
I I
1

1

UNIVERSITÉ DE MONTRÉAL

Formal Description Techniques for Protocols

Final Report for DOC contract No. 0SU82-00218

by Gregor v. Bochmann

Département d'informatique et

de recherche opérationnelle

Université de Montréal

March 1983

Oa

DÉPARTEMENT D'INFORMATIQUE

ET DE RECHERCHE OPÉRATIONNELLE

Faculté des arts et des sciences

Université de Montréal

C.P. 6128, Succursale "A"

Montréal, P.Q.

H3C 3J7

by/Gregor v./136-Chmann

/

NICATI04,CINilb

1984

,LIBRA'RY
•

(:),Le., c_ ik.Q_ol 	i d

91 	?
C655
B634
1983 1

Fàrinal Description Techniques for Protocols .f

Final Report/for DOC contract No. 0SU82-00218

Département d'informatique et

de recherche opérationnelle

Université de Montréal

March 1983

\ Library Queen

`31eiliC. 1 7 1998

, 	Industrie Canada

Bibliothèque
Queen

This report was prepared for the Department of Communications Canada

under contract No. 0SU82-00218. The report presents the views of the

author. Publication of this report does not constitute DOC approval of

the report's findings or conclusions. This report is available outside

the Department by special arrangement.

- 2 -

TABLE OF CONTENT

1. Introduction

2. Overall view of the contract activity

2.1. Standardization activities

2.2. Translator for formal specifications

3. Proposal for future work

4. More detailed account of the standardization activities

4.1. Contributions discussed by topic

4.2. List of contributions presented at various international

meetings

Annex 1: "Architectural specification concepts", working document

of Subgroup A of ad hoc group on FDT of WG1, ISO

TC97/SC16 N1346.

Annex 2: "Extended finite state machine specification", working

document of Subgroup B of ad hoc group on FDT of WG1,

ISO TC97/SC16 N1347.

Annex 3: "Formal description of the Transport service"

Annex 4: "Example description of the Transport Service", by G.v.

Bochmann and K.S. Raghunathan (June 1982)

Annex 5: "Some enhancements to the syntax of the Subgroup B FDT"

Canadian contribution to FDT meeting in Catania (Nov.

1982)

Annex 6: "Semantics of spontaneous transitions" 	with 	annex

entitled "Examples for the use of non-deterministic

extended state machines"

Annex 7: Proposals for contents for sections 3, 4 and 7 of the

Draft Recommendation, Canadian contributions to CCITT

Q39/VII (Nov. 1982).

Annex 8: "Comparison of FDT proposals from ISO (Subgroup B) and

CCITT" (July 1982)

Annex 9: "Towards a common FDT for ISO and CCITT" (Canadian con-

tribution to WGI meeting in Paris (Febr. 1983)

Annex 10: "Proposal to produce an FDT standard" (Canadian con-

tribution to WGI meeting in Paris (Febr. 1983)

Annex 11: Meeting reports

Annex 12: "A parser for an FDT language" by G. Gerber and G.v.

Bochmann (March 1983)

4

1. Introduction

The importance of formal description techniques (FDT)

for the design and documentation of computer communication

protocols and services has been acknowledged by the ISO/TC97

Subcommittee on Open System Interworking (SC16) through the estab-

lishment of a Rapporteur's Group on FDT within Working Group 1. A

rapporteurs group for studying this question has also been estab-

lished within the Study Group VII of the CCITT. The work under

this contract was principally aimed at contributing to the work of

these study groups, and has resulted in a number of contributions

to the Canadian and international standard committees working on

these questions. It is a continuation of previous work of this

author in the area.

During its first meeting in Chicago (January 1980) the

ISO Special Rapporteur's Group on FDT established a program of

work which foresees the selection of one or more FDT's for use

within SC16. The purpose of these FDT's is to provide a means for

precisely specifying protocols and services of the different

layers of Open Systems. These formal specifications should be

unambiguous and helpful for the implementation and for the

verification of the protocols. Contributions were asked for on

proposed FDT's and their application to the test cases of the

Transport protocol and service.

1

1
I.

2. Overall view of the contract activity

2.1. Standardization activities

Within the framework of this contract, the author was a

Canadian delegate at a meeting of the CCITT Rapporteurs Group on

Question.VII/39 in Geneva. The author was also delegate at a ISO

TC97/SC16/WG1 meeting in Paris, as well as in a meeting of its ad

hoc group on FDT in Catania and a meeting of Subgroups B in

Montreal. The author is editor for the working papers of both

subgroups A and B (see annexes 1 and 2) and chairman of Subgroup

A. The work under this and a previous contract had a strong

influence on the development of the extended state transition FDT

of Subgroup B of the ISO TC97/SC16/WG1 ad hoc group on FDT. Much

of the effort during this contract period was aimed at bridging

the gap between this FDT and the FDT developments in CCITT. The

author represented the ISO ad hoc group on FDT at the CCITT meet-

ing in Geneva.

We think that our contributions have advanced the

development of FDT's for the specification of Open Systems

protocols and services. However, further work is required for

obtaining a single FDT which is accepted by both ISO and CCITT.

-6-

2.2. Translator for formal specifications

_One of the activities undertaken under the present con-

tract was an improvement of a translator program which was

developed in 1981-82 at the Univerity of Montreal. The purpose of

such a program is to automatically translate a formal description

of a protocol given in the extended state transition model into a

set of Pascal declarations and procedures which could be incor-

porated into some run-time support system, thus leading to a

semi-automatic implementation approach for protocol entities from

the formal protocol specification. The improvements performed

under the present contract concern the following issues:

(a) Adjusting the accepted syntax to follow more closely the

present language syntax developed by Subgroup B of the ISO ad

hoc group on FDT.

(b) Improving the handling of syntax errors found in formal

specifications. The above mentioned translator program has

only very rudimentary error recovery facilities.

(c) Developing a method by which several modules, each specified

by an extended state transition machine, could be translated

into Pascal procedures such that they can be combined into a

single Pascal program executing all these modules in a semi-

parallel fashion. This would allow the integration of several

protocol layers into a single program implementing the

protocol entities of all those layers.

- 7 -

Work on points (a) and (b) have led to the parser

for formal descriptions described in Annex 12. This parser

has good error recovery properties, and accepts a syntax

which is close to the present proposal of subgroup B of the

ISO ad hoc group on FDT. (The syntax is still undergoing

slight changes within the standardization groups; it is not

possible to follow these changes immediately).

Work on point (c) has led to a model for translat-

ing formal specifications which has been tried out with the

example of the alternating bit protocol. It seems quite

general in nature, and we plan to implement a translation

scheme based on this new approach.

3. Proposal for future work

We think that a natural continuation of the work per-

formed under this contract would be a continuing support of the

ISO and CCITT discussions on FDT's. We think that Canadian input

would be much welcome in view of its past participation.

In order to increase the usefulness of the proposed POT,

the following additional research activities are proposed:

a) To apply the method to several protocols and services at

levels higher than the transport layer in order to test its

applicability in all areas of OSI.

- 8 -

b) To improve the protocol implementation tools which could

partly automate the production of a protocol implementation

from the formal specification of the protocol.

To improve the tools that could be used to test that a

protocol implementation conforms with the protocol specifica-

tion. Such tools could be useful for the certification of

communication software and systems.

d) To develop a protocol simulation tools that would make simula-

tions of communication subsystems based on the formal

specifications of the protocols to be used in the system.

Such a tool.would be useful during the development of protocol

standards for analyzing the behavior of the protocol, finding

eventual malfunctions (deadlocks, etc.), and determining the

efficiency of its operation.

4. More detailed account of the standardization activities

4.1. Contributions discussed by topic

The following paragraphs describe the different con-

tributions which were submitted to the international standard-

ization meetings, mentioned in section 2.1. Most of these

contributions were first submitted to the responsible Canadian

standardization committee (CSA comittee on OSI, or NSG VII for

CCITT), and some of the contributions were submitted as "Canadian"

papers. Others were submitted to the international meetings as

"expert papers".

9

The different contributions are discussed in the follow-

ing by topic. 	A complete list of contributions is given in

section 4.2. below. 	Meeting reports concerning international

meetings attended for the work under this contract are included in

Annex 11.

4.1.1. Transport protocol specifications

A Transport protocol specification for the classes 0 and 2

[TP 2], which was prepared for a separate DOC research contract,

was presented at the Catania and Geneva meetings. A revised ver-

sion [TP 3] was presented at the Paris meeting. In contrast to

previously presented specifications [IT 	1], 	this 	protocol

specification uses a later version of the FDT syntax, and defines

the protocol in terms of several modules, one module per connec-

tion and a common "mapping" module.

4.1.2. Transport service specifications

A Transport service specification describing explicitely

multiple simultaneous connections between an arbitrary number of

service access points was presented at the Enschede meeting (see

Annex 3). In order to demonstrate the separation of "local" and

"global" service properties, as proposed in [Boch 83], a new ser-

vice specification was elaborated (Annex 4) and presented at the

Subgroup B meeting in Montreal. The separation of "global" and

"local" properties is similar to the approach presented in

- 10 -

[Logrippo 82], however, our specification remains within the

"extended state transition model".

4.1.3. Refinement of the extended state transition model

A number of contributions have been presented with the

aim of better defining the Subgroup B working document in the

"extended state transition model" FDT. For more detail, we refer

the reader to the Annexes 5 and 6, and the contributions (3) of

section 4.2.1, (3) of section 4.2.2, (4) of section 4.2.3, and (3)

of section 4.2.5.

4.1.4. Harmonizing the FDT developments in ISO TC97/SC16 and

CCITT SG VII and XI

A number of contributions were prepared in order to

harmonize the development of FDT's for OSI applications in ISO

TC97/SC16 and the CCITT Study groups VII and XI. (SG XI has been

involved for some time in the development of the SDL language).

We refer the interested reader to the Annexes 7 through 9.

1

HI

— 11 —

4.1.5. Editing the Subgroup A and B working documents

The author has been the editor for the working documents

of the ISO Subgroups A and B during the last year. 	During this

most of the working document of Subgroup A has been com-

pletely rewritten, and large parts of the working document of

Subgroup B have been added and revised. The preparation of the

subsequent versions of these documents was a non-negligeable task

during the last year. The present versions of these documents are

included as Annexes 1 and 2.

4.2. List of contributions presented at international meetings

4.2.1. ISO meeting in Enschede (ad hoc group on FDT t April 1982)

(1) "Formal description of the transport service"
(TWENTE-2, see'Annex 3)

(2) "Examples of Transport protocol specifications"
(TWENTE-3, see [TP 1])

(3) "A simple state transition foundation for the "Common'seman-
tic model for CCITT and ISO" (TWENTE-6; parts of this con-
tribution had an Impact on Section 5 of the present working
document of Subgroup B, see Annex 2).

4.2.2. Subgroup B meeting in Montreal (July 1982)

(1) "Comparison of FDT proposals from ISO (Subgroup B) and CCITT"
(UM-1, see Annex 8)

(2) "Example description of the Transport service"
(UM-2, see Annex 4)

time,

- 12 -

(3) "Preliminary draft of Section 5 (Formal Semantics) 	of
Subgroup B working document" (13M-7)

4.2.3. ISO meeting in Catania (ad hoc group on FDT, November

1982)

(1) "Comparison of FDT proposals ISO-CCITT" (CAT-11 (Canada),
similar to Annex 8)

(2) "Some enhancements to the syntax of Subgroup B FDT" (CAT-12
(Canada), see Annex 5)

(3) "Example of a Transport protocol specification" 	(CAT-13),
see [TP 2])

(4) "Section 2.y for working document of Subgroup A" (CAT-17)

4.2.4. CCITT Rapporteurs meeting of FDT (Geneva, December 1982)

(1) "Specification 	of 	Transport service using finite-state
transducers and abstract data types" (FDT 77, prepared by L.
Logrippo)

(2) "Example of a Transport protocol specification" (FDT 78, see
[TP 2])

(3) "Constructive and executable specifications of protocols and
services" (FDT 79, prepared by L. Logrippo)

(4) "Examples for the use of non-deterministic extended finite
state machines" (FDT 86, see Annex of Annex 6)

"Proposal for contents for Section 3 (semantic model) of the
Draft Recommendation" (FDT 87, see Annex 7a)

(6) "Proposal for contents for Section 4 (Language for describing
system structure) of the Draft Recommendation" (FDT 88, see

Annex 7b)

(5)

- 13 -

(7) "Proposal for the contents for Section 7 (language for
describing synamic behavior based on Pascal) of the Draft
Recommendation" (FDT 89, see Annex 7c) .

HI

HI

4.2.5. ISO meeting in Paris (WG1 and had hoc group on FDT,

February 1983)

(1) "Example of a Transport protocol specification (revised)",
see PIP 3]

(2) "Towards a common FDT for ISO and CCITT"
see Annex 9)

(3) "Comments on avoiding collisions and the zero-queue option"
(13 pages)

(4) "Semantics of spontaneous transitions" (see Annex 6)

(5) "Proposal to produce and FDT standard" (Source: Canada; see
Annex 10)

(Source: 	Canada;

I .

- 14 -

REFERENCES

"Examples 	of 	Transport 	protocol

specifications", contribution to ISO TC97/SC16/WG1 ad

hoc group on FDT, Twente-3, 1982. Originally prepared

under contract for COST 11 bis (CEE).

Bochmann, 	"Example of a Transport protocol

specification", prepared for CERBO Informatique Inc.

under contract for Department of Communications Canada,

Oct. 1982.

C.v. 	Bochmann, 	"Example of a Transport protocol

specification (revised)", Annex 1, Final Report, DOC

research contract 0ST82-0092, March 1983.

[Boch 83] G.v. Bochmann and M. Raynal, "Structured specification

, of communicating systems", IEEE Trans. Computers, Febr.

1983.

[Logr 82] L. Logrippo, "Specification of Transport service using

finite-state transducers and abstract data types",

CCITT Q39/VII, FDT-77, Geneva, Dec. 1982.

[TP 1] 	G.v. Bochmann,

[TP 2] 	G.v.

[TP 3]

ANNEX 	1

ISO/TC 97/SC 16 N
Date: November 1982

Project:

ISO
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/TC 97/SC 16
OPEN SYSTEMS INTERCONNECTION

SECRETARIAT: USA(ANSI)

Source: ISO TC97/SC16/WG1, Subgroup A of adhoc group on FDT

Title: Concepts for describing the OSI architecture (Working
document, Catania, November 1982)

1. Introduction

The scope for formal description techniques (FDT) in the dev'elop-
ment of OSI standards is described in "Statement of scope of the
FDT group" (N). The present document may serve the
following purposes:

(a) Define certain architectural concepts which are used by the
FDT's (see sections 2 and 3),

(b) define certain basic concepts that are used by the formal
description techniques developed by subgroups B ("Extended finite
state transition models") and C ("Sequencing expressions, temporal
logic") of the FDT Rapporteur's Group (see section 4), and

(c) provide a more precise model for the Guidelines (N 380 and
N381) (see section 5)

The document is divided into several sections, discussing the
concepts of system components (called "modules") and their
specification, their interconnection and the description of an
architecture, the definition of service, protocol and interface
specifications, and possible subdivisions of modules for
specification purposes.

2. Modules, channels, and interaction points

2.1. The concepts

The architecture of a system is defined by a set of interacting

modules' and the structure by which they are interconnected.

Modules share channels with each other and with modules in the
system's environment. The channels embody the interactions
between the modules, and between the modules in the system and
those in the system's environment. The modules embody the actions
exclusively allocated to modules.

notation:

channel 0

module

notation:

channel with two
interaction points

module

- 2 -

The configuration of channels and modules represent the system's
structure. An example is shown in the figure below.

Modules bear different responsibilities in the performance of
interactions. For example, if in an interaction a value is passed,
then one module is responsible for providing that value, and the
other module is responsible for accepting the value.

To allow for modelling of these different responsibilities, we
introduce the concept of 'interaction point'.

An 'interaction point' is A view of a channel as seen from one of
the modules that is connected to the channel.

Using an alternative graphical notation, the above example can be
represented as follows:

The concepts of 'channel' and 'interaction point' are useful for
the description of the OSI architecture. They are related to the
notion of 'abstract interface' in the following sense: the inter-
actions of a module with other modules or with the environment of
the system occur through channels between the modules. In a real

- 3 -

system, such a channel is realized by an '(real) interface'. 	In
this section we are not concerned with the specification of real
module interfaces, but only with the abstract properties that any
such interface for a given module-to-module interconnection must
satisfy. These properties are called the 'abstract interface'
between the two modules.

The concepts serve for:

a) the partitioning of the interactions of a given module into
separate groups concerning different modules forming the module's
environment. A module has contact with its environment only
through a well-defined set of 'channels'.

b) the specification of the interconnections between the dif-
ferent modules withing a system (or the sub-modules within a
module).
A channel connecting two modules could be specified by naming an
interaction point of one module and an interaction point of the
other module with which the former is to be connected.

For example, typical channels of a layer entity executing the
layer protocol are:

a) the access point(s) to the layer above through which the ser-
vice is provided,

b) the access point(s) to the layer below through which the
underlying service is accessed,

c) an (abstract) interface to the local system management module,
and possibly a local channel through which local services such as
buffer management, time-outs, etc. can be obtained.

2.2. The specification of a channel

The purpose of a channel type definition is to be used in the
specification of a module (see section 2.3.), where each interac-
tion point of a module is characterized by the type of channel
which it represents.

The specification of a channel type includes:

a) an enumeration of the possible interaction primitives that may

be invoked through a channel of that type.

b) the names of two 'roles' which distinguish the two sides of

the channel, and hence the two connected modules (e.g. 'service
provider' and 'service user').

c) the properties of the interaction primitives, which may
include such properties as:
--parameters including their data type,
--an indication by which 'role' parameters are established,
including the responsability for provision and accepting parameter
values,
--time 	dependencies 	in relation to these different roles,
e.g.atomic interactions, or interactions extended in time and
interruptible,
--etc.

d) possibly _certain rules about the order in which the interac-
tion primitives may be executed over a given channel of that type

2.3 The specification of a module

The purpose of a module specification is to define the behavior of
the module as observable at the interaction points to which it is
connected. Therefore a module specification cannot be given
without a definition of the interaction points through which the
module interacts with its environment.

The specification of a module may be given in each of the follow-

ing forms:

(a) by a fixed substructure definition (see section 3), where
each submodule in the substructure can be defined either according
to (a) or to (b).
(b) by defining the behavior of the module using one of the
specification languages developed by Subgroups B or C.

3. Substructure definitions

A specification of a module may be given in the form of a sub-
structure definition, as shown in the figure below. If the
behavior of each of the submodules is defined, such a substructure
defines the behavior of the module.

•■•9-

i

1

••••••

- 5 -

fro-deeh /0/ e2.4...e /it

re)ref 6.4.41/iij

9u-4$ 4- A e Pere_ e5/7 /1.

In the example above, the module A interacts with other modules in
the system through the channels X-X1 and Y-Y1. The substructure
of module A consists of two submodules Al and A2. The connec-
tions Z-U and V-W are called. internal channels and connect
interaction points by which the modules Al and A2 interact.
The notation of the.example also means that the interactions of A
at X and Y are realized by the interactions of Al at X, and
A2at Y, respectively.

The above structuring has assumed that the interaction points X
and Y of A and X and Y of Al and A2 remained unaltered, i.e.
only the functionality of A was represented by two submodules
Al and A2 connected by internal channels.

One could also consider a substructuring for the interaction
points X and Y, and represent this by an alternative way of
picturing

6

We leave this possibility for further study.

It is possible to further subdivide the structure of a module. For
example à possible substructure of module A2 would be as follows:

Sometimes several steps of refinement are shown in a single
diagram. For example, the figure below shows the two steps of
refinement for module A given above:

1
1

A syntax for describing substructure definitions is for further
study.

I.

- 8 -

4. The nature of interactions

A module is specified in terms of its interactions. For example,
if the module is an N-entity, then the module interacts through
N-service-primitives* (N-SP, see section 4.1) and (N-1) - SPr's*
with other local modules (respectively, the (N+1)-entity and the
(N-1)-entity).

Two time instants** are important for the execution of an interac-
tion between two modules:

1) the moment that the interaction begins, i.e. the moment
that the other module agrees to the execution of the
interaction;

2) the moment when the interaction ends.

Each interaction carries explicit information (parameters, some-
times-refered to as associated information).

The types of interaction considered for specification purposes are
called "interaction primitives". They are abstract interactions
in the sense that their implementation by the interface between
the interacting modules is not specified. Examples of interaction
primitives are:

- open connection to remote address with options;
- send data on connection
- send data to remote address;

* 	Service primitives are either expressed directly or in more
detail by using interface data units (IDU).

** It is noted that certain models distinguish an additional time
instant: the moment that the interaction is initiated
("called") by one (i.e. the first) of the modules. This may be
useful, for example, in situations where it is important to
know which module is waiting (for example, performance con-
siderations).

1_ 9

where "connection" is a local connection identifier, "remote
address" is the destination address, "options" is a list of
facilities, "data" is an information which has to be transferred
unchanged to "remote address".

In an implementation, the abstract interactions are realized
through the real interactions of a real interface (see section
5.4).

The following points are important properties of interaction
primitives:

(1) Each occurring interaction belongs to exactly one type; i.e.
interaction primitive.

(2) Each interaction primitive is characterized by a number of
parameters.
For example "remote address" and "options" parameters for the
11 connection establishment request" interaction.

(3) For each occurrence of an interaction, the value of each
parameter of the interaction primitive is determined by one of the
interacting modules, or both.

(4) The range of possible parameter values is specified for each
interaction parameter e.g. by a data type definition.

(5) There are some models in which the execution of an interac-
tion by a module may be considered as an atomic action (which
excludes any other action by that same module at the same time).
In these models parallel interactions by the same module (for
example concerning different connections handled by the same
module) are modelled by assuming an arbitrary order between these
interactions. 	Alternatively, there are models that do not make
these assumptions. In specifying any particular model the assump-
tions made about atomicity and synchronization must be clearly
stated.

We assume that all primitive interactions involve a rendez-vous
technique*, but it may be useful, as an aid to understanding, to
introduce compound interactions consisting of a primitive interac-
tion between the initiator and a queuing module, followed by a
primitive interaction between the queuing module and a receiver.

Note: Further study is required to identify all the necessary
compound interaction types and to demonstrate that they can be
specified as indicated above.

- 1 0 -

An interaction is always seen the same by the two interacting
modules.

For certain purposes, it may be useful to specify how the interac-
tion primitives are realized by the interface between the inter-
acting modules. In the following, the term "real interaction" is
sometimes used for the interface interactions that implement an

abstract interaction primitive (see section 5.4).

5. Definition of service, protocol, and interface specifications

Descriptions of service, protocol and interface specifications are

given in the "Introduction to the Guidelines: Overall view of OSI
specifications" (N 380). The purpose of this section is to make
these descriptions into precise definitions, and to put them into
the framework of the specification model outlined in the sections
above.

5.1 Service specification for layer N

The service of a layer consists of a set of elementary services of
this layer. The service specification for layer N is a specifica-
tion of a module, consisting of the entities of the layer N and
the layers below, given in an abstract view showing only the
interactions at the (N)-service-access-points, as indicated by
figure 2. The interaction primitives executed at the service
access points are called "service primitives". (N)-service-data-
units (SDU's) are exchanged as parameters of particular kinds of
service primitives (by the T-DATA requests and indications of the
Transport service, for example). These interactions would be given
for any one of the elementary services and for their interrela-
tions. We note that in this figure and the following, a double
arrow represents the interactions taking place between two inter-
action points of two interacting modules. The name written close
to it indicates the kind of interaction primitives.

* 	A rendez-vous interaction is one in which the two (or more)
modules that participate in the interaction execute the inter-
action during a "rendez-vous", i.e. for an interaction to
occur it is necessary that all participating modules execute
"their part" at the same time. The interaction implies a
close synchronization of the modules. One module has to wait
for the other, in general.

N-SPr

Figure 2

5.2 Protocol specification for layer N

The protocol specification for layer N is the set of the
specifications of the modules which represent the entities of
layer N: if all such entities have the same procedure (that is,
the protocol is symmetric), then the protocol specification coin-
cides with the specification of one module. This module(s)
represents an (N)-layer entity providing service through one (or
more) (N)-service-access-points, and accessing the service of the
layer below through one (or more) (N-1)-service-access-points. For
example, the modules A and B in figure 3 are such modules.

The protocol specification should be consistent with the service
specification, i.e. the abstracted view of the system shown in
figure 3 (ignoring the interactions at the (N-1)-service-access-
points) should satisfy the contraints defined by the (N)-service
specification.

- 12 -

Figure 3

5.3 Abstract protocol spécification

An "abstract protocol specification" is a part of a protocol
specification which assumes a "mapped" (N-1)-service for the
exchange of (N)-PDU's between the peer entities, and relevant
control information relating to the (N-1)-service. This is a
useful technique because any particular protocol may not use all
aspects of the supporting service. The mapped service might, for
example, provide for connection establishment and data transfer
only.

The complete mapping from (N)-PDU's and control information into
(N-1)-service- primitives is not specified directly, but in terms
of the mapped service. The specification of the mapped (N-1)-ser-
vice consists of the specification of a mapping from each of its
elements to some element of the (genuine) (N-1)-service and visa
versa.

The situation is as shown by the diagram (a) of figure 4.
Alternatively, the diagram (b) is sometimes used to indicate an
abstract protocol specification, where the single arrow indicates
the use of the mapped service.

- 13 -

N-PDU 4-
(...enlfreeL %formeaLio

N-SPr

(GO (b)

Figure 4

5.4 Implementations and real interfaces

For the module specifications considered (and in particular for
protocol and service specifications) the module is assumed to
interact with the other modules in a system through interaction
primitives. An implementation of such a module, however, will
interact by "real interactions" (of hardware or software nature)
realized by a real interface. One real interface per interaction
point is usually foreseen.

An implementation of the interactions over a given interaction
point includes the definition of a mapping from the abstract
interaction primitives into the real interaction at the interface.
It defines a correspondence between the real interactions and the
interaction primitives, which are not necessarily explicitely
visible in the implementation. Figure 5 shows the correspondence
between an abstract module specification (a) and its implementa-
tion (b).

1

(ci-)
(t))

- 14 -

/

Figure 5

6. Definition of terms

...for further study...

- 15 -

Annex : Examples of entity substructures

For specification purposes, it seems to be useful to consider a
substructure of an entity. Different kinds of substructures may
be considered depending on the nature of the entity to be
described. Some possible substructures are discussed in the fol-
lowing subsections. Further work is needed for identifying
appropriate substructures for protocol specifications.

As far as the work of the FDT ad hoc group is concerned, it seems
to be necessary to determine a description technique for defining
a substructure. A possible approach to this end is the use of the
concepts and methods described in section 3, such that the entity
is considered a module which consists of several interconnected
submodules.

A module can be decomposed into submodules according to several
criteria, e.g.:

- to encapsulate well defined functional blocks in submodules
which are activated sequentially to accomplish the more complex
service of the module. The objective could be to introduce more
abstract service primitives describing the service provided by the
next lower layer, etc.

- to separate data flow and control flow.

- to consider inherent concurrency of the module. 	This can be
accomplished by assigning one submodule to each connection since
the connections are the sources of different unsynchronized
sequences of events or transitions. The service of the module is
in this case implemented in a distributed manner.

1. Possible identification of submodules

The concept of an abstract protocole ' specification (see section
5.3) suggests a substructure containing separate submodules for
mapping and abstract protocol.

SPr

45-14 Prel((,1,

?If :0 rel. 	I

)1 - s)

N-entity

_N-PDU and (N-1) service
control information

- 16 -

; tt 	ti4 ;‘, et

Figure 6

Moreover there may be cases in which the complexity of the service
suggests to introduce a third box called "additionnai service" and
leads to the following structure.

- 17 -

NOTES

1. The boxes located at the top and the bottom are optionnal.
Thus, depending on the entity to be described the structure
may be different.

2. Only the "protocol box" is mandatory in all cases: 	thus the
structure can be reduced to a single protocol module.

3. The concepts described above are only suitable for description
purpose and do not have to be introduced in the model for OSI
as generic concepts.

4. Examples of the use of the "Additionnai Service" box can be
the quarantining or blocking services at the session layer or
some manipulation or transformation of the data store at the
presentation layer.

2. A possible entity substructure

Other entity substructures may be considered, such as the follow-
ing: an entity X, or each of the submodules shown in figure 6,
may be subdivided into the submodules shown in figure 7 below.

XSPrH XSPrH
11

/

XTH

XFH

X ' 	• XTH

XFH

X

Figure 7

In this figure, the submodule X' executes the abstract protocol
of the module X (and processes the control information contained
in the input interactions); XFH (X Format Handler) are modules
for handling Input/Output format problems for module X; XTH (X
Test Handler) are modules for handling user data, e.g. for segmen-
tation, reassembling, store for retransmission, etc., and XSPrH
(X Service Primitive Handler) are modules for handling service
primitives which interact with module X.

3. Decomposition of an entity according to its inherent concur-
rency

One possible criterion for decomposition is to what degree paral-
lelism in the entity is to be modelled. Ultimately each event or
state transition could be represented as an independent module.
This will, however, not contribute to a clear and comprehensible
structure. The decomposition should rather reflect the structure

•
É-■S t-1

1

- 19 -

of independent event-sequences relevant to the intended level of
description. Such independent event-sequence are initiated by
input events at the connection end points of the module to be
decomposed.

In fig. 9, three such input handling modules are introduced: the
service request handler (SRH), the service indication handler
(SIH) and the time-out handler (TOH).

Sit-1

j

I
-ro
	ri

SIH

Figure 9

The submodules must cooperate to perform the function of the
entity i.e. the function is distributed. In fig. 9 the communica-
tion between the input handlers is accomplished by state variables
encapsulated in a monitor module providing mutual exclusion (GSM).
Since more than one submodule can produce output events on the
same channels, these are also encapsulated in monitor modules
(SRM, SIM).

The distribution of a protocol function can be illustrated by
time-out handling. A submodule (SRH or SIR), having submitted for
transmission a message on which a response is expected, sets the
time-out interval. The submodule receiving the response resets
the time. The time-out handler performs the protocol actions
prescribed when a time-out occurs.

I.

ANNEX 2

ISO/TC 97/SC 16 N /3 ez
Date: November 1982

Project:

ISO
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/TC 97/SC 16
OPEN SYSTEMS INTERCONNECTION

SECRETARIAT: USA(ANSI)

Source: ISO TC 97/SC16/WG1, Subgroup B of ad hoc group on FDT

Title: A FDT based on an extended state transition model (Working
Document, November 1982)

1. Introduction

This document describes a FDT for the specification of
communication protocols and services. The specification language
is based on an extended finite state transition model and the
Pascal programming language.

2. Model

2.1. Modules, channels, and interaction points

2.1.1. The concepts
(see Subgroup A document, section 2.1)

2.1.2. The specification of a channel
See Subgroup A document, section 2.2)

2.1.3. The specification of a module
(see Subgroup A document, section 2.3)

2.2 The model of interactions

The extended state transition model described in section
3 assumes a model of interaction where each interaction of the
specified module with its environment can be considered an atomic
event. The transition model distinguishes between interactions
that are initiated by the environment and received by the module
(inputs), and interactions initiated by the module (outputs).

- 2 -

The reception ot an interaction trom the environment
produces, in general, a state transition of the specified module
which may give rise to other (output) interactions.

For the interaction between two modules, the model
allows for the queuing of the outputs from one module before they
are considered as input by the other. Queues of infinite or
finite (including zero) length are possible. The length of the
queue is determined when the modules and their interconnection are
instantiated (see "Concept for describing the OSI architecture",
section 3). It is noted that zero buffer length means a rendez-
vous type of interaction (see "Concepts...", section 2.1).

2.3 A state transition model

In order to detine the possible orders in which interac-
tions may be initiated by the entity, the state transition model
introduces the concept of the "internal state" of the entity which
determines, at each given instant, the possible transitions of the
entity, and thetefore the possible interactions with the environ-
ment.

The possible order of interactions of a module (or
entity) is given in . terms of

(a) the state space of the module which defines all (internal)
states in which the module may possibly be at any given time, and

(b) the possible transitions. For each type of transition, the
designer specifies the states from which a transition of that
type may take place, and the "next" state of the module. A tran-
sition may also involve one or more interactions of the module
with its environment (see below).

Since finite state diagrams or equivalent methods often
lead to very complex specifications when a complete protocol
specification is required (partial specifications, can be more
readily comprehended) the following approach to the specification
of modules in the extended state transition model is used.
This approach combines the 	simple 	concept 	of states and
transitions with the power of a programming language.

The state space ot the module is specified by a
set of variables. A possible state is characterized by the values
of each of these variables. One of the variables is
called "STATE". It represents the "major state" of the module.

- 3 -

The 	possible transitions of the module are defined by
the specification of a number of transition types. Each transition
type is characterized by

(a) an enabling condition: This is a combination of a boolean
expression depending on some of the variables defining the
module state, and (possibly) the specification of an input. A
transition may occur in a given state only if the enabling condi-
tion has the value true, and the interaction in question (if it
exists) is initiated by the environment. A transition without
input is called a spontaneous transition.

(b) an operation: this operation is to be executed as part of
the transition. It may change the values of variables, and may
specify the initiation of output interactions with the environ-
ment. The operation is assumed to be atomic.

The model is non-deterministic in the sense that in a
given state (at some given time) and a given input interaction,
several different transitions may be possible. Only one of these
transitions is executed, leading to a next state which determines
which transitions may be executed next. If several transitions
are possible at some given time, the transition actually executed
is not determined by the specification model. An implementation of
the module could choose any of these possibilities.

In many cases, the specification of a module may be
deterministic, in the sense that (at most) one transition is
specified in any reachable state and given input.

2.4. The specification of module substructures

(see Subgroup A document, section 3)

3. Language elements

This section gives an introduction to the different
elements of the specification language based on the extended state
transition model described above.

The language is largely based on the syntax and seman-
tics of the Pascal programming language ISO ... (see for example
Jensen and Wirth: "Pascal: User manual and report", Springer
Verlag, 1974), and uses the general approach of using type defini-
tion facilities and type checking for allowing the implementation
of automatic consistency checking, which usually detects a large
proportion of those errors in a specification that connot be found

by syntax checks.

A complete definition of the syntax is contained in

section 4.

3.1 LanguaRe elements taken from Pascal

The following language elements of the Pascal program-
ming language are included in the specification language without
any change in syntax and semantics:

(a) Type and constant definitions including
scalar types, including enumeration types
subranges
record types
array types

Predefined types:
boolean
integer
character (defined by some ISO standard)

(h) Procedure and function definitions

(c) Statements

3.2 The specification of interactions

The following examples are considered. The (N)-service
is provided to the entities in the layer above by the interactions
through the service access points between the service providing
module and its environment. The interaction model is also useful
to define interactions between different entities (or "modules")
of an (N)-layer subsystem. For example, it may be used for defin-
ing the timer or data buftering services used in the (N)-layer
protocol.

The specification of a channel is given by enumerating
the possible interaction primitives that may occur over the chan-
nel (including possible parameter values (determined by the module
initiating the interaction), and an indication about which module
may initiate the interaction).

I Session layer

entity

Session layer

entity

Transport layer
entity

Transport layer
entity

Transport
layer

In order to distinguish between the two modules that use
the channel for their interactions the concept of a - role" is
introduced. For each type of channel two roles are defined.
These two roles are 'played' by the respective module instances
that are connected to an instance of a channel. The language
allows the specification of the possible interactions through a
channel without explicitly defining the modules that interact
through the channel. However, it is necessary to refer to the
roles that these modules play in this interaction.

As an example we consider the abstract interface through
which the Transport service is provided at some Transport service
access point. The diagram below shows the entities involved.

Transport
service

access point 11; Session layer

Using the syntax defined in section 4, the possible service primi-
tives may be enumerated as follows.

channel

TS_access_point(TS_user,TS_provider);

by TS_user:

T_CONNECT_req(TCEP_identifier 	TCEP_identifier_type;
to_T_adress 	: T_address_type;
from_y_address : T_address_type:
QQTS_request 	: quality_of_TS_type;
TSconnect_data : TS_connect_data_type);

TÇONNECT_resp(TCEP_identifier 	: TCEP_identifier_:type;
QOTS_request 	: quality_of_TStype:.

- 6 -

options 	 : option_type;
TS_accept_data 	: TS_Accept_data_type);

T_DISCONNECT_req

by TS_provider:

T_pONNECT_ind

etc.

This specification states that a module that interacts
through a Transport service access point must take the role of a
"user", or a "Transport entity". Depending on its role it may
initiate a certain number of interactions (indicated by the BY
clause), for example a user may initiate requests for connection
establishment or disconnection, or the sending of a fragment of
user data.

The same concept of a channel may also be used for
 defining the interactions between several entities within the same

layer, or between an entity and some locally provided services,
such ab timers or buffer management. An example is the following
definition of the timer services used by the Transport entity
implementing the Transport protocol.

channel
timer-interface (user, server);

by user:
start (period: integer);
stop;

by server:
time-out;

end timer-interface;

We note that the possible orders of interactions are not
specified. However, it is understood that the time-out interaction
will only be initiated by the server "period" seconds after it has
received a start interaction and no subsequent stop interaction.

3.3 Module interconnection

The FDT provides for a separation of the specification
of the characteristics of channels from statements that certain
modules use certain types of channels. For example, the charac-
teristics of the (N)-service access points are relevant for the
(N)-service specification, the (N + 1) - layer entities, as well
as for the (N)-protocol specification. A channel type may be

- 7 -

defined independent of its use, and the specification of a module

includes an enumeration of all the interaction points through
which it interacts with its environment, with an indication of the
channels type for each of these interaction points. The syntax for

these specifications is given in section 4.

The language must be enhanced for specifying how the

interaction points of the different modules and entities within an

Open System are connected through channels. The same enhancement
could be used to define the substructure of a module in term of

submodule and their interconnection. These considerations are for
further study.

3.4. 	Specification of a module as an extended state transition
machine

3.4.1. State variables

The state space of the module is specified by a set of

variables. A possible state is characterized by the values of each

of these variables. One of the variables is called "STATE". It

represents the "major state" of the module.

As an example, the following lines specify the state

space of an entity implementing the Transport protocol:

var
state 	: (idle,wait_for_pC,wait_for_T_pONNECT_resp,data_trans -

fer);
local_reference : TP_reference_tupe;
remote_reference : TP_reference_type;
TPDU_size :max_TPDU_size_type;
QOTS_estimate : quality_of_TS_type;

3.4.2. State transitions

The possible transitions of the module are defined by
the specification of a number of transition types. Each transi-
tion type is characterized by:

(a) the enabling condition: this includes
- the present major state (FROM clause)
- the input 	 (WHEN clause)
- the "additional enabling condition" (or "predicate")

(PROVIDED clause)

-8-

- the priority of the transition type (PRIORITY clause)

(b) the operation of the transition: this includes
- the definition of the next major state (TO clause) - the
"action" (BEGIN statement of the <block>) including the
generation of output.

An input interaction to the module is either considered immediatly
by the state machine or first put into the (conceptualy infinite)
input queue of the module (depending on the queuing option used
for the interaction point over which the interaction reaches the
module); 	if it is put into the input queue it is considered by
the machine when the input comes to the head of the queue. 	When
an input interaction is considered by the state machine, one of
the transitions enabled for the given input parameters and the
present module state is executed. A lower priority transition can
only be executed when no higher priority transition is enabled.
If no transition is enabled (depending on the option used) either
the input is ignored, or an undetined situation occurs which may
be considered a "user error" or an indication of a design error in
the specifications of the interacting modules.

A transition which has no input (no WHEN clause) is
called spontaneous. It can be executed, independently of input,
whenever the enabling condition is satisfied.

A spontaneous transition may include a delay clause with

two parameters, d l and d 2 . The transition may not occur until
the enabeling condition has remained true continuously for d 1

 time. It must be considered immediately if the enabeling condition
remains true continuously for d 2 time. If the delay clause is
absent, a delay of d l = 0, d 2 = infinity is assumed. (This is
written "delay (0,*)".) It means that the transition may occur at
any time the enabeling condition is true, possibly never.
A delay(0,0) has the semantic meaning of the immediate spontaneous
transition of the basic semantic module (see section 5).

Notes

1. An input transition which has been received through a channel
having the "not queued" option can not contain any output
statement in its operation. Outputs are allowed only for spon-
taneous transitions or input transitions received through the

queue. Relaxing this rule require turther study.

9

2. Executing an output statement may imply some short delay*.

However the module is not observable from outside during this
time, and no other event can be presented to the module during
this time. This short delay is that delay necessary for the
output to be presented to the receiving module (directly or to
its queue).

*Note: However, this delay is not present in the first output of
a spontaneous transition.

As an example, the following lines specify some transition types
for a Transport entity:

trans
from idle
when TSAP.T_CONNECT_req

provided ...(* Transport entity able to provide the quality of
service asked for *)

to wait_for_CC
begin

local_reference := ...;
TPDU size := ...;
N.CR(0,1ocal_reference,class_U,normal,variable_part_to_send);
o ut

end;
from data_transfer to same
when TSAP.T_DATA_req

provided •.. (* flow control from user ready *)
begin

out_buffer.append(user_data);
out

end;
when out_buffer.fragment_ready(TPDU_size)
provided ... (* Network layer flow control ready *)

begin
N.DT(out_bufter.get_fragment(TPDU_size));
out

end;

trans
provided no_tc_uses_ne and ne_locally_open

begin
out N.DISCONNECT_req 	(*close any unused network connection *)

end;

trans
from data_transfer to same
provided credit_to be_sent delay (0,evaluate_delay_max_agreed)
begin

N.ACK(credit,tpdu_nr) 	(* send credit if any *)
out

- 10 -

end;

3.4.3. Enbedding of transitions

The syntax for transitions permits the different clauses
(FROM, WHEN or DELAY, PROVIDED, PRIORITY, and TO) to be written in
arbitrary order, followed by the <block> which includes at least
BEGIN END. The order has no influence on the meaning of the con-
struct.

The syntax also permits the embedding of the different
clauses. This embedding structure is simply a shorthand notation
with the following rules: The - scope" of a clause is defined to
be the specification text corresponding to "<transition>+" in the
syntactic rule of the clause (see section 4.1.3). The meaning of
the clause extends over its entire scope. Each BEGIN END state-
ment of a block within the specification text identifies a transi-
tion. All clauses in the scope of which a given transition falls
apply to this transition. For example
trans
when AP.I

from A 	 provided E
begin X end;
provided F to C
begin Y end;

from B to C
begin Z end;

trans
from C to D begin U end;

is a short hand notation for

trans
when AD.I from A provided E to B begin X end;

trans
when AD.I from A provided F to C begin Y end;

trans
when AD.I from B to C begin Z end;

trans
from C to D begin U end;

It is noted that the following scope rules must be fol-
lowed:
(a) The parameters of the input interaction (declared in the

corresponding channel type definition) become accessible
within the scope of the WHEN clause.

(b) As in Pascal, the WITH clause makes the fields of a record
variable directly accessible within the scope of the clause.

- 1 1 -

(c) The ANY clause introduces a "variable" identifier with an
arbitrary value within the range defined by the type iden-
tifier. The meaning is that the embedded transitions are
defined for each of the possible values of this variable.

3.4.4. Continuous output functions

While interactions represent "events" and are generated
during state transitions, continuous output functions provide
steady output from one module through a channel to another module.
The "receiving" module may use the value of such a function
(provided by its neighbour module) within a PROVIDED clause, that
is, it may intluence which transitions are enabled.

The name and type of output functions are declared in a
channel definition. The value provided by the function is deter-
mined by the function body which is defined within the mOdule body
which plays the role of the outputting module.

3.5 Predefined language elements

Some predefined language elements are provided. 	These

include types, procedures, functions and modules. The predefined
identifiers may be redefined by the user of the FDT. In this
case, the user's element is the one used.

3.5.1. Predefined types

The following have been identified as candidates for

predefined types:
user_data_type and connection_endpoint_id_type.
Their precise definitions require turther study.

3.5.2. Predefined procedures and functions

The procedure 'error', taking no arguments and having an

implementation dependent action is a predetined procedure.

Routines for manipulating user data, coding and decoding PDUs, and

manipulating addresses are currently being considered.

- 12 -

3.5.3 Predefined modules

The module 'timer' is currently being considered.

3.6 An Example

The following is an example of the Subgroup B method of
protocol description in use. It is a specification of an alter-
nating . bit protocol. Although the example shows many of the basic
constructs of the language, simplicity dictates that some of the
features of the language cannot be shown here.

The first section of the example contains declarations
of constants and types, in a style familiar to a reader of Pascal.
One obvious addition is the notation “... which is used to indi-
cate that the specifier is leaving the interpretation to the
implementor. Often this is accompanied by a comment to guide the
implementor in his choice. A notation was needed to indicate the
properties of the connections between modules. These are called
"channels". 	Each channel may have players, the role of which are
indicated in parentheses after the channel name. 	The various
interface events of a channel are indicated after the role list.
For each role, the events that the player may initiate are listed
along with their parameters. These parameters are available
within a transition that is initiated by the event.

The module header line includes names for the channels
it uses, as well as an indication of the role the module plays on
that channel. Thus, the Alternating_pit module is the Provider of
the U channel, which is a q_access_point channel. The inputs
from this channel and from the N channel are placed in a common
queue. The q_access_point channel supports three kinds of inter-
face events. Two of these may be initiated by the User (and are
thus inputs for the Alternating_Bit module), and one of these is
initiated by the Provider (and is thus an output of the module).

Following the module header, variables local to the
module are declared. Although not used in the example, if there
were any labels or types local to the module, they would preceed
the variables, as they do in Pascal. Then the major states and
major state sets are declared. State sets are a convenient way to
specify that a transition may take place trom any of several major
states.

- 13 -

Next is an initialization section. In this, the major
state and the variables are given initial values. This determines
the initial state of the module.

Then functions and procedures are declared. In addition
to the standard Pascal definitions, either the keyword "primitive"
or the notation "..." is used to indicate that the details are
left to the implementor. Often, the choice of a data structure
and the details of the primitives must be coordinated choices. In
the example, the choice of the structure of "buffer_type" will
determine the details of the procedures "store", "remove", and
"retrieve". Furthermore, the actual details of these structures
and the routines that manipulate them are not particularly
relevant to the action of the protocol.

Output from the module over a channel is specified by
the keyword OUT. The actual channel and event are indicated by
naming the channel, followed by a ".", followed by the output
interaction with its parameters.

Finally, the transitions are listed. The clauses cor-
responding to the keywords "from", "to", "when", etc. are all
optional, and may appear in any order, and may be nested (though
they are not in this example). They describe the major state
before the transition, after the transition, and the required
input, respectively. The "provided" clause describes an enabeling
predicate that must be satisfied for the transition to take place.
An optional "priority" may be assigned to any transition.

One the input is listed, the parameters associated with
the input may be accessed in much the same manner as the fields of
a record within the scope of a "with" statement. This enhances
the readability ot the resultant specification.

Notice the transition from state ESTAB back to itself
when a S.TIMEll_response input occurs. This corresponds to the
case in which the retransmit timer expires for data that have been
acknowledged. In this case, clearly noting need be done. Another
approach to dealing with this situation would be to "cancel" the
retransmit timer when the acknowledgment is received by generating
an S.TIMEll_request with a Time value of zero.

const
retrah_time = 10;
empty 	 0 ;
null 	 0 ;

type
data_type 	= • • •;

— 14 —

seq_type 	= ...; (* for alternating bit, use 0..1 *)
id_type 	= (DATA,ACK);
timer_type = (retransmit);
ndata_type =

record
id: id_type;
data: data_type;
seq: seq_type;

end;
msg_type

record
msgdata: data type;

end;
buffer_type = ...;
int type 	= •..; (* would usually be "integer' *)

(* channel definitions *)

channel U_access_point(User, Provider);
by User:

SEND request(UData: data_type);
RECEIVE_request;

by Provider:
RECEIVE_response(UData: data_type);

channel S_access_point(User, Provider);
by User:

Timer_request(Name: timer_type; Time:int_type);
by Provider:

Timer_response(Name: timer_type);

channel N_access_point(User, Provider);
by User:

Data_request(NData: ndata_type);
by Provider:

Data_response(NData: ndata_type);
module Alternating_Bit(U: U_access_point(Provider) queued;

N: N_access_point(User) 	queued;
S: S_access_point(User) 	not queued);

var
send_seq: 	seq_type;
recv_seq: 	seq_type;
send buffer: buffer_type;
recv=buffer: buffer_type;
p,q: msg_type;

state:
(ACK WAIT, ESTAB);
EITHER = [ACK WAIT, ESTAB];

initialize
begin

— 15 —

state to ESTAB;
send_seq := 0;
recv_seq := 0;
send_buffer := empty;
recv_buffer := empty;

end;

procedure send_data(msg: msg_type);
var s: ndata_type;
begin

s.id 	:= DATA;
s.data := msg.msgdata;
s.seq := msg.msgseq;
N.DATA request(s)
out

end;

procedure send_ack(msg: msg_type);
var a:ndata_type;
begin

a.id 	:= ACK;
a.data := msg.msgdata;
a.seq := null;
N.DATA_request(s)
out

end;

procedure deliver_data(msg: msg_type);
begin

U.RECEIVE_response(msg.msgdata)
out

end;

procedure store(var buf: buffer_type; msg: msg_type);
primitive;

procedure remove(var buf: buffer_type; msg: msg_type);
primitive;

function retrieve(buf: buffer_type): msg_type;
primitive;

procedure inc_send_seq;
begin

send_seq := (send_seq + 1) mod2
end;

procedure inc_recv_seq;
begin

recv_seq := (recv_seq + 1) mod 2
end;

(* transitions *)

- 16 -

trans
from ESTAB to ACK_WAIT when U.SEND_request
begin

p.msgdata := UData;
p.msgsdq := send_seq;
store(send_buffer,p);
send_data(p);
S.TIMER_request(retransmit, retran_time)
Out

end;

form ACK_WAIT to ACK WAIT when S.TIMER_response
provided Name = retransmit

begin
p := retrieve(send_buffer);
send_data(p);
S.TIMER_request(retransmit,retran_time)
out

end;

from ACK_WAIT to ESTAB when N.DATA_response
provided Acic_OK

begin
remove(send_buffer, NData.nsg);
incr_send_seq;

end;

from ESTAB to ESTAB when S.TIMER_response
provided Name = retransmit

begin
(* do nothing *)

end;

from EITHER to SAME when N.DATA_response
profided NData.id = DATA

begin
q.msgdata := NData.data;
q.msgseq := NData.seq;
send_ack(q);
if NData.seq = recv_seq then

begin
store(recv_buffer, q);
incr_recv_seq

end
end;

from EITHER to SAME when U.RECEIVE_request,
provided not buffer_empty(recv_buffer)

begin
q 	retrieve(recv_buffer);
deliver_data(q);
remove(recv_buffer, q.msgseq)

end;

- 17 -

module Timer(S:S_access_point(Provider)
not queued)

var
timervalue:array[timer_type] of integer;

index:timer_type;
initialize
begin

for index := retransmit to retransmit do
(* index must run through all possible timer type *)

timervalue [index] := 0
end;

trans
when S.Timer_request

begin
timervalue[Name] := 0; (* This cancels the previous timer

of this name; see next transition and semantic
of delay. *)

timervalue[Name] := Time (* This sets the new timer. *)
end;

trans
any timer_index:timer_type do

provided timervalue [timer_index] > 0
delay (timervalue [timer_index],timervalue[timer_index])

begin
timervalue[timer_index] := 0;
out S.Timer_response[timer_index]

end;

Note: It has not yet been decided whether to use the keyword OUT
or OUTPUT. In the examples, OUT is currently used.

Note: An improved version of this example is under study.

3.7. User guidelines

to be provided

4. Syntax overview

This section defines the syntax of the specification
language. Large parts of the language are taken from the Pascal
programming language.

— 18 —

Elements of the Pascal programming language are used for
the specification of constants, data types, procedures and func-
tions, and the declaration of the state variables.

This section defines the extensions to Pascal, as well
as certain restrictions.

Notation: Extended BNF where "+" means one or more
occurrences, "*" means zero, one or more
occurrences of 	an 	expression, 	and 	nu,

separates alternatives". "**" means that the
construct is the same as in Pascal.

A service or protocol specification consists of a specification of
the channels and primitives (see section 4.1.1) and one or more
module specifications (see sections 4.1.2 and 4.1.3). Only the
definition of a module type is given here. Language elements for
the declaration of module instances within a system and their
interconnection is for further study.

4,1 Syntactic extension

4.1.0 Overall structure of a specification

The overall structure of a 	protocol 	or 	service
specification (in the following simply called "system") is as
follows:

<system> 	::= 	SYSTEM <system id›;
<channel type definition>*
<module type definition>*
<system structure>

<system id> ::= <identifier>
The <system structure> is for further study.

4.1.1 Channels and interaction primitives

The <channel type definition> defines a type of interaction point.

<channel type definition> ::= <constant definitions>*
<type definitions>* <channel>

The possible interactions at a given type of interaction
point are enumerated by a definition of the following

- 19 -

form:

<channel> 	::= CHANNEL <channel type id>
(<role list>) 	<exchanges> ;

<role list> = <role id>
<role list> , <role id>

<exchanges> ::= <BY clause>
1 <exchanges> <BY clause>

<BY clause> ::= BY <role list> : <exchange list>
<exchange list> ::= <exchange>

1 <exchange list> <exchange>
<exchange> = <interaction id> <interaction parameters> ;

1 <function heading>**

The declaration of <interaction parameters> is in the
same form as function parameter declarations in Pascal
(i.e. for each parameter its name and type).

<interaction id> 	::= 	<identifier> 	(*Notel*)
<channel type id> 	::= 	<identifier>

Note 1: Identifiers may include both upper and lower case let-
ters as well as the underscore character ("_"), which is
considered to be a letter, and numerals.

4.1.2 Modules and their interaction points

The definition of a module type contains the declaration of
all abstract interaction points through which a module of
this type interacts. This includes the service access
points through which the communication service is provided
as well as the system interface for timers, etc. and the
access point to the layer below, through which the PDU's
are exchanged.

<module type definition> ::= <module heading> <internal definition>
<module heading>::=MODULE <module type id>

(<interaction points>) ;
<interaction points> ::= <interaction point declaration>

1 <interaction points> ; <interaction point
declaration>

<interaction point declaration> ::= <interaction point id> :
<interaction point type>
(<role id>) <queue discipline>

<queue discipline> = NOT QUEUED1QUEUED
<interaction point type> = <channel type id>

1 ARRAY [<index type>]

- 20 -

OF <ctte,ht.iel 1. i re ;41>
(* Note 9 *)

<internal definition> ::= <module body>
1 <substructure definition>

The <role id> indicates which role the entity plays as far
as the declared interaction point is concerned. We note
that the distinction of these roles permits the checking
that the invocation of interactions in the conditions and
actions of transitions is consistent with the possible
exchanges defined in the channel definition.

4.1.3. Extended state transition module

<module body> ::= <label definitions>**
<constant definitions>**
<type definitions>**
<variable declarations>**

• <major state declaration>
<state set definition>*
<proc func or mit etc.>*
<embedded transitions>+

<embedded transitions> = TRANS <transition>+
<major state declaration> ::= STATE : <enumeration type> ;
<state set definition> ::= 	<state set id> = <set definition>** ;

(*Note 4*)
<proc func or mit etc.> = <procedure definition>** (* Note 2 *)

1 <function definition> 	(* Note 2 and 3 *)
1 <continuous output definition>
1 <initialization> (* it is suggested that

the initialization be
placed at the beginning *)

<continuous output definition> = FUNCTION <interaction point ref>.
<function name> ; <block>
(* the parameters of the function
are already declared in the channel
definition *)

<interaction point ref> ::= <interaction point id>
1 <interaction point id> (<index variable>)

<index variable> : :=<identifier>
<function name> ::= <identifier>
<initialization> 	::= 	INITIALISE BEGIN

STATE TO <major state value>
<additional mit>;

<additional mit> ::= END

1; <statement sequence>** END

- 21 -

<transition> =
1 ANY <identifier> : <type identifier** DO <transition>+ (*Note 5a*)
1 WITH <variable>** DO <transition>+ (*Note 5b*)
1 WHEN <interaction point ref> • <intraction id> <transition>+ (*Note

5c*
DELAY(<delay value>,<delay value>)<transition>+ (* Note 5c *)
FROM <major present state> <transition>+ <*Note 5d*)
TO <major next state> <transition>+ (*Note 5e*)
PROVIDED <expression>** <transition>+ (*Note 5f*)
PRIORITY <priority indication> <transition>+ (*Note 5g*)
<block>** ;

<delay value> ::= <expression> 1 * 	(* Note 10 *)
<priority indication> ::= <identifier>** (*constant of some

enumeration type*)
1 <integer>**

<major present state> ::= <major state value list>
1 <state set id>

<major state value list> = <major state value>
1 <major state value list><major state value>

<major next state> 	::= <major state value>
1 SAME

<major state value> 	::= <identifier>** 	(*must be element of the
enumeration type of the (major
state declaration>*)

<output statement> = <interaction point ref> • <interaction id>
<effective parameter list>** (*Note8*)

Note 2 : Within a transition, "..." may be written for an expres-
sion that is implementation dependent (not defined by
the specification). The body of a procedure or function
that is implementation dependent (not defined by the
specification) is written in the form "PRIMITIVE" or
“ • • • tl • 	Other possible uses of •.. are for further
study.

Note 3 : A boolean function X(<parameters>) with no side effects
may be declared in the form "predicate X(<parameters>)".

Note 4 : The elements of the set must be included in the enumera-
tion type of the <major state declaration>.

Note 5a: These transitions may not include a ANY clause.
Note 5b: These transitions may not include a WITH clause.
Note 5c: These transitions may not include a WHEN nor DELAY

clause.
Note 5d: These transitions may not include a FROM clause.
Note 5e: These transitions may not include a TO clause.
Note 5f: These transitions may not include a PROVIDED clause.

The expression must be boolean.
Note 5g: These transitions may not include a PRIORITY clause.
Note 6 : Each <block> must be preceeded by a FROM and a TO

clause.

- 22 -

Note 7 : To refer to the input parameters, the parameter iden-
tifiers of the interaction in the <channel type defini-
tion> are used.

Note 8 : This kind of statement (for producing an output interac-
tion) is an extension of Pascal.

Note 9 : The usual multi-dimensional array notation, e.g. ARRAY
[indexl,index2], is also allowed.

Note 10: The delay value must be either an integer valued expres-
sion or '*', which represents infinity.

4.1.4. Other extensions

(a) Informal specification elements, which define system
properties that are part of the specification (not
merely comments), are written as text enclosed in
"(/" and "/)" and may be placed wherever comments
or ... may be placed.

(b) A facility for describing optional parameters is
introduced. To indicate that a parameter (or field
of a record) is optimal, its type definition is
preceeded by the keyword OPTIONAL. 	The 	value
UNDEFINED means that the parameter (or field) is not
present. A default value may be associated with the
type definition by a succeeding "DEFAULT=<constant>"
clause.

4.2. Removal of certain restrictions

Functions are permitted to return arbitrary values.

4.3. Elements of Pascal not used

To date, we have not found the following features of
Pascal to be necessary: pointers, and files (and go to and
labels).

5. Formal semantics

5.1. General approach

The semantics of the specification language is defined
by a translation of the language into a basic semantic model
described in section 5.2. The translation is explained in section

- 23 -

The semantics of the specification language is defined
by a translation of the language into a basic semantic model
described in section 5.2. The translation is explained in section
5.4. The semantics of the basic semantic model (BSM) is detined
in section 5.3 in terms of an abstraction which considers the
system as a single module, the semantics of which is directly
defined by some interpretation rules.

More precisely, the semantic meaning of a specification

written in the Subgroup B FDT (in the following simply called FDT)
may be obtained by successive translations which lead from the FDT
representation through the BSM to a definition of the behavior of
the specified system. In general, these translations may be the
following:

FDT ---> abstract repres. ---> BSM ---> BSM 	semantics
(1) 	 (2) 	(3) 	(4)

The translation from the FDT into the BSM may be considered in two
steps (1) and (2). However, it is defined in section 5.4 by a
single translation process. The definition of the semantics of the
BSM (translation (4)) is given for the case of a module without
interactions (see section 5.3.1). On the other hand, the BSM
obtained through the translations (1) and (2) contains at least as
many modules as the original specification in the FDT. Therefore
the translation step (3) is introduced which constructs a BSM
specification with a single module equivalent to the multi-module
specification obtained from the translation steps (1) and (2).

The following sections contain text preceeded by "Note:"
or "Explanation:". This text should be considered as comments
which is added for ease of understanding. However, it is not part
of the definitions.

5.2. The basic semantic model

5.2.1. Architectural definitions

A 	specified 	system 	consists 	of a number of modules
M4 (i=1,2,...) 	and 	a 	number 	of 	interaction 	points
IPj (j=1,2,...).

Note: Only module and interaction point instances are con-
sidered here. However the FDT specification language includes
facilities for defining module and interaction point types.

- 24 -

2) For each interaction point IP i , a set of two roles is defined
(Note: for instance, "upper" aed "lower"). We write r for one -
role and r for the other role.

3) a) For each interaction point IP
r

there are two sets of pos-
sible in teractions:

J and I (r)

Note: The interactions which are output by the connected
module with role r and 7. , respectively.

b) For eacli_tnteraction point IP i , there are two sets Cq r)
and Cq r) .

Note: These sets are the range of functions defined by the
connected modules; the

(
 function of the module with role r

determines a value in CEIr) depending on the state of the
module. These values 'may be considered continuous signals
from the defining module to its neighbours.

4) The specification of a module Mi refers to 	a 	number
(k=1,2,...Ki) of interactions points. These references are
written j(i,k). It also indicates, for each reference, the
role r(i,k) the module assumes at the referred interaction
point.

5) An interconnection structure is given for the specified system
which defines, for each interaction point reference j(i,k),
the referred interaction point IPj(i k) . The following inter- ,
connection properties are assumed.

a) If modules Mi and Mi , refer to the same interaction point,
i.e.

IP
i(i 	

= IPj(1: k')' then they assume opposite roles,
k) i.e. hi,k)er(i ,k), and they are different modules, i.e.

1#i'. Note: This implies that at most two modules are
connected to a given interaction point. To achieve loop-
back, one must introduce a specific loop-back module.

b) Each interaction point is referred to by at least one
module. If an interaction point IP i(i k) is only referred
to by M4 then it is called an exterfiarinteraction point.
Note: An external interaction point describes some inter- ,
action of module Mi with the environment of the specified
system.

5.2.2. The behavior of a module

Note: The behavior of a module is defined by a state-

- 25 -

•

transition model.

1) At any given instant of time, a module Mi is either in a state
or doing a transition.

2) a) The set of possible states of module Mi is written S i ; a
particular state is written s i .

b) For each referred interaction point IPj(i,k)' there is a
function C i,k : S i --> CE (r(i,k)) •

Explanation: The notation "f : D --> R" means that t is a
(possibly partial) functions which defines a value in R for
values of the argument in D.

Note: These functions define a continuous output of the module
which may be read by the neighbouring modules.

3) The set of (names for) possible transitions of module Mi con-
sists of transitions of the following forms:

a) Internal transitions, written ti (int) , with
P : S x(+CE' k))) --> Bool

k i(i,k)

F : S --> S
k J (i ' k)

Explanation: P is the so-called enabling predicate. For
the transition to be executed, it is necessary that the
predicate is true. F is the so-called transition function.
It defines the next module state for the case that the
transition is executed. Both P and F, depend on the
present module state (S i) and possibly on the values of
the continuous output functions of the neighbouring
modules.

b) Output transitions initiating an outpvt interaction at the
interaction point IPi(i,k) , written tIrt) , with

P : S x CE (7(i e k)) --> Bool

CE (7(i,k)) --> S

0 : S i x CqiIM)) --> lee))

Note: 0 is the output function which determines the output
produced. The output produced depends on the present
module state (S i) and possibly on the values of the con-
tinuous output functions of the neighbouring modules.

- 26 -

c) Input transitions initiated by an inpyïnlmteraction at the
interactionpslint IP4/4 1,%, written tlk I , with

Tr(i,k))-1 ‘ -" , / P : S i x I j(i,k) 	--> Bool

F : S i x I ,k)) --> S i

d) Explanation: The enabling predicate P and the next state
function F depend on the present module state (S i) and the
value of the input received.

5.3. The semantics of the basic semantic model

The semantics of a system specified in the BSM is
defined in two steps. The first step, described in section 5.3.2,
consists of a translation of the system specification into an
equivalent simple module. As second step, the semantics of a
simple module is directly detined by some interpretation rules, as
explained in section 5.3.1.

5.3.1. Semantics of a simple module

In the case that the system consists of a single module
Mo which has no interaction point references, all its transitions
are internal. In this case, the semantics of the module is
defined by the following interpretation rules:

1) If the system is in state s, the next transition t to be
executed is any transition for which P t (s) is true. Which one
of these will be executed is not determined by the model. The
model assumes that, if such transition exist, one such transi-
tion will be executed eventually (in the sense of temporal
logic, liveness).

2) If the transition t is executed starting in state s then the
next state will be F(s). The execution of a transition takes
finite (possibly arbitrarily short) time.

5.3.2. Abstraction from module boundaries

The following rules define a translation of a system
specification consisting of modules Mi and interaction points IP I ,
as explained in section 5.2, into the specification of a single
module Mo with interaction point

references j(o,k'). The seman-
tics of the system specification is, by detinition, equal to the

semantics of the module Mo.

- 27 -

1) The state space S o of the module Mo is the Cartesian product
of the state spaces of the individual modules

S o = xS
A particular state s o is written as s o = <s i ,s 2 ,..., s i ,..•>.

2) The interaction point references j(o,k') of Mo refer to the
external interaction points IPi(i,k) of the system specifica-
tion.

3) Each transition t of Mo is formed by one of the following
rules:

a) Rendezvous interaction between modules Mi and M i . at the
interaction point 113 4 , i 1, ‘ = IP i(i 	 : this leads to an
internal transition orinûle M0 	the following form:

t=<t (out) „(in),
ik

=

(out) 	(r(i',k'))
P, 	(s 	C k 	(si.)) 	.

- ik
(in) , 	,(r(i,k))

and P t
‘ s i ., 	% 	vsii,

i . k .

n (out) 	,(r(i',1c.")) (s .))
't ik 	'i'k'

S • •••>)=<$1,6",Si,e.0,Sir,

F (0t) (. 	c (r(i',k')) (si,))

	

where s i = t
k 	i'k i

	

(in) , 	o (r(i,k)) (si),
and s i .= F

tk
‘s i ., , i,k

0(out) (s 	c (5(i',k')) (si,)))
k

Explanation: Pt defines when a rendezvous interaction is

possible. It is possible when the enabling predicates of

both involved transitions (output from Ni and input to
M) are enabled. The enabling predicate of the output
transition depends, in general, on the (internal) state of
(internal) state of Ni. and the value of the interaction
ouput produced by M. The next state of the module Mo is
identical to its state before the rendezvous, except that
the state components corresponding to the modules Mi and
Mi'

are changed as defined by the respective transition
functions. The change for M. also depends on the output
received.

- 28 -

The internal transitions of a module M i and the input and
output transitions of a module Mi at an external interac-
tion point IP are included as transitions of Mo .
Their P and Vdefinitions remain inchanged, reading and
updating only the state components of the module Mi and
its input and output. Note: this is also the input and
output of the single module M, because of translation
rule (2).

Note: The translation described here leads to a module Mo which is
an abstraction of the original system of interacting modules
M Such abstractions may be applied recursively, cor-
responding to multi-level module substructures, as described
in Subgroup A working document, section 3.

Note: Different transitions t and t' may proceed in parallel if
they do not influence one another directly. A sufficient
condition is the disjointness of the set of state components
on which P and F depend and which are affected by F, for the
two transitions respectively.

.5.3.3. Semantics of a system and its environment

In the case that the original system specification includes
external interaction points (and therefore the module Mo would include
references to these interaction points), the semantics of the system
specification may be defined for the case of interaction with an
arbitrary system environment. Such an arbitrary system environment
may be modeled by additional environment modules: One environment
module EM<i k> for each interaction point reference j(i,k) refering to
an externai interaction point. The module EM<i k> has a single inter-
action point reference j(<i,k>,1) refering to II'i(i,k) and assuming
the role r(<1,k>,1) = 'f(i,k). The behavior of the environment module
EM<i > is assumed arbitrary, e.g. one could define the following

.k transitions:

a) Input transition
P(s,input) = true
F(s,input) = s(*no change*)

h) Output transitions, one transiton for each value "out" in
I (rIietk))

(s) = true
F(s) = s(*no change*)
0(s) = "out"

if such environment modules EM<i k> are added to the system
specification, as explained above, the tranèlation (described in sec-
tion 5.2.1) of the so extended system specification leads to a simple

' 	 D 	

C)

reAreirm FDT . module
FDT channel

J 	I BSM module
BSM channel
BSM one-directional

channel

-30-

Figures for section 5:

I I 	1 I

I 1
(h)

Notation:

b) Module with input queue for interactions: A module in the FDT is
translated into two modules of the BSM, one input queue module Q
and module M similar to the module M under point (a), as shown in
figure (c). Each channel in the FDT is translated into two (one-
directional) interaction points in the BSM: the input from each
channel leads to corresponding (input) interaction point refer-
ences of Q, and the output is directly produced through cor-
responding 	(output) interaction point references of M. 	In
addition, there is one interaction point connecting . Q and M
through which M receives the next input to be processed.

c) Channels with delay and modules with input queues: A channel with
delay in the FDT gives rise to two additional delay modules D, one
for each direction, as indicated in figure (d).

- 31 -

5.4.1. Module with zero-queue option

1) A module specification with zero-queue option written in the FDT
is translated into a single module Mi of the basic semantic model,
together with the interaction points it is connected to.

2) A single transition of the specification will, in general, be
translated into several transitions of the basic semantic model.
The latter transitions will be called in the following "minor
transitions" to distinguish them from the tormer, which are simply
called "transitions" and have the form defined in the specifica-
tion.
In addition to an initiating minor transition, which is an input
or an internal one, one may obtain one minor transition per output
statement in the transition. Other translation schemes could also
be envisaged. The initiating minor transition leads into a module
state which is called an "intermediate" state. The last minor

transition to be executed for a given transition leads back to a
"major" state.

3) a) The components of the state space S i of the module Mi cor-
respond to the variables of the specified module, including the
STATE variable as first component. The state avace contains also
a component, called "last-input", of type + Ij r(l iiV) into which
the last input interaction of the module iskstoreà.
Note: this is necessary since the sequence of minor transitions
resulting from the translation from a single FDT transition may
all use the parameter values of the input that triggered the tran-
sition.
h) The possible values of the first component of a state
called "STATE 4 ", are partitioned into "major-states i " which cor-
respond to te major states defined by the FDT specification, and
into "intermediate-states i ' , as introduced under point(2).

Note: Usually, input transitions are only possible in major
states, i.e. STATE in intermediate-states i implies P(<STATE,...>,
input) = false for any input. Note: Due to potentiel deadlocks
identified, precise rules for the translation of the zero-queue
case require further investigation.

Note: Due to lack of time, the formal semantics of DELAY has not
yet been included.

4) After having obtained all minor transitions of a module Mi as
explained under points (2) and (4) above, the following minor
transitions are added. 	They define the action of the module in
the case that a received input is not matched by any transition:
For each interaction point referenq (i,k) the following minor
input transition t of the form t ik ` 11 is added

- 32 -

P - t (s , input) = (STeE i in major-states i)
and for all t 4k ‘ in7 as obtained under point (2) and (4)

P(s i ,input) = false

s i (option of "NULL transition")
,input) = 	or

arbitrary value
(not defined by the specification)
(option of "undefined error handling")

Note: 	The first option implies that the input is ignored. With
the second option, the resultant next state is defined by the
implementation.

5.4.2 Module with infinite queue option

A module specification with infinite queue option written in

the FDT is translated into two modules Qi and Mi of the BSM. Q i is
the input queue described below, and Mi is as described in section
5.4.1 with the following exceptions:

(Q1) There is an additional interaction point IP, with the sets of
possible interactions

(queue) =
4
(queue) = the empty set (no interaction)

(Note: this is a one-directional interaction point)
and the range of functions

(queue) CE 	 = the empty set

cE j t ue) = (ready, wait)
q

Explanation: The module Mi indicates whether it is ready for the
next input.

F- t (s

(Q2) The module Mi has an
point IP 	with role

c i,k (<STATE,.
el.

additional reference k to the interaction
"queue". The function ci C i k has the form

' q

ea>) = if (STATE in major-states i)
then ready else wait

Explanation: The module is ready for the next input when the

module is in a major state.

(Q3) The-other interaction point references (corresponding to the

channels of the module in the FDT) are only used for output.

(Q4) The input queue module Q i has interaction point references
j(i,k) (k = 1,2,...,Ki ; corresponding to the channels of the

module in the FDT), which are only used for input. An addi-
tional reference j(i,k) refers to the interaction point IP

- 33 -

with role "queue".

(Q5) The state space of Qi has a single component:
a queue of elements of type + Iik) k 3 	.

k

(Q6) The following transitions are defined for Qi :
(a) For each inWq.ction point reference j(i,k), there is an

input transition tlkni with
P = true
F(q, input) = append (q, input)
Note: the input is appended to the queue.

(h) For the interaction point reference j(i,k), there is an

output transition tut) with

P(q,f) = (q is not empty) and (t = ready)
F(q,f) = tail (q)
0(q,f) = first(q)

Explanation: Output to the module Mi may be initiated when the
queue contains on input and Mi is ready to receive one (i.e. in
a major state, according to Q2). The transition has the first

element of the queue on output and retains the other elements in
the queue.

- 34 -

Note: The minor transitions corresponding to two transitions of
two different modules in the FDT do not influence one another
directly (except possibly enabling the other). Therefore they
may be executed in parallel.

5.4.3 Module with infinite queue and SAVE options

A module specification in the FDT with infinite queue and
SAVE options is translated into two modules Q. and Mi of the basic
semantic model as described in section 5.4.2 With the following excep-
tions:

(Si) CE (queue) = set of (1-I“. ‘ i,k))), however, the values of the
inlgraction parameters mây be ignored.

Explanation: the module indicates which kinds of interactions
are presently in the "save set".

(S2) C, , (<STATE,...>) = if STATE in major-states i
then "save set" of STATE
else "all kinds of interactions".

Note: No change to (Q3) through (Q5).

(S6) The transition t ou t) has the form

P(q,f) = q contains an element not part of the "save-set" t.
0(q,f) = the first such element of q.
F(q,f) = the queue q with the output element removed.

5.4.5. Examples of translations:

Example A:
from A to B
when IP-referencek .primitive- in
provided <exp> (*may depend on parameters of primitive-in*)
begin <statements 1>;

out 	IP-referencek' .primitive-out(<effective 	parameter
list>);

<statements 2> end;
may be translated into the following two minor transitions of

(in)
t ik 	: P = (STATE=A) and input is a case of primitive-in

and <exp>
F 	last-input := input;

STATE:=intermediate-1;
other components changed according to

<statements 1>

- 35 -

P = (STATE = intermediate-1)
0 : defined by output statement

(depending on the module state at the
be2inning of the minor transition
(put)

t ik ,)
F : STATE:=B;

other components changed according to
<statements 2>;

6. Verification rules for checking that an (N)-service
is rendered by an (N-1)-service and an (N)-protocol.

To be provided.

7. Conformity rules for checking implementations

to be provided

8. Terminology

to be provided

Annex 1: User guidelines

Annex 2: Applications to draft standards

Annex 3: Language support tools

Annex 4: Check against evaluation criteria

- 36 -

Annex 5: Relation to graphical description techniques

1. Introduction

Graphical description techniques are often used to give an
overview of a protocol or service specification, and sometimes are
enhanced to provide a complete specification. Different graphical
representations of extended state transition models are in use. Some
of these representations are shown in section 2. The systematic
translation of linear specifications written in the FDT described in

this document, into graphical representations is discussed in section
3.

2. Different graphical description techniques

The following subsections present overviews of the Transport
protocol class 0 connection establishment phase (a complete specifica-
tion is given in Annex D) using different graphical description
techniques. This may be used for a comparison of these graphical
techniques.

2.1 Common state transition diagrams

The diagram of Figure 1 gives an overview. It specifies the

major states and the types of transitions, indicating for each transi-
tion only the kind of the relevant input and output. A similar
deseription technique is used in several CCITT Recommendations, such
as X.25, etc.

2.2 Enhanced state transition diagrams

The diagram of figure 2 contains the basic information of
figure 1, but it also includes some additional information about con-
ditions and actions of transitions relating to the interaction
parameters and additional state variables of the extented state tran-
sition model. Such a description technique is used in several SC6
documents, such as N2281.

2.3 The System Description Language (SDL) of CCITT SGXI

The diagram of figure 3 contains the same information as

figure 2, using the SDL of CCITT.

- 37 -

3. The translation of the linear FDT into graphical form

The translation is relatively straightforward if the linear
specification contains the transitions sorted by major present states
(FROM clause), input interactions (WHEN clause) and additional condi-
tions (PROVIDED clause), as in the example below. Any specification
may be put into this form by a simple rearrangements of the order of
the different transitions. The following example is considered:

(*transitions*)
from A

when AP.reql
provided Cl

to B
begin Actionl; AP.indl end;

provided C2
begin Action2; AP.ind2 end; •

when AP.req2
to C
begin Action3; AP.ind3 end;

The translations of these three transitions into the different graphi-
cal representations are shown in figures 4, 5 and 6.

3.1 Translation into common state diagrams

All states shown in the diagram are declared in the <major
state declaration> part of the linear specification. Each defined
transition gives rise to an arrow in the diagram, as shown in figure 4
(using the information of the FROM and TO clauses). The information
for the annotation of the arrows is taken from the WHEN clause and the
BEGIN statement of the transition <block>. This statement must be
scanned to extract the <output statements> which are used for the
annotation of the arrows.

3.2 Translation into enhanced state transition diagrams

While in the overview diagrams of common state diagrams the
information of the PROVIDED clauses and the BEGIN statement (except
for .the output) is usually lost (see figure 1), this information may
be included in the enhanced transition diagrams, as shown in figure 5.
The translation process is similar, to the case of common state
diagrams. .

- 38 -

3.3 Translation into SDL

The process of translating a linear specification into SDL
is closely related to the embedded structure of the linear specifica-
tion (see example above). Each FROM clause corresponds to a "large"
graphical state symbol. Each WHEN clause, within a given FROM clause,
corresponds to a graphical input symbol connected to that state sym-
bol. If for a given WHEN clause, there are embedded PROVIDED clauses,
then a graphical decision symbol represents the choice between these
alternative transitions, as shown in figure 6. The BEGIN statement
corresponds, in general, to an action symbol and possibly some output
symbols. (The relevant outputs must be extracted from the BEGIN
statement, as explained in section 3.2). The TO clause corresponds to
a "small" state symbol which terminates a transition.

■ of t.e

"7- e ewer_

etkIË en.
/cg.

tv c. ■ L lor_

GR 	coN,vec`r_iet

Y_Ine \
/R

- 38P--

cc-

Aceeir-

sc-ffei

et.

N..

Pr_Insc_blw,1

L. A-CCtPr,

Acce -h-_,
/ CC

1- 445fee

Figure 1

- 39 -

CePkeer...7,1 	4le Ç, pg,d,fe

cooer
4.%,4 aue

rpv .;. cii

7:›Isc,,1

SC -

cc

C

014ct

ireà.hefle,:id)
\._ 	

Figure 2

- 40 -

comee.

Acce?

Ii

C

T... A cc e'rr,
,

otedc,

i i-miv■sfe

A 44 et

Figure 4

C C

a

•1

I

a

1 - 41 -

1

1

a

5 Fig ure

A 3

> rei

CI Cl

Figure 6

- 42 -

- 43-

Annex 6: Language elements for further extension

This annex gives a list of elements for further extension in
the sense that solving the issues which are raised here is not con-
sidered as necessary before considering the language as stable.
a - user_data_type operation
b - coding/decoding
e - address manipulation
d - SAP management
f - module management
e - include
g - channels with states and other intelligence
Note: however point b is considered of primary importance (further

study)

The following contain a preliminary proposal made by some
experts which has been presented during the Catania meeting but
neither deeply discussed nor agreed.

- 	 -

Some preliminary proposal for user data type,
coding functions, SAP and address manager functions.

(this requires further consideration and is viewed as a candidate for
extension of the language)

1. The following functions and procedures kpredefined) are associated
with the predefined user data type.

dassemble (ul, u2: userdatatype);
ul and u2 are assembled and the result is assigned to
ul

dfragments (ul: uÈerdatatype, 1:integer): userdatatype
ul is fragmented into two parts. The first part of ul
(from octet 1 to octet 1) is assigned to u2;
ul contains the remaining part

dcopy (u : userdatatype): userdatatype;
a "copy II of 	is retained by the user and can be
affected to an other variable.

dlength (u : userdatatype): integer;
gives the length of variable u.

2. Particularity

Since the predefined type is not specified (i.e. abstract) the
so-called 'octet' could be anything (e.g. digit, byte of 7
bits...)

3. Function allowed with this type

The only operations allowed on user_data_type are the predefined
function or procedures. Assigment or tests of variables of the
type are prohibited. The only way to assign a variable of the
type is to use a for or procedure

exemple
u:=v 	is illegal
u:=dcopy(v) is legal.

Note

as soon as a variable of this type is put in the parameters of
an interaction passed through a channel then the variable has a

length of 	o. This modelizes the fact that the data received
from the user are passed to the layer above.

4. Additional operation
- dassign (u:udata_type):udatatype

this allows an entity to move a userdata from a variable to an
other one - for instance because a received user data cannot be
transmitted immediately

- durger (u: udatatype)

a received user data is dropped

5. Pdu coding/decoding

A new keyword in the language is created called 'PDU' which allows
to declare under this new section the PDU sent or received in the
same way interaction are declared (Pascal like record).

This section allows the following types and functions for each
'name' declared in the PDU Section.
- an 'encode-name' function is predeclared having as parameters

the parameters of the PDU called 'name' and as a result result a
variable of the u_data_type [this function allows to formally
describe that before sending a PDU it is necessary to transfer
the 'logical' format (i.e. the local variable) into the 'physi-
cal' format (i.e. the real string of bits in the real encoding
method used by the protocol)]

- a 'decode_name' function is predeclared making the opposite
translation

- a 'identify-pdu' function

exemple
PDU

CR (credit:integer;destref,localref:integer;
clan:clan_type;alt_class:class_type;
option:option_type;udata:user_data_type);

CC(... idem)

DT (etc: boolean;u_data:userdata_type);

when N.DTindication

provided identify_pdu (netudata)=CR
decode._CR;

- 46-

decode_CR;

provided identify_pdu(netudata)=CC
decode_CC;

provided identify_pdu(netudata)=DR
decode_CC;

(*protocol error*) when N.DTindication priority 0
begin

out N_DISCONNECT 0
end

when CR
.. similarly

when CC
.. similarly

when DT
.. similarly

- notice that the 'decode-name' function performs an internal
'call' the interaction labelled by the PDU_name.
This feature allows to deal in the same automaton with (N-1)

• service events and (N) PDU events (which are in tact internally
generated when receiving an other interaction).

- notice that this allows to have PDU received and decoded in user
data of different (N-1) interactions.

- notice that this proposes coherent solution for

- coding/decoding
- (N-1)SDU/(N)PDU
- abstract user data manipulation.

[complete example can to found in CATANIA 19]

Address SAP manipulation function

the following predefined procedure or function can be defined

mappaddress UN)-address, (N-1) address, N_suffix);
buildaddress((N)-address, (N-1) address, N_suffix);
testaddress ((N)-address, (N-1) address):boolean
testhigSAP((N)address):boolean
testlowSAP((N)-1) address):boolean
createhighCEP((N)-1)address):CEP id_type
createlowCEP ((N)-1)address):CEP:id_type

-

They use the predefined types

N_address_type
N_suffix
Nminsl address_type
CEP_idItype.

I 	I
P et

ee-reee--

Al

ft

1 eS1 e.zdt

pJ

Jemeatti- ,,.■■•■■•■

	

1 ' 	(L))- .9-L) 	1
—

efltuu. 4,U" 	t

1
f„,-td

	

Pct 	 P et 	•

I
4.ec 	 cLt1 cuLL-A

I.

• Ox.r.-eta

I 	.

-ts‘

ANNEX 3

This paper is submitted to the meeting of ISO TC97/SC16/WG1 ad hoc group
on FDT, Enschede, April 1982.
Title : Formal description of the Transport service

Source: G.V. Bochmann (Canada)

1. Introduction

The formal description given in section 2 uses the language defined in
Part II of this report, which was defined by the ISO TC97/qr,16/7q 1 ad
hoc group on FDT (working document December 1981). The following
paragraphs are intended to explain some characteristics of the
Transport protocol specification given below in order to facilitate
its reading.

1.1. Connection identification

The specification of the communication service foresees an arbitrary
number of service access points identified by the address, and
distibuted over the different systems of the Open Systems environment.
Each access point can handle an arbitrary number of simultaneous
connections to different other access points. The connections at a
given accesss point are distinguished by the connection end point
identifiers (CEF_id).

Since the above connection identification is specific to each end
point of a connection, the service specification introduces an
independent connection identification bases on connection identifiers
("conn_id" of type "TC_id_type"). The mapping between this internal
identification and the identification at the endpoints is given by the
functions "find_TC_id" which finds the internal identification from
the identification at one endpoint (address and TCEP_id), and
"this_side" which determines for a given connection end point
identification (address and TCEP.....id) whether this endpoint is the
calling or called side of the connection.

1.2. Buffers for data transfer

For each connection, two data buffers are used to hold the user data
in transit in the two directions of data transfer. The interactions of
these data buffers are described, but their properties are not
formally defined. We note, however, that service data units (TSDU's)
are exchanged between the user and the Transport service in fragments
(fragmentation may be different at the two endpoints of a connection),
and the end-of-TSDU mark is handled as well. Flow control for normal
data at an access point is related to the flow control into the
corresponding data buffer.

1.3. The states of the Transport service

The internal states of the Transport service is an array which
contains for each connection the following state information:
(a) for each TCEP (i.e. calling and called side)

- a major "state" indicating whether the connection is open etc.
- the endpoint identification of the conection,
- some additional information related to the endpoint;

(b) information about options used, quality of service parameters,

2.

3.

ect.

1.4. Grouping of transitions

The transitions of the specification are grouped according to the
funtion they perform, i.e. into CONNECTION ESTABLISHMENT, DATA
TRANSFER, EXPEDITED RATA TRANSFER, and TERMINIATION.

4 .

2. Formal specification

type
T_address_type = ...;
known_T_addresses = •..; (* sub-type of T_address_type *)
TCEP id_type = •..; (* implementation dependent *)
quailty_of_TS_type = record

class_of_service : (basic, enhanced);
throughput_average : integer; (* in seconds *)
(* and possibly other quality parameters *)
end;

option_type = set of (expedited_data (* and possibly other options *))
string_of_octets = record

length : pos_integer;
contents : array [1] of 0 .. 255;
end;

TS_connect_data_type (* property: maximum length = 80 *),
TS_Accept_data_type (* property: maximum length = 80 *),
TS_expedited_data_type (* property: maximum length = 16 *),
TS_user_reason_type (* property: maximum length = 80 *)

= string_of_octets;
TS_disconnect_reason_type = (TS_U_NRM, TS CONG, TS_FAIL, TS_OUAL_FAIL,

U UNKNOWN);
both_sides = (calling, called);

5 .

interaction
TS_primitives (TS_user, TS_provider)
by TS_user :

T_CONNECT_req (TCEP_id : TCEP_id_type;
to_T_address,
from_y_address : T_address_type;
proposed_options : option_type;
proposed_QTS : quality_of_TS_type;
data : TS_connect data_type):

T CONNECT_resp (TCEP_id : TCEP_Id_type;
proposed2TS : quality_of_TS_type;
proposed_options : option_type;
data : TS_Accept_data_type);

T DISCONNECT req (TCEP id : TCEP id type;
TS_user_reason : TS_user_reason_type);

T DATA_req (TCEP id : TCEP_id_type;
TS user data : string_of octets;
isllastlfragment_of_TSDTi—: boolean);

T_EX_DATA_req (TCEP_Id : TCEP id_type;
TS_user_data : —TS_expedited_data_type);

T_EX_D_READY_resp (TCEp_id : TCEp_id_type)

by TS provider :
T 'EONNECT_ind (TCEP_id : TCEP_id_type;

to_T address,
from:T_Address : T_address_type;
proposed_options : option_type;
proposed_QTS : quality_of_TS_type;
data : TS_connect_data_type);

T CONNECT_conf (TCEP_id : TCEP_id_type;
proposed_QTS : quality_of_TS_type;
proposed_options : option_type;
data : TS_accept_data_type);

T_DISCONNECT_ind (TCEp_id : TCEP_id_type;
TS_disconnect_reason : TS_disconnect_reason_type;
TS_user reason : TS_user_reason_type);

T DATA_ind (TCEP_id : TCE-17 id_type;
TS_user_data : string_of_octets;
is_last_fragment_of_TSDU : boolean);

T_EX_DATA_ind (TCEP_id : TCEP id_tyDe;
TS_user_data : —TS_expedited_data_type);

T_EX_D_READY_conf (TCEP_id : TCEP_id_type);

6 .

type
TC_id_type = ...;

interaction
TS_data_buffer (user, buffer)
by user :

clear;
append (fragment : string_of_octets;

is_last_fragment_of_TSDU : boolean);
(* another data fragment is inserted into the buffer *)

by buffer :
next_fragment (fragment : string_of_octets;

is_last_fragment_of_TSDU : boolean);
(* the buffer delivers another data fragment to the user *)

free_space; (* used for Transport protocol srecification *)

module TS (AP : array [T address type] of TS primitives (TS_provider);
 buffer : arra7 [TC_idlt ype, both_7;ides] of TS_data_buffer (user

I

I .

•

7.

var
TC : array [TC_id_type] of record

EP : array [both_sides] of record
state : (closed, open_in_progress, open, close_in_progress);
address : T_address_type;
Id : TCEp_id_type;
QTS_estimate : quality_of_TS_type;
EX_D_state : (idle, EX_D_in_transit, wait_for_resp,

EX_D_conf_in_transit);
(* this state concerns the transfer of expedited data

from this EP to the opposite one *)
last_EX_data : TS_expedited_data_type;
end;

options : option_type;
connect_data : TS_connect_data_type;
accept_data: TX_accept_data_type;
TS_reason : TS_disconnect_reason_type;
user_reason : TS_user_reason_type;
end;

function opposite (side : both_sides) : both_sides;
begin

if side = calling
then opposite := called else opposite := calling

end;

function find_conn_id (T_addr 	T_address type;
TCEP_id : TCEp_idliype) : TC_id_type;

begin ... (* property: see property below *) end;

function this_side (T addr : T address type;
TFEP_id 7T-CEp_idjype) : both_sides;

begin ... end;

(* property:
with TC [find TC_id (T addr, TCEP id)].

EP 	side TT addr, TCIP id)] holds
address = Taddr
and id = TCEPId
and state <> closed

or TC [find_TC id (T_addr, TCEP_id)]. El'[side]. state = closed
for bot-17 sides;

i.e. find TC id returns the TC identified by TCEP id at the AP
dt the address Taddr;

this_side indicates whether this end of the connection is
calling or called. *)

8.

(* CONNECTION ESTABLISHMENT PHASE *)

any Taddr : T_address_type do
when AP[T_addr]. T CONNECT_req

provided ... (*—property: for all conn_id :
all side : botb_sides holds

with TC[conn_id]. EPfside] do
state <> closed implies

address <> Taddr or
id <> TCEp_id 	 *)

(* i.e. the TCEP identifier is not yet in use at the
same AP *)

and from T_address = Taddr
and ... (. 9, able to provide the service asked for *)

var conn_id : TC_id_type;
begin

conn_id := ...; (* property: for all side : both_sides holds
TC[conn_id].EP[side].state = closed

(* i.e. connection not yet in use *)
initialize (conn_id);
with TC [conn_id] do begin

with EP [calling] do begin
state := open_in_progress;
id := TCEP_id;
address := Taddr;
QTS_estimate := proposed_QTS; 	 •
EX D state := idle;
end;

with EP [called] do begin
address := to_T_address;
EX D state := idle;
end;

options := proposed_options;
connect_data := data;
end;

buffer[conn_id, calling].clear;
buffer[conn_id, called].clear;
end;

provided ... (* not able to provide the service asked for *)
begin

AP[T_addr]. T_DISCONNECT_ind (TCEP_id, 	(* property:
if not to T address in known_T_addresses then U_LTNY.NOWN *),

(* dunimir. *));
end;

9 .

any conn_id : TC_id_type do 	with TC[conn_id] do
provided 	(EP[calling]. state = oDen_in_progress)

and (EP[called]. state = closed)
(* when the connection request reaches the called side *)
begin with EP[called] do begin

state := open_in_progress;
id := ...; (* property: for all cong_id' <> conn_id,

all side : both_sides holds
with TC[conn_idl.EP[side] holds

state <> closed implies
address <> TC[conn_id].EP[called].addr
or id <> TC[conn_id].EP[called].id

(* i.e. the identifier is not yet in use *)
QTS_estimate := ...; (* not defined by this standard *)
AP[address]. T CONNECT_ind (id, address, EP[calling].address,

options, QTS_estimate, connect_data);
end end;

any T_addr : T address_type do
when AP[T_addrT. T CONNECT_resp 	with TC [find_conn_id (Taddr, conn_id)]

provided (this_side (Taddr, conn_id) = called)
and (EP[called].state = open_in_progress)
and ((data = undefined) or (connect_data <> undefined))
and (proposed_options in options)

. begin
EP[called]. state := open;
options := proposed_options;
accept_data := data;

end;

(* There is also the possiblity of disconnection, see termination phase *)

any conn_id : TC_id_type do 	with TC[conn_id] do
provided EP[calling]. state = open_in_progress

and EP[called]. state = open
(* when the connect response reaches the calling side *)

begin with EP[calling] do begin
state := open;
QTS_estimate := ...; (* not defined by standard *)
AP[address]. T CONNECT_conf (id, options, QTS_estimate, accept_data)
end end;

1 •

1

1

10.

(* DATA TRANSFER *)

any Taddr : Taddress_type do
when AP[T addr]. T DATA req

with TF[find 	id—(T addr, TCEP id)].
EP [-t-his.5ide (F addr, TCr:17 id)] do

provided state = open
and ... (* property:

flow control to the Transport entity is ready *)
begin

buffer[find_conn_id (T addr, TCEP id),
this_side (T_ad-cir, TCEP_id.)].

append (TS_user_data, is_last_fragment_of_TSDU);
end;

any conn_id : TC id_type do
any side : bothji-ides do

with TC[conn_id].EP [opposite(side)] do
when buffer[conn_id, side]. next_fragment

provided state = open
and •.. (* property: flow control to user is ready *)
and ... (* there is no expedited data in transit

(in the same direction of transfer) which was sent pri
to the next normal data fragment *)

• begin
AP[address]. T_DATA_ind

(id, TSDU_fragment, is_last_fragment_of_TSDU);
end; 	 •

11.

(* EXPEDITED DATA TRANSFER *)

any T addr : Taddress type do
when TP[T 	addr]. T EX -15ATA req

witii TC [fine r cTinnjI (T addr, TCEP_id)] do
with EP [this_side (Tadir, TCEF_id)] do

provided expedited_data in options
and state = open
and EX_D_séate = idle

begin
last_EX_data := TS user_data;
EX D_state := EX_Cin_transit;
end;

any conn_id : TCid_type do 	with TC[conn_id] do
any side : both sides do
provided EP[sille]. state = open

and EP[side]. EX_D_state = EX_D_in_transit
(* when the expedited data reaches the destination *)

begin
AP [EP [opposite(side)].address]. T_EX_DATA_ind (

EP[opposite(side)]. id,
EP[side]. last_EX_data);

EP[side]. EX_D_state := wait_for_resp;
. end;

when AP[T addr]. T EX D_READY resp
witi71. TC [fini c-(7,nn_id (f. addr, TCEP

—
id)] do

provided expedii-ed_data in options
and EP [this_side (T addr, TCEp_id)]. state = open
and EP [opposite (thi.s_side (T_addr, TCEP_id))].

EX_D_state = wait_for_resp
begin

EP [opposite (this_side (T addr, TCEp_id))].
EX_Dstate := 	D_conf_in_transit;

end;

any conn_id : TC id_type do
any side : both5ides do

with TC[conn_id]. EP[side] do
provided state = open

and EX D state = EX D conf_ in transit
(* when the confirmation reaches the sender of the expedited data *)

begin
AP [address]. T_EX_D_READY_conf (id);
EX D_state := idle;
end;

12.

(* TERMINATION PHASE *)

any T_addr : T_address_type do
when AP[T addr]. T_DISCONNECT_req

witi7 TC[find_conn_id (T_Addr, TCEP_id)] do
with EP [find_side (T_addr, TCEP_id)] do

provided state in [open_in_progress, open]
begin

state := close_in_progress;
TS_reason := TS_user initiated_termination;
user_reason := 	(-; property: either equal to "Tg_user_reason"

or undefined, i.e. the transmission of this additional
information is not guaranteed by the TS_provider *);

end;

any conn_id : TC id type do 	with TC[conn id] do
any side : both 7id-Js do 	 with EP[sideT do

provided state in [open_in_progress, open]
and ... (* when internal problem of TS_provider *)

begin
state := close_in_progress;
TS_reason := ...; (* property: not H_UNKNOWN *)
AP[address]. T DISCONNECT_ind (id, TS_reason, 	(* dummy *));
end;

provided EC [opposite (side)]. state = close_in_progress
(* when the disconnect reaches the other end of the connectio

begin
if state in [open_in_progress, open]

then AP[address]. T_DISCONNECT_ind (id, TS_reason, user_reason
state := closed;
EP [opposite(side)].state := closed;
end;

1

1

ANNEX

I

1.

Contribution to the meeting (July 1982) of the Subgroup B of the
ISO TC97/SC16/WG1 ad hoc group on FDT

Title: Example description of the Transport service

ut..h o r : O. v. D o hmann and K. S. F;:a ghun a. than

June 1982

L Introduction

L L Conneetion identification

The specification of the communication service foresees an
arbitrary number of service access points identified by the
address, and distibuted over the different systems of the Open
Systems envi ronment.. Each access point can handle an arbitrary
number of simultaneous connections to different other access
points. The connections at a given aceesss point are
distinguished by the connecti on end point identifiers (CEP_id).

Since the above connection identification is specific to each end
point of a connection, the service specifieation - ini :,roduces an
independent connection identification based on connection
identifiers ("conn_id" of type "TC_id_type"). The mapping between
this internal identification and the identification at the
endpoints is given by the functions "find_TC_id" which finds the
internal identification from the identification at one endpoint
(address and TCEP_id), and "this_side" which determines for a
given connection end point identification (address and TCEP_id)
whether this endpoint is the calling or called side of the
connectiom

1.2. Duffers for data transfer

For eaeh connection, two data buffers are used to hold the user
data in transit in the two directions of data transfer. The
interactions of these data buffers are.described, but their
properties are not formally defined. We note, however, that
service data units (TSDU:'s) are exchanged between the user and
the Transport service in fragments (fragmentation may be
different at the two endpoints of a connection), and the
end—of—TSDU mark is handled as well. Flow control for normal data
at an aceess point is related to the flow control into the
corresponding data buffer

\
)

1.3. The states of the Transport service

The internal states of the Transport service is an array which
contains for each connection the following state information

(a) for each TCEP 	e. calling and cal led si de)
— a 	or "state" indicating whether the connection is open

etr.
— the endpoint identification of the conection,
— some additional information related to the endpoint;

(b) information about options used quality of service
parameters, etc.

1.4. Specifying 1 ':'':al rules for interactions at an access point

In the description of the Transport service, - the local rules that
determine the order in which the service primitives may be,
executed at a given connection end point (TCEP), has been
specified as <constraint> of the TCEP. The syntax assumes that
the symbol <interactions> in the syntactic rule for <channel type
def> in the FDT is replaced by the two symbols <interactions)
<constraint), and the constraint is defined by

<constraint> 	empty I <module body>

The first part of the description defines the service primitives
with their parameters (using the Subgroup B syntax), while the
second part, viz <constraint), defines the local order in which
these primitives may be executed (using the extended state
transition model, without outputs). For instance, the first
transition of the <constraint> is interpreted as: From 'closed '

 state a ''T_CONNECT_req' interaction will lead to the 	•
'open_in_progress' state with the variable assigned the
value ''calline. The <constraint) defines essentially the state
transitions of the extended state transition model of the TCEP.

The third part of the description, viz <module), defines the
global end—to—end properties of the service which relate the
I nteractions taking place at diffent access points. In this part,
the' state variables of the TCEP.'s are sometimes refered to (using
the dot notation: <endpoint name) . <state variable name)).

4.

1.5. Grouping of transitionà

The transitions of the specification are grouped according to the
funtion they prform i. . into CONNECTION ESTABLISHMENT, DATA
TRANSFER, EXPEDITED DATA TRANSFER, and TERMINIATION.

2. Formal specification

type
T_address_type = ...;
known_LT_addresses = ...; (* sub—type of T_address_type *)
TCEP_id_type = ... 	(* implementation dependent *)
quality_of_TS_type = record

class_of_service : (basic, enhanced);
throughput_average : integer; (* in seconds *)

(* and possibly other quality parametérs *)
end;

option_type = set of (expedited_data (* and possibly
other options*));

string_of_octets = record
length : pos_integer;
contents : array El 	3 of 0 .. 255;
end;

TS_connect_data_type_(* property: maximum length = SO *),
TS_accept_data_type (* property: maximum length = 80 *),
TS_expedited_data_type (* prperty: maximum length = 16 *),.
TS_user_reason_type (* property: maximum length = 80 *)

= string_of_octets;-
TS_disconnect_reason_type = (TS_U_NRM, TS_CONG, TS_FAIL,

TS_QUAL_FAIL,U_UNKNOWN);
both_sides = (calling, called);

6.

1

1

1

11

interaction
TCEP_primitives (TS_user, TS_provider)
by TS_user :

T_CONNECT_req (to_T_address,
from_T_address : T_address_type;
proposed_options : option_type;
proposed_9TS : quality_of_TS_type;
data : TS_connect_data_type):

T_CONNECT_resp (proposed_CATS : quality_of_TS_type;
proposed_options : option_type;
data : TS_accept_data_type);

T_niSCONNECT_req (TS_user_reason 	TS_user_reason_type);

T_DAT(_req (TS_user_data : strind•of_octets;
is_last_fradment_of_TDU : boolean);

T_EX_DATA_req (TS_user_data : TS_expedited_data_type);

T_EX_D_READY_resp;

• by TS_provider :
T_CONNECT_ind (to_y_addressi

from_T_address 	T_address_type;
proposed_options : option_type;
proposed_fDTS : quality_of_TS_type;
data : TS_connect_data_type);

T_CONNECT_conf (.proposed_ 	: quality_of_TS_type;
proposed_optidns 	option_type;
data : TS_accept_data_type);

T_DISCONNECT_ind (TS_disconnect_reason :
TS_disconnect_reason_type;

TS_user_reason : TS_user_reason_type);
T_DATA_ind (TS_user_data : strind_of_octets;

is_last_fragment_of_TSDU 	F 1 Joo.. cari

T_EX_DATA_ind (TS_user_data : TS_expedited_data_type);

T_EX_D_READY_conf;

interaction
TSAP = array ETCEP_id_type3 of TCEP_primitives;

to open_in_progress

to open_in_progress

to closed;
to closed;

to open;

7

constraint

var
state : (closed, open_in_progressi open);
si de : both sides;
EX . El_send_sTate,
EX1D_receive_state 	(EX_idle, EX_transfer);

from closed
when T_CONNECT_req

begin
side := calling;
end;

when T_CONNECT_ind
begin

side := called;
end;

from open_in_progress
when T_DISCONNECT_req
when T_DISCONNECT_ind
when T_CONNECT_resp

provided si de = called
when T_CONNECT_conf

provided side = c ailing to open;

from open
when T_DISCONNECT_req 	 tu:' closed;
when T_DISCONNECT_ind 	 to closed;
when T_DATA_req 	 to open;
when T_DATA_ind 	 to open;
when T_EX_DATA_req

provided EX_El_send_state = EX_idle
begin

EX_D_send_state := EX_transfer;
end;

when T_EX_DATA_ind
provided EX_D_receive_state = EX_idle

begin
EX_El_receive_state := EX_transfer;
end;

when T_EX_D_READY_resp
provided EX_El_receive_state = EX_transfer

begin
EX_D_receive_state := EX_idle;
end;

when T_EX_D_READY_conf
provided EX_D_send_state = EX_transfer

begin
EX_D_send_state := EX_idle;
end;

to open

1. u:' open

to.open

to open

init begin
estate := closPd;
EX_El_send_state := EX_idle;
EX_El_receive_state := EX_idle;
end;

type
TO_id_type = ...;

interaction
TS_data_buffer (user, buffer)
by user :

2]. cari
append (fragment : string_of_octets;

is_last_fragment_of_TSDU 	boolean);
(* another data fragment is inserted into the buffer*)

by buffer :
next_fragment (fragment : string_of_octets;

is_last_fragment_of_YSDU : 000„.ean);
(* the buffer delivers another data fragment to the user *)
free_space; (* used for Transport protocol

specification *)

module TS (AP : array [T_address_type] of TSF (TS_provider);
buffer : array ETC_id_type, both_sides] of

TS_data_buffer (user));

I

var
TC : array ETC_id_typel of record

EP : array Eboth_sides3 of record
close_in_progress 	boolean; (* this side has initiated

a disconnect *)
address : T_address_type;
id : TCEP_id_type;
(* property:
APEaddressMidlside = index (both_sides) in EP *)

(DTS_estimate : quality_of_TS_type;
EX_in_transit : boolean; (* from this si de to

opposite si de *)
EX_data : TS_expedited_data_type; (* 	if any *)
end;

options : option_type;
connect_data : TS_connect_data_type;
accept_data: TS_accept_data_type;
TS_reason : TS_disconnect_reason_type;
user_reason : TS_user_reason_type;
end;

function opposite (si de : both_sides) : both_sides;
begin

if side = calling
then opposite := called else opposite := calling

end;

function findLconn_id (T addr : T address_type;
TêEP_id : 7CEP_id_type) : TC_id_type;

begin ... (* property: see property below *) end;

function this_side (T addr : T address_type;
TêEP_id : ÎCEP_id_type) : both_sides;

begin ... 	end;

(* property:
with TC Efind_TC_id (T_addr, TCEP_id)1
EP Ethis_side (T_addr, TCEP_id)3 holds

. address = T_addr
and id = TCEP_id
and state <> closed
or TC Efind_TC_id (T_addr, TCEP_id)1 EP Esidel state =
closed for both si des;

find_TC_id returns the TC identified by TCEP.jd
at the AP at the address T_addr;
this_side indicates whether this end of the co nnection is
calling or called. *)

10.

init begin
close_in_proqress := false;
E'X_in_transit := false;
end;

(* CONNECTION ESTABLISHMENT PHASE *)

when APET_addr3ETCEP_idi T_CONNECT_re ■q
provided ... (* property: for all conn_id : TC_id_type;

all si de : both_sides holds
with TCEconn_idl EPEside3 do
stale -CD- closed implies
address <> Laddr or
id <> TCEP_id 	*)

(* L e. the TCEP identifier is not yet in use
at the same AP *)

and from_T_address = T_addr
and ... (* able to provide the service asked for

var conn_id : TC_id_type;
begin

conn_id := ...; (* property:
for all si de : both_sides holds •
TCEconn_idi.EPEsidel state = closed
(* 1. e. connection not yet in use *)

initialize (conn_id);
with TC Econn_idi do begin

with EP Ecallinqj do beqin
id := TCEP_id;
address := T_addr;
OTS_estimate := proposed_OTS;
end;

with EP Ecalled3 do begin
address := to_T_address;

. 	end;
options := proposed_options;
connect_data := data;
end;

bufferEconn_id; callinql clear;
bufferEconn_id; calledl clear;
cri cl;

prOvided 	(* not able to provide the service asked for
beqin

APET_addr3ETCEP_idl T_OISCONNECT_ind
(... (* property:

if not to_T_address in known_T_addresses
then U_UNKNOWN *),... (* dummy *));

*)

•>)

*)

end;

any conn_id : TC_id_type do 	with TCEconn_id7.1
provided (AP [EPEcallingladdress]

EEPEcallingl id]. 	state = open_in_progress)
and 	(AP EEPEcalledl address]

CEPEcalledl idI state = closed)
(* when the connection request reaches the called si de *)
begin with EPEcalled] i Lo Jeg_n

(* property: for all conn_i& <> conn_id,
all si de : both_sides holds
with TCEconn_i&I EP[side] holds
state <> closed implies
address <> TCCconn_idlEPEcalledl address
or id <> TCEconn_idlEPEcalledl id *)

(* i. e. the identifier is not yet in use *)
QTS_estimate := ...; (* not defined by this standard *)
APEaddress][id]. T_CONNECT_ind (address,

EPEcallingladdress,
options, QTS_estimate,
connect_data);

end end;

when APET_addrJETCEP_idl T_CONNECT_resp
with TC Efind_conn_id(T_addr,TCEP_id)] do

provided ((data = undefined) 	or
(connect_data <> undefined))

and (proposed_options in options)
begin

options := proposed_options;
accept_data := data;

end;

of 	disconnection, 	see .(* There is ais':' the possiblity
termination phase *)

any conn_id : TC_id_type do 	with TC[conn_id] do 	•
provided (AP CEPEcallingi address]

EEPEcallingl Id]. state = open_in_progress)
and (AP LEPEcalledi address]

EEPEcalledlidl state = open)
(* when the connect respo nse reaches the calling si de *)

begin with EPEcalling] do begin
IDTS_estimate := ...; (* not defined by standard *)
APEaddress]Eid]. T_CONNECT_conf (options,

CITS_estimate,
accept_data);

end end;

(* DATA TRANSFER *)

when APET_addr7ETCEP_idl T_DATA_req
with TCEfind_conn_id (T_addr, TCEP_id)3.

EP Ethis_side (T_addr, TCEP_id)] do
provided 	(* property:

flow control to the Transport entity
is ready *)

begin
bufferEfind_conn_id (T_addr, TCEP_id),

this_side (T_addr,
append (TS_user_data,

is_last_fragment_of_TSDU);
end;

any conn_id : TC_id_type do
any si de : both_sides do

with TOCconn_idl EP Eopposite(side)3 do
when bufferEconn_id, si de]. next_fragment

provided APEaddressMidl state = open
and ... (* property: flow control to user is ready *)
and ... (* there is no expedited data in transit

(in the same direction of transfer)
"hi 'h "as sent prior
to the next normal data fragment *)

begin
APEaddress3Cidl T_DATA_ind

(TSDU_fragment, is_last_fragment_of_TSDU);
end;

4 •-s

(* EXPEDITED DATA TRANSFER *)

-when APET_addr3CTCEP_idl T_EX_DATA_req
with TC Efind_conn_id (T_addr; TCEP_id)3 do
with EP Ethis_side (T_addr; TCEP_id)3 do

nro vided expedited_data in options
begin

EX data := TS_user_data;
EX_in_transit := true;
end;

any conn_id : TC_id_type do 	 with TCEconn • id] do
any si de : both_sides do
provided AP CEPEopposite(side)laddress3

EEPEopposite(side)1 Id]. state = open
and EPEsidel EX_in_transit
(* when the expedited data reaches the destination *)

begin
AP CEP Eopposite(side)laddress] CEP[opposite(side)]. idl

T_EX_DATA_ind (EPEsidel EX_data); 	.
end;

when APET_addr3ETCEP_idl T_EX D_READY resp
with TC Efind_conn_id (T:addr; Til7EP_id)3 do

provided expedited_data in options
begin

EP Eopposite (this_side (T addr; TCEP_id))3.
EX_in_transit : ; false;

end.;

any conn_id : TC_id_type do
any Si de : both_sides do

with TCEconn_idl EP[side] do
provided AP Eaddress; idl state = open

and EX_in_transit = false
and AP EEPEopposite(side)1 address3

[EPEopposite(side)lid]. EX_D_send_state = EX_idle
and AP EaddressUidi EX_D_send_state = EX_transfer
(* when the confirmation reaches the sender

of the expedited data *)
begin

AP [address]Eidl T_EX_D_READY_conf;
end;

14.

(* TERMINATION PHASE *)

when APET_addr3ETCEP_idl T_DISCONNECT_req
with TCEfind_conn_id (T_addr; TCEP1d)3 do
with EP Efind_side (T_addr; TCEP_id)3 do
begin

close_in_progress := true;
TS_reason := TS_user_initiated_termination;
user_reason := 	(* property:

either equal to "TS_user_reason"
or ijridfi ned 	5.. e. the transmission
of this additional information is
not guaranteed by the TS_provider
*);

end;

any conn_id : TC_id_type do 	with TC[conn_idi do
any si de : both_sides do 	with EPEside3 do

provided AP Caddress3Cidl state in Copen_in_progress; open]
and ... (* when internal problem of TS_provider *)

begin
close_in_progress := true;
TS_reason := ...; (* property: not U_UNKNOWN *)
APCaddress3CidlT_DISCONNECT_ind (TS_reason;.:. (* dummy

*)) ;

end;

provided EP Copposite (side)1 close_in_progress
(* when the disconnect reaches the other end of the connection

*)
begin

if AP EaddressMidl state in Copen_in_ progress; open]
then

APEaddress3EidIT_DISCONNECT_ind(TS_reason;user_reason);
EP Copposite(side)1 close_in_progress := false;
end;

ANNEX 5

ISO

International Organization for Standardization

Organisation Internationale de Normalisation

ISO/TC97/SC16/WG1

Contribution to the meeting of the WG1 ad hoc group on FDT,
Nov. 1982

Title: Some enhancements to the syntax of the Subgoup B FDT

Source: Canada

Contribution to the meeting of the ad hoc group on FDT, Nov. 1982

1. Introduction

Canada would recommend that the following elements be proposed to
be included in the Subgroup B FDT. These are,minor elements which
are either important to make the language complete, or add some
feature that makes the use of the language more convenient.

2. Queuing option

The option of zero and infinite input queue should be specified
for each specification of a module type. The following syntax
could be used:

<input queue option> : : = INPUT <yes or no> QUEUED ;
<yes or no> : 	= empty

1 	NOT This should be the first part in a
<module body>.

3. More flexible embedding structure for transitions

The present syntax allows embedded transitions only in a certain
way, where throughout a module specification all transitions must
start with the same clause (e.g. the WHEN clause). In order to
indicate the end of a certain embedding structure (e.g. the start-
ing with WHEN clauses), and to allow in the subsequent transitions
a different embedding structure, the construct explained below is
proposed.

Example: when <input>
provided <condition>

from <present state>
to <next state>
begin ... end;

provided <condition>
	 end when; provided <condition>

from 	

- 2 -

(* spontaneous transition, not requiring input *)

The construct " END WHEN ; " is used to terminate the WHEN embed-
ding structure. Similarly, END FROM, END PROVIDED, etc. constructs
could be included in the language definition.

A possible syntax, equivalant to the present syntax of the working
document, except for the introduction of the END WHEN etc. con-
structs, is as follows:

<transition> : : = 	<some clause>
<some clause> : : = <ANY clause>

<WITH clause>
<WHEN clause>
<FROM clause>
<To clause>
<PROVIDED clause>
<PRIORITY clause>
<block> **

<FROM clause> : : = FROM <major present state> <some clause>
<FROM suite>

<FROM suite> :
<FROM clause>

1 END FROM
1 empty

etc. for the other type of clauses

4. Arrays of interaction points

In the case that an entity services several service access points,
for instance, it is important to be able to specify a number of
access points refering to the same type of channel. For this pur-
pose, the use of "interaction point arrays" in the <interaction
points> declaration of a module type definition is proposed.
Examples have appeared in several previous contributions on
Transport service and protocol specifications.

The precise syntax could be as follows: <interaction point decla-
ration> : : = <interaction point id>

<interaction point type> <interaction point type> : : =
<channel type id> (<role id>)

1 ARRAY (<index type>) OF <channel type id> (<role id>)

5. Separation of module type definitions and internal definitions

5.1. It is foreseen that the <internal definition> of a module may
either be given in the form of an extended state transition
machine (i.e. <module body>) or in the form of a <substructure
definition> which declares sub-module instances and their inter-
connections. In order to make such alternate specifications more
easily replaced by one another, within an overall system
specification, it is proposed to separate somehow the <module type
definition> from the internal definition.

•■■■•■

- 3 -

The following syntax could be used: <system> : : = SYSTEM <system
id> ; <specification part>* <specification part> : : = <channel
type definition>

1 	<module type definition>
1 	< extended state transition machine>
1 	<substructure definition> <module

type definition> : : = MODULE <module type id>
(<interaction points>)

<extended state transtion machine>
ESTM <module type id> ; <module body>

5.2. Instead of the reserved words MODULE and ESTM, the words
BLOCK and PROCESS could possibly be used.

6. End indications

For the overall structure of specifications, it seems to be useful
to indicate clearly the end of a specification part. For this
purpose the construct

END <module type id> ; or
END <channel type id> ; could be used, to be placed at the end

of a module or channel type definition.

7. Including informal elements in a specification

In many cases, certain properties of a specified module are not
defined in a formal way, but as an informal specification element
in (semi-) natural language. The notation " (/ <informal text>
/) " is included for this purpose in the Subgroup B language.

It is proposed to allow this construct to be used instead of iden-
tifiers anywhere in a specification. To simplify the syntax
analysis, it should not be placed where comments may be placed (as
now defined in the working document).

This approach allows a more flexible use of this construct, as
shown in the example below.

Example: (a) graphical specification with informal text
(b) equivalent linear specification

ANNEX 6

Contribution to the ISO TC97/SC16/WG1 ad hoc group on FDT meeting
in Paris, Febr. 1983.

Title: Semantics of spontaneous transitions

Source: G.v. Bochmann

The semantics of spontaneous transitions has been refined during
the last ad hoc group meeting. This contribution gives some
examples of applications for spontaneous transitions in the
Annex, and proposes the following revision to the semantics of
these transitions.

Proposal:
(a) To distinguish two kinds of spontaneous transitions:
"facultative" and "required" ones, as explained in Annex 2 of the
companion contribution "Comments on ...".
(b) To leave for further study the association of performance
attributes to "required" spontaneous transitions. This study
should address the question of time-out transitions, and
probabilistic performance considerations for the execution of
these transitions related to protocol and service performance
characteristics.

Rational for proposal:
(1) The semantics of "immediate" execution (as defined now,
DELAY(0,0)) is not well defined (consider for example the
Example 3 in the Annex).
(2) The proposed semantics of "required" transitions is similar
to "immediate execution".
(3) The semantics of "facultative" transitions is the same as now
defined for DELAY(0,*).
(4) The use of DELAY(dl, d2) transitions for the definition of
time-out transitions is not as straightforward as may seem from
the example in section 3.6 of the working document. In fact, that
example is in contradition with the semantics of the ESTM
considering a transition as an undivisible operation (see also
comments in the companion contributeion).

1

call indication Output: Accept Input:

Output: Reject

Note: The fat transitions

Annex: Examples for the use of non-deterministic extended finite
state machines.

The following examples include situations where more than one
transitions are possible from a given state of process, and the
specification does not define which one will be executed. However,
it is assumed that any implementation of the specified process
must make a choice in some way or another.

Example 1: A user process may accept or reject an incoming call,
or while "thinking" the call may be cleared by the other party:

Input: clear indication

are spontaneous

Example 2: 	Considering the "mapping" process of a Transport
entity which handles the mapping of Transport connections onto
Network connections, any Network connection not in use, at any
given time, may or may not be disconnected. This is most
naturally modeled by a spontaneous transition which is enabled
when a Network connection is idle. This transition may, or may not
be executed (this decision is up to an implementation). This
transition applies to all major states of the mapping process.

Example 3: 	Considering again the mapping process and assuming
that it looks after concatenating the PDU's to be sent for a given
Transport connection into the Network service data units (NSDU),
as modeled in FDT 78. If there is a POU buffer for each type of
PDU to be sent and one NSDU buffer then the following spontaneous
transitions can be identified:

(a) Sending the NSDU, enabled when the NSDU buffer contains at
least one POU.

(h) For each type of PDU:
Appending the PDU in the corresponding PDU-buffer into the
NSDU buffer, enabled when the PDU buffer is not empty and the

- 2 -

NSDU buffer has enough free space.

Depending on the overall state of the mapping process, all these
transitions may be enabled at the same time. The specification
does not indicate which one to choose, since this is an implemen-
tation issue.

ANNEX 	7a

I
1

1
1

Hi

International Telegraph and Telephone
Consultative Committee

(CCITT)
Original: English

Period 1981-1984

Question : 39/VII 	 Date: November 1982

STUDY GROUP VII - CONTRIBUTION No.

This contribution is for input to the Special Rapporteurs meeting
on Q 39/VII held in Geneva, November 1982.

Title: Proposal for contents for section 3 (Semantic Model) of the
Draft Recommendation

Source: Canada

1. Introduction

The semantic model is defined in three parts:

(a) the part relating to the system structure defined in terms of
tunctional blocks, subblocks and channels (see sections 2 and
3 below);

(b) the part defining the model of an extended state transition
machine (see sections 4 and 5 below), and

(c) the part defining the handling of data structures as used by
the extended state machine.

2. Blocks, channels, and interaction points

2.1. The concepts

A system is defined by a set of interacting 'blocks' and
the structure by which they are interconnected.

Blocks share channels with each other and with blocks in
the system's environment. The channels embody the interactions
between the blocks, and between the blocks in the systein and those
in the system's environment. The blocks embody the actions
exclusively allocated to blocks.

notation:

channel 0

module 1

notation:

channel with two
interaction points

module

-2-

The configuration of channels and blocks represent the
system's structure. An example is shown in the figure belows.

Blocks bear different responsibilities in the perfor-
mance of interactions. For example, if in an interaction a value
is passed, then one module is responsible for providing that
value, and the other block is responsible for accepting the value.

The allow for modelling of these different respon-
sibilities, we introduce the concept of 'interaction point'.

An 'interaction point' is a view of a channel as seen
from one of the blocks that is connected to the channel.

Using an alternative graphical notation, the above
example can be represented as follows:

3

The concepts of 'channel' and 'interaction point' are
useful for the description of the OSI architecture. They are
related to the notion of 'abstract interface' in the following
sense: the interactions of a blocks with other blocks or with the
environment of the system occur through channels between the

blocks. In a real system, such a channel is realized by an

'(real) interface'. For the specification of communication
protocols and services we are not concerned with the specification
of real interfaces, but only with the abstract properties that any
such interface for a given block-to-block interconnection must
satisty. These properties are called the 'abstract interface'

between the two blocks.

The concepts serve for:

a) the partitioning of the interactions of a given block into
separate groups concerning different blocks forming the module's
environment. A block has contact with its environment only
through a well-defined set of 'channels'.

b) the specification of the interconnections between the dif-
ferent blocks within a system (or the sub-blocks within a block).
A channel connecting two blocks could . be specified by naming an
interaction point of one block and an interaction point of the
other block with which the former is to be connected.

For example, typical channels of a layer entity execut-
ing the layer protocol are:

a) the access point(s) to the layer above through which the ser-
vice is provided,

b) the access point(s) to the layer below through which the
underlying service is accessed,

c) an (abstract) interface to the local system management block,
and possibly a local channel through which local services such as

buffer management, time-outs, etc. can be obtained.

2.2 The specification of a channel

The purpose of a channel type definition is to be used
in the specification of a block (see section 2.3.), where each
interaction point of a block is characterized by the type of chan-

nel which it represents.

4 ■•••

In order to distinguish between the two blocks that use
the channel for their interactions the concept of a "role" is
introduced. For each type of channel two roles are defined.
These two roles are 'played' by the respective blocks instances
that are connected to an instance of a channel. It is then pos-
sible to define the possible interactions through a channel
without explicitly defining the blocks that interact through the
channel. However, it is necessary to refer to the roles that the

blocks play in this interaction.

The specification of channel type includes:

a) an enumeration of the possible types of interaction primitives
that may be invoked through a channel of that type.

b) the names of two 'roles' which distinguish the two sides of

the channel, and hence the two connected blocks (e.g. 'service

provider' and 'service user').

c) the properties of the interaction primitives. The invokation

of an interaction primitive consists of the exchange of an inter-
action, called 'signal', form the 'outputting' block to the
'inputting' block. A signal may include parameters of various
data types. The values of these parameters are determined by the
outputting block.

d) possibly certain rules about the order in which the interac-
tion primitives may be executed over a given channel of that type.

2.3 The specification of a block

The purpose of a block specification is to define the
behavior of the block as observable at the interaction points to
which it is connected. Therefore a block specification cannot be
given without a definition of the interaction points through which
the module interacts with its environment. The set of these inter-
action points is called the "boundary" of the block.

The specification of a block may be given in each of the
following forms:

(a) by a fixed substructure definition (see section 3), where

each subblock in the substructure can be defined either according
to (a) or to (b).

- 5 -

(b) by defining the behavior of the block modeled as one or

several instances of 'processes'. The behavior of a process is
defined in terms of an extended state machine, as explained in
section 4.

(c) Other techniques for defining the behavior of a block are for
further study.

Process instances may exist from the beginning of the
system or they may be created during the life of the system.
Process instances may cease to exist during the life of the sys-
tem.

The environment of a process instance is all the other
process instances within the block and all the channels connected
to the block. Process instances interact with their environment
solely by means of interaction primitives.

A process instance is created by requesting that an

initialization action be performed. This initialization action
can be requested initially when the system is created or dynami-
cally during the life of the system.

The 	initialization 	action initializes the process
instance variables, sets an initial major state and initializes
the input queue of that process instance.

3. Substructure definitions

A specification of a block may be given in the form of a
substructure definition, as shown in the figure below. If the
behavior of each of the subblocks is defined, such a substructure
defines the behavior of the block.

a.44d A
ifejrei es. >//i•J Je".4e

Aetter._ te(

emm,

X

-6-

-

In the example above, the block A interacts with other
blocks in the system through the channels X-Xi and Y-Yl. The
substructure of block A consists of two sub-blocks Al and A2.
The connections Z-U and V-W are called internal channels and
connect interaction points by which the block Al and A2 inter-
act. The notation of the example also means that the interactions
of A at X and Y are realized by the interactions of Al at X,
and A2 at Y, respectively.

The above structuring has assumed that the interaction
• points X and Y of A and X and Y of Al and A2 remained
unaltered, i.e. only the functionality of A was represented by
two sub-blocks Al and A2 connected by internal channels.

One could also consider a substructuring for the inter-
action points X and Y, and represent this by an alternative way
of picturing

- 7 -

We leave this possibility for further study.

It is possible to further subdivide the structure of a

block. For example a possible substructure of block A2 would be

as follows:

Sometimes several steps of refinement are shown in a

single diagram. For example, the figure below shows the two steps
of refinement for block A given above:

-8-

4. The extended state transition model

The extended state transition model assumes a model of

interaction where each interaction of the specified process with
its environment can be considered an atomic event. The transition
model distinguishes between interactions that are initiated by the

environment and received by the process (inputs), and interactions
initiated by the process (outputs). The reception of an interac-
tion from the environment leads to a transition of the specified
process which may give rise to other (output) interactions.

In order to define the possible orders in which interac-
tions may be initiated by a process, the state transition model
introduces the concept of the "internal state" of the process
which determines, at each given instant, the possible transitions
of the process, and therefore the possible interactions with the

environment.

The possible order of interactions of a process is given

in terms of

(a) 	the state space of the process which defines all (internal)

states in which the process may possibly be at any given time, and

9

(b) the possible transitions. For each type of transition the
designer specifies the states from which a transition of that type

may take place, and the "next" state of the process. A transition
may also involve one or more interactions of the process with its
environment (see below).

Since finite state diagrams or equivalant methods often
lead to very complex specifications when a complete protocol
specification is required (partial specifications, can be more

readily comprehended) the following approach to the specification
of modules in the extended state transition model is used. This

approach combines the simple concept of states and transitions
with the power of a programming languages.

The state space of the process is specified by a set of
variables. A possible state is characterized by the values of each
of these variables. One of the variables is called "STATE". It
represents the "major state" of the process.

The possible transitions of the process are defined by
the specification of a number of transition types. Each transi-
tion type is characterized by

(a) an enabling condition: this is a combination of a boolean

expression, called 'enabling predicate', depending on some of the
variables defining the process state, 	and 	(possibly) 	the
specification of an input. A transition may occur in a given
state only if the enabling predicate has the value true, and the
interaction in question (if it exists) is initiated by the
environment. A transition without input is called a spontaneous
transition. It can be executed, independenly of input, whenever
the enabling predicate is satisfied.

(b) an operation: this operation is to be executed as part of

the transition. It may change the values of variables, and may
specify the initiation of output interactions with the environ-
ment. The operation is assumed to be atomic.

The model is non-deterministic in the sense that in a
given state (at some given time) and a given input interaction
several different transitions may be possible. Only one of these
transitions is executed, leading to a next state which determines
which transitions may be executed next. If several transitions
are possible at some given time, the transition actually executed
is not determined by the specification model. An implementation
of the process could choose any of these possibilities. In many
cases, the specificaton of a process may be deterministic, in the

sense that (at most) one transition is specified in any reachable
state and given input.

- 1 0 -

An input interaction to the process is either considered
immediatly by the state machine or first put into the (conceptualy
infinite) input queue of the module (depending on the queuing
option used); if it is put into the input queue it is considered
by the machine when it becomes the first in the queue.

The model allows inputs to be "saved". For each major
state of the machine a set of input interaction types may be
declared to be saved. This means that inputs of these types
should remain in the input queue and not be considered by the
state machine when the machine is in the given major state. The
first input in the queue not corresponding to any of the saved
interaction types should be considered as input to the state
machine.

In addition to input-output interactions, the model
provides for continuous output functions. While interactions
represent "events" and are generated during state transitions,
continuous output functions provide steady output from one process
through a channel to another process. The "receiving" process may
use the value of such a function (provided by its neighbour
process) within an enabling predicate, that is, it may influence
which transitions are enable.

The name and type of output functions are declared in a
channel definition. The value provided by the function is deter-
mined by the function body which is defined within the process
body which plays the role of the outputting process.

5. Formal semantics of the extended state transition model

(to be provided, based on the "Common Semantic Model..."
(Melbourne meeting)).

ANNEX 7b

Ht

International Telegraph and Telephone
Consultative Committee

(CCITT)
Original: English

Period 1981-1984

Question : 39/VII 	 Date: November 1982

STUDY GROUP VII - CONTRIBUTION No.

This contribution is for input to the Special Rapporteurs meeting
on Q 39/VII held in Geneva, November 1982.

Title: Proposal for contents for section 4
(Language for describing system structure) of the Draft
Recommendation

Source: Canada

1. Introduction

(to be provided)

2. Graphical .language

The concepts of 'block', 'channel' and 'process' as
defined in section 3 of the Recommendation correspond to the con-
cepts of 'functional block', channel' and 'process' as defined in
SDL (Draft Recommendations Z101 and Z102). Therefore the graphi-
cal representations, as defined in Z101 and Z102, can be used for
these concepts. Substructure diagrams can also be drawn as shown
by the examples of section 3 of the Recommendation.

It is noted that Recommendations Z101 and Z102 do not
define block and channel types, only instances of blocks and chan-
nels are considered.

3. Program-like language

Note: The options of multiple processes per block and dynamic
process creation are not supported by the language defined below
(they are left for further study). A single process per block may
be defined using the program-like language for extended state
machines (see section 7 of Recommendation).

1

- 2 -

3.1. Syntax overview

Notation: Extended BNF where "+" means one or more occurences,
"*" means zero, one or more occurrences of an expres-
sion, and "1" separates alternatives". "**" means that
the construct is the same as in Pascal.

3.1.1. Overall structure of a specification
(to be provided; 	includes channel types, block type,
substructure, and extended state machine definitions, as
well as possibly block instance declarations).

3.1.2. Channels and interaction primitives

The <channel type definition> defines a type of interac-
tion point.

<channel type definition> ::= <constant definitions>*
<type definitions>* <channel>

The possible interactions at a given type of interaction
point are enumerated by a definition of the following form:

<channel> ::= CHANNEL <channel type id>
(<role list>) <exchanges> ;

<role list> ::= <role id>
1 <role list> , <role id>

<exchange> = <BY clause>
1 <exchanges> <BY clause>

<BY clause> ::= BY <role list> : <exchange list>
<exchange list> ::= <exchange>

1 <exchange list> <exchange>
<exchange> = <interaction id> <interaction parameters> ;

1 <function heading>**

The declaration of <interaction parameters> is in the
same form as function parameter declarations in Pascal (i.e. for
each parameter its name and type).
<interaction id> : := <identifier> 	(*Notel*)
<charnel type id> : := <identifier>

Note 1: Identifiers may include both upper and lower case letters
as well as the u nderscore character (tt) , which is
considered to be a letter, and numerals.

-3-

3.1.3. Blocks and their interaction points

The definition of a block type contains the declaration
of all abstract interaction points through which a block of this
type interacts. This includes the service access points through
which the communication service is provided as well as the system
interface for timers, etc. and the access point to the layer
below, through which the PDU's are exchanged.
<block type definition> ::= BLOCK

<block type id>
(<interaction points>) ;

<interaction points> : := <interaction point declaration>
1 <interaction points> ; <interaction point

declaration>
<interaction point declaration> ::= <interaction point id> :

<interaction point type>
(<role id>)

<interaction point type> = <channel type id>lARRAY [<index type>]
OF <interaction point type>
(* Note 9 *)

The <role id> indicate which role the entity plays as
far as the declared interaction point is concerned. We note that
the distinction of these roles permits the checking that the
invocation of interactions in the conditions and actions of tran-
sitions is consistent with the possible exchanges defined in the
channel definition.

3.1.4. Substructure definitions
<substructure definition> ::= REFINEMENT FOR <block type id›;

<list of sub-blocks>
INTERNAL CONNECTION

<list of connections between sub-blocks>
EXTERNAL CONNECTION <list of connections
of sub-blocks

to interaction point(s) of refined block>
END REFINEMENT;

<list of sub-blocks> : := <sub-block declaration>
(, <sub-block declaration>)*

<sub-block declaration> ::= <sub-block id> : <block type id>

<list of connections between sub-blocks> : :=
(<sub-block id> • <interaction point id> =
<sub-block id> • <interaction point id>;) + 	(*Note 10*)

Note 10 : The two sides identify the connected interaction points
(which should be of the same type).

<list of connections of sub-blocks to interaction point(s) of refined
block> : :=

(<block type id> • <interaction point id> =

<sub-block id> • <interaction point id>) + (*Note 10*)
<process definition> : := PROCESS <process type id>

<input interaction mechanism definition>
<process body>

ANNEX 7c

International Telegraph and Telephone
Consultative Committee

(CCITT)
Original: English

Period 1981-1984

Question : 39/VII 	 Date: November 1982

STUDY GROUP VII - CONTRIBUTION No.

This contribution is for input to the Special Rapporteurs meeting
on Q 39/VII held in Geneva, November 1982.

Title: Proposal for contents for section 7
(Language for describing dynamic behavior based on Pascal)
of the Draft Recommendation

Source: Canada

1. Introduction

(to be provided)

2. Language elements •

2.1. State variables

The state space of the process is specified by a set of
variables. A possible state is characterized by the values of each of

these variables. One of the variables is called "STATE". It
represents the "major state" of the process.

As an example, the following lines specify the state space
of an entity implementing the Transport protocol:

var
• state : (idle,wait_for_CC,wait_for_T_CONNECT_resp,data_transfer);
local_reference : TP_reference_type;
remote_reference : TP_reference_type;
TPDU_size :max_TPDU_size_type;
QOTS_estimate : quality_of_TS_type;

- 2 -

2.2. State transitions

The possible transitions of the process are defined by the
specification of a number of transition types. Each transition type
is characterized by:

(a) the enabling condition: this includes
- the present major state (FROM clause)
- the input 	 (INPUT clause)
- the "additional enabling condition" (or "predicate")

(PROVIDED clause)
- the priority of the transition type (PRIORITY clause)

(h) the operation of the transition: this includes
- the definition of the possible next major states (TO clause) -
the operation (BEGIN statement of the <operation>) including the

generation of output.

• A spontaneous transition may include a delay clause with two
parameters, d l and d 2 . The transition may not occur until the ena-
bling condition has remained true continuously for d l time. It must
be considered immediately if the enabling condition remains true con-
tinuously for d 2 time. If the delay clause is absent, a delay of
d 1 = 0 ' d 2 = infinity is assumed. (This is written "delay (0,*)".)
It means that the transition may occur at any time the enabling condi-
tion is true, possibly never.
A delay(0,0) has the semantic meaning of the immediate spontaneous
transition of the basic semantic module.

As an example, the following lines specify some transition types for a
Transport entity:

trans
from idle

input TSAP.T_CONNECTreq
provided ...(* Transport entity able to provide the quality of

service asked for *)
to wait_for_pC
begin

local_reference := ...;
TPDq_size := ...;
output N.CR(0,1ocal_reference,class_p,normal,variable_part_tosend);

end;
from data_transfer to same

input TSAP.T_DATA_req
provided ... (* flow control from user ready *)

- 3 -

begin
output out_buffer.append(user_data);

end;
input out_buffer.fragment_ready(TPDU_size)
provided ... (* Network layer flow control ready *)

• begin
output N.DT(out_buffer.get_fragment(TPDU_size));

end;

trans
provided no_tc_uses_ne and ne_locally_open

begin
output N.DISCONNECT_req 	(*close any unused network connection *)

end;

trans
from data_transfer to same
provided credit_to_pe_aent delay (0,evaluate_delay_max_agreed)
begin

output N.ACK(credit,tpdu_nr) 	(* send credit if any *)
end;

2.3. Embedding of transitions

The syntax for transitions permits the different clauses
(FROM, INPUT or DELAY, PROVIDED, PRIORITY, and TO) to be written in
arbitrary order, followed by the <block> which includes at least BEGIN
END. The order has no influence on the meaning of the construct.

The syntax also permits the embedding of the different
clauses. This embedding structure is simply a shorthand notation with
the following rules: The "scope" of a clause is defined to be the
specification text corresponding to "<transition>+" in the syntactic
rule of the clause (see section 3). The meaning of the clause extends
over its entire scope. Each BEGIN END statement of a block within the
specification text identifies a transition. All clauses in the scope
of which a given transition falls apply to this transition. For
example
trans

input AP.I
from A 	 provided E to B
begin X end;
provided F to C
begin Y end;

from B to C
begin Z end;

trans
from C to D begin U end;

is a short hand notation for

4 ••••

1

1 I

The same notation is used as in section 4 of the Recommenda-
tion.

■■•

trans
input AD.I from A provided E to B begin X end;

trans
input AD.I from A provided F to C begin Y end;

trans
input AD.I from B to C begin Z end;

trans
from C to D begin U end;

It is noted that the following scope rules must be followed:
(a) The parameters of the input interaction (declared in the cor-

responding channel type definition) become accessible within the
scope of the INPUT clause.

(b) As in Pascal, the WITH clause makes the fields of a record vari-
able directly accessible within the scope of the clause.

(c) The ANY clause introduces a "variable" identifier with an
arbitrary value within the range defined by the type identifier.
The meaning is that the embedded transitions are defined for each
of the possible values of this variable.

2.4. Predefined language elements

Some predefined language elements are provided. 	These
include types, procedures, functions and blocks. The predefined iden-
tifiers may be redefined by the user of the FDT. In this case, the
user's element is the one used.

Details are for further study.

3. Syntax overview for extended state transition machine model

This section defines the syntax for extended state transi-
tions specifications, excluding the part that deals with data struc-
ture definitions and manipulation. The latter part is specified in
Pascal, as explained in section 4 below.

<process definition> ::= PROCESS FOR <block type id›;
<input interaction mechanism definition>
<process body>

- 5 -

<input interaction mechanism definition> ::= RECEPTION <reception
mode>

<reception mode>
ASYNCHRONOUSISYNCHRONOUS

<process body> ::= <label definitions>**
<constant definitions>**
<type definitions>**
<variable declarations>**
<major state declaration>
<state set definition>*
<proc func or mit etc.>*
<embedded transitions>+

<embedded transitions> ::= TRANS <transition>+
<major state declaration> ::= STATE : <enumeration type> ;
<state set definition> ::= 	<state set id> = <set definition>** ;

(*Note 4*)
<proc func or mit etc.> ::= <procedure definition>** (* Note 2 *)

I <function definition> 	(* Note 2 and 3 *)
I <continuous output definition>
I <initialization> (* it is suggested that

the initialization be
placed at the beginning *)

<continuous output definition> ::= FUNCTION <interaction point ref>.
<function name> ; <block>
(* the parameters of the function
are already declared in the channel
definition *)

<interaction point ref> ::= <interaction point id>
I <interaction point id> [<index variable>]

<index variable> : :=<identifier>
<function name> ::= <identifier>
<initialization> 	::= 	INITIALISE BEGIN

STATE TO <major state value>
<additional mit>;

<additional mit> 	: := END
I; <statement sequence>** END

<transition> ::=
ANY <identifier> : <type identifier** DO <transition>+ (*Note 5a*)
WITH <variable>** DO <transition>+ (*Note 5b*)
INPUT <interaction point ref> • <interaction id> <transition>+

(*Note 5c*)
DELAY(<delay value>,<delay value>)<transition>+ (* Note 5c *)
FROM <major present state> <transition>+ <*Note 5d*)
TO <major next state> <transition>+ (*Note 5e*)
PROVIDED <expression>** <transition>+ (*Note 5f*)
PRIORITY <priority indication> <transition>+ (*Note 5g*)
<block>** ;
SAVE <interaction point ref> • <interaction id> <transition>+

- 6 -

<delay value> ::= <expression> 1 * 	(* Note 10 *)
<priority indication> ::= <identifier>** (*constant of some

enumeration type*)
1 <integer>**

<major present state> ::= <major state value list>
I <state set id>

<major state value list> ::= <major state value >
1 <major state value list>,<major state value>

<major next state> 	::= <major state value list>
I SAME

<major state value> 	::= <identifier>** 	(*must be element of the
enumeration type of the <major
state declaration>*)

<output statement> : := OUTPUT <interaction point ref> • <interaction id>
<effective parameter list>** (*Note8*)

<nextstate statement> ::= NEXTSTATE <major next state>
I NEXTSTATE SAME

Note 2 : Within a transition, "..." may be written for an expression
that is implementation dependent (not defined by the
specification). The body of a procedure or function that is
implementation dependent (not defined by the specification)
is written in the form "PRIMITIVE" or "...". Other possible
uses of ... are for further study.

Note 3 : A boolean function X(<parameters>) with no side effects may
be declared in the form "predicate X(<parameters>)".

Note 4 : The elements of the set must be included in the enumeration
type of the <major state declaration>.

Note 5a: These transitions may not include a ANY clause.
Note 5b: These transitions may not include a WITH clause.
Note 5c: These transitions may not include a WHEN nor DELAY clause.
Note 5d: These transitions may not include a FROM clause.
Note 5e: These transitions may not include a TO clause.
Note 5f: These transitions may not include a PROVIDED clause. The

expression must be boolean.
Note 5g: These transitions may not include a PRIORITY clause.
Note 6 : Each <block> must be preceeded by a FROM and a TO clause.
Note 7 : To refer to the input parameters, the parameter identifiers

of the interaction in the <channel type definition> are
used.

Note 8 : This kind of statement (for producing an output interaction)
is an extension of Pascal.

Note 9 : The usual multi-dimensional array notation, e.g. ARRAY
[indexl,index2], is also allowed.

Note 10: The delay value must be either an integer valued expression
or '*', which represents infinity.

- 7 -

Other Syntax elements

(a) Informal specification elements, which define system
properties that are part of the specification (not
merely comments), are written as text enclosed in "(/"
and "/)" and may be placed wherever comments or ... may
be placed. It may also replace a procedure call state-
ment or a <interaction id>.

(b) A facility for describing optional parameters is intro-
duced. 	To indicate that a parameter (or field of a
record) is optimal, its type definition is preceeded by
the keyword OPTIONAL. 	The value UNDEFINED means that
the parameter (or field) is not present. 	A default
value may be associated with the type definition by a
succeeding "DEFAULT=<constant>" clause.

4. Elements of Pascal used

4.1. General

The elements of the Pascal programming language are used for

the following parts of . the specifications:

(a) For channel definitions:
- defining the parameters of interactions and their data type;

(b) For process definitions:
- defining the variables of a process and their data types;
- defining the enabling predicates and operations of the transitions

using Pascal expressions and statements. This includes the use of
Pascal functions and procedures.

- defining continuous output using Pascal function definitions.

Note that two additional kinds of statements are added to

those provided by Pascal, namely the <output statement> and the
<nextstate statement>.

4.2. Removal of certain restrictions ,

Functions are permitted to return arbitrary values.

4.3. Elements of Pascal not used

To date, we have not found the following features of Pascal
to be necessary: pointers, and files (and go to and labels).

ANNEX 8

ISO
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/TC 97/SC16/WG1
OPEN SYSTEM INTERCONNECTION

Contribution to the meeting of the WG1 ad hoc group on FDT, Nov.
1982

Title: Comparison of FDT proposals from ISO (subgroup B) and CCITT

Source: Canada

1. Introduction

During the last Subgroup B meeting in Enschede (April 1982), there
was not enough time to discuss the FDT proposal from CCITT
Rapporteurs group on Q39/VII (CCITT liaison report ..., TWENTE-4)
fully. The present paper points out the main differences in the
syntax and semantics of the CCITT proposal with the Subgroup B
working document. The purpose of the paper is to simplify the
discussion at the next meeting towards a resolution of the dif-
ferences.

It is to be noted that the formal semantics of the two FDT
proposals from Subgroup B and CCITT are not yet finalized.
Nevertheless, the following differences in the syntax and seman-
tics may be identified.

2. List of differences

2.1. Choice of reserved identifies

2.1.1. The CCITT syntax uses PROCESS instead of MODULE.

2.1.2. The CCITT syntax uses SIGNAL instead of INTERACTION.

2.1.3. The CCITT syntax uses INPUT instead of WHEN.

2.1.4. The CCITT syntax uses the additional reserved identifier
OUTPUT, which is omitted in the Subgroup B syntax.

2.1.5. The CCITT syntax uses ENDPROCESS <process identifier>
instead of END at the end of a module specification.

2.2. In the CCITT syntax, the <major present state> in a FROM
clause may be a list of states, thus allowing the introduction of

I - 2 -

II

state sets without declaring them in a <state set definition>.

2.3. The CCITT syntax provides the <reception mode> clause for
specifying whether a module has a zero or infinite input queue.
Such a specification is missing in the Subgroup B syntax.

2.4. In the CCITT syntax, several possible next states are
foreseen for a single group of transitions (such a group is simply
called a "transition" in the CCITT document), while the Subgroup B
syntax only foresees a single next major state per transition.
This difference was discussed at the last meeting in Enschede (see
minutes for April 15, last paragraph).

2.5. The CCITT proposal includes the SAVE construct. This con-
struct is not foreseen in the Subgroup B proposal. Subgroup B
considers that there is no need for a SAVE construct for OSI
specifications (see minutes of last meeting).

2.6. Appendix 1 of the CCITT proposal outlines a method by which
the interconnection structure between several submodules may be
expressed. Such considerations have been outside the scope of
Subgroup B, however, the separation of a module specification into
a <block heading> and a <process definition> (see Appendix 1) is
directly related to the Subgroup B syntax.

3. Conclusions

It is Canada's opinion that the following points be seriously
considered by the FDT ad hoc group to resolve the differences
between the ISO and CCITT FDT proposals.

(a) Concerning point 2.1.1: The separation of heading and body
definitions (see point 2.6) seems useful, and the proposal in a
companion paper (see section 5 of "Some enhancements to the syntax
of the Subgroup B FDT") should be adopted, using the reserved
identifiers BLOCK and PROCESS.

(b) Concerning point 2.4: The CCITT proposal is based on upward
compatibility with SDL, which is considered to be important in
CCITT. Multiple next states should be included.

(c) Concerning point 2.5: The SAVE construct seems not to be
required for the specification of OSI protocols and services. It
may, however, be considered as an option of the FDT when the FDT
is used for applications outside the scope of OSI.

ANNEX 9

- 1

ISO/TC97/SC16

ISO/TC97/SC1g/WG1 	S-ce

FEBRUARY 1983

ISO
International Organization for Standardization
TC 97 - Computers and Information Processing
SC16 - Open Systems Interconnection

- 1

Source: Canada

Title : Towards a common FDT for ISO and CCITT

Discussions for harmonizing the development of FDT's for OSI
specifications between ISO and CCITT have been going on for a
while. The following approach is proposed as a possible position
for the ISO working group on this topic:

Given that remaining differences between the ISO Subgroup B FDT
and the FDT developed under Q39/VII in CCITT are summerized in
the CCITT liason report (Comparison of SDL and Subgroup B FDT
language) prepared et- the Catania meeting, and further
understanding on these differences has resulted from the
discussions at the last Q39/VII Rapporteurs meeting (Geneva Dec.
1982), the following approach is proposed:

(a) The semantic model of the Subgroup B FDT wiil be included in
the semantic model of the Q39/VII FDT in a form as outlined at
the Geneva meeting.

(b) A linear syntax based on the Pascal programming language will
be included as a possible syntax of the Q39/VII FDT. This linear
form should be compatible with the syntax of the Subgroup B FDT.

(c) The Subgroup B FDT will be changed in order to accomodate the
tollowing:
(1) An option for multiple next states for a single transition.
(2) A SAVE option (probably not required for OSI specifications).
(3) Multiple processes per module and dynamic process creation
are considered for further study.
(4) The reserved identifiers INPUT and OUTPUT will be used in the
linear syntax, instead of WHEN and OUT respectively.
(5) The term "module" will be replaced by "block" without
implying any change in the semantics.
(6) The reserved identifier PROCESS will be used in the linear
syntax to introduce a module body.

ANNEX 	10

ISO/TC97/SC16/N 	

ISO/TC97/SC17/WG1 N 5i

FEBRUARY 1983

ISO
International Organization for Standardization
TC 97 - Computers and Information Processing
SC16 - Open Systems Interconnection

Source: Canada

Title: 	Proposal to Produce an FDT Standard

INTRODUCTION

Canada believes that the work on FDT should be aimed at
producing an International Standard on formal description
techniques for OSI protocols and services. The reasons are
the following:

1) The FDT document would be referenced by future protocol
and service standards which will include formal specifica-
tions.

2) The standard status would give the FDT a stronger stability.
This is desirable in view of the future investments in the
form of consistency checkers, compilers, simulators and
similar software, and also in view of the formal specifications
written in the future.

3) CCITT's Rapperteurs group on Question 39/VII is working
on a Draft Recommendation on an FDT, which hopefully will
be as close as possible to the FDT developed by Subgroup B
of the adhoc group on FDT.

4) Various formal description techniques are being used bv
different groups to add more precision to their protocol
and service specifications in natural language. Therefore
it is useful to have a standard FDT for ensuring a common
understanding.

Canada therefore proposes that urgent consideration be given to
producing such a standard.

ANNEX 	11

3 mai 82

Title: Delegate's Report of the ISO TC97/SC16/WG1 meeting
on Formal Description Techniques (FDT) in Enschede, April 1982.

From: G.v. Bochmann

The meeting was held at the Twente University, April 13 through 16,
with fourteen (14) participants. C. Vissers chaired the meeting with
short notice from the chairman of the ad hoc group on FDT, who could
not come. Most of the time was spent by discussions within the
subgroups B and C in parallel. Some time was also spent with
discussions in the plenary and Subgroup A.

Two delegates from CCITT made the liaison with the CCITT Rapporteurs
group on Question VII/39 (FDT) and SG XI/WP 3-1 (SDL).

In Subgroup B, most time was spent on the discussion of the formal
semantics (section 5 of the working document, which was not yet
written). The discussion was stimulated by the "Common semantic model
for CCITT and ISO" submitted by the CCITT Rapporteurs group on
Question VII/39 and a personal contribution from G.v. Bochmann on a
possibly simpler exposition of such a common model. The subgroup
agreed that G.v. Bochmann should write an initial draft of section 5
of the working document based on the contributions and the discussion
during the meeting.

There was not enough time to discuss the questions related to the
CCITT proposal for revisions of the Pascal oriented syntax of the
Subgroup B language. Among some minor points, one important issue was
discussed: Should several different major final states be allowed for
a single transition, as proposed by CCITT in order to make the syntax
compatible with the existing SDL Recommendation ? No agreement could
be obtained. Consultation from the member bodies is sought on this
question.

The task of Subgroup A was extended according to its present
activities. The subgroup met shortly to discuss some revisions of its
working document.

Subgroup C met in parallel with Subgroup B. For a review of its
progress we refer the reader to the minutes.

The next FDT meeting is foreseen for next October, in time to prepare
a reply to the CCITT Rapporteurs group on Q VII/39 which meets in
December. The different subgroups may meet in between.

We believe that Canada should continue its participation in the work
on FDT's.

Title: Delegate's Report of the ISO TC97/SC16/WG1 meeting
on Formal Description Techniques (FDT) in Catania,

November 1982.

From: G.v. Bochmann

1. Introduction

The meeting was held in Catania, Sicily, 8 - 12 November, with 23
participants. Most time was spent with parallel discussions in
Subgroups B and C. Some time was also spent with discussions in
the plenary and Subgroup A.

2. Liaison with CCITT

A delagate from CCITT SWP XI/3-1 (SDL) attended the meeting for
some days. He reported on recent meetings on SDL and mentioned
that the liaison document from Subgroup B (prepared during the
previous Subgroup B meeting in July) was not considered during
the Rapporteurs meeting in Brazil in October (since the person
carrying it arrived only for the second week of the Rapporteurs
meeting. The document would be considered during the December
meeting in Geneva.

Liaison docûMents to CCITT were written by the three subgroups
and presented by G.v. Bochmann at the meetings of Q39/VII and SWP
XI/3-1 in Geneva in December. A list of remaining differences
between the FDT of Subgroup B and SDL was elaborated by Subgroup
B and included in the liaison document.

3. Work in Subgroup A

Subgroup A revised its working document based on the proposals
for a new section 2 submiited by G.v. Bochmann and C. Vissers.
Also the annex was extended based on a contribution from experts
from Sweden. The new version of the document is submitted as a N-
document for the next WG1 meeting in February.

The new item of work on the possible interworking of
specifications made in the respective FDT's of the Subgroups B
and C was initiated. A possible approach to such interworking was
identified. However, further work is required on this topic.

4. Work in Subgroup B

The work on Subgroup B centered around refinements of the
extended state transition model, possible extensions for future
study, and a detailed comparison with SDL and the "Common
semantic model ..." developed in CCITT Q39/VII. An editing party
revised the working document, including many additions in the
informal explanations of the model and editorial improvements.
The new version was reviewed in the Subgroup, and is submitted as
a N_document for consideration at the next WG1 meeting in
February.

f

1

1

5. Work of Subgroup C

The author was unable to attend the Subgroup C meetings. The
reader is refered to the minutes of the meetings.

6. Next meeting and future work

The next meeting of the ad hoc group on FDT is held jointly with
the next WG1 meeting in Paris, February 1983. The FDT issues will
be discussed during the WG1 meeting. The following issues are of
particular interest: FDT work item, the application of an FDT
(possibility of setting up an editing group to develop a fromal
description of Transport and Session services and protocols),
whether there should eventually be a standard on FDT, the
relation of formal descriptions with testing and conformance
issues, etc. It seems also important to come to a definite
proposal for a common FDT to be used by ISO and CCITT for the
descritpion of OSI protocols and services.

Within Subgroup B an important issue to resolve is the zero-queue
option, for which certain difficulties were identified during the
Catania meeting. There was not enough time to resolve this issue
in Catania. Another item is the leaboration of an example
specification of the Transport protocol.

We believe that Canada should continue its participation in the
work on FDT's.

2

Title: Delegate's Report of the CCITT Rapporteurs meeting
on Q39/VII (FDT) in Geneva, Dec. 1982.

From: G.v. Bochmann

The meeting was attended by only 7 delegates (see attachment).
The author could not attend the meeting during the second and
third days because of other commitments. There were relatively
few contributions, including a relatively large number of contri-
butions from Australia on Numerical Petri nets. No proposal for
the text of the Draft Recommendation planned during the last
meeting in Melbourne was submitted. The chairman of the group
could not attend due to personal reason. The meeting was chaired
by J. Park from Australia.

Work was done in continuation of the general direction determined
during the last meeting in Melbourne. Most work was in relation
with the liaison report from the SDL group in SC XI, which deals
with extensions of basic SDL for incorporating features that were
identified in Melbourne as requirements for a FDT for protocols.
A two hour's joint meeting with SWP XI/3-1 was held on the fourth
day of the meeting.

A proposal of text for the Draft Recommendation was presented by
the author at the morning of the last day of the meeting. This
includes te2t on-several sections of the Recommendation, and it
is largely based on the ISO Subgroup B working document and on
certain sections of the new Draft Recommendations on SDL. There
was not enough time to discuss this text in detail. It is sub-
mitted for consideration at the next meeting, which will be held
in Geneva, June 1983.

Concerning the development of a common FDT for use by ISO and
CCITT, the idea of a "common semantic model" was further persued.
A basic semantic model was identified, with a certain number of
opt 4 3ns (such as SAVE, zero-queue, etc.) to catey for particular
teat,res of SDL or the Subgroup B FDT.

It is the author's opinion that relatively little progress was
made during this meeting due to small attendance. Si.lce the next
meeting will be the last occasion within this study period for
the elaboration of a Draft Recommendation, it seems important to
prepare proposals for text of this Recommendation prior to the
meeting. This would include the first sections of the Recommen-
dation for which relevant sections of existing documents were
identified during the Melbourne meeting.

1

Delegate's Regort of the ISO TC97/SC16/WG1 Meeting in Paris,.
February 1983

by G.v. Bochmann

(the report below only covers the topic of formal description

techniques (FDT))

The following lines outline the discussions and conclusions
in the WGI meeting concerning formal description techniques (FDT)
+or protocols and services. This topic was handled (together with
conformance questions) by the ad hoc group E during the meeting.
A review of the work on FDT performed so far by the FDT
Rapporteurs group was given to the planary during the first day
of the meeting.

The previous work on FDT was endorsed. The need for closer
collaboration with other working groups, in particular W86 and
WG5 was pointed out. A detailed program of work until the next
WGI Meeting in October was worked out, which respects the
following recommendations which were passed by the WGI plenary
(the content of the Recommendations is summerized here):

Recommendation 19: A joint meeting between WG6 experts and
experts on FDT will be held around mid 1983 in order to develop a
trial specification of the Transport protocol in the Subgroup B
language.

Recommendation 24: The evaluation criteria (N84, slightly revised
from the Canadian contribution) is approved by WGI; comments are
invited.

Recommendation 21: Liaison with CCITT SG VII and XI: A certain
number of documents on FDT are transmitted.

Recommendation 17: The question of an FDT standard is an issue
for consideration at the next W01 meeting in October.

Recommendation 18: The FDT subgroup will meet around July 1983 in
order to progress the technical work.

In addition, Subgroup B of the FDT group will have a meeting
in May or June in order to prepare for the joint meeting with the
WG6 experts. The elaboration of a trial Transport specification
in the Subgroup B FDT is given priority over the finalisation of
certain remaining issues in the FDT definition, some of which are
related to the coordination with the FDT developments in CCITT.

The Canadian proposal of an FDT standard was discussed
during the meeting. There seemed general.agreement that either a
Technical Report (type 2) or a Standard should be aimed at. In
both cases the present tutorial documents must be complemented
with a definition of the FDT suitable for the Technical'Report /
Standard document. Some consideration on this issue were
-assembled into the document N85.

1

The results of the discussions on conformance are included
in the documents N87 ("Comments on whether or not product
standards are needed"; the need for product standards was pointed
out by the UK) and NO8 ("Proposal for unambiguous drafting of
protocols"). It is proposed to establish a separate subgroup on
conformance; comments from the member bodies are requested on

this question.

ANNEX 	12

A PARSER FOR AN FDT LANGUAGE

George Gerber and Gregor v. Bochmann

March 1983

- 2 -

TABLE OF CONTENTS

I. Introduction

2. FDT model and language survey

3. Parser overview

4. Modifications in relation to ISO's FDT

5. References

Appendix A: Sample . specification processed by the parser

Appendix B: Syntax accepted by the parser

Appendix C: Calling sequence for using the parser

- 3 -

I. Introduction

The parser outlined herein accepts source input pertain-

ing to a language based on the Formal Description Technique (FDT)

for the specification of communication protocols, known as

"Subgroup B language", as developed by the standardization com-

mittee of ISO TC97/SC16/WG1. Originated within the framework of a

compiler project for automated implementation, in Pascal, of FDT

specifications, the parser performs lexical and syntactical

analysis, as well as certain semantic checks particular to the

features of FDT that transcend Pascal.

2. FDT'model and language survey

The following discussion assumes that the reader is

reasonably familiar with the proposals put forward by ISO in the

references [1] and [2]. Some concepts, notably the refinement

method and the separation of process declarations from module

declarations, have been borrowed from the present CCITT proposal

for this language [3]. Other influences reflected in syntax

updates stem from implementation considerations and exposure to

modern Pascal derivates like Modula-2, Portal and ADA.

An FDT system's architecture is defined by a collection

of interacting modules and a set of channels that embody the

interconnections through which the modules communicate. Modules

interact with their environment, i.e. other modules they are con-

4

nected to, by exchanging messages, called "signals" in FDT ter-

minology, over their channels. Regarding the internal contents of

a module, it can either be given a process, in which case it is

atomic, or it can be refined into another set of modules that are

again appropriately interconnected by channels. A process

represents the actual computing activity of its module, in the

form of an extended finite state machine, and can execute - at

least conceptually - in parallel with other processes. In the

case of a refinement, the one-to-one correspondance between the

channels of the enclosing module and their local aliases must be

established.

Accordingly, four basic language elements are provided

for specifying and implementing a system: the type declarations

for channels, modules, processes and refinements.

The channel (type) declaration defines and restricts the

kinds of signals that can be exchanged between two modules it

joins, in compliance with the ISO proposal.

A module (type) declaration only defines its interface,

i.e. occurences of external channels together with their types.

Thus we have a typical black box formalism, where all but the

nature of the interactions with the environment is concealed. If

such a module interface specification suits a variety of module

instances, it only has to be declared once, whence the

appropriateness of the designation "module type".

- 5 -

A process (type) always belongs to a given module

(type). This relationship must be explicitly stated in the

process header. Otherwise, the declaration of a process closely

resembles the module body description suggested by ISO, very

similar, for that matter, to CCITT's process definition.

The refinement (type) relies to a great extent on

CCITT's refinement part. As for processes, the refinement type

header must contain a reference to the module type it is further

detailing. An instantiation pattern for sub-module internal

structure is given by furnishing each submodule occurrence with a

process or refinement type. (A more flexible - but not carried

out - approach would allow the body of submodules to remain

undefined, and require an explicit system instantiation part).

Connections between submodules and assignment of local channels to

channels of the enclosing module are defined in the manner put

forward by CCITT. Another purpose refinements serve for is the

nesting of specification parts, providing thus the means for hid-

ing local information (e.g. local channel types) and for neater

system structuring.

3. Parser overview

The syntactic description of the FDT language can be

made in terms of a context-free grammar with the LL(1) property

(except, of course, for the well-known Pascal flaw for embedded

if-then-else statements; the usual precedence rule applies to

- 6 -

resolve the conflict). 	A Backus-Naur Form description of the

language syntax appears in appendix B.

Since our grammar is essentially LL(1), a standard

parsing-table representation can be used, upon which a language

independent driver routine will operate. The parsing table is

produced automatically from the BNF description.

Although the lexical and syntactic analysis could, in

principle, be performed in two separate passes, this method was

avoided in order to prevent the need of intermediate files.

Therefore, the lexical scanner is embodied by a procedure which is

called upon by the parser when an input symbol is required.

Relying solely on syntax information, the parser takes

as input the source file, and produces as output a parse tree,

generated top-down from the root, and possibly error messages.

The resulting parse tree is, in general, a sub-tree of a tree that

represents a syntactically correct FDT program: some "branches"

may have been truncated because of syntactic errors. Each node is

associated to a symbol of the language and possibly to a set of

attributes. These attributes are evaluated in a subsequent pass

over the tree, when semantic checks are handled.

Three kinds of error messages can be distinguished:

lexical, syntactic, and semantic errors. A lexical error indicates

that an illegal character or a malformed input symbol was

-7-.

encountered. A syntactic error message is issued when an input

symbol is ignored because it couldn't, in spite of a certain

effort, be placed in the current tree context, or when the parser

assumes that some preliminary input is missing before accepting

the given symbol. In the latter situation, the inserted string is

displayed. The set of expected symbols at the point where the

error occured is given in both cases. (Actually, it is omitted if

it hasn't changed since the previous error message). All other

error conditions tested - incidentally those that least lend them-

selves to systematic processing - produce error messages in the

semantic verification phase. However, many possible semantic

errors are not tested for; they would usually be found when the

resulting Pascal program is compiled by a Pascal compiler.

The FDT language parser has been implemented on VAX/VMS

and CYBER/NOS BE computer systems and should be easily trans-

ferable to other computing environments supporting Pascal.

4. Modifications in relation to ISO's FDT

The following list gives an informal overview of the

main deviations and enhancements applying to the current ISO FDT

standard proposal.

- There's no special construct for overall system structure

specification. System isn't a reserved word; use module

instead.

-8-

- Channel, Module, Process and Refinement declarations are ter-

minated with "end <name>" clause in the style of the following

example:

channel timer_interface(...);

end timer_interface;

- A module declaration only defines its external interface:

module p module;

U: user._access_point (provider);

N: network_access_point (user);

T: timer_access_point (user);

end p_module;

- Processes and Refinements always refer to a module:

process alternating_bit_protocol for protocol_module;

refinement system_refinement for system; ...

- Process and Refinement declarations can be "empty", meaning

that the actual declarations are specified in a separate com-

pilation unit (program): refinement R for M; end R;

- Processes and refinements can have formal parameters to convey

initial values to process state variables:

process terminal (hw addr:integer) for terminalmodule;

• • •

var addr:integer;

initialize begin addr:=hw_addr end;

end terminal;

9

- The default signal input queue discipline is "not queued"; 	if

the discipline is "queued", this must be stated in the process

declaration for the pertinent channels:

process p for p_module

• queued U, N;

- Major state and state set initialization in processes:

initialize stateset_l = [running,idle,blocked];

begin state := idle; ... end;

- Continuous output functions aren't currently recognized.

- The delay clause isn't currently recognized.

- Output statements are prefixed by the reserved word "OUT"

- Any and when clauses should not be used for the same transition

; they're incompatible.

- All transition clauses are optional.

- A transition block can be tagged with an identifier that will

be used in the code generated from this transition. This is

especially useful to keep track of spontaneous transitions,

because their triggering by means of pseudo-signals must be

custom-programmed for a given system implementation.

- Refinements are supported, similar to the proposal in [3].

- The "(/" and "/)" enclosure for informal specification elements

isn't (yet) recognized.

- Comments can be embedded.

- The proposed facility for describing optional or undefined

parameters or fields isn't supported.

- Pascal pointers, files, goto jumps and labels are allowed.

- 10 -

References

[1] ISO TC97/SC16/N, Subgroup A of ad-hoc group on FDT

"Concepts for describing the OSI architecture", November

1982.

[2] ISO TC97/SC16/WG1, Subgroup B of ad-hoc group on FDT of WG1,

"An FDT based on an extended transition model", November

1982.

[3] "An FDT/LPR Syntax based on Pascal", Annex 8 of meeting on

Q39/VII, CCITT, March 1982.

Acknowledgements:

The approach to the syntax analysis realized in the

parser is based on the concepts of an experimental system built by

Michel Gagné. We thank Michel for his support by providing his

syntax table generator for this project.

1

- 11 -

APPENDIX A

A sample specification processed by the parser

1 (*example of system specification with fdt*)
2
3 module system; (*outermost module*)
4 end system;
5
6 refinement system_refinement for system;
7
8 	const maxseq=1; maxlin=80;
9

10 	type seq_type=0..maxseq;
11 	data_type=
12 	record line:array[1..maxlin] of char; ind:O..maxlin end;
13 	msg_type=record nr,ns:seq_type; d:data_type end;
14
15 	channel medium_access_point(a11);
16 	by all: msg(m:msg_type); ack(nr:seq_type);
17 	end medium_access_point;
18
19 	module medium;
20 	port: array[zero..1] of medium_access_point(a11);

**** 	 unknown const
21 	end medium;
22
23 	process ex_medium for medium;
24 	trans
25 	when port[il.msg
26 	 begin out port[1-i].msg(d) end;
27 	when port[i].ack
28 	begin out port[1-i].ack(nr) end;
29 	end ex medium;
30
31 	module syde;
32 	port:medium_access_point(a11);
33 	end side;

**** 	wrong ident
34
35 	refinement side_refinement(choice:boolean) for side;

**** 	 unknown module
36
37 	channel terminal_access_point(a11);
38 	by all: data(d:data_type);
39 	end terminal_access_point;
40
41 	module terminal;
42 	port:terminal_access_point(a11);
43 	end terminal;
44

1

1

I

- 12 -

I.

	

45 	process ex_terminal for terminal;
46

	

47 	var this_side:boolean; ch:char; x:data_type;
48

	

49 	initialize

	

50 	begin this_side:=choice (*refinement parameter*);

	

51 	 x.ind:=0

	

52 	 end;
53

	

54 	procedure getch(choice:boolean; var ch:char); primitive;

	

55 	procedure write_data(choice:boolean; data:data_type);

	

56 	 primitive;
57

	

58 	trans

	

59 	when port.data

	

60 	 begin write_data(this_side,d) end;

	

61 	trans (*spontaneous*) keyboard:

	

62 	 begin getch(this_side,ch);

	

63 	 if ord(ch)>0 do (*character available*)

	

**** 	 -"then" expected; symbol ignored

	

64 	 if ch in 	 then (*store character*)

	

**** 	 -insertion:"then"

	

65 	 begin x.ind:=x.ind+1; x.line[x.ind]:=ch;

	

66 	 if x.ind>=maxlin then

	

67 	 begin out port.data(x); x.ind:=0 end

	

68 	 end

	

69 	 else if x.ind>0 then

	

70 	 begin out port.data(x); x.ind:=0 end

	

71 	 end;
72

	

73 	end e_terminal;
74

	

75 	channel clock_access_point(user,provider);

	

76 	by user: set_clock(delay:integer); disable_clock;

	

77 	by provider,sneaky: time_out;

	

**** 	 undeclared role

	

78 	end clock_access_point;
79

	

80 	module clock;

	

81 	port: clock_access_point(provider);

	

82 	end clock;
83

	

84 	process ex_clock for clock;
85

	

86 	var state:(running,idle); this_side:boolean;
87

	

88 	initialize

	

89 	 begin state:=idle;

	

90 	 this_side:=choice (*refinement parameter*)

	

91 	 end;
92

	

93 	procedure settimer(choice:boolean; delay:integer);

	

94 	 primitive;

	

95 	procedure resettimer(choice:boolean); primitive;

1

1

- 13 -

	

96 	function timeout(choice:boolean):boolean; primitive;
97

	

98 	trans

	

99 	when port.set_clock to running

	

100 	 begin settimer(this_side,delay) end;

	

101 	when port.disable_clock from running to idle

	

102 	 begin resettimer(this_side) end;

	

103 	trans (*spontaneous*)

	

104 	provided timeout(this_side) from running to idle

	

105 	 begin out port.time_out end;
106

	

107 	end ex_clock;
108

	

109 	module protocol;

	

110 	t_port: terminal_ackcess_point(all);

	

**** 	 -unknown channel

	

111 	c_port: clock_access_point(user);

	

112 	m port: medium_access_point(a11);

	

113 	end protocol;
114

	

115 	process ex_protocol for protocol;
116

	

117 	queued t_port,m_port;
118

	

119 	type bufelptr=-bufel;

	

120 	bufel=record next:bufelptr; info:data_type end;
121

	

122 	var p:bufelptr; next_frame_to_send,frame_expected:seq_type;
123

	

124 	initialize

	

125 	begin p:=nil;

	

126 	 next_frame_to_send:=0; frame_expected:=0

	

127 	 end;
128

	

129 	procedure sendmsg;

	

130 	var x:msg_type;

	

131 	begin x.nr: =1-frame_expected; x.ns:=next_frame_to_send;

	

132 	 x.d:=p - .info;

	

133 	 out m port.msg(x); out c_port.set_clock(10);

	

134 	end;
135

	

136 	procedure putbuf(d:data_type);

	

137 	var q,r:bufelptr;

	

138 	begin new(r]; r- .info:=d; r - .next:=nil;

	

**** 	 -")" expected; symbol ignored

	

**** 	 -insertion:")"

	

139 	 if p=nil then begin p:=r; sendmsg end

	

140 	 else

	

141 	 begin q:=p;

	

142 	 while q- .next<>nil do q:=q- .next;

	

143 	 q .next:=r

	

144 	 end

	

145 	end;
146

- 14 -

procedure getbuf;

II 	149

	

148 	var q:bufelptr;
begin q:=p; p:=p - .next; dispose(q);

	

150 	 out c_port.disable clock;

	

151 	 next_frame_to_send7=1-next_frame_to_send

II 	152

	

153 	
end;

	

154 	trans

II 	155

	

156 	
when t_port.data

begin putbuf(d) end;

	

157 	trans

	

II 158 	when m_port.msg any k:integer do when m_port.ack

**** 	 -incompatible clauses
-doubly used clause

	

159 	 begin

I/ 	160 	 if m.ns=frame_expected then

	

161 	 begin out t_port.data(m.d);

	

162 	 frame_expected:=1-frame_expected

	

163 	 end; II 	164 	 if m.nr=next_frame_to_send then getbuf;

	

165 	 if p=nil then out m port.ack(1-frame_expected)

	

166 	 else sendmsg

11 	167 	 end; ,

	

168 	trans

	

169 	when m_port.ack

II 	170

	

171 	
begin

if nr=next_frame_to_send then getbuf;

	

172 	 if p<>nil then sendmsg
•
II 	

173 	 end;

	

 174 	tran

	

175 	when c_port.time_out

	

176 	 begin sendmsg end;

II 	177

	

178 	end ex_protocol;
179

II 	180

	

181 	
(*instantiation of modules in side_refinement*)
t: terminal with (*process*) ex_terminal;

	

182 	c: clock with (*process*) ex_clock;

II 	183

	

184 	
p: protocol with (*process*) ex_protocol;

	

185 	internal connection t.port=pet_port; c.port=p.c_port;

	

186 	external connection side_refinement.port=p.m port;

II 	187

	

188 	end side_refinement;
189

	

1

190 	(*instantiation of modules for system_refinement*)

	

191 	si: side with (*refinement*) side_refinement(true);

	

192 	s2: side with (*refinement*) side_refinement(false);

I 	193 	m: medium with (*process*) ex_medium; 194

	

195 	internal connection sl.port=m.port[0]; s2.port=m.port[1];
196

11 	197 end system_refinement; 198

147

H.11 H. H
" end" ident

- 15 -

199 process incomplete
200

**** -"("/";"/"for" expected; insertion:"for" ideht

- 16 -

APPENDIX B

Syntax accepted by the parser

<axiom> = <seqsect>.

<seqsect> = <section> ";" <seqsect> / empty.

<section> = <channel> / <module> / <process> / <refinemt>.

<channel> = <constd> <typed> "channel" <ident>
"C" <rolelist> ")" ";" <byclause> "end" <ident>.

<rolelist> = <ident> <seqident>.

<seqident> = "," <rolelist> / empty.

<byclause> = "by" <rolelist> ":" <signal> <byclause> / empty.

<signal> = <ident> <signalpara> ";" <signal> / empty.

<signalpara> = "(" <paradef> ")" / empty.

<seqparadef> = ";" <paradef> / empty.

<paradef> = <rolelist> ":" <ident> <seqparadef>.

<module> = "module" <ident> ";" <portlist> "end" <ident>.

<portlist> = <rolelist> ":" <array> <ident> "(" <ident> ")" ";"
<portlist> / empty.

<array> = "array" "[" <indextype> <seqindext> "]" "of" / empty.

<indextype> = <simpletype>.

<seqindext> = "," <indextype> <seqindext> / empty.

<refinemt> = "refinement" <ident> <signalpara> "for" <ident> ";"
<refbody> "end" <ident>.

<refbody> = <seqsect> <instance> <intconnec> <extconnec> / empty.

<instance> = <rolelist> ":" <ident> "with" <ident> <lparacint> ";"
<seqinst>.

<seqinst> = <instance> / empty.

<intconnec> = "internal" "connection" <connectn> / empty.

<extconnec> = "external" "connection" <connectn> / empty.

- 17 -

<portspec> = <ident> "." <ident> <optindex>.

<connectn> = <portspec> "=" <portspec> ";" <seqconnectn>.

<seqconnectn> = <connectn> / empty.

<optindex> = "[" <constant> <listconst> "]" / empty.

<process> = "process" <ident> <signalpara> "for" <ident> ";"
<procbody> "end" <ident>.

<qchannel> = "queued" <rolelist> ";" / empty.

<procbody> = <qchannel> <constd> <typed> <pvard> <mit> <procfuncd>
<trans> / empty.

<pvard> = "var" <procvar> / empty.

<procvar> = "state" ":" "(" <rolelist> ")" ";" <seqvardecl>
/ <vardecl>.

<stateset> = <ident> "=" "I" <seqsetint> "1" ";" <stateset>
/ empty.

<mit> = "initialize" <stateset> "begin" <initstatmt> <seqstatmt>
"end" ";" / empty.

<initstatmt> = "state" ":=" <ident> / <plainstatmt>.

<trans> = "trans" <seqclause> <opttrans>.

<opttrans> = <trans> / empty.

<seqclause> = <clause> <seqclause>
/ <opttag> <block> ";" <seqtrans>.

<clause> = "any" <paradef> "do" / "with" <variable> "do"
/ "when" <ident> <vparam> "." <ident>
/ "from" <rolelist> / "to" <nextmstate>
/ "save" <ident> <vparam> "." <ident>
/ "proemptyd" <expression> / "priority" <idorint>.

<seqtrans> = <seqclause> / empty.

<opttag> = <ident> ":" / empty.

<vparam> = "[" <constant> <listconst> "]" / empty.

<listvariable> = "," <variable> / empty.

<nextmstate> = <rolelist> / "same".

<idorint> = <ident> / <integer>.

- 18 -

<block> = <labeld> <constd> <typed> <vard> <procfuncd>
"begin" <statmt> <seqstatmt> "end".

<labeld> = "label" <integer> <seqinteger> ";" / empty.

<seqinteger> = "," <integer> <seqinteger> / empty.

<constd> = "const" <defconst> / empty.

<defconst> = <ident> "=" <constant> ";" <seqdefconst>.

<seqdefconst> = <defconst> / empty.

<constant> = <optsign> <numconst> / <string>.

<sign> = "+" / "-".

<optsign> = <sign> / empty.

<numconst> = <integer> / <real> / <ident>.

<typed> = "type" <deftype> / empty.

<deftype> = <ident> "=" <type> ";" <seqdeftype>.

<seqdeftype> = <deftype> / empty.

<type> = <simpletype> / <optpack> <typstruct> / "-" <ident>.

<simpletype> = "(" <rolelist> ")"
/ <sign> <numconst> ".." <constant>
/ <string> ".." <constant>
/ <integer> ".." <constant>
/ <ident> <optconst>.

<optconst> = ".." <constant> / empty.

<optpack> = "packed" / empty.

<typstruct> = "array" "[" <simpletype> <seqsimplet> 1" "of" <type>
/"record" <field> "end"
/"set" "of" <simpletype>
/"file" "of" <type>.

<seqsimplet> = "," <simpletype> <seqsimplet> / empty.

<field> = <fixedpart> <seqfield>
/ "case" <ident> <typselect> "of" <variant>.

<fixedpart> = <rolelist> ":" <type> / empty.

<seqfield> = ";" <field> / empty.

- 19 -

<typselect> = ":" <ident> / empty.

<variant> = <constant> <listconst> ":" "(" <field> ")" <seqvariant>
/ empty.

<seqvariant> = ";" <variant> / empty.

<listconst> = "," <constant> <listconst> / empty.

<vard> = "var" <vardeel> / empty.

<vardecl> = <rolelist> ":" <type> ";" <seqvardecl>.

<seqvardecl> = <vardecl> / empty.

<procfuncd> = <pfheader> ";" <pfbody> ";" <procfuncd> / empty.

<pfheader> = "procedure" <ident> <lpara> 	 •
/ "predicate" <ident> <lpara>
/ "function" <ident> <lpara> ":" <ident>.

<pfbody> = <block> / "external" / "forward" / "primitive" / "...".

<lpara> = "(" <spare> <seqspara> ")" / empty.

<seqspara> = ";" <spara> <seqspara> / empty.

<spara> = <rolelist> ":" <ident>
/ "var" <rolelist> ":" <ident>
/ "procedure" <ident> <lpara>
/ "function" <ident> <lpara> H :" <ident>.

<factor> = <real> / <string> / <integer> / "..." / "nil"
/ "[" <seqsetint> / "(" <expression> ")"
/ "not" <factor> / <ident> <seqfactid>.

<seqfactid> = <lseqvaria> / "(" <index> ")".

<index> =:<expression> <seqindex>.

<seqindex> = "," <index> / empty.

<lseqvaria> = "[" <index> "]" <lseqvaria>
/ "." <ident> <lseqvaria>
/ "-" <lseqvaria>
/ empty.

<seqsetint> = <setint> <lseqset> / empty.

<lseqset> = "," <setint> <lseqset> / empty.

<setint> = <expression> <seqxpset>.

<seqxpset> = ".." <expression> / empty.

- 20 -

<term> = <factor> <seqfact>.

<seqfact> = <opermult> <term> / empty.

<opermult> = "*" / "/" / "div" / "mod" / "and".

<simplexp> = <optsign> <term> <seqterm>.

<seqterm> = <operadd> <term> <seqterm> / empty.

<operadd> = "+" / "-" / "or".

<expression> = <simplexp> <seqsimplexp>.

<seqsimplexp> = <operel> <simplexp>.

<operel> = H= H / "<>" / "<" / ">" / -"<=" / ">=" /

<statmt> = <integer> ":" <plainstatmt> / <plainstatmt>.

<plainstatmt> = "goto" <integer> / <ident> <appendix>
/ "out" <ident> <seqind> "." <ident> <lparacint>
/ "nextstate" <newmstate>
/ "begin" <statmt> <seqstatmt> "end"
/ "if" <expression> "then" <statmt> <optelse>
/ "case" <expression> "of" <case> <seqcase> "end"
/ "repeat" <statmt> <seqstatmt>
"until" <expression>
/ "while" <expression> "do" <statmt>
/ "for" <ident> ":=" <expression> <direction>
<expression> "do" <statmt>
/ "with" <variable> "do" <statmt>
/ empty.

<lparacint> = "(" <index> ")" / empty.

<newmstate> = <ident> / "same".

<seqstatmt> = ";" <statmt> <seqstatmt> / empty.

<optelse> = "else" <statmt> / empty. -

<seqcase> = ";" <case> <seqcase> / empty.

<case> = <constant> <listconst> ":” <statmt> / empty.

<direction> = "to" / "downto".

<variable> = <ident> <lseqvaria> <listvariable>.

<appendix> = <lparacint> / <lseqvaria> ":=" <expression>.

<seqind> = "[" <index> "]" <seqind> / empty.

1

- 21 -

APPENDIX C

Calling sequence for using the parser

The FDT parser is currently available on two of the

University of Montreal's computer systems, and can be incited by

the following calling sequences:

- On CYBER/NOS BE through TELUM interaction facility:

SO FDT u=1394 Pl=n P2=source

The paràmeters 	n 	and 	source are provided by the user. n

(octal) is the maximum central memory space, in words, required

to run the parser. This value depends on the length of the FDT

source program. The example in appendix A, for instance,

requires about 61000 (octal) memory words. The generated program

listing is routed to the standard output file.

- On VAX/VMS at the Department of Computer Science and Operations

Research, type

@SYS$DISK:[GERBER]FDT

and answer the subsequent questions.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

