.1. Introductory comments

Figure 1 shows the structure of the OSI Reference Model as far as the
Transport layer is concerned. Similar diagrams (or linear forms) Could
be used to describe all seven layer of the Model. The linear
specification given below uses the Transport and Network service
specification, and the Transport prOtocol specification, which are
assumed to be given in the form of specifications for module, types
named "TS", "NS", and "TP", respectively.

It is noted that the multiplexing allowed in the Transport layer, and
the undefined relation between the Transport and Network addresses
makes the specification below relatively complex.

3.2. Linear specification of the structure of the Transport layer

refinement ISO_TS_provider for TS is
entities : array [entity_id_type] of TP;
NS_provider : NS;
internal connection

for id in entity_id_type, N_addr in N_address_type
such that •.. (* the entity "id" uses the NSAP

identified by the Network address
N_Addr *)

entities [id]. NSAP [N_addr] = NS_provider. AP [Naddr]
(* property: at most one entity connected to each

access point (AP) of NS_provider *)
external connection

for id in entity_id_type, T_addr in T addr_type
such that ... (* the entity "ii" services the TSAP

identified by the Transport address
T addr *)

entities [id]. TSAP [Tladdr] = TS. AP [Taddr]
(* property: at most one entity connected to each

access point (AP) of the refined module "TS" *)

1

Signaqing
route

management

FIGURE I/Q.704

, • Signalling network functions

I 	4

•otIS

Level 2
Message
Transfer

Part

lever 3
Message Transfer Part

Signalling netimark functions

Signalling message handling

Message
distribution

Message
discrimination

illei*mt•mmuum■■■•

4

Message
routing

Signalling netWork management

Signalling
• traffic

management
-•

•

Signalling
link

management ••

CCITT-35730

Testing and maintenance (Message Transfer Part)

tumenammis Signalling message flow

	 Indications and controls

ANNEX 11

1 .

International Telegraph and Telephone
Consultive Committee

(CCITT) CAN CON VII/41

Original: English
Period 1981-1984

Question : 39/VII

For submission to the SG VII Rapporteurs meeting on FDT,
Melbourne

Title: Examples of Transport protocol specifications

Source: Canada

1. Introduction

The annexes contain specifications of the Transport protocol (classes
0 and 2) using the formal description technique (FDT) defined by ISO
TC97/SC16/WG1 ad hoc group on FDT (working document December 1981,
Subgroup B). The specifications are based on (informal) protocol
description which is similar (but not identical) to the latest
CCITT/ISO protocol description for classes 0 through 4. The purpose of
this document is to show the application of the FDT to Transport
protocol specifications.

Annex 1 contains a class 0 protocol specification for a single
Transport connection. This specification is kept relatively simple,
and certain aspects, such as the mapping of the TPDU into the Network
service data units are not specified. The specification is a
adaptation of the protocol specification given in the paper FDT-2 of
the last Rapporteurs meeting' In Ottawa, and the notes referenced in
the specification can be found in that document.

Annex 2 contains a relatively complex protocol specification,
including the handling of many simultaneous connections, and
multiplexing of several Transport connections into a given Network
connection. The following sections contain some additional remarks on
certain aspects of the specification.

2. Some comments on the specifications

2.1. Structuring by functions or phases

The different transitions of the specification are grouped by
functions and/or phases. The grouping has been chosen in an arbitrary
fashion. More study is needed to determine which kind of grouping
gives rise to most readable specifications. In particular, all PDU
receiving transitions have been grouped together, in order to obtain a
more compact specification. It may, however, be preferable to
distribute these transitions with the other groupes of functions and
phases.

Date: Februa Date: February 1982

2.

2.2. Major states

In Annex 2, since the-handling of many simultaneous connections is
described, there is one "major" state per connection. The ISO syntax
foresees only a single "major" state. Therefore the "major" states of
the connections are handled as ordinary state variables, which are
replicated in an array for each connection. (The same is done for the
states of the used Network connections).

2.3. A posSible definition of the meaning of the "FROM" and "TO"
clauses of the FDT

In order to overcome the problem mentioned under point 2.2 above, the
application of the "FROM" and "TO" clauses defined in the ISO working
document could be generalized, and its meaning could be defined by the
following equivalence rules:

(1) A "FROM <major state value>" clause is equivalent to the clause
"PROVIDED state = <major state value>" or the addition of "and state =
<major state value>" in an already existing PROVIDED clause.

(2) A "FROM <state set id>" clause is equivalent to the clause
"PROVIDED state in <state set id>" or the addition of "and state in
<state set id>" in an already existing PROVIDED clause.

(3) A "TO <major state value>" clause is equivalent to the Pascal
statement "state := <major state value>;" to be included as an
additional statement in the BEGIN ... END part of the <block> of the
transition.

(4) A "TO SAME" clause is equivalent to a "no operation" being added
to the <block> of the transition (i.e. no change).

Since these rules define the meaning of the "FROM" and "TO" clauses in
terms of Pascal expressions and statements, their meaning is defined
in terms of the meaning of Pascal.

2.4. The possible use of "FROM" and "TO" clauses in the specification
of Annex 2.

Using the equivalences defined above, the "FROM" and "TO" clauses may
be used in many places of the formal specification given in Annex,Z,
instead of the equivalent Pascal expressions and statements used in
the present version. These places are indicated by a vertical line on
the right margin of the specification.

3 .

ANNEX 	1

Title : Specification of class 0 Transport protocol for a single
connection

Introductory comments

The Transport protocol specification given below uses the notation of
the FDT proposed in "Tutorial on formal description techniques (FDT)"
as referenced above.

Only a single Transport connection is considered. It is assumed that
the interactions specified always refer to a particular Network and
Transport connection which are not explicitely identified. A
specification of the explicit handling of several connections,
possibly over different Network and Transport access points, is given
in Annex 2.

For the data transfer phase, flow control at the Network layer and
Transport layer interfaces is considered. However, it is only
specified informally, since the specification of the Transport service
(and equally the Network service) does not include explicit service
primitives for flow control. If such primitives are added to the
service specifications, the flow control could be specified formally
within the same formalism.

The specification below defines the "logical behavior" of a Transport
entity in terms of its interactions through the exchange of protocol
data units and service primitives. 	It does not, however, specify how
the protocol data units are mapped into the service primitives of the
Network layer. 	Some of these aspects are specified in Annex 2.

It is noted that the choice of data types for the parameters of
service primitives and protocol data units is mainly oriented towards
a simple logical structure of the data, and not towards the way this
information may be coded as protocol data units within the service
data units of the Network layer, or as interface data units depending
on the implementation of the Open System.

Since the protocol specification refers to the Transport service
specification, the list of Transport service primitives and the type
definitions for their parameters are given below.

Transport Service Specification

const
undefined = ...; 	(* note 1 *)

type
T_address_type = •..; 	(* note 2 *)

TCEP_identifier_type = ...; 	(* note 3 *)

4.

quality_of_TS_type = record
throughput_from_average 	: integer;
	etc 	

(* bps *)

end;

option type = (normal,fast_connect_disconnect,with_expedited);

TS_connect_date_type = ...; 	(* string of octets of limited length *)

TS_accept_date_type = ...; 	(* string of octets of limited length *)

TS_expedited_date_type = ...; 	(* string of octets of limited length *)

fragment_lengt_type = ...; 	(* implementation dependent *)

date_fragment_type = record
end_of_TSDU : boolean;
length : fragment_length_type; 	(* length of string *)
data : ...; 	(* string of octets *)

end;

TS_disconnect_reason_type = (TS_user_initiated_termination,
lack of_local_resources,
inability_to_provide_the_quality,
misbehavior_of_TS_user,
reference_overflow,
mismatched_reference,
local_congestion,
remote_congestion,
...); 	(* note 4 *)

TS_user_reason_type = ...; 	(* string of octets of limited length *)

interactions

TS_access_point(TS_user,TS_provider) is

5 .

by TS_user:

T_CONNECT_req(TCEPI
to_T address
froMIT_address
QOTS_request
options
TS_.connect_data

: TCEp_identifier_type;
: T_address_type;
: T_addresa_type;
: quality_of_TS_rype;
: option_type;
: TS_connect_data_type);

• T_pONNECT_resp(TCEPI 	 : TCEp_identifier_type;
QOTS_request 	: quality_of_TS_type;
options 	 : option_type;
TS_accept_data 	: TS_accep_data_type);

T_DISCONNECT_req(TCEPI 	 : TCEP_identifier_type;
TS_user_reason 	: TS_user_reason_type);

T_DATA_req(TCEPI 	 : TCEp_identifier type;
TSDU_fragment 	: dat_fragment_t7pe); 	(* note 5 *)

TEX_DATA_req(TCEPI 	 : TCEp_identifier_type;
TS_expedited_data : TS_expedited_dat_type);

by TS_provider:

T_CONNECT_ind(TCEPI
to_T address
from— _address
QOTS_request
options
TS_connect_data

T_CONNECT_conf(TCEPI
QOTS_request
options
TS_Accept_data

: TCEp_identifier_type;
: T_address_type;
: T_address_type;
: quality_of_TS_type;
: option_type;
: TS_connect_data_rype);

: TCEp_identifier_type;
: quality_of_TS_type;
: option_type;
: /Saccept_data_type);

T DISCONNECT_ind(TCEPI 	 : TCEP_identifier_type;
TS_Aisconnect_reason : TS_disconnect_reason_type;
TS_user_reason 	: TS_user_reason_type);

T DATA_ind(TCEPI 	 : TCEp_identifier_type;
TSDU_fragment 	: data_fragment_type); 	(* note 5 *)

TEX DATA_ind(TCEPI 	 : TCEP_identifier_type;
TS_expedited_data : TS_expedited_dat_type);

6 .

Transport Protocol Specification 	(* for class 0 *)

uses Transport Service
uses Network Service

type 	(* note a *)
credit_allocation_type = 0..15;

Tp_reference_type = ...; 	(* string of 2 octets *)

max_TPDU_size_type = (128,256,512,1024,2048);

variable_part_type = record
calling_T address : ...; 	(* note b *)
callecl_T .=-a-ddress : ...; 	(* note b *)
max_TPDU_size : max_TPDU_size_type;
additionnal_clear_reason : ...;
rejected_TPDU : ...; 	(* note c *)

end;

protocol_class_type = (clase_0,class_1,class_2,class_3,class_4);

TP_disconnect_reason_type = (TS_user_initiated_termination,
remote_congestion,
connection_negotiation_failed,
duplicate_connection_detected,
mismatched_references,
procedure_error,
destination_entity_not_available,
reference_overflow,
unknown_reason);

Tp_reject_cause_type = (reason_not_specified,
function_not_implemented,
invalid TPDU_type,
invalid_parameter);

);

);

7.

Interaction

TPDU_and_control (entity, NS_provider)

by entity, NS_provider :

CR(credit 	 : credit_allocatioh_type;
source_reference : TP_reference_type;
class 	 : protocol_class_type;
options 	 : optioh_type;
variable_part 	: variable_part_type; 	(* note f *)
user_data 	: ...); 	(* note e *)

CC(dest_reference 	: TP_reference_type;
source_reference : TP_reference_type;
class 	 : protocol_class_type;
options 	 : optioh_type;
variable_part 	: variable_part_type); 	(* note f and note i *)

DR(dest_reference 	: TP_reference_type;
source_reference : TP_reference_type; 	(* note j *)
disconnect_reason : TP_disconnect_reason_type;
variable_part 	: variable_part_type); 	(* note g *)

DT(user_data 	data_fragment_type);

ERR(dest_reference : TP_reference_type;
reject_cause 	: TP_reject_cause_type;
variable_part : variable_part_type); 	(* note h *)

4--by entity:
N DISCONNECT_req (NCEP_id 	, reason :);

by NS_provider :
Network_disconnect (
Network_reset (

interactions

local_buffer(user,buffer) is 	(* note k *)

by user:

clear;

set_max_get_size(fragment_size 	fragment_length_type);

append(fragment : data_fragment_type);

by buffer:

get_next(fragment : data_fragment_type);

8.

module Transport_entity(TSAP : TS_access.jpoint(TS_provider);
- 	mapping : TPDU_and_control (entity);

out_buffer,
in_buffer : local_buffer(user)) is

var
state : (idle,wait_for_pC,wait_for_T_CONNECT_resp,date_transfer);

local_reference : TP_reference_type;

remote_reference : TP_reference_type;

TPDU_size : max_TPDU_size_type;

remote_address : ...; 	(* note b *)

QOTS_estimate : quality_of_TS_type;

(* intermediate variables; no state information *)
variable_part_tn_send : variable_part_type;

disc_reason : TS_disconnect_reason_type;

user_reason : TS_user_reason_type;

called_address 	T_addrese_type;

calling_address : T_address_type;

initialisations

state := idle;

9 .

(* transitions : 	note m *)

from idle

when TSAP.T_pONNECT_req(TCEPI,to T_address,from T address,
QOTS_recitiest,options,TS_Jnnect_data)

provided ... (* Transport entity able to provide the quality of
service asked for *)

to wait_for_CC
begin

local_reference := ...; 	(* note ff *)
TPDU_size := ...; 	(* note n *)
variable_part_to_send := ...; 	(* note o *)
mapping.CR(0,1ocal_reference,class_0,normal,variable_part_to_send);

end;

provided ... (* Transport entity not able to provide the quality
of service asked for *)

to same
begin

TSAP.T_DISCONNECT_ind(TCEPI,
inability_to_provide_the_quality)

end;

when mapping.CR(credit,source_reference,class,options,
variable_part,user_data)

provided ... (* Transport entity able to provide the quality of
service asked for *)

to wait_for_T_CONNECT_resp
begin

remote_reference := source_reference;
if variable_part.max_TPDU_size <> undefined then

TPDU_size := variable_part.max_TPDU_size 	(* note e *)
else

TPDU_size := 128;
remote_address := variable_part.calling_T_address;

(* note q *)
called_address := ...; 	(* note gg *)
calling_address := ...;
QOTS_estimate := ...; 	(* note r *)
TSAP.T_CONNECT_ind(TCEPI,called_address,calling_address,

QOTS_estimate,normal,... (* no data *));
end;

provided ... (* Transport entity not able to provide the quality_
of service asked for *)

to same
begin
variable_part_to_send. additional_clear_reason := 	;
mapping. DR (source_reference, 0, connection_negociation_failed,

variable_part_to_send);
end;

from Wait_for_CC

when mapping.CC(dest_reference,source_reference,class,options,
1-ariable_part) 	(* note u *)

to data_transfer
.begin

remote_reference := source_reference;
if yariable_part.max_TPDU_size <> undefined then
TPDU_size := yariable_part.max_TPDU_size

else
TPDU size := 128;

i.* note y *)
QOTS_estimate := ...; 	(* note w *)
TSAP.T_CONNEC_conf (TCEPI, QOTS_estimate, normal, ...);
in_buffer.clear;
out_buffer.clear;
out_buffer.set_max_get_size(TPDU_size);

end;

when mapping.DR(dest_reference,source_reference,
disconnect_reason,yariable_part)

to idle
begin

disc_reason := disconnect_reason;
if disc_reason = TS_user_initiated_termination then

- user_reason := yariable_part, additional_clear_reason;
mapping. N DISCONNECT_req (..., disc_reasn);
mapping.N DISCONNECT_req(...,disc_reason); 	(* note x *)

end;

10.

114

grom wait_for_T_CONNECT_resp

when TSAP.T_CONNECT_resp(TCEPI,QOTS_request,options,TS_accept_data)

provided ... (* quality of service requested <= quality of service
proposed in T_pONNECT_ind *)

to data_transfer
begin

local_reference := ...; 	(* note ff *)
TPDU_size := ...; 	(* note y *)
with variable_part_to_send
begin

called_T_address := remote_address;
calling_T_address := ...; 	(* note z *)
max_TPDU_size := ...; 	(* note aa *)

end;;
mapping.CC(remote_reference,local_reference,class_0,normal,

variable_part_to_send);
in_buffer.clear;
out_buffer.clear;
out_buffer.set_max_get_size(TPDU_size);

end;

provided •.. (* quality of service requested > quality of service
proposed in T_CONNECT_ind *)

to idle
begin 	(* note ee *)

variable_part_to_send. additional_clear_reason := •..;
mapping. DR (remote_reference, 0, connection_negociation_failed,

variable_part_to_send);
TSAP.T_DISCONNECT_ind(TCEPI,

inability_to_provide_the_quality, ...);
end;

when TSAP.T_DISCONNECT_req(TCEPI,TS_user_reason)
to idle
begin

variable_part_to_send. additional_clear_reason := ...;
mapping. DR (remote_reference, 0, TS_user_initiated_termination,

variable_part_to_send);
end;

12.

from data_transfer
to same

when TSAP.T_DATA req(TCEPI,TSDU_fragment)
provided ... T* flow control from the user is ready *)

begin
out_buffer.append(TSDU_fragment);

end;

when out_buffer.get_next(fragment)
provided ... (* flow control to the Network layer is ready *)

begin
mapping.DT(fragment);

end;

when mapping.DT(user_data)
provided ... (* flow control from the Network layer is ready *)

begin
in_buffer.append(user_data);

end;

when in_buffer.get next(fragment)
provided ... OF flow control to the user is ready *)

begin
TSAP.T DATA_ind(fragment);

end;
to idle

when TSAP.T_DISCONNECT_req(TCEPI,TS_user_reason)
begin

mapping. N_DISCONNECT_req (..., disconnect_yeason, user_reason,...);
end;

when mapping.Network_disconnect(...,disconnect_reason,user_data) 	begin
begin

disc_reason := ...; 	(* note cc *)
TSAP.T_DISCONNECT_ind(TCEPI,disc_reason,...);

end;

when mapping.Network_reset(...,reset_reason) 	(* note x *)
begin

disc_reason := ...; 	(* note cc *)
• TSAP.T_DISCONNECT_ind(TCEPI,disc_reason,...);
end;

2.

ANNEX 2

Title: Specification of class 0 and 2 Transport protocol for multiple
connections

1. Introduction

The formal description given in section 2 uses the language defined in
Part II of this report, which was defined by the ISO TC97/SC16/WG 1 ad
hoc group on FDT (working document December 1981). The following
paragraphs are intended to explain some characteristics of the
Transport protocol specification given below in order to facilitate
its reading.

1.1. Local buffers

The data buffers declared in the module heading of the specification
are local buffers containing Transport service data units. There are
two buffers per Transport connection, one for incoming and one for
outgoing data. These buffers are included for generality. A particular
imlementation of the protocol may choose buffers of zero capacity.

1.2. Connection identification

Similar to the service specification, the protocol specification uses
abstract data types for identifying the different Transport and
Network connections. The identifier type for the Transport connections
"TC_id_type" is not specified (implementation dependent). For the
identification of the Network connection a particular type
"NC_idtype" has been adopted for convenience, consisting of the pair
of Network address and Network connection endpoint identifier.

1.3. Addressing

The relation between Network and Transport addresses is only partly
defined by this standard. The formal specification remains quite
general in this respect by assuming no particular relation between
these two kinds of addresses. However, it is assumed that the CR and
CC PDU's optionally contain "additional addressing information" such
that the following mapping exists: (a) Form a Transport address one or
several suitable Network addresses can be derived together with
"additional information" (using the function "determine_add_address");
(b) From a Network address and some "additional information" a
corresponding Transport address may be derived (using the function
"determine_T_address").

1.4. Transport PDU's

The "TP" module defines the behavior of a Transport entity as a whole.
It therefore interacts with the Network layer through Network service
primitives. The Transport PDU's exchanged in N_DATA requests and
indications are visible within the "TP" module, for example in the
data type "PDU_type" and the procedure "build_PDU" which assembles the
different parameters of a PDU and stores the PDU in a "PDU_buffer".
For simplicity, the module contains one "PDH_buffer" for each kind of .
PDU (CR, CC, DR, etc.). (An implementation, of cource, will not take
such an approach). A PDU sending transition (see below) collects the

3.

PDU's and includes them in the Network service data units to be sent.

1.5. State variables

The state variables of the module are pàrtitioned into two parts:
those associated with the Network connections, and those associated
with the Transport connections. The association between Transport and
Network connections is given by the variable "assigned_NC" which is
defined for each active Transport connection. The major state of a
Transport connection is given by the value of the variable "state"
associated with each Transport connection. (It is noted that a "state"
is defined for each connection; therefore the concept of ONE major
state (also called "state", as defined in the FDT used) is not
directly applicable. In order to conform with the syntax of the FDT, a
dummy "state" variable is introduced, together with dummy "from" and
"to" clauses).

1.6. Sending the PDU's

As mentioned above, the PDU to be sent are stored in "PDH_buffers",
one buffer per kind of PDU. The inclusion of a PDU in the next Network
service data unit (NSDU) to be sent (and the possible concatenation of
several PDU into one such NSDU) is defined by the first transition of
the specification. The conditions of this transition determined under
which circumstances such inclusion is possible. In the case of
concatenation, several instances of this transition are executed. The
non-deterministic nature of the specification language assures that
aspects such as the priority between different kinds of PDU's, and the
extent of concatentation is not specified (but left as an
implementation choice). It is noted that the inclusion of a DT PDU is
handled by a separate transition (second transition of the NORMAL DATA
TRANSFER section).

The second transition of the specification describes the sending of a
NSDU, which may occur any time the "NSDH_to_be_sent" contains at least
one PDU.

1.7. Reception of PDU's

The reception of a NSDU from a peer Transport entity is described by
the third transition of the specification. For each PDU included in
the received NSDU, the forth transition is executed which describes
the actions to be performed on the receptions of different kinds of
PDU's. To simplify the description of these actions, and in particular
the error processing defined by the protocol, all these actions are
integrated into a single transition, which is structured by case
statements according the the major state of the Transport connection
to which the PDU refers, and according to the kind of PDU received.

1.8. Grouping of transitions

The remaining transitions of the specification are partitioned
according to the functions they perform, i.e. into CONNECTION
ESTABLISHMENT (separately for the calling and called side), NORMAL

4.

nmm TRANSFER, EXPEDITED DATA TRANSFER, TERMINATION PHASE, and NETWORK
CONNECTION ESTABLISHMENT.

1.9. Flow control

It is assumed that the user of the Transport service is always ready
to receive control service primitives.

Similarly, the Transport entity is always ready to receive control
service primitives from the underlying Network layer.

The flow control of expedited data is explicitly described by the
T EX D READY primitives at the user interface and by state variables
of the "TP" module as far as the flow through the Network layer is

concerned.

The flow control of normal data is described explicitly as far as the
exchange of credits between the peer protocol entities is concerned,
however, the flow control mecanism at the user interface is not
specified in detail. It is assumed that it can be determined whether
the flow control to the user is ready, and whether the flow control
for N DATA requests to the Network layer is ready. The condition for
the Transport entity to be ready for the reception of N_DATA
indications from the Network layer is defined by a condition in the
third transition of the specification. The condition for the Transport
entity to be ready for the reception of T_DATA requests from the user
is determined by the flow control mecanism of the "send_buffer" (see
section 1.1).

5.

2. Formal specification

module TP_entity (
NSAP : array [Naddress_type] of NS_primitives (NS_user);
TSAP : array [Taddress_type] of TS_primitives (TS_provider);
receive_buffer,
send_buffer : array [TC_id_type] of TS_data_buffer (user));

type (* the type and interaction declarations of the Transport and Network
service specifications are used *)

class._type = (class._0, 	 class_2, 	 class_4);
reference_type = 0 .. (2**16 - 1);
seq_numbet_type = 0 .. 127;
credit_type = seq_number_type;
PMJ__size_type = pos ._integer;
TC id_type = ...;
ad7fitional_address._information = ...;
reject_uause_type = (reason_not_specified 	(* = 0 *),

function_not_implemented (* = 1 *),
invalid_PDU 	 (* = 2 *),
invalid_parameter 	(* = 3 *));•

reason_type = (
(* for class 0 *)

0 	(* reason not specified *),
. 1 	(* terminal occupied *),

2 	(* terminal out of order *),
3 	(* address unknown *),

(* for classes 1 through 4 *)
128 (* normal disconnect initiated by session level *),
129 (* remote congestion *),
130 (* negociation failed *),
131 (* duplicate connection detected *),
133 (* protocol error *),
134 (* destination entity specified not available *),
135 (* reference overflow *),
136 (* refuse a new TC over the same NC *),
255 (* unknown reason *));

6 .

TPDU_code_type = (CR, CC, DR, DC, DT, AK, EDT, EAK, ERR, undefined_code):
TPDU_type = record

credit_value 	credit_type; (* used for CR, CC, AK *)
dest_ref : reference_type; (* used for CC, DR, DC, DT (class 2),

EDT, AK, EAK, ERR *)
source ref : reference_type; (* used for CR, CC, DR, DC *)
user_d-a-ta : optional string_of_octets; (* see TS *)

(* used for CR, CC, DR (not in this version of the protocol,
DT, ED *)

case code : TPDU_code_type of
CR, CC : (

proposed_class : class_type;
proposed_options : option_type; (* see TS *)
calling_addr,
called_addr : optional addtional_address_information;
proposed_TPDU_size : optional PDU_size);

DR : (
disconnect_reason : reason_type);

DC:;
DT : (

send_sequence : seq_number_type;
end_of TSDU : boolean);

AK : (
expected_send_sequence : seq_number_type);

EDT, EAK :;
ERR : (

reject_cause : reject_cause_type);
undefined_code ;
end;

NC_id_type = record
local_N_addr : N_address_type; (* see NS *)
EP id : NCEP id type; (* see NS *)
end;

var

7 .

TC : array [TC_id_type] of record
state : (closed, wait_for_NC, open_in_progress_calling,

open_in_progress_called, rejected, open,
wait_before_closing, closing);

local_T_addr,
remote_T_addr : T_address_type; (* see TS *)
id : TCEP id type; (* see TS *)
local_ref,
remote_ref : reference_type;
assigned_NC : NC_id_type;
max PDU_size : PDU_size type;
options : option_type; 7.* see TS *)
class : class_type;
QTS : quality_of_TS_type; (* see TS *)
connect_data : optional string_of_octets;
TR,
TS : seq_number_type;
R_credit,
S_credit : credit_type;
EX_D_sent,
EX_D_received : boolean;
PDU_buffer : array [TPDU_code_type] of record

full : boolean;
PDU : TPDU_type
end;

NC.: array [NC id_type] of record
NC_state : Tclosed, open_in_progress, open);
remote_N_addr : N_address type; (* see NS *)
this_side : both_sides; (.7 see NS *)
QNS 	quality_of_NS_type;
received_NSDU,
NSDU_to_be_sent : record

user_data_present : boolean;
data : string_of_octets;
end;

state : (dummy);

8.

function determine_add_address (
• Taddr Taddress_type;

N_addr : Naddrtess_type) : optional additional_address_information;
begin ... end;

function determine_T address (
N_addr : N_add7ess_type;
add_info : optional additional_address_information) : T_address_type;

begin ... end;

function implied_PDU_size (size : optional PDU_size_type) : PDU_size_type;
begin if size = undefined

then implied PDU_size := 128
else implied1PDU_size := size end;

function check_PDU_size_negociation_rule
(size, new size : PDU_size_type) : boolean;

begin ... end;
(* property: if new size <> undefined then

(size >= 128 implies 128 <= new_size <= size
and size < 128 implies (new_size <= size

or new_size = 128)) *)

function determine_PDU_length (PDU : PDU_type) : pos_integer;
begin ... end; (* property: determines the length of the PDU in octets *

function find_TC_id
(T_addr : T_address_type; id : TCEp_id type) : TC id type;

begin ... end; (* property: determines 	TC associ7te-ci with the
the EP identifier *)

function find_NC id
(N_addr : address type; NCEp_id : NCEp_id_type) : NC_id_type;

begin with finî NC 	id do begin
local_N_addr :=—N_addr;
EP id := NCEP id 	end;
end; (* deteiriines the NC associated with the EP identifier *)

function determine_TS_reason
(TP_reason : reason_type) : TS_disconnect_reason_type;

begin case TP_reason of
0, 130, 131, 133, 135, 255 : determine_TS_reason := TS_FAIL;
1, 2, 128 	: determine_TS_reason := TS_U NRM;
3, 134 	 : determine_TS_reason := TS_U—UNKNOWN;
129, 135 	 : determine_TS_reason := TS CONG;
end end;

9 .

procedure build PDU (TC_id : TC id_type; kind : TPDU_code_type);
begin with iF [TC_id]. PDU._bUffer[kind] do begin

full := true;
with POU do begin

code := kind;
dest_ref := remote_ref;
if kind in [CR, CC, AK] then

if class = class_p then credit_value := 0
else credit_yalue := R_credit;

if kind in [CR, CC, DR, EX.7.] then source_ref := local_ref;
case kind of
CR, CC : begin

proposed_class := class;
proposed_options := options;
calling_addr := determine_add_addr (local_Taddr,

assigned_NC.local_p_addr;
called_addr := determine_add_addr (remote_T_addr,

NC[assigned_NC].remote_N_addr;
proposed_TPDq_size := max_PDU_size;
user_data := connect_data;
end;

DC:;
DR : ; (* disconnect_reason must be assigned *)
DT : send_sequence := TS;
AK : expected_send_sequence := TR;
EDT : user_data := TS_user_data;
EAK :;
ERR :; (* reject_cause must be assigned *)
end;

end;

procedure protocol_error 	: TC_id_type; cause : reject_cause_type);
begin with TC [TC_Id] do

TSAP [local_T_addr]. T_DISCONNECT (id, TS_FAIL, 	(* dummy *));
build_PDU (TC id, ERR);
PDU_buffer [E7.R]. PDU. reject_cause := cause;
state := closing;
end;

10.

procedure close_all_TC (NC_id : NC_id type;
TS_reason : Ti_disconnect_reason_type);

begin 	•
for all TC_id : TC_id_type do with TC[TC id] do

if state <> closed and assigned_NC = NE id
then begin

if state not in [wait_before_closing, closing]
then TSAP[local_T_addr]. T_DISCONNECT_ind

(id, TS reason, ... (* dummy *));
close_and_clear_buffers (7C_id);
end;

procedure close_TC (TC_id : TC_id_type;
reason : reason_type;
inform_TS_user : boolean);

begin with TC[TC id] do begin
if inform_TS_u-s-er
then TSAP[local_T_addr]. T_DISCONNECT_ind

(id, determine_TS_reason (reason), ... (* dummy *));
build_PDU (TC_id, DR);
PDU_buffer [DR]. PDU. disconnect_reason := reason;
if state <> rejected then state := closing;
end;

procedure close_ and_clear buffers (TC_id : TC_id_type);
begin with T[TC_id] dip- begin

_state := closed;
for kind := CR to ERR do PDU_buffer [kind]. full := false;
end end;

procedure clear_NC_buffers (NC_id : NC_id_type);
begin

received_NSDU.data.length := 0;
NSDU_to_be_sent.data.length := 0;
end;

(* initialization: set all states to closed *)

11.

(* TRANSITIONS *)

from dummy to dummy (* required by FDT syntax *)

(* GENERAL PURPOSE TRANSITIONS *)

(* concatenate a PDU to be sent into the NSDU to be sent *)

any NC_id : NC id type, TC id : TC_id_type, kind : TPDU_code_type do
with NC[U.0 	TC 	id] do

provided not NSDU_to_be_sent.user_data_present
and NSDU to_be sent.data.length +

cle-termilie_PDU_length (PDU_buffer[kind]) <= max_PDU_size
and assigned_NC = NC_id
and state <> closed
and not ((class = class_0) and (NSDU_to be sent.data.length <> 0))

(* no concatenation for protocol class 0 *)
begin

(* encode PDU *) with NSDU_to be_sent do begin
data.length := data.length—+ determine_PDU_length (PDq_buffer[kind
data.content := ...; (* property: code PDU and append into NSDU *)
if user_data <> undefined then user_data_present := true;
end;

if kind in [W, ERR] or state = rejected
then close_and_clear_buffers (TC_id);
end;

(* send a NSDU *)

any NC_id : NC_id_type do with NC[NC_id] do
provided NSDU_to_be_sent.data.length <> 0

and state = open
and ... (* property: flow control to Network layer ready *)

begin
NSAP[NC id.local Naddr]. N_DATA_req

-ld, 	NSDU_to_be_sent.data, true (* complete NSDU *));
NSDU_to_be_sent.data.length := 0;
end;

(* receive a NSDU with one or more PDUs *)

any N addr : N address type do
when UsAP[N_adir]. 	N_D-KTA_ind

with NC [find_NC_id (N_addr, NCEp_id)] do
provided received_NSDU.data.length = 0 (* property: this means

flow control to the Transport entity is ready *
and is_last_fragment_of_NSDU (* it is assumed that the N-einterfac

transfers complete SDU in each N_DATA primitive *)
begin

received.NSDU.data := TS_user_data;
end;

12.

(* reception of a PDU *)
any NC_id : NC id type do 	with NC (NC_id] do
provided received_NSDU.data.length <> 0

and ... (* property: not ((class = class_0) and (flow control
to user (or to the receive buffer)
is not ready)) *)

var received_PDU : TPDU_type;
TC_id : TC_id_type;

procedure determine TC (NC_id : NC_id_type; ref : reference_type);
begin ... end; (7 property: determine_TC (NC_id, ref) =

if exists TC_id such that with TC[TC id] holds
state <> closed and assigned_NC = NC_id and local_ref = r(

then TC id
else TC:id' such that TC[TC_id].state = closed;

i.e. find the TC associated with the reference "ref" over the NC;
if "ref" = 0 then such a TC does not exist. *)

begin
...; (* decode (received_NSDU, received_PDU) *)
with received_PDU do begin

TC_id := determine_TC (NC_id, dest_ref);
with TC[TC id] do case state of
closed : (7 no TC assigned *)

if code = CR
then begin

remote_ref := source_ref;
local_ref := ...;
if dest_ref <> 0
then ... (* error *)
else if ... (* property:

exists TC_id' <> TC_id such that with TC[TC_Id'] hold:
state <> closed and assigned_NC = NC_id
and remote_ref = source_ref ;

i.e. this is a duplicated CR *)
then close_TC (TC_id', 131 (* duplicate connection *),

true (* inform user *))
else if determine PDU_length (received PDC) >

impliéi PDU_length (proposé7 TPDU_size)
or proposed_class = class_O and this_side = calling

then protocol error (TC_id, ...)
else if ... (7 not able to provide service

or destination address unknown *)
then begin

disconnect reason := ...;
build_PDU TTC_id, DR);
state := closing;
end

else begin (* normal processing *)
local_T_addr := determine_T_addr

(NC_id.local_N_addr, called_addr);
remote_T_addr := determine_T_addr

(NC[NC id].remote_p_addr, calling_addr);
id := ...; (7 property: for all TC_id' holds

not (TC[TC_idq.state <> closed
and TCEp_id = id);

13.

i.e. TCEP identifier is not yet in use *,
remote ref := source_ref;
assigned_NC := NC id;
options := ...;

(* property: options in proposed_options *
class := ...; (* property: proposed_class = clas!

implies class = class() *)
max_PDU_size :=

implied_PDU_size (proposed_TPDU_size);
QTS := ...;
TR := 0;
TS := 0;
S_credit := credit_value;
R_credit := 0;
receive_buffer [TC_id]. clear;
send_buffer [TC_id]. clear;
TSAP[local_T_addr].T CONNECT_ind(id, local_T_add

remote_T_addr, options, QTS, user_data);
state := open_in_progress_called;
end

else if code = DR
build_PDU (TC_id, DC);
state := closing;
end

else ; (* ignore othe received PDU if no TC is assigned *)

(* in the following cases a TC is already assigned *)
closing, rejected :

if code = DC
then state := closed
else ; (* ignore received PDU *)

wait_before_closing :
close_TC (TC_id, 128 (* normal disconnect reason *)

false (* TS user not informed again *));
wait_for_NC, open_in_progress_calling,

open_in_progress ._called, open :

14.

case code of
CC :

if state <> open_in_progress calling
then protocol_error 	 Invalid_PDU)
else begin

remote_ref := source_ref;
if proposed_class = class2 and class = class_.2

and ... (* property: NC_id is multiplexed *)
then begin

...);

NSAP[NC_id.local_N_Addr].N_DISCONNECT_req
(NC_id.EP_id);

end
else if proposed_class = class() and class = class_2

and this_side = called
then protocol_error 	 ...)
else if calling_addr <> determine_add_addr

(local_T_addr, Ne_id.local_Naddr)
or called_addr <> determine_add_addr

(remote_y_addr, remote_Naddr)
or not check_PDU_size_negociation_rule

(max_pDU_size, proposed_TPDU_size)
or proposed_options not in options
or proposed_TPDq_size < determine_length

(received_PDU)
then protocol_error 	 invalid_parameter)
else begin (* normal processing *)

if proposed_TPDILsize <> undefined
then max_PDU_size := proposed_TPDq_size;
S-credit := credit_value;
TSAP[local_y_addr]. T CONNECT_conf (id, QTS,

options, user_data);
state := open;
end;

• DR : begin
TSAP[local_T_addr]. T_DISCONNECT_ind

(id, determine_TS_reason(disconnect_reason), undefined);

if state <> open_in_progress_calling
then begin

build PDU (TC id, DC);
state := closing;
end

else close_and_clear_buffers (TC_id);
end;

15.

DC : ...; (* protocol error *)
ERR : begin

TSAP[local_T_addr]. T_DISCONNECT_ind (id, TS-FAIL, undefined)
if class = class_O then NSAP[assigned_NC.local_N_addr].

N_DISCONNECT_req (assigned_NC. EP_id);
close._and_clear_buffers (TC_id);
end;

DT : if state <> open
or R_credit <> 0

then protocol_error (TC_id, invalid_PDU)
else if send_sequence <> TR

then protocol_error (TC_id, invalid_parameter)
else begin

receive_buffer[TC id].append (user_data, end_of_TSDU);
TR := (TR + 1) mo -d- 128;
R_credit := R_credit - 1;
end;

AK : if state <> open
or class = class_p

then protocol_error (TC_id, invalid_PDU)
else begin

new S_credit := credit_yalue + expected_send_sequence
- send_sequence;

if new S__credit < S-credit
then protocol_error (TC_id, invalid_papameter)
else S._credit := new S_credit;
end;

EDT : if state <> open
or expedited_data not in options
or EX D received

	

then protocol_error 	invalid_PDU)
else begin

TSAP[local T addr]. T EX DATA_ind (id, user_data);
EX D received := true;
end;

EAK : if state <> open
or expedited_data not in options
or not EX D sent

	

then protocol_error 	invalid_PDU)
else begin

TSAP[local_T_addr]. T_EX_D_READY_conf (id);
EX D recived := false;
end;

undefined_code : 	;

16.

(* CONNECTION ESTABLISHMENT : calling side *)

any T_addr : Taddress_type do
when TSAP[T_Addr]. T_CONNECT_req

provided ... (* property: for all TC id • holds
not (TC[TC_id].s-t-ate <> closed and TCEP id = id)

i.e. the TCEP identifier is not yet in use *7
and from_y_address = T_addr

var TC_id : TC_id_type;
begin

TC id := ...; (* property: TC[TC_id].state = closed,
i.e. connection not in use *)

with TC[TC_id] do begin
local_T_addr := T_addr;
remote_T_addr := to_T_address;
id := TCEP_id;
options := proposed_options;
QTS := proposed_QTS;
connect_data := user_data;
TR := 0;
TS := 0;
receive_buffer[TC_id].clear;
send_buffer[TC_id].clear;
state := wait_for_NC;
end;

end;

any TC_id : TC_id_type do with TC[TC_id] do
provided state = wait_for_NC

and ... (* not able to provide service *)
begin

TSAP[local_T_addr]. T DISCONNECT_ind (id, ...
property: if ma.liping between Transport and Network addresses

is not possible then U_UNKNOWN;
if a N CONNECT_req was sent to establish a new network
connection for this TC, and N_DISCONNECT was received

TS_disconnect_reason :=
if NS disconnect_reason = NS U NRM
then 7S FAIL else TS_QUAL_FAii;

OTS.class_of_service = enhanced
implies TS_QUAL_FAIL *),

(* dummy user reason *));
state := closed
end;

17.

any TC_id : TC_id_type, NC id : NC_id_type do
with TC[TC_id], NC [NF_id] do

provided state = walt_for_NC
and NC_state = open
and QTS.class_of service = basic
and ... (* check—throughput quality *)
and ... (* check addressing *)
and ... (* able to provide service *)

begin
assigned_NC := NC_id;
local_ref := ...;

(* property: <> 0 and not un use with the same NC *)
dest_ref := 0;
class := ...; (* select appropriate protocol class *)

(* property: (data <> undefined) or (expedited_data in options
•or (this_side = called) implies class = class_2 *)

max PDU_size := ...;
(97 property: class = class_O implies

max_PDU_size in [256, 512, 1024, 2048] *)
build_PDU (TC_id, CR);
state := open_in_progress_calling;

j end;

(* for . the handling of the peer's response, see "reception of a PDU" abov(

18.

(* CONNECTION ESTABLISHMENT : called side *)

(* for the handling of the incoming CC, see "reception of a PDU" above *)

any 7_addr : T_Address_type do
when TSAP[T_addr]. T CONNECT_resp

with TC[find_TC_id (Taddr, TCEP_id)] do
provided state = open_in_progress called

and proposed_options in options
begin

QTS := proposed_QTS;
options := proposed_options;
local_ref := ...;

(* property: <> 0 and not in use with the same NC *)
max_PDU_size := ...; (* property:

check_PDU_size_negociation_rule (old value, new value)
build_PDU (find_TC_id (T_addr, TCEP_id), CC);
state := open;
end;

(* for the case of rejection by the T user, see first transition of the
termination phase *)

19.

(* NORMAL DATA TRANSFER *)

any T addr : T address type do
when isAP[T adifr]. T biTA_req

wiîh TC [fi -iid_TC id 	(T_addr, TCEp_id)] do
provided state = open

and ... (* flow control to send_buffer[find_TC_id(T_addr, TCEP_L
is ready *)

begin
send_buffer [find_TC_id (T_addr, TCEP id)].

append (TS_user_data, is_last Tragment_of_TSDU);
end;

any TC_id : TC id type do
with TC[TC id], NC [TC[TC_id].assigned_NC] do

when send_buffei- [TC_id]. next_fragment
provided class = clas_p

and NSDU_to_be_sent.user data.length = 0
and ((fragment.length 4-3 (* header *) = max_pDq_size)

or is_last_fragment_of_TSDU)
begin

...; (* encode_data (fragment, NSDU_to_be_sent.data) *)
end_of_TSDU := is_last_fragment_of_TSDU;
end;

.provided class = class 2
and S_credit <> -b-
and fragment.length

+ 5 (* header length for DT PDU (classes 1 to 4
+ NSDU__to be_sent.data.length <= max_PDU_size

and not NSDU_to Ue_sent.user_data_present
begin

...; (* encode_data (fragment, NSDU_to be_sent.data) *)
end_of_TSDU := is_last_fragment_of_TS0U;
TS := TS + 1;
S_credit := S_credit - 1;
end;

(* reception of a DT PDU, see "reception of a PDU" above *)

any TC_id : TC_id_type do with TC[TC_id] do
when receive_buffer [TC_id]. next_fragment

provided ... (* flow control to user ready *)
begin

TSAP[local_T addr]. T DATA ind
(id, -Fragment, -is_f7st_fragment_of TSDU);

end;

*)

when receive_buffer [TC_id]. freeL .space
provided state <> closed

begin
R_credit := R_credit + 1;
end;

provided class = class_2
and state = open

begin
build_FDU 	 AK);
end;

(* reception of an AK PDU, see "reception of a PDU" above *)

(* EXPEDITED DATA TRANSFER *)

any T addr : T addr type do
when YsAP[T 	adeir]. 	EX 	DATA_req

wi-ih TC[fin d id_id (Taddr, TCEF_id)] do
provided expedited_data in options

and state = open
and not EX_D_sent

begin
build_FDU (find_TC_id (Taddr, TCEP_id), EDT);
EX D_sent := true;
end;

(* reception of a EDT PDU, see "reception of a PDU" above *)

when TSAP[T addr]. T_EX_D_READY_req
wiih TC[find_TC_id (Taddr, TCEF_id)] do

provided expedited_data in option
and state = open
and EX_D_received

begin
build_FDU (find_TC_id (Taddr, TCEP_id), EAK);
EX Dreceived := false;
end;

(* reception of a EAK PDU, see "reception of a PDU" above *)

20.

21.

(* TERMINATION PHASE *)

any T addr : T address type do
when ISAP[T adfir]. T DISCONNECT req

with IC [find 	id (T-adir, TCEp_id)] do
provided state fin' [z7ait_for_NC, open_in_progress_calling,

open_in_progress_called, open]
var reason : reason_type;
begin

(* TS_user_reason is ignored *)
if state = open_in_progress_called then state := rejected;
case state of

wait_for_NC : close_and_clear_buffers
(find TC_id (T addr, TCEP_id));

open_in_progress_callir7g : if crass = class_p
then begin

NSAP[assigned NC.local_N_addr].
N_DISCOUNECT_req (assigned_NC. EP id);

close_and_clear_buffers (find_TC id (T_iidr, 	TCEP_L
end

else state := wait_before_closing;
open_in_progress_called, rejected, open :

begin
if class = class_O

then reason := 	(* property: 1 or 2 *)
else reason := 128 (* normal termination *);

close_TC (TC id, reason,
false- (* TS user not informed again *));

end;
end;

any N addr : N address type do
when USAP[NC Id]. N_REiET_ind

	

begin 	—
close all TC (find NC id (N-addr, NCEP id), TS_QUAL_FAIL);

))
NSAP[N_addr]. N_RESET_resp (NCE -17_id);

	

if 	(* property: (NC was used for class_p TC) and
(this_side = calling) and (NC is not to be

used for a subsequent TC) *)
then NSAP[N_addr]. N_DISCONNECT_req (NCEp_id);
end;

when NSAP[NC id]. N DISCONNECT_ind
var TS_re-a-son : 7S_disconnect_reason_type;
begin

if NS disconnect_reason = Ns_p NRM .
then ii class = class 0

then TS_reason u_pRm
else TS_reason := TS—FAIL

else TS reason := Ts_puXi FAIL;
close aIl_TC (f ind_NC_id 	addr, NCEP id), TS_reason);
clearINC_buffers 	 (N_addr, -N-CEp_id);
end;

22.

(* NETWORK CONNECTION ESTABLISHMENT *)

any 	: NC id_type do with NC[NC_id] do
provided NC_st7te = closed

begin
remoteN_addr :=....; (* as required by TC in "wait.....for_NC" state *:
QNS := ...; 	 (* as required by TC in "wait for NC" state *:
NSAP [NC_id.local_y_addr]. N....CONNECT req 	 remote_N_add7

NC id.locar N_addr, QNS);
this side := calling;
NC sîate := open_in_progress;.
end;

any N addr : N address type do
when -iiSAP[N ad-Jr]. N 	C UNNECT_c onf

with 714-C[find_e id (N_addr, NCEp_id)] do
provided NC_state = open_in_progress

begin
QNS := proposed_NS;
NC state := open;
end;

when NSAP[N addr]. N CONNECT_ind
with Ud[find_NE id (N_addr, NCEp_id)] do

provided NC_state = closed
and to_y_address = N_addr

begin
remote_y_addr := from Naddress;
QNS := ...;

(* value depends on, is usually equal to, the proposed_QNS '
NSAP[N addr]. N CONNECT_resp (NCEP id, QNS);
this sIde := 	called;

NC s-tiate := open;
en-ci;

ANNEX 12

To : CSA Committee on OSI

From: G.V. Bochmann

Re : Report on the meeting of the ISO TC97/SC16/WG1 ad hoc group on
FDT in Washington, Sept. 1981

The meeting was held during the week 21 through 25 of September.

Most time was spent by discussions within the Subgroups A, B, and C, as

they were formed at the end of the previous meeting in Berlin.

For a more detailed report, please refer to the minutes (a preli-

minary copy of the resolutions is enclosed). The main results of the meeting

were the establishment of two working documents by the Subgroups A and B,

a copy of which are enclosed. The working document of Subgroup B includes

a proposal for a syntax of a specification language (for an extended state

transition model) which was submitted by a liaison representative (G.V.Bochmann)

to the CCITT Rapporteur's meeting on FDT in Ottawa (October 19 through 27).

The next meeting of Subgroup A will be held near Milano on

November 20. Subgroup B is also planning another meeting beginning of

December. Work on the "guidelines" is foreseen to be done during the next

WG1 meeting in January. Another meeting of the ad hoc group on FDT is

planned for Mai 1982.

UNIVERSITÉ DE MONTRÉAL
Département d'informatique et
de recherche opérationnelle (I.R.0.)

November 3 rd 1981

From: G.V. Bochmann

To : Members of ISO TC97/SC16/WGI ad hoc group on FDT

Re : Report of the CCITT Rapporteur's meeting on FDT in
Ottawa, October 1981.

Please find enclosed the meeting report of the CCITT meeting
on FDT (Question 39/VII) which was adopted at the end of the
meeting.

I would like to make the following comments on the work
during that meeting:

a) It was considered that different descriptions at different
levels of detail (abstraction) would be useful, such as time-
sequence diagrams, state transition models in graphical SDL
with informal text, graphical SDL descriptions with state pic-
tures, or formally defined text (possibly based on the Pascal
programming language) and a linear, programming language like
description (which corresponds to the specification language
developed in Subgroup B of the ISO ad hoc group on FDT).

b) The proposal from ISO to take the syntax developed by Sub-
group B as a starting point for the collaboration of a linear
FDT was not accepted at this time, because CCITT's SG XI has
developed a linear form of SDL (called SDL-PR), which was also
proposed as a candidate starting point.

c) There was much discussion of examples how to use SDL for
protocol and service specifications. Relatively little time
was spent on a comparison of the two proposals for the linear
syntax. Some information about such a comparison is included
In the report as annexes 6 and.

.../2

111 Case postale 6128, Succursale "A"
11 Montréal, P.Q., H3C 3J7

Sincerely,

C,„7:›e9cri-
Gregor V. Bochmann

2.

The CCITT group has expressed the desirability of adopting
the same FDT in CCITT and ISO. It seems that a possible com-
promise could be the adoption of SDL for the graphical form
of an FDT and the ISO proposal for the linear form of an FDT.

I leave these questions for your consideration.

3 mai 82

Title: Delegate's Report of the CCITT SG VII Rapporteurs meeting
on Question 39 (FDT) in Melbourne, March 1982.

From: G.v. Bochmann

The meeting was attended by 23 delegates, lasted six (working) days,
and more than 30 contributions were discussed. Most of the work was
performed in plenary meetings. It is to be noted that several
representatives from SG XI participated in the meeting. A liaison
report from ISO TC97/SC16/WG1 on its FDT work was presented by G.v.
Bochmann.

While some time was spent with the discussion of various specification
techniques (including abstract data types), and an ad-hoc group on
Petri net description was formed, most time was spent with the '
discussion of the extended state transition FDT. The main results of
the meeting are the elaboration of a "Common semantic model for CCITT
and ISO" (annex 7 of the minutes), and a proposal for a linear
specification sntax (annex 8 of the minutes) which is a revision of
the syntax included in the working document of Subgroup B of the ISO
TC97/SC16/WG1 ad hoc group on FDT. An effort has been made at the
meeting to bridge differences between the ISO Subgroup B proposal and
the existing SDL Recommendation by changing the ISO proposal, and to
indicate how the future extensions of SDL could follow the present ISO
Subgroup B language.

The proposals included in the Canadian contributions have been
discussed during the meeting. The following points, as decided at the
meeting, do not completely follow the Canadian proposals: (1) The
syntax of the specifcation language is not based on Pascal, but
several versions of specification language are foreseen, at least the
following two:

(a) based on Pascal (a revision of the Subgroup B proposal, see
above),

(b) based on CHILL.

(2) The use of simple state diagrams (as in X.25) are not explicitely
included as a FDT. It was avoided to make any definite statement on
this issue. The same applies to time sequence diagrams.

(3) No 	definite "priority" was given to the linear form of
specifications. Both linear and graphical versions are considered at
equal footing, although it is mentioned that the linear form "...
should always be given and be regarded 	as 	an 	authoritative
specification".

ANNEX 13

Un compilateur pour la traduction de spécifications

de protocoles en Pascal

par

Michel Gagné

Document de travail #120

Département d'informatique et de

recherche opérationnelle

Université de Montréal

Février 1982

2

4

9

12

Tables des matières

1. Introduction

2. Le traducteur

2.1 La structure de stockages de l'information dans LSP 	 6

2.1.1 Description d'un bloc 	 7

2.1.1.1 	Description 	d'un 	élément 	de 	la liste d'étiquettes 8

(Tlistentier)

2.1.1.2 	Description d'un élément de la 	liste 	de 	constantes 8

(Tlistconst)

2.1.1.3 Description d'un élément de la liste des types

2.1.1.3 Description d'un élément de la liste des variables

2.1.1.4 Description d'un élément de la liste des fonctions/procédures13

2.1.2 Description de la liste d'interaction/PDU 	 14

2.1.3 Description du modèle 	 14

2.2 Les vérifications sémantiques 	 16

2.3 Le code Pascal engendré 	 20

3. Notice d'utilisation 	 24

3.1 Cartes de contrôle nécessaires 	 24

3.2 Remarques 	 25

- II -

3.3 Echantillons de résultats et comment les interpréter

4. Exemples

Annexe 1

Annexe 2

25

27

28

29

- 2 -

1. Introduction

Ce document décrit un compilateur qui traduit la spéci-

fication d'un module donnée dans le langage de spécification de

protocoles (LSP) en un programme en Pascal. Puisque le LSP uti-

lise en grande partie la syntaxe et sémantique de Pascal, une

grande partie de la traduction est une recopie sans modification

de la spécification source. Les parties non copiées, c'est-à-dire

générées par le compilateur, se conforment au règles de Pascal ISO

[1].

Le LSP accepté par le compilateur est une version préli-

minaire, similaire au langage de spécification développé par ISO

TC97/SC16/WG1 ad hoc group on FDT ("Formal description tech-

niques") [2]. Une description du langage accepté par le compila-

teur est donnée dans l'annexe.

Le compilateur décrit dans ce document a été réalisé

comme projet d'été 1981, et a été utilisé pour la traduction d'une

spécification de protocole de Transport, et pour la traduction

d'une spécification du protocole "Document" de Teletex [3] dans le

cadre du cours IFT 6052 à l'automne 1981.

Le compilateur a été réalisé à- l'aide d'un système

d'écriture de compilateurs [4,5]. La partie de l'analyse syn-

taxique, incluant le traitement des erreurs syntaxiques (pas tou-

jours satisfaisant), est faite par le système d'écriture de compi-

- 3 -

lateurs; une analyse sémantique de certaines parties de la spéci-

fication traduite et sa traduction en Pascal sont réalisées par

des procédures écrites spécialement pour cet effet.

Dans la section 2 de ce document, on trouve une descrip-

tion des vérifications sémantiques faites par le compilateur, et

de l'approche à la traduction en Pascal. Une notice d'utilisation

est donnée dans la section 3. La section 4 contient un petit

exemple qui montre la traduction effectuée par le compilateur.

Les annexes contiennent une description du LSP, et la syntaxe

complète (incluant les règles de syntaxe Pascal) acceptée par le

compilateur.

Références:

[1] ISO DP 7185

[2] ISO TC97/SC16/WG1 ad hoc group on FDT, Subgroup B: working

document, Dec. 1981.

[3] CCITT Recommendation S.62(1980).

[4] G.V. Bochmann and P. Ward, "Compiler writing system for

attribute grammars", The Computer Journal 21, No.2 (1977),

pp. 144-148.

[5] P. Ward, "Un système d'écriture.", Doc. de travail #55,

Département d'informatique et de recherche opérationnelle,

Université de Montréal.

4

Le traducteur

(Pour cette section se référer aux textes des programmes

de compilateur). Le compilateur est constitué de 2 parties:

- L'analyseur lexical et syntaxique contenant les appels aux

actions sémantiques.

- Les actions sémantiques (procédure SEN déclarée externe à l'ana-

lyseur lexical et syntaxique).

L'analyseur lexical et syntaxique

L'analyseur a été engendré par le générateur d'analyseur

syntaxique LL(1) de l'Université de Montréal (Patrick Ward).

Les règles de grammaire dans la description intégrée ont

la forme suivante:

si <A> est la 24e catégorie dans la suite de définitions des

catégories et si (par exemple)

<A> = 'AA' <AA> <AB> 1 <AC> 'AB'

on a

<A> = : sem(24 000); $ ' AA' : sem(24 001);$

<AA> : sem(24 002);$ <AB> : sem(24 003);$

1 : sem(24 004);$ <AC> : sem(24005);$ 'AB'

: sem(24 006);$

(voir aussi l'exemple 3 à la section 4)

5

i.e. un appel aux actions sémantiques a été inséré au début, à

la fin, et entre chaque lexeme et catégorie de la partie

droite de la règle.

Certaines procédures produites par le générateur d'ana-

lyseur LL(1) ont été refaites, par exemple, les procédures Erreur,.

Lignederreur, Caractère et Déjaluc. On a ajouté au début de la

procédure Lexical l'appel à la procédure Sortlex, ainsi qu'une

petite modification pour permettre de retenir le dernier identifi-

cateur lu (la variable Derniermotlu).

Certaines procédures ont été ajoutées. A chaque appel

de la procédure Lexical, les caractères qu'elle traite sont gardés

dans là variable Reservelex. Les procédures Augmenter, Diminur

Stockr sont reliées à Reservelex.

Sortlex écrit sur un (des) fichier(s) approprié(s)

l'unité lexicale gardée dans Reservelex. La procédure Plisting

fait le "sommaire des erreurs" et la "signification des erreurs"

(s'il y a lieu). Commentaire et Carspecial traitent les commen-

taires LSP qui ont le même format qu'en Pascal.

Les actions sémantiques

•

La procédure Sem qui exécute les actions sémantiques,

est composée de 3 étapes distingues:

6

- l'entrée des symboles dans les tables faite par la procédure

ENTRER,

- les vérifications sémantiques faites par la procédure VERIFIER,

- la traduction, faite par la procédure TRADUIRE.

Les trois procédures ENTRER, VERIFIER, TRADUIRE ont une construe-

tion similaire i.e.

Cas (no div 1000) de

1: ---

2: ---

n: Cas (no mod 1000) de

0: ---

1: ---

autrement fini

autrement fini

Remarquez que les actions sémantiques ont le même nombre

de fichiers et le même bloc (sauf pour les procédures) que leurs

correspondants dans l'analyseur lexical et syntaxique.

2.1 La structure de stockage de l'information dans LSP

Le préprocesseur LSP produit 3 classes de structures

dans son exécution.

-7-

1- Une structure bloc comme en Pascal.

2- Une liste d'interactions/PDU dont le premier membre est pointé

par la variable Pduinter.

3- Une description de l'entéte du module pointée par la variable

Module.

2.1.1 Description d'un bloc

Un bloc est une structure contenant 6 champs:

Tbloc = Struct

Etiquette: Ptrlistentier;

Constantes: Ptrlistconst;

Types: Ptrlisttype;

Variables: Ptrlistvar;

Procetfonc: Ptrlistpf;

Blocpere: Ptrbloc;

Fin;

Etiquette: pointe sur une liste d'étiquettes (au sens Pascal).

Constantes* 	 de constantes (au sens Pascal).

Types* 	 de types

Variables* 	 de variables

Procetfonc* 	 de fonctions ou procédures (au

sens de Pascal).

Blocpere: Dans le cas ou le bloc en question est celui associé a

-8-

une procédure ou fonction PF, blocpere pointe vers

bloc qui a PF comme un des membres de sà liste de procé-

dures ou fonctions.

2.1.1.1 Description d'un élément de la liste d'étiquettes

(Tlistentier)

Tlistentier = Struct

Etiquette:Entier;

Suivante:Ptrlistentier;

Fin;

2.1.1.2 Description d'un élément de la liste de constantes

. (Tlistconst)

Tlistconst = Struct

Nom: Lspalfa;

Defconst: Ptrconst;

suivante: Ptrlistconst;

Fin;

Lspalfa = Chainident; 	(* = paquet tableau [1..30] de car*)

Ptrlistconst = -Tlistconst;

Defconst : description de constante

Ptrconst = -Tconst;

Tconst = Struct

9

signe:booleen;

cas ctype:entier de

0:0;

1:(creel: reel);

2:(centier: entier);

3:(Cdebutchaine,Clongchaine: entier);

4:(Idconst:Lspalfa);

Fin;

Signe: vrai pour +, faux pour -.

Cas 0 : pour signaler une erreur possible.

Cas 1 : la constante est rélle.

Cas 2 : la constante est entière.

Cas 3 : constante de type chaine,

Cdebutchaine: début de la chaîne

lorsque stockée dans

Zonechaine par la

procédure Constchaine.

Clongchaine: longueur de la chaîne.

Cas 4: la constante est un identificateur de constante.

2.1.1.3 Description d'un élément de la liste des types

Tlisttype = Struct

Nom:Lspalfa;

Deftype:Ptrtype;

Suivante:Ptrlisttype;

Fin;

- 10 -

Suivante: le suivant dans la liste.

Ptrlisttype = -Tlisttype;

Deftype: Descriptif de type.

Ptrtype = -Ttype;

Ttype = Struct

Pacquete:Booleen;

Cas choixtype:Entier de

1:(Nom:Lspalfa);

2:(Lscalaire:Ptrlistroles);

3:(C1,C2:Ptrconst);

4:(Tpointeur:Lspalfa);

5:(Ltypesimple:Ptrltypsimple;

Ttabtype:Ptrtype);

6:(Typefichier:Ptrtype);

7:(Typeensemble:Ptrtype);

8:(Typeenregistrement:Ptrlistenreg);

Fin;

Le descriptif Ttype correspond aux différents types possibles:

Pacquete: indique si c'est une structure pacquete ou non.

1) Nom

Dans les déclarations (de types) du genre

A = B 	 ou B est un type défini avant

2) Lscalaire

Pointe sur une liste d'identificateurs.

Pour les déclarations de types énumérés

- 11 -

A = (B,C,D)

3) Dans le cas d'un type intervalle

Ex: 	A = 'A' .. 'Z' ;

Cl: Pointe vers le descriptif de 'A'

C2: 	

Le descriptif étant celui d'une constante, ce que l'on a vu

dans la description de la liste de constante.

4) Dans le cas d'un type pointeur

Ex: 	A = PT;

Tpointeur contient l'identificateur (PT dans l'exemple)

5) Dans le cas d'un tableau

Ex: A = array [toto , '0' .. '91 of integer

- Ltypesimple pointe vers le début d'une liste de descriptifs

de types (simples) (toto et ensuite '0' .. '9' dans

l'exemple).

- Ttabtype est un pointeur vers le descriptif du type des

éléments du tableau (dans l'exemple, vers le descriptif de

integer).

6) Dans le cas d'un fichier

Ex: 	A = file of real

- typefichier pointe vers le descriptif du type des éléments

du fichier (dans notre exemple, vers le descriptif de Real).

7) Dans le cas d'un ensemble

Ex: 	A = set of 'A'..'Z'

- typeensemble pointe vers le descriptif du type des éléments

de l'ensemble (dans notre exemple vers le descriptif

de 'A'..'Z').

- 12 -

8) Dans le cas d'un enregistrement, typeenregistrement pointe vers

un descriptif d'un type enregistrement.

Ptrlistenreg = 	Tlistenreg

Tlistenreg = Struct

Partiefixe:Ptrlistvar;

Bvariante:Booleen;

Bidentcas:Booleen;

Selectid:Lspalfa;

Selecttype:Lspalfa;

Listcas:Dtrlisteas;

Fin;

Partiefixe pointe sur une liste de champs avec leurs types.

Bvariante 	indique si l'enregistrement contient une variante

'case'.

Bidentcas indique si on a un champ sélecteur dans le 'case'.

Selectid est le champs sélecteur (si bidentcas).

Selectype est le type dans le 'case'.

Listcas est une liste dont chaque élément contient une liste de

constantes et un pointeur (de type Ptrlistenreg) sur un enregis-

trement.

2.1.1.3 Description d'un élément de la liste des variables

PTRlistvar = -Tlistvar;

Tlistvar 	= Struct

Lident:PTRlistroles;

- 13 -

Vtype:PTRtype;

Suivante:PTRlistvar;

Fin;

Lident est une suite d'identificateurs ayant un même type (on peut

avoir une déclaration de variables de la façon suivante A,B,C:

typeABC;)

Vtype est un pointeur sur un descriptif de type. Suivante pointe

vers le descriptif de variable suivant.

2.1.1.4 Description d'un élément de la liste des fonctions/procé-

dures

PTRlistPF = -Tlistprocetfonc;

Tlistprocetfonc = Struct

nom:Lspalfa;

LPara:PTR1para;

Bexterne,BPlusloin:Booleen;

PFbloc:PTRbloc;

Suivante:PTRlistpf;

Cas Fonc:Booleen de

vrai:(Restype:Lspalfa);

faux:();

Fin;

Nom est l'identificateur de la procédure ou de la fonction.

LPARA pointe sur une liste de paramètres.

Bexterne (resp. Bplusloin) indique si la procédure/fonction est

- 14 -

déclarée externe (resp. plusloin).

PFBloc pointe sur le "bloc" de la procédure/fonction.

Suivante pointe sur la description de procédure/fonction suivante.

Fonc indique si c'est une fonction (vrai) ou une procédure (faux).

Restype est l'identificateur du type du résultat dans le cas d'une

fonction.

2.1.2 Description de la liste d'interaction/PDU

PDUinter:PTRPDUinter;

PTRPDUinter= -TPDUinter;

TPDUinter=Struct

Nom:LSPalfa;

BPDU:Booleen;

Listeactions:PTRLroleaction;

Listroles:PTRlistroles;

suivante:PTRPDUinter;

fin;

Nom est l'identificateur associé à l'interaction/PDU.

BPDU indique si c'est un PDU (vrai) ou une interaction (faux).

Listeactions pointe sur une liste de listes d'actions.

Listroles est la liste des roles possibles de l'interaction/PDU

telle qu'indiquée au début de la déclaration.

Suivante pointe vers le descriptif de l'intersection /PDU suivant.

- 15 -

2.1.3 Description du module

Module:PTRmodule;

PTRmodule= -Tmodule;

Tmodule=Struct

Nom:LSPalfa;

Listinterfaces:PTRlistinterfaces;

Fin;

Nom est le nom du module.

Listinterfaces pointe sur une liste de descriptifs d'interfaces.

PTRlistinterfaces= -Tlistinterfaces;

Tlistinterfaces=Struct

Lnom:PTRlistroles;

Listindice:PTR1typmodule;

Nompduinter:LSPalfa;

Listroles:PTRlistroles;

Bwith:Booleen;

Withpduinter:LSPalfa;

Listrolewith:PTRlistroles;

Suivante:PTRlistinterfaces;

Fin;

Lnom est une liste d'identifications ayant le même 'type' d'inter-

face.

Listindice pointe sur liste de types correspondant aux types des

indices de tableau (s'il y a lieu) dans la déclaration d'(es)

interface(s).

- 16 -

Nompduinter est le nom de l'interaction associée à l'interface.

Listroles est la liste des roles possibles dans l'interaction.

Bwith indique si l'option 'with PDUid (...)' a été utilisée dans

la déclaration. Dans ce cas withpduinter est le nom du PDU et

listrolewith est la liste des roles possibles du PDU.

Suivante pointe vers le descriptif d'interface suivant.

2.2 Les vérifications sémantiques

Prenons comme exemple la déclaration d'interaction suivante: (ce

qui suit s'applique aussi dans le cas d'une déclaration de PDU).

Interaction 	Userinterface 	(totol, toto2, toto3) is

(1)

By totol: Connect (Infl: Infotypel;

(2) Inf2: Infotype2);

By toto2, toto3: Ceci (est: integer; exemple: Real);

(3) Egalement (celui: ci; autre:typepara)

1) Il faut que les identificateurs dans les listes en (2) et (3)

fassent partie de la liste (1). Lorsque cette règle n'est pas

vérifiée une erreur no. 400 est déclarée.

2) Une liste d'identificateurs (comme en (1), (2), (3)) ne peut

contenir deux fois le même identificateur (sinon erreur no.

401).

'array' • V,

- 17 -

3) Dans la règle

	

<interaction-paramete> = '('<liste-ident> 	ident

(1)

	

[';' <liste-ident> 	ident] ')'

(2)

I vide

les identificateurs en (1) et (2) doivent être des types

déclarés auparavant (sinon erreur no. 402)

4) Une variable ne peut porter le nom d'une interface (il y

aurait alors possibilité de confusion) (autrement erreur no.

403).

5) Dans la règle

<type-nouveau> = Ident '(' <liste-ident> ')'

(1) 	 (3)

['with' ident '(' <liste-ident> ')' 1 vide]

(2) 	 (4)

a) l'identificateur en (1) doit désigner le nom d'une interaction

déclarée auparavant (sinon erreur no. 405)

b) l'identificateur en (2) doit désigner le'nom d'un PDU déclaré

auparavant (sinon erreur no. 404)

c) les identificateurs dans les listes en (3) et (4) doivent

faire partie de la liste au début de la définition de l'inte-

- 18 -

raction (resp.PDU) correspondante . (sinon erreur no.406).

6) Dans la règle

<when-condition> = 'when' [<expression>lIdent *[<indicage>]*

(3) 	(4)

<designe-champs>'('<liste-ident>')1

(1) 	 (2)

(Rem: <designe-champs> = 	ident

(1)

<liste-ident> = ident *[ident]*)

d) les identificateurs en (2) doivent être les mêmes et dans le

même ordre que dans l'action dont le nom est l'identificateur

(1) dans l'interaction (ou le pdu) de la définition de l'in-

terface identifiée par (3) (sinon erreur no. 409)

e) le nombre d'indices en (4) doit être conforme à la définition

de l'interface identifiée par (3) (sinon erreur no. 407).

- 19 -

7) Dans les règles

<action-list> = ident <suite AAA>

(4)

I•• •

<suite AAA> = *[<S-indicage>]*[<désigne-champs <interA>

(1)

1 <pointage> ...

<inter A> = '('<expressions *[',' <expression>]* ')' (2)

1 <suite-affec>

1 vide

(Rem: 	<désigne-champs> = 	ident)

(3)

l'identificateur de champ en (3) (provenant de (1)) doit être

une action possible selon la définition de l'interface (4)

(sinon erreur no. 408). Par action possible on entend une

action qui, dans la définition de l'interaction (PDU) corres-

pondante, appartient à la liste d'actions (<interaction-list>)

associée à une liste de rôles qui contient l'identificateur

(3).

De plus le nombre de paramètres en (2) doit être égale au

nombre de paramètres dans la définition de l'action correspon-

dante en (3) (sinon erreur no. 410).

- 20 -

2.3 Le code Pascal engendré

(se référer à l'exemple de traduction à la section 4)

lo Les soulignés permis dans un identificateur LSP sont éliminés

lors de la traduction.

2o Le nom du programme engendré est celui du module dans le

programme LSP.

3o Le seul fichier de l'entête est le fichier output.

40 Dans la règle LSP

<prog> = *[<pdefconstl> 1<pdeftypel> 1 <pdu>

1<interface-definition>]* <module>

toutes les constantes définies dans l'une ou l'autre des

occurences de la règle <pdefcontl> sont regroupées dans un

seul bloc de constantes de type Pascal. De même pour les

types. Dans les deux cas la traduction est directe i.e.

c'est une copie.

5o A partir de la déclaration du module et des interactions

(resp. PDU) le compilateur construit 2 types: ZZZT et ZZZTB.

ZZZT est constitué d'un enregistrement avec cas pour chaque

interface déclarée dans le module (dans le même ordre d'appa-

rition). Le champs de chaque cas est constitué de l'identifi-

cateur de l'interface correspondant. Le type du champ est

- 21 -

lui-même un enregistrement constitué (possiblement) d'indices

Il, 12, I3,... dans le cas que l'interface est un tableau

(autant d'indices qu'il y a de dimension dans le tableau) et

d'une variante (avec pour sélecteur le champ CTF) pour cha-

cune des actions possibles dans la définition de l'interac-

tion indiquée dans la définition de l'interface. Lorsque

l'option 'with Ident (<liste-ident>)' est utilisée alors la

liste des actions possibles pour le PDU correspondant (à

Ident) est ajoutée à la suite.

Chaque action possible a un type enregistrement composé des

paramètres (et des types) de l'action dans la définition de

l'interaction (resp. PDU).

ZZZTB est un enregistrement ayant comme champs les noms des

interfaces. Ces champs ont comme type soit le type Booleen

soit un tableau de Booleen conforme au tableau de l'interface

correspondante.

6o Les 	variables 	dans <P-decl-var> de la règle <global-

constraints> sont traduits directement (copie) sauf que les

variables suivantes sont ajoutées

ZZZR, ZZZS : ZZZT;

ZZZB : ZZZTB;

ZZZR est une variable, conforme au format des interfaces du

module, qui sert à recevoir l'information de l'extérieur. Il

n'y a que la procédure wait qui peut la modifier. ZZZS, de

même type, sert à envoyer de l'information vers l'extérieur.

Il n'y a que le programme qui peut la modifier lors d'une

- 22 -

instruction 'send'.

ZZZB est une variable, modifiée par la procédure wait, qui

sert à indiquer au programmeur quels sont les actions reçues

depuis le dernier 'wait'.

7o Les procédures et fonctions dans <P-decl-Proc-fonc> de la .

règle 	<global-constraints> 	sont 	traduites 	directement

(copies). Les procédures wait et send (externes) sont ajou-

tées.

8o Les 'transitions' sont traduites de la façon suivante:

Begin (*program*)

while true do

Begin

Wait(ZZZR,ZUB);

Traduction des 'when ... else ...'

end;

end.

90 Considérons les règles

<when-clause> = <when-condition> [<when-list>l<action>]

<when-list> 	= + kwhen- clause>] + 'else' <action-list>

<action 	= 'DO' <action-list>

<when-condition> = 'when' [<expression> I

ident *[<indicage>]* <designe-champs>

- 23 -

['('<liste-ident> ')' 1 vide]]

<when-condition> est traduit par:

if <expression>

OU

if ZZZB. Ident *[<indicage>]* and

(ZZZR. Ident.CTF=e)

Selon l'alternative de la régle.

e = l'ordre dans ZZZT de l'action indiquée par l'iden-

tificateur dans <désigne-champs>

la traduction de <when-clause> est alors:

traduction de <when-condition>'then'[traduction de <when-

list>1

traduction de <action>] 'else'

la traduction de <when-list> est:

'begin'+[traduction de <when-claude>]+traduction de <action-

list>'end'

la traduction de <action> est:

traduction de <action-list>

(la traduction de <action-list> est vue en 11o)

10o Si dans une expression (<expression>) un identificateur A est

dans une des <liste-ident> d'un des <when-condition> qui

- l'imprique alors, si

when IdentA *[<indicage>]* <désigne-champs> (<liste-ident>)

est le plus rapproché (des <when-condition>) qui vérifie la

- 24 -

condition énoncée plus haut, A est remplacé par

ZZZR.IdentA *[<indicage>]* <désigner-champs>.A

dans l'expression.

110 Une <action-list> est soit une instruction Pascal, soit l'en-

voie d'une action. Une instruction Pascal est traduite sans

modification sauf pour les expressions (I0o).

L'envoie d'une action est traduite par un code Pascal qui

affecte la variable d'envoie ZZZS par les valeurs appropriées

et envoie ZZZS avec la procédure Send (voir l'exemple de

traduction).

3. NOTICE D'UTILISATION

3.1 Cartes de contrôle nécessaires

*Job,....

*Code

•••,

LIB, L, LSP, U=1837

LSP(F1,F2,F3,N)

Fi: Fichier contenant le programme LSP.

F2: Fichier de sortie du listing et autres informations du genre

(erreurs, sommaire).

F3: Fichier contenant le programme PASCAL provenant de la traduc-

tion du programme LSP.

N: Nombre en octal spécifiant le RFL donné à la job.

- 25 -

Les valeurs par défaut sont:

pour Fi: input,

F2: output,

F3: Lgop,

N: 60000.

3.2 Remarques

- Le préprocesseur LSP a été développé dans un environnement CDC

Cyber 173. Le langage utilisé est le Pascal 6000 version 3.2.2.

- En cas de "BUG" du préprocesseur, l'utilisateur est prié de

communiquer avec M. Michel Gagné ou l'usager 1837, ou M. Gregor

Bochmann.

- Les Utilisateurs désirant enjoliver le programme Lgop produit

par le pr6processeur LSP, peuvent utiliser les formateurs du

genre PASTAB, JOLI, PRETTY dont la documentation pour certains

est disponible sur Bonjour.

3.3 Echantillons de résultats et comment les interpréter

Lors d'une exécution du programme LSP, en utilisant la

carte LSP (F1,F2,F3,N), le fichier F2 (par défaut output) contient

des informations sur le programme LSP fourni (sur F1).

Le fichier F2 est composé jusqu'à 3 parties:

(voir le "listing" à la section 4)

A) Le texte du programme, avec une numérotation par accroissement

- 26 -

de 1.

- Sous les lignes contenant une erreur LSP, on a une suite de 12

étoiles ainsi qu'une flèche sous le caractère ou a été détecté

une erreur. La plupart du temps, le caractère pointé n'est pas

en faute; c'est (en général) l'une des deux dernières unités

lexicales avant le caractère pointé.

- Une erreur décelée à la toute fin du texte n'est pas indiquée

sur celui-ci mais seulement dans le sommaire des erreurs.

Lorsque le programme comporte des fautes, F2 comporte aussi 2

autres sections:

B) Un sommaire des erreurs comprenant pour chaque erreur décelée

sa ligne, sa colonne (position du caractère dans la ligne) et

son numéro d'erreur.

C) Une brève description des numéros d'erreur chapeautée par le

titre "Signification des erreurs".

4. Exemples

LSP
PREPROCESSEUR LEP

UNIVERSITE DE MONTREAL 12.34.28.
VERSION 1

"Exemple 1:

Programme LSP avec erreurs"

41
42
43
44
45
46

47
49
49
50 PDU
51
52 	TPIMUSER;PROVIDER) IS
53
54 	 BY USER : SREF:
25 	 SDATE:
56 	 SCRAMMEHORS:COMMON; DEDANS:COMMONI;
57

DISCONREGOIA:STATUStBS:INFO/e

DATAREC(CA:INFO):

BY PROVIBER : 2CINNECTINDCDA:BOOLEAN: DB:COMMON: DC:STATUS);

DISCONIND(EA: STATUS; EB:/NFO),
DATAIND(FA:INFO/1

74
75
76 TRANSITIONS
77
78
79 WHEN TRAUSPORTEVSIPREF

400
401
402
403
404
405
406
407
409

1 CON8T
2
3 	CAA.3:
4 	AAA.21
5
6 TYPE
7
8 	ENS 	0..10&
9 	COMMON BOOLEAN1

IO 	INFO RECORD
11 	 P1:500LEAN;
12 	 P2:INTEGER,
13 	 P3: SET OF ENS:
14 	 END'
15
16 	INTERACTIONS
17
18 	LOCALBUF(USER;BVFFER1 IS
19
20 	 BY USER: CLEAR(INFRAG:INTEGER&
21 	 OUTFRAQ:COMMON):
22
23 	 RECIUESTDATA:
24
25 	 BY BUFFER : SENDDATA(DATAFRAO:INFO):
26
27 CONST
29
29 	BROUAA 51
30
31 TYPE
32
33 	STATUS INTEGER:
34
35 	INTERACTIONS
36
37 	TSPOINT(USER;PROVIDER;PROVIDER) IS
44b
39
39 	 BY USER :
42 	 CONNECTREGCAA:BOOLEAN; AB:COMMOM, AC:STATUSI:

LSP 	 UNIVERSITE DE MONTREAL
PREPROCESSEUR LSP

12.34.30.
VERSION 1

58 	 BY PROVIDER : PREF1
59 	 PDATE;
60 	 RAPHOUTSIDE:STATUS, INSIDE:INFOI: (* POUR- OUM, PAS •)
61
62 	MODULE ESSAI (TRANSPORT: ARRAY[1..5) OF ARRAY12..3) OF
63 	 STSPOINT(eER) WITH STPD4J(2ROVIDER);
--
64 	 LOCBUF : LOCALBUF(USERR)) IS
te* 	 ...
65
66 	VAR
67
60 	 VA:COMMON1
69 	 VS.STATUS:
70 	 VI:INFOo
71 	 BVA:COMMON;
72 	 BVB;BVCAVD;BOOLEAN:
73 	 LOCOUF:SIATUSi

80 	 WHEN VA
81 	 WHEN BVA DO LOCBUF CLEAR(10;TRUE)
e2 	 WHEN BVB DO VI.P2:.3
e3 	 ELSE VI.P3 :. Cl. .4)
84
85 	 WHEN SVA DO TRANSPORTIVS.VI.P21.CONNECTRECHTRUE;FALSE;33)
86
e7 	ELSE VS:.8
e8
89 	WHEN TRANSPORTEVS:VS3.RAM (INSIDE;OUTSIDE)
90 	 WHEN VA DO VS..OUTSIDE

91
92
93

El-SE VS: -31

LIGNE
LIGNE
LIGNE
LIGNE
LIGNE
LIGNE
LIGNE
LIGNE
LIGNE

SOMMAIRE DES ERREURS

37 	COLONNE. 38 	ERREUR NO 401
40 	COLONNE. e4 	ERREUR NO 402
46 	COLONNE. 22 	ERREUR NO 400,
63 	COLONNE 39 	ERREUR NO 405
63 	COLONNE 56 	ERREUR NO 404
64 	COLONNE 43 	ERREUR NO 406
73 	COLONNE 19 	ERREUR NO 403
79 	COLONNE 26 	ERREUR NO 407
90 	COLONNE 	1 	ERREUR NO 409

SIGNIFICATION DES ERREURS

UN ms ROLES DE LA DERNIERE LISTE NE FAIT PAS PARTIE DE LA LISTE DE LA DEFINITION INITIALE.
REPETITION D'IDENTIFICATEURS DANS UNE LISTE INTERDITE.
TYPE NON DECLARE.
UN IDENTIFICATEUR DE VARIABLE NE PEUT ETRE LE MEME QUE CELUI D'UNE INTERFACE DECLAREE DANS LE MUULA_
POU NON DECLARE.
INTERACTION NON DECLARE.
UN DES ROLES DE LA LISTE EST ABSENT DANS LA DEF/NITION DE L'INTERACTION tOU DU POU).
NOMBRE D'INDICE DE TABLEAU EN DESACCORD AVEC LA DECLARATION.
IDENTIFICATEUR(S) DE PARAMETRE(S) EN DESACCORD AVEC LA DEFINITION DE L'ACTION.

1

1

UNIVERSITE DE MONTREAL 	 16.12.44. Uv.
Viti-PROCESSEUR LSP 	 VERSION 1

J CONST

• CAA=3;
AAA=2;

TYPE

• ENS ■ 0..10;

	

9 	COMMON BOOLEAN;

	

JO 	= RECORD

	

JJ 	 P1 . 000LEAN;

	

JP 	 P2:INTEOER;
Jrt

P3: SET OF ENS;

END;

	

J!, 	INTERACTIONS

	

ia 	LOCALBUF(USER.BUFFER) IS

	

g) 	BY USER: CLEAR(INFRAO:INTEOER;
OUTFRAO:COMMON);

REOUESTDATA;

BY DUFFER : SENDDATA(DATAFRAO:INFO);

CONST

BROUAA = 3;

o TYPE

STATUS = INTEOER;
1/!
• INrERACTIONS

	

4/ 	TSPOINT(USER.PROVIDER) IS

	

(v 	BY USER :

	

10 	 CONNECTREO(AA:SOOLEAN; AB:COMMON; AC:STATUS);
4.1

	

np 	 DISCONREO(BA:STATUS;BS:INFO);
1;!

DATAREO(CA:INFO);

	

/b. 	BY PROVIDER : CONNECTIND(DA:BOOLEAN; DB:COMMON; DC:STATUS);

	

17 	 DISCONINO(EA: STATUS; EB:INFO);
DATAIND(FA:INFO);

PDU
,

TPDU(USER,PROVIDER) IS

' 	BY USER : SREF;
SDATE;
SCRAM(DEHORS:COMMON; DEDANS:COMMON);

./

	

n ■ 	 BY PROVIDER : PREF;
PDATE;
RAM(OUTSIDE:STATUS; INSIDE:INFO); (* POUROUOI PAS *)

UNIVERSITE DE MONTREAL 	 16.12.45.
PR-PROCESSEUR LSP 	 VERSION 1

MODULE ESSAI (TRANSPORT: ARRAYC1.5] OF ARRAY[2..3] OF
TSPOINriUSER) WITH TPDU(PROVIDER);

M 	 LOCBUF : LOCALBUF(USER)) IS

VAR

eal 	VA:COMMON;
e,9 	VS.STATUS;
70 	VI:INFO;
71 	 BVA.COMMON;

BVILBVC,BVD:BOOLEAN;

.1 /
/I, 	TRANSITIONS

//
7(4 	WHEN TRANSPORTCVS,VS].PREF

WHEN VA
rt0 	 WHEN BVA DO LOCOUF.CLEAR(3,TRUE)
o ; 	 WHEN BVB DO VI.P2:=3
riP 	 ELSE VI. P3 : = Cl. .4]

:11 	WHEN SVA DO TRANSPORTCVS4VI.P2].CONNECTREO(TRUE,FALSEI33)

ELSE VS: -B
O/
rit; 	WHEN TRANSPORTCVS,VSJ.RAM (OUTSIDE,INSIDE)
re/ 	WHEN VA DO VS:=OUTSIDE
90 	ELSE VS: 3;
9:

"Exemple 2:

Programme LSP sans erreurs;

la traduction est à la page

suivante"

4

1
1
1

1

'OMMOLATEOR PASCAt — E. T. H. ZUERICH . / UNIVERSITE DU MINNESOTA.
:ES 1 HE bb ULOUL/ UWIVERRITE DE MONTREAL

7 PROGRAM ESSAI (OUTPUT);

CONST
1

A 	CAA=3;
AAA=2;

BROUAA = 51
JO
11 TYPE
JP
10
14 	ENS = 0.. 10;
1 I. 	COMMON = BOOLEAN;
1A 	INFO = RECORD
17 	 P 1: BOOLEAN;
10 	 P2: INTEGER;
19 	 P3: SET OF ENS;

END;

PP
P:1 	STATUS = INTEGER;

ZZZT =
PA RECORD
V/ CASE TF: INTEGER 'OF
PO 1 : (TRANSPORT : RECORD

'/ I1: 1. . 5;
1 (4 12: 2.. 3;
11 CASE CTF: INTEGER OF
ip 1 	(CONNECTREG : RECORD
40 AA : BOOLEAN;
II AB : COMMON;
41, AC : STATUS;
4,1, 	END;);
17 2 : (DISCONREG : RECORD
10 BA : STATUS;

1313 .• INFOt
10 END;) ;
11 3 : (DATAREG : RECORD
11:•• CA ,• INFO;
10 END;) ;
11 4 : (CONNECTIND : RECORD
1) , DA : BOOLEAN;
11, De : COMMON;
47 DC • STATUS;
411 	Erie););
1.2 5 : (DISCONIND : RECORD
1,0 EA : STATUS;
1,1 ES ,• INFO;
tr.' 	END;) r
In , 6 : (DATAIND : RECORD
1,1 FA 	INFO;
DI, END;) ;

7 : (SREF : RECORD
1.1 	END;);
1 ,0 	(SDATE : RECORD
1e/ END;);
AO 9 	(SCRAM : RECORD

COMP /LA1 &Mt PASCA1 — E. T. H. ZUER ICH / UNIVERSITE DU MINNESOTA.
CENTRE DE CALCUL/ UNIVERSITE DE MONTREAL

22 	1Pf
i;'; IF ZZZ11. TRANSPORTCVS

VS
26 	lPq 1 ANO (ZZZR. TRANSPORT. CTF = 10) (*PREF*) THEN
34 	11q.

1PA BEGIN
JPO • IF VA
."/ THEN

36 	340
1 0 BEGIN
1 4'

10 IF 8VA
1 11 THEN

37
 V'

1 1/ BEGIN (* SEND OPERATION •)
ZZZS. TF : = 	 2;

41 	1 V/ WITH ZZZS. LOCBUF DO
110
111 BEGIN
1.•!:•
.110 CTF : 	 1;

42 	1 11
II', END;
11A WITH ZZZS. LOCBUF. CLEAR DO
1 ,17
; 	BEGIN
119 INFRAG : = 3
I ,0 ;

43 	1 d CUTFRAG : = TRUE
;

44 	J
J wl END;
1 e. SENO(ZZZS);

46 	1 	END (* SEND OPERATION *)
1 .7 ELSE

47 	J .0 IF BVB
%/ THEN

51 	!“0
d VI. P2: =3

1.4' ELSE
52)An

JAI VI. P3 : =C1.. 4]
JAD END

54 	1AA ELSE
55 	JA7 IF BVA

11J1 THEN
57 	1A9

170
j 71 BEGIN (* SEND OPERATION
17P ZZZS. TF 	 1;

60 	170 WITH ZZZS. TRANSPORT DO
1/1
17) . BEGIN
I7A
177 Il ;= VS
f 711 ;

63 	1/9 12 : = VI. P2
1110 ;

51

*)

CMIII

F ATEUR PASCAL — E. T. H. ZUER ICH / UNIVERSITE DU MINNESOTA.
EN DE CALCUL/ UNIVERSITE DE MONTREAL

Al DEHORS : COMMONJ
AP DEDANS : COMMON,
AO ENO;);

II M10 : (PREF : RECORD
Ar, END;) ;
/'."11 : (PDATE : 	RECORD
67 END;)1
AO 12 : (RAM : RECORD 	 .
69 OUTSIDE : STATUS;
70 INSIDE : INFO;

I 	

71 END;);
/P END;
70);
71 2 : (LOCBUF : RECORD
71. CASE CTF: INTEGER OF
7A 1 : (CLEAR : RECORD
77 INFRA° : INTEGERJ

II 	

7O CUTFRAG : COMMON;
/V END;);
00 2 : (REGUESTDATA : RECORD
(4 1 	END;);
OP 3 : (SENDDATA : RECORD
00 DATAFRAG : INFO;
(41 	END;);

I 0. ENDi

O7 ENDJ
no
149 ZZZTB = 	'
90 RECORD
91 TRANSPORT: ARRAYC 1. . 5] OF ARRAYC2. . 33 OF

II 	

9P BOOLEAN
•0 ;
91
9:. 1 	

LOCBUF : BOOLEAN

VA END;
9 •
vo

III 	Vv VAR
1(/0
101 ZZZR, ZZZS: ZZZTJ
10P ZZZB: ZZZTB;

	

73 	100
Ion
101 , 	 VA: COMMON;

II 	

JOA (* 69*) 	 VS: STATUS;
10.i (4 	70*) 	 VI: INFO;
Jots (4 	71*) 	 BVA: COMMON;
10% (4 72*) 	 am BVC. BVD: BOOLEAN;

104 	110 (4 	73*)
111 	PROCEDuRE WA IT (VAR T: ZZZT; VAR B: ZZZT13)1 EXTERN;

	

4 	11 P 	PROCEDURE SEND (T: ZZZT); EXTERN;

IF

110
114 BEGIN (* PROGRAM *)
11n

	

0 	1 i .7. WHILE TRUE DO
'

11 rf BEGIN
119 	 .
i:al WATT/77,0 7,717%.

COMP ILA1EUR PASCAt — E. T. H. ZUERICH / UNIVERSITE DU MINNESOTA.
'CENTRE DE CALCUL/ UNIVERSITE DE MONTREAL

67 	ro CTF = 	 1;
70 	11C. ,

lit: END;
01 WITH ZZZS. TRANSPORT. CONNECTREG DO

I Or• .
• 10A BEGIN

tf/ AA : = TRUE
1:1 1 1 	;

71 	J OY AR : = FALSE
190 ;

72 	191 AC : = 33
1VP ;

73 	19*;
191 END;
!VD SEND(ZZZS);

75 	196 END (* SEND OPERATION *)
197 ELSE

• 76 	1V0
99 VS: =El
q) END

100 	'01 ELSE
101 	'OP IF ZZZB. TRANSPORTCVS

,00 , VS
104 	:01 I ANO (ZZZR. TRANSPORT. CTF = 12) (*RAM*) THEN
113 	q1 1 ,

BEOIN
If!,

gar IF VA
.09 THEN

114 	.10
'11 vs: .ZZZR. TRANSPORT. RAM
P OUTS IDE

'10 ELSE
116 	' I

'1 	VS;
'1 A ENO

117 	'17 ELSE
120 	In

'19 END; 	-
121 	vo

END.

COMPILE;(FnI IMATED 'W ' OPTION 	25058.

Exemple 3:

"mat de la description

intégrée"

pil
îll 20,

!8;

061 06

06i
06
06

_
Itler001),

_ _ _

iimpt!002),

Usti,
LUCALtHANPI. V7VPEIISOIVRECOURAN 7 1
5007RECOLIAAN7te LO ALTVPEt
1.01""COURANTsnOcAL, mAmpi

irPqa!0-03”--

14 ,10.000),

ivq41901),
(m4v.i .r.vARIAn1)--

Itmpe002),

ANAViEN V E RS ION 1.02. 01/07/31 00835.. 11. 	 PAGE 38

PAIE 17 éNét.nq vgint0e4 1.02 01/07/ 51 	00.35.11.

itép7000,1 • 	 • 	- 	•

start../0ENT ,

atmu ,
Vet(: es:eWeeitneeI,

IN, -

il216

MI207

gq

I 	2J 7¢ ly
1 î

1 	

sPART.VARIAN7E13

SJIU 2n85 	
3

2.1
iH 	

-

1 	 WI
200

W:A - 	
•__ ._ . _.__

p
100 	

Lt.-0

II 	
. 8003)1

(VAwIANTE> '
. -

 itNi0i3O0113, 101

II tmt48005),

to 	
km!,,006),

1 	 ..

1 	 2110 	 $
eAMIANTE) —

IEMI 0 i1 007)i

1 	 IM
1 $

_ litM(0:-100(5),

II 	
MO SE 7.VAA tLErR/RTIor -- - ----- - -- — —

_ a _ 	ENS ?OM/
„_ __

!PE NT

I 	
! I it 	. ._ _ _ _ __ . . _ 'VIM!) 2.1IL _____ ________.• _ t 	'

Itif 	• 	
I

- -- – Itm!9I402)/.___ _ 	•---

illl 	 l'

/uENT

2140

I 	SI
S A

I 	
2 dif i aq 	 r
i l 	.(_____.

vARIANT2) 	
2 	

.

I 	 L 	
a

It" sq000),
. 	 !LI 	 . ettalr ■c0NI7■CMIs

I

/11 	

ICKM001)I
8. - .

iié 	 tnedanlaleililikedrUR"71

I 	
Pt 1 	 km14.003tt

1 - .-... ----- ill! 	ILPq 6 1'0 04) I .

itmtèmeit

VI O!
LI'S. 801 006) t_ _

- 28 -

Annexe 1

Introduction au langage LSP

ISO

INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/TC97/SC16

OPEN SYSTEMS INTERCONUECTION

Source : Canada

Title: Tutorial on formal description techniques (FDT)

1. Introduction

The purpose of this paper is to describe some key techniques which can
be used as part of the formal description techniques in specifying
services and protocols for Open System Interconnection (OSI). The
so-called formal description techniques (FDT) for OSI may be envisaged,
at this stage, as a set of techniques used to accurately specify the
complex nature of services and protocols. This paper particularly
discusses two techniques, i.e. an "interaction model" for describing
layer services, and a "state and transition model" for describing
protocols.

The first part (section 2) describes an "interaction model" which is
based on the principles outlined in the "Introduction to the Guidelines:
Overall View of OSI Specifications" (section 1 of ISO/TC97/SC16 N 380).
It provides a framework for specifying the interactions through which a
layer provides its service. A possible syntax for this is defined in
Annex 1.

The second part of the paper (section 3) describes a state transition
model which was presented in a previous contribution (Amsterdam 13,
"Commente on Formal Description Techniques"). This model may be applied
to protocol specification by defining the behavior of a layer entity.
Such a specification uses the concepts of (a) the state of the entity
and (b) transitions between such states initiated by interactions and
internal events. A possible syntax for this specification method is
given in Annex 2. This specification technique may be complemented with
additional specification techniques, such as state transition diagrams
or transition tables.

Although the state and transition model has been found very useful for
protocol descriptions, it is, however, not clear, at this stage, whether
it is also useful for describing services. Probably other techniques may
be more suitable for this purpose.

2. The interaction model

Section 1 of ISO/TC97/SC16/N 380 	("Introduction to the Guidelines:
Overall View of OSI Specifications") gives an introduction to the main
characteristics and the role of service, and protocol specifications for
OSI. Many of the concepts discussed in the present paper are further
explained in this "Introduction to the Guidelines".

A certain siMilarity exists between the requirements for service and
protocol specifications. It is therefore possible to use certain
techniques for both services and protocols. The following discussion
uses the term "module" mainly in two different connotations: In the case
of a (N)-service specification, the module considered consists of the
layers of all Open Systems below the (N)-layer interface, i.e. the
layers up and including the (N)-layer, as observable by the (entities
within the) (N+1)-layer (see "Introduction", section 3.1.1). (The module
is the functional unit that provides the service). In the case of a
(N)-protocol specification, the module considered cbnsists of the part
of an Open System corresponding to the (N)-layer of the model of an Open
System (also called (N)-layer subsystem) or of an entity contained in
such a part, as observable by other entities within the same layer (see
"Introduction", section 3.2 and 3.2.1). (The module is the functional
unit that conforms to the protocol).

The following subsectiOns discuss concepts for specifying the
interactions of the module.

2.1. Interactions

The following examples are considered. The (N)-service is provided td
the entities in the layer above by the interactions through the service
access points between the service providing module and its environment..
The interaction model is also useful to define interactions between
different entities (or "modules") of an (N)-layer subsystem. For
example, it may be used for defining the timer or data buffering
services used in the (N)-layer protocol.

In the following the term "abstract interface" denotes the interactions
between the given module and another * module in its environment. For
example, a service access point is an abstract interface between the
service providing module and the entity using the service through this
access point. It shoilld be noted that the abstract properties of these
interfaces are discussed here only to the extent that they are concerned
with service and protocol specifications.

The specification of an abstract interface of a module is given by
enumerating the possible interaction primitives that may occur over the

Network layer
entity

Link layer
entity tLin.k service

access point

interface (including possible Parameter values (determined by the module
initiating the interaction), and indiCating whether the module, its
environment, or both may initiate the interaction), and defining the
pOssible orders of interaction. We note that the latter is often only
given informally, or not at all (it is assumed to be understood).

Annex 1 defines a possible notation which allows to specify the
« poossible interactions through an abstract interface without explicitly
defining the modules that interact theugh the interface. However, it is
necessary to refer to the roles that these modules play in this
interaction.

As an example we consider the abstract interface through which the Link
service is provided at some Link service access point. The diagram below
shows the entities.involmed2

1

Network
layer

Link
layer

Using the syntax defined in .Annex 1, the possible service primitives
may be enumerated as follows.

interactions
Link-service-access-point (link -entit);; - user) . is

by lei"' •
 The user may initiate the
 interactions:

	folloviss

init -request; 	 -
term-request; 	• -- 	 reameet for the initiation of the
send (d: user-data); 	 link

•• •
by link -entitr: 	 -

luit-indication;--- 	 ere Inman teilt;lhirp.::
term-indication; 	 user.

receive (d: user-data);
• • •

end Link-service-access-point;

This specification states that a module that interacts through a Link
interface must take the role of a user, or a Link entity. Depending on
its role it may initiate a certain number of interactions (indicated by
the BY clause), for example a user . may initiate requests for link
initialization, or termination, or the sending of a block of User data.

The interactina nodules have the
roles "user" and "Link—entity",
respectively.

The same notation may also be used for defining the interactions between
several entities within the ; same layer, or between an entity and some

type
sequence-count: 0 .. 7;

PDU

locally provided services, such as timers or buffer management. An
example is the following definition of the timer services used by the
Link entity implementing the Link protocOl.

interactions
timer-interface (user, server) is

by user:
start (period: integer);
stop;

by server:
time-out;

end timer-interface;

- • 	- - - • — - —
The inteimetiese et the tir

 module are "start". "stop". and
"time-out".

Here again, the possible orders of interactions are not specified -.
However, it is understood that the time-out interaction will only be
initiated by the server "period" seconds after• it has received a start
interaction and no subsequent stop interaction.

2.2. ProtoCol data units (PDU's)

A (N)-layer PDU is the unit of interaction that is exchanged between
peer (N)-entities through the (N-1)-service. As suggested in the
"Guidelines for the specification of Protocols for OSI" (N 381), the
specification of a protocol is clarified by separating the specification
of the mapping of the PDU's into (N-1)-layer service primitives (clause

 6.2), and the "interaction behavior" (clause 6.1) of the protocol
éntity. •

-
It is therefore suggested to use the same formalism for the enumeration
of PDU's as for the specification of the other interaction, primitives
considered in the subsection above. Such an enumeration doei not include
the specification of the mapping of the PDU's into the (N-1) service
primitives, whiCh must be given separately.

The following example defines some Link PDU's using the notation of
Annex 1. —

Three types of interacting modules
are distinguished. (But only two
are involved for a given link , this
is nit Mum by this

• 	 specification).

Link -PDUs (primary, secondary, balanced) is
by balanced: -- -.....Inhere L. an entity implementing

the balanced class of procedures,
SASH; , 	it may send the following PDU's:

by primary: "sut as3rochranous response mode"
SIWWK;

by balanced, primary, secondary:
I (N, R: sequence-count; -

intimation frame with "Be. *Br, PF -bit: boolean; 	and emir data fields , ea viii ae
data: user-data); 	IVY bit.

- 4 .r

•

DM;

end Link-PDUs;

2.3. The externally visible properties Of a module

The behavior of a module, as seen by its environment, is characterized
by the following points:
(a) enumeration of the abstract interfaces through which the module
interacts with its environment. The specification of each interface
includes the following information:
(al) Enumeration of the interactions that may occur through the

.interface (for a possible notation see annex 1);
(a2) Specification of the permissible order of execution.
(h) global constraints on the order in Which the interactions through
different interfaces of the module may occur. (In the case of service
specifications, these constraints define how the interactions at the two
end-points of a connection relate to one another. In the case of a
protocol specification, these constraints specify the order in which
different PDU's may be sent, and how the interactions at the (N)-service
access point of the entity relate to the sending and receiving of PDU's
through the (N-1)-layer interface).

Different approaches may be useful for the specification of the global
constraints. The state transition model described in section 3 seems to
be a useful specification method in the case of protocol specification.
Another method may be preferable in the case of service specifications.

It is useful to separate the specification of the Characteristics of
abstract interfaces, from statements that certain modules use certain
types of interfaces. For example, the characteristics of the (N)-service
access points are relevant for the (N)-service specification as well as
for the (N)-protocol specification. This leadeto a specification method
in which interface • types may be defined independent of their use, and
the specification of a module includes an enumeration of all the
interfaces through Which it interacts with its environment, with an
indication of the interface type for each of these' interfaces. A
possible syntax for these specifications is defined in Annex 1.

A separate "connection language" may be used for specifying how the
different modules and entities within the Open Systems are connected
through these interfaces. However, such consideretion go beyond the
scope of this paper.

To demonstrate these ideas, the following lines show the general outline
of Link service and protocol specifications, using the syntax defined
in Annex 1. It is noted that the Link service access point definitions
are used by the service as well as by the protocol specifications. The
POU and timer interface definitions are only ùsed by the protocol
specification and therefore included in that section.

Specification of the Link layer service:

type
user-data 	...;

interactions
Link-service-access-point ... (see above) 	The nodule "link-servican provided

<local constraints> 	 the service throne two acme
points.

module
link-service (access-point-1, access-point-2 :

Link-service-access-point (Link-entity)) is
<global constraints for the Link service>

The link-service nodule plops the
"link-antite role over both
abstract interfaces.

Specification of a Link protocol (balanced class):

<type and abstract interface specifications of the Link layer service>
<type and abstract interface specifications of the Physical layer
service>
interactions

timer-interface ... (see above)
PDU

Link -PDUs ... (see above)
module

Link-entity (access-point: Link-service-access-point (sernam);
peer: Physical-interface (user)

with Link -PDUs (balanced);
timer: timer-interface (user)) is 	--- 114 bi

<global constraints for the Link entity> 	 transition model discussed below.

The specification of the Link entity states that such an entity
interacts through a Link interface, where it takes the role of a service
provider, and also through a timer interface, where it is a user. It
also interacts through a Physical interface with a peer entity by using
the interactions defined as Link-PDUs. The <global constraints of the
Link entity> may be specified with the state transition model described
below.

3. A state transition model

The state transition model discussed in this section is- a descriptive
model that seems to be useful for the specification of protocols. Given
the specification of the abstract interfaces of an (N)-layer entity
implementing the (N)-layer protocol, as discussed in section 2, the
specification of the possible orders of. interactions (point (b) of
section 2.3) may be given with a state transition model as described
below.

In order to define the possible orders in which interactions may be
initiated by the entity, the state transition model.introduces the
concept of the "internal state" of the entity which determines, at each
given instant, the possible transitions of the entity, and therefore the
possible interactions with the environment. In contrast to this model,
other modela (for example algebraic, and abstract data type approaches)
try to provide an equivalent specification without introducing any
notion of an internal structure of the speeified entity.

6

3.1. States and transitions

The specification of the possible order of interactions of a module (or
entity) is given in terme of
(a)the state space of the module Which defines all (internal) states in
which the Module may possibly be at any given time, and
(b) the possible transitions. For'each type of transition, the designer
specifies the states from which a transition of that type may take
place, and the "next" state of the module. A transition may also involve
one or more interactions of the module with its environment - (see below).

The model is non-deterministic in the sense that in a given state (at
some given time), several different transitions may be possible. Only
one of these transition is executed, leading to a next state Which
determines which transitions may be executed next. If several
transitions are possible at some given time, the transition actually
executed will be determined either by the module's environment (which
may initiate a paricillar interaction) or by the implementation of the
module (which will usually determine in which order - different
independent abstract interfaces, connections, etc. are serviced) or by
the local system manager (which may determine in which situations
certain services are supported). These choices among several possible
transitions are not specified by the state transition model of the
protocol specification; it epecifies all possible transitions.

An example is given in the figure below which shows the major states of
a Link protocol entity. The state space is defined graphically. Each
place of the diagram corresponds to a possible state. The transitions
are also shown graphically. Each arrow corresponds to a transition which
is possible when the entity is in the state which is left by the arrow,
and the next state of the entity is pointed by the arrow. The names of
the places have no formal meaning, but are useful for the understanding
of the specification.

3.2. Interactions

As mentioned above, some transitions (for many specifications, all) are
associated with interactions. Some transitions are initiated by
interactions from the environment of the module, others initiate
interactions with the environment, and some do both.

Assuming that the environment of the module consista of modules that are
specified with the same state transition model, and assuming that the
transitions are not executed infinitely fast, the problem may arise that
the environment may not be ready for executing the interaction initiated
by a transition of the module (for example, the environment may be in
the process of executing another . transition involving other
interactions). There are the following two submodels which differ in the
way they handle this problem:
(a) the "simple" model: the module initiating the interaction must wait

with the transition until the environment is ready to execute the
interaction.
(b) the model with queues: There is a queue associated with each
abstract interface through Which a module receives interactions
initiated by the environment. If the module is not ready for executing
an interaction initiated by the environment, this interaction (i.e. all

• information concerning the interaction, including possible parameter
values) is stored in the queue of the interface through which it is
initiated, and the transition of the module carresponding to this
interaction and its next state will be executed as soon as possible.

It is not clear whether the more complex model with queues is needed for
the specification of OSI protocols.

3.3. An approach to specification

Since finite state diagrams, as shown in the figure below, or equivalent
methods often lead to very complex specifications When a complete
protocol specification is.required (partial specifications, such as the

. one in the figure below are usually quite nice), the following approach
to the specification of modules .in the state transition model is
proposed. This approach combines the simple concept of states and
transitions as shown in the figure below with the power of a programming
language.

The state space of the module is specified by a set of program
variables. A possible state is characterized by the values of each of
these variables. One of the variables may. be called "STASE". It
represents the "major state" of the module and its - values may be
graphically represented as shown in the figure below.

As an example, the following lines specify the state space of an entity
inplementing the Link protocol, using the syntax of Annex 2.

var
VS, VR, VB, UnaCk: sequence-count; 	 These major states are graphically

Count: 0 .. N2; 	 r•preeented in the diagram at tlw
end of the paper.

State: (disconnected, information-transfer,
FRMR-condition, DISC-requested);

The possible transitions of the module are defined by the specification
.of a number of transition types. Each transition type is Characterized
by
(a)an enabling condition: This is a combinationof a boolean expression
depending on some of the variables defining the module state, and
(possibly) the specification of an interaction initiated by the
environment. A transition may occur in a given state if and only if the
enabling condition has the value true, and the interaction in question
(if it exists) is initiated by the environment.
(b)an action: This is a programming language statement Which defines an
action to be executed as part of the transition which may change the
values of (sons of) the variables, and may sPecify the initiation of
interactions with the enviranment.

-8

when a disccamect frame arrive* and
the entity is in the
"DISC4requestad" etate

As an example, the following lines specify soMe transition types for a
Link entity, using the syntax of Annex 2.

when a disconnect frame arrives end
the entity is in the
"information-trarafer" • tate ...

when peer.DISC
when State ■ information-transfer

do begin
accese-point.term-indication;
peer.UA; .-S-Sted a UA frame . to the pe ■i:Ssei-ii;---
timer.stop;
State.t ■ DISC-requested end»

when State In DISC-requested .
do begin

peer.DM;
State : ■ disconnected end

else;
• 0 •

Anytime 	 during 	the
"information-transfer" state, the
• ntity may send an information
frees (provided VS points to user
data sot yet sent, and the send
window is open).

when (VS not ■ VB) and (VS < Unack + modulus - 2)
and (State ■ information-transfer)

do begin
peer.I (VS, VR, "VS-th buffer");
VS v■ (VS + 1) mod modulus end;

• • •

when peer.I (NS, NE, data) 	 sham the next espected information

when State ■ information-transfer) and (VR ■ NS) femnisreceers" "

do begin
access-point.receive (data);
VR :■ (Vo + 1) mod modulus;
Unack : ■ NR end

else;

The first transition type reads as follows: When a DISC
protocol-data-unit arrives from the peer entity and the given entity is
in the information transfer state, a disconnect indication is passed on
to the user and a UA PDU is sent to the peer entity in response to the
DISC. The timer is stopped. The next major state is "DISC-requested".

Annex 1: Syntax for specifying the interactions of a module

1. Introduction

This annex describes a possible syntax for specifying types of abstract
interfaces and modules.

This syntax is largely based on the syntax and semantics of the Pascal
programming language (see for example Jensen and Wirth: "Pascal: User
manual and report", Springer Verlag, 1974), and uses the general
approach of using type definition facilities and type checking for
allowing the implementation of automatic consistency checking, which
usually detects a large proportion of those errors in a specification
that 'cannot be found by syntax checks.

2. Language elements taken from Pascal

The following language elements of the Pascal programming language are
included in the specification language without any change in syntax and
semantics:

Type and constant definitions including
scalar types
subranges
record types
array types

Predefined types:
boolean
integer
character (defined by some ISO standard)

3. Additional language elements

The following additional language elements are defined to support the
apecification of service primitives, PDU's and other interaction
primitives, and the definition of modules and their abstract interfaces.

3.1. Abstract interface definitions

The possible interactions at a given type of abstract interface are
enumerated by a definition of the following form:

<interface definition> ::= INTERACTIONS <interface type id>
(<role list>) IS <interactions> ;

<role list> ::= <role id>
1 	<role list> , <role id>

<interactions> ::= <BY clause>
1 <interactions> <BY clause>

<BY clause> ::= BY <role list> : <interaction list>
<interaction list> ::= <interaction>

1 <interaction list> <interaction>

- 10-

<interaction> ::• <interaction id> <interaction parameters> ;

The declaration of <interaction parameters> is in the same form as
function parameter declarations in Pascal (i.e. for each parameter its
name and type).

3.2. Module definitions

The definition of a module contains the declaration of all abstract
interfaces through which the module interacts. This includes the service
access points through which the communication service is provided as
well as the system interface for timers, etc. and the access point to
the layer below, through which the PDU's are exchanged. The following
syntax is proposed:

<module definition> ::• MODULE <module type id>
(<interfaces>) IS
<global constraints>

<interfaces> ::• <interface declaration>
1 <interfaces> ; <interface declaration>

<interface declaration> ::• <interface id> :
<interface type id> (<role id >)

The <role id> indicates which role the entity plays as far as the
declared interface is concerned. We note that the distinction of these
roles permits the cheCking that the invocation of interactions in the .
conditions and actions of transitions is consistent with the possible
exchanges defined in the interface definition.

3.3. POU definitions

The definition of PDU's is given in the sa me form as the definition of
interactions over interfaces. The syntax is as follows.

<PDU definition> ::• POU <id for PDU's> (<role list>)
IS <interactions> ;

The use of PDU's over a given interface, for instance over the access
point to the service provided by the layer below, is declared together
with the interface declaration in the module header in question. The
syntax for such a combined interface and PDU declaration is the
following.

<interface declaration> ::• <interface id> : <interface type id>
(<role id>) WITH <id for PDU's> (<role id>)

Annex 2: Syntax of siate transition model

1. Introduction

This annex describes a syntax for the state transition model described
in section 3 of the paper. It uses the same approach as Anhex 1 as far
as it uses many language elements from Pascal, extended with some
elements which are particular to the transition model.

It is assumed that the overall structure of a module is specified in the
notation defined in Annex 1. This annex is only concerned with the
<global constraints>, i.e. a specification of an internal structure of
the module whiCh determines the possible order of interactions with the
environment.

2. Specification of the state space

The specification of the variables defining the state space of the
module follows the Pascal syntax for variable declarations. The (major)
state variable (which has the identifier "STATE") is handled like any
other variable of the entity. •

3. Specification of the transition types

In the simplest case, each transition type is specified by a clause of
the form WHEN "enabling condition" DO "action". In order to simplify the
specification of different transitions with similar enabling conditions,
constructions with embedded conditions, such as the following, are
allowed:
WREN "condition 1"

WREN "condition 2" DO "action 12"
WHEN "condition 3" DO "action 13"
EL SE;

which specifies the following two transition types
WHEN "condition 1 and condition 2" DO "action 12";
WREN "condition 1 and condition 3" DO "action 13";
The ELSE keyword makes the construction non-ambiguous.

The specification of a state transition module, defining the possible
orders of interactions of a module, has the general form

<global constraints> :vim <state space definition (see above)>
<definitions of functions and procedures>
TRANSITION. <transitions>

The syntax of the transition clause with embedded conditions has the
following syntax.

<transitions> 	<embedded transitions>
1 <transitions> <embedded transitions>

<embedded transitions> :: ■ <when clause> ;
1 <when clause> <embedded transitions>

- 12 -

<when clause> :: ■ <when condition> <when list>
1 <when condition> <action>

<when list> :: ■ <when clause> ELSE
1 <when clause> <when list>

<when condition> ::s• WHEN <boolean expression>
1 WHEN <incoming interaction>

<action> :vim DO <action list>

where <action list> is a Pascal statement making reference to
interactions initiated by the transition.

•
References to interactions (to incoming interactions in the enabling
conditions, and to initiated interactions in the actions) are written in
the "dot notation". (which is also used by other languages for the
interaction with internal and/or external program modules). The notation
is demonstrated by the example in section 3.3 of the paper.

The parameter identifiers used with ..incoming interactions are to be
considered formel parameters within the scope of the transition, in the
same way as the parameter identifiers of a - function definition are
considered formal parameters within the body of the function. This
I -implies that all assignments to variables must be made explicitely (see
for example the last assignment in the last transition of the example in
section 3.3 of the paper.

Transition diagram: When-polled.

When -DISC

When-
qnsc 	When-polled

T4md-out

'DI 5 C._
requested

When-D

Dis7.
connect FRMR

.condition
'DISC

Set-up *

FRMR-
repeated

DISC-request
,/e Set-up

Set-up

PRMR

tia (A. re

'.Formal specification of LAP Blink establishment'and
clearing procedure executed by the DCE (44 4 1918)

dis-
,connected

information
transfer

Recefire \./ Transmit
New-

Packet

- 29 -

Annexe 2

Syntaxe du langage LSP

PLUS (LA SUITE

DESCRIPTION DU LANGUAGE LSP

1. LES UNITES LEXICALES

A) LES IDENTIFICATEURS

IDENT + <LETTRE> fer <LETTRE> ! <CHIFFRE> ! 	3(1.

<LETTRE> + 'A' ! 'B' 1 	"Z'

<CHIFFRE> + '0' ! '1'

D) LES ENTIERS

ENTIER + +r <CHIFFRE> 3+

<SIGNE> + '+' ! 	! VIDE

C) LES REELS

REEL + ENTIER r ',' ENTIER C'E' <SIGNE> ENTIER ! VIDE 3 !
'E' <SIGNE> ENTIER 3

D) LES CHAINES DE CARACTERES

CHAINE 	III (<CARS 3+

<CARS> + TOUS LES CARACTERES SAUF

DE 2 APPOSTROPHES)

E) FIN DE FICHIER

FDF

F) LES OPERATEURS

P. I

'4'

0/I

6.(1,

•t •
•3
' (> 1

 0‹./

.0>=4

I, •

G) LES MOTS RESERVES

'AND'
'ARRAY'
'BEGIN'
'BY'
'CASE'
'CONST'
'DIV'
'DOWNTO'
'DO'
'ELSE'
'END'
'EXTERN'
'FILE'
'FORWARD'
'FOR'
'FUNCTION'
'COTO'
'IF'
'INTERACTIONS'
'IN'
'IS'
'LABEL'
'MODULE'
'MOD'
'NIL'
'NOT'
'OF'
'OR'
'PACKED' 	•
'P DU'
'PROCEDURE'
'RECORD'
'REPEAT'
'SET'
'THEN'
'TO'
'TRANSITIONS'
'TYPE'
'UNTIL'
'VAR'
'WHEN'
'WHILE'
'WITH'

H) LES IDENTIFICATEURS PREDEFINIS

'ABS'
'BOOLEAN'
'CHAR'
'CHR'
'COS'
'ARCTAW.
'DISPOSE'
'EDF/
'EOLN'
'EXP'
'FALSE'
'CET'
'INPUT' 	.
'INTEGIER'
'LN'
'MAXINTf
'NEW'
'ODD'
'ORD'
'OUTPUT'
'PACK'
'PAGE'
'PRED'
'PUT'
'READ'
'READLN'
'REAL'
'RESET'
'REWRITE'
'ROUND'
'SIN'
'BOA'
'SORT'
'SUCC'
'TEXT'
'TR(E'
'TRUNC'
'UNPACK'
'WRITE'
'WRITELN'

I) LES LIMITES RELIEES A L'ANALYSE LEXICALE

- LA LONGUEUR MAXIMALE (EN CARACTERES) D'UN IDENTIFICATEUR
EST 100,000

- LE NOMBRE DE CARACTERES SIGNIFICATIFS D'UN IDENTIFICATEUR
EST 30.

- UNE CHAINE DE CARACTERES COMPORTE AU PLUS 140 CARACTERES ET
NE PEUT ETRE ETALEE SUR 2 LIGNES.

- LE MAXIMUM DE CARACTERES RECONNUS DANS UNE LIGNE EST DE 120.

- SUR LE 'LISTING' PRODUIT PAR LE PROGRAMME LSP ,LE NOMBRE DE
LIGNES DANS UNE PAGE EST DE 60.

2. LES REOLES SYNTAXIQUES DU LANGUAGE LSP

<AXIOME>
<PROD>

• <PROO> FDF

•

• et <PDEFCONSTI> ! <PDEFTYPEI> ! <PIDU> !
<INTERFACE-DEFINITION> 3* <MODULE>

<PDEFCONST1> 	 ■ 'CONST' +C <DEF-COINST> ';' 3+

<PDEFTYPE1> 	 ■ 'TYPE' +r <DEF-TYPE> ';'3+

<INTERFACE-DEFINITION> • 'INTERACTIONS' IDENT
'C' <LISTE-IDENT> ')"IS' <INTERACTIONS>

$
<LISTE-IDENT> 	 • IDENT 	IDENT 3*

<INTERACTIONS> 	• +r <BY-CLAUSE> 1+

<BY-CLAUSE> • 	•

•

'BY' <LISTE-IDENT> ':' <INTERACTION-LIST>
•

<INTERACTION-LIST> 	• +C <INTERACTION>3+

<INTERACTION> 	• • IDENT <INTERACTION-PARAMETE> $.
<INTERACTION-PARAMETE> • '(' <LISTE-IDENT> 	IDENT

	

CC ';' <LISTE-IDENT> 	IDENT 3* ')'

!VIDE

•
<P DU)

	

	 • 'POU' IDENT '(' <LISTE-IDENT> ')"IS'

<INTERACTIONS>

<MODULE> 	 mg 'MODULE' IDENT '(' (INTERFACES> ')'' -
'IS' <GLOBAL-CONSTRAINTS>

•
- <INTERFACES> 	• <INTERFACEDECLARATION>

Us' <INTERFACEDECLARATION> 3

<INTERFACEDECLARATION> • <LISTE-IDENT> ':' <TYPE-NOUVEAU>
•

<TYPE-NOUVEAU> 	IDENT '(' <LISTE-IDENT> ')'

'WITH' IDENT '(' (LISTE-IDENT> ')' ! VIDE 3
! 'ARRAY' "r' <TYPE-SIMPLE> *C 	<TYPE-SIMPLE> 3*

. 'OF' <TYPE-NOUVEAU>

•

<GLOBAL-CONSTRAINTS> • <P-DECL-VAR> <P-DECL-PROC-FONC> 'TRANSITIONS'
<TRANSITIONS>

•
<TRANSITIONS> • 	• +[<EMBEDDED-TRANSITIONS> 3+

<EMBEDDED-TRANSITIONS> • +r <WHEN-CLAUSE> 3+ '1'
•

<WHEN-CLAUSE> 	• CWHEN-CONDITION> r <WHEN-LIST> ! <ACTION> 3

<WHEN-LIST> 	 • .1..r <WHEN-CLAUSE> 3+ 'ELSE' <ACTION-LIST>

<ACTION> 	 mi 'DO' <ACTION-LIST>
•

<WHEN+CONDITION> • 'WHEN' r <EXPRESSION> !

• IDENT *r <INDICAGE> i* <DE:Mee-CHAMPS>

E '(' <LISTE-IDENT> ')'.! VIDE 3 3

<ACTION-LIST>.
IDENT CBUITEAAA>

! 'BEGIN' <ACTION-LIST> *r 	<ACTION-LIST> 3* 'END'

! 'CASE' <EXPRESSION> 'OF' r <W-LIST-CONST-CAS> 	<ACTION-LIST> ! VIDE 3
CC 's' <W-LIST-CONST-CAS> ':' <ACTION-LIST> 3* 'ENte

• 'REPEAT' <ACTION,-LIST> CE 's' <ACTION-LIST> 3* 'UNTIL'

<EXPRESSION>
! 'WHILE' <EXPRESSION> 'DO' <ACTION-LIST>

• 'FOR' IDENT ':•' <EXPRESSION>

C 'T0' ! 'DOWNT0'3 <EXPRESSION> 'DO' <ACTION-LIST>

! 'WITH' <SL*ACCES-VAR> 1)0' <ACTION-LIST>

! ceaorcE-sz-NouvEAu>
! VIDE

.3.

<SION •—• ! '+' ! VIDE

<SU I TEAAA>
<INDICAGE> 3* t <DESIONE—CHAMPS> <INTERA>

! <MINTAGE> CSUITE—AFFEC>
! ':** <EXPRESSION>
! VIDE

! '(' <EXPRESSION> *ti,'.CEXPRESSION> 3*
! <L—PARA—LIRE>
! <1..--,PARA—LIRELN>

-! <L—PARA—ECRIRE>
! <1.—PARA—ECRIRELN>

1
<INTERA> 	* '(' <EXPRESSION> et I .' <EXPRESSION> 3* ')*

! <SUITE—AFFEC>

! VIDE

•
<ENONCE —SI —NOUVEAU> * 'IF' <EXPRESSION> 'THEN' <ACTION—LIST>

1) l

<BLOC>

t 'ELSE' <ACTION4LIST> ! VIDE 3

•
■ <P—DECL—ETIOU> <P—DEF—CONST> <P—DEF—TYPE> <P—DECL—VAR>

<P—DECL—PROC—FONC> <P—ENONCE>-
•

<P—DECL—ETIGU> * 	t 	'LABEL' ENTIER *t 	ENTIER 3* 's • 3
• VIDE

<P—DEF—CONST> * 	 'CONST' <DEF—CONST> 'I *t <DEF—CONST> 	3* 3
VIDE

• . •
<P—DEF—TYPE> * 	C 	'TYPE' <DEF—TYPE> ';' *C <DEF—TYPE> '1' 3* 3

VIDE 	
• •

- (P—DECL—VAR) ■ 	r DE 'VAR' <DECL—VAR> '$' 	<DECL—VAR> 	 j
VI •

<P—DECL—PROC—FONC> *t r <DECL—PROC> ! <DECL—FONC> 3 	3*

(P—ENONCE> 	 .DINCNCE—COMPOSE>

•
<DEF—CONST> 	* IDENT 	<CONSTANTE>

•
<CONSTANTE> 	* 	r <SIONE> t ENTIER ! REEL ! IDENT 3 3

CHAINE

<DEF—TYPE> 	■ IDENT '*' (DENOTE—TYPE>

<DENOTE—TYPE> 	<TYPE—SIMPLE> ! <TYPE—STRUCTURE> ! <TYPE—POINTEUR>
•

<TYPE—SIMPLE> *

!C RTIER ! REEL ! IDENT3 ! CHAINE 3

1 .. 4 <CONSTANTE>

! C ENTIER ! REEL 3 '..' <CONSTANTE>

! IDENT 	<CONSTANTE> ! VIDE 3.

<TYPE—ENUMERE> * '(' <LISTE—IDENT) ')'

• $

<TYPE—STRUCTUR
C C 'PACKED' ! VIDE 3 <TYPE—STRUCT—DET> 3

<TYPE—STRUCT—DET>
<TYPE—TABLEAU> ! <TYPE—STRUCT> ! <TYPE—ENSEMBLE>
<TYPE—FICRIER> •

<INDICAQE> 'C' <EXPRESSION) *r 	<EXPRESSION> 3* '3'

<TYPE-TABLEAU> • 'ARRAY"t' <TYPE-SIMPLE> • t 	' CTYPE-SIMPLE> 3* '3'
'OF' (DENOTE-TYPE>

<TYPE -STRUCT> 	'RECORD'
(LISTE-CHAMPS> 'END'

<LISTE -CHAMPS> t <SECTION-STRUCT> t 	<LISTE -CHAMPS> ! VIDE 7
! (PART-VARIANTE) ! VIDE 3

<SECTION -STRUCT>
<LISTE-IDENT> ':' <DENOTE-TYPE>

<PART -VARIANTE>. 	'CASE' <SELECT-VARIANT> 'CF'

*t ‘..1"Itie;647.(!ÂNTE> 3**
•

(SELECT-VARIANT>
IDENT r':' IDENT ! VIDE 3

<VARIANTE> 	<LIST -CONST -CAS> "(1 <LISTE -CHAMPS> ')' ! VIDE

<LIST -CONST -CAS> . <CONSTANTE> *t I,' <CONSTANTE> 3*

<TYPE-ENSEMBLE>. 'SET' OF° <TYPE-SIMPLE>

<TYPE-FICHIER> 	'FILE' OF' <DENOTE-TYPE>

<TYPE-POINTEUR>. 	IDENT

<DECL -VAR> 	(LISTE-IDENT> ':' <DENOTE-TYPE>

<ACCES-VAR> 	IDENT *r <INDICAGE> ! <DESIGNE -CHAMPS> ! <POINTAGE> 3*

<DESIONE-CHAMPS>

<POINTAGE>

• IDENT

<DECL-PROC> 	 'PROCEDURE' IDENT r <L -PARA -FORMEL> ! VIDE 1
r <BLOC> ! 'EXTERN' ! 'FORWARD'

<DECL-FONC> 	 'FUNCTION' IDENT
r r CL -PARA -FORMEL> ! VIDE 3 	IDENT 3

• ' C 'EXTERN' ! 'FORWARD' ! CBLoc> 3

(L-PARA-FORMEL>- 	'(' <S -PARA -FORMEL> *C '1 1 <8 -PARA -FORMEL> 3* ')'

<5 -PARA -FORMEL,.. <SPEC-PARA-VAL> ! <SPEC-VAR-PARA> ! <SPEC -PARA -PROC> !

<SPEC -PARA -FONC>
•

<SPEC-PARA-VAL>. <LISTE-IDENT> 	IDENT

<SPEC-VAR-PARA>. 	'VAR' CLISTE-IDENT> 	IDENT

<SPEC -PARA -PROC>
•

<SPEC -PARA -FONC>

'PROCEDURE' IDENT <L -PARA -FORMEL> ! VIDE 3

'FUNCTION' IDENT
C <L -PARA -FORMEL> 1 VIDE 3 ':' IDENT

<FACTEUR> 	. REEL ! CHAINE ! 'NIL' ! ENTIER

! (CONSTR-ENS> ! '(' <EXPRESSION> ')' ! 'NOT' <FACTEUR>

! IDENT 	UNDICACE> ! <DESIONE-CHAMPS> ! <POINTAGE> 3*

! '(' <EXPRESSION> *U.' <EXPRESSION> 3* ')' 3

<CONSTR -ENS> me

<DESIGNE -MEMBRE>

'C' r r <DESIGNE -MEMBRE> *C 	<DESIONE -MEMBRE> 3* 3 !
VIDE 3 '3'

<EXPRESSION> r C 	' <EXPRESSION> 3 ! VIDE 3

<TERME> 	 <FACTEUR> *C <OPER-MULT> <FACTEUR> 3*

<EXPR-SIMPLE> 	<SIGNE> <TERNE> *C <OPER-ADD> <TERME> 3*

<EXPRESSION> . <EXPR-BIMPLE> C C <OFER-REL> <EXPR-SINPLE> 2 ! VIDE 3
$ *

<opER-muLT, 	 ! 	'DIV' ! 'MOD' ! 'AND'

<OPER-ADD> 	 f+, ! 	 ! .0R.

<OPEN-REL> 	 ! '<>' ! '<' ! 	! 	! 	! 'IN'

<ENONCE> 	 C C ENTIER 	3 ! VIDE 3
C <ENONCE-SIMPLE> ! <ENONCE-S7RUCT> 3

•

<ENONCE-SIMPLE>m VIDE ! <AFFEC-APPEL> ! <ENONCE-ALLERA>

<AFFEC-APPEL> 	IDENT C <BUITE-AFFEC>
! '(' <EXPRESSION> *r g.' <EXPRESSION> 3* ')'
! <L-PARA-LIRE>
<L-PARA-LIRELN> •
<L-PARA-ECRIRE>
<!--PARA-ECRIRELN>

! VIDE 3

<SUITE-AFFEC> 	*C 5SeIlifeepisiogESIONE-CHAM 	<POINTAGE> 3* PS> !

•
<ENONCE-ALLERA>. '0010' ENTIER

<ENONCE-STRUCT>mi <ENONCE-COMPOSE> ! <ENONCE-COND> !'<ENONCE-BOUCLE>
• <ENONCE-AVEC>

ŒNONCE-COMPOSE>
'BEGIN' <BEG-ENCNCES> 'END'

<SEG-ENONCES> 	<ENONCE> *C 'I' <ENONCE> 3*

<ENONCE-COND> 	<ENONCE-SI> ! <ENONCE-CAB>

<ENONCE-SI> 	 'IF' <EXPRESSION> 'THEN' <ENONCE>
C <PART-SINON> ! VIDE 3

<PART-SINON> 	'ELSE' CENONCE>

<ENONCE -CAB> 'CASE' <EXPRESSION> 'OFf_<LEUENENT-CAS>
r "i" <L-ELEMENT-CAS>,]

<L-MENT-CAS

CENONCE-SOUCLE

CENONCE-REPETER>

CENONCE-TANTGUE>

CENONCE-POUR> ■

<ENONCE-AVEC> ■

<L -ACCES -VAR> In

<L -PARA -LIRE> ■

<I_ -PARA -LIRELN>■

<L-PARA-ECRIRE>■

•

<PARA -ECRIRE>

C <W-LIST -CONST -CAS> ':' CENONCE> I
! VIDE

CENONCE-REPETER> ! CENONCE -TANTGUE> !

'REPEAT' CSEQ-ENCNCES> 'UNTIL' <EXPRESSION>

'WHILE! <EXPRESSION> 'DO' CENONCE>

'FOR' IDENT ': ■ ' <EXPRESSION>
e 'TO' ! 'DOWNTO' 3 (EXPRESSION> 'DO'

'WITH' CL -ACCES -VAR> 'DO' CENONCE>

<ACCES-VAR> et '• CACCES-VAR> 3*

'C' CACCES-VAR> 	' <ACCES-VAR> 3* ')'

<L-PARA-LIRE) ! VIDE

'C' CPARA7ECRIRE> *C '," <PARA-ECRIRE> 3* ')'

<EXPRESSION>
C 	<EXPRESSION> C C 	<EXPRESSION> 3 ! VIDE 3 3

! 	VIDE 3

<ENONCE-POUR>

<ENONCE>

<L -PARA -ECRIRELN>
CL-PARA-ECRIRE> ! VIDE

CS -INDICAGE>

OEL-ACCEEF-VAR>

CS -ACCES-VAR>

<SS -INDICAGE>

<SW -INDICAOE>

<W-LIST-CONST>

<W-CONSTANTE>

'C' <EXPRESSION> CC I .' <EXPRESSION> 3*

CS-ACCES-VAR> *C 	CACCES-VAR> 3*

IDENT *C <98-INDICACE> !_SPESIONE-CHANPS>
! <PDINTAQE› 3*

'C' <EXPRESSION> *C 	<EXPRESSION> 3* '3'

'C' <EXPRESSION> *C 	<EXPRESSION> 3* '3'

(W-CONSTANTE) *C 	(W-CONSTANTE> 3*

C (SIGNE> C ENTIER ! REEL ! IDENT 3 3 ! CHAINE

1

4
5
6
7

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

303
304
305
307
308
309
320
321
322
323
400
401
402
403
404
405
406
407
408
409
410

I .

LISTE DES MESSAGES D'ERREURS

IDENTIFICATEUR ATTENDU.
ENTIER ATTENDU.
REEL ATTENDU.
CHAINE DE CARACTERES ATTENDU.
FIN DE FICHIER ATTENDU.

• 'CONST' ATTENDU.
ATTENDU.

'TYPE' ATTENDU.
'INTERACTIONS' ATTENDU.
'(' ATTENDU.
')' ATTENDU.

• 'IS' ATTENDU.
'L' ATTENDU.

ATTENDU.
ATTENDU.

'POU' ATTENDU.
'MODULE' ATTENDU.
'WITH' ATTENDU.
'ARRAY' ATTENDU.
'I' ATTENDU.
'1' ATTENDU.
'OF' ATTENDU.
'TRANSITIONS' ATTENDU.
'ELSE' ATTENDU.
'DO' ATTENDU.
'WHEN' ATTENDU.
'BEGIN' ATTENDU.
'END' ATTENDU.
'CASE' ATTENDU.
'REPEAT' ATTENDU.
'UNTIL' ATTENDU.
'WHILE' ATTENDU.
'FOR' ATTENDU. 	•
'.•„=' ATTENDU,
'10' ATTENDU.
'DOWNTO' ATTENDU.
'IF' ATTENDU.
'THEN' ATTENDU.
'LABEL' ATTENDU.
'VAR' ATTENDU.

ATTENDU.
ATTENDU.

'+' ATTENDU.
ATTENDU.

'PACKED' ATTENDU.
• 'RECORD' ATTENDU.

'SET' ATTENDU.
'FILE' ATTENDU.

ATTENDU.
ATTENDU.

'PROCEDURE' ATTENDU.
'EXTERN' ATTENDU.
'FORWARD' ATTENDU.
'FUNCTION' ATTENDU.
'NIL' ATTENDU.
'NOT' ATTENDU.
'18.' ATTENDU.
'/' ATTENDU.
'DIV' ATTENDU.
'MOD' ATTENDU.
'AND' ATTENDU.
'OR' ATTENDU.
'<>' ATTENDU.
'<' ATTENDU.
'>' ATTENDU.
'<.' ATTENDU.
'>.' ATTENDU.
'IN' ATTENDU.
'00TO' ATTENDU.
CARACTERE ILLEGAL.
ENTIER TROP GROS.
PARTIE FRACTIONNAIRE TROP GRANDE.
CHAINE DEBORDANT LA LIGNE INTERDITE.
TROP DE CHAINES DE CARACTERES DANS LE PROGRAMME.
CHAINE TROP • LONGUE. UNE CHAINE PEUT CONTENIR AU PLUS 140 CARACTERES.
PARASITE. '
SUBSTITUTION.
DEBUT DU MECANISME DE RECUPERATION D'ERREUR.
FIN DU MECANISME DE RECUPERATION D'ERREUR.
UN DES ROLES DE LA DERNIERE LISTE NE FAIT PAS PARTIE DE LA LISTE DE LA DEFINITION INITIALE.
REPETITION D'IDENTIFICATEURS DANS UNE LISTE INTERDITE. 	•
TYPE NON DECLARE.
UN IDENTIFICATEUR DE VARIABLE NE PEUT ETRE LE MEME SUE CELUI D'UNE INTERFACE DECLAREE DANS LE MODULE.
POU NON DECLARE.
INTERACTION NON DECLARE.
UN DES ROLES DE LA LISTE EST ABSENT DANS LA DEFINITION DE L'INTERACTION (OU DU POU).
NOMBRE D'INDICE DE TABLEAU EN DESACCORD AVEC LA DECLARATION.
ROLE INTERDIT D'APRES LA DEFINITION DU MODULE.
IDENTIFICATEUR(S) DE PARAMETRE(S) EN DESACCORD AVEC LA DEFINITION DE L'ACTION.
NOMBRE DE PARAMETRES EN DESACCORD AVEC LA DEFINITION.

