UNIVERSITE DE MONTREAL

Formal Description Techniques for Protocols
Final Report for DOC contract No. CR-CS-1982-0033

by/Gregor V.(Bochmann

Département d'informatique et
de recherche opérationnelle

Université de Montréal

March 1982

93

C655
B634
1982

DEPARTEMENT D'INFORMATIQUE
ET DE RECHERCHE OPERATIONNELLE .

Faculté des arts et des sciences
Université de Montréal
C.P. 6128, Succursale A"
Montréal, P.Q.
H3C 3J7

////Formal Descr1pt1oﬁ Techniques for Protocols t)
F1na1 Repor5/4or DOC contract No. CR-CS-1982-0033

b%/Gregor V. (’pé;;:%n)

Département d‘informatiqne et
de recherche opérationnelie

~Université de Montréal

March 1982

Thdustry Canada
Library Queen

g 17 1998

Industrie Canada
Bibliothéque Queen

- pa

R .

TABLE OF CONTENT

1. Introductioﬂ R R R T L T R 1

2. Overall view of the contract éctivity;......., o2

2.1. Standardization activities;.................. 2
2.2. Translator for formal specifications into

implementationSeesnscccsosessncesesossscsnscssnsccsccn 3

3. Proposal for future WOTK ecescessccsnasncsssenssanssccososccss 4

4. More detailed account of the standardization activities .. 5

4.1.

ANNEX 1
ANNEX 2

ANNEX 3

ANNEX 4

Work.within IS0 TC97/SCi6/WG1 ad hoc group on FDT .. 6
4.1.1. Meeting in Washington, DC,
September 21-25, 1982 setesscctcitiiatinions 6
4.1.2., Work within Subgroup A secescsoasescacsscscns 6
4.1.3. Work within Subgroup B eeecevcscarcsscsscsase 7
Work within tﬁe CCITT Rapporteurs group
on Question VII/39 (FDT) sesecsascsvsssccccanvecncs 7
4.2.1. Rapporteurs meeting in Ottawa,
September 19~-27, 1981 """"""f"";"" 7
4.2.2. Rapporteurs meeting in Melbourne,
March 9~16, 1982 R R R R R 7
Concepts fbr describing the OSI architecture
(Working Draft, Ispra, Nove. 1981l) coceescncsccnsnsccns 9
A FDT based on an exténded state transition model

(Working Draft, Bost, Déc. 1981) DR R R A N A N N IR SR S Y 26

Formal specification of a Transport Service sesesceee 48

Comments on a possible compromise on the Syntax £or

extended state transition descriptions eseeessecscses 65

;
U

ANNEX 6

ANNEX 7
ANNEX 8

ANNEX 9

ANNEX 10
ANNEX 11
ANNEX 12

ANNEX 13

Syntax for linear form of FDT: comparison of ISO

proposalfand SDL—PR‘.;.......................... 70
Proposal for a Programme-like FDTcvucensencccasancsess 81
Proposal on Different Forms of FDT ...eeeeeecccasccnaneseca. 83
The Translation of the ISO linear FDT‘into

graphical SDL tcuceeeecrscsrcesscansnsnssonascnsscsnsassscas 87
A Method for Specifying Module Interconnections 91
Examples of Transport Protocol Specifications 95
Meeting reportsS .seveeeecenccns PP 73
Un compilateur pour la traduction de spécifications de

protocoles en Pascal ...ieeeciceccicnscracscnnnsnscnnaaosans 134

—

D~

/;ormal.Description Techniques for Protocols)

Final Report for DOC contract No. CR-CS-1982-0033
J ,
by Gregor V. (Bochmany

Département d informatique et
de recherche opérationnelle

Université de Montréal

March 1982 NOV 5 Reco

 COMIUNTEATIBNS CAADS |

LBRARY - GIBLIBTAERHE -

1. Introduction

The importance of formal description techniques (FDT’
for Athe design and documentation of computer communication
protocols and services has been acknowledged by the ISO/TC97
Subcommittee on Open System Interworking (SCl6) through the
establishment of a Rapporteur;s Group on FDT within Working Group
1. A Rapporteurs group for studying this question has also been
esﬁablished within the Study Group VII of the CCITT. The work
under this contract was principally aimed at contibuting to the

work of these study groups, and has resulted in a number of

contribu:ions to the ~ Canadian and international standard

committees working on these questions. It 1s a continuation of

previous work of this author in the area.

R

During its first meeting in Chicago (Januéry 1980) the
ISO Special Rappbrteur's Group on FbT established a program of
work which' foresees the selection of one or more FDT’s for use
within SCl6. The purpose of these FDT’s is to provide a means for
precisely specifying protocols and services of the different
layers of Open Systems. These formal specifications should be
unambiguous and helpful for the implementation and fdr the
verification of the protocols. Contibutions were asked for on
proposed ¥DT’s and their application to the test cases of the

Transport protocol and service.

2. Overall view of the contract activity

It is noted that the "statement oé work" of the contract
foresees (under point 1) the developmént of a formal specification
for the Teletex Session and Document protocols. With the
agreement of the scientific authority of the contract, this ﬁork
was replaced by the activities.described' in section 2.1 below,

which appeared to be of higher priority.

2.1 Standardization activities

Within the framework of this contract, the author was. a
delegate At two meetings of the CCITT kapporteurs(Group on -
Question VII/39 d4in Ottawa and Melbourne. Since the contract did
not provide sufficient travel funding for the | meeting in

Melbourne, the travel expenses for this meeting were paid for

-3 -

through a DOC céntract with Dendronic Decisions Ltd. The author_
was also delegate at a IS0 TC97/SC16/WGl meeting on FDT in
Washington and at meetings of the Subgroups A and B of the ad hoc
group on FDT. The author 1s editor fof the working papers of both
subgroups (see annexes 1 and 2) and chairman of Subgroupv A. The
work under this and a previous contraéf had a strong influence on
the development of the extended state transition FDT of Subgroup B
of the ISO TC97/SCl6/WG1 ad hoc group on FDT. Much of the effort
during this contract period was aimed at bridging the gap between‘
this FDT and the FDT developments i1in CCITT. The author
represented the IS0 ad hoc group on FDT at the CCITT meeting 1in
Ottawa, and SC16/WGl at the CCITT FDT meeting in Melbourne. He
was also a Canadian delegate ‘at the Melbourne meeting and
presented _several contributions (see annexes 7 through 11). The
contributions FDT 33 and 34 (CAN COﬁ 39 and 40, annexes 7 aﬁq 8)
were discussed 1n detail and supported by the Canadian ad hoc

group on questions VII/5, 27 and 39 and NSG VII.

We think that our contributions have advanced the
development of FDT’s for the specification of Open Systems
protocols and services. Hoﬁever, furﬁher work 1is required for

obtaining a FDT which is accepted by both IS0 and CCITT.

2.2. Translator for formal specifications into implementations

A program’was developed that translates formal protocol -

specifiéations given in terms of a preliminary FDT syntax (which

-4 -

was submitted to the ISO TC97/SCI6/WG1 ad hoc group omn FDT iﬁ
January 1981) into program fragments written in Pascal, which can
be combined with .support packages to from a complete Pascal
program implementing the protocol. fhis translator ‘program is
documented in Annex 13. It haébbeen tried out with some relatively
simple example protocols. In addition, it was used within a course
project (fall 1981) for the specification of the Teletex Document

pro;ocol, and its translation into a Pascal impiementation.

3. Proposal for future work

We think that a natural continuation of the work

performed under this contract would be a continuing support of the

ISO and CCITT discussions on FDT’s. We think that Canadian input

would be much welcome in view of its past participation.

In order to increase the usefulness of the proposed FDT,

the following additional reseach activities are proposed:

a) To apply the method to several protocols and services at
levels higher than the transport layer in order to test its

applicability in all areas of OSI.

b) To develop a protocol implementation tool which would partly
automate the production of a protocol implementation from the.
formal specificétion of the protocol. (It is noted that the
program described in section 2.2 and Annex 13 is only a

initial attempt at approaching this problem; it should be

M E Ix O &8 M B PR B A R SE =R e

adapted to the final syntax of the FDT, and could be improved

as far as the translation process is concerned).

c¢) To develop a testing tool that would be helpful to test a
protocol implementation for conformance with the protocol

specification. Such a tool could be useful for the

certification of communication software and systems.

d) To develop a protocol simulation tool that would make
simulations of communication subsystems based on the formal
specifications of the protocols to be used in the system.
Such a tool would be useful during the development of
protocol standards for analyzing the behavior of the
protocol, finding eventual malfunctions (deadlocks, etce),

and determining the efficiency of its operation.

4., More detailed account of the standardization activities

The following subsections 1list the different meetings
that were attended, and the contributions prepared for these
meetings, as well as other éctivities» related to these

standardization meetings.

S G WR B o OE e ol O AW B E . e

4.1. Work within ISO TC97/SC16/WGl ad hoc group on FDT
4.1.1. Meeting in Washington, DC, September 21 - 25, 1982.
Submitted contributions:

WASH-9 : "Formal specification of a Transport service" (G.

Bochmann, E. Cerny, and C. Lacaille) (see Annex 3)

WASH-10: '"Comments on a possible compromise on the syntax for
extended state transition descriptions" (Canada) (see
Annex 4)

WASH-11: "An extended state transition model as a FDT" (G.
Bochmann)
These contributions were discussed during the Subgroup B meeting

in Washington.

4ele2. Work within Subgroup A
\
The author is chairman of Subgroup A on "Architecture".
The working document WASH-1 was elaborated by correspondence
during summer 1981, and discussed during the Washington meeting.

The revision of the document was edited by the author.

A Subgroup A meeting was held in Ispra (Italy) in

November 1981 (see Annex 1 for the minutes). The résulting working °

document (see Annex 1) was again revised in the recent FDT meeting

in Enschede (Holland), April 1982.

441.3. Work within Subgroup B

The author participated 1in the work of Subgroup B on
"Extended State Transition Model FDT" -as contributor, and as the

editor of the working document.

The author participated in the Subgroup B meeting held
in Boston, December 198l. The Subgroup B working ' document

resulting from this meeting is included as Annex 2.

4.2, Work within the CCITT Rappofteurs group on Question VII/39

(FDT)
4.2.1. Rapporteurs meeting in Ottawa, September 19 - 27, 1981

Submitted contributions:

FDT-2 : "Formal specification of a Transport protocol" (Canada)

FDT-21: "Formal specification of a Transport service" (G.
Bochmann et al.) (see Annex 3)

FDT-27: "Time sequence diagrams as FDT" (G.Bochmann) (see Annex 5)

FDT-28: "Syntax for linear form FDT: Comparison of ISO proposal

and SDL-PR" (G. Bochmann) (see Annex 6)
4.2.2. Rapporteurs meeting in Melbourne, March 9 - 16, 1982.

Submitted contributions (see Annexes 7 through 10):

FDT

FDT

FDT

FDT

FDT

-8 =

33 (D 205, CAN COM 39): "Proposal for a programme like FDT"
(see Annex 7)

34 (D 206, CAN COM 40): "Propoéal on different forms of FDT"
(see Annex 8)

47 (D 207, CAN COM 42): "Translation of the ISO linear FDT
into graphical SDL" (see Annex 9)

48 (D 129, CAN COM 43): "A method for specifying module
interconnections" (see Annex 10) - |

49 (D 131, CAN COM 41): ~"Examp1es' of Transport pfotocol

specifications" (see Annex :11)

ANNEX 1

Members of 1S0/TC97/SC16/WG1 ad hoc group on FDT

J. Day, chairman of ad hoc group
H. Zimmermann, chairman of WGI

cc : T. Steel, CCITT Rapporteur on Question VII/27
G. Dickson, CCITT Rapporteur on Question VII/39

From : G.V. Bochmann, chairman of Subgroup A
Re : Last meeting of FDT Subgroup A on "Architecture"

To

Please find enclosed the minutes of the last FDT Sub-
group A meeting in Ispra. The result of this meeting is the
revised working document "Concepts for describing the 0SI
architecture", which is enclosed. It is the desire of the
Subgroup to give a wider circulation to this working document
in order to get a broader feedback for its next revision.

Sincerely

(_; 'L/\%.C !

G.V. Bochmann

P.S. In the spirit of collaboration between IS0 and CCITT,
copies are sent to the CCITT Rapporteurs who work on
related problems.

Title: Minutes of the meeting of Subgroup A of the IS0/TC97/SC16/WGI
ad hoc group on FDT, Ispra, November 20, 1981 .

From : Subgroup A

The following people attended the meeting:

A. Endrizzi Italy

G.V. Bochmann (chairman) Canada
F.H. Vogt W. Germany
P.F. Linington U.K.

J.P. Ansart France

A. Faro (secretary) Italy

G. Messina ~ Italy

The only item of work was the revision of the working paper
"Concepts for describing the 0SI architecture" which was distri-
buted several weeks before the meeting in the version, edited by
G.V. Bochmann based on the work during the Washington meeting in

September.
Three contributions were presented:

- two papers from LeMoli (COMPUNET/CREI/80/17 and COMPUNET/
CREI/80/16) concerning general comments on the Washington working
paper and a proposal of entity structure.

- a technical report by Bochmann and Raynal concerning "struc-
tured specification of communication of systems" which was presen-
ted as a contribution to the topic of section 3.3 of the working
paper, to be discussed at the next Subgroup A meeting.

The chairman proposed to revise the working paper page by
page. The major points of discussion were the nature of module
interections and interection mechanisms. However the section 4 .
on "Definition of service, protocol and interface specifications
was discussed in order to take into account the proposal of LeMoli.
Some minor editorial changes were left to the discretion of the
editor (G.V. Bochmann), who will distribute the new version of the
working paper.

It was agreed among the members>of Subgroup A that it is de-

sirable to distribute the new version of the paper also outside
the ad hoc group on FDT in order to get a wider feedback.

G.V. Bochmann -

From: Subgroup A on "Architecture" of IS0 TC97/SC16/WGl adhoc
group on FDT : '

Title: Concepté- for describing the O0SI architecture (Working
Draft, Ispra, Nov. 1981)

1. Introduction

The scope for formal description techniques (FDT) in the
development of OSI standards is described in "Statement of scope
of the FDT group" (N)« The present document may serve
the following purposes:

(a) Provide a more precise model for the Guidelines (N 380 and
N381), and : ‘

(b) define certain basic concepts that are used by the formal
description techniques developed by subgroups B ("Extended finite
state transition models") and C ("Sequencing expressions, temporal
logic") of the FDT Rapporteur’s Group.

The document 1is divided into several sections, discussing the
concepts . of system components (called '"modules") and their
specification, their interconnection and the description of an
architecture, the definition of service, protocol and interface
specifications, and possible subdivisions of modules for
specification purposes. :

2. Modules and their interactions

2.1 Module interactions

A module is a unit of description, and is specified by its
interactions* with other modules within the specified system or
its environment.

* In previous work the terms "message" and "command" - have been
used to denote interactions, but they are not used in OST

documents because the variety of previous wuses has obscured
their meaning. ' -

Other terms have been used for this concept, such as
"gspecification unit", '"abstract machine" "system part" .
"{nterlocutor" ., etc. An entity is a particular case of a module
(see also sections 4 and 5). An abstract specification is
considered; implementation issues are addressed in section 4.4.

A module is specified in terms of its interactions. For example,
if the module is an N-entity, then the module interacts through
N-service-primitives* (N-SP, see section 4.1) and (N-1) - SPr g*
with other local modules (respectively, the (N+1)-entity and the
(N=1)-entity).

In general, three time instants are important for the execution of
an interaction between two modules: '

1) the moment that the interaction is initiated ("called") by
one (i.e. the first) of the modules;

2) the moment that the interaction begins, i.e. the moment
that the other module agrees to the execution of the
interaction;

3) the moment when the interaction ends.

Each interaction carries explicit information (parameters) only in
one direction: from the source module to the sink module. The
source module is not necessarily the initiating module.

Depending on the model used for the interactions between modules,
the distinction between all of those three instants may not be
necessary. At least, instants (2) and (3) are considered as
always relevant. It is noted, however, that other models may
require the identification of instant (1). Moreover in situatiomns
where it is important to know which module is waiting (for
example, performance considerations), it is proposed to
distinguish between "source initiated”" and "sink initiated"
interactions.

* Service primitives are either expressed directly or in more
detail by using interface data units (IDU). -

The types of interaction considered for specification purposes are

called "interaction primitives". They are abstract interactions
in the sense that their implementation by the interface hetween
the interacting modules is not specified. Examples of interaction

primitives are:

- open connection to remote address with options;
~ send data on connection
- send data to remote address;

where "connection" 18 a local connection identifier, 'remote
address" 1s the destination address, "options" is a list of
facilities, "data" 1is an information which has to be transferred

unchanged to "remote address".

In an implementation, the abstract interactions are realized
through the real interactions of a real interface (see section
4eb).

The following points are dimportant properties of interaction
primitives:

(1) Each occurring interaction belongs to exactly one type; i.e.
interaction primitive.

(2) Each interaction primitive is characterized by a number of
parameters. .
For example "remote address" and '"options" parameters for the

"connection establishment request" interaction.

(3) For each occurrence of an interaction, the value of each
parameter of the interaction primitive is determined by the source
module. :

(4) The range of possible parameter values is specified for each
interaction parameter e.g. by a data type definition.

C(5) There are some models in which the execution of an

interaction by a module may be considered as an atomic action
(which excludes any other action by that same module at the same
time). Parallel interactions by the same module (for example
concerning different connections handled by the same module) are
modelled by assuming an arbitrary order between these
interactions. Alternatively, there are models that do not make
these assumptions. In specifying any particular model the
assumptions made about atomicity and synchronization must be
clearly stated. '

-4 -

We assume that all primitive interactions involve a rendez=-vous
technique*, but .it may be useful, as an aid to understanding, to
introduce compound interactions consgisting of a primitive
interaction between the initiator and a queuing module, followed
by a primitive interaction between the queuing module and a
recelver.

Note: Further study is required to identify all the necessary
compound interaction types and to demonstrate that they can be
specified as indicated above. :

In the following, when modules are components of the same entity,
it 1is generally supposed that the receiving module sees exactly
the same interaction as the initiating module: the case in which
the '"received" interaction 1is not the same as the '"sent" one
happens when two modules are connected by an unreliable
communication medium: this 1s one of the reasons for which
protocols are built, and it will be supposed that this case does
not happen also 1in the connection among the modules used for
modelling entitites performing protocols.

For certain purposes, it may be wuseful to specify how the
interaction primitives are realized by the interface between the
interacting modules. In the following, the term "real interaction"
is sometimes used for the interface interactions that implement an
abstract interaction primitive (see section 4.4).

2.2 Elements for the specification of a module

Within the OSI architecture the concept of module specification is
used to describe layer services, protocols, management services,
etc. The specification of a module contains the following parts:

* A rendez-vous interaction is one in which the two (or more)
modules that participate 1in the interaction execute the
interaction during a "rendez-vous", i.e. for an interaction to
occur it 18 necessary that all participating modules execute
"their part" at the same time. The interaction implies a
close synchronization of the modules. One module has to wait
for the other, in general. '

2.2.1 Enumeration of possible interaction primitives
(types of interactions and parameters)

They are specified considering the points enumerated above. For
each module, all the interaction primitives for which it is the
sink are enumerated: this 1ist is the "input dictionary" of the
modules Analogously, for each module .the 1list of all the
interaction primitives for which it 1is the source: the 1list is
the the "output dictionary" of - the module. The specification
should be structured by dinteraction points, as explained 1in
section 3.2.

It is assumed that the interaction parameter values are determined
by the source module. It 1is useful for many purposes to specify
for each interaction primitive which module is the source. For
example in the Transport service specification, the convention of
distinguishing ©between '"requests" and "indications" for the
service specifications serves this end.

2.2.2 Specification of possible execution sequences

Each module follows certain rules (constraints) on the execution
of the interactions in which it is involved. Such rules could
involve the parameter values of the interactions, as well as the
order in which the interactions are executed. For example, a
Transport entity module will execute a connection establishment
indication . only after it has received a connection request from a
peer entity, and the remote address parameter of the indication
will correspond to the value contained in the request. Such rules
must be specified to determine the behavior of a module. The set
of rules describes the behaviour of the module: more exactly, the
behaviour of a module is known when it is known how the sequence
of output interactions of the module depends on the sequence of
input interaction. The set of rules which a module follows in
producing 1its output interaction may be called the "procedure" of
the module. Different specification techniques may be wused for
this purpose. Possible techniques are developed by the subgroups B

and C of the FDT ad hoc group.

2.3 Language'fot module specifications

The content of this section is being studied by Subgroups B and C.

3. Interconnections of modules

The architecture of a system is defined by the modules out of
which the system is built, and the structure by which they are
interconnected. .

The interactions of a module with other modules or with the
environment of the system (as defined in section 2) occur over the
interconnections between the modules. In a real system, such an
interconnection is realized by a real interface. 1In this section
we are not concerned with the specification of module interfaces,
but only with the abstract properties that any real interface for
a given module-to-module interconnection must satisfy. These
properties may be called the "abstract interface" between two
modules.

3.1 Interaction.points

An "interaction point" is a useful concept for the description of
the 0SI architecture. It is related to the notion of "abstract
interface" (see above).

The concept serves for

(a) the partitioning of the interactions of a given module into
separate groups concerning different parts of the environment,
(ensuring that the module has contact with the outside word only
through a well defined set of "interaction points"), and

(b) the specification of the interconnections between the
different modules within a system (or the sub-modules within a
module). An interconnection could be specified by naming an
interaction point of one module and an interaction point of
another module with which the former is to be interconnected.

For example, typical dinteraction points of a 1layer entity
executing the layer protocol are: (a) the service access point
serviced, (b) the access point(s) of the layer below through which
the underlying service is accessed, (c) an (abstract) interface to
the 1local system management module, and possibly a local.
interaction point through which 1local services such as buffer
management, time-outs, etc. can be obtained.

3.2 Abstraction and step-wise refinement

Abstraction and (inversely) step-wise refinement is supported by
the concepts of interaction points and their interconnection.
Figure 1 shows an example of a module consisting of three sub-
modules interacting with one another. The system may be
considered (at a more abstract level of description) as a module
that interacts with its environment through three interaction
points. If these interaction points are connected with the
interaction points of other modules, the given module may be used
for the construction of more complex system architectures.

More examples on possible substructures for larger entities are
given in Annex 1. :

* *
* _ *
XX XXX Y XXX XXX XX XX XXX XX XX XXX XXX XXX XX XX XXX XXX XXX XXX XXX XXX XXXX
X * * X
X XXXXXXXXXXXXXXXX . XXXXXXXXXXXXXXXX X
X X X X X X
X X module A X X module B X X
X X X X X X
X XXXXXXXXXXXXXXXX X X X
X * XXXXXXXXXXXXXXXX X
X XXXXXXXXXXXXX * X
X X X * X
X X module C Xkkkkkkkhhhkkkhkhkhhdkkk X
X X X X
X XXXXXXXXXXXXX X
X * X
X ‘ X
XX XXX XXX X X X XX XXX XX X XX XX X XXX XXX XXX XXX XXX XXX X XXX XXXXX
* _
*

Figure 1

3.3 Description techniques for the specification of interaction
points of modules and their interconnections

Further study is required to establish the necessary description
means. This study might be based on the conclusions of Subgroups B
and C. Simple graphical techniques, such as that used in figure
l, may provide an initial approach to the problem. :

4. Definition of service, protocol, and iInterface specifications

Descriptions of service, protocol and interface specifications are
given in the "Introduction to the Guidelines: Overall view of O0SI
specifications”" (N 380). The purpose of this section is to make:
these descriptions into precise definitions, and to put them into
the framework of the specification model outlined in the sections
above.

4.1 Service specification for layer N

The service of a layer consists of a set of elementary services of
this layer. The service specification for layer N is a
specification of a module, consisting of the entities of the layer
N and the layers below, given in an abstract view showing only the
interactions at the (N)-service-access-points, as indicated by
figure 2. The interaction primitives executed at the service
access points are called "service primitives". (N)=-service-data-
units (SDU’s) are exchanged as parameters of particular kinds of

service primitives (by the T-DATA requests and indications of the"

Transport service, for example). These interactions would be given
for any one of the elementary services and for their
interrelations. We note that in this figure and the following, a
double arrow represents the interactions taking place between two
interaction points of two interacting modules. The name written
close to it indicates the kind of interaction primitives.

N-SPr

Figure 2

4.2 Protocol specification for layer N

The protocol specification for layer N is the set of the
specifications of the modules which represent the entities of
layer N: 1f all such entities have the same procedure (that is,
the protocol 1is symmetric), then the protocol specification
coincides with the specification of one module. This module(s)
represents an (N)-layer entity providing service through one (or
more) (N)-service-access-points, and accessing the service of the
layer below through one (or more) (N-l)-service-access-points. For
example, the modules A and B in figure 3 are such modules.

The protocol specification should be consistent with the service
specification, i.e. the abstracted view of the system shown in
figure 3 (ignoring the interactions at the (N-l)-service-access-
points) should satisfy the contraints defined by the (N)-service
specification. ' :

N-SPr

exp) > (e

Q (N-1)-SPr
A

Figure 3

4.3 Abstract protocol specification

An "abstract protocol specification” is a part of a protocol
specification which assumes a '"mapped" (N-1)=-service for the
exchange of (N)-PDU’s between the peer entitles, and relevant
control information relating to the (N-l)-service. This is a
useful technique because any particular protocol may not use all
aspects of the supporting service. The mapped service might, for
example, provide for connection establishment and data transfer
only.

The complete mapping from (N)-PDU’s and control information into
(N-1)-service- primitives is not specified directly, but in terms
of the mapped service. The specification of the mapped
(N-1)-service consists of the specification of a mapping from each
of its elements to some element of the (genuine) (N-l)-service and

- 10 -
visa versa.

The situation is as shown by the diagram (a) of figure 4.
Alternatively, the diagram (b) is sometimes used to indicate an
abstract protocol specification, where the single arrow indicates
the use of the mapped service. '

i g N-SPr

N-SPr
i ‘ i N-PDU + LOnTrol >
b 4 intormdution
. N-PDU + | ,
"“"'PP‘“‘(Service N-1 control Information

() - (b)
Figure 4

4.4 Implementations and real interfaces

For the module specifications considered (and in particular for
protocol and service specifications) the module is assumed to
interact with the other modules in a system through interaction

"primitives. An implementation of such a module, however, will

interact by "real interactions" (of hardware or software nature)
realized by a real interface. One real interface per interaction
point is usually foreseen.

An implementation of the interactions over a given interaction
point includes the definition of a mapping from the abstract
interaction primitives into the real interaction at the interface.
It defines a correspondence between the real interactions and the
interaction primitives, which are not mnecessarily explicitely
visible in the implementation. Figure 5 shows the correspondence
between an abstract module. specification (a) and its
implementation (b). :

) ljhtl-rtu‘t‘vu
. 'PJ‘:tui fl‘v £s

p——a

1

«)

~

5. Definition of terms

.sefor further study...

- 11 -

Figure >

Feal infer P s

‘

- 12 -
Annex : Examples of entity substructures

For specification purposes, it seems to be useful to consider a
substructure of an entity. Different kinds of substructures may
be considered depending on the nature of the entity to be
described. Some possible substructures are discussed in the
following subsections. Further work i1s needed for didentifying
appropriate substructures for protocol specifications.

As far as the work of the FDT ad hoc group is concerned, it seems
to be necessary to determine a description technique for defining
a substructure. A possible approach to this end is the use of the
concepts and methods described in section 3, such that the entity
is considered a module which consists of several interconnected
submodules.

1. Identification of a "mapping" submodule

The concept of an abstract protocol specification (see section
4.3) suggests a substructure of an entity as indicated in the
figure 6. ‘

Nl SPx

étgs"tr. Prelee ol

N-Ppu cehite vl ;ufb.-mu“h..

o ”):u 2

Ney 7 “Tr

Figure 6

_2. A possible entity substructure

Other entity substructures may be considered, such as the
following: an entity X, or each of the submodules shown in figure
6, may be subdivided into the submodules shown in figure 7 Below.

=

p

- vy
-
g

'-’

- 13 =

A :

T | |
E __....._.E ‘T"“"ﬁ] 'E
E i XSPrH E i XSPrH i E‘
i i : /' : :
L T
o N\ T/ T
X 4 oXxtH) N X' K ! XTH | '
P I— N P
L ! s A ! ! :
: A / \ 5 5
LT T/ R
! » 1 XFH | '
i [}] :
: i

Figure 7

In this figure, the submodule X° executes the abstract protocol
of the module X (and processes the control information contained
in the input interactions); XFH (X Format Handler) are modules
for handling Input/Output format problems for module X; XTH (X
Test Handler) are modules for handling wuser data, e.g. for
segmentation, reassembling, store for retransmission, etc., and
XSPrH (X Service Primitive Handler) are modules for handling
service primitives which interact with module X.

3. Possible identification of submodules

The concept of an abstract protocole specification (see section

4.3) suggests a substructure containing separate submodules for
mapping and abstract protocol. :

- -/
s s

- 14 -

Moreover there may be cases in which the complexity of the service
suggests to introduce a third box called "additionnal service" and
leads to the following structure.

| N-SPr

i Add, Serv

N-entity

-

ABST-PROT

—————l _|_ _ N-PDU and (N-1) service
17 control information

Mapping

T

l (N-1)SPr

NOTES

1.

2.

The boxes located at the top and the bottom are optionnal.

Thus, depending on the entity to be described the structure
may be different.

Only the 'protocol box" is mandatory in all cases: thus the
structure can be reduced to a single protocol module.

The concepts described above are only suitable for description
purpose and do not have to be introduced in the model for O0SI
as generic concepts.

Examples of the use of the "Additionnal Service" box can be
the gquarantining or blocking services at the session layer or
some manipulation or transformation of the data store at the
presentation layer. -

This section 3 is more general than section 1 of this annex.
Due to lack of discussion, it has been included as a separate
section. It may superseed section 1 in the future.

ANNEX 2

L
L ¥

-

v

To: Members of ISOTC97/SCl6/WG1

From: Subgroup B of ad hoc group on FDT

Title: A FDT based on an extended state transition model (VWorking

Draft, Boston, Déc. 1981)

1. Introduction

This document describes a FDT for the specification of
communication protocols and services. The specification language
is based on an extended finite state transition model and the
Pascal programming language.

2. An Extended State_Transition Model

2.1. -‘Introduction

A system comprises interconnected modules, each of which
is an extended finite state transition machine, which is described
as explained below.

2.2 The model of interactiomns

The extended state tramnsition model described in section
3 assumes a model of interaction where each interaction of the
specified module with its environment can be considered an atomic
event. The transition model distinguishes between interactions

that are initiated by the environment and received by the module
(inputs), and interactions initiated by the module (outputs).

The reception of an interaction from the environment

produces, in general, a state transition of the specified module
which may give rise to other (output) interactions.

- ay T S BN S NS =N

For the interaction between two modules, the model
allows for the queuing of the outputs from one module before they
are considered as input by the other. Queues of infinite or
finite (usually =zero) 1length are possible. The length of the
queue is determined when the modules and their interconnection are
instantiated (see '"Concept for describing the OSI architecture"
(working document of Subgroup A), section 3). It 1is noted that
zero buffer 1length means a rendez-vous type of interaction (see
"Concepts...", section 2 1.

2.3 A state transition model

In order to define the possible orders in which
interactions may be initiated by the entity, the state transition
model introduces the concept of the "internal state'" of the entity
which determines, at each given instant, the possible transitions
of the entity, and therefore the possible interactions with . the
environment.

The possible order of interactions of a module (or:
entity) is given in terms of

(a) the state space of the module which defines all (intermnal)
states in which the module may possibly be at any given time, and

(b) the possible transitions. For each type of transitiom, the
designer specifies the states from which a transition of that
type may take place, and the 'mext" state of the module. A
transition may also involve one or more interactions of the module
with its environment (see below).

Since finite state diagrams or equivalant methods often
lead to very complex specifications when a complete protocol
specification is required (partial specifications, can be more
readily comprehended) the following approach to the specification
of modules in the extended state transition model is used.
This approach combines the simple concept of states and
transitions with the power of a programming language.

The state space -of the module 1is specified by a
set of variables. A possible state is characterized by the values
of each of these variables. One of the wvariables - 1is
called "STATE". It represents the "major state" of the module.

The possible transitions of the module are defined By
the specification of a number of transition types. Each transition
type 1s characterized by

(a) an enabling condition: This 1s a combination of a boolean
expression depending on some of the variables defining the
module state, and (possibly) the specification of an input. A
transition may occur in a given state only 1f the enabling
condition has the value true, and the interaction in question (if
it exists) 1is initiated by the environment.

(b) an operation: this operation is to be executed as patt of
the transition. It may change the values of variables, and may

specify the initiation of output interactions with the-

envirounment. The operation 1is assumed to be atomic.

The model 1s non-deterministic in the sense that in a
given state (at some given time) and a given input interaction,
several different transitions may be possible. Only one of these
transitions 1s executed, leading to a next state which determines
which transitions may be executed next. If several transitions
are possible at some given time, the tramsition actually executed

is not determined by the specification model. An implementation of

the module could choose any of these possibilities.

In many cases, the specification of a module may be
deterministic, 1in the sense that (at most) one transition is
specified in any reachable state and given input.

3. Language elements

This section gives an introduction to the different

elements of the specification language based on the extended state-

transition model described above.

The language 1s largely based on the syntax and
semantics of the Pascal programming language (ISO DP7185, formally
TC97/SC5 N595, see also Jensen and Wirth: "Pascal: User manual and
report", Springer Verlag, 1974), and uses the general approach of
using type definition facilities and type checking for allowing
the implementation of automatic consistency checking, which
usually detects a large proportion of those errors in a
specification that connot be found by syntax checks.

A complete definition of the syhtax is contained in
section 4. '

3.1 Language elements taken from Pascal

The following language elements of the Pascal
programming language are included in the specification language
without any change in syntax and semantics:

(a) Type and constant definitions including
scalar types, including enumeration types
subranges .
record types
array types

Predefined types:
boolean

integer '
character (defined by some ISO standard)

(b) Procedure and function definitions

(c) Statements

3.2 The specification of interactions

The following examples are considered. The (N)=-service
is provided to the entities in the layer above by the interactions
through the service access points between the service providing
module and its environment. The interaction model is also useful
to define interactions between different entities (or '"modules")
of an (N)-layer subsystem. For example, it may be used for
defining the timer or data buffering services used in the
(N)=layer protocol.

, In the following the term 'channel" denotes the
interactions between the given module and another module in its
environment. For example, a serivce access point is a channel
between the service providing module and the entity using the
service through this access point. It should be noted that the
abstract properties of these channels are discussed here only to

the extent that they are concerned with service and protocol
specifications. - .

The specification of a channel of a module is given by
enumerating the possible interaction primitives that may occur
over the channel (including possible parameter values (determined
by the module initiating the interaction), and indicating whether
the module, its environment, or both may initiate the
interaction). '

‘ N - —
2 d 3

The language allows the specification of the possible
interactions through a channel without explicitly defining the
modules that 4nteract through the channel. However, it is
necessary to réefer to the roles that these modules play in this
interaction. o

As an example we consider the abstract interface through

_wﬁich the Transport service 1s provided at some Transport service

access point. The diagram below shows the entities involved.

l ‘Session layerl , | Session layer | ‘ |
. "} Transport s : .
entity | service ‘ent1ty 1 ?gs:1on
access point yer
F -
Transport layer Transport layer ‘Transport .
entity " .entity layer '

Using the syntax defined in section 4, the possible service
primitives may be enumerated as follows. o

interaction
TS_gCCess_point(TS_pser,Ts;provider) is
by TS_user:

T_CONNECT req(TCEP identifier TCEP identifier’ type,

to_T_adress : T_. address _type;
from T address ¢ T_address_type; ‘
QQTS_request - quality of _TS_type;
TS_connect_data : Ts_connecp_datq_type),
T_ACCEPT_req(TCEP_identifier : TCEP_identifier_type;
QOTS_request : quality of_ TS_type;
options . : ¢! option_type;

'TS_accept_data ¢ TS_gccept_ﬁata_type);

T_DISCONNECT_req etc.

~

by TS_provider:
T_CONNECT_ind

etce.

This specification states that a module that interacts
through a Transport service access point must take the role of a
"TS-user", or a "TS-provider”. Depending on its role it may
initiate a certain number of interactions (indicated by the BY
clause), for example a user may initiate requests for connection
establishment or disconnection, or the sending of a fragment of
user data. :

The same notation may also be wused for defining the
interactions between several entities within the same layer, or
between an entity and some 1locally provided services, such as
timers or buffer management. An example is the following
definition of the timer services used by the Transport entity
implementing the Transport protocol.

interaction
timer-interface (user, server) is
by user:
start (period: integer);
stop; ' "
by server:
time=out;

We note that the possible orders of interactions are not
specified. However, it is understood that the time-out interaction
will only be initiated by the server "period" seconds after it has
received a start interaction and no subsequent stop interaction.

3.3 Module interconnection

It 18 useful to separate the specification of the
characteristics of channels from statements that certain modules
use certain types of channels. For example, the characteristics
of the (N)-service access points are relevant for the (N)=-service
specification, the (N + 1) =~ layer entities, as well as for-the
(N)=-protocol specification. This leads to a specification method
in which channel types may be defined independent of their use,
and the specification of a module includes an enumeration of all
the interaction ‘points through which it 4interacts with its
environment, with an indication of the channels type for each of

these interaction points. The syntax for these specifications 1is
given in section 4. :

-7 -

The language must be enhanced for specifying how the
interaction points of the different modules and entities within an

Open System are connected through channels. These considerations
are for further study. :

To demonstrate these ideas, the following lines show the
general outline of Transport service and protocol specifications.
It i8 noted that the Transport service access point definitions
are used by the service as well as by the protocol specifications.
The PDU and timer interface definitions are only used by the
protocol specification and therefore included in that section.

Specification of the Transport lavyer service:

module TS(access_points : array[T_address_type] of TS_access_point
(TS_provider));
<global constraints of the Transport service>

Specification of a Transport protocol (balanced class):

type
max_TPDU_size type = ...
interaction
TPDU (N_calling, N_called) is etc.
interaction
local_buffer(user,buffer) is etc.
module Transport_entity (TSAP : TS: access_point(TS_provider);
N TPDU(N_calling,N_called);
T ¢ timer_interface(user);
out_buffer,
in_buffer : local_buffer(user));
<global constraints of the Transport entity>

The specification of the Transport entity states that
such an entity interacts through an interaction point, called
"TSAP", which uses a channel of type "TS-access-point'", where it
takes the role of a service provider, and also through a timer
interface, where it is8 a user. It also interacts with a Tramsport
mapping submodule (see '"Conceptse...", Annex, section 1) through
the interaction point called "N" by using the interactions defined

~as TPDUs. The <global constraints of the Transport entity> are

specified with the state transition model as describedvbelow.

MR =S O e

- W EE N WR G R e .

3.4 Overview of the externally visible properties of a module

The external behavior of a module is determined by the
following: ,
(a) enumeration of the 1interaction points through which the
module interacts with its environment. The specification of each
interaction point includes the following information:

(al) enumeration of the interactions that may occur through the
interaction point;

(a2) a set of rules that determine the order in which these
interactions may occur.

(b) global constraints on the order in which the interactions
through different interaction point of the module may occur. _ (In
the case of service specifications, these constraints define how
the interactions at the two end-points of a connection relate to
one another. In the case of a protocol specification, these
constraints specify the order in which different PDU’s may be
sent, and how the interactions at the (N)-service access point of
the entity relate to the sending and receiving of PDU’s through
the (N-l)-layer interface).

While (al) is explicitly defined by the interaction
definitions (see section 3.2) points (a2) and (b) are implicitely
determined by the state transition model (see section 3.5.).

3.5 Specification of a module in the state transition model

The state space of the module is specified by a set of

variables. A possible state is characterized by the values of each
of these wvariables. One of the variables is called "STATE". It
represents the "major state" of the module.

As an example, the following 1lines specify the state
space of an entity implementing the Transport protocol:

var

state : (idle,wait_for_CC,wait_for T ACCEPT_req,data_transfer);
local_reference : TP_reference_type; "
remote_reference : TP _reference_type;

TPDU_size :max _TPDU_size_ type; -7
QOTS_estimate : quality of TS_type;

Nl MR G =m
4 d

The possible transitions of the module are defined by

the specification of a number of transition types. Each
transition type is characterized by: '

(a) the enabling condition: this includes
- the present major state (FROM clause)

- the input (WHEN clause)

- the "additional enabling condition" (or "predicate")
(PROVIDED clause)

= the priority of the transition type (PRIORITY clause)

(b) the operation of the transition: this includes
- the definition of the next major state (TO clause)
- the "action" (BEGIN statementof the <block>) including the
generation of output.

As an example, the following lines specify some transition types
for a Transport entity:

from idle
when TSAP.T_CONNECT_req
provided ...(* Transport entity able to provide the quality of
service asked for *)
to wailt_for_CC
‘Crﬂl :
focal reference = «¢es3
TPDU Size HE ..o,
N. CR(O local_reference,class_] 0 normal,variable_part_to_send);
end° .

from data_transfer to same
when TSAP.T _DATA_req
provided ... (* flow control from user ready *)
begin
out buffer.append(user data);
end;
when out buffer.next-fragment
provided «.. (* Network layer flow control ready *)
begin
N.DT (data-fragment);
end;

- 10 =

‘3.6 User guidelinés

4. Syntax overview

This section defines the syntax of the specification

language. Large parts of the language are taken from the Pascal
programming language (ISO DP 7185).

Elements of the Pascal programming language are used for
the specification of constants, data types, procedures and
functions, and the declaration of the state variables.

This section defines the extensions to Pascal, as well
as certain restrictions. ‘

4.1 Syntactic extension

Notation: Extended BNF where "+'" means one or more
occurrences, "*" means zero, one oOr more
occurrences of an expression, and "
separates alternatives™. "#**" peans that the
construct is the same as in Pascal.

A service or protocol specification consists of a specification of
the interaction points and primitives (see section 4.1.1) and one
or more module specifications (see sections 4.1.2 and 4.1.3).
Only the definition of a module type is given here. Language
elements for the declaration of module instances within a system
and their interconnection is for further study. '

4.1.1 Interaction points and primitives

The <channel definition> defines a type of interaction point.

<channel definitionsau‘<constan£ definitions>%* -
<type definitions>* <channel type def>

. . .

- 11 -

The possible interactions at a given type of interaction

point are enumerated by a definition of the following
"form: "

<channel type def> ¢i= INTERACTION <channel type 1id>
(<role list>) <interactions>
<role list> = <role 1id> ‘
| <role 1list> , <role id>

<interactions>)i=m <BY clause>

| <interactions> <BY clause>
<BY clause> ::= BY <role list> : <interaction list>
<interaction list> ::= <interaction>

| <interaction list> <interaction>
<interaction> ::= <interaction 1d> <interaction parameters> ;

The declaration of <interaction parameters> is in the
same form as function parameter declarations in Pascal
(i.e. for each parameter its name and type).

;

<interaction 1d> HEE <identifier> (*Notel%)
<channel type id> = <identifier>

Note -1: Alternatively, the form of an <interaction 1d> could
indicate whether the interaction is, for instance, a
request, indication, response, or confirmation (for
further study). :

4.1.2 Modules and their interaction points

The definition of a module type contains the declaration of
all abstract interaction points through which a module of
this type 1interacts. This includes the service access
points through which the communication service is provided
as well as the system interface for timers, etc. and the
access point to the layer below, through which the PDU’s
are exchanged.

<module type definition>l= MODULE <module type id>
(<interaction points>) ;
<module body>
<interaction points> ::= <interaction point declaration>
' | <interaction points> ; <interaction point
declaration>
<interaction point declaration> ::= <interaction point id> :
<channel type 1d>
(<role 1id>)

-12 -

The <role id> indicates which role the entity plays as far
as the declared interaction point is concerned. We note
that the distinction of these roles permits the checking
that the invocation of interactions in the conditions and
actions of transitions 1is consistent with the possible
exchanges defined in the channel definition.

4.1.3 Extended state transition model

<module body> ::= <1abe1 definitions>**
<constant definitions>**
<type definitions>*%
<variable declarationg>*%
<major state declaration>
<gtate set definition>*
<procedure and function definition> (*Notes 2 and 3%)
<initialization>
<transition>+
END.

<major state declaration> ::= STATE : <enumeration type> ;

<state set definition> ::= <gstate set 1d> = <set definition>** ;
(*Note &%)

<initialization> R <state initializer> <begin statement>** ;

<transition>i= .
| ANY <identifier> : <type identifier** DO <transition>+ (*Note Sa*) |

WITH <variable>** DO <transition>+ (*Note 5b*)

WHEN <interaction point id> . <intraction id> <transition>+ (*Note 5¢

FROM <major present state> <transition>+ <*Note 5d%)

TO <major mext state> <transition>+ (*Note Se%)

PROVIDED <expression>** <transition>+ (*Note 5f*)

PRIORITY <priority indication> <transition>+ (*Note 5g¥*)

<block>** ;

—— e o —— —— —

<priority indication> ::= <identifier>** (*constant of some
’ enumeration type*)

| <integer>*%
<major present state> ::= <major state wvalue>

| <state set id>
<major next state> ::= <major state value>

| SAME) . .
<major state value> ti= <identifier>** (*must be element of the

enumeration type of the <major
state declaration>%*)

<output statement>i= <interaction point 1id> . <interaction idé
<effective parameter list>** (*Note8%)

Fan

- 13 -

Note 2

Within a transition, "..." may be written for an
expression that is implementation dependent (not defined
by the -specification). The body of a procedure or

~ function that is implementation dependent (not defined
by the specification) 1is written in the form "PRIMITIVE"

. or ll..."' ' _

Note 3 ¢ A ©boolean function X(<parameters>) with no side effects

may be declared in the form "predicate X(<parameters>)".
Note 4 ¢ The elements of the set must be included in the
—enumeration type of the <major state declaration>.

Note 5a: These transitions may not include a ANY clause.

Note 5b: These transitions may not include WITH clause.

Note 5c: These transitions may not include WHEN clause.

Note 5d: These transitions may not include FROM clause.

Note 5e: These transitions may not include TO clause.

Note 5f: These transitions may not include a PROVIDED clause.

The expression must be boolean.

o mp

Note 5g: These transitions may not include a PRIORITY clause.
Note 6 : Each <block> must be preceeded by a FROM and a TO
_ clause. .

Note 7 ¢ To - refer to the input parameters, the parameter
identifiers of the 1interaction in the <channel type
definition> are used. ‘

Note 8 :

This kind of statement (for producing an output
interaction) is an extension of Pascal.

4.,1.4 Other extensions

(a) A comment that starts with the word '“property"
describes properties that are part of - the
specification. '

(b) A facility for describing optional parameters is
introduced. To indicate that a parameter (or field
of a record) 1is optimal, its type definition is
preceeded by the keyword OPTIONAL. the value
UNDEFINED means that the parameter (or field) is not
present. A default value may be associated with the
type definition by a succeeding "DEFAULT=<constant>"
clause. »

4.2 Removal of certain restrictions

4.3 Elements of Pascal not used

5. Definition of the semantics

6. Conformity rules for checkihg imglementa;ions

- - — - ..

-14 -

7. Verification rules for checking that an (N)-service
is rendered by an (N-l)=service and an (N)-protocol.

Annex A: Tefmig§logy

- 16 -

nnex B: Relation to graphical description techniques

l. Introduction’

Graphical description techniques are often used to give
an overview of a protocol or service specification, and sometimes
are enhanced to provide a complete specification. Different
graphical representations of extended state transition models are

.in use. Some .of these representations are shown in section 2.

The systematic translation of linear specifications written in the
FDT described in this document, into graphical representations is
discussed in section 3.

2. Different graphical description technigues

The following subsections present overviews of the
Transport protocol class O connection establishment phase (a
complete specification is given in Annex D) using different
graphical description techniques. This may be used for a
comparison of these graphical techniques. :

2.1 Common state transition diagrams

The diagram of Figure 1 gives an overview. It specifies
the major states and the types of transitions, indicating for each
transition only-the kind of the relevant input and output. A

 similar description technique is used in several CCITT

Recommendations, such as X.25, etc.

2.2 Enhanced state trahs;ggon diagrams

The diagram of figure 2 contains the basic information
of figure 1, but it also includes some additional information
about conditions and actions of transitions relating to the
interaction parameters and additional state variables of the
extented state transition model. Such a description technique is
used in several SC6 documents, such as SC6 N22 31 . '

2.3 The System Description Language (SDL) of CCITT SGXI

The diagram of figure 3 contains the same information as
figure 2, using the SDL of CCITT.

-17 -

3. The translation of the linear FDT into graphical form

The translation is relatively straightforward i1f the
linear specification contains the transitions sorted by major

present states (FROM clause), input interactions (WHEN clause) and
additional conditions (PROVIDED clause), as in the example below.

Any specification may be put into this form by a simple
rearrangements of the order of the different transitiomns. The
following example is considered:
(*transitions*)
from A
when AP.reql
provided C1
to B
begin Actionl; AP.indl end;
provided C2 _
begin Action2; AP.ind2 end;
when AP.req2
to C
begin Action3; AP.ind3 end;

The translations of these three transitions into the different
graphical representations are shown in figures 4, 5 and 6.

3.1 Translation into common state diagrams

All states shown in the diagram are declared in the
<major state declaration> part of the linear specification. Each
defined transition gives rise to an arrow in the diagram, as shown
in figure 4 (using the information of the FROM and TO clauses).
The information for the annotation of the arrows is taken from the
WHEN clause and the BEGIN statement of the transition <block>.
This statement must be scanned to extract the <output statements>

~which are used for the annotation of the arrows.

3.2 Translation into enhanced state transition diagrams

While in the overview diagrams of common state diagrams
the information of the PROVIDED clauses and the BEGIN statement
(except for the output) is wusually lost (see figure 1), this
information may be included in the enhanced transition diagrams, ..

as shown in figure 5. The translation process is similar to the
case of common state dlagrams.

- 18 =

3.3 Translation into SDL

The process of translating a linear specification into
SDL is closely related to the embedded structure of the 1linear
specification (see example above). Each FROM clause corresponds
to a "large" graphical state symbol. Each WHEN clause, within a
given FROM clause, corresponds to a graphical 1input symbol
connected to that state symbol. If for a given WHEN clause, there
are embedded PROVIDED clauses, then a graphical decision symbol
represents the choice between these alternative transitions, as
shown in figure 6. The BEGIN statement corresponds, in general,
to an action symbol and possibly some output symbols. (The
relevant outputs must be extracted from the BEGIN statement, as

explained in section 3.2). The TO clause corresponds to a "small"
state symbol which terminates a transition.

ANNEX 3

T CONVECT. +<g
//T-DL5Cd

T couNECT- wy

J cRk

rrse.
/ NDL SC -4
"

_ ‘ N_DY5C cind
/- ACCEPT wel /TeDisConad - -

/ T Acq“r‘r, 'y

/cc

}:{auﬂ. ’

T CONNELT =

e e

T-Disc . ind

1 andl ot able o ﬂx‘i:e

T CONNECT»
Mr{ able Yo

——— . g

T ACCEPT.)

CR and wif able Vo prauisls seraice

—.

- o ——— e
It :

o

DR

N.dlsc . 4«1

T COANECT-
‘ nd

e

|

N DR
L Z

L Cc

T

T-dIsc T. ACcErm
wmd / el

dle) olele
'{ Fow sfc r

, 0
H
.

\.N.‘nisc-
el

idle walt. ‘far
() 7. Acat?,

.-.__J

T.DIsc.

—I

>,_

ALCEPT

9

—DCAI
PR >
(lolle—-)

&

s‘(«

N

1'Msfer J

A

Jid 2

h

r"‘c‘l, aud C1

cliae I_;

budl |

~p——

i

d‘?l anc‘ c2

.) > .
R z
. . -
-

|

14

WASH-4

To: ISO/TC97/SC16/WGI Rapporieur's group on FDT

Source: G.V. Bochmann, E. Cerny, C. Lacaille (Canada)

Title: Formal specification of a Transport Service

1. Introduction

The annex gives a specification of the Transport service using
the extended state transition model described in "Tutorial on. formal

. description techniques (FDT)" (SC16 N..., and TUB-11). It is intended

as an example of the use of this FDT.

We note that the first part of the annex (specification of

the types and service primitives) was already given in annex 1 of

N706 ("Formal specification of a Transport protocol").

ANNEX 1 Transport Service Specification sept 81
type
T _address_type = «.s.} -(* note 1 %)

TCEP_identifier_type = «.e¢3 (* note 2 %)

quality of TS_type = record
throughput_from_average
throughput_to_average
throughput_from minimum
throughput_ _to_minimum

integer; (* bps *) :
integer; (* bps *) - |
integer; (* bps *)
integer; (* bps *)

transit_delay from average : realj; (* seconds *)

"transit_delay_to_average ! real; (* seconds *)

transit_delay_from maximum : reals (* seconds *)

transit_delay to maximum : real; (* seconds *)

residual_error_rate t real; - (* probability *)

set_up_delay : realj (* seconds %)

resilience_of TC : realj; (* seconds %)

acceptable_cost ! real; (* some monetary unit *) |
security level of_ TC ! integer; (* 277 %)
connection_assurance t reals (* seconds %) |

priority level integer; (* 77?7 %)

end;

option_type = (normal,fast_ponnecq_disconnect,wi;h_expedited); (* see note 10 #*)
TS_connect_data_type = +..; | (* string of octets of limited length #*)
TS _accept_data_type = ees} (* string of octets of limited length #*)
TS_expedited data_type = ...; (* string of octets of limited length #*)
fragment length_type = ... (* implementation dependent *)
détq_fragment_type = record

last_fragment_of TSDU : boolean;

length : fragment_length type; (* length of string *)

data : ees3 (* string of octets %)
end;

TS_disconnect_reason_type = (TS_user_initiated termination,
lack_of_ local_resources,
‘inability to_provide_the quality of_service asked for,
inability to_maintain quality of_service,
misbehavior_of_TS_user, '
reference_overflow,
mismatched reference,
local_congestion,
remote_ congestion,
empty,

ooo);

TS_user_reason_type = +.«.3 (* string of octets of limited length)

interactions

TS_access_point(TS_user,TS_provider) is

by TS_user:

T_CONNECT_req(TCEPI

' to_T address
from T address
QOTS_request
options
TS_connect_data

T_ACCEPT_req(TCEPI
QOTS_request
options
TS_accept_data

T_DISCONNECT_req(TCEPI
TS_user_reason

T_DATA_req(TCEPI :

s TSDU_fragment :
T_EXDATA_req(TCEPI

TS_expedited data

TCEP_identifier_type;
T_address_type;
T_address_type;
quality_of_TS_type;
option_type;
TS_connect_data_type);

TCEP_identifier_ type;
quality of TS_type;
option_type;
TS_accept_data_type);

TCER_identifie:_type;
TS_user_reason_type);

TCEP_identifier_ type;
data_fragment_type); (* note 3 #%)

TCEP_identifier_ type;
TS_expedited_data_ type);

by TS provider:

T_CONNECT_ind (TCEPI
‘ to T address
from T address
QOTS_request
options
TS_connect_data

T_ACCEPT_ind(TCEPI
QOTS_request
options
TS _accept_data

T_DISCONNECT_ ind(TCEPI

TS_disconnect_reason : TS_disconnect_reason_type;

TS_user_reason

~ T_DATA_ind(TCEPI
TSDU_fragment

T_EXDATA_ind(TCEPI
TS_expedited data

end TS_access_point;

es ®e e me oo oo

TCEP_identifier_ type;
T _address_type;
T_address_type;
quality of TS type;
option_type;
TS_connect_data_type)}

TCER_identifiep_type;
quality of TS_type;
option_type;
TS_accept_data_type);
TCEP_identifier_type;

TS_user_reason_type);

TCEP_identifier_ type;

data_fragment_type);

TCEP_identifier_type;
TS_expedited_data type);

(* note 4 *)

(* note 3 %)

messagq_buffer(user,buffer) is (* note 5 %)
by user:

clear(in_fragment_size : integer;
out_fragment_size : integer);

append(data_fragment : data_fragment_type);
by buffer:
get_next(data_fragment : data_fragment_ type);

end message buffer;

= am =

"%'

(* major states (note 6) *)

user_reason:TS_user_reason_type;
TCEP1:TCEP_identifier_type;
TCEP2:TCEP_identifier_ type;
caller:T_address_type;
called:T_address_type;
options:option_ type;

connect_data:TS_connect data_type;

éccept_ﬁata:TS_ﬁccepg_datq_type;

* Global constraints *)

.y

nitialisation
statel:=idle;
state2:=idle;

B Bl TN IS BN D B
!
(o))
1

TS_;easoh:Ts_disconnecg_reasoq_;ype;

TCEP1_QOTS_estimate:quality of_ TS type;
TCEP2_QOTS_estimate:quality of_ TS_type;

(*
(*
(*

(*
(*
(*
(*
(*

(*
(*

odule TS (AP1,AP2:TS_access_point(TS_provider);
bufferl2,buffer2l: message buffer (user))3

statel,state2: (idle,wait_for acc,data_transfer,disconnect);

TS provided disconnection reason *)
TS user provided disconnection reason %)
local TS user identifier (note 4) *)

TS address of APl (caller) *)

TS address of AP2 (called) *)

quality of service requested by APl user %)
quality of service agreed by AP2 user *)
option initially requested by APl user *)
and finally agreed by AP2 user *)

connect data sent by the calling (APl) user
during the connection establishment phase *)
data returned by the called (AP2) user

. during the establishment phase *)

Iransitions
en (statel=idle) and (state2=idle) do
i when AP1.T_CONNECT.req(TCEPI,to T address from T address,
QOTS_request requesteq_options TS _connect_data)
when ... (* no congestion *) do
I begin
, statel:=wait_for_ accj;
state2:=idle
TCEP1:=TCEPI;
I caller:=from T address;
» called:=to_T_address;
options:=requested options; (* see note 10 %)
l .connect_data:=TS_connect_dataj;
buffer2l.clear;
bufferl2.clear;
end
l else (* congestion *)
begin
statel:=idle;
I state2:=idle;
AP1.T DISCONNECT ind(TCEPI,...(* congestion (note 8) *) ,empty)

end;

N
3 /hen (statel=wait_for_acc) and (state2=idle) do
| when ... (* The connection request reaches the called user *) do
begin .
statel:=wait for_accj
state2:=wait_for_acc; '
TCEP2:=..¢3 (* some unique identifier *)
TCEP2_QOTS_estimatei=...; (* see note 7 *)
AP2.T_CONNECT_ind(TCEP2,called,caller,TCEP2_QOTS_estimate,
connect_data,options)
end;
when «.. (* internal problem (note 9) *) do
begin
statel:=idle;
state2:=idle;
AP1.T_DISCONNECT ind(TCEPl,... (* congestion (note 8) *),empty)
end;

l elsey

en (statel=wait for_acc) and (state2=wait for_acc)
when AP2.T_ACCEPT_req(TCEPI,QOTS_request, requested_option
(* see note 10 *),TS_accept_data)
and (TCEPI=TCEP2) do
begin
statel:=wait for_acc;
state2:=data_transfer
options:=requested_options; (* see note 10 *)
accept_data:=TS_accept_data;
end;
when AP2.T DISCONNECT req(TCEPI, TS_user_reason)
and (TCEPI=TCEP2) do
begin
statel:=wait_for_acc;
state2:=disconnect;
TS_reason:=TS_user_initiated ! termination'
user_reason:=T5_user_reason
end;
when «.. (* internal problem (note 9) *) do
begin
statel:=wait_for_acc;
state2:=disconnect;
TS_reasoni=...; (* note 8 %)
user_reason:=empty;
AP2.T_DISCONNECT_ ind(TCEP2,TS_reason,user_reason)
end;
when «.. (% internal problem (note 9) ~ altermative transition *) do
begin
statel :=disconnect;
state2:=wait for_acc;
TS_;eason.—..., (* note 8 *)
user_reason:=empty;
AP1.T_DISCONNECT ind(TCEP1,TS_reason,user_reason)
end; ’ '
else;

when (statel=wait for_ acc) and (state2=data_transfer)
when ... (* the accept indication reaches the caller *) do
begin :
statel:=data_transfer;
state2:=data_transfer;
TCEP2_QOTS_estimate!=...; (* note 7 *)°
AP1.T_ACCEPT_ind(TCEP1,TCEPl QOTS_estimate,
options,accept_data)
end;
when AP2.T DATA_ req(TCEPI,TSDU_fragment)
and ... (* flow control to Transport Entity is ready ¥)
and (TCEPI=TCEP2) do :
begin
statel:=walt for acc;
state2:=data_transfer;
buffer2l.append (TSDU_fragment);
end; :
when ... (* internal problem (note 9) *) do
begin
statel:=disconnect}
state2:=data_transfer;
TS_reason:=«..; (* note 8 %)
user_reason:=empty;
APl.T_DISCONNECT_ind(TCEP1,TS_reason,user_reason);
end;
when +..(* internal problem (note 9) *) do
begin
statel:=wait_for_acc;
state2:=disconnect;
TS_reason:=...; (* note 8 *)
user_reasoni=empty;
AP2.T _DISCONNECT ind(TCEP1,TS_reason,user_reason);
end; '
else;

)
=

(statel=data_transfer) and (state2=data transfer) do
when AP1.T DATA req(TCEPI;TSDU_fragment)
and... (* flow control to Transport Entity is ready *)
and (TCEPI=TCEP2) do
begin
statel:=data_transfer;
state2:=data_transfer;
bufferl2.append(TSDU_fragment)
end;
when bufferl2.get_next(data_fragment)
and (*flow control to user is ready *) do
begin
statel:=data transfer;
state2:=data transfer;
AP2.T_DATA_ind(TCEP2,data fragment);
end;
when AP2.T DATA_req(TCEPI,TSDU_fragment)
and ...(* flow control to Transport Entity is ready ¥*)
and (TCEPI=TCEPl) do
begin ‘
statel:=data transfer;
state2:=data_transfer;
buffer2l.append (TSDU_fragment);
end; . _
when buffer2l.get next(data fragment)
and (* flow control to user is ready *) do
begin ' "
statel:=data_transfer;
state2:=data_transfer;
AP1.T_DATA_ind(TCEPI,data_fragment);
end;

- 10 =

when APl.T DISCONNECT_ req(TCEPI,TS_user_reason)
and (TCEPI=TCEP1) do '
begin
statel:=disconnect;
state2:=data transfer;
TS_reason:=TS_user_initiated termination;
user_reason:=T5_user_ reason;
end;
when AP2.T DISCONNECT req(TCEPI,TS_user_ reason)
and (TCEPI=TCEP2) do
begin
statel:=data transfer;
state2:=disconnect;
TS_reason:=TS user_ initiated termination;
user_reason:=IS_user_reason;
end;
when ... (* internal problem (note 9) *) do
begin
statel:=data transfer;
state2:=disconnect;
TS_reasoni=...; (* note 8 %)
user_reason:=empty;
AP2.T DISCONNECT ind(TCEP2,TS_reason,user_reason)
end;] : ‘
when ... (* internal problem (note 9) - alternative transition - *) do
begin . : '
statel:=disconnect;
state2:=data_transfer;
TS_reasoni=...,(* note 8 *)
user_reason:=empty; ,
AP1.T DISCONNECT_ind (TCEP1,TS_reason,user_reason)
end;
else;

-11 -

when (statel=disconnect) and ((state2=data_transfer) or (state2=wait for_acc)) do
(* the disconnect reaches the called user %)
begin
statel:=idle;
state2:=idle;
AP2.T_DISCONNECT ind(TCEP2,TS_reason,user_reason)
end; '
else; :
when ((statel=data_transfer) or (statel=wait for_acc)) and (state2=disconnect) do
(* the disconnect reaches the calling user *)
begin
statel:=idle;
state2:=idle;
~ AP1.T_DISCONNECT ind(TCEP1,TS_reason,user_reason)
end; : ‘
else;
end; (*transitions¥*)

-12 -

‘note 1 : An object of this type must be able to contain the network and country code
(4 bytes) and the national subscriber number (12 bytes), which together form
the Network address, and also possibly some space for subaddressing in the

Transport layer

note 2 : A connection endpoint identification mechanism must be provided to allow a
Transport Service user to distinguish between several Transport connections
at the same Transport Service access point; this identification

has local significance only

note 3 : Since TSDUs are of unlimited length, they may be exchanged over the Transport
Service access point in several fragments; the maximum length of fragments
is implementation dependent and may be different for different interfaces of
a given Open System

note 4 : The TS _user_reason parameter is significant only when
TS _disconnect reason = TS user_initiated termination

note 5 : "clear" is a request to empty the buffer ;"append(fragment)" adds the data
fragment after the data already in.the buffer (if any); "get_next(fragment)"

occurs when the buffer sends a data fragment to the Transport Entity.

=13 -

Sl B CHE BN BN B O B .

Ixg
®
=

[xg
e}
e 8

¢ The variables statel and state2 are associated with the two access points APl
and AP2 respectively. . The major state of a TS module is thus defined by a
pair <sl,s2> where sl stands for the state as seen at APl and 82 for the
state as seen at AP2.

Ind
©
~

¢ The quality of service value indicated to the user 1s not precisely defined.

ot
©
@

¢ The value of TS_reason is returned to both users. The choice of the value is
not defined formally.

¢ Some internal problem causes the termination of the connection.The problem
could be due to a Transport Entity malfunction or to unrecovered problems of
the Network Service.

te 10: The acceptable set of values for the item "options" depend on the maximum
class of Transport protocol available to both users.Only "normal" is allowed
with class O. :

- 14 =

ANNEX 4

. B .

WAsH-10

To: SC16 WG1 Rapporteur's group on FDT

Sodrce:\ Canada -

Title: Comments on a possible compromise on the syntax for extended
state transition descriptions :

1. Introduction

A possible compromise between TUB-11 and TUB-17 on the syntax

of spec1f1cat1ons in the extended state trans1t1on model could be as.

follows:

(1) specifications of the interactions: as in.TUB-11

(2) overall form of. trans1t10ns ~as in TUB-17, i.e. a transition

is of the form:
< next state > <---- < present state> < incoming interaction >
{and additional conditions >} begin < actions > end ;
The additional conditions are optional.
(3) references to the parameters of interactions: as in TUB-11, but
no parameters are mentioned for the incoming interactions, references
to these parameters in the conditions and actions use the parameter names
defined in the interaction specifications (see po1nt (1)).
2. Comparison of the possible compromise with the proposal in TUB-11.
Advantage of compromise:

(1) The first part of each transition contains the information about

the major state and the incoming interaction in a more concise form.

Disadvantages of the compromise:

(M) Embedding of several transitions with similar conditions or the

same incoming interaction is not possible. A result of this seems to

be the need for distinguishing between different pr1or1t1es of transitions
(for normal operation and error processing), whwch is less 1mportant

when embedded transitions can be specified.

(2) The syntax of the compromise gives the major state variable a special
role, while in the syntax of TUB-11 the major state is represented by a
variable without any special status. The results of this special role
are the following: .

(a) For service specifications this syntax is not very convenient, since
one needs typically two major state variables (one for each end of the
connection), and not one as provided by the syntax

(b) Additional syntax rules are needed for the following points:

-- "same state"

-- sets of states (with TUB-11, the standard Pascal syntax may
be used for this purpose)
-- declaration of possible major state values (if desired)

3. Some possible improvements for the syntax of TUB-11.
(1) For an action, write "begin...end when" instead of "do begin...end"
(2) Write "end when" instead of "else".

(3) Drop the parameter list for incoming interactions. The parameter
names given in the interaction specification could be automatically
made available for reference in the conditions and actions of the tran-
sition. ,

4. Importance of formatting

It is noted that a concise format for the major state information of a
transition (similar as in the case of the "compromise") may be obtained
by appropriate formatting, as in the following example:

when state = present and SAP.incoming

and < additional condition > :
begin state := next_state;
< additional actions > . ’ :
end when;

With the syntax of the compromise, this could be written in the form:

next state < --- present : SAP.incoming
and < additional condition >
begin
< additional actions >
end;

5. Conclusion

It seems that a syntax as described in section 3 above would
be a better choice than the one described in section 1.

ANNEYX 5

o > it o sin d= 9w W CEme ams

(amound P mt ub ds i Gm %am

s

BRTVICES.,

T -2

Time sequence dizdgrams as FIRT

Time seuence dizdgrams seem to be a2 useful tool tor deccribing
service and rroteocols bw eMamrles of their behavior, This note
rroroses & notation for the use of such dizgrams for ‘
service descrirtionsy and defines the meaning of the

diagrams.

The notation and its mean:nq is exrlained with the
follwoing examrlel

Ul 1#& o
\,"M-— T gf LY
-~ - N (4 —WD(
e R e L

\

Ta mf(vl -
- ' - - i
- " dh‘/\ M
"@ 1 # N ‘.
[Al p

. 7: ‘se o e
R I P12 ol lise . seq

1+ The two vertical lines rerresent tuo access roints ot the

2y The evecution of service primitives is indicated bw arrowss
Jdnvward arrows reprenent reauestsy outward arrows rerrecent

indications. - _— -

3+ The order of execution of service Frimitives is indicated bw
rointed arrows. A& rointed arrow trom primitive A to erimitive H
means that erimitive I is executed after Prumlt:ve A "
The rointed :

arrows dgive a relation bhetuween the erimitives in

*logical time® (see Lamrort, Comm. ACM). Al} relevant

orders are indicated by eointed arrows. '

4, Irnformation zhout the local state of zn acceses roint

maw he indicated clogse to the vertical line rerresenting the
access eointy hetween the arrows rerrecenting the executiorn
of 'service rrimitives.

ANNEX 6

Suntax for linear form of FNT! comraricon of T80 erorosal and SBNL-FR

"1+ Trntroduction

This document gives & comrarison of the T80 swrtaw in FIIT--316

for the linmnear form of the FIty arnd the surtax of SHL--FR (see for

examele FOT-11y and Armex A& to new Questiorn 7/X1). e
Thie comrarison could he the ‘

basis for an evaluation of the two.

An overview comearison is diven in the sections & and 4 which contain

the suntay of the two rrorossls with comrzring znnotstions. The
annotations are s follouwust

~= The underlined terminzl and norn-terminz) sumbolse have s corresrondence
in the other larguase (non-underlined swmbols have no '
corresrondense in the other 1ansuasge).

- For those non-terminslis that have 2 corresrornding sumhol in the
other landuade with a2 cuasi-identica!l mesningy the corrvesronding
sumhol is written on the left margin of the sa3Frery where the
sumhol is defined. Where such & sumbol is used, without heinsg
exrlicitely definedy the corresronding sumbol is written closge

to it with a8n srrovw indiecating the corresrondence. For examrliesy
Seprocesss and Smodule ture detinition> corresrond to one another
as well s "TO <erocess namer* and <interaction roinmt ids.

Erumeration of differencest - -
1. Design goslsel

The desisgn sosl for the 1850 suntav was to use as much as rossiblie the

elements of standard Pascal. PFescal is 2 hish-level moderm erogramming ~7¢

lansuage., Ite desidn doals werey smons otherssy simrlicityr ezse of
use for srogram desidgn gnd imrlementationy and the susrort of
the "structured rrogramming® srrrosch.

" The desisgn doale for S8NL-FR are

(see Annex & to new Question 7/7XTy section Y.1)¢ :
*This Recommendation defines a rraodram—~like ftorm of the 8BIIL (SHL/FR)
whose srimare sryurrose us to zllow the mecanical rroduction of

drarhical S rresentations (STL/GI) . ses®

It therfore seems that SHL-FR is srimzrile designed to lead to
comrrehensive srecifications in the grarhical forme while the

IS0 suntay is desisned to lesd to comrrehensive srecitications
in the linear form..

2+ Comments

The IS0 zuntax allows commentsy written * (¥ <texut rhrase> ¥)',

arnuwhere hetween

sumhols of z srecification. The SH.--PR swuntax a3llows comments

onlw in certsin rlaces of 2 srecificationy uritten *COMMENT <text rhrase>®
(for detsils see section 4). ‘ .

3, Differert keswords (reserverd identifiers)
The kewvwords chosen for delimiting the different elements of 3 srecificatis

are different in the two lansusdges. A comerarison of corresronding kewwords
is given hbw the snnotations in sections & and 4. '

—

. .

~— .,

it d -‘: ’

—

i, — -

U for detection of PIN coding errorsy and -Jow srioritw tramnsitiopns - T

‘

B D . y:
. . - . .

: %

——— i

4, Identifiers -- names

To identifw different elements of s srecificastion (e.g. interactionsy

~imteraction rointsry rrocessesy etce) the T50 surntsy uses *identifiers®

(i.e. character strings without sraces nor srecial charscters {(excert *_.")
while SDL-FR in additiorn uses "msmes* (arbitrary character strings).,

It is nioted that the SHL~FR *msmes® are the text to he printed inside

the corresronding grarhical suembol in the SNL-GR form of the srecificstion

Se Intersction roints ve. rrocess nsmes

The source snd destination of intersctions (i.es signsls)

are indicated hue refering to the intersctior roints declsred in the
module (i.e. rrocess) srecificastion in the csse of the TS0 suntax
while thew are indicated hw refering to the names of the rrocesces
(i.e. module occurences) in the csse of SNC-FR. A& result of this is
that the srecificaticorn of a rrocess in S1L-FR must be chansed when
the names of the other erocesses in the sustem sre chansed.

6+ State sets

The IS0 suntsi surrorte the concert of Ystate sets' which mezans that

it is rossible to defined & single transition that is enabhled in

8 certain situstion (for examrle a2 siven inruty or 3 rarticular internsl
condition) for & certain set of (mador) states (for ewamrle in 211

datas transfer states, there maw he several such states), This concert
is mot surrorted bwe SHHL--FR.

7+ Friority .
The IS0 suntsy surrorts the distinction of severzl levels of rrioritw
for different transitionsy for examrley hish rriority trensitions

for normsl rrocessing (the coding errors maw then he isnored
in the srecificatiorn of the normal erocessinsg transitions).,
This concert is not surrorted b SIH-FR.

8. PROVIIED

The 180 suntsx uses the kewword FROVINEDN to define 8 condition
(derending ususlly on inrut rarameters and/or state varishles)

that must he satistied when & tranmsition is ewecuted. In S -FR
such 8 situstion can usuzally he modeled br 5 NECTSTUON. Howevers the
FROVIDED maw zlso he used to introduce non—-determinism into

the srecifification. I'n SUL--FRy for this rurroses

fictitious imruts must he sscumed,.

?. GOTO srodramming

The asssidnment of the next (mador) state in the state tranmsition

model (of hoth rroroszls) is 5 bkind of *GOTO srogrammins®
(in the sense of the :

"GOTO statement in menw rrodgramming lansussess which lesds to

a8 new erogram (control) stated). (1t i< noted that *6GO0TO errogrammins®

is considered harmful for the desisn of eassilv urndergtandabhle prosrams

by most exrerts in softuare ensinesring). ft seems thaty in additions the
GOTO statement of Pascal is rot needed in the case of the T80 ‘
surtax for the srecification of communication services or srotocols,

I the case of SIL-PFRy use of GOTQ srodrsmming is encourasged

(hy use of the constructs JOIN and LARFL)due to the +3ow chart arrrosch of
structure of the IECISION construct. ' :

1

ty

-

.

;! - N -
- s
. . .

10. Possihle'next states

Inm SDL-FR several different (mador) stztes maw be rossible next states

after 3 diven inrut signals it use of the NECTSTON corcetruct is made.
I the case of the IS0 suntaMy there i only one rossible next (mador)
state after a3 given transition (Lhe next msdor state is indicated

bw the TO comstruct). ft is noted that there ig i 8NL no clear

~oorresrordernce to the bransition concert of -the THO swntax), -- S

This restriction (of a8 single nexwt state) wass introdured on .
rFurrose., It could bhe avoided by allowing evwrlicit assignments to the
STATE variahle inm the REGIN .4 END statement of the trancitions

11, Additional concerts in the 150 sentay

A number of concerts are surrorted bw the 80 suntavs which are
rot considered in SDL-FRy such as :

—— gefinitions of interactiorns smd their rarameters

~— definition of tures of interaction roints (<channel deftinition?)
-— agaditional stale variahles

-~ dats tures .

- wrocedures and functions

-— initialisstions

As shown i FIIT—-11y these concertse (with the excertion of the
interaction rointgr see difference 4)

carn bhe added to SHL-FR without

affecting much the other elements of the Iangusde.

5..6 ZL&W 3

-

Annex to minutes of Subgroup B meeting in Washington, Sept. 1981

=

Working Draft

Syntax of an extended state transition specification_language

Notation: Extended BNF where "+" means one or more

occurrences, "*" means zero, one or more
occurrences of an expression, and "|"

separates alternatives . "#*" means that the

construct is the same as in Pascal-.

<module>::=<channel definition>+<module type definition> (*Noteld%)

s

<channel definition>::=<constant definitions>*X

* o,
St
L INER

el s iGiype definitions> ¥ <channel ‘type dafy’ A
The possible interactions at a given type of interaction

point are enumerated by a definition of the following

form:

<channel type def):z=INTERACTION <channel type id>
(<role list>) <interéctioné> 3
<role list> ::= <role id>
| <role list> , <role id>
<interactions>::;=<BY clause>
| <interactions> <BY clause>

<BY clause> ::= BY <role list> : <interaction list>

; I R B =N IIIBN\IIII I Il e flllli I N BN N SN S BN O .

3

i
:

‘¢interaction id> =

<channel type id> 3K

<interaction 1list> ::= <interaction>

| <interaction list> <interaction>

_<interaction> ::= <interaction id> <interaction parameters>

The declaration of <interaction parameters> is in the
same form as function parameter declarations in Pascal

(i.e. for each parameter its name and type) -

‘<identifier> © T (*Notel%)

<identifier>

The definition of a module type contains the declaration

of all abstract interaction points through which a

~module of this type interacts. This includgs'the‘serViCE"“’“

access points through which the communication service is

provided as well as the system interface for timers,

etc. and the access point to the layer below, through'

which the PDU’s are exchanged. The following syntax is

proposed:

<module type definition>::=MODULE <module type id>

?Roféss (<interaction points>) ;

<module body>

<interaction points> ::= <interaction point declaration>

| <interaction points> ; <interaction point

declaration>

-
£

.

<interaction point declaration> ::= <interaction point id>
<channel type id>

(<role id>)

The <role id> indicates whicﬁ role the entity plays as
far ' as the declared interaction point is concerned. We
note that the distinction of theée roles permits the
checking that the invocation 6f interactions in the
‘conditions and.actioné of transifions is consistént with

the possible exchanges defined in the channel

definition.
<module body> ::= <label definitions> %%

e SR et Ml opt%constant definitions>* %

<type definitions>*%

<variable declarations>#*#

<major state declaration> (6 tuts ha, thu fh;“ &1_¢k
<state set definitiom>% ﬁt:f::g;:%“;g“”QJJRk
<Pfocedure and function definitiomf*(*Notes 2 and 3%)

<initialization>

<transition>+

END.

——

4R\END?RDCE$5 (rmggu namedS

<major state declaration> ::= STATE : <enumeration type§1;

<state set definition> :

.

<state set 1d> = <set definition>** !
(*Notesé4*)

<initialization> ti= <state initializer> <begin statement>*% ;

(GA? >

<transition> ::=

CEL ORI

<transition part>

<priority indicatio

<transition part>+ <begin statement>*%* ;

N

:2= FROM <major present state>
STATE
| TO <major next state>
NEXTSYATE

(*Note5%*)

B silions slacag >

| WHEN <interaction point id> . <interaction_ id>

R
(*Notes 6,7%) iyl une

| PROVIDED <expression>** (*must be boolean%*)

Y“Pu‘f of o LoteedsimaS
| PRIORITY <priority indication>

n>

enumeration type¥*

| <integer>**

i

<major present state> ::= <major state value>

<major next state>

<major state value>

‘ <state set id>

~t:= <major state value>

SAME

enumeration type of the <majo

staté declaration¥)

<identifier>** (*constant of some

)

r

<oﬁtput statement>LF=<1nteractionApgint id> . <interaction id>

N(F-h’u-oo Hetrne >
<effective parameter list>%% (*Not

Note 1: Alternatively, the form of an <interaction id>

indicate

request,

whether the interaction is, for instan

indication, response, or confirmation

further study).

T\S

e8%) ¢

could
ce, a

(for

1= <identifier>*% (*must be element of the

|
~u\,[haht: ‘

_ ~-'
. .

Note 2:

Note 3:

Note 4:

Note 5:

. Note-5a:

Note 6:

Note 7:

Note 8

Note 9:

The body of a procedure or function that is

implementation dependent (not defined by the

specification) is written in the form "PRIMITIVE" or

A boolean function X(<parameters>) with no side effects
may be declared in the form "predicate X(<parameters>)".

The elements of the set must. be dincluded in the

enumeration type of the <major state declaration>.

‘There should be at most one of éach parts defined in the

rule below. And there should be at least the parts
FROM, TO, and WHEN. A consistent ordering throughout a
épecification..is desirable-, The possibility of nesting
is for further study.

Within a transition, '"™..." may be 'written for an
expression that is implementation dependent (not defined
by the specification).

The possiBility of spontaneous tranéition, i.e. without
an input (WHEN part) is for further study.

To refer to the 1input parameters the parameter
identifiers of the interaction in the <channe1 type
definition> are used.

This kind of statement (for producing - an output
interaction) is an extension of Pascal.

Only the definition of a mo&ule type 1is giQen here.
Language elements for the declaration of:.modulé
instances ﬁithin a system an& their interconnection 1is

for further study.

£

+*

-
1
wm
i

ANNE X Representation of the SDL/PR Syntax
in the Backus Naur Form *

A1 . Preliminaries to the Backus Naur Form Representation

The context-free syntax is defined in this Annex by a context-free
grammar using an extension of the Backus Naur Form (1).

Syntactic categories are indicated by one or more English Words, typed
in italje characters, enclosed between the angular brackets <and>. This is
called a non terminal element. Each non terminal category is defined by an
expression of termigal and non-terminal elements on the right hand side of the
symbol ::=.

Sometimes a non-terminal element includes an underlined part. This
underlined part does not form part of the context-free description, but defines
-a semantic sub-category. For example: <state name> is identical to <name)> in"
the context free sense, but semantically it defines only names of the
sub-category '"state".

. Syntactic elements may be grouped together by using the curly brackets
fand}. Repetition of a curly bracketed group is indicated by an asterisk (%) or
plus (+). An asterisk denotes tha: the group may be repeated zero or more
times, a plus that the group may be repeated one or more times. {A} * stands
for any sequence of A’s including zero, while {A} + stands for any sequence of
at least one A. If syntactic elements are grouped using the square brackets
[and], the group is optional. Groups of syntactic elements may be separated by
vertical bars | ; this represents alternative groups any one of which may be-
chosen. ' .

The lexical elements of SDL/PR are: the keywords, identifiers
(<ident>), text strings (<text>) and note strings (<note>). Spaces may be used
to delimit the lexical elements of SDL/PR. For instance BLOCKCALLHANDLING will
be taken as one identifier instedd of the start of a functional block
identified as CALLHANDLING. Contlguous spaces have the same delimiting effect
as a single space.

A note may be inserted at all places in a program where spaces are
‘allowed as delimiters. A note has the same delimiting effect as a space.

Other delimiters are the colon, the semicolon and the comnma.

A.2 Syntax of the basic SDL/PR) -

functional block> :: = BLOCK <biock name> [<comment>]; {<process>}
+ ENDBLOCK <block name> [<comment>];
2 HoduLe R A Vspe i >
4 ‘ﬂ@{> {process> :: = PROCESS <process*name> [<commert>], {<state>} +
Aﬁ“*iwzz] pm— ENDPROCESS <prozess name< [<ccmmentd];

EAD”
<{state> :: =z STATE <state name> [<comzent>]; (<state picture>]
_](save) <input>} ® ENDSTATE <state name> .-

L(commen»)],
._.......—_.—-—---w....,,_

* This annex is taken from CCITT StudyAGroup XI, Contribution No. 1,
Period 1981-1984, pp. 73-75, Appendix A to Draft Recommendation Z.105.

T N WL ALTIY e & b .
] EN .P/(azﬁu“ S | :
. <input> :: = INPUT <signal rame> {, <ziznal name>} ¥ [IN;ERNAL]
I S (FROM <prccess name>] [<comment>}; <transition string>
. ' — = —
4Qﬁ,AZ§A~/&;$fA> {<Join> | <mext stgte)}'
I ¢saved :: = SAVE <sizral name> {, <siznal name>} *)
i ". .. . LFROM <process name>] [<comment>]; ' S
i_. 7&5,*[a6 M f_t,gansition string> :: = {[<labeld>] <transition element>} s
X : o‘foj&na.«'f' : ‘ . ’
i .£transition element> :: = <taskd> ! <output> ! <null task> !
' <{decision> -
.*F24cg(Aﬂgliuauxf {task§ :: = TASK <task name> [<comment>]; . _ L
<null task>:: = <comment>; . o ST
1 e A e s
<@wvw¥n#4ﬁ»uu:{:> <cutput> :: = CUTPUT <siznaliname> [INTERNAL] - a -
l ' L [‘C {rrocess name>] [<coment>],
R "\(wurﬁc& u,";‘"‘:t el > S

TPM‘_.‘V(,‘4 nuol <decisiond> :: = DECISION <degisicn name) [<ccmment>];

T . {result name> <result name>} *#
Leone /J‘{atcwvu{{s" : S ST, {, ZIREISLY R })

¢ <transition string> [<join> | <next state)]
{(<result name> {, <result name>} *

l ' . ‘{transition string> [(JOln> | <next state}]} +

c— -
T

Sors o END“‘DECISION,

l ?Mmc Qom p ‘z;w;(— <join> t: = JOIN <W[<°°mem>]‘.

. RN T iextstated 11 = NEXTSTATE <state named [(comment)], S ‘
~ ' |
\F24¢~C Lol <label> :: = <label ident) : To <?~w98r>nuaf ‘>

ﬁf‘c
A {named>:: = {<ident> [<text>] | <text>}

‘<comment> :: = COMMENT <text>

- _ ' '9
. <text> :: = ° <text phrase>
. {text ﬁhrgse) t: = {char} «+

’ 4;%%;4,;,) <identd :: = {<letter> | <digitd | =} +

<state picture> :: = see section 5.6

{char> :: = <letter> | <digit> | <specials>

D mmeeer———t—

{letter> :: = A
a

|

<digit> :: = 011121314]5]

l ' <{specials> :: e E A SERR AT AL VA DR ER IR R I

ANNEX 7

CAN COM VII/39

International Telegraph and Telephone
Consultative Committee

(CCITT)
Period 1981-1984 ~ Original: English
Question : 39/VII bate: December 1981

e

STUDY GROUP VII - CONSTRIBUTION No.

SOURCE: CANADA
TITLE : PROPOSAL FOR A PROGRAMME~LIKE FDT.

1.0 Considering that;

1.1 Difterent approaches to the development of a programme-like FLT were discussed
during the last Rapporteurs meeting on Q39/VII at Ottawa during Oct 1981,

1.2 The IS0 TC97/SC16/MG1 ad-hoc group on FDT has develloped, after two years of
intensive study, a programme-like FDT for communication protocols and services*
which is based on the PASCAL programming language, and seems suitable for the
purposes of SGVII's FDT requirements,

1.3 There are important advantages in adopting the same FDT in CCITT and ISO,

1.4 The adoption of a FDT based on PASCAL has many other advantages, as explained‘
in the attached ANNEX 7 of the minutes of the last Rapporteurs meeting on
Q :39/VII.

1.5 The systematic translation from a programme-like FDT given in the form
proposed by ISO into graphical form, and in particular into graphical
SDL,; is possible as discussed in ANNEX B of the recent ISO document.

2.0 It is broposed that the CCITT and ISO adopt a common proygramme-like FDT
based on PASCAL along the lines of the present 1SO proposal*.

-

* IS0 TC97/SC16/WG1 - ad hoc group on FDT, Subgroup B. - Title: A FDT based on
an extended state transition model (Working Draft, Boston, Dec. 1981)

ANNEX 8

International Telegraph and Telephone

CAN COM VII/40
Consultative Committee

(CCITT)
Period 1981 -'1984 o Original: English
Question : 39/VII : Date: December 1981

Te

STUDY GROUP VII - CONTRIBUTION No.

SOURCE: CANADA

TITLE: PROPOSAL ON DIFFERENT FORMS OF FDT

1. Different forms of FDT are useful, such as graphical and programming-language-like

N

forms. Some are intended for giving overviews of specifications, or may be used
for both overviews and complete specifications.

A complete specification in the programming—]anguage—l1ké form should always be
given and should be regarded as the authoritative specification.

For the programming-language-1ike specifications of services an approach similar

to the one for protocols should be used. A possible extension for describing the
local rules for the execution sequences at service access points is described in

the annex. '

. The use of time-sequence diagrams, as explained in section 2 of Annex 5 of the

report of the last Rapporteurs meeting on Q 39/VII should be retained for overviews
of typical interaction sequences. '

Common state diagrams, similar as used in X.25, should be retained for overviews
of protocol and service specifications. ' ’

SDL-GR seems appropriate for a more detailed graphical specification than is
possible with state diagrams.

.. /2

- Annex: Specifying local rules for interactions at an access point

The example below shows how the elements of the program-like FDT developed by
ISO* could be used to specify the local rules that determine in which order the service
primitives may be executed at one given access point. The syntax of this example
assumes that the symbol <interactions> fin the syntactic rule for <channel type def>
in the FDT* is replaced by the two symbols <interactions> <constraints>, and the
new symbol <constraint> is defined by :

<constraint> ::= empty
| <module body> -

It is also assumed that the <block> of a <transition> is optional.

The example below is the specification of a Transport-service access point (for

‘a single connection, for simplicity). The first part of the specification defines the

service primitives with their parameters, while the second part defines the order in
which they may be executed at an access point, using the state transition model.
(For instance, the first transition reads: From the "idle" state a "T_CONNECT req"
interaction will lead to the "wait_for_conf" state). - : ‘

It is important to note that such a specification is not a complete service
specification. A service specification should include the information given here,
as well as the global end-to-end properties of the service which relates the interac-
tions taking place at different access points.

* 1S0 TC97/SC16/WG1 - ad hoc group on FDT, Subgroup B. - Title: A FDT based on
an extended state transition model (Working Draft, Boston, Dec. 1981).

" Example

interaction
Ts_accéss_point(TS_pser,TS_prOvider) is

by TS_user:

T_CONNECT _req(TCEPI : TCEP_identifier type;
: to_T address : T address_type;
from T address : T address type; .
Q0TS _request : quality of TS type;
options : option_type;

TS_connect_data : TS connect_data_type);
T_ACCEPT_req (etc.

T_DISCONNECT req(etc.
T_DATA req(etc.
T_EXDATA req(etc.

/3

"
-

.by TS_provider:
T_CONNECT_ind(etc. -
T_ACCEPT ind(etc.
T_DISCONNECT _ind(etc.
T_DATA ind(etc.
T_EXDATA ind(etc.

var state : (idle, wait_for_conf, wait_for_response, data_transfer);

‘from idle

when T_CONNECT req
when T_CONNECT ind

- from wait_for_conf"

when T_DISCONNECT ind
when T_ACCEPT ind

from wait_for_response

when T_DISCONNECT req
when T_ACCEPT req

from data_transfer

when T_DATA req

when T_DATA ind

when T_EXDATA req
when T_EXDATA ind
when T_DISCONNECT req
when T_DISCONNECT ind

end.

to
to

to
to

to
to

to
to
to
to
to
to

wait_for_conf;
wait_for_response,

idle;
data_transfer;

idles
data_transfer;

sames
same;
same;
same;
idle;
idle;

ANNEX 9

T

| FDT-47F
International Telegraph and Telephone ’
Consultive Committee -
(CCITT) CAN_COM VII/42
Original: English
Period 1981-1984
Date: February 1982

Question : 39/VII

For submission to the SG VII Rapporteurs meeting on FDT,
Melbourne

Title: The translation of the IS0 linear FDT into graphical SDL
Source: CANADA

l. Introduction

At the last Rapporteur’s meeting on FDT in Ottawa it was concluded .
that it would be desirable to adopt the ISO proposal for a linear FDT
(working document of subgroup B of the ad hoc group on FDT of
TC97/SC16 /WGl) for the linear form of FDT, and to consider SDL as a
possible graphical form. This paper shows how a specification given in
the linear form of ISO can be translated into a graphical
representation using SDL. It is noted that this translation is already
considered in Annex B of the ISO working document (Dec. 1981). The
same approach is used in the following, and more detailed
considerations are given. It is assumed that the graphical form is to
be as complete as possible. In the case that only overview information
is required, the traditional state diagrams, as in X.25, seem to be a

. preferable graphical representation.

2. A control structure convention simplifying the translation

‘The following structure simplifies the translation. (It is noted,

however, that this structure does not necessarily represent the best
structure for obtaining readable specifications; sorting the

‘transitions by input interactions (WHEN clauses) may be preferable):

The different transitions of the specification are sorted by

- major present state (FROM clause),

-~ input interaction (WHEN clause),

- additional conditions (PROVIDED clause)

and then contain the TO clause (next major state) and the <block>. It
is assumed in the following that the <block> does not contain loops
nor GOTO statements. It 'is not clear where the information about
variables and procedures declared within the <block> (if such exist)
should be displayed in the graphical form. '

3. The translation process

The basic approach to the translation process and a simple example are

descibed in the ISO working document. The following considerations are
added. '

3.1. The SDL decision symbol is used for the following purposes:

(a) to represent the different choices that are described by different
transitions (in the linear form) having different. PROVIDED clauses,
but otherwise identical conditions (present state value and input
interaction).

(b) To represent the different choices of a Pascal CASE or IF
statement within the BEGIN .. END part of the transition <block>.

3.2. The BEGIN ... END part of the transition <block> must be parsed
by the translator and the following actions must be performed

dependlng on the statements encountered:

(a) An output statement is to be translated into an SDL output symbol.
The text within the symbol could simply be the text of the output
statemente.

(b) A sequence of statements which are neither output nor IF or CASE
statements, are translated into a single SDL action symbol. The text
within the symbol could simply be the text of the encountered
statements.

(¢) An IF or CASE statement is translated into an SDL decision symbol,
where the different alternate statements of the IF or CASE statement
are translated into different branches following the decision symbol.
The branches could be annoted by "TRUE" and "FALSE", or the
disciminant values of the CASE variable. '

(d) At the end of the translation of the BEGIN ... END part of a
transition, an SDL state symbol is added to each open branch of the
resulting SDL diagram, which represent the next major state of the
system. The symbol should be annotated by the state value gilven in the
TO clause of the linear specification.

4. The inclusion of informal specification elements

A distinction is made in the IS0 working document (section 4.l1.4 point
a) between informal specification elements that are part of the
specification (although expressed in an informal, natural language
format), and a comment that is merely some text which is only included
for ease of understanding. This distinction seems to be an important
one. In SDL such a distinction has not been made; most texts written
within SDL symbols are effectivly informal specification elements,
since they are written in natural language.

If informal specification elements are written with the linear syntax
<informal specification element text> # then the information of
the SDL diagram below (taken from CCITT Rec. Q.704, figure 8) may be

represented in the linear form as follows.

module signalling route management (
tO_STP ¢ ecesen

to_signalling traffic_managment : ++...
tester : seeee)3
var ’ .
state : (idle);

from idle to idle
when to_STP. # transfer prohibited #

begin
to_signalling traffic_management. # signalling route unavailf;

start route set test procedure
end;

when to_STP. # transfer allowed #
begin :
to_signalling traffic_management. # signalling route availy;

stop route set test procedure i
end;

when tester. # route set test #
begin
if # route available #
then tester. # transfer prohibited #
else tester. # transfer_allowed #
end;

=

-~ 1
l '
From Transter From Transter Fe)
om }
adjacent > prohibred adjacent "2 allowed testing |°'7, Hm:;:'set
STP message sTP . message se message
Intorm Inform
signathng Slegallléng signalling Signatling ‘
trathic man 'ul ot trattic man foute |
agement funavala agement available ‘
Stant route Stop route
set test set test o Route
procedure procedute available
- - e L) 1
i . Yes
Yo Transtet To Teansfer
testing prohibated testing allowed
SP | message Sse message
CCITT-35821

FIGURE 87Q 74
route manggement oveniew diagram

ANNEX 10

DT -48

International Telegraph and Telephon
Consultive Committee . CAN COM VII/43
(CCITT) ‘ ;
Original: English
Period 1981-1984 .
Date: February 1982
Question : 39/VII -

Tor submission to the SG VII Rapporteurs meeting on FDT,
Melbourne

Title: A method for specifying module interconnections
Source: Canada

1. Introduction

The working paper of Subgroup A of the ad hoc group on FDT of ISO
TC97/SC16 /WGl (Ne...) identifies the following elements of formal
specifications for communication protocols and services:
(a) enumeration of possible interaction primitives (section 2.2.1),
(b) specification of possible execution sequences (section 2.2.2),
and ~
(¢) specification of interaction points of modules and their
interconnecions (section 3.3). ’

It is noted that the subgroups B and C of the ISO ad hoc group on FDT
work on different approaches to point (b); and the approach of the
CCITT SG VII on FDT is related to the one of the ISO Subgroup B. It is
desirable that unique approaches to (a) and (b) could be developed by
ISO and CCITT which are compatible with the different approaches for
point (b).

It is noted that the syntax developed by Subgroﬁp B contains some
elements for the specification of interactionpoints (this is part of
point (c)).

The other aspect (the interconnection of modules) is usually
represented in graphical form by diagrams, such as shown in figures 1
and 2. This paper presents a possible linear form for such ‘
specifications: which could be useful for certain purposes. The
application of this linear specification technique to the 0SI
Reference Model, as shown in figure 1, is also given.

2. A possible syntax for specifying module sub-structure and module
interconnections

For the specification of a module type, the syntax of section 4.1.2 of
the Subgroup B working document is assumed. For the specification of a
refinement (implementation) of a module in terms of a number of sub-
modules and an appropriate interconnection of these sub-modules, the
following syntax may be used.

REFINEMENT <name of refinement> FOR <name of refined module type>
' I8 . -

<list of sub-modules>

INTERNAL CONNECTION <list of internal connections
between sub-modules>

" EXTERNAL CONNECTION <list of connections of sub-modules

to ports of refined module>

END;

Each sub-module is declared as _
<name of sub-module occurence> : <name of sub-module type>
Each connection is written in the form
<(sub-) module name> . <name of interaction point> =
<name of other (sub-) module> . <name of interaction point>
An example is given in the following section.

3. Linear form for the structure shown in figure 1

3.1. Introductory comments

Figure 1 shows the structure of the OSI Reference Model as far as the
Transport layer is concerned. Similar diagrams (or linear forms) could
be used to describe all seven layer of the Model. The linear
specification given below uses the Transport and Network service
specification, and the Transport protocol specification, which are
assumed to be given in the form of specifications for module types
named "TS", "NS", and "TP", respectively.

It is noted that the multiplexing allowed in the Transport layer, and
the undefined relation between the Transport and Network addresses
makes the specification below relatively complex.

3.2. Linear specification of the structure of the Transport layer

refinement ISO_TS_provider for TS is
entities : array [entity_id typel of TP;
NS_provider : NS; : ‘
internal connection
for i1d in entity_id_type, N_addr in N_address_type
such that «.s (% the entity "1d" uses the NSAP
identified by the Network address
N_addr %)
entities [id]. NSAP [N_addr] = NS_provider. AP [N_addr]
(* property: at most one entity connected to each
access point (AP) of NS_provider %)
external connection .
for id in entity_id type, T addr in T_addr_type
such that ... (*¥ the entity "id" services the TSAP
identified by the Transport address
) T_addr *)
entities [i1d]. TSAP [T_addr] = TS. AP [T_addr]
(* property: at most one entity connected to each
access point (AP) of the refined module "TS" %)

Y, SR

DS":MM

/_________4/——-—-‘—'—"" ———e T —

Linat Level 3 Level 2
User Message Transfer Part Message
Fars Transfer

Signalling network functions Part
Signalling message handling
b Message Message
distribution discnmination
Message "
...... .-ead routing
'
: 4
]]
t]
N)
\ Signatling netwnrk management
i -~
! Signalling
' - tathic feauea-ea PRRpRP e DI W -
L R i B 5 AahhhdubelatrAriaieheaie -- management R
b pRee--
! 4 A '
N t 't i 1]
1 ' [| !
y ¥ N L/
]
.: .
Signatiing TTTenT osEmeEes Signalling R
route tink [-J
management management =t X EEELEREY 4
- CCITT-35730
Testing and maintenance (Message Transfer Part)
Se— Sngnallupg message flow

~eee=we- Indications and controls

FIGURE 11Q.704

. - Signalling network functions

ANNEX 11

Ihternational Telegraph and Telephone
Consultive Committee '

(CCITT) CAN COM VII/41

Original: English

Period 1981-1984

’ Date: February 1982

Question : 39/VII

For submission to the SG VII Rapporteurs.meeting on FDT,
Melbourne

Title: Examples of Transport protocol specifications
Source: Canada
1. Introduction

The annexes contain specifications of the Transport protocol (classes
0 and 2) using the formal description technique (FDT) defined by ISO
TC97/SC16/WGl ad hoc group on FDT (working document December 1981,
Subgroup B). The specifications are based on (informal) protocol
description which is similar (but not identical) to the latest
CCITT/ISO protocol description for classes 0 through 4. The purpose of
this document is to show the application of the FDT to Tramsport
protocol specifications.

Annex 1 contains a class 0 protocol specification for a single
Transport connection. This specification is kept relatively simple,
and certain aspects, such as the mapping of the TPDU into the Network
service data units are not specified. The specification is a
adaptation of the protocol specification given in the paper FDT-2 of
the last Rapporteurs meeting in Ottawa, and the notes referenced in
the specification can be found in that document.

Annex 2 contains a relatively complex protocol specification,
including the handling of many simultaneous connections, and
multiplexing of several Transport connections into a given Network
connection. The following sections contain some additional remarks on
certain aspects of the specification.

2. Some comments on the specifications
2.1. Structuring by functions or phases

The different transitions of the specification are grouped by
functions and/or phases. The grouping has been chosen in an arbitrary
fashion. More study is needed to determine which kind of grouping
gives rise to most readable specifications. In particular, all PDU
receiving transitions have been grouped together, in order to obtain a
more compact specification. It may, however, be preferable to
distribute these transitions with the other groupes of functions and
phases. .

2.2. Major states

In Annex 2, since the-handling of many simultaneous connections is
described, there is one "major" state per connection. The ISO syntax
foresees only a single "major" state. Therefore the "major" states of
the connections are handled as ordinary state variables, which are
replicated in an array for each connection. (The same is done for the
states of the used Network connections).

2.3. A possible definition of the meaning of the "FROM" and "TO"
clauses of the FDT '

In order to overcome the problem mentioned under point 2.2 above, the
application of the "FROM" and "TO" clauses defined in the IS0 working
document could be generalized, and its meaning could be defined by the
following equivalence rules: '

(1) A "FROM <major state value>" clause is equivalent to the clause
"PROVIDED state = <major state value>" or the addition of "and state =
<major state value>" in an already existing PROVIDED clause.

(2) A "FROM <state set id>" clause is equivalent to the clause
"PROVIDED state in <state set id>" or the addition of "and state in
<state set 1d>" in an already existing PROVIDED clause.

(3) A "TO <major state value>" clause is equivalent to the Pascal
statement “state := <major state value>;" to be included as an
additional statement in the BEGIN ... END part of the <block> of the
transition. ’ : »

(4) A "TO SAME" clause is equivalent to a "no operation" being added
to the <block> of the transition (i.e. no change).

Since these rules define the meaning of the "FROM" and "TO" clauses in
terms of Pascal expressions and statements, their meaning is defined
in terms of the meaning of Pascal.

2.4. The possible use of "FROM" and "TO" clauses in the specification
of Annex 2

Using the equivalences defined above, the "FROM" and "TO" clauses may
be used in many places of the formal specification given in Annex 2,
instead of the equivalent Pascal expressions and statements used in
the present version. These places are indicated by a vertical line on
the right margin of the specification. "

ANNEX 1

Title : Specification of class 0 Tramsport protocol for a single
connection

Introductory comments
hkkkhkhkkkhkkkh kAR RRh®

The Transport protocol specification given below uses the mnotation of
the FDT proposed in "Tutorial on formal description techniques (FDT)"
as referenced above.

Only a single Transport connection is considered. It is assumed that
the interactions specified always refer to a particular Network and
Transport connection which are not explicitely identified. A
specification of the explicit handling of several connections,
possibly over different Network and Transport access points, is given’
in Annex 2.

For the data transfer phase, flow control at the Network layer and
Transport layer interfaces is considered. However, it is only
specified informally, since the specification of the Tramsport service
(and equally the Network service) does not include explicit service
primitives for flow control. If such primitives are added to the
service specifications, the flow control could be specified formally
within the same formalism.

The specification below defines the "logical behavior" of a Tramsport
entity in terms of its interactioms through the exchange of protocol

data units and service primitives. It does not, however, specify how
the protocol data units are mapped into the service primitives of the
Network layer. Some of these aspects are specified in Annex 2.

It is noted that the choice of data types for the parameters of
service primitives and protocol data units is mainly oriented towards
a simple logical structure of the data, and not towards the way this
information may be coded as protocol data units within the service
data units of the Network layer, or as interface data units depending
on the implementation of the Open System.

Since the protocol specification refers to the Transport service
specification, the list of Tramsport service primitives and the type
definitions for their parameters are given below.

Transport Service Specification
L REkkkkkkkkkkhkkhkkhhkhhhhhhhkkhhkkhhh kR

const
undefined = <.} (* note 1 *)

type
T _address_type = +e03 (* note 2 %)
TCEP_identifier_ type = ...} (* note 3 %)
quality of TS_type = record
throughput_from average : integer; (* bps *)
seseslCooccs
end;
option_type = (normal,fast_connect_disconnect,with_ expedited);
TS_connect_data_type = ...} (* string of octets of limited length ¥)
TS_accept_data_type = e} (* string of octets of limited length %)
TS _expedited. data_type = o+ (* string of octets of limited length *)
fragment_ length_type = ...} (* implementation dependent %)
data_fragment_ type = record

end_of_ TSDU : boolean; A
length : fragment_length_types (* length of string %)

data : eee} (* string of octets %)
end;
TS_disconnect_reason_type = (TS_user_initiated termination,

lack of_ local resources,
inability to_provide the quality,
misbehavior_of TS_user,
reference_overflow,
mismatched_reference,
local_congestion,
remote_congestion,

ese)} (* note 4 %)

TS_user_reason_type = +..3 (* string of octets of limited length *)

T_DATA_req(TCEPI
TSDU_fragment

T_EX DATA req(TCEPI
TS_expedited data

by TS_provider:

T_CONNECT_ind(TCEPI
to_T_address
from T_address
QOTS_request
options
TS_connect data

T_CONNECT_conf (TCEPI
QOTS_request
options
TS_accept_data

- T_DISCONNECT ind(TCEPT

TS_disconnect_reason

TS_user_reason

T_DATA ind(TCEPI :
TSDU_fragment :

T_EX_DATA_ind(TCEPI
TS_expedited_data

5.
interactions
TS_access_point(TS_user,TS_provider) is
by TS_user:
T_CONNECT_ req(TCEPI ¢t TCEP_identifier_ type;
, to_T_ address : T_address_type;

from T address : T_address_type;
QOTS_request ¢ quality of TS_type;
options : option_type;
TS_connect_data : TS_connect_data_type);

- T_CONNECT_resp(TCEPI : TCEP_identifier_ type;
QOTS_request ¢ quality of TS_type;
options ¢ option_ type;
TS_accept_data ¢ TS_accept_data_type);

T DISCONNECT_req(TCEPIL ¢ TCEP_identifier_ type;
TS_user_ reason : TS_user_reason_type);

TCEP_identifier type;
data_ fragment_type); (* note 5 *)
¢ TCEP_identifier_ type;

: TS_expedited_data_type);

TCEP_identifier_ type;
T _address_type;
T_address_type;
quality of TS_type;
option_type;
TS_connect_data_type);

¢ TCEP_identifier_ type;
t quality_of_ TS_type;
¢ option_types
: TS_accept_data_type);

TCEP_identifier_ type;
TS_disconnect reason_type;
TS_user_reason_type);

TCEP_identifier_ type;

data_fragment_type); (* note 5 %)

t TCEP_identifier_ type;
: TS_expedited_data_type);

Transport Protocol Specification (* for class 0 *)
T L T T T T T E T T T
uses Transport Setrvice
uses Network Service
type (* note a %)
credit_allocation_type = 0..15;
.TP_reference_type = eoe} (* string of 2 octets %)
max_TPDU_size_type = (128,256,512,1024,2048);
variable part_type = record ‘
calling T address & e« (* note b *)
called T_address : «¢.3 (* note b %)
max_TPDU_size : max_ TPDU_size_ type;
additionnal_clear_reason : .e.}
rejected _TPDU : +.43 (* note c *)
end;
protocol_class_type = (class.O,class_l,class_2,class_3,class_4);
TP_disconnect_reason_type = (TS_user_ initiated termination,
; remote_congestion,
connection_negotiation failed,
duplicate_connection_detected,
mismatched references,
procedure_error,
destination_entity not_available,
reference_overflow,
unknown_reason);
TP_reject_cause_type = (reason_not_specified,

function_not_implemented,
invalid TPDU_type,
invalid_ parameter);

Interaction

TPDU_and_control (entity,
by entity, NS_provider

CR(credit
source_reference
class
options
variable_ part
user_data

28 s¢ o5 e» e» e

CC(dest_reference
source_reference
class
options
variable_part

s se #8 se e

DR (dest_reference
source_reference
disconnect_reason
variable part

NS_provider)

credit_allocation_type;
TP_reference_type;
protocol_class_type;
option_types.
variable part type;
cee) (* note e *)

(* note £ %)

TP_reference_ type;
TP_reference_type;
protocol_class type;
option_type; .
variable part_type); (* note £ and note i %)
TP_reference_type;

TP_reference_type; (* note j %)
TP_disconnect reason_type;
variable_part_type); (* note g *)

se oo s se

DT (user_data : data_fragment_type);

ERR (dest_reference :
reject cause :
variable_part

<—by entity: .

N DISCONNECT req (NCEP

by NS_provider :

TP_reference_type;
TP_reject_cause_type;
variable part_type); . (* note h %)

Fd 3 seeeres TEASON : cusasss)s

Network_disconnect (eecees);
Network reset (.eeees);

interactions

local buffer(user,buffer) is

by user:

clear;

(* note k %)

set_max_get_ size(fragment size : fragmenp_length_tybe);

append (fragment : data_fragment_type);

by buffer:

ge:_néxt(fragment : data_fragment type);

N

module Transport_entity(TSAP : TS_access_point(TS_provider);
mapping : TPDU_and_control (entity);
out_buffer, :
in_buffer : local buffer(user)) is

var
state : (idle,wait_for_CC,wait_for T CONNECT_resp,data_transfer);

local_reference : TP_reference_type;
remote_reference : TP_reference_ type;

TPDU_size : max_TPDU_size_type;

remote_address i e.e; (* note b *)
QOTS_estimate : quality_of_TS_tyf)e;

(* intermediate variables; no state information %)
variable part_to_send : variable part_type;
disc_reason : TS_disconnect_reason_type;
user_reason : TS_user reason_type;

called_address : T_address_type;

calling_address : T_address_type;

initialisations

state := idle;

(* transitions note m *)
from idle

when TSAP.T_CONNECT_req(TCEPI,tq_!_address,from_T_address,
QOTS_request,options,TS_connect_data)

provided ees (* Transport entity able to provide the quality of
service asked for %)
to wait_for_CC

begin

local_reference = ses3 (* note ff *)

TPDU_size t= ¢e0} (* note n *)

variable_part_to_send = ...; (* note o *%)

mapping.CR(O, local _reference,class_0O,normal,variable_part_to send),
end;

provided ... (* Transport entity not able to provide the quality
of service asked for *) :
to same
begin
TSAP.T_DISCONNECT_ind (TCEPI,
inability_to_provide_the quality)
end;

when mapping CR(credit,source_reference,class,options,
variable_part,user_data)

provided ... (* Transport entity able to provide the quality of
service asked for #*)
to wait for T CONNECT_resp
begin
remote_reference := source_reference; .
if variable_ part.max _TPDU_size <> undefined then
TPDU_size := variable_part.max_TPDU_size (* note e *)
else
TPDU_size := 128;
remote_address := variable part.calling_T_address;
Teee (* note q %)
called_address := +..3 (* note gg *)
calling address :
QOTS_estimate = 4.3 (* note r *)
TSAP.T_CONNECT_ind(TCEPI,called address,calling address,
QOTS_estimate,normal,... (* no data *));

end;

provided ... (* Transport entity not able to provide the quality.
of service asked for %)
to same
begin ,
-variable part_to_send. additional clear_reason := «.. 3}
mapping. DR (source_reference, O, connection_negociation_failed,
variable_part_ to_send);
end;

from wait_for CC

10.

when mapping.CC(dest_reference,source_reference,class,options,

wvariable_ part) (* note u %)
to data transfer
-begin ,
remote_reference := source_reference;
if variable_part.max TPDU_size <> undefined then
TPDU_size := variable part.max TPDU_size
else '
TPDU_size := 128;
ces (* note v %)
QOTS_estimate := ... (* note w %)
TSAP.T_CONNECT_conf (TCEPI, QOTS_, estimate, normal,
in buffer.clear,
out_buffer.clear;
out_buffer.set_max get size(TPDU_size);
end;

when mapping.DR(dest_reference,source_reference,
, disconnect_reason,variable_part)
to idle
begin
disc_reason := disconnect_reason;

1f disc_reason = TS_user_ initiated_termination then
‘user_reason := variablg_part. additional_clear_reason;

mapping. N _DISCONNECT_req (..., disc_reasn);

end;

.

)

’

mapping.N_DISCONNECT_req(...,disc_reason); (* note x'*)

from 'wait_for_ T_CONNECT_resp
when TSAP.T CONNECT resp(TCEPI,QO0TS_request,options,TS_accept_data)

provided ... (* quality of service requested <= quality of service
proposed in T _CONNECT_ind #*)
to data_transfer
begin
local_reference = .43 (* note ff %)
TPDU_size = ..} (* note y #*)
with variable part_to_send

begin .
called_T_address t= remote_address;
calling T address = «se3} (* note z #*)
max_TPDU_size = ...} (* note aa %)

end;

mapping.CC(remote_reference,local_reference,class_0O, normal
variable_part_to_send),
in _buffer.clear; A
out_buffer.clear;
out_buffer.set _max_get size(TPDU size)s
end;

provided ... (* quality of service requested > quality of service
proposed in T_CONNECT_ind %)
to idle
begin (* note ee *)
variable part_ to_send. additional_clear reason = ...;

mapping. DR (remote_reference, 0, connection negociation_failed,

variable part_to_send);
TSAP.T _DISCONNECT_ ind(TCEPI,
inability_to_provide_the_quality, +..);
end;

when TSAP.T DISCONNECT_req(TCEPI,TS_user_reason)
to idle
- begin
variable part to_send. additional_clear reasom = «.s} :
mapping. DR (remote reference, 0, TS_user_ initiated _termination,
variable_part_to_send),
end; : :

12,

from data_transfer
to same

when TSAP.T DATA_ req(TCEPI,TSDU_fragment)
provided ... (* flow control from the user is ready *)
begin ’
out_buffer.append(TSDU_£fragment);
end;

when out_buffer.get next(fragment)
provided ... (* flow control to the Network layer is ready *)
begin
mapping.DT (fragment);
end;

when mapping.DT (user_data)
provided ... (* flow control from the Network layer is ready %)
begin
in_buffer.append(user_data);
end;

when in_buffer.get next(fragment) :
provided ... (* flow control to the user is ready %)

begin
TSAP.T _DATA_ ind(fragment);
end;
i to idle
| when TSAP.T DISCONNECT req(TCEPI TS_user_reason)
begin
mapping. N _DISCONNECT req (..., disconnect_reason, user_reasOn,ees)}
end;
when mapping.Network disconnect(...,disconnect reason,user_data) begin
begin -
disc_reason = e} (* note cc *)
TSAP.T ' DISCONNECT_ind (TCEPI,disc reason,...),
end;
when mapping.Network reset(...,reset reason) (* note x %)
begin
disc_reason := +.e3} (* note cc *)
TSAP.T _DISCONNECT_ind(TCEPI,disc_reason,...);
end;

ANNEX 2

Title: Specification of class 0 and 2 Transport protocol for multiple
connections

1. Introduction

The formal description given in section 2 uses the language defined in
Part II of this report, which was defined by the ISO TC97/SC16/WG 1 ad
hoc group on FDT (working document December 1981). The following
paragraphs are intended to explain some characteristics of the
Transport protocol Specification given below in order to facilitate
its reading.

l.1. Local buffers

The data buffers declared in the module heading of the specification:

-are local buffers containing Transport service data units. There are

two buffers per Transport connection, one for incoming and one for
outgoing data. These buffers are included for generality. A particular
imlementation of the protocol may choose buffers of zero capacity.

l1.2. Connection identification

Similar to the service specification, the protocol specification uses
abstract data types for identifying the different Transport and
Network connections. The identifier type for the Transport connections
"TC_id_type" 1is not specified (implementation dependent). For the
identification of the Network connection a particular type
"NC_id_type" has been adopted for convenience, consisting of the pair
of Network address and Network connection endpoint identifier.

1.3. Addressing‘

The relation between Network and Transport addresses is only partly
defined by this standard. The formal specification remains quite
general in this respect by assuming no particular relation between
these two kinds of addresses. However, it is assumed that the CR and
CC PDU’s optionally contain "additional addressing information" such
that the following mapping exists: (a) Form a Transport address one or
several suitable Network addresses can be derived together with
"additional information" (using the function "determine_add_address");
(b) From a Network address and some "additional information" a
corresponding Transport address may be derived (using the function
"determine T address').

"le4. Transport PDU’s

The "TP" module defines the behavior of a Transport entity as a whole.
It therefore interacts with the Network layer through Network service
primitives. The Transport PDU’s exchanged in N_DATA requests and
indications are visible within the "TP" module, for example in the
data type "PDU_type" and the procedure "build_PDU" which assembles the
different parameters of a PDU and stores the PDU in a "PDU_buffer".
For simplicity, the module contains one "PDU_buffer" for each kind of.
PDU (CR, CC, DR, etcs)s (An implementation, of cource, will not take
such an approach). A PDU sending transition (see below) collects the

3I

PDU’s and includes them in the Network service data units to be sent.
l.5. State variables

The state variables of the module are partitioned into two parts:
those associated with the Network connections, and those associated
with the Transport connections. The association between Transport and
Network connections is given by the variable "assigned NC" which is
defined for each active Transport connection. The major state of a
Transport connection is given by the value of the variable "state"
associated with each Transport connection. (It is noted that a "state"
is defined for each connection; therefore the concept of ONE major
state (also called "state', as defined in the FDT used) is not
directly applicable. In order to conform with the syntax of the FDT, a
dummy "state" variable is introduced, together with dummy "from" and
"to" clauses).

1.6. Sending the PDU’s

As mentioned above, the PDU to be sent are stored in "PDU _buffers",
one buffer per kind of PDU. The inclusion of a PDU in the next Network
service data unit (NSDU) to be sent (and the possible concatenation of
several PDU into one such NSDU) is defined by the first transition of
the specification. The conditions of this transition determined under
which circumstances such inclusion is possible. In the case of
concatenation, several instances of this transition are executed. The
non-deterministic nature of the specification language assures that
aspects such as the priority between different kinds of PDU’s, and the
extent of concatentation is not specified (but left as an
implementation choice). It is noted that the inclusion of a DT PDU is
handled by a separate transition (second transition of the NORMAL DATA
TRANSFER section). "

The second transition of the specification describes the sending of a
NSDU, which may occur any time the "NSDU_to_be_sent" contains at least
one PDU. :

1.7. Reception of PDU’s

The reception of a NSDU from a peer Transport entity is described by
the third transition of the specification. For each PDU included in
the received NSDU, the forth transition is executed which describes
the actions to be performed on the receptions of different kinds of
PDU’s. To simplify the description of these actions, and in particular
the error processing defined by the protocol, all these actions are
integrated into a single transition, which is structured by case
statements according the the major state of the Transport connection
to which the PDU refers, and according to the kind of PDU received.

1.8. Grouping of transitions
The remaining transitions of the specification are partitioned

according to the functions they perform, i.e. into CONNECTION
ESTABLISHMENT (separately for the calling and called side), NORMAL

-

E : '

b

DATA TRANSFER, EXPEDITED DATA TRANSFER, TERMINATION PHASE, and NETWORK
CONNECTION ESTABLISHMENT. ' : ‘ '

1.9. Flow control

It is assumed that the user of the Transport service is always ready
to receive control service primitives.

Similarly, the Transport entity is always ready to receive control
service primitives from the underlying Network layer.

The flow control of expedited data is explicitly described by the
T_EX_D READY primitives at the user interface and by state variables
of the "TP" module as far as the flow through the Network layer is

concerned.

The flow control of normal data is described explicitly as far as the
exchange of credits between the peer protocol entities is concerned,
however, the flow control mecanism at the user interface is not
specified in detail. It is assumed that it can be determined whether
the flow control to the user is ready, and whether the flow control
for N_DATA requests to the Network layer is ready. The condition for
the Transport entity to be ready for the reception of N_DATA
indications from the Network layer is defined by a condition in the
third transition of the specification. The condition for the Transport
entity to be ready for the reception of T_DATA requests from the user
is determined by the flow control mecanism of the "send_buffer" (see
section 1l.1).

2. Formal specification

module TP_entity (:

NSAP : array [N_address_typel of NS_primitives (NS_user);

" TSAP : array [T address_type] of TS_primitives (TS_provider);

receive_ buffer,
send_buffer : array [TC_1id_typel of TS_data_buffer (user));

(* the type and interaction declarations of the Transport and Network

type
service specifications are used *).
class_type = (class_0, class_l, class_2, class_3, class_4);

reference_type = 0 <. (2%*%16 - 1);
seq_number_type = 0 .. 127;
credit_type = seq_number_type;
‘PDU_size type = pos_integer;
TC_1id_type = eeo3

additional_address_information = «..3
reject_cause_type = (reason_not_specified (* = 0 %),
function_not_implemented (* = 1 %),
invalid _PDU ’ (x = 2 %),
, invalid_parameter (* =3 %))3
reason_type = (
(* for class 0 %)
0 (* reason not specified #*),
1 (* terminal occupied *),
2 (* terminal out of order %),
3 (* address unknown *),

(* for classes 1 through 4 *) :

128 (* normal disconnect initiated by session level *),
129 (* remote congestion %),

130 (* negociation failed #*),

131 (* duplicate connection detected %),

133 (* protocol error *),

134 (* destination entity specified not available %),
135 (* reference overflow *),

136 (* refuse a new TC over the same NC #*),

255 (* unknown treason *));

6.

TPDU_code_type = (CR, CC, DR, DC, DT, AK, EDT, EAK, ERR, undefined_code):
TPDU_type = record : '

credit_value : credit_type; (* used for CR, CC, AK %)
dest_ref : reference_type; (* used for CC, DR, DC, DT (class 2),
i EDT, AK, EAK, ERR %)
source_ref : reference_type; (* used for CR, CC, DR, DC *)
user_data : optional string_of_octets; (* see TS *)
(* used for CR, CC, DR (not in this version of the protocol,
pT, ED *)
case code ¢ TPDU_code_type of
CR, CC ¢ (
proposed class : class_type;
proposed_options : option_type; (* see TS *)
calling_addr,
called_addr : optional addtional_address_information;
proposed_TPDU_size : optional PDU_size);
DR :
disconnect_reason : reason_type);
DC :3
DT : (
send_sequence ! seq_number_type;
end_of TSDU : boolean);
AR : (
expected_send_sequence : seq_number_type);
EDT, EAK :;
ERR : (
reject_cause : reject_cause_type);
undefined_code -;
end;s

NC_id_type = record

local N_addr : N_address_type; (* see NS %)
EP_id : NCEP_id_type; (* see NS *)
ends

o o ——

. . —

var

TC

NC .

: array [TC_id_typel of record- :
state : (closed, wait_for_NC, open_in_progress_calling,
open_in_progress_called, rejected, open,
wait_before_closing, closing);
local_T_ addr,
remote_T addr : T_address_type; (* see TS %)
id : TCEP_id_type; (* see TS %) '
local_ref,
remote_ref : reference type;
assigned NC : NC_id type;
max_PDU_size : PDU_size_ type;
options : option_type; (* see TS %)
class : class_types :
QTS : quality_of TS _type; (* see TS ¥%)
connect data : optional string_of_octets;
TR, :
TS : seq_number_type;
R_credit,
S credit : credit_type;
EX_D sent,
EX_D_received : booleanj
PDU_buffer : array [TPDU_code typel] of record
full : boolean;
PDU : TPDU_type
.end; ' i
: array [NC_id_type] of record
NC_state : (closed, open_in_progress, open);
remote N_addr : N_address_type; (* see NS %)
this_side : both_sides; (* see NS %)
QNS : quality_of_ NS_type;
received_NSDU,
NSDU_to_be_sent : record
user_data_present : boolean;
data : string_of_ octets;
end;

state : (dummy)}

~

function determine_add_address (
T addr : T_address_type; - : . ‘
N _addr : N addrtess_type) : optional additional_address_information;
begin ... end;

function determine T address (
N_addr : N_address_type;
add_info : optional additional_ address_information) :.T_address_type;
begin ... end;

function implied PDU_size (size : optional PDU_size type) : PDU_size_ type;
begin if size = undefined
then implied_PDU_size := 128
else implied PDU_size := size end;

function check PDU_size mnegociation_rule
(size, new_size : PDU_size_ type) : booleanj;
begin ... end; ,
(* property: if new_size <> undefined then
(size >= 128 implies 128 <= new_size <= size
and size < 128 implies (new_size <= size
: or new _size = 128)) %)

function determine PDU_length (PDU : PDU_tyﬁe) ¢ pos_integer;
begin ... end; (* property: determines the length of the PDU in octets %

function find_TC_id
(T_addr : T_address_type; id : TCEP_id_type) : TC_id_type;
begin ... end; (* property: determines the TC associated with the
the EP identifier %)

function find_NC_id
(N_addr : N_address_type; NCEP_id : NCEP_id_type) : NC_id type;
begin with find_NC_id do begin ' '
local_N_ addr := N _addry
EP id t= NCEP_id end;
en (% determines the NC associated with the EP identifier %)

function determine TS_reason
(TP_reason : reason_type) : TS_disconnect_reason_type;
begin case TP_reason of ‘

0, 130, 131, 133, 135, 255 : determine_ TS reason := TS_FAIL;
1, 2, 128 : determine_TS_reason := TS_U_NRM;

3, 134 : determine_ TS_reason := TS_U_UNKNOWN;

129, 135 : determine TS_reason := TS_CONG;

end end; :

9.

procedure build PDU (TC_id : TC_id_type; kind : TPDU_code_type);
begin with TC [TC_idl. PDU_buffer[kind] do begin
full := true; .
with PDU do begin
code := kind;
dest_ref := remote_ref;
if kind in [CR, CC, AK] then
if class = class_0 then credit_value 1= 0
else credit_value := R_credit;
if kind in [CR, CC, DR, IC] then source_ref := local_ref;
case kind of '
CR, CC : begin
proposed class := class;
proposed_options := options; _ .
calling addr := determine_ add_addr (local_ T_addr,
assigned NC.local N_addr;
called_addr := determine_add_addr (remote_T_addr,
NC [assigned NCl.remote N addr;
proposed TPDU_size := max_PDU_size;
user_data := connect_ data;
end;

DC 3
DR : 3 (* disconnect_reason must be assigned %)
DT : send_sequence = TS;

AK : expected_send_sequence := TR;

EDT : user_data := TS_user_datas;
EAK :3
ERR :3 (* reject_cause must be assigned %)
end;
end;

procedure protocol _error (TC_id : TC_id type; cause : reject cause_type);
begin with TC [TC_id] do
TSAP [local_T addr]. T_DISCONNECT (id, TS_FAIL, ... (* dummy *));
build_PDU (TC_id, ERR); :
PDU_buffer [ERR]}. PDU. reject_cause := cause;
state := closing; ‘
end;

i
4

procedure close_all TC (NC_id : NC_id_type;

TS_reason : TS_disconnect_reason_type);

begin .

for all TC_id : TC_id_type do with TC[TC_id] do

if state <> closed and assigned NC = NC_id

then begin

10.

if state not in [wait_before_closing, closing]

then TSAP[local T_addr]. T DISCONNECT_ind
(* dummy *)); ‘

(id, TS_reason, cee
close_and_clear_buffers (TC_id);
end;

procedure close TC (TC_id : TC_id_type;
' ‘reason : reason_type;
inform TS _user : boolean);
begin with TC[TC_id] do begin
if inform TS user
then TSAP[local T addr]. T DISCONNECT_ind

(id, determine TS_reason (reason), ..

build PDU (TC_id, DR);

PDU_buffer [DR]. PDU. disconnect_reason := reasonj

if state <> rejected then state := closing;
end;

procedure close_anduclear_buffefs (TC_4id : TC_id_type);

begin with TC [TC_id] do begin
.state := closed; .

for kind := CR to ERR do PDU_buffer [kind]l. full :

end end;

procedure clear NC_buffers (NC_id : NC_id_ type);
' begin
received NSDU.data.length ¢
NSDU_to_be sent.data.length :
end;

(* initialization: set all states to closed %)

(* dummy *));

falsey

11.

(* TRANSITIONS #*)
from dummy to dummy (* required by FDf syntax *)
(* GENERAL PURPOSE TRANSITIONS *)
(* concatenate a PDU to be sent into the NSDU té be sent *)

any NC_id : NC_1id_type, TC_id : TC_id_type, kind : TPDU_code_type do
with NC [NC_id], TC[TC_id] do S

provided not NSDU_to_be sent.user_data present
and NSDU_to_be sent.data.length + ‘

determine_PDU_length (PDU_buffer[kind]) <= max_PDU_size |
and assigned NC = NC_id : ‘
and state <> closed ‘
and not ((class = class_0) and (NSDU_to_be sent.data.length <> 0))
(* no concatenation for protocol class 0 #*)

begin

(* encode PDU #*) with NSDU_to_be sent do begin
data.length := data. 1ength + determine_PDU_length (PNU_buffer[kind
data.content := ...; (* property: code PDU and append into NSDU %)
if user_data <> undefined then user_ data_present := true; '
end;

if kind in [DC, ERR] or state = rejected

then close_and_clear_buffers (TC_id);

end;

(* send a NSDU *)

any NC_id : NC_id_type do with NC[NC_id] do
provided NSDU_to_be sent.data.length <> 0

and state = open ,
and ... (* property: flow control to Network layer ready ¥)
begin

NSAP[NC_id«local N_addr]. N_DATA_ req

(NC id.EP_ id NSDU_to__ be sent.data, true (% complete NSDU *) Vs
NSDU_to__ be sent. data.length t= 03
end;

(* receive a NSDU with one or more PDUs %)

any N_addr : N_address_type do
when NSAP[N_ addr]. N_DATA_ ind
with NC [find NC_id (N_addr, NCEP_1id)] do
provided received NSDU.data.length = 0 (* property: this means
flow control to the Transport entity is ready *
and 1s_last_fragment_of_ NSDU (* it is assumed that the N-interfac
transfers complete SDU in each N_DATA primitive ¥*)
begin o
received_NSDU.data := TS_user_data;
~ end;

12.

(* reception of a PDU #%)
any NC_id : NC_id_type do with NC [NC_id] do
provided received_NSDU.data.length <> 0
and ... (* property: not ((class = class_0) and (flow control
to user (or to the receive buffer)
: . is not ready)) #*)
var received_PDU : TPDU_type;
TC_id : TC_id_type; :
procedure determine_TC (NC_id : NC_id type; ref : reference_type);
begin ... end; (* property: determine TC (NC_id, ref) = '
if exists TC_id such that with TC[TC_id] holds _
state <> closed and assigned NC = NC_id and local_ref =
then TC_id :
else TC_id’ such that TC[TC_id}.state = closed;
i.e. find the TC associated with the reference "ref" over the NC;
if "ref" = 0 then such a TC does not exist. %)
begin
eea3 (* decode (received NSDU, received_PDU) %)
with received PDU do begin
TC_id := determine TC (NC_id, dest_ref);
with TC [TC_1id] do case state of
closed ¢ (* no TC assigned %)
if code = CR
then begin
remote_ref := source_ref;
local_ref = oo}
if dest_ref <> 0
then «.. (% error *)
else if «.. (* property:

exists TC_id’ <> TC_id such that with TC[TC_id"] hold:

" state <> closed and assigned NC = NC_id
and remote_ref = source_ ref ;
i.e. this is a duplicated CR %)
then close_TC (TC_id“, 131 (* duplicate connection %),
true (* inform user *))
else if determine PDU_length (received_PDU) >
implied_PDU_length (proposed _TPDU_size)
- or proposed_class = class_0 and this_side = calling
then protocol_error (TC_id, «..)
else if «.. (* not able to provide service
or destination address unknown ¥%)
then begin ‘
disconnect_reason := <.}
build_PDU (TC_id, DR)j;
state := closing;
end .
else begin (* normal processing %)
local_T_addr := determine_ T_addr
(NC_id.local_N_addr, called_addr);
remote_T_addr := determine_T_addr
" (NC [NC_id}.remote_N_addr, calling_addr);
id := ... (* property: for all TC_id" holds
not (TC[TC_id’]}.state <> closed
and TCEP_id = id);

T

13.

i.e. TCEP identifier is not yet in use #
remote ref := source_ref; '
assigned NC := NC_id;
options = eee3

~(* property: options in proposed_options *:
class := ...3 (% property: proposed_class = clas:
‘ implies class = class_0 #*)
max_PDU_size :=
'~ implied_PDU_size (proposed TPDU_size);

= -
00y

L
H
w2

TR

TS 1=

S_credit := credit_value;

R_credit := 03 :

receive buffer [TC_id]. clear;

send_buffer [TC_id]. clear;

TSAP[local T addr].T_CONNECT ind(id, local_T_add
remote_T_addr, options, QTS, user_data);

state := open_in_progress_called;

end

0;
03

else if code = DR
build_PDU (TC_id, DC);
state := closing;
end :
else ; (* ignore othe received PDU if no TC is assigned %)

(*# in the following cases a TC 1is already assigned %)
closing, rejected :
if code = DC .
then state := closed ,
else 3 (* ignore received PDU %)
wait_before closing :
close_TC (TC_id, 128 (* normal disconnect reason *)
false (* TS user not informed again %));
wait_for NC, open_in_progress_calling,
open_in_progress_called, open :

DR

14.
case code of
CC
if state <> open_in_progress_calling
then protocol_error (TC_id, invalid_PDU)
else begin
remote_ref := source_ref}
if proposed _class = class_0 and class = class_2
and +.. (% property: NC_id is multiplexed #%)
then begin
close_all TC (NGC_id, +«e);
NSAP[NC_}d 1oca1_N_eddr].N_DISCONNECT_req
(NC_id.EP_id);
end o :
else- if proposed class = class_0 and class = class_2

and this_side = called
then protocol_error (TC_id, «..)
else 1if calling addr <> determine_add_addr
(local_T_addr, NC_id.local_N_addr)
or called_addr <> determine add__ addr
(remote_I_addr, remote_N_eddr)
or not check PDU_size negociation_rule
(max_PDU_size, proposed_TPDU_size)
or proposed_options mnot in options
or proposed_TPDU_size < determine_length
(received PDU)
then protocol error (TC_id, invalid_parameter)
else begin (* normal processing %)
if proposed_TPDU_size <> undefined
‘then max_PDU_size := proposed TPDU_size;
S-credit := credit_value;
TSAP[local_T_addr]. T_CONNECT conf (id, QTS,
options, user_data),
state = open;
end; .

: begin
TSAP[local T_addr]. T_DISCONNECT_ind
(id, determine TS_reason(disconnect_reason), undefined);

if state <> open_in_progress_calling
then begin

build_PDU (TC_id, DC);

state t= closing}

end
else close_and_clear_buffers (TC_1id);
end;

1

15.

DC ¢ eee3 (* protocol error ¥%)
ERR : begin ' :
TSAP[local T_addr]. T_DISCONNECT_ ind (id, TS~FAIL, undefined).
if class = class_0 then NSAP[assigned_NC.local_ N_addr].
' N_DISCONNECT req (assigned_NC. EP_id);
close_and_clear_buffers (TC_id);
end;
DT : if state <> open
or R_credit <> 0
then protocol_error (TC_id, invalid_PDU)
else if send_sequence <> TR ‘
then protocol_error (TC_id, invalid_parameter)
else begin
receive buffer[TC_id].append (user_data, end_of_ TSDU);
TR := (TR + 1) mod 128;
R _credit := R_credit - 1;
end; : '
AK : if state <> open
or class = class_0
then protocol_error (TC_id, invalid PDU)
else begin
new_S_credit := credit_value + expected_send_sequence
- send_sequence;
if new_S_credit < S-credit
then protocol_error (TC_id, invalid_papameter)
else S _credit := new_S_credit; '
end}

EDT : if state <> open
or expedited_data not in options
or EX_D received
then protocol_error (TC_id, invalid_PDU)
else begin
TSAP[local_T_addr]. T_EX DATA_ ind (id, user_data);
EX_D_received := true; :
end;
EAK : if state <> open
or expedited_data not in options
or not EX_D_sent
then protocol_error (TC_id, invalid PDU)
else begin ’)
TSAP[local T_addr]. T_EX_D READY conf (id);
EX D _recived := false;
end;
undefined_code & <o, 3

16.

(* CONNECTION ESTABLISHMENT : calling side *)

any T _addr : T_address_type do
when TSAP[T_addr]. T_CONNECT req
provided ... (* property: for all TC_id - holds
not (TC[TC_id].state <> closed and TCEP_id = id)
i.e. the TCEP identifier is not yet in use %)
and from_T_address = T_addr
var TC_d1id : TC_id_type;s
begin
TC_1d :t= ...; (* property: TC[TC_id].state = closed,
i.e. connection not in use *%)

with TC [TC_1id] do begin
local_T addr := T_addr;
remote T _addr := to_T_address;
id := TGCEP_id;
options := prOposed oPtions,
QTS := proposed_QTS;
connect_data := user_dataj
TR := 03
TS := 03
receive buffer[TC_idl.clear;
send_buffer[TC_id].clear;
state := walt_for NC; '
end;

“end;

any TC_id : TC_id_type do with TC[TC_id] do

provided state = wait_for NC , ‘ . ‘ I
and ... (* not able to provide service *)
begin

TSAP[local T addr]. T_DISCONNECT_ ind (id, «..
property: if mapping between Transport and Network addresses
is not possible then U_UNKNOWN;
if a N_CONNECT_ req was sent to establish a new network
connection for this TC, and N_DISCONNECT was received
TS _disconnect_reason :=
if NS_disconnect_reason = NS_U_NRM
then TS_FAIL else TS_QUAL_FAIL;
0TS.class_of_ service = enhanced
implies TS_QUAL_FAIL *%),
ees (% dummy user reason *));
state := closed : ’
end;

17.

any TC_1id ¢ TC_id_type, NC_1id : NC_1id_type do
with TC [TC_id], NC[NC_id] do
provided state = wait_ for_ NC I
and NG_state = open
and QTS.class_of_service = basic
and ... (* check throughput quality *)
and ..« (* check addressing %)
and ... (* able to provide service %)
begin
) assigned_NC := NC_id;
local_ref = «..3
(* property: <> 0 and not un use with the same NC %)
dest_ref := 0;
class 1= «e.¢3 (* select appropriate protocol class %)
(* property: (data <> undefined) or (expedited_data in options’
‘or (this_side = called) implies class = class_2 %)
max_PDU_size 1= ...}
(* property: class = class_0 dimplies
max_PDU_size in [256, 512, 1024, 2048] *)
build PDU (TC_id, CR); ~
state := open_in_progress_calling; ,
end;

(* for the handling of the peer’s response, see '"reception of a PDU" above

(* CONNECTION ESTABLISHMENT : called side *)
(* for the handling of the incoming CC, see

any T_addr : T_address_type do
when TSAP[T addrl. T ' CONNECT_resp

with TC[find TC. _1id (T_addr, TCEP_id)]
provided state = opeq_iq_progress_called
and proposed_options in options
begin
QTS := proposed_QTS;
options := proposed_options;
local_ref := ...}

(* property: <> 0 and not in
max_PDU_size t= ...; (* property:

18.

"reception of a PDU" above %)

do

use with the same NC *)

check PDU_size negociation_rule (old value, new_value)
build_PDU (find_TC_id (T_addr, TCEP_id), CC);

state != open;
end}

(* for the case of rejection by the T user,
termination phase %)

/

see first transition of the

19.

(* NORMAL DATA TRANSFER %)

any T addr : T_address_type do
when TSAP[T_addr]. T_DATA_req
with TC [find_TC_id (T_addr, TCEP_id)] do
provided state = open l
and ..+ (* flow control to send_buffer[find_TC id(T _addr, TCEP_i.
is ready #%)
begin
send_buffer [find_TC_id (T_addr, TCEP_id)].
append (TS_user_data, is_last_fragment_of_ TSDU);
end;

any TC_id ¢ TC_id_type do
with TC[TC_idl, NC [TC[TC_idl.assigned_NC] do
when send_buffer [TC_id]. next_ fragment
provided class = clas_0O
.and NSDU_to_be_ sent.user_data.length = 0
and ((fragment.length + 3 (* header *) = max PDU_size)
~or is_last_fragment_of_TSDU)
begin
¢ee; (* encode_data (fragment, NSDU_to_be_sent.data) %)
end_of TSDU := is_last_fragment_of_ TSDU;
end;

.provided class = class_2

and S_credit <> 0

and fragment length
+ 5 (* header length for ‘DT PDU (classes 1 to &) *%)
+ NSDU_to_be_sent.data.length <= max_ PDU_size

and not NSDU_to_be sent.user_data_present

begin ,

ess3 (* encode_data (fragment, NSDU_to_be_sent.data) %)

end_of_ TSDU := is_last_fragment_ of_ TSDU;

TS := TS + 13

S_credit := S_credit - 1

end;

(* reception of a DI PDU, see '"reception of a PDU" above *)

any TC_id : TC_id_type do with TC[TC_id] do
when receive_buffer [TC_id]l. next_fragment
provided ... (* flow control to user ready *)
begin
TSAP[local_T_addr]. T_DATA_ ind
(id, fragment, is_last fragment of TSDU);
end;

when receive buffer [TC_id]. free-space
provided state <> closed
begin
R_credit := R_credit + 1j
end;

provided class = class_2
and state = open
begin
build_PDU (TC_id, AK);
end;

(* reception of an AK PDU, see "reception of a PDU" above *)
> P

(* EXPEDITED DATA TRANSFER *)

any T _addr : T_addr_type do
when TSAP[T addr]l. T _EX DATA req
with TC[find_TC_id (T_addr, TCEP_id)] do

provided expedited_data in options

and state = open
and not EX D sent
begin .
build_PDU (find_TC_id (T_addr, TCEP_id), EDT);
EX D sent := true;
end;

(* reception of a EDT PDU, see "reception of a PDU" above *)

when TSAP[T addr]. T _EX D READY_ req
with TC[find_TC_id (T _addr, TCEP_id)] do
provided expedited_data in option ~

and state = open
and EX_D_received
begin

build_PDU (find_TC_id (T_addr, TCEP_id), EAK);
EX D_received := false;
end;

(* reception of a EAK PDU, see "reception of a PDU" above *)

- 20.

21.

' (* TERMINATION PHASE *)

any T_addr : T_address_type do
when TSAP[T_addr]. T _DISCONNECT_ req
with TC [find_TC_id (T-addr, TCEP_id)] do ‘
provided state in [wait for NC, open_in progress_calling,
open_in progress_called, open]
var reason : reason_type;

begin
(* TS user_reason is ignored *)
if state = open_in progress_called then state := rejected;

case state of .
wait_for NC : close_and_clear_buffers
’ (find TC_1id (T _addr, TCEP_id));
open_in progress_calling : if class = class_O
then begin
NSAP[assigned NC. 1oca1 N_addr].
N_DISCONNECT_ req (assigned NC. EP_id);

close_and_clear buffers (find TC_id (T_addr, TCEP_i

end
else state := wailt_before closing;
open_1in progress_called, rejected, open :
begin :
if class = class_0 :
then reason := ... (% property: 1 or 2 %)
else reason := 128 (* normal termination *);
close_TC (TC_id, reason,
false (* TS user not informed again *));
end;
end;

any N_addr : N_address_type do
when NSAP[NC_id]. N_RESET ind
begin
close_all TC (find NC_id (N-addr, NCEP_id), TS_QUAL_FAIL);
clear NC buffers (find NC_id (N_ addr, NCEP._ _1d));
NSAP[N_pddr] N_BESE?_resp (NCEP_1id);
if +.s (* property: (NC was used for class_0 TC) and
' (this_side = calling) and (NC is not to be
used for a subsequent TC) %)

then NSAP[N_addr]. N_DISCONNECT req (NCEP_id);
end;

when NSAP[NC_id]. N_DISCONNECT_ ind

var TS_reason : TS_disconnect_reason_type;

begin
if NS _disconnect_reason = NS_U_NRM
then if class = class_0

then TS_reason := TS_U_NRM
else TS_reason := TS_FAIL
else TS_reason := TS_QUAL_FAIL;
close _all TC (find_NC_id (N_addr, NCEP_id), TS_reason);
clear NC_buffers (find NC_id (N addr, NCEP_id);
end;

22
(* NETWORK CONNECTION ESTABLISHMENT #*)
any NC_i1id : NC_id type do with NC[NC_id] do
provided NC_state = closed
begin
remote N_addr :=....; (* as required by TC in "wait_for NC" state *
QNS := <. (* as required by TC in "wait_for NC" state *]

NSAP [NC_id.local_N_addr]. N _CONNECT req (NC_id.EP_id, remote_N_add:
NC_id.local N_addr, QNS);

this_side := callings

NC_state := open_in_ progress;.

end;

any N _addr : N_address_type do
when NSAP[N_addr]. N_CONNECT_conf
with NC [find NC_id (N_addr, NCEP_id)] do
provided NC_state = open_in_progress
begin
QNS := proposed NS;
NC_state := open;
end;

when NSAP[N_ addr]. N _CONNECT_ ind
with NC [find NC_id (N_addr, NCEP id)] do
provided NC_state = closed
and to_N_address = N_addr
begin
remote_N_addr := from N_.address;
QNS = «ee3 '
(* value depends on, is usually equal to, the proposed QNS
NSAP [N_addr]. N_CONNECT_resp (NCEP_id, ONS);
this_side := called;
NC_state := open;
end;

ANNEX 12

To : CSA Committee on OSI
From: G.V. Bochmann

Re : Report on the meeting of the ISQ TC97/SC16/WG1 ad hoc group on
FDT in Washington, Sept. 1981 _

The meeting was held during the week 21 through 25 of September.
Most time was spent by discussions within the Subgroups A, B, and C, as

they were formed at the end of the previous meeting in Berlin.

For a more detailed report, please refer to the minutes (a preli-
minary copy of the resolutions is enclosed). The main results of the meeting
were the establishment of two working documents by the Subgroups A and B,

a copy of which are enclosed. The working document of Subgroup B.includes
a proposal for a syntax of a specification language (for an éxtended state
transition model) which was submitted by a liaison representative (G.V.Bochmann)

to the CCITT Rapporteur's meeting on FDT in Ottawa (October 19 through 27).

The next meeting of Subgroup A will be held near Mj]ano on
November 20. Subgroup B is also planning another meeting beginning of
December. Work on the "guidelines" is foreseen to be done during the next
WGT1 meeting in January. Another meeting of the ad hoc group on FDT is

planned for Mai 1982.

UNIVERSITE DE MONTREAL
Département d'informatique et

de recherche opérationnelle (I.R.0.)

November‘Brd 1981

From: G.V. Bochmann
To : Members of ISO TC97/SCL6/WGI ad hoc group on FDT

Re : Report of the CCITT Rapporteur's meeting on FDT in
Ottawa, October 1981.

Please find enclosed the meeting report of the CCITT meeting
on FDT (Question 39/VII) which was adopted at the end of the
meeting. :

I would like to make thé following comments on the work
‘during that meeting:

a) It was considered that different descriptions at different
levels of detail (abstraction) would be useful, such as time-
sequence diagrams, state transition models in graphical SDL
with informal text, graphical SDL descriptions with state pic-
tures, or formally defined text (possibly based on the Pascal
programming language) and a linear, programming language like
description (which corresponds to the specification language
developed in Subgroup B of the ISO ad hoc group on FDT).

b) The proposal from ISO to take the syntax developed by Sub-
group B as a starting point for the collaboration of a linear
FDT was not accepted at this time, because CCITT's SG XI has
developed a linear form of SDL (called SDL-PR), which was also
proposed as a candidate starting point.

c) There was much discussion of examples how to use SDL for
protocol and service specifications. Relatively little time
was spent on a comparison of the two proposals for the linear
syntax. Some information about such a comparison is included
in the report as annexes 6 and.

ceol2

Case postale 6128, Succursale ‘A"’
Montréal, P.Q., H3C 3]7

The CCITT group has expressed the desirability of adopting
the same FDT in CCITT and ISO. It seems that a possible com-
promise could be the adoption of SDL for the graphical form
of an FDT and the ISO proposal for the linear form of an FDT.

I leave these questions for your consideration.

Sincerely,

Que;)crr v W

Gregor V. Bochmann

3 mai 82

Title: Delegate’s Report of the CCITT SG VII Rapporteurs meeting
on Question 39 (FDT) in Melbourne, March 1982.

From: G.v. Bochmann

The meeting was attended by 23 delegates, lasted six (working) days,
and more than 30 contributions were discussed. Most of the work was
performed in plenary meetings. It 1is to be noted "that several
representatives from SG XI participated in the meeting. A liaison
report from ISO TC97/SCl6/WGl on its FDT work was presented by G.v.
Bochmann. ' ,

While some time was spent with the discussion of various specification
techniques (including abstract data types), and an ad-hoc group on
Petri net description was formed, most time was spent with the
discussion of the extended state transition FDT. The main results of
the meeting are the elaboration of a "Common semantic model for CCITT
and ISO" (annex 7 of the minutes), and a proposal for 'a linear
specification sntax (ammex 8 of the minutes) which is a revision of
the syntax included in the working document of Subgroup B of the IS0
TC97/SC16/WG1 ad hoc group on FDT. An effort has been made at the
meeting to bridge differences between the ISO Subgroup B proposal and
the existing SDL Recommendation by changing the ISO proposal, and to
indicate how the future extensions of SDL could follow the present ISO
Subgroup B language.

The proposals included in the Canadian contributions have been |
discussed during the meeting. The following points, as decided at the
meeting, do not completely follow the Canadian proposals: (l) The
. syntax of the specifcation language 1is not based on Pascal, but
several versions of specification language are foreseen, at least the
following two: '

(a) based on Pascal (a revision of the Subgroup B proposal, see
above),

(b) based on CHILL.

(2) The use of simple state diagrams (as in X.25) are not explicitely
included as a FDT. It was avoided to make any definite statement on
this issue. The same applies to time sequence diagrams.

(3) No definite ‘'priority" was given to the linear form of
specifications. Both linear and graphical versions are considered at
equal footing, although it 1s mentioned that the linear form "...
should always be given and be regarded .as an authoritative

specification”.

ANNEX 13

Un compilateur pour la traduction de spécifications

de protocoles en Pascal

par

Michel Gagné

Document de travail #120

Département d’informatique et de
recherche opérationnelle

Université de Montréal

Février 1982

Tables des matidres

1. Introduction 2
2. Le traducteur 4
2.1 La structure de stockages de lfinformation dans LSP 6
2.1.1 Description d’un bloc 7
2.1.1.1 Description d“un &lément de la 1liste d'étiquettes 8

(Tlistentier)

2.1.1.2 Description d‘un é&lément de 1la liste de

(Tlistconst)

2.1.1.3 Description d'un &lément de la liste des types

2.1.1.3 Description d’un é&lément de la liste des variables

constantes 8

12

2.1.1.4 Description d’un &lément de la liste des fonctions/procédureslB

2.1.2 Description de la liste d’interaction/PDU

2.1.3 Description du modéle

2.2 Les vérifications sémantiques

2.3 Le code Pascal engendré

3. Notice d’utilisation

3.1 Cartes de contrdle nécessaires

3.2 Remarques

14

14

16

20

24

24

25

- IT -

3.3 Echantillons de résultats et comment les interpréter

4. Exemples

Annexe 1

Annexe 2

25

27

28

29

l. 1Introduction

Ce document décrit ﬁn compilateur qui traduit la spéci-
fication d‘un module donnée dans le langage de spécification de
protocoles (LSP) en un programme en Pascal. Puisque le LSP uti-
lise en grande partie 1la syntaxe et sémantique de Pascal, une
grande partie de la traduction est une recopie sans modification
de la spécification sourée. Les parties non copiées, c¢’est-3-dire

générées par le compilateur, se conforment au régles de Pascal ISO

[1}.

Lé LSP accepté par le compilateur est une version préli-
minaire, similaire au langage de spécification développé par 1ISO
TC97/SCl6/WGl ad hoc group on FDT ("formal description tech-
niques") [2]. Une description du langage accepté par le compila-

teur est donnée dans 1" annexe.

Le compllateur décrit dans ce document a &té féalisé
comme projet d‘&té 1981, et a &téd utilisé pour la traduction d’une
spécification de protocole de Transport, et pour la traduction
d“une spécification du protocole "Document" de Teletex [3] dans le

cadre du cours IFT 6052 3 1 automne 1981.

Le compilateur a é&té& réalisé 3d. 1"aide d"un systéme

d’écriture de compilateurs.[4,5]. La partie de 17analyse syn-
taxique, incluant le traitement des erreurs syntaxiques (pas tou-

jouré satisfaisant), est faite par le systdme d’écriture de compi-

lateurs; une analyse sémantique de certaines parties de la spéci-
fication traduite et sa traduction en Pascal sont réalisées par

des procédures &crites spécialement pour cet effet.

Dans la section 2 de ce document, on trouve une descrip-
tion des vérifications sémantiques faites par le compilateur, et
de 1% approche d la traduction en Pascal. Une notice d’utilisation
est donnée dans la section 3. La section 4 contient un petit
exemple qui montre la traduction effectuée par le compilatéur.
Les annexes contiennent une déscription du LSP, et 1la syntaxe
compldte (incluant les rdgles de syntaxe Pascal) acceptée par le

compilateur.

Référerices:

[1] 1ISO DP 7185 y

[2] IS0 TC97/SC16/WGl ad hoc group on FDT, Subgroup B: working
document, Dec. 1981.

{3] CCITT Recommendation $.62(1980).

(4] G.V. Bochmann and P. Ward, "Compile: writing system for
attribute grammars", The Computer Journal 21, No.2 (1977),
pp. lh4~148. | |

[5] P. Ward, "Un systdme d“écriture...", Doc. de travail #55,
Département d”informatique et de recherche opérationnelle,

Université de Montréal.

2. Le traducteur

(Pour cette section se référer aux textes des programmes
de compilateur). Le compilateur est constitué de 2 parties:
- L’analyseur lexical et vsyntaxique contenant les appels aux
actions sémantiques.
- Les actions sémantiques (procédure SEM déclarée externe 3 l"ana-

lyseur lexical et syntaxique).

L analyseur lexical et syntaxique

L‘analyseur a &té engendré par le générateur d‘analyseur

syntaxique LL(1) de 1°Université de Montréal (Patrick Ward).

Les régles de grammairé dans la description intégrée oht,

la forme suivante:

si <A> est la 24e catégorie dans la suite de définitions des
catégories et si (par exemple)
<A> = "AA’ <AA> <AB> | <AC> “AB’
on a
<A> = ¢ sem(24 000); § “AA’ : sem(24 001);$

<AA> : sem(24 002)3;$ <AB> : sem(24 003);$

| + sem(24 004);$ <AC> : sem(24005);$ “AB’
: sem(24 006);:8 |

(voir aussi 1l‘exemple 3 3 la section 4)

i.es« un appel aux actions sémantiques a ét& insér& au début, A
la £in, et entre chaque lexeme et catégorie de 1la partie

droite de 1la rdgle.

Certaines procé&dures produites par le générateur d“ana-
lyseur LL(1l) ont été refaites, par exemple, les procédures Erreur,.

Lignederreur, Caractdre et Dé&jaluc. On a ajouté au début de la

procédure Lexical 1’appel 3 la procédure Sortlex, ainsi qu’une

petite modification pour permettre de retenir le dernier identifi-

. cateur lu (la variable Derniermotlu).

Certaines procédures ont &té ajoutées. A chaque appel

de la procédure Lexical, les caractdres qu’elle traite sont gardés

dans 1ld variable Reservelex. Les procédures Augmenter, Diminur

Stockr sont reliées 3 Reservelex.

Sortlex &crit sur un (des) fichier(s) approprié(s)
1’unité lexicale gardée dans Reservelex. La procédure Plisting
fait le '"sommaire des erreurs" et la "signification des erreurs"

(s’il y a lieu). Commentaire et Carspecial traitent les commen-

taires LSP qui ont le m@me format qu”en Pascal.

Les actions sémantiques

La procédure Sem qui exécute les actions sémantiques,

est composée de 3 é&tapes distingues:

- l’entrée des symboles dans les tables faite par 1la procédure
ENTRER,
- les vérifications sémantiques faites par la procédure VERIFIER,

- la traduction, faite par la procédure TRADUIRE.

Les trois procédures ENTRER, VERIFIER, TRADUIRE ont une construc-

tion similaire i.e.

Cas (no div 1000) de

autrement fini

autrement fini

Remarquez que les actions sémantiques ont le méme nombre
de fichiers et le m@me bloc (sauf pour les procédures) que leurs

correspondants dans l1’analyseur lexical et syntaxique.

2.1 La structure de stockage de 1’information dans LSP

Le préaprocesseur LSP produit 3 classes de structures

dans son exécution.

l1- Une structure bloc comme en Pascal.

2- Une liste d’interactions/PDU dont le premier membre est pointé

par la variable Pduinter.

3~ Une description de 1l’ent&te du module pointée par la wvariable

Module.

2.1.1 Description d°un bloc

Un bloc est une structure contenant 6 champs:

Thbloc = Struct
Etiquette: Ptrlisténtier;
Constantes: Ptrlistconst;
Types: Ptrlisttype;
Variables: Ptrlistvar;
Procetfonc: Ptrlistpf;
Blocpere: Ptrbloc;

Fing

Etiquette: pointe sur ume liste d’étiquettes (au sens Pascal).
CONStANteS e sscescsasscsssseses de constantes (au sens Pascal).
TYPE@Siesesescessssssvssssccases de types R R RN
VariableSiessesacsssecesceassse de variables casesesesssscnnna
ProcetfOnCisesseeesssenssessess de fonctions ou procédures (au

| sens de Pascal).

Blocpere: Dans le cas ou le bloc en question est celui associé a

une procédure ou fonction PF, blocpere pointe vers le
bloc qui a PF comme un des membres de sa liste de procé-

dures ou fonctions.

2.1.1.1 Description d’un &lé&ment de la liste d’étiquettes

(Tlistentier)

Tlistenﬁier = Struct
Etiquette:Entier;
Suivante:Ptrlistentier;

Fing

2.1.1.2 Description d’un &lément de la liste de constantes

(Tlistconst)

Tlistconst = Struct
Nom: Lspalfaj
Defconst: Ptrconst;
suivante: Ptrlistconst;

Fing

Lspalfa = Chainident; (* = paquet tableau [l..30] de car¥%)
Ptrlistconst = "Tlistconst;

Defconst : description'de constante

Ptrconst = “Tconst}

Tconst = Struct

signe:booleeny

cas ctypetentier de

0:()3
1:(creel: reel);
2:(centier: entier);
3:(Cdebutchaine,Clongchaine: entier);
4:(Idconst:Lspalfa);
Fing
Signe: vrai pour +, faux pour -.
Cas 0 : pour sighaler une erreur possible.
Cas 1 : la constante est rélle.
Cas 2 : la constante est entiére.
Cas 3 ¢ constante de type chaine,
Cdebutchaine: dé&but de la chaine
lorsque stockée dans
Zonechaine par la

procédure Constchaine.

Clongchaine: longueur de la chaine.

Cas 4: la constante est un identificateur de constante.

2.1.1.3 Description d“un &lément de la liste des types

Tlisttype = Struct
- Nom:Lspalfaj
Deftype:Ptrtype;
SuivantetPtrlisttype;

Finj

- 10 -

" Suivante: le suivant dans la liste.
Ptrlisttype = “Tlisttype;
Deftype: Descriptif de type.
Ptrtype = ”Ttype;
Ttype = Struct
Pacquete:Booleen;
Cas choixtype:Entier de
0:();
1: (Nom:Lspalfa);
2:(Lscalaire:Ptrlistroles);
3:(Cl,C2:Ptrconst);
4:(Tpointeur:L5pa1fa);
5: (Ltypesimple:Ptrltypsimple;
Ttabtype:Ptrtype);
6: (Typefichier:Ptrtype);
7: (Typeensemble:Ptrtype);
8:(Typeenregistrement:Ptrlistenreg)}

Fing

Le descriptif Ttype correspond aux différents types possibles:

Pacquete: indique si c“est une structure pacquete ou none.
q q re p

1) Nom
Dans les déclarations (de types) du genre
A=0238 ou B est un typé défini avant
2) Lscalaire

Pointe sur une liste d”identificateurs.

Pour les déclarations de types é&numérés

A = (B,C,D)
3) Dans le cas_d'un type intervalle
Ex: A= A" .. 72°
Cl: Pointe vers le descriptif de “A°
C2: esesecessasssoscscsssnsccsnas 27
Le descriptif &tant celui d‘une constante, ce que 1”on a vu
dans la description de la }iste de constante.
4) Dans le cas d“un type pointeur
Ex: A = TPT;
Tpointeur contient 1’identificateur (PT dans l'exemple)-
5) Dans le cas d‘un tableau
Ex: A = array [toto , ‘0" .. “9°] of integer
- Ltypesimple pointe vers le début d”une liste de descriptifs
de types (simples) (toto et ensuite ‘0’ .. “9° dans
1’exemple).
; Ttabtype est un pointeur vers le descriptif du type des
gléments du tableau (dans 1’exemple, vers le descriptif de

integer).

*6) Dans le cas d’un fichier

Ex: A = file of real
- typefichier pointe vers le descriptif dﬁ type des é&léments
du fichier (dans notre exemple, vefs le descriptif de Real).
7) Dans le cas d’un ensemble
Ex: A = set of "A".."2°
- typeensemble pointe vers le descriptif du type.des é1léments
de 1l’ensemble (dans notre exemple vers le descriptif

de ‘A’..7°2%).

- 12 -

8) Dans le cas d’un enregistrement, typeenregistrement pointe vers

un descriptif d’un type enregistrement.

Ptrlistenreg = = Tlistenreg

Tlistenreg = Struct
Partiefixe:Ptrlistvar;
Bvariante:Booleén;
Bidentcas:Booleen;
Selectid:Lspalfa;
Selecttype:Lspalfas
Listcas:Dtrlisteas;

Fing

Partiefixe pointe sur une liste de champs avec leurs
Bvariarnte indique si 1‘enregistrement contient
“case’.

Bidentcas indique si on a un champ sélecteur dans le
Selectid est le champs sélecteur (si bidentcas).
Selectype -est le type dans le “case’.

Listcas est une liste dont chaque &lément contient
constantes et un pointeur (de type Ptrlistenreg) sur

trement.

types.

une variante

‘case’.

une liste de

‘un enregis-

2.1.1.3 Description d’un é&lément de la liste des variables

PTR1listvar “Tlistvar;

Tlistvar Struct

Lident :PTRlistroless

- 13 -

Vtype:PTRtype;
Suivante:PTRlistvar;

Fin;

Lident est une suite d’identificateurs ayant un m8me type (on peut
avoir une déclaration de variables de 1la fagon sulvante A,B,C:
typeABC;)

Vtype est un pointeur sur un descriptif de type. Suivante pointe

vers le descriptif de variable suivant.

2.1.1.4 Description d’un élément de la liste des fonctions/procé-

dures

PTR1istPF = “Tlistprécetfonc;
Tlistp;ocetfoné = Struct
nom:Lspalfas;
LPara:PTR1lpara;
Bexterne,BPlusloin:Booleen;
PFbloc:PTRblocy
Suivante:PTR1listpf;
Cas Fonc:Booleen de
vrai:(Restype:Lspalfa);
faux: ();

Fing

Nom est l’identificateur de la procédure ou de la fonction.
LPARA pointe sur une liste de paramdtres.

Bexterne (resp. Bplusloin) indique si la procédure/fonction est

- 14 =
déclarée externe (resp. plusloin).

PFBloc pointe sur le "bloe" de la procédure/fonction.

Suivante pointe sur la description de procédure/fonction suivante.
Fonc indique si c¢c’est une fonétion (vrai) ou une procédure (faux).
Restype est 1°identificateur du type du résultat dans'le Qas,d'une

fonction.

2.1.2 Description de la liste d’interaction/PDU

PDUinter:PTRPDUintgr;
PTRPDUinter="TPDUinter;
TPDUinter=Struct
Nom:LSPalfa;
BPDU:Booleen;
Listeactions:PTRLroleactions
Listroles:PTR1listroles; "
suivante:PTRPDUinter;»

fing

Nom est 1l identificateur associé 2 l'interactibn/PDU.,

BPDU indique si c’est un PDU (vrai) ou une interaction (faux).
Listeactions pointe sur une liste-de listes.d’actions.
Listroles esﬁ la liste des roles possibles de l'interaction/PDU
telle qu’indiquée au dé&but de la déclaratidn.l

Suivante pointe vers le descriptif de 1’intersection /PDU suivant.

- 15 =

2.1«3 Description du module

Module:PTRmodule;

PTRmodule="Tmodule;

Tmodu¥e=Struct
Nom:LSPalfa;
Liétinterfaces:PTRlistinterfaces;

Fing

Nom est le nom du module.

Listinterfaces pointe sur une liste de descriptifs d’interfaces.

PTR1listinterfaces="Tlistinterfaces;

Tlistinterfaces=Struct
Lnom:PTR1listroles;
Listindice:PTRltypmodule;
Nompdulnter:LSPalfa;
Listroles:PTRlistroles;
BQith:Booieen;
Withpduinter:LSPalfa;
Listrolewith:PTRlistroles;
Suivante:PTRlistinterfaces;

Fing

Lnom est une liste d’identifications ayant le m@me “type’ d’inter-
face.

Listindice pbinte sur liste de types correspondant aux types des
indices de tableau (s’il y a lieu) dans la déclaration d'(es)

interface(s).

- 16 =

Nompduinter est le nom de 1°interaction associée 3 1l7interface.

Listroles est la liste des roles possibles dans 1" interaction.

la déclaration. Dans ce cas withpduinter est le nom du PDU et

listrolewith est la liste des roles possibles du PDU.

Suivante pointe vers le descriptif d“interface suivant.

2.2 Les vérifications sémantiques

Prenons comme exemple la déclaration d interaction suivante:

qui suit s’applique aussi dans le cas d”une déclaration de PDU)

Interaction Userinterface (totol, totoZ, toto3) is

(1)

By totol: Connect (Infl: Infotypel;
(2) Inf2: "Infotype2);
By toto2, toto3: Ceci (est: integer; exemple: Real);

(3) Egalement (celui: ¢i; autre:typepara)

1) Il faut que les identificateurs dans les listes en (2) et

Bwith indique si 1’option ‘with PDUid (...)’ a &té& wutilisée dans

(ce

(3)

fassent partie de la liste (l1). Lorsque cette rdgle n’est pas

vérifiée une erreur no. 400 est déclarée.

2) Une 1liste d’identificateurs (comme en (1), (2), (3)) ne peut

contenir deux fois le méme identificateur (sinon erreur

401).

O«

- 17 =

3) Dans la régle
<interaction-paramete> = ‘(‘<liste-~ident> “:° ident
(1)
[3 <liste—ident> ‘¢ qidentl*)’
(2)
| vide

les ddentificateurs en (1) et (2) doivent @tre des types

déclarés auparavant (sinon erreur no. 402)

4) Une variable ne peut porter le nom d“une interface (i1 vy
aurait 'alors possibilité de confusion) (autrement erreur no.

403).

5) Dans la ragle
<type-nouveau> = Ident ‘(’ <liste-ident$)’
(1) (3)
[“with’ ident ‘(’° <liste—ident>)7 | videl
(2) (4)
'array'. . ey

* o0

a) 1l%identificateur en (1) doit désigner le nom d’une interaction

déclarée auparavant (sinon erreur no. 405)

b) 1°identificateur en (2) doit désigner le nom d”un PDU déclaré

auparavant (sinon erreur no. 404)

¢) les identificateurs dans les listes en (3) et (4) doivent

" faire partie de la liste au début de la dé&finition de 1’inte-

Y

- 18 -

raction (resp.PDU) correspondante (sinon erreur no.406).

6) Dans la régle

<when-condition> = ‘when’ [<expression>|Ident *[<ind1cage>]*
(3) (4)
<designe-champs>’(’<liste-1dent>')’j
(L) (2)
(Rem: <designe-champs> = ‘.’ ident

(1)

<liste-ident> = ident *[‘,” identl*)

d) 1les identificateurs en (2) doivent @tre les m€mes et dans le
méme ordre que dans 1°action dont le nom est 1°identificateur

(1) dans 1l’interaction (ou le pdu) de lé.définition de 1°in-

terface identifiée par (3) (sinon erreur no. 409)

e) 1le nombre d’indices en (4) doit &tre conforme 3 la dé&finition

de 1°interface identifiée par (3) (sinon erreur no. 407).

7) Dans les régles

<action-list>

<suite AAA> =

<inter A> = ‘(’<expressions *[’,

- 19 -

= ident <suite AAA>
(4)
[oae
[<S-indicage>][<désigne-champs <interA>
(1)
| <pointage> +..

’

<expression>l*®)7 (2)
| <suite-affec>

| vide

» »

(Rem: <désigne-champs> = “.’ ident)

1’identificateur de

(3)

champ en (3) (provenant de (1)) doit @tre

une action possible selon la dé&finition de 17 interface (4)

(sinon erreur no.

408). Par action'possible on entend une .

action qui, dans la définition de 1’interaction (PDU) corres-

pondante, appartient
associée 3 une liste
(3).

De plus 1le nombre

nombre de paramétres

3 la liste d’actions (<interaction-list>)

de rdles qui contient 1°identificateur

de paramdtres en (2) doit @tre égale au

dans la dé&finition de 1l”action correspon-

dante en (3) (sinon erreur no. 410).

lo

20

30

4o

50

- 20 -

Le code Pascal engendré

(se référer 3 1°exemple de traduction & la section 4)

Les soulignés permis dans un identificateur LSP sont &liminés

lors de la traduction.

Le nom du programme engendré est celui du module dans le

programme LSP.
Le seul fichier de 1”ent@te est le fichier output.
Dans la régle LSP

<prog> = *[<pdefconstl> |[<pdeftypel> | <pdu>

|<interface~definition>]#* <module>

toutes les constantes dé&finies dans 1°une ou 1”autre des

occurences de la rdgle <pdefcontl> sont regroupées dans un
seul bloc de constantes de type Pascal. De m@me pour les
types. Dans les deux cas la traduction est directe 1i.e.

c’est une copie.

A partir de 1la déciaration du module et des interactioné
(resp. PDU) le compilateur construit 2 types: ZZZT et ZZZTB.

ZZZT‘est constitué d’un enregistrement avec cas pour chaque
interface déclarée dans le module (dans le méme'ordre d’appa-
rition). Le champs de chaque cas est constitué de 1’identifi-

cateur de ‘l1’interface correspondant. Le type du champ est

60

- 21 =

lui-m@me un enregistrement constitué (possiblement) d’indices
Il, 12, 1I3,... dans le cas que l’interface est un tableau
(autant d“indices qu’il y a de dimension dans le tableau) et
d’une variante (avec pour sélecteur le champ CTIF) pour cha-
cune des actions poséibles dans la dé&finition de 1’ interac-
tion indiquée dans 1la définition de 1 interface. Lorsque
1’option ‘with Ident (<liste-ident>)’ est utilisée alors la
liste des actions possibles pour le PDU correspondant (3
Ident) est ajoutée 3 la suite.

Chaque action possible a un type enregistrement composé des
paramdtres (et des types) de l“action dans la définition de -
1’interaction (resp. PDU).

ZZZTB est un enregistrement ayant comme champs les noms des
interfaces. Ces champs ont comme typeAsoitAle type Booleen
soit un tableau de Booleén conforme au tableau de 1’ interface

correspondante.

Les variables dans <P-decl-var> de 1la ré&gle <global-
constraints> sont traduits directement (copie) sauf que les
variables suivantes sont ajoutées

Z27R, 7225 : 222T;

ZZ72B : ZZZTB;
ZZZR est une variable, conforme au format des interfaces du
module, qui sert 3 recevoir l’information de 1'extérieur- I1
n’y a queAla procédure wait qﬁi peut la modifier. 2228, de

méme type, sert 3 envoyer de l’information vers 1’extérieur.

I1 n’y a -que le programme qui peut la modifier lors d”une

70

80

90

- 22 -

instruction ‘send’.
ZZZB est une variable, modifiée par la procédure wait, qui
sert 4 indiquer au programmeur quels sont les actions regues

depuis le dernier ‘wait’.

Les procédures et fonctions dans <P-decl-Proc-fonc> de 1a;

régle <global-constraints> sont traduites directement

(copies). Les procédures wait et send (extermes) sont ajou-

tées.

Les ‘transitions’ sont traduites de la fagon suivante:
Begin (*program*)
while true do
Begin

Wait(ZZZR,ZZZB);

’

Traduction .des ‘when +.. else «ese.
end;

end.

Considérons les radgles

<when-clause> = <when-condition> [<when-list>|<action>]

<when-1list> = + [<when-clause>] + ‘else’ <action-list>
<action = ‘DO’ <action-list>
<when-condition> = ‘when’ [<expression> |

ident *[<1ndicage>]* <designe-champs>

100

=23 -

[(“<liste-ident> ") | videl]

<when-condition> est traduit par:

if <expression>
ou
if 2ZZB. Ident *[<indicage>]* and

(ZZZR. Ident.CTF=e)

Selon 1’alternative de la régle.
e = 1’ordre dans ZZZT de 1’action indiquée par 1°iden-
tificateur dans <désigne-champs>
la traduction de <when-clause> est alors:
traduction de <when-condition>’then’[traduction de <when-
list>|
traduction de <action>] ‘else’
la traductioﬁ de <when-list> est:
‘begin’+[traduction de <when—c1aude>]+traduc£ion de <action-—-
list>’end’ |
la traduction de <action> est:
traduction de <action-list>

(la traduction de <action-list> est vue en llo)

Si dans une expression (<expression>) un identificateur A est
dans une des <liste-ident> d“un des <when-condition> qui

1’imprique alors, si
when IdentA *[<indicage>]* <dé&signe-champs> (<liste-ident>)

est le plus rapproché (des <when-condition>) qui vérifie 1la

110

- 24 -

condition &noncée plus haut, A est remplacé par
ZZZR.IdentA *[<indicage>]* <désigner~champs>.A

dans 1’expression.

Une <action-list> est soit une instruction Pascal, soit 1 en-
voie d’une action. Une instruction Pascal est traduite sans
modification sauf pour les expressions (100).

L’envoie. d°une action est traduite paf un code Pascal qui
affecte la variable d’envoie 2ZZZS par les valeurs appropriées
et envoie ZZZS avec la procédure Send (voir 1" exemple de

traduction).

3. NOTICE D’UTILISATION

3.1

Cartes de contrdle nécessaires

*Job,--..

*Code

LIB, L, LSP, U=1837

LSP(F1,F2,F3,N)

Fl:

F2:

F3:

Fichier contenant le programme LSP.

Fichier de sortie du listing et autfes informations du geﬁre
(erreurs, sommaire).

Fichier contenant le programme PASCAL provenant de la traduc-
tion du prograﬁme LSP.

Nombre en octal spécifiant le RFL donn& 3 la job.

.Les valeurs par dé&faut sont:

pour Fl: input,
F2: output,
¥3: Lgop,

N: 60000.

3.2 Remarques

- Le préprocesseur LSP a &té& développé dans un environnement CDC
Cyber 173. Le langage utilisé est le Pasdal‘6000 version 3.2.2.

- En cas de "BUG" du préprocesseur, l‘utilisateur est prié de
communiquer avec M. Michel Gagné ou 1" usager 1837, ou M. Gregor
Bochmanne.

- Les utilisateurs désirant enjoliver le programme Lgop produit
par le préprocesseur LSP, peuvent utiliser les formateurs du
genre PASTAB, JOLI, PRETTY dont la documentation pour certains

est disponible sur Bonjour.

3.3 Echantillons de résultats et comment les interpréter

Lors d“une exécution du programme LSP, en utilisant la
carte LSP (F1,F2,F3,N), le fichier F2 (par dé&faut output) contient

des informations sur le programme LSP fourni (sur Fl).

Le fichier F2 est composé& jusqu’d 3 parties:

(voir le "listing" & la section 4)

A) Le texte du programme, avec une numérotation par accroissement

- 26 -

de 1.

- Sous les lignes contenant une erreur LSP, on a une suite de 12

étoiles ainsi qu’une fldche sous le caractdre ou a &té& détectéd
une erréur. La plupart du temps, le caractldre point& n’est pas
en faute; c’est (en général) 1" une des deux dernidres unités
lexicales avant le caractére pointé.

- Une erreur décelée 3 la toute fin du texte n’est pas>indiquée

sur celui-ci mais seulement dans le sommaire des erreurs.

Lorsque le programme comporte des fautes, F2 comporte aussi 2

autres sections:

B) Un sommaire des erreurs comprenant pour chaque erreur décelée
sa ligne, sa colonne (position du caractdre dans la ligne) et

son numéro d‘erreur.

C) Une brdve description des numéros d’erreur chapeautée par le

titre "Signification des erreurs'.

- 27 =

4. Exemples

L8P
bREPROCESSEUR LSR UNIVERSITE DE MONTREAL

CONST
CAAnT,
AAA=D;
TYPE
ENS = 0..10;
COMMON = BOOLEAN)
INFQ = RECOR
P1:BOOLEAN)
P2: INTEGER:
P3. SET OF ENS)
END)
INTERACTIONS

LOCALBUF {USER, BUFFER) IS

BY USER: CLEAR(INFRAG: INTECER)
OQUTFRAG: COMMON) 3

= OQODNTOSLIN~OIDNC AR OTDNC B PN~

LILIRINIRIRIRIAI PRI RS P st po o s o o o e bt

REQUESTDATA)
BY BUFFER : SENDDATA(DATAFRAQ: INFO);
CONST
BROUAA = 3
TYPE
32
g:‘! STATUS = INTECER:
?]2 INTERACTIONS
37 TSPOINT (USER. PROVIDER. PROVIDER)Y I8
n\qocnnusa ~
39 BY USER :
0 CONNECTREG(AA: BOOLEAN; AB: COMMOM: AC: STATUS):
n|||nn000:: ~
2% DISCONREQ(BA: STATUS) BB: INFO);
:g DATAREQ(CA: INFO)3
..‘.’.."E‘ BY PROVIBER : gDMVECT!ND(DA: BOOLEAN: DB:COMMON) DC:STATUS)

DISCONINOtEA: STATUS: EB: INFO)
DATAIND(FA: INFO)3 ' N ,‘

POV .
TPDU(USER, PROVIDER) 18
BY USER : SREF)

SDATE)
SCRAM(DEHORS: COMMON: DEDANS: COMMON):

AN UEERAD
NCAPLIN-O QD & O

LSP UNIVERSITE DE MONTREAL
PREPROCESSEUR LSP .

] BY PROVIDER : PREF;

g? PDATE;

2(‘) RAM(OUTSIDE: STATUS: INSIDE: INFO)) (# POURGUOY PAS =)

&2 MODULE ESSAI (TRANSPORY: ARRAYL1. .53 OF ARRAYIZ .31 OF

&3 STSPOINT(USER) WITH STPDU(PROVIDER):
XX TY Y ~ -~

4 LDCBUF : LOCALBUF(USERR)) I8
ceERREERARS -~

-3

&b VAR

&7

&8 VA: CDMMON;

&9 VS: STATUS)

7 Bua: ComMoN

H i

72 BVB, BVC, BVD: BOOLEAN)

73 LDCBUF: STATUS:
REERRRAREDS ~

74

23

28 TRANSITIONS

7

? WHEN TRANSPORTLVS]. PREF

-
»
.
.
-
»
-
»
.
.
»

VA

WHEN BVA DO LOCBUF CLEAR(10, TRUE)
WHEN BVE DO VI.P2:=3

ELSE VI.P3 = [1. . 4]

WHEN BVA DO TRANSPORTIVS, VI.P23. CONNECTREQ(TRUE: FALSE, 33)
ELSE ve: =8

N_TRANSPORTIVE, VS1. RAM (INSIDE, QUTSIDE)
R S SMAENCE T '

L ODOOONDIO &~
oamﬂguuuu—-o

HHERBBERBRR N
1

ELSE V8: =3y
92
93
SOMMAIRE DES ERREURS

GNE: 37 COLDNNE: 38 ERR NO: 401
ch&: 40 COLONNE: 34 ERREUR NO: 402
LIGNE! 46 COLONNE: 22 ERREUR NQ: 400.
LIGNE: &3 COLONNE: 39 ERREUR NQ: 403
LIGNE! 63 CDLONNE: B3& ERREUR NO: 404
LIGNE: &8 COLONNE: 43 ERREUR NO: A0&
Lighe 78 COLORNE: 24 ERREUR Na. 407
L1GNE: 30 COLDNNE 1 ERREUR NO: 409

12. 34.28.
VERSION 1 =

"Exemple 1:

Programme LSP avec erreurs"

12. 34. 30.
VERSION 1

SIONIFICATION DES ERREURS
400: UN DES ROLES DE LA DEANIERE LISTE NE FAIT PAS PARTIE DE LA LISTE DE LA DEFINITION INITIALE.
4o 55;;7:nug:gﬁhngmxmmeuns ANS UNE LISTE INTERDITE. L8 :
2825 HSJEEN’%‘E&EQAE"“ DE VARIABLE NE PEUT ETRE LE MEME QUE CELUI D’UNE INTERFACE DEGLAREE DANS LE MULULE
40%: INTERACY1ON NON DECLARE,
40b: UN DES ROLES OE LA LISTE EST ABSENT DANS LA DEFINITION DE L‘INTERACTYION (OU DU PDUY.
407: NOMBRE D’ INDICE DE_TABLEAU EN DESACCORD AVEC LA DECLARATION.
409: IDENTIFICATEUR(S) DE PARAMETRE(H) EN DESACCORD AVEC LA DEFINITION DE L‘ACTION.

LagPRGCESSEUR Lep UNIVERSITE D; MONTREAL VERSXO&6112'44
COMNST
PRy
TYPE : "Exemple 2:
ENS = O, .10:
SETEOY Fefameen ,
P1- BooLEAN: Programme LSP sans erreurs;
\B3: SET OF ENSi ‘ () X
INTERACTICNS la traduction est & Ta page
LOCALBUF (USER, BUFFER) .18 suivante"
BY USER: CLEAR(INFRAO: INTEGER:
OUTFRAG: COMMON) ;
REQUESTDATA:
BY BUFFER : SENDDATA(DATAFRAQG: INFO);
CONST)
BROUAA = 3;
TYPE
STATUS = INTEGER;
INTERACTIONS
TSPOINT({USER, PROVIDER) 1S
BY USER

!
3

CALT-

>

NSO S

.
(>IN

e e Rt e S e S o S e

st
IS

CONNECTREQ(AA: BOOLEAN; AB:COMMON; AC:STATUS):
DISCONREG(BA: STATUS; BB: INFQ);
DATAREQ{(CA: INFO);
BY PROVIDER : CONNECTIND(DA: BOOLEAN; DB:COMMON; DC:STATUS):
DIGCONINO(EA: STATUS; EB: INFO);
DATAIND(FA: INFO);
PDY
TPDU(USER, PROVIDER) I8
BY USER : SREF;
SDATE;
SCRAM{DEHCRS: COMMON; DEDANS: COMMON)
BY PROVIDER : PRE
UTSIDE STATUS: INSIDE: INFO); (% POURQUOI PAS #)

UNIVERSITE DE MONTREAL

PREPROCESSEUR LSP

-3

AR

INNNNNNNNY
~

..,,.,.,.._,,
IxZ37823

HODULE ESSAI (TRANSPORT: ARRAYL1..S) OF ARRAYLR2..3] OF
TSPOINT(USER) WITH TPDU(PROVIDER);
LOCBUF : LCOCALBUF(USER)) IS
VAR

VA: COMMON;

VS STATUS:
VI: INFOi

BVA. COMMO

BVE, BVC.BVD BOOLEAN;
TRANSITIONS

HHENETR3§SPDRTEVS‘VSIAPREF
NHEN BVA Do LDCBUF CLEAR(S.TRUE)
HEN BVB DO VI.
ELSE VI.P3 = Kl..4] '
WHEN BVA DO TRANSPORTLVS, VI. PR). CONNECTREQ(TRUE, FALSE, 33)

ELSE VS: =B
«HEN TRANSPDRTCVS vsl. RAH (DUTSIDE. INSIDE)
ELSEENSVA 0 V§:=0UTSID

=3;

16, 12. 45.

VERSION 1

'QH'—AT[UR PASCAL - E.T.H. ZUERICH / UNIVERSITE DU MINNESOT, COMPILAIEUR PASCA! -~ E. T.H. ZUERICH / UNIVERSITE DU MINNES
ENTHE Db CALCULJ UNIVERBITE DE MONTREAL A CENTRE DE CALCUL/ UNIVERBITE DE MONTREA ava.
4 1 PROSRAM ESSAI(OUT 22 it
- PUTY Jiie IF_717B. TRANSPORTCVS
" e,
D 26)i 1 AND (ZZIR TRANSPORT. CTF = 10) (#PREF#) THEN
A CAA=Z) Jii BEOIN
L AAA=Z; ; G e va
: - e <
“/) BROUAA 5 36 10
13, Tvee Jil BEGIN
] 300 IF BVA
1a ENS = 0..10s Ja THEN
A v
- 4] - W
,’, P1: BOOLEAN: Jis BECIN (i SEND OPERATION «)
it P2: INTEGER: 3l 2218, TF 2
1 P3:SET OF ENS; 41 Jvr WITH ZZZS LOCBUF DO
Ky END; 140
il 141 BEGIN
e AL
R STATUS = INTEQER; 1Al CTF :m 1
) 4zt
it ZZIT = 14" END:
& RECORD Jan WITH ZZ2S.LOCBUF. CLEAR DO
i¥7 C&LSE_TF: INTEGER .OF 14Y
$4t 1 :(TRANSPORT : RECORD 3A{ BEGIN
v 111109 i4°s INFRAG := 3
a0 I2:2..3; 14t ;
ity CAEE CTF: INTEGER OF 43 14) CUTFRAG := TRUE
2 1 (_CONNECTREQG : RECORD pie g
Wt A4 . BOOLEAN: 44 14
i AB | COMMON; 1hn ENDs
L AC L STATUSS Jii, SEND(ZZZS):
R QENOIIL REa "D a6 ha E.'élecé_* SEND OPERATION #)
MY : ONR H 1y S
{4 B4 : STATUS RECO 47 jiiv IF BUB
v, BB : INFOQi 14 T THEN
25 270 batarea RECORD 00 vieai=a
N : E R BAl . =
Alr CA . INFO, Jnit ELSE
Al CEND:) 52 Jan
AN 4 : (_CONNECTIND : RECORD : 144 VI.P3 ;=1 .4]
4% DA : BOOLEAN; 1A END
_Ah DB : COMMON: . 54 144 ELSE
a7 DS i STATUS: 55 347 IF BVA
Afv TEND;) yei T THEN
A% 3 : (DISCONIND : RECORD 57 1
L0 EA': STATUS: 174
i) EB ! INFU: 173 BECIN__(# SEND DPERATIDN *)
i END) iz 2778 T
:r;; gk: (XDQEAIND : RECORD 60 7% TWITH 2275. TRANSPORT DO
1 : s
f, END:); i7% BEGIN
U6 7_: (SREF : RECORD LEAN
b 8510 "bpaTE : RECORD igh it =8
A M LAY
L NO;) 63 i 12 ‘= VI P2
"0 9 ¢+ (SCRAM : RECORD 100
o} ATEUR PASCAL - E. ZUERICH / UNIVERSITE D N TA. SOMPILATLUR P&4SC E.T.H. ZUERICH / UNI'JERSITE DU MINNESQTA.
N* LE: CALCUL/ UNIVERSITE DERHONTRE AL ERSITE DU MINNESOTA ZENTRE DE CA LLUL/ "UNIVERSITE DE MONTRE :
$3 DEKCRS : COMMON; &7 i1t CTF (= 1
{ DEDANS : COMMON) 70 M D,
" .
l) 12"6' ;’pggp . RECORD 11 "WITH 2225. TRANSPORT. CONNECTREG DO
I idi K
WA 11 : Jtih BEGIN
‘;\7‘ END: {,PDATE : RECORD 1t &A1= TRUE
NI {_RAM : REC I
a ?}115'%55 ;Is-rmus.o P ' 71 it AR c= FALSE
71 5,0 IO 72 173 AC :m 33
74 Enip, 1o S
AN 7308 e
72 2 : ¢ LOCBUF : RECQ@RD ;
o ZeASEOTR . INTEGER OF 1'2 SEND(22ZS);
76 1 : (CLEAR ; RECORD 7% 17¢ END_(# SEND QOPERATION #)
77 INFRAG : INTEGER: 1’77 TELSE
74 CITERAG COEMERD 76 1w :
77 _END;) 1y ys: =g
G 21—:?40(REQUESTDATA : RECORD 100 01 E EN2e
;
i 3. ¢ GENDDATA : RECORD 101 jop B zzza TRANSPORTLVS
(v DATAFRAG : INFO; [N
) END:) {?g =04 3 AND (22ZR. TRANSPORT. CTF = 12) (*RAM®) THEN
I At
l By, 04 BEOIN
1y ity
i EMD B0l IF VA
i 2ZZTR = - : 105 THEN
/¢ RECORD 114 10
) TRANSPORT: ARRAYL1..9%1 OF ARRAY(2..31 OF i) Y8 =ZIZR. TRANSPORT. RAM
l Ji: BOOLEAN o - QUISIDE
. i . »
' . 116 Y]
Al LOCBUF : BOOLEAN fih ve e
7h ENDs il ENO
7 117 17 ELSE
';;’x 120 M .
7 VAR 11ty END
100 121 i
73 104 ’ ! COMPILIN FEIIMATED ‘W’ OPTION = 250%B.
14a
108 VA: COMMON:
105 (% 49#) vs: STATUS:
1G7 (e 70#) VI:IN FO
100 (- 719}y BVA: COMMON;
o :(J);/‘ (+ ;gi) BvB, BVC:BVD BOOLEAN:
111 PROCEDURE WAIT(VAR T:ZZZT; VAR B:2ZIZTB)i EXT
4 1i; PROCEDURE SEND(T: B2 P2RkTeRR, B T ERN:
Hn BECIN (% PROGRAM #)
»
114
, 11§ wHILE TRUE DO
1188 BEOIN
Y20 1IAT T {TTY 9o 9m . e ' y

"Exemplie 3:
Irmat de la description

intégrée"

Aorunuiv

PPy

: 3
<PARTaVARTANTED

S
<SELECT-VAWXANT=

HOURIAIR,

<VARJANTED
s

ANALGEM VERSION 1,02 81/07/3) 00,3841t
EMEA70000 ... L n o e e o
€LI3TLeIDENT

tﬁ AbSuAgh LzESEVEEREEANTE,
s e
gtnslyoot)p
0 Lo
EM(a7002))
¢UENOTEwTYPE
gﬁER;LMANPf VIYPE | wDESCTYPECOURANT)
Euc 10 coUﬁANYt- k°§ﬁk YPE}
§AmECBURANT paLOCRLEARHP)
s

’ §E"§°?UOSTT"_—"_—‘”“"”"- et

£M(0R000))

cAye— T
£M(33001)1

QUELELTOVARIANTS " © T C -
E4(32002))
s
EN(48003)1
CYARTANTED
EM(aBOON))

.- frm o e an e

EN(a8005))
Che
engazooe)s

ANALGEN VERSIOM {,02 831/07/31 00,35ei1s

_ tvanlantes
§e"gneooval
Yo o
&tHSHQOOO)I

EMgaT000YF -
DENT
EMCAYOQtIE e

EMLU9002)8 .
'.

UENT
£M(a%004))

10g
’thg!ﬂoot)l_

. l;!ss:sqzxn . .

EN180000))
€ IITSCONGTCAS . _..... -

r - -

|
..”.."WND.DODE&QDD'

EM(30001)0
'D

g LR

empavooyyy e

LM8%008)) e

-PAGE 37

PAGE 38

Annexe 1

- 28 =

Introduction au langage LSP

IS0
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

180/TC97/8C16

OPEN SYSTEMS INTERCONNECTION
Source : Canada

Title: Tutorial on formal description techniques (FDT)

1. Introduction

The purpose of this paper is to describe some key techniques which can
be used as part of the formal description techniques in specifying
services and protocols for Open System Interconnection (0SI). The
so-called formal description techniques (FDT) for OSI may be envisaged,
at this stage, as a set of techniques used to accurately specify the
complex nature of services and protocols. This paper particularly
discusses two techniques, i.e. an "interaction model" for describing
layer services, and a '"state and transition model" for describing
protocols.

The first part (section 2) describes an "interaction model" which is
based on the principles outlined in the "Introduction to the Guidelines:
Overall View of OSI Specifications" (section 1 of ISO/TC97/SCl6 N 380).
It provides a framework for specifying the interactioms through which a
layer provides its service. A possible syntax for this is defined in.
Annex 1.

The second part of the paper (section 3) describes a state tramsition
model which was presented in a previous contribution (Amsterdam 13,
"Comments on Formal Description Techniques"). This model may be . applied
to protocol specification by defining the behavior of a layer entity.
Such a specification uses the concepts of (a) the state of the entity
and (b) transitions between such states initiated by interactions and
internal events. A possible syntax for this specification method 18
given 1in Annex 2. This specification technique may be complemented with
additional specification techniques, such as state transition diagrams
or transition tables..

Although the state and transition model has been found very useful for
protocol descriptions, it is, however, not clear, at this stage, whether
it 1is also useful for describing services. Probably other techniques may
be more suitable for this purpose. <

2. The interaction model

Section 1 of ISO/TC97/SCl16/N 380 ("Introduction ¢to the Guidelines:
Overall View of OSI Specifications") gives an introduction to the main
characteristics and the role of service, and protocol specifications for
0SI. Many of the concepts discussed in the present paper are further
explained in this "Introduction to the Guidelines".

A certain similarity exists between the requirements for service and
protocol specifications. It 1s therefore possible to wuse certain
techniques for both services and protocols. The £following discussion
uses the term '"module" mainly in two different connotations: In the case
of a (N)-service specification, the module considered consists of the
layers of all Open Systems below the (N)-layer interface, i.e. the
layers up and including the (N)-layer, as observable by the (entities
within the) (N+l)-layer (see "Introduction", section 3.1.1). (The module
is the functional unit that provides the service). In the case of a
(N)-protocol specification, the module considered consists of the part
of an Open System corresponding to the (N)-layer of the model of an Open
System (also called (N)-layer subsystem) or of an entity contained in
such a part, as observable by other entities within the same layer (see
"Introduction”, section 3.2 and 3.2.1). (The module is the functional
unit that conforms to the protocol).

The following subsections discuss concepts for specifying the
interactions of the module.

2.1. Interactions

The following examples are considered. The (N)-service is provided to
the entities in the layer above by the interactions through the service
access points between the service providing module and its environment.
The interaction model is also useful to define interactions between
different entities (or "modules") of an (N)-layer subsystem. For
example, it may be used for defining the timer or data buffering
services used in the (N)-layer protocol.

In the following the term "abstract interface" demotes the interactions
between the given module and another mpdule in 1its environment. For
example, a service access point is an abstract interface between the
service providing module and the entity using the service through this
access point. It should be noted that the abstract properties of these
interfaces are discussed here only to the extent that they are concerned
with service and protocol specifications.

The specification of an abstract interface of a module is given by
enumerating the possible interaction primitives that may occur over the

-2 -

interface (including possible parameter values (determined by the module
initiating the interaction), and indicating whether the module, 1its
environment, or both may dinitiate the interaction), and defining the
possible orders of interaction. We note that the latter 1s often only
given informally, or not at all (it is assumed to be understood).

~Annex 1 defines a possible wnotation which allows to specify the
poossible interactions through an abstract interface without explicitly
defining the modules that interact though the interface. However, it is

necessary to refer to the roles that these modules play in this
interaction.

As an example we consider the abstract interface through which the Link

service is provided at some Link service access point The diagram below

shows the entities. involygg_
)

i - e |

Network layer Network
entity layer
%E\\\
' N
\
. Link layer \ Link
entity ‘\Link servie :
v acceaaepoin% layer

{ ‘ t {

Using the syntax defined in'Annex 1, the possible service primitivee
may be enumerated as follows.

/ﬂ: interacting ;dul{s have the
) — toles Muser ink-entity™,
1nt¢ructionl

respactively.
Link-service-access-point (link-entity, user) is

The user may initiate the followi
by user: interactions: i

init-request; ___ - .

. . - ’
tem-request; T === —e request for the initiation of the
send (d: user-data); _ lnk

by link-entity: -

e o —— — Lndtuum that an initietion of
init-indication; — the link is requested by the peer
term-indication; user.

receive (d: user-data);

end Link-service-access~-point;

~ This specification states that a module that interacts through a Link

interface must take the role of a user, or a Link entity. Depending on
its role it may initiate a certain number of interactions (indicated by

the BY clause), for example a user 'may initiate requests for link
initialization, or termination, or the sending of a block of user data.

The same notation may also be used for defining the interactions between -
several entities within the same layer, or between an entity and some

-3-

locally provided services, such as timers or buffer management. An

example is the following definition of the timer services used by the
Link entity implementing the Link protocol.

interactions
timer-interface (user, server) is
by user:
start (period: integer); — e
stop;) : 2; 1:“'““3.. :("thc " timar
by server: module e Cetact™, “stop”, and
time-out;
end timer-interface;

Here again, the possible orders of interactions are not specified.
‘However, it is understood that the time=-out interaction will only be

initiated by the server "period" seconds after it has received a start
interaction and no subsequent stop interaction.

2.2, Protocol data units (PDU’s)

A (N)-layer PDU is the unit of interaction that is exchanged between
peer (N)-entities through the (N-l1l)-service. As suggested in the
"Guidelines for the specification of Protocols for 0SI" (N 381), the
specification of a protocol is clarified by separating the specification
of the mapping of the PDU’s into (N-1)-layer service primitives (clause
6.2), and the "interaction behavior" (clause 6.1) of the protocol
entity. ,

It is therefore suggested to use the same formalism for the enumeration
of PDU’s as for the specification of the other interaction primitives
considered in the subsection above. Such an enumeration does not include
the specification of the mapping of the PDU’s into the (N-1) service
primitives, which must be given separately.

The following example defines some Link PDU’s using the notation of
Annex l. :

type -~~~ ara distinguisbad. (But only two

are involved for a given link, this
sequence-count: 0 .. 7; ~ is not showm by this

PDU St specificacion).
Link-PDUs (primary, secondary, balanced) is

¢ omu -~ Lf there is an entity implesenting
by balanced: the balanced class of procedures,

SABM; < ~ it may send the following PDU’s:
LI) . \ \ \ . . L
by primary: _~ "Bat asynchranous respouse mode"

SNRM; SARM; .~
by balanced, érimary, secqndary:
I (N, R: sequence-count; retemiin § .
PF=-bit: boolean; rane . »
data: user—datas; mbmt_‘“" fialds, s wil e

-4

DM;

~ end Link=PDUs;

2.3. The externally visible properties of a module

The behavior of a module, as seen by its environment, is characterized
by the following points:

(a) enumeration of the abstract interfaces through which the module
interacts with its environment. The specification of each interface
includes the following information: _—

(al) Enumeration of the interactions that may occur through the

- interface (for a possible notation see annex 1);

(a2) Specification of the permissible order of execution.

(b) global constraintg on the order in which the interactions through
different interfaces of the module may occur. (In the case of service
specifications, these constraints define how the interactions at the two
end-points of a connection relate to one another. In the case of a
protocol specification, these constraints specify the order in which
different PDU’s may be sent, and how the interactions at the (N)-service
access point of the entity relate to the sending and receiving of PDU’s
through the (N-l)-layer interface).

Different approaches may be useful for the specification of the global
constraints. The state transition model described in section 3 seems to
be a useful specification method in the case of protocol specification.
Another method may be preferable in the case of service specifications.

It is useful to separate the specification of the characteristics of
abstract interfaces. from statements that certain modules use certain
types of interfaces. For example, the characteristics of the (N)-service
access points are relevant for the (N)-service specification as well as
for the (N)-protocol specification. This leads to a specification method
in which interface - types may be defined independent of their use, and
the specification of ' a module includes an enumeration of all the
interfaces through which it dinteracts with its environment, with an
indication of the interface type for each of these interfaces. A
possible syntax for these specifications is defined in Annex l.

A separate '"connection language" may be used for specifying how the
different modules and entities within the Open Systems are connected
through these interfaces. However, such consideration go beyond the
scope of this paper.

To demonstrate these ideas, the following lines show the general outline
of Link service and protocol specifications, using the syntax defined
in Annex 1. It is noted that the Link service access point definitions
are used by the service as well as by the protocol specifications. The
PDU and timer interface definitions are only used by the protocol
specification and therefore included in that section.

. Specification of the Link layer service:

-5«

type

, user-data = ...}
interactions :
Link-sexvice~access-point ... (see above) - The module "link-servica® provides
<local constraints> e the service through two aceses
points.
module —

link~-service (access—point—l, access-point-z 5
Link-service-access-point (Link-entity)) 1is
<global constraints for the Link service> ‘~\\ o

" The link-sarvice -odulo plq- the
"1iok-entity™ role over beth
abstract interfaces.

Specification of a Link protocol (balanced class):

<type and abstract interface specifications of the Link layer service>
<type and abstract interface specifications of the Physical layer
service>
interactions
timer-interface ... (see above)
PDU
Link-~PDUs ... (see above) .
module ' : ﬁiquﬁzit
Link-entity (access-point: Link-service~access-point (soe#iaa)
peer: Physical-interface (user)
with Link-PDUs (balanced);
timer: timer-interface (user)) is o Moy b-muugﬁ..m.
<global constraints for the Link entity> — frassition model discuseed belew.

The specification of the Link entity states that such an entity

" interacts through a Link interface, where it takes the role of a service

provider, and also through a timer interface, where it 1is a user. It
also interacts through a Physical interface with a peer entity by using
the interactions defined as Link-PDUs. The <global constraints of the
Link entity> may be specified with the state transition model described
below.

3. A state transition model

The state transition model discussed in this section 1s - a descriptive
model that seems to be useful for the specification of protocols. Given
the specification of the abstract interfaces of an (N)-layer entity
ioplementing the (N)-layer protocol, as discussed in section 2, the
specification of the possible orders of interactions (point (b) of

section 2.3) wmay be given with a state transition model as described
below.

In order to define the possible orders in which interactions may be
initiated by the entity, the state transition model introduces the
concept of the "internal state' of the entity which determines, at each
given instant, the possible transitions of the entity, and therefore the
possible interactions with the environment. In contrast to this model,
other models (for example algebraic, and abstract data type approaches)
try to provide an equivglent specification without introducing any
notion of an internal structure of the specified entity.

-6~

"3.1. States and transitions

The specification of the possible order of interactions of a module (or
entity) is given in terms of

(a) the state space of the module which defines all (internal) atatea in
which the module may possibly be at any given time, and

(b) the possible transitions. For each type of transition, the deaigner
specifies the states from which a transition of that type may take
place, and the "next" state of the module. A transition may also involve
one or more interactions of the module with its environment (see below).

The model 1is non-deterministic in the sense that in a given state (at
some given time), several different transitions may be possible. Only
one of these transition is executed, leading to a next state which
determines which transitions may be executed next. If several
transitions are possible at some given time, the transition actually
executed will be determined either by the module’s environment (which
may initiate a paricular interaction) or by the implementation of the
module (which will usually determine in ~which order - different
independent abstract interfaces, connections, etc. are serviced) or by
the local system manager (which may determine in which situations
certain services are supported). These choices among several possible
transitions are not specified by the state transition model of the
protocol specification; it specifies all possible transitions.

An example is given in the figure below which shows the major states of
a Link protocol entity. The state space 1is defined graphically. Each
place of the diagram corresponds to a possible state. The transitions
are also shown graphically. Each arrow corresponds to a tramsition which
is possible when the entity 1is in the state which is left by the arrow,
and the next state of the entity is pointed by the arrow. The names of
the places have no formal meaning, but are useful for the understanding
of the specification.

3.2. Interactions

As mentioned above, some transitions (for many specifications, all) are
asgoclated with iInteractions. Some transitions are initiated by
interactions from the environment of the module, others initiate
interactions with the environment, and some do both.

Asgsuming that the environment of the module consists of modules that are
specified with the same state transition model, and assuming that the
transitions are not executed infinitely fast, the problem may arise that
the environment may not be ready for executing the interaction initiated
by a transition of the module (for example, the environment may be in
the process of executing another - transition involving other
interactions). There are the following two submodela which differ in the
way they handle this problem:

(a) the "simple" model: the module initiating the interaction must wait

with the transition until the environment is ready to execute the
interaction. ‘

(b) the model with queues: There 1is a queue associated with each
abstract interface through which a module receives interactions
initiated by the environment. If the module is not ready for executing
an interaction initiated by the environment, this interaction (i.e. all
information concerning the interaction, including possible parameter
values) 1is stored in the queue of the interface through which it is
initiated, and the transition of the module corresponding to this
interaction and its next state will be executed as soon as possible.

It is not clear whether the more complex model with queues is needed for
the specification of OSI protocols.

3.3. An approach to specification

Since finite state diagrams, as shown in the figure below, or equivalant
methods often lead to very complex specifications when a complete
protocol specification is required (partial specifications, such as the

. one in the figure below are usually quite nice), the following approach
to the specification of modules in the state transition model 1is
proposed. This approach combines the simple concept of states and
transitions as shown in the figure below with the power of a programming
language.

The state space of the module 1is specified by a set of program
variables. A possible state is characterized by the values of each of
_these variables. One of the variables may. be called "STATE". It
represents the "major state" of the module and its ~values may be
graphically represented as shown in the figure below.

As an example, the following lines specify the state space of an entity
implementing the Link protocol, using the syntax of Annex 2.

var
VS, VR, VB, Unack: sequence~-count;
Count: 0 .. N2; —
State: (disconnected, information~transfer,
FRMR-condition, DISC-requested);

— Thess major staces are graphically
Py rapressnted in the disgram at the
end of the paper.

The possible transitions of the module are defined by the specification
0of a number of transition types. Each transition type is characterized
b

(Z) an enabling condition: This is a combination of a boolean expression
depending on some of the variables defining the module state, and
(possibly) the specification of an interaction initiated by the
environment. A transition may occur in a given state if and only if the
enabling condition has the value true, and the interaction in question
(1f it exists) is initiated by the environment. :
(b) an action: This is a programming language statement which defines an
action to be executed as part of the transition which may change the

values of (some of) the variables, and may specify the initiation of
interactions with the environment.

As an example, the following lines specify some transition types for a

Link entity, using the syntax of Annex 2.

when peer .DISC : when a disconnect frams arrives and
the entity is in the
when State = 1nformation—cransfer "information-tranafer" state ...

do begin
accass-point.term-indication;
peer-UA' send a UA frame to the pasr ut;.t;-_
timer.8tOpP3 stop the timr .
State - ¢= DISC~requested end
when State = DISC-requested T

when a discoansct frame arrives and

do begin g emity i dn o che
peer .DM; I8C-requested” state ... -
State := disconnected end
else;
when (VS not = VB) and (VS < Unack + modulus - 2) Miormation-tramsters’ e
and (State = information-transfer) eutity ey send a8 foformerio
do begin . ::::l 2:07!«!:! vs :oinu to user
pem:.I (vs, VR, "ys-th buffer"); visdor ts cuany. " 40 the send

:= (VS + 1) mod modulus end;

when peer.I (NS, NR, data)
when State = information-transfer) and (VR = NS) fram is received ...
do begin
access-point.receive (data);
VR := (VR + 1) mod modulus;
Unack := NR end
else;

The first transition type - reads as follows: When a DISC
protocol-data~-unit arrives from the peer entity and the given entity is
in the information transfer state, a discomnnect indication is passed on
to the user and a UA PDU is sent to the peer entity in response to the
DISC. The timer is stopped. The next major state is "DISC-requested".

M th next expected informatiom

Annex 1: Syntax for specifying the interactions of a module

1. . Introduction

This annex describes a possible syntax for specifying types of abstract
interfacea and modules.

This syntax is largely based on the syntax and semantics of -the Pascal
programming language (see for example Jensen and Wirth: "Pascal: User
manual and report", Springer Verlag, 1974), and uses the general
approach of wusing type definition facilities and type checking for
allowing the implementation of automatic consistency checking, which
usually detects a large proportion of those errors in a specification
that cannot be found by syntax checks. .

2. Language elements taken from Pascal

The following language elements of the Pascal programming language are
included in the specification language without any change in syntax and
semantics: ‘

Type and constant definitions including
scalar types
subranges
record types
array types

Predefined types:
boolean

integer
character (defined by some ISO standard)

3. Additional language elements

The following additional language elements are defined to support the

specification of service primitives, PDU’s and other interaction

primitives, and the definition of modules and their abstract interfaces.

3.1. Abstract interface definitions

The possible interactions at a given type of abstract interface are

' enumerated by a definition of the following form:

<interface definition> ::= INTERACTIONS <interface type id>
(<role list>) 1S <interactions> ;

<role list> $:= <role id>
| <role list> , <role id>
<interactions> ::= <BY clause>

| <interactions> <BY clause>

<BY clause> ::= BY <role list> : <interaction list>
<interaction list> ::= <interaction>

| <interaction list> <interaction>

- 10 -

<interaction> ;:= <interaction id>. <interaction parameters> ;

The declaration of <interaction parameters> 1is in the same form as

function parsmeter declarations in Pascal (i.e. for each parameter its
name and type).

3.2. Module definitions

The definition of a module contains the declaration of all abstract
interfaces through which the module interacts. This includes the service
access points through which the communication service i1s provided as
well as the system interface for timers, etc. and the access point to
the layer below, through which the PDU’s are exchanged. The following
syntax is proposed:

<module definition> ::= MODULE <module type 1id>
(<interfaces>) IS

<global constraints>
<interfaces> ::= <interface declaration>

| <interfaces> ; . <interface declaration>

" &interface declaration> ::= <interface id> :

<interface type 1d> (<role 1d>)

The <role i1d> indicates which 1role the entity plays as far as the
declared interface 18 concerned. We note that the distinction of these
roles permits the checking that the invocation of interactions in the .
conditions and actions of transitions is consistent with the possible
exchanges defined in the interface definition. .

3.3. PDU definitions

The definition of PDU’s is given in the same form as the definition of
interactions over interfaces. The syntax is as follows.

<PDU definition$ t:= PDU <id for PDU’s> (<role list>)
IS <interactions> ;

The use of PDU’s over a given interface, for instance - over the access
point to the service provided by the layer below, 1s declared together
with the interface declaration in the module header in question. The

syntax for such a combined interface and PDU declaration is the
following.

<interface declaration> ::= <interface 1d> : <interface type id>
(<role id>) WITH <id for PDU’s> (<role 1id>)

- 11 -

.

Annex 2: Syntax of state transition model
1. Introduction

Thia annex describes a syntax for the state transition model described
in section 3 of the paper. It uses the same approach as Annex 1 as far
as it uses many language elements from Pascal, extended with some
elements which are particular to the transition model.

It is assumed that the overall structure of a module is specified in the
notation defined in Annex 1. This annex is only concerned with the
<global constraints>, i.e. a specification of an internal structure of
the module which determines the possible order of interactions with the
environment. ‘

2. Specification of the state space

The specification of the variables defining the state space of the
module follows the Pascal syntax for variable declarations. The (major)
state variable (which has the identifier "STATE") is handled like any
other variable of the entity.

3. Specification of the transition types

In the simplest case, each transition type is specified by a clause of
the form WHEN "enabling condition" DO "action". In order to simplify the
specification of different transitions with similar enabling conditionms,
constructions with embedded conditions, s8such as the following, are
allowed:
WHEN "condition 1"

WHEN "condition 2" DO "action 12"

WHEN "condition 3" DO "action 13"

ELSE;
which specifies the following two transition types
WHEN "condition 1 and condition 2" DO "action 12";
WHEN "condition 1 and condition 3" DO "action 13";
The ELSE keyword makes the construction non-ambiguous.

The specification of a state transition module, defining the possible
orders of interactions of a module, has the general form

<globi1 constraints> ::= <state space definition (see above)>
<definitions of functions and procedures>
TRANSITION <transitions>

The syntax of the transition clause with embedded conditions has the
f ollowing syntax.

<trangitions> ::= <embedded transitions>
| <transitions> <embedded transitions>
<embedded transitions> ::= <yhen clause> ;
| <when clause> <embedded transitions>

-12 =

<when clause>

::= <yhen condition> <when list>
| <when condition> <action>
<when list> ::= <wyhen clause> ELSE
| <when clause> <when list>
<when condition> ::= WHEN <boolean expression>
| WHEN <incoming interaction>
<action> ::= DO <action list>

where <action 1list> 1is a Pascal statement making reference to
interactions initiated by the transition.

References to interactions (to incoming interactions in the enabling
conditions, and to initiated interactions in the actions) are written in
the '"dot notation" (which 1is also used by other languages for the
interaction with internal and/or external program modules). The notation
is demonstrated by the example in section 3.3 of the paper.

The parameter identifiers used with incoming interactions are to be
congsidered formal parameters within the scope of the tramsition, in the
same way as the parameter identifiers of a function definition are
considered formal parameters within the body of the function. This
implies that all assignments to variables must be made explicitely (see
for example the last assignment in the last transition of the example in
gsection 3.3 of the paper. ‘

-13 -

F:g wre
'‘Formal_specification of LAP B 1ink establishment and
clearing procedure executed by the DCE (as of 1938)

~ Transition diagram: When-polled

4 ‘ When-DISC
A dis=-
.connected

.condition

FRMR- :
repeated
. DISC-request
{nformation
transfer
\J Transmit
New= ' A

_ Packet

Annexe 2

- 29 —.

Syntaxe du langage LSP

1.

DESCRIPTION DU LANGUAGE LSP

LES UNITES LEXICALES

A) LES IDENTIFICATEURS
IDENT = <LETTRED #L <LETTRED> ! <CHIFFRE> ! ‘_‘ 1#

CLETTRE> = ‘A’ ! ‘B’ ' ..., L &4
<CHIFFRE> = ‘0* ! *1’ ! ,,,. ! ‘9«

B) LES ENTIERS
ENTIER = +[<CHIFFRE> J+
<SIGNE> = '+’ ! /=’ | VIDE
C) LES REELS

REEL = ENTIER [‘.’ ENTIER [‘E’ <SIGNE> ENTIER ! VIDE 1!
‘E’ <SIGNE> ENTIER

D) LES CHAINES DE CARACTERES
CHAINE = */* +[<CARS 1+ ’*’
<CARS> = TOUB LES CARACTERES SAUF ‘‘‘/ , PLUS ‘’’’ (LA SUITE
DE 2 APPOSTROPHES)
E) FIN DE FICHIER
FDF
LES OPERATEURS

tomt
e
e
ot
l*‘
l/,
l(l
l,l
'=,
’, 4
’ ’
]
A
L4 ks
l<>l
mt
l<’
l>=l
,>l
Y
" L4

F

-~

¢) LES MOTS RESERVES

IANDI
‘ARRAY/
‘BEGIN’
‘BY

‘FORWARD *
‘FOR /
‘FUNCTION®
i

. NTERACTIONS/
,

1
1
I
LABEL
MODULE /
‘™

o00Z23

TNO=OOPNZ

~ ~Hrogm <~
Rl

’
PROCEDURE ‘
RECORD’
JREPEAT’
‘SET
‘THEN'
'TRANSITIDNB

:

:

:
‘PACKED*
*pD

‘H} LES IDENTIFICATEURS PREDEFINIS

I) LES LIMITES RELIEES A L‘ANALYSE LEXICALE
~ LA _LONGUEUR MAXIMALE (EN CARACTERES) D‘UN IDENTIFICATEUR
EST 100, 000

- LESWRE DE CARACTERES SIGNIFICATIFS D’'UN IDENTIFICATEUR

- CHAINE DE CARACTERES COMPORTE AU PLUS 140 C ACTERES
lké PEUT ETRE ETALEE SUR 2 LIGCNES. AR T

LE MAXIMUM DE CARACTERES RECONNUS DANS UNE LIONE EST DE 120.
- SUR LE “LISTING* PRODUIT PAR LE PROGRAMME LSP ,LE NOMBRE DE
LIGNES DANS UNE PACE EST DE 60

!

2. LES REOLES SYNTAXIGUES DU LANGUAQE LSP

<AXIOMED : <PROC> FDF
<ero0> : LR R b B
<PDEFCONST1> : ‘CONST’ +[<DEF-CONST> *;‘ 1+
<PDEFTYPE1> : ‘TYPE’ +[<DEF-TYPE> ‘;‘’'1+
CINTERFACE-DEFINITIOND = ‘INTERACTIONS’ IDENT :

. (/ LISTE-IDENTD> ‘)’ ‘I8’ CINTERACTIONSD
<LISTE-IDENT> . = IDENT ®#L[‘,’ IDENT 1»
<INTERACTIW ; +[<BY-CLAUSED 1+
<BY-CLAUSE> : ‘BY’ <LISTE-IDENTD> ‘:’ CINTERACTION-LISTD
<INTERACTION-LIST> : +[<INTERACTIOND1+
CINTERACTIOND : IDENT <INTERACTION~PARAMETED> ‘3¢ ! *;
<INTERACTION-PARAMETED> = ‘(’ CLISTE-IDENT> ‘:’ IDENT

#L ‘3 QLISTE-IDENT> ‘:‘ IDENT 1# ‘)’
! VIDE

<P : ‘PDU’ IDENT ‘(‘’ <LISTE-IDENT> ‘)’ ‘18’

. CINTERACTIONS>
<MODULED = '‘MODURE’ IDENT ‘(’ CINTERFACES> ‘)

. ‘18’ <CLOBAL-~CONSTRAINTS>

<INTERFACES> = CINTERFACEDECLARATIOND
#L7; 7 CINTERFACEDECLARATION> 1#

: * .
<INTERFACEDECLARATION> ; <.ISTE-IDENTD> ‘:‘’ <TYPE-NOUVEAU>

<TYPE-NOUVEAUD> = IDENT ‘(’ <Q.ISTE~IDENT> ‘)°‘
L ‘WITH’ IDENT ‘(’ <LISTE-IDENT> ‘)’ ! VIDE 1

‘OF ¢ <TYPE-NOUVEAUD

* .
<OL0§AL-CCN8‘I’RAINT8) : O’C?RDEA%;¥?RC'>B§’-DECL-PRDC°FM> ‘TRANSITIONS
<TRANSITIONSD> ; +[L <EMBEDDED-TRANSITIONS> 1+
<EMBEDDED-TRANSITIONS> : +[<WHEN-CLAUSE> 1+ ‘3’ .
SWHEN-CLAUSED> : CWHEN~-CONDITION>. € <WHEN-LISTO ! <ACTIOND]
<WHEN-LIST> : +L CWHEN-CLAUSED> 1+ ‘ELSE’ <ACTION-LISTY>
<ACTIOND : ‘DO’ <ACTION-LIST>

CWHEN~CONDITIOND = ‘WHEN’ [<EXPRESSION> !
IDENT #L CINDICAGE> 1# <DESIONE-CHAMPSD
[‘¢’ QISTE~IDENTY> “)’.! VIDE 1 1

]
<SACTION-LISTY>: -
IDENT <CBUITEAA>

! ‘BEQIN’ CACTION-LISTY #f ;¢ CACTION-LIST> 1+ ‘END’

! ‘CASE’ CEXFREBSi?Q' ‘OF <W-LIST-CONSBT~CASD> ;' CACTION-LIST) ! VIDE b |

L 18T CONGToCABS o cAbTIONCL 18T> 1% “END
! ‘REPEAT’ <ACTION-LIBT> ®L *; ¢/ CACTION-LISTD 1# ‘UNTIL’
’ CEXPRESSIONY
! ‘WHILE’ CEXPRESSIOND> ‘DO’ <CACTION-LISTD
t ‘FOR’ IDENT ‘:=’ CEXPRESSIOND
C ‘TO’ ! ’DOWNTD’] <EXPRESSIOND ‘DO’ <ACTION-LISTY
! 'MITH’ CBL-ACCES-VAR> ‘DO’ CACTION-LISTY
! CENONCE-SI-NOUVEAU>
[]

‘ARRAY’ ‘L’ <TYPE-SIMPLED> L ‘, ’ <TYPE-SIMPLE> 1 ‘3’ .,

CSUTTEAMD = #L CINDICAGE> & [<DESIONE-CHAMPE> CINTERAD

I
¢t CPOINTAQED> <SUITE-AFFECY>
1 . m’ CEXPREGBIOND
. ! VIDE 1

o
-~

o mrareon

<INTERA> -"(' <EXPRESBIOND> #L ‘, * CEXPRESSION> 1# ‘)’
! CSUITE-AFFECY
! VIDE
L
CENONGE-SI-NOUVEAU> = ‘IF’ CEXPRESSIOND ‘THEN’ <ACTION-LISTD

[‘ELSE’ <ACTION-LIST> ! VIDE 1

L
<P-DECL-ETIQD <P-DEF-CONST> <P-DEF-TYPED> <P-DECL-VAR>
<P-DECL~PROC-FONC> <P-ENONCED> -

<BLOC>

£ ‘LABEL’ ENTIER #[‘.’ ENTIER)& 1.

<P-DEC
L-ETIND Y1pE

£ ‘CONST’ <DEF~CONST> ‘s’ «L <DEF-CONSTD ‘s ‘ 1

<P-DEF-CONST>
VIDE

<P-DEF-TYPE> L ‘TYPE’ <DEF-TYPED> ‘;’ "3 <DEF-TYPED> ‘1’ 1» 3

-
.
-
'
H
-
i
H
-
' 'VIDE
H
CP-DECL-VAR> = 5 pg VARY CDECL-VARD /) ¢ #L CDECL-VAR> *i’ J% 3
[
<P-DECL-PROC -F ’
CL-PROC °::-°> #C [<DECL-PROC> ! <DECL-FONCY> 1 “1 * Je
CP-ENONCED = CENONCE-COMPOSE>
‘ .
CDEF-CONST> 5 IDENT ‘=’ CCONSTANTED
CSIGNE> € ENTIER ! REEL i IDENT 1 1
CONSTANTED = Lar
.
<SICNE> s mr 1 ser 1 VIDE
CDEF~TYPE> 3 IDENT ‘=’ CDENOTE-TYPE>

<DENQTE-TYPED> ll‘ <TYPE-SIMPLEY> ! <TYPE-STRUCTURED 2..WE4OIm>

<TYPE-SIMPLED =
<TYPE-ENUMERED
LC’+ ¢ =1 [ENTIER ! REEL ! IDENT] ! CHAINE 1
‘.. ¢ <CONSTANTED>
€ ENTIER ! REEL 1 ‘..’ <CONSTANTED>

IDENT [‘.. ' <CONSTANTED> ! VIDE 1.

‘e

<TYPE-ENUMERED = ‘¢’ <LISTE-IDENT> ‘)’

(TYPE-BTRUCTLREZ
| J

€ [‘PACKED’ ! VIDE) <TYPE-STRUCT-DET> 1

CTYPE-STRUCT-DET> : ;
CIYPE-TABLEAUY ! <TYPE-STRUCT> ! - Le>
T ITYPE-FICHIER> = CTYPE-ENSEND

| J

1

TYPE-TABLEAU> = 'ARRAY' ‘L! CTYRE-SINPLED e /. * CTYPE-SIMPLE> 1% '3/
< ‘OF ¢ <DENOTE=TYPED>) MPLE !

L]
<TYPE=STRUCT> = ‘RECORD *
. <LISTE=-CHAMPSD> ‘END’

- > L <SECT!DN-S‘I’RUCT> L ¢ <LISTE-C s> !
<LISTE-CHAMP - AR AGes © V'IDE Y HAMP VIDE 1

<SECTION-STRUCTD>
w <LISTE~IDENT> ‘:’ <DENOTE-TYPE>

*
<PART~VARIANTED= ‘CASE’ <SELECT=VARIANT> ‘OF‘
CVARIANTE2
. #L ‘) ' <VARIANTED)&

<SELECT-VARIANTD
= IDENT L’:’ IDENT ! VIDE 1

<VARIANTE>

<LIST=CONST-CA8> “:’ ‘(’ <LISTE-CHAMPSD> ‘)¢ ! VIDE
*

CLIST-CONST-CASY> = <CONSTANTED #L ‘, ’ <CONSTANTED> 1#
L]

<TYPE-ENSEMBLED>= ‘SET’ ‘OF’ <TYPE-SIMPLE>
. .

(TYPE-FICHIER): ‘FILE’ ‘OF’ <DENQTE-TYPE>

<TYPE-POINTEUR>Z ~ ‘~* IDENT

<DECL~VAR> ; <LISTE-IDENT> ‘: ‘ <DENQTE-TYPED>
<ACCES~VAR> = IDENT #L <INDICAGED ! <(DESIGNE-CHAMPSD ! <POINTAGED> 1w
*
<INDICACE> ; ‘L’ <EXPRESSION> #L ‘,‘’ <EXPRESSIOND> 1% ‘]3¢
<DESIGNE-CHAMPSY
= ‘. ' IDENT
*
<CPOINTAGE> ; o~
<DECL-PROCY> - ‘PROCEDURE’ _IDENT [<lL-PARA=| mPEt.) t VIDE 1 /)¢
. T <BLOC> ! ‘EXTERN’ ! ‘FORWARD’ 1
<DECL-FONC> = 'I;LNCTIDN’ IDENT
[[<L-PARA-FORMELD> ! VIDE 3} ‘:’ IDENT 1]
. ‘i L 'EXTERN’ ! ‘FORWARD’ ! <BLDCO 1

Q—PMA—FDRHEL); (¢ CS—PARA-FORMELD> #L ‘)’ <S-PARA-FORMEL> 1% ‘)’

<{S-PARA-FORMELD>= CSPEC-PARA-VALD> ! <SPEC~VAR-PARA> ! <SPEC-PARA-PROCY !

. <SPEC-PARA~FONC>

<SPEC—PARA—VAL>: <LISTE-IDENTD> ‘:‘’ IDENT

(SPEC-VAR—PARA): " 'VAR‘’ <LISTE-IDENT> ‘:‘/ IDENT

<SPEC-PARA-PROCY
s

<SPEC~-PARA-FONCY
-

‘PROCEDURE’ IDENT [<L-PARA-FORMEL> ! VIDE 1

‘FUNCTION’ IDENT
. L <L.-PARA~FORMEL> ! VIDE 11 ‘:’ IDENT

<FACTEURD> = REEL ! CHAINE ! ‘NIL’ ! ENTIER .
! CCONSTR-ENBY> ! ‘{’ <EXPRESSIOND> ‘)‘ ! ‘NOT’ <FACTEURD>
! IDENT [#C <INDICAGED> ! <DESICNE-CHAMPS> ! CPOINTAQED> I#»
' ‘{’ <EXPRESSION> #(’, ’ <EXPRESSION> 1® ‘)’ 1

.
<CCONSTR-ENB> - Vigé g I;J(})ESIGIE—HEMBRE) #L ‘) * <DESICNE-MEMBREY> 1# 1 !
.
QESXQEMRD; <EXPRESSION> [L ‘.. <EXPRESSION> 1 ! VIDE 1
<TERMED> ; <FACTEURD #L <OPER-MULTD <{FACTEURD> 1#
CEXPR-SIMPLE> = <BIONED> CTERMED> #L COPER-ADD> CTERMED 1w
<EXPRESSIOND = . CEXPR-SIMFLE> C [COPER-REL> CEXPR-SIMPLE> 1 ! VIDE 1
COPER-MAT> = ‘we 3 r70r CDIVY Y MDD ! CAND’
<OPER-ADD> 3 A A I .
<DPER-REL> : Y - T B2 T R S B2 ST T YRS (T
@R = R bt Bodes-smuen 3

(ENCNCE-S!H’LE): VIDE ' <AFFEC-APPELD> ! mmpcs-w»

<AFFEC-APPELD> = IDENT [<SUITE-AFFECD

‘{’ <EXPRESBION> #L ’, * <EXPRESSION> 1% ‘)’
<L.-PARA-LIRE>

<L-PARA-LIRELN>

<1.-PARA-ECRIRE>

<L-PARA-ECRIRELND

VIDE 1

o

]

» C INDICAGED> ! 8I —~CHAMPS)> ! OINTAGED s
<SUITE-AFFEC> = [BS-: (EXPRESBICl(gE ONE: <POI

. .

CENCNCE—ALLERA): ‘Q0TO’ ENTIER

<ENONCE-! CENONCE-COMPDSED> ! <ENONCE-CONDY> ! ‘CENONCE-BOUCLED>
€ BTRWT)E <ENONCE-AVECD

:
:
;

: *BEQIN’ <BEG-ENONCES> ‘END’
CSEG-ENONCES> = CENONCED #0) CENONCED 1e
<ENONCE—COND> = <ENONCE-S1> ! " CENONCE-CASY>
CENONG ‘IF°’ CEXPRESSIOND ‘THEN’ <ENONCE>
E-SI> : CPART-BINOMNO ! VIDE 3
CPART-SINON> = ‘ELSE’ CENONCED
CENONC! LGAE! CEXPRESSIOND /OF + Q_ELEMENT-CAS>
E-CAS> = *i * CL-ELEMENT-CAS> 18 END’ ,
.

<L-ELEMENT-CASD= nE(H—LlBT-CCNB‘T—CAB) ‘i 7 <ENONCED 2

C
LI 4 ¢

(EIWCE-IMLD: CENONCE-REPETERD ! <ENONCE-TANTGUED ! <ENONCE-POURD>

CENONCE-REPETERY o
E = ‘REPEAT’ <SEG~ENONCESY> ‘UNTIL’ CEXPRESSION>
CENONCE-TANTGUED>
ANT . ‘WHILE’ <EXPRESSIOND ‘DO’ <ENONCED

CENONCE-POURD ‘FOR’ IDENT ’:m’ CEXPRESSIOND

: L ‘TO‘ ! ‘DOWNTO’ 1 <EXPRESSIOND ‘DO’ CENONCED
CENONCE-AVEC> = ‘WITH’ <L-ACCES-VARD ‘DO’ CENONCED

*
<L-ACCES-VAR> = CACGES-VAR> #L *, / <ACCES-VARD 1#
<L-PARA-LIRED> = ¢+ CACCES-VAR> ®L , / CACCES-VARD 1w ’)’
<L~PARA-LIRELND= Q.-PARA-LIRE> ! VIDE

*
<L-PARA-ECRIRED= ¢+ CPARA-ECRIRED #[“, ¢ CPARA~ECRIRE> 1 *)’

* . .
<PARA-ECRIREY> <EXPRESSION>

- U0 o <GXPRESSIOND € [*:¢ CEXPRESSIOND 1 ! VIDE 313

. ‘

<L-PARA-ECRIRELND
- Q.~-PARA-ECRIRE> ! VIDE

<S—INDICAGED = ‘[’ <EXPREGSIOND #L ‘, / <EXPRESSION 1% '3/

]
<SL-ACCES-VAR> : G-MCEB—YAR) L L SR (ACCES”VAQ) I
<5-ACCES-VARY> = IDENT #[<88-INDICACE> ! CDESIONE-CHAMPS)

. ! CPOINTAQED J# :
<SS—-INDICAQE> : ‘L’ CEX#REESIDN) #L !, ' CEXPRESSION> I# '3/
{SW-INDICAQED> : ‘L’ <EXPRESSIOND> #L ‘, * <EXPRESSION> I ‘1
CW-LIST-CONST> = CW~CONSTANTED> #L /) ° {W-CONSTANTED> 1#

L]
<W-CONSTANTED> : L <SIGNE> [ENTIER ! REEL ! IDENT 1 1 ! CHAINE

LI LI CIRI DI PRI I DI D FITLY bt b b o m b s o ime
SON=OSONT A RUWNOBDNTURURO BTN TR WA

LISTE DEB

MESSAQEE D’ERREURS

IDENTIFICATEUR ATTENDU.
RE;EE§T¢ENDUDU

CHAINE ARACTERES ATTENDU.
FIN DE FICHIER AT TENDU.
JCONST / TENDU.

I‘ P ’

ATT
’INTERACT%BNB' ATTENDU.

‘BF / ATTENDU.
’TRANS!TIGNS’ ATTENDU.
‘E ATTENDU.

NDU.
‘PACKED * ATTENDU.
‘RECORD*_ATTENDU.
JSET’ ATIENDU.
F!LE’ ATTENDU

Y
r s

A ENDU
'PR CEDURE‘ ATTENDU.
‘E ATTENDU.
’FDSHARD' ATT DU

‘IN’ ATTEND

‘GOTD’ A

CARACTtN ILLEGAL

ENTIER T ROS.

PARTIE FRACTIONNAIRE OoP @R
CHAI DEBORDANT LA LIGNE IN

E
NE BOR DIT
TROP DE_CHAINES DE CARACTERES DA

CHAINITERDP LONGUE, UNE CHAI

PARAS

SUBSTITUTION, :

DEBUT DU MECANISME DE RECUPE
FIN DU MECANISME DE RECUPERA

UN DES ROLES DE LA DERNIERE

REPETITION D‘IDENT!FICATEURS
TYPE_NON_ DECLARE.

E.
NS_LE RAMME
NE PEUT CDNTEN!R AU PLUS 140 CARACTERES.

ATIOND -BREUR.
ISTE NE FAIT_PAS PARTIE DE LA LISTE DE LA DEFINITION INITIALE.
DANS UNE LISTE INTERDIT

UNUIDENTIFICATEUR DE VARIABLE NE PEUT ETRE LE MEME QUE CELUI D'UNE INTERFACE DECLAREE DANS LE MODULE.

PD N_D|

INTERACTION NON DEC AR

UN DES ROLES DE LA LISTE EST

NDHBRE D’INDICE DE TABLEAU. E
OLE INTERDIT D’APRES LA DE

IDENTIFICATEUR(S) DE PARAMET

ABSENT DANS LA DEFINITION DE L INTERACTION (OU DU PDU).
N ?;?SgCO SVECELA DECLARAT
RE(B) EN DESACCORD AVEC LA DEFINITION DE L‘ACTION.

U

NOMBRE DE PARAMETRES EN DESACCORD AVEC LA DEFINITION.

