- -
|
|

UNIVERSITE DE MONTREAL

= -

Formal Description Techniques for Protocols

Final Report for DOC contract No. 0SU82-00218
by Gregor v. Bochmann

Département d'informatique et
de recherche opérationnelle

Université de Montréal

March 1983

DEPARTEMENT D'INFORMATIQUE

ET DE RECHERCHE OPERATIONNELLE

Faculté des arts et des sciences
Université de Montréal
C.P. 6128, Succursale A"’
Montréal, P.Q.
H3C 3J7

L. I W 0 BN IS WG O Y NN N EE W e o

|

g -

e

N SN D EN NN BN ED SR BN ND WD S B W SN e S

cheekeol 1] @ <2y,

%91
C655
B634
1983
///é;;gll Description Techniques for Protocols
Final'Repori/%or DOC contract No. 0SU82-00218.
O,
by/Gregor V.Zfochmann //
‘Département d'informatique et
" de recherche opérationnelle
Université de Montréal
March 1983
e SE
Library GQueen ‘
Jei 17 1098 -
i \ o

duswm<uqﬂada

heque | Queen

Bmhod

g

LIBRARY ~ sisLiTHRqe

-

This report was prgpared for the Department of Communications Canada
under contract No..OSU82—00218. The report presents the views of the
author. Publication of this report does not constitute DOC approval of
the report's findings or conclusions. This report is available outside

the Department by special arrangement.

7

TABLE OF CONTENT

1. Introduction

2. Overall view of the contract activity

2.1.

2'2.

Standardization activities

Translator for formal specifications

3. Proposal for future work

4. More

Annex 1:

Annex 2

Annex 3:

Annex 4:

Annex 5:

Annex 6:

detailed account of the standardization activities
Contributions discussed by topic

List of contributions presented at various international
meetings

"Architectural specification concepts", working document
of Subgroup A of ad hoc group on FDT of WGl, 1ISO
TC97/SC1l6 N1346.

"Extended finite state machine specification", working

document of Subgroup B of ad hoc group on FDT of WGl,

IS0 TC97/SCl6 N1347.

"Formal description of the Transport service"

"Example description of the Transport Service", by G.v.
Bochmann and K.S5., Raghunathan (June 1982) |
M"Some enhancements to the syntax of the Subgroup B FDT"

Canadian contribution to FDT meeting in Catania (Nov.

1982)
"Semantics of spontaneous transitions" with annex

entitled "Examples for the use of non-deterministic

extended state machines"

Annex

Annex

Annex

Annex

Annex

Annex

10:

11:

12;

Proposals for contents for sections 3, 4 and 7 of the
Draft Recommendation, Canadian contributions to CCITT
Q39/VII (Nov. 1982).

"Comparison of FDT proposals from ISO (Subgroup B) and
CCITT" (July 1982)

"Towards a common FDT for ISO and CCITT" (Canadian con-
tribution to WGI meeting in Paris (Febr. 1983)

"Proposal to produce an FDT standard" (Canadigﬁ con-
tribution to WGI meeting in Paris (Febr. 1983)

Meeting reports

"A parser for an FDT language" by G. Gerber and G.v.

Bochmann (March 1983)

l. Introduction

The importance of formal descriptidn techniques (FDT)
for the design and documentation of computer communication
protocols and services has been acknowledged by the ISO/TC97
Subcommittee on Open System Interwofking (SCcl6) through the estab-
lishment of a Rapporteur’s Group on FDT within Working Group 1. A
rapporteurs group for studying this question has also been estab-

lished within the Study Group VII of the CCITT. The work under

this contract was principally aimed at contributing to the work of

these study groups, and has resulted in a number of contributions
to the Canadian and international standard committees working on

these questions. It is a continuation of previous work of this

author in the area.

During its first meeting in Chicago (January 1980) the
IS0 Special Rapporteur’s Group on FDT established a program of
work which foresees the selection of one or more FDT’s for wuse

within SC16. The purpose of these FDT’s is to provide a means for

precisely specifying protocols and services of the different

layers of Open Systems. These formal specifications should be

-unambiguous and helpful for the implementation and for the

verification of the protocols. Contributions were asked for on

proposed FDT’s and their application to the test cases of the

Transport protocol and service.

2. Overall view of the contract activity

2.1. Standardization activities

Within the framework of this contract, the author was a
Canadian delegate at a meeting of the CCITT.Rapporteurs Group on
Question. VII/39 in Geneva. The author was also delegate at a ISO
TC97/SC16/WG1 meeting in Paris, as well as in a meeting of its ad
hoc group on FDT in Catania and a meeting of Subgroups B in
Montreal. The author 1is editor for the working papers of both
subgroups A and B (see annexes 1 and 2) and chairman of Subgroup
A. The work wunder this and a previou§ contract had a strong
influence on the development of thé extended state transition FDT
of Subgroup B of the ISO TC97/SC16/WG1 ad hoc group on FDT. Much
of the effort during this contract period was aimed at bridging

the gap between this FDT and the FDT developments in CCITT. The

. author represented the ISO ad hoc group on FDT at the CCITT meet-

ing in Geneva.

We think that our contributions have advanced the
development of FDT’s for the specification of Open Systems
protocols and services. However, further work is required for

obtaining a single FDT which is accepted by both ISO and CCITT.

'2.2. Translator for formal specifications

One of the activities undertaken under the present con-
tract was an improvement of a translator program which was
developed in 1981-82 at the Univerify of Montreal. The purpose of
such a program 1is to automatically translate a formal descriptioﬁ
éf a protocol given in the extended state transition model into a
set of ©Pascal declarations and procedures which could be incor-
poraﬁed into some run-time support system, thus leading to a
semi-automatic implementation approach for protocol entities from
the formal protocol specification. The improvements performed

under the present contract concern the following issues:

(a) Adjusting the accepted syntax to. follow more closely the
present language syntax developed by Subgroup B of the ISO ad
hoc group omn FDT. -

(b) Improving the handling of syntax errors found in formal
specifications. The above mentioned translator program has
only very rudimentary error recovery facilities.

(c) Developing a method by which several modules, each specified
by an extended state transition machine, could be translated
into Pascal procedures such that they can be combined into a
single Pascal program executing all these modules in a semi-
parallel fashion. This would allow the integration of several
protocol layers into a single program implementing the

protocol entities of all those layers.

3.

‘Work on points (a) and (b) have led to the parser
for formal descriptions described in Annex 12. This parser
has good error recovery properties, and accepts a syntax
which is close to the present proposal of subgroup B of the
IS0 ad hoc group on FDT. (The syntax is still undergoing
slight changes within the standardization groups; it 1is not

possible to follow these changes immediately).

Work on point (c) has led to a model for translat-
ing formal specifications which has been tried out with the
example of the alternating bit protocol. It seems quite
general 1ﬁ nature, and we plan to implement a translation

scheme based on this new approach.

Proposal for future work

We think that a natural continuation of the work per-

formed under this contract would be a continuing support. of the

ISO

and CCITT discussions on FDT's. We think that Canadian input

would be much welcome in view of its past participation.

In order to increase the usefulness of the proposed FDT,

the following additional research activities are proposed:

a)

To apply the method to several protocols and services at
levels higher than the transport layer in order to test its

applicability in all areas of OSI.

b) To improve the protocol implementation tools which could
partly automate the production of a protocol implementation

from the formal specification of the protocol.

c) To improve the tools that could be wused to test that a
protocol implementation conforms with the protocol specifica-
tion. Such tools could be useful for the certification of

communication software and systems.

d) To develop a protocol simulation tools that would make simula-
tions of communication subsystems based on the formal
specifications of the protocols to be wused in the system.
Such a tool.would be useful during the development of protocol
standards for anmalyzing the behavior of the protocol, finding
eventual malfunctions (deadlocks, etc.); and determining .the

efficiency of its operation.

4. More detailed account of the standardization activities

4.1. Contributions discussed by topic

The following paragraphs describe the different éon-
tributions which were submitted to the international standard-
ization meetings, mentioned in section 2.1.‘ Most of these
contributions were first submitted to the responsible Canadian
standardization committee (CSA comittee on 0SI, or NSG VII for
CCITT), and some of the contributions were submitted as "Canadian"
papers. Others were submitted to the international meetings as

"expert papers".

= . ~ - - . .

The different contributions are discussed in the follow-
ing by topic. A completé list of _contributions igs given in
section 4.2. below. Meeting reports concerning internmational

meetings attended for the work under this contract are included in

Annex 11.

4.1.1« Transport protocol specifications

A Transport protocol specification for the classes 0 and
[TP 2], which was prepared for a separate DOC ;eseérch'contract,
was presented at the Catania and Geneva meetings. A revised ver-
sion [TP 3] was presented at the Paris meeting. In contrast to
previously presented specifications [TP i1, this protocol
specification uses a later version of the FDT syntax, and defines

the protocol in terms of several modules, one module per connec-

~tion and a common "mapping" module.

4.1.2. Transport service specifications

A Transport service specification describing explicitely
multiple simultaneous connections between an arbitrary number of
service access points was presented at the Enschede meeting (see
Annex 3). In order to demonstrate the separation of "local" and
"global"™ service properties, as proposed in [Boch 83], a new ser-
vice specification was elaborated (Anpex 4) and presenﬁed at the
Subgroup B meeting in Montreal. The separatiomn of ‘"global" and

"local" properties 1s similar to the approach presented 1in

UY S N N N M WS PR N BN W B AR

- 10 =

[Logrippo 82], however, our specification remains within the

"extended state transition model".

4.1.3. Refinement of the extended state transition model

A number of contributions have been presented with the
aim of better defining the Subgroup B working document in the
"extended state transition model" FDT. For more detail, we refer
the reader to the Annexes 5 and 6, and the contributions (3) of
section 4.2.1, (3) of section 4.2.2, (4) of section 4.2.3, and (3)

of section 4.2.5.

4.1.4. Harmonizing the FDT developments im IS0 TC97/SCl6 and

CCITT SG VII and XI

A number of contributions were prepared in order to
harmonize the development of FDT’s for OSI applications in ISO
TC97/SC16 and the CCITT Study groups VII and XI. (SG XI has been
involved for soﬁe time in the development of the SDL language).

We refer the interested reader to the Annexes 7 through 9.

- 11 -

4.1.5. Editing the Subgroup A and B working documents

The author has been the editor for the working documents.
of the ISO Subgroups A and B during the last year. During this
time, most of the working document of Subgroup A has been com-
pletely rewritten, and large parts of the working document of
Subgroup B have been added and revised. The preparation of the
subsequent versions of these documents was a non-negligeable task
during the last year. The present &ersions of these documents are

included as Annexes 1 and 2.

4.2, List of contributions presented at international meetings

4.2.1. IS0 meeting in Enschede (ad hoc group on FDT, April 1982)

(1) "Formal description of the tramnsport service"
(TWENTE-2, see Annex 3)

(2) "Examples of Transport protocol specifications"
(TWENTE-3, see [TP 11])

(3) "A simple state transition foundation for the "Common 'seman-
tic model for CCITT and ISO" (TWENTE-6; parts of this con-
tribution had an ‘impact on Section 5 of the present working
document of Subgroup B, see Annex 2). '

4.2.2. Subgroup B meeting in Montreal (July 1982)

(1) "Comparison of FDT proposals from ISO (Subgroup B) and CCITT"
(UM~1, see Annex 8)

(2) "Example description of the Transport service"
(UM-2, see Annex 4)

(3)

-12 -

"Preliminary draft of Section 5 (Formal Semantics) of
Subgroup B working document" (UM-7)

4.2.3. 180 meeting in Catania (ad hoc group on FDT, November

(1).

(2)

(3

(4)

1982)

"Comparison of FDT proposals IS0O-CCITT" (CAT-11 (Canada),
similar to Annex 8)

"Some enhancements to the syntax of Subgroup B FDT" (CAT-12
(Canada), see Annex 5) :

"Example of a Transport protocol specification” (CAT-13),
see [TP 2])

"Section 2.y for working document of Subgroup A" (CAT-17)

4.2.4. CCITT Rapporteurs meeting of FDT (Geneva, December 1982)

(1)

(2)
(3)
(4)
(5)

(6)

"Specification of Transport service. using finite-state
transducers and abstract data types'" (FDT 77, prepared by L.
Logrippo)

"Example of a Transport protocol specification" (FDT 78, see
[TP 2]) "

"Constructive and executable specifications of protocols and.

services" (FDT 79, prepared by L. Logrippo)

"Examples for the use of non-deterministic extended finite
state machines" (FDT 86, see Annex of Annex 6)

"Proposal for contents for Section 3 (semantic model) of the
Draft Recommendation" (FDT 87, see Annex 7a)

"Proposal for contents for Section 4 (Language for describing

system SsStructure) of the Draft Recommendation" (FDT 88, see
Annex 7b)

e ™™

;

(7)

"Proposal for the contents for Section 7 (language for
describing synamic behavior based on Pascal) of the Draft
Recommendation" (FDT 89, see Annex 7c)

4.2.5. ISO meeting in Paris (WGl and had hoc group on FDT,

(1)

(2)

(3)

(4)

(5)

February 1983)

"Example of a Transport protocol specification (revised)",
see [TP 3] ~

"Towards a common FDT for ISO and CCITT" (Source: Canada;g
see Annex 9)

"Comments on avoiding collisions and the zero-queue option"
(13 pages)

"Semantics of spontaneous transitions" (see Annex 6)

"Proposal to produce and FDT standard" (Source: Canada; see
Aunex 10)

- s e L~

REFERENCES

[TP 1]

[TP 2]

[TP 3]

[Boch 83]

[Logr 82]

G.ve. Bochmann, "Examples of Transport protocol
specifications", contribution to ISO TC97/SCl6/WGl ad
hoc group on FDT, Twente-3, 1982. Originaliy prepared

under contract for COST 11 bis (CEE).

G.v., Bochmann, "Example: of a Transport protocol
specification"”, prepared for CERBO Informatique Inc.
under contract for Department of Communications Canada,

Oct. 1982.

Geve. Bochmann, "Example of a Transport protocol

specification (revised)", Annex 1, Final Report, DOC

research contract 0ST82-0092, March 1983.

G.v. Bochmann and M. Raynal, "Structured specificétion
of communicating systems", IEEE Trans. Computers, Febr.

1983.

L. Logrippo, "Specification of Transport service using
finite-state transducers and abstract data types",

CCITT Q39/viI, FDT-77, Geneva, Dec. 1982.

1

ANNEX

ISO/TC 97/SC 16 N [3 4/,

Date: November 1982
Project:

ISO
" INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/TC 97/SC 16
OPEN SYSTEMS INTERCONNECTION
SECRETARTIAT: USA(ANSI)

T A ot - o h A s s b 8 . WA A - o o - - —— " o —— A — - o — . —

Source: ISO TC97/SCl16/WGl, Subgroup A of adhoc group on FDT

Title: Concepts for describing the O0SI architecture (Working
document, Catania, November 1982)

1. Introduction

The scope for formal description techniques (FDT) in the develop-
ment of OSI standards is described in "Statement of scope of the
FDT group" (N). The present document may serve the
following purposes:

(a) Define certailn architectural concepts which areA used by the
FDTfs (see sections 2 and 3), '

(b) define certain basic concepts that are used by the formal
description techniques developed by subgroups B ("Extended finite
state transition models") and C ("Sequencing expressions, temporal
logic") of the FDT Rapporteur’s Group (see section 4), and

(c) provide a more precise model for the Guidelines (N 380 and
N381) (see section 5)

The document is divided into several sections, discussing the

_concepts of system components (called "modules") and their

specification, their interconnection and the description of an
architecture, the definition of service, protocol and interface
specifications, and possible subdivisions of modules for
specification purposes. :

Sk =S b AR 0 ER OB =R I A A

2. Modules, channels, and interaction points
2.1. The concepts

The architecture of a system is defined by a set of interacting
‘modules’ and the structure by which they are interconnected.

Modules share channels with each other and with modules 1in the
system’s environment. The channels embody the 1interactions

between the modules, and between the modules in the system and
those 1in the system’s environment. The modules embody the actions

exclusively allocated to modules.

The configuration of channels and modules represent the system’s
structure. An example is shown in the figure below.

L L.
| L

notation:

channel [}
module i l . L,~"

Modules bear different responsibilities in the performance of
interactions. For example, if in an interaction a value is passed,
then one module is responsible for providing that value, and the
other module is responsible for accepting the wvalue.

To allow for modelling of these different responsibilities, we
introduce the concept of “interaction point’.

An “interaction point’ is a view of a channel as seen from one of
the modules that is connected to the channel.

Using an alternative graphical notation, the above example can be
represented as follows:

notation: ‘I

channel with two
interaction points

module |]

The concepts of ‘channel’ and “interaction point’ are useful for
the description of the O0SI architecture. They are related to the
notion of “abstract interface’ in the following sense: the inter-
actions of a module with other modules or with the environment of
the system occur through channels between the modules. 1In a real

system, such a channel is realized by an “(real) interface’. In
this section we are not concerned with the specification of real
module interfaces, but only with the abstract properties that any
such interface for a given module-to-module interconnection must
satisfy. These properties are called the ‘abstract interface’
between the two modules.

The concepts serve for:

a) the partitioning of the interactions of a given module into
separate groups concerning different modules forming the module’s
environment. A module has contact with 41its environment only
through a well-defined set of ‘channels’.

b) the specification of the interconnections between the dif-
ferent modules withing a system (or the sub-modules within a
module). ‘

A channel connecting two modules could be specified by naming an
interaction point of one module and an interaction point of the
other module with which the former is to be connected.

For example, typical channels of a layer entity executing the
layer protocol are:

a) the access point(s) to the layer above through which the ser-
vice is provided, :

b) the access point(s) to. the layer below through which the
underlying service is accessed,

¢) an (abstract) interface to the local system management module,
and possibly a local channel through which local services such as
buffer management, time-outs, etc. can be obtained.

2.2. The specification of a channel

The purpose of a channel type definition is to be wused in the
specification of a module (see section 2.3.), where each interac-
tion point of a module is characterized by the type of channel
which it represents. '

The specification of a channel type includes:

a) an enumeration of the possible interaction primitives that may
be invoked through a channel of that type.

b) the names of two “roles’ which distinguish the two sides of
the channel, and hence the two connected modules (e.g-. ‘service
provider’ and ‘service user’).

c) the properties of the interaction primitives, which may
include such properties as:

—-parameters including their data type,

--an 1indication by which ‘role’ parameters are established,
including the responsability for provision and accepting parameter
values,

—-—time dependencies in relation to these different roles,
e.g.atomic interactions, or interactions extended in time and
interruptible, :

-=-etce.

d) possibly certain rules about the order in which the interac-
tion primitives may be executed over a given channel of that type

2.3 The specification of a module

The purpose of a module specification is to define the behavior of
the module as observable at the interaction points to which it is
connected. Therefore a module specification cannot be gilven
without a definition of the interaction points through which the
module interacts with its environment.

The specification of a module may be given in each of the follow-
ing forms:

(a) by a fixed substructure definition (see section 3), where
each submodule in the substructure can be defined either according
to (a) or to (b). :

(b) by defining the behavior of the module using one of the
specification languages developed by Subgroups B or C.

3. Substructure definitions

A specification of a module may be given in the form of a sub~-
structure definition, as shown in the figure below. If the
behavior of each of the submodules is defined, such a substructure
defines the behavior of the module. :

Xl

\

i
Morstee /o Ny awd A
/‘5//(/ eu)//(;(] ' P/g
Sebsh o uelin 5/ VoA

In the example above, the module A interacts with other modules in
the system through the channels X-X1 and Y-Yl. The substructure
0of module A consists of two submodules Al and A2. The connec-
tions Z-U and V-W are called internal channels and connect
interaction points by which the modules Al and A2 interact.
The notation of the example also means that the interactions of A
at X and Y are realized by the interactions of Al at X, and
A2 at Y, respectively.

The above structuring has assumed that the interaction points X
and Y of A and X and Y of Al and A2 remained unaltered, 1i.e.
only the functionality of A was represented by two submodules

Al and A2 connected by internal channels.

One could also consider a substructuring for the interaction
points X and Y, and represent this by an alternative way of
picturing

We leave this possibility for further

- ey v =~ o~}

study.

It is possible to further subdivide the structure of a module. For
example a possible substructure of module A2 would be as follows:

- oy - e

Sometimes several steps of refinement are shown in a single

diagram. For example, the figure
refinement for module A given above:

below shows the two steps of

|
\)
| l
L.L.:‘:‘.: o= :RH’ <]

A syntax for describing substructure definitions is for further
study.

o

4. The nature of interactions

A module 1is specified in terms of its interactions. For example,
if the module is an N-entity, then the module interacts through
N-service~primitives* (N-SP, see section 4.1) and (N-1) - SPr’s¥*
with other local modules (respectively, the (N+l)~entity and the
(N-1)-entity).

Two time instants** are important for the execution of an interac-
tion between two modules:

1) the moment that the interaction begins, i.e. the moment
that the other module agrees to the execution of the
interaction;

2) the moment when the interaction ends.

Each interaction carries explicit information (parameters, some-
times- refered to as associated information).

The types of interaction considered for specification purposes are
called "interaction primitives". They are abstract interactions
in the sense that their implementation by the interface between
the interacting modules is not specified. Examples of interaction
primitives are:

- open connection to remote address with options;
- send data on connection
- send data to remote address;

* Service primitives are either expressed directly or in more
detail by using interface data units (IDU).

% Tt is noted that certain models distinguish an additional time
instant: the moment that . the interaction 1s dinitiated
("called") by one (i.e. the first) of the modules. This may be
useful, for example, in situations where it is . important to
know which module 1is waiting (for example, performance con-
siderations). '

where "connection" 1s a 1local connection identifier, '"remote
address" 1s the destination address, "options" 1s a list of
facilities, "data" is an information which has to be transferred
unchanged to "remote address".

In an implementation, the abstract interactions are realized
through the real interactions of a real interface (see section

5.4).

The following points are important properties of interaction
primitives:

(1) Each occurring interaction belongs to exactly one type; 1l.e.
interaction primitive.

(2) Each 1interaction primitive is characterized by a number of

parameters.
For example "remote address" and "options" parameters for the

"connection establishment request" interaction.

(3) For each occurrence of . .an interaction, the value of each
parameter of the interaction primitive is determined by one of the
interacting modules, or both.

(4) The range of possible parameter values is specified for each
interaction parameter e.g. by a data type definition.

(5) There are some models in which the execution of an interac-
tion by a module may be considered as an atomic action (which
excludes any other action by that same module at the same time).
In these models parallel interactions by the same module (for
example concerning different connections handled by the same

‘module) are modelled by assuming an arbitrary order between these

interactions. Alternatively, there are wmodels that do not make
these assumptions. In specifying any particular model the assump-
tions made about atomicity and synchronization must be clearly
stated.)

We assume that all primitive interactions involve a rendez-vous
technique*, but it may be useful, as an aid to understanding, to
introduce compound interactions consisting of a primitive interac-
tion between the d1initiator and a queuing module, followed by a

.primitive interaction between the queuing module and a receilver.

Note: Furthef study is required to 'identify all the necessary
compound 1interaction types and to demonstrate that they can be
specified as indicated above.

- 10 -

An interaction is always seen the same by the two interacting
modules. '

For certain purposes, it may be useful to specify how the interac-
tion primitives are realized by the interface between the inter-
acting modules. In the following, the term "real interaction" is
sometimes used for the interface interactions that implement an

abstract interaction primitive (see section 5.4).

5. Definition of service, protocol, and interface specifications

Descriptions of service, protocol and interface specifications are
given in the "Introduction to the Guidelines: Overall view of OSI
specifications" (N 380). The purpose of this section is to make
these descriptions into precise definitions, and to put them into
the framework of the specification model outlined in the sections
above.

5.1 Service specification for layer N

The service of a layer consists of a set of elementary services of

this layer. The service specification for layer N is a specifica-
tion of a module, consisting of the entities of the layer N and
the layers below, given in an abstract view showing only the
interactions at the (N)-service-access~points, as indicated by
figure 2. The interaction primitives executed at the service
access points are called "service primitives". (N)-service-data-
units (SDU’s) are exchanged as parameters of particular kinds of
service primitives (by the T-DATA requests and indications of the
Transport service, for example). These interactions would be given
for any one of the elementary services and for their interrela-
tions. We mnote that in this figure and the following, a double
arrow represents the interactions taking place between two inter-
action points of two interacting modules. The name written close
to it indicates the kind of interaction primitives.

* A rendez-vous interaction is one in which the two (or more)
modules that participate in the interaction execute the inter-
action during a '"rendez-vous", 1i.e. for an interaction to
occur it is necessary that all participating modules execute
"their part" at the same time. The interaction implies a
close synchronization of the modules. One module has to walit
for the other, in general.

- 11 -

N-SPr

Figure 2

5.2 Protocol specification for layer N

The protocol specification for layer N 1s the set of the
specifications of the modules which represent the entities of
layer N: if all such entities have the same procedure (that is,
the protocol is symmetric), then the protocol specification coin-
cides with the specification of one module. This module(s)
represents an (N)-layer entity providing service through one (or
more) (N)-service-access-points, and accessing the service of the
layer below through one (or more) (N-1)-service-access-points. For
example, the modules A and B in figure 3 are such modules.

The protocol specification should be consistent with the service
specification, i.e. the abstracted view of the system shown in
figure 3 (ignoring the interactions at the (N-1)-service~access~
points) should satisfy the contraints defined by the (N)-service
specification.

-12 -

N-SPr

1)-SPr

ta)) > (e
(e

Figure 3

5.3 Abstract protocol specification

An "abstract protocol specification”" 1is a part of a protocol
specification which assumes a '"mapped" (N-l)-service £for the
exchange of (N)-PDU’s between the peer entities, and relevant
control information relating to the (N-l)-service. This is a
useful technique because any particular protocol may not use all
aspects of the supporting service. The mapped service might, for
example, provide for connection establishment and data transfer
only.

The complete mapping from (N)-PDU’s and control information into
(N-1)-service- primitives is not specified directly, but in terms
of the mapped service. The specification of the mapped (N-l)-ser=-
vice consists of the specification of a mapping from each of its
elements to some element of the (genuine) (N-l)-service and visa
versae.

The situation is as shown by the diagram .(a) of £figure 4.
Alternatively, the diagram (b) is sometimes used to indicate an
abstract protocol specification, where the single arrow indicates
the use of the mapped service.

-1 3 -
’ N-SPr
o N-SPr
~ <
N-PDU + £Ow ol >
;"be'mn":“r" .
- NPDUL,
l e ppeel Sexvice N-1 control Information

(a) (k)

Figure &

5.4 Implementations and real interfaces

For the module specifications considered (and in particular for
protocol and service specifications) the module is assumed to

- interact with the other modules in a system through interaction

primitives. An implementation of such a module, however, will

interact by '"real interactions" (of hardware or software nature)

realized by a real interface. One real interface per interaction -
point is usually foreseen.

An implementation of the interactions over a given interaction
point includes the definition of a mapping from the abstract
interaction primitives into the real interaction at the interface.
It defines a correspondence between the real interactions and the
interaction primitives, which are not necessarily explicitely
visible in the implementation. Figure 5 shows the correspondence
between an abstract module specification (a) and its implementa-
tion (b).

':V\b-rtnc\le\-\

'f“‘-'lw: rl.VQs

(«)

6. Definition of terms

«+.for further study...

- 14 =
l Feal infer fut’(‘us
[} et
: | S— lufcrr-ueg,
Figure 5

- 15 -
Annex : Examples of entity substructures

For specification purposes, 1t seems to be useful to consider a
substructure of an entity. Different kinds of substructures may
be considered depending on the nature of the entity to be
described. Some possible substructures are discussed in the fol-
lowing subsections. Further work 1is needed for identifying
appropriate substructures for protocol specifications.

As far as the work of the FDT ad hoc group is concerned, it seems
to be necessary to determine a description technique for defining
a substructure. A possible approach to this end is the use of the
concepts and methods described in section 3, such that the entity
is considered a module which consists of several interconnected
submodules.

A module can be decomposed into submodules according to several
criteria, e.g.: ‘

- to encapsulate well defined functional blocks in submodules
which are activated sequentially to accomplish -the more complex
service of the module. The objective could be to introduce more
abstract service primitives describing the service provided by the
next lower layer, etc.

- to separate data flow and control flow.

- to consider inherent concurrency of the module. This can be
accomplished by assigning one submodule to each connection since
the connections are the sources of different unsynchronized
sequences of events or transitions. The service of the module is
in this case implemented in a distributed manner.

1. Possible identification of submodules

The concept of an abstract protocole ' specification (see section
5.3) suggests a substructure containing separate submodules for
mapping and abstract protocol.

- 16 -

N-| SPr

(L!)s'll{. Prefee ol

N- PDU 4 Ltl{%fi' I«L ;hfvrm u“‘u«..

G rf " 2

Nen) &7

Figure 6

Moreover there may be cases in which the complexity of the service
suggests to introduce a third box called "additionnal service" and
leads to the following structure. :

T N-SPr
N

] N-entity
' Add. Serv
ABST-PROT
]} ——1 _}_ __ _N-PDU and (N-1) service
c¢ontrol information
Mapping

i (N-1)SPr

- 17 -
NOTES

l. The boxes located at the top and the bottom are optionnal.
Thus, depending on the entity to be described the structure
may be different.

2. Only the "protocol box" is mandatory in all cases: thus the
structure can be reduced to a single protocol module.

3. The concepts described above are only suitable for description
purpose and do not have to be introduced in the model for O0SI
as generic concepts.

4. Examples of the use of the "Additionnal Service" box can be
the quarantining or blocking services at the session layer or
some manipulation or transformation of the data store at the
presentation layer.

2. A possible entity substructure

Other entity substructures may be considered, such as the follow-

ing: an entity X, or each of the submodules shown in figure 6,
may be subdivided into the submodules shown in figure 7 below.

18

3 e
T | ‘ '
: P i |
1] []
PoTT T — 5
E EXSPrH :.W /E XSPrHE E
R /T
b "\ R a i V E
T ey P e
b : ;i : ; ; :
! B / Yy R :
: : / \ v :
CoTT Ty N — :
! ! XFH ! ! XFH ! :
] 1]]]
. S — ;
] [}]]
: E ! E

|]

i ¥

Figure 7

In this figure, the submodule X’ executes the abstract protocol
of the module X (and processes the control information contained
in the input interactions); XFH (X Format Handler) are modules
for handling Input/Output format problems for module X; XTH (X
Test Handler) are modules for handling user data, e.g. for segmen-
tation, reassembling, store for retransmission, etc., and XSPrH
(X Service Primitive Handler) are modules for handling service
primitives which interact with module X.

3. Decomposition of an entity according to its inherent concur-
rency

One. possible criterion for decomposition is to what degree paral-
lelism in the entity is to be modelled. Ultimately each event or
state transition could be represented as an independent module.
This will, however, not contribute to a clear and comprehensible
structure. The decomposition should rather reflect the structure

- 19 -

of independent event-sequences relevant to the intended 1level of
description. Such independent event-sequence are initiated by
input events at the connection end points of the module to be
decomposed.

In fig. 9, three such input handling modules are introduced: the
service request handler (SRH), the service indication handler

(SIH) and the time-out handler (TOH).

Figure 9

The submodules must cooperate to perform the function of the
entity fi.e. the function is distributed. 1In fig. 9 the communica-
tion between the input handlers is accomplished by state variables
encapsulated in a monitor module providing mutual exclusion (GSM).
Since more than one submodule can produce output events on the
same channels, these are also encapsulated in monitor modules

(SRM’ SIM).

The distribution of a protocol function can be illustrated by
time-out handling. A submodule (SRH or SIH), having submitted for
transmission a message on which a response is expected, sets the
time-out interval. The submodule receiving the response resets
the time. The time-out handler performs the protocol actions
prescribed when a time-out occurs.

2

ANNEX

1S0/TC 97/sC 16 N [3 4 R

Date: November 1982
Project:

180 _
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

IS0/TC 97/SC 16
OPEN SYSTEMS INTERCONNECTION
SECRETARIAT: USA(ANSI)

Source: IS0 TC 97/SCl6/WGl, Subgroup B of ad hoc group on FDT

~Title: A FDT based on an extended state transition model (Working

Document, November 1982)

l. Introduction

This document describes a FDT for the specification of
communication protocols and services. The specification language
is based on an extended finite state transition model and the
Pascal programming language.

2. Model

2.l. Modules, channels, and interaction points

2¢1ele The Concepts
(see Subgroup A document, section 2.1)

2.1.2. The specification of a channel
See Subgroup A document, section 2.2)

2.1.3. The specification of a module
(see Subgroup A document, section 2.3)

2.2 The model of interactions

The extended state transition model described in section
3 assumes a model of interaction where each interaction of the
specified module with its environment can be considered an atomic
event. The transition model distinguishes between interactions

. that are initiated by the environment and received by the module

(inputs), and interactions initiated by the module (outputsg).

-/' -. — s l I. I -/ _ -

The reception ot an interaction trom the environment
produces, 1in general, a state transition of the specified module
which may give rise to other (output) interactions.

For the interaction between two modules, the model
allows for the queuing of the outputs from one module before they
are considered as input by the other. Queues of infinite or
finite (including =zero) length are possible. The length of the
queue 18 determined when the modules and their interconnection are
instantiated (see "Concept for describing the O0SI architecture",
section 3). It is noted that zero buffer length means a rendez-
vous type of interaction (see "Concepts...", section 2.1).

2.3 A state transition model

In order to detine the possible orders in which interac-
tions may be initiated by the entity, the state transition model
introduces the concept of the "internal state" of the entity which
determines, at each gilven instant, the possible transitions of the
entity, and therefore the possible interactions with the environ-
ment.

The possible order of interactions of a module (or
entity) 1is given in terms of

(a) the state space of the module which defines all (internal)
states 1in which the module may possibly be at any given time, and

(b) the possible transitions. For each type of transition, the
designer specifies the states from which a transition of that
type may take place, and the "next" state of the module. A tran-
sition may also involve one or more 1interactions of the module
with its environment (see below). :

Since finite state diagrams or equivalant methods often
lead to very complex specifications when a complete protocol
specification is required (partial specifications, can be more
readily comprehended) the following approach to the specification
of modules in the extended state transition model is used.
This approach combines the simple concept of states and
transitions with the power of a programming language.

The state space ot the module is specified by a

" set of variables. A possible state is characterized by the values

of each of these variables. One of the variables is
called "STATE". It represents the "major state" of the module.

. s .

-

i

‘The possible tramsitions of the module are defined by
the specification of a number of transition types. Each tramsition
type 1s characterized by

(a) an enabling condition: This is a combination of a boolean
expression depending on some of the variables defining the
module state, and (possibly) the specification of an input. A
transition may occur in a given state only if the enabling condi-
tion has the value true, and the interaction in question (if it
‘exists) is initiated by the environment. A transition without
input is called a spontaneous transition.

(b) an ‘operation: this operation is to be executed as part of
the transition. It may change the values of variables, and may
specify the initiation of output interactions with the environ-
ment. The operation is assumed to be atomic.

The model is non-deterministic in the sense that in a
given state (at some given time) and a given input interaction,
several different transitions may be possible. Only one of these
transitions 1s executed, leading to a next state which determines
which transitions may be executed next. If several transitions
are possible at some given time, the transition actually executed
is not determined by the specification model. An implementation of
the module could choose any of these possibilities.

In many cases, the specification of a module may be
deterministic, 1in the sense that (at most) one transition is
specified in any reachable state and given input.

2.4. The sgecification of module substructures

(see Subgroup A documént, section 3)

3. Language elements

This section gives an introduction to the different
elements of the specification- language based on the extended state
transition model described above.

The language 1is largely based on the syntax and seman-
tics of the Pascal programming language ISO ... (see for example
Jensen and Wirth: ‘"Pascal: User manual and report", Springer
Verlag, 1974), and uses the general approach of using type defini-
tion facilities and type checking for allowing the implementation
of automatic consistency checking, which usually detects a large
proportion of those errors in a specification that connot be found

by syﬁtax checks.

A complete definition of the syntax 1is contained in
section 4.

3.1 Lanpguage elements taken from Pascal

The following language elements of the Pascal program-
ming language are included in the specification language without
any change in syntax and semantics:

(a) Type and constant definitions including
scalar types, including enumeration types
subranges
record types
array types

Predefined types:
boolean
integer
character (defined by some IS0 standard)

(b) Procedure and function definitions

(c) Statements

3.2 The specification of interactions

The following examples are considered. The (N)-service
is provided to the entities in the layer above by the interactions
through the service access points between the service providing
module and its environment. The interaction model is also useful
to define interactions between different entities (or "modules")
of an (N)-layer subsystem. For example, it may be used for defin-
ing the timer or data buftering services used in the (N)-layer
protocol.

The specification of a channel is given by enumerating
the possible interaction primitives that may occur over the chan-
nel (including possible parameter values (determined by the module
initiating the interaction), and an indication about which module
may initiate the interaction).

- .

In order to distinguish between the two modules that use
the channel for their interactions the concept of a "role" is
introduced. For each type of channel two roles are defined.
These two roles are “played’ by the respective module instances
that are connected to an instance of a channel. The language
allows the specification of the possible interactions through a-
channel without explicitly defining the modules that interact
through the channel. However, it is necessary to refer to.the
roles that these modules play in this interaction.

As an example we consider the abstract intertace through

‘which the Transport service is provided at some Transport" service
access point. The diagram below shows the entities involved.

| session layer | | Session layer [
. Transport col) :
entx?y service entity ‘ Session
access point layer
f'\'—"’, \-\"“’~%
3 >
Transport layer Transport layer ‘ Transport
entity : : _ entity - “layer

Using the syntax defined in section 4, the possible service primi-
tives may be enumerated as follows.

channel
TS~access_point(TS_user,TS_providér);
by TS__user:
T_CONNECT req(TCEP_identifier : TCEP_identifier_type;
to_T_adress T__address_type;
from T address T address_type;

QQTS_request : quality_of_ TS_type;
TS_connect_data : TS_connect_data_type);

T_CONNECT_resp(TCEP_identifier - : TCEP_identifier type;
QOTS_request : quality of TS_type; -

options t option_type;
TS_accept_data : TS_accept_data_type);

T DISCONNECT req
by TS_provider:
T_CONNECT_ind

etc.

This specification states that a module that interacts
through a Transport service access point must take the role of a
“"user", or a '"Transport entity'". Depending on its role it may
initiate a certain number of interactions (indicated by the BY
clause), for example a user may initiate requests for connection
establishment or disconnection, or the sending of a tragment of
user data.

The same ' concept of a channel may also be used tor
defining the interactions between several entities within the same-
layer, or between an entity and some locally provided services,
such as timers or buffer management. An example is the following
definition of the timer services wused by the Transport entity
implementing the Transport protocol.

channel
timer-interface (user, server);
by user:
start (period: integer);
stop;
by server:
~ time-out;
end timer-interface}

We note that the possible orders of interactions are not
specified. However, it is understood that the time-out interaction
will only be initiated by the server '"period" seconds after it has
received a start interaction and no subsequent stop interaction.

3.3 Module interconnection

The FDT provides for a separation of the specification
of the characteristics of channels from statements that certain
modules use certain types of channels. For example, the charac~
teristics of the (N)=-service access points are relevant for the
(N)-service specification, the (N + 1) - layer entities, as well
as for the (N)=-protocol specification. A channel type may be

defined 1independent of its use, and the specification of a module
includes an enumeration of all the interaction points through
which it interacts with its environment, with an indication of the
channels type for each of these interaction points. The syntax for
these specifications is given in section 4.

The language must be enhanced for specifying how the
interaction points of the different modules and entities within an
Open System are connected through channels. The same enhancement
could be used to define the substructure of a module in term of
submodule and their interconnection. These considerations are for
further study. '

3.4. Specification of a module as an extended state transition
machine

3.4.1. State variables

The state space of the module is specified by a set of

variables. A possible state is characterized by the values of each -

of these variables. One of the variables is called "STATE". It
represents the '"major state" of the module.

As an example, the following lines specify the state
space of an entity implementing the Transport protocol:

var

state :+ (idle,wait_for_CC,wait_for_ T_CONNECT_resp,data_trans-—
fer);

local_reference : TP_reference_tupe;

remote_reference : TP_reference_type;

TPDU_size :max TPDU_size_type;

QOTS_estimate : quality_of_TS_type;

3.4.2. State transitions

The possible transitions of the module are defined by
the specification of a number of transition types. -Each transi-
tion type is characterized by:

(a) the enabling condition: this includes
- the present major state (FROM clause)
- the input (WHEN clause)
- the "additional enabling condition" (or "predicate")
(PROVIDED clause)

~ the priority of the tramsition type (PRIORITY clause)

(b) the operation of the transition: this includes :
- the definition of the next major state (TO clause) =~ the
"action" (BEGIN statement of the <block>) including the

generation of output.

An input interaction to the module is either considered immediatly
by the state machine or first put into the (conceptualy infinite)
input queue of the module (depending on the queuing option used
for the interaction point over which the interaction reaches the
module); if it 1s put into the input queue it is considered by
the machine when the input comes to the head of the queue. When
an input interaction 18 considered by the state machine, one of
the transitions enabled for the given input parameters and the
present module state is executed. A lower priority tramsition can
only be executed when no higher priority transition is enabled.
If no transition is enabled (depending on the option used) eilther
the dinput is ignored, or an undefined situation occurs which may
be considered a "user error" or an indication of a design error in
the specifications of the interacting modules.

A transition which has no input (no WHEN clause) 1is
called spontaneous. It can be executed, independently of imput,
whenever the enabling condition 1is satisfied.

A spontaneous transition may include a delay clause with
two parameters, d and d,. The transition may not occur until
the enabeling condition has remained true continuously for d,
time. It must be considered immediately 1f the enabeling condition
remains true continuously for d2 time. ‘' If the delay clause is
absent, a delay of d, =0, d, = infinity is assumed. (Thils is
written "delay (0,*%)".) "It means that the transition may occur at
any time the enabeling condition is true, possibly never. ‘

A delay(0,0) has the semantic meaning of the immediate spontaneous
transition of the basic semantic module (see sectiomn 5).

Notes

l. An input transition which has been received through a channel
having the 'not queued" option can not contain any output
statement in its operation. Outputs are allowed only for spon-
taneous transitions or input transitions received through the
queue. Relaxing this rule require turther study.

-

2. Executing an output statement 'may imply some short delay#*.
However the module is not observable from outside during this
time, and no other event can be presented to the module during
this time. This short delay is that delay necessary for the
output to be presented to the receiving module (directly or to
its queue).

*Note: However, this delay 1is not present in the first output of
a spontaneous transition.

As an example, the following lines speclfy some transition types
for a Transport entity:

trans
from idle
when TSAP.T_CONNECT_req
provided ...(* Transport entity able to provide the quality of
service asked for *)
to walt for CC
begin
local_reference := «a.;
TPDU_silze = «e.}
N.CR(U,local_ reference,class_U,normal,variable_part_to_send);
out
end;
from data_transfer to same
when TSAP.T DATA_req
provided ... (* flow control from user ready ¥)
begin
out_buffer.append(user_data);
out
end;
when out_buffer.fragment_ready(TPDU_size)
provided ... (* Network layer flow control ready %)
begin . :
N.DT (out_bufter.get_fragment(TPDU_size));
out
end;

trans
provided no_tc_uses_ne and ne_locally open
begin

out N.DISCONNECT req (*close any unused network connection *)

end;

trans
from data_transfer to same
provided credit_to_be_sent delay (0,evaluate_delay_max_agreed)
begin :
N.ACK(credit,tpdu_nr) (* send credit 1f any *)
out

- 10 =~

end;

3.4.3. Enbedding of transitions

The syntax for transitions permits the different clauses
(FROM, WHEN or DELAY, PROVIDED, PRIORITY, and TO) to be written in
arbitrary order, followed by the <block> which includes at Lleast
BEGIN END. The order has no influence on the meaning of the con-
struct.

The syntax also permits the embedding of the different
clauses. This embedding structure is simply a shorthand notation
with the following rules: The "scope" of a clause is defined to
be the specification text corresponding to "<transition>+" in the
syntactiec rule of the clause (see section 4.1.3). The meaning of
the clause extends over its entire scope. Each BEGIN END state~
ment of a block within the specification text identifies a transi-
tion. All clauses in the scope of which a given transition £falls
apply to thig transition. For example
trans

when AP.I
from A provided E to B
begin X end; '
provided F to C
begin Y end;
from B to C
' begin Z end;
trans
from C to D begin U ends
is a short hand notation for

trans

when AD.I from A provided E to B begin X end;
trans

when AD.I from A provided F to C begin Y end;
trans

when AD.I from B to C begin Z end;
trans

from C to D begin U end;

It 1is noted that the following scope rules must be fol-
lowed: '
(a) The parameters of the 1input interaction (declared in the
corresponding channel type definition) become accessible
within the scope of the WHEN clause.

(b) As in Pascal, the WITH clause makes the fields of a record
variable directly accessible within the scope of the clause.

- 11 =~

(c) The ANY clause introduces a "variable" identifier with an
arbitrary value within the range defined by the type iden-
tifier. The meaning is that the embedded transitions are
defined for each of the possible values of this variable.

3.4.4. Continuous output functions

While interactions represent "events' and are generated
during state transitions, continuous output functions provide
steady output from one module through a channel to another module.
The "receiving" module may use the value of such a function
(provided by its neighbour module) within a PROVIDED clause, that
is, it may intluence which transitions are enabled.

The name and type of output functions are declared in a
channel definition. The value provided by the function is deter-
mined by the function body which is defined within the module body
which plays the role of the outputting module.

3.5 Predefined language elements

Some predefined language elements are provided. These
include types, procedures, functions and modules. The predefined
identifiers may be redefined by the user of the FDT. In this
case, the user’s element is the one used.

3.5.1l. Predefined types

The following have been identified as candidates for

predefined types:
user_data_type and connection_endpoint_id_type.
Their precise definitions require turther study.

3.5.2. Predefined procedures and functions

The procedure “error’, taking no arguments and having an
implementation dependent action is a predetined procedure.
Routines for manipulating user data, coding and decoding PDUs, and
manipulating addresses are currently being considered.

-12 -

3.5.3 Predefined modules

The module ‘“timer’ is currently being considered.

3.6 An Example

- The following is an example of the Subgroup B method of
protocol description in use. It is a specification of an alter-
nating bit protocol. Although the example shows many of the basic
constructs of the language, simplicity dictates that some of the
features of the language cannot be shown here.

The first section of the example contains declarations
of constants and types, in a style familiar to a reader of Pascal.
One obvious addition is the notation "..." which is used to indi-
cate that the specifier is 1leaving the interpretation to the
implementor. Often this is accompanied by a comment to guide the
implementor in his choice. A notation was needed to indicate the
properties of the connections between modules. These are called
“"channels". Each channel may have players, the role of which are
indicated in parentheses after the channel name. The -‘various
interface events of a channel are indicated after the role list.
For each role, the events that the player may initiate are 1listed
along with their parameters. These parameters are available
within a transition that is initiated by the event.

The module header line includes names for the channels
it uses, as well as an indication of the role the module plays on
that channel. Thus, the Alternating Bit module is the Provider of
the U channel, which is a U_access_point channel. The inputs
from this channel and from the N channel are placed in a common
queue. The U_access_point channel supports three kinds of inter-
face events. Two of these may be initiated by the User (and are
thus inputs for the Alternating_Bit module), and one of these 1is
initiated by the Provider (and is thus an output of the module).

Following the module header, variables local to the
module are declared. Although not used in the example, 1if there
were any labels or types local to the module, they would preceed
the variables, as they do in Pascal. Then the major states and
major state sets are declared. State sets are a convenient way to
specify that a transition may take place from any of several major
states.

- 13 -

Next is an initialization section. In this, the major
state and the variables are given initial values. This determines
the initial state of the module.

Then functions and procedures are declared. In addition
to the standard Pascal definitions, either the keyword "primitive"
or the notation "..." 18 used to indicate that the details are
left to the implementor. Often, the choice of a data structure
and the details of the primitives must be coordinated choices. In

the example, the choice of the structure of "buffer_type" will

determine the details of the procedures "store", "remove", and
"retrieve". TFurthermore, the actual details of these structures
and the routines that manipulate them are mnot particularly
relevant to the action of the protocol.

Output from the module over a channel is specified by
the keyword OUT. The actual channel and event are indicated by
naming the channel, followed by a ".", £followed by the output
interaction with its parameters.

Finally, the transitions are listed. The clauses cor-
responding to the keywords "from", "to", '"when", etc. are all
optional, and may appear in any order, and may be nested (though
they are not in this example). They describe the major state
before the transition, after the transition, and the required
input, respectively. The "provided" clause describes an enabeling
predicate that must be satisfied for the transition to take place.
An optional "priority" may be assigned to any transition.

One the input is listed, the parameters associated with
the input may be accessed in much the same manner as the fields of
a record within the scope of a "with'" statement. This enhances
the readability ot the resultant specification.

Notice the transition from state ESTAB back to itself
when a S.TIMER_response input occurs. This corresponds to the
case in which the retransmit timer expires for data that have been
acknowledged. In this case, clearly noting need be done. Another
approach to dealing with this situation would be to '"cancel"” the
retransmit timer when the acknowledgment is received by generating
an S.TIMER_request with a Time value of zero.

const
retran_time = 10
empty = (3
null = 03
type

data_type = 4o}

- 14 -
seq_type = ...3 (* for alternating bit, use 0..1 *%)
id_type = (DATA,ACK);
timer_type = (retransmit);
ndata_type =

record

id: id_type;.
data: data_type;
seq: seq_type;

end;
msg_type =
record
msgdata: data type;
end;
buffer_type = ...
int type = «se3 (* would usually be "integer’ ¥*)

(* channel definitions *%)

channel U_access_point(User, Provider);

by User:

SEND_request(UData: data_type);
RECEIVE request;

by Provider:
RECEIVE response(UData: data_type);

channel S_access_point(User, Provider);

by User:

Timer_request(Name: timer_type; Time:int_ type);
by Provider:
Timer response(Name: timer_type);

channel N_access_point(User, Provider);

by User:

Data_request(NData: ndata_type);

by Provider:
Data_response(NData: ndata_type);
module Alternating Bit(U: U_access_point(Provider) queued;

var
send_seq:
recv_seq:

N: N_access_point(User)
S: S_access_point(User)

seq_type;
seq_type;

send_buffer: buffer type;
recv_buffer: butfer_type;

Psyq:

state:

msg_type;

(ACK_WAIT, ESTAB);

EITHER =

initialize
begin

[ACK_WAIT, ESTAB];

. queued;
not queued);

- 15 =

state to ESTAB;
send_seq := 03
recv_seq := 0;
send_buffer := empty;
recv_buffer :=

end;

procedure send_data(msg: msg_type);
var s: ndata_type;

begin
s.id = DATA;
s.data := msg.msgdata;
S.seq (= mSg.msgseq;
N.DATA_request(s)
out

end;

procedure send_ack(msg: msg_type);
var a:ndata_type;

begin
a.id t= ACK;
a.data := msg.msgdata;
a.seq = null;
N.DATA request(s)
out
end;

procedure deliver_data(msg: msg_type);
begin
U.RECEIVE_response{msg.msgdata)
out
end;

procedure store(var buf: buffer_ type; msg: msg_type);
primitive;

procedure remove(var buf: buffer type; msg: msg_type);
primitive;

function retrieve(buf: buffer_ type): msg_type;
primitive;

procedure inc_send_seq;
begin _

send_seq := (send_seq + 1) mod2
end;

procedure inc_recv_seq;
begin

recv_seq t= (recv_seq + 1) mod 2
end}

(* transitions *)

-16 -
trans

from ESTAB to ACK WAIT when U.SEND_request
begin

p.msgdata := UData;
p.msgsdq = send_seq;
store(send_buffer,p);
send_data(p);
S.TIMER_request(retransmit, retran_time)
out

end;

form ACK_WAIT to ACK WAIT when S.TIMER_response

provided Name = retransmit

begin
p := retrieve(send_buffer);
send_data(p);
S.TIMER_request(retransmit,retran_time)
out

end;

from ACK_WAIT to ESTAB when N.DATA_response
provided Ack _OK
begin
remove(send_buffer, NData.nsg);
incr_send_seq;
end;

from ESTAB to ESTAB when S.TIMER_response
provided Name = retransmit
begin
(* do nothing #*)

© end;

from EITHER to SAME when N.DATA response
profided NData.id = DATA
begin
q.msgdata := NData.dataj
q.msgseq := NData.seqs
send_ack(q);
if NData.seq = recv_seq then
begin
store(recv_buffer, q);
incr_recv_seq
end
end;

from EITHER to SAME when U.RECEIVE_request,

provided not buffer_empty(recv_buffer)

begin
q := retrieve(recv_buffer);
deliver_data(q);
remove(recv_buffer, q.msgseq)
end;

- 17 -

module Timer(S:S_access_point(Provider)
not queued)

var
timervalue:array[timer_type] of integer;
index:timer_type;
initialize
‘begin :
for index := retransmit to retransmit do
(* index must run through all possible timer type *)
timervalue [index] := 0

end;
trans
when S.Timer_request
begin
timervalue[Name] := 0; (* This cancels the previous timer
of this name; see next transition and semantic
of delay. *)
timervalue[Name] := Time (* This sets the new timer. *)
end;
trans

any timer_index:timer_type do
provided timervalue [timer_index] > 0
delay (timervalue [timer_index],timervalue(timer_index])

begin

timervalue[timer_index] := 0;

out S.Timer_response[timer_index]
end;)

Note: It has not yet been decided whether to use the keyword OUT
or OUTPUT. In the examples, OUT is currently used.
Note: An improved version of this example is under study.

3.7. User guidelines

to be provided

4. Syntax overview

_ This section defines the syntax of the specification
language. Large parts of the language are taken from the Pascal
programming language.

S e Gh ER T 5 0 D O R Uh D B B

- 18 -

Elements of the Pascal programming language are used for

the specification of constants, data types, procedures and func-
tions, and the declaration of the state variables.

This section defines the extensions to Pascal, as well

as certain restrictions.

Notation: Extended BNF where "4" means one or more

occurrences, "*" means =zero, one or more
occurrences of an expression, and e
separates altermatives". "#%" means that the

construct is the same as in Pascal.

A service or protocol specification consists of a specification of
the channels and primitives (see section 4.1.1) and one or more
module specifications (see sections 4.1.2 and 4.1.3). Only the
definition of a module type is given here. Language elements for
the declaration of module instances within a system and their
interconnection is for further study.

4.1 Syntactic extension

4.1.0 Overall structure of a specification

The overall structure of a protocol or service
specification (in the following simply called "system") is as
follows:

<system> 1= SYSTEM <system id>;
<channel type definition>*%
<module type definition>%
<gsystem structure>

<gystem 1d> ::= <identifier>

The <system structure> is for further study.

4.1.1 Channels and interaction primitives

The <channel type definition> defines a type of interaction point.

<channel type definition> ::= <constant definitions>¥%
<type definitions>* <channel>

The possible interactions at a given type of interaction
point are enumerated by a definition of the following

-'19 -
form:

<channel> ::= CHANNEL <channel type id>
(<role list>) <exchanges> ;
<role 1list> = <role 1id>
A | <role 1list> , <role id>
= <BY clause>
| <exchanges> <BY clause>
<BY clause> ::= BY <role list> : <exchange list>

<exchanges> :

<exchange list> ::= <exchange>
| <exchange list> <exchange>
<exchange> = <interaction id> <interaction parameters> j

| <function heading>¥*%*

The declaration of <interaction parameters> is in the
same form as function parameter declarations in Pascal
(1.e. for each parameter its name and type).

<identifier> (*Notel*)
= ' <Kidentifier>

<interaction id> :
<channel type 1id> :

Note 1: Identifiers may include both upper and lower case let-
ters as well as the underscore character ("_'"), which is
considered to be a letter, and numerals.

4.1.2 Modules and their interaction points

The definition of a module type contains the declaration of
all abstract interaction points through which a module of
this type 1interacts. This includes the service access
points through which the communication service is provided
as well as the system interface for timers, etc. and the
access point to the layer below, through which the PDU’s
are exchanged.

<module type definition> ::= <module heading> <internal definition>
<module heading>::= MODULE <module type id>
(<interaction points>) 3

<interaction points> ::= <interaction point declaration>
| <interaction points> ; <interaction point
declaration>

<interaction point declaration> ::= <interaction point id> :
<interaction point type>
(<role id>) <queue discipline>
<queue discipline> = NOT QUEUED|QUEUED
<interaction point type> = <channel type id>
| ARRAY [<index type>]

-.20 -

OF Lchanuel 'l‘/f‘-’- lol S
(* Note 9 %)

<internal definition> ::= <module body>
| <substructure definition>

The <role 1id> indicates which role the entity plays as far
as the declared interaction point is concerned. We note
that the distinction of these roles permits the checking
that the invocation of interactions in the conditions and
actions of transitions 1is consistent with the possible
exchanges defined in the channel definition.

4.1.3. Extended state transition module

<module body> ::= <label definitions>*%
<constant definitions>%*%*
<type definitions>*%*
<variable declarationg>*%*
<major state declaration>
<state set definition>%*
<proc func or init etc.>%
<embedded transitions>+

" <embedded transitions> = TRANS <transition>+

<major state declaration> ::= STATE : <enumeration type> ;
<gtate set definition> ::= <gtate set id> = <gset definition>*% ;
~ (*Note 4%)
<proc func or init etc.> = <procedure definition>*%* (* Note 2 *)
| <function definition> (* Note 2 and 3 *)
| <continuous output definition>
| <initialization> (* it is suggested that
the initialization be
placed at the beginning %)
<continuous output definition> = FUNCTION <interaction point ref>.
<function name> ; <block>
(* the parameters of the function
are already declared in the channel
definition %)
<interaction point ref> ::= <interaction point id>
| <interaction point id> [<index variable>]
<index wvariable> : :=<identifier>
<function name> ::= <identifier>
<initialization> HEES INITIALISE BEGIN
STATE TO <major state value>
<additional initd>;
<additional init> ::= END

|3 <statement sequence>** END

- 21 -

<transition> =

| ANY <identifier> : <type identifier** DO <transition>+ (*Note 5a*)

| WITH <variable>** DO <transition>+ (*Note 5b%*)

| WHEN <interaction point ref> . <intraction 1d> <transition>+ (*Note
Se*)

| DELAY(<delay value>,<delay value>)<transition>+ (* Note 5¢ *)

| FROM <major present state> <transition>+ <*Note 5d%)

| TO <major next state> <tramsition>+ (*Note 5Se%)

| PROVIDED <expression>** <transition>+ (*Note 5f%)

| PRIORITY <priority indication> <transition>+ (*Note 5g*)

| <bloeck>*%* ; '

<delay value> ::= <expression> | * ~ (* Note 10 *)
<priority indication> ::= <identifier>** (*constant of some
enumeration type¥)
| <integer>*%* _
<major present state> ::= <major state value list>
| <state set id>
<major state value list> = <major state value>
| <major state value list><major state value>
<major next state> t:= <major state value>
| SAME
<major state value> i1:= <identifier>** (*must be element of the
' ' enumeration type of the <major
state declaration>*)

<output statement> = <interaction point ref> . <interaction id>
<effective parameter list>** (*Note8#%)

Note 2

Within a transition, "..." may be written for an expres-

sion that i1s implementation dependent (not defined by

the specification). The body of a procedure or function

that 1s implementation dependent (not defined by the

specification) is written in the form "PRIMITIVE" or

LRI U Other possible uses of ... are for further

study. ' ‘

Note 3 ¢ A boolean function X(<parameters>) with no side effects

may be declared in the form "predicate X(<parameters>)".

The elements of the set must be included in the enumera-

tion type of the <major state declaration>.

Note 5a: These transitions may not include a ANY clause.

Note 5b: These transitions may not include a WITH clause.

Note 5¢: These transitions may not include a WHEN nor DELAY
_ clause.

Note 5d: These transitions may not include a FROM clause.

Note 5e: These transitions may not include a TO clause.

Note 5f: These transitions may not include a PROVIDED clause.

The expression must be boolean.

Note 5g: These transitions may not include a PRIORITY clause.

Note 6 : Each <block> must be preceeded by a FROM and a TO

clause.

Note 4

- 22 -~ .

Note 7 : To refer to the input parameters, the parameter = iden-
tifiers of the interaction in the <channel type defini-
tion> are used.

. Note 8 ¢ This kind of statement (for producing an output interac-
tion) is an extension of Pascal.

Note 9 : The usual multi-dimensional array notation, e.g. ARRAY

[indexl,index2], is also allowed.
Note 10: The delay value must be either an integer valued expres-
sion or ‘*’, which represents infinity.

4.1.4. Other extensions

(a) Informal specification elements, which define system
properties that are part of the specification (not
merely comments), are written as text enclosed in
"(/" and "/)" and may be placed wherever comments
or ... may be placed.

(b) A facility for describing optional parameters is
introduced. To indicate that a parameter (or field
of a record) is optimal, its type definition is
preceeded by the keyword OPTIONAL. The value
UNDEFINED means that the parameter (or field) is not
present. A default value may be associated with the
type definition by a succeeding "DEFAULT=<constant>"
clause.

4.2. Removal of certain restrictions

Functions are permitted to return arbitrary values.

4.3. Elements of Pascal not used

To date, we have not found the following features of
Pascal to be necessary: pointers, and files (and go to and
labels).

5. Formal semantics

5.1, General approach

The semantics of the specification language is defined

by a translation of the language into a basic semantic model
described 1in section 5.2. The translation is explained in section

4

- 23 =

The semantics of the specification language is defined
by a translation of the language into a basic semantic model
described in section 5.2. The translation is explained in section
Y.4. The semantics of the basic semantic model (BSM) 1is defined
in section 5.3 in terms of an abstraction which considers the

system as a single module, the semantics of which 1s directly
defined by some interpretation rules.

More precisely, the semantic meaning of a specification
written in the Subgroup B FDT (in the following simply called FDT)
may be obtained by successive translations which lead trom the FDT
representation through the BSM to a definitionm of the behavior of
the specified system. In general, these translations may be the
following:

FDT ---> abstract repres. =—--—-> BSM ---=> BSM ---> semantics
(L) (2) (3) (4)

The translation from the FDT into the BSM may be considered in two
steps (1) and (2). However, it is defined in section 5.4 by a
single translation process. The definition of the semantics of the
BSM (translation (4)) 1is given for the case of a module without
interactions (see section 5.3.1). On the other hand, the BSM
obtained through the translations (1) and (2) contains at least as
many modules as the original specification in the FDT. Therefore
the translation step (3) is introduced which constructs a BSM
specification with a single module equivalent to the multi-module
specification obtained from the translation steps (1) and (2).

The following sections contain text preceeded by "Note:"
or "Explanation:". This text should be <considered as comments
which is added for ease of understanding. However, it is not part
of the definitions.

5.2. The basic semantic model

5.2+1« Architectural definitions

1) A specified system consists of a number of modules
M, (i=1,2,444) and a number of interaction points

Iﬁj(j=1,2,...).

Note: Only module and interaction point instances are con-
sidered here. However the FDT specification language includes
facilities for defining module and interaction point types.

13

2)

3)

4)

5)

- 24 -

For each interaction point IP,, a set of two roles is defined
(Note: for instance, "upper" ahd "lower"). We write r for one

role and r for the other role.

a) For each interaction point IP
sible interactions:

Ij T and Ij(E)

there are two sets of pos-

j’

‘Note: The dinteractions which are output by the connected

module with role r and r, respectively.

b) For eac?_%nteraction point IPj, there are two sets CEsr)
and CEjr .

Note: These sets are the range of functions defined by the

connected modules; the(unction of the module with role r
determines a value in CE;" depending on the state of the
module. These values “may be considered continuous signals

from the defining module to its neighbours.

The specification of a module M refers to a number
(k=1,2,...K,;) of interactions points. These references are
written j(i,k). It also indicates, for each reference, the
role 1r(i,k) the module assumes at the referred interaction
point.

An interconnection structure is given for the specified system
which defines, for each interaction point reference j(i,k),
the referred interaction point IP.(i K)* The following inter-
connection properties are assumed? '’

a) 1If modules Mi and Mi' refer to the same interaction point,
i.e.

1P (1 = IPj(* k)’ then they assume opposite roles,
i.A. f%l,k)#r(i ,&’), and they are different modules, i.e.
i#i’. Note: This implies that at most two modules are
connected to a given interaction point. To achieve loop-
back, one must introduce a specific loop-back module.

b) Each interaction point is referred to by at least one
module. If an interaction point IP () is only referred
to by M, then it is called an exterﬁai’%nteraction point.
Note: Xn external interaction point describes some inter-
action of module Mi with the environment of the' specified
system.

5.2.2« The behavior of a module

Note: The behavior of a module is defined by a state-

- 25 -

transition model.

1)

2)

3)

At any given instant of time, a module M; is either in a state
or doing a transition. :

a) The set of possible states of module M, is written Sy a
particular state is written 8y

b) TFor each referred interacti

Eg%nt IPj(i,k)’ there 1is a
)

Explanation: The notation "£ : D -=> R" means that t is a
(possibly partial) functions which defines a value 1in R for
values of the argument in D. ,

Note: These functions define a continuous output of the module
which may be read by the neighbouring modules.

The set of (names for) possible transitions of module Mi‘con—
sists of transitions of the following forms:

a) Internal transitions, written t (int)

P : s, x(+cE(T(L,K))y L5 Bool » Wi
' i k j(i’k)

~rl

F: S, x(:CE gfﬁ§))) -=> 8,

(
|
Explanation: P is the so-called enabling predicate. For
the transition to be executed, it is necessary that the
predicate is true. F is the so-called transition function.
It defines the next module state for the case that the
transition is executed. Both P and F, depend on the
present module state (8;) and possibly on the values of
the continuous . output functions of the neighbouring
modules. : :

b) Output transitions initiating an outp?t %?teraction at the
interaction point IPj(i K)® written tiﬁu » with
3

P: Sy x CE§%§T£§)) --> Bool
F: S5 x CE§E§TQ§)) --> 8§,
0: 84 x CE§%§f§§)) - I§fifﬁ§))

Note: 0 is the output function which determines the output
produced. The output produced depends on the present
module state (8;) and possibly on the values of the con-
tinuous output functions of the neighbouring modules.

- 26 =

¢) Input transitions initiated by an inp%in§nteraction ét the
interaction paint IP: 4 k) written t kK with
%r 1,x))3 (L, i
P : 5y x Ij(i ﬁ) -=-> Bool
b4

. r(i,k -
F:S, x Igfi’k))) > 8,

d) Explanation: The enabling predicate P and the next state
function F depend on the present module state (Si) and the
value of the input received. .

5.3. The semantics of the baslc semantic model

The semantics of a system specified i1in the BSM is
defined in two steps. The first step, described in section 5.3.2,
consists of a translation of the system specification into an
equivalent simple module. As second step, the semantics of a.
simple module is directly detined by some interpretation rules, as
explained in section 5.3.1.

5.3.1. Semantics of a simple module

In the case that the system consists of a single module
M which has no interaction point references, all its transitions
are Iinternal. 1In this case, the semantics of the module 1is
defined by the following interpretation rules:

1) If the system 1is 1in state s, the next transition t to be
executed is any transition for which Pt(s) is true. Which one
of these will be executed is not determined by the model. The
model assumes that, 1f such transition exist, one such transi-
tion will be executed eventually (in the sense of temporal
loglic, livenesgs).

2) 1If the transition t is executed starting in state s then the
next state will be F_(s8). The execution of a transition takes
finite (possibly arbgtrarily short) time.

5¢3.2. Abstraction from module boundaries

The following rules define a translation of a system
specification consisting of modules M; and interaction points IP,,
as explained 1in section 5.2, into the specification of a singie
module M_ with interaction point references j(o,k"). The seman-
tics of the system gspecification is, by detinition, equal to the

semantics of the module Mo.

1)

2)

3)

- 27 -

The state space S. of the module M_ is the Cartesian product
of the state spaces of the individual modules Mi(i=1’2""):
S = x§
o

A particular state s_ is written as 8, = <S;,89,e00¢, Sjyyeced.

(o]

The interaction point references j(o,k”) of Mo refer to the
external interaction points IPj(i k) of the system specifica-
tion. i

Each transition t of Mo is formed by one of the following
rules:

a) Rendezvous interaction between modules Mi and M,, at the

interaction point IPi(ibﬁ) = IPj(%'k') this leads to an
m o

thé following form:

internal transition o ule Mo

__.(out) (in)
t=<ty Y, tye>

Pt(<sl,ono,si,ono’si,,.">) =

(0ut) (g, c{FFHE D (5 0y

tik
(in) (r(i,k))
and Py, | (sg75 Ciic 777 (83)s
t i’,k’ .
0§:§) sy, c{ELETHE D0y

Ft(<sl,-..,Si,--.,Sic,.o.>)=<sl,.o.,si,.-.,sio,.-.>

~ _ L(out) (r(i’,k%))
where s; = Ftik (si, Cirg? ’ (Si'))

and sy-= Ftifiz (si,, Ciféi’k)) (si),

out r(i”,k’
oéik) (sy, c{EUETHE D (s)
Explanation: P defines when a rendezvous interaction is
possible. It is possible when the enabling predicates of
both involved transitions (output from M; and input to
M,,) are enabled. The enabling predicate of the output
transition depends, in general, on the (internal) state of
(internal) state of M;. and the value of the interaction
ouput produced by M. The next state of the module Mo is
identical to its state before the rendezvous, except that
the state components corresponding to the modules M; and
M., are changed as defined by the respective transition
functions. The change for M;- also depends on the output
received.

- 28 =

b) The internal transitions of a module M, and the input and
output transitions of a module M, at an external interac-
tion point IPj() are included as transitions of M.
Their P and %’ﬁefinitions remain inchanged, reading and
updating only the state components of the module M, and
its input and output. Note: this is also the input and
output of the single module M because of translation

]
rule (2). °

Note: The translation described here leads to a module M/ which is
an abstraction of the original system of interacting modules
M,. Such abstractions may be applied recursively, cor-
résponding to multi-level module substructures, as described
in Subgroup A working document, section 3.

Note: Different transitions t and t° may proceed in parallel {if
they do mnot influence one another directly. A sufficient
condition is the disjointness of the set of state components
on which P and F depend and which are affected by F, for the
two transitions respectively.

5.3.3. Semantics of a system and its environment

In the case that the original system specification includes
external interaction points (and therefore the module M_ would include
references to these interaction points), the semantics of the system
specification may be defined for the case of interaction with an
arbitrary system environment. Such an arbitrary system environment
may be modeled by additional environment modules: One environment
module EM 4 ., for each interaction point reference j(i,k) refering to
an external interaction point. The module EM<i k> has a single inter-
action point reference j(<i,k>,1) refering to ip (1,k and assuming
the role r(<i,k>,1) = ¥(i,k). The behavior of the environment module
EM is assumed arbitrary, e.g. one could define the following
tranditions: :

a) Input transition
P(s,input) = true
F(s,input) = s(*no change*)

tkggansitions, one transiton for each value "out" in

(s) = true
F(s) = s(*no change¥*)
O(S) = "outn

. 1f such environment modules EM<1 , are added to the system
specification, as explained above, the tranéEation (described in sec-
tion 5.2.1) of the so extended system specification leads to a simple

-30 -

Figures for section 5:

I

(o) (h) (#)

Notation:
FDT module [BSM module
Do FDT channel ———— BSM channel
——> BSM one-directional
channel
b) Module with input queue for interactions: A module in the FDT 1is

c)

translated into two modules of the BSM, omne input queue module Q
and module M similar to the module M under point (a), as shown in
figure (c). Each channel 1in the FDT is translated into two (one-
directional) interaction points in the BSM: the dinput from each
channel 1leads to corresponding (input) interaction point refer-
ences of Q, and the output is directly produced through cor-
responding (output) interaction point references of M. In
addition, there is one interaction point connecting Q and M
through which M receives the next input to be processed.

Channels with delay and modules with input queues: A channel with
delay in the FDT gives rise to two additional delay modules D, one
for each direction, as indicated in figure (d).

/ 0 |
| ' Q u
/ A .
//// AR R
] * |

- l -

5.4.1e Module with zero-queue option

1)

2)

3)

4)

A module specification with zero-queue option written in the FDT
is translated into a single module M, of the basic semantic model,
together with the interaction points it 1s connected to.

A single transition of the specification will, in general, be
translated into several transitions of the basic semantic model.
The latter transitions will be called in the following "minor
transitions" to distinguish them from the former, which are simply
called "transitions" and have the form defined in the specifica-
tion.)

In addition to an initiating minor transition, which is an input
or an internal one, one may obtain one minor transition per output
statement in the transition. Other translation schemes could also
be envisaged. The initiating minor transition leads into a module
state which 1s called an "intermediate"™ state. The last minor
transition to be executed for a given transition leads back to a
"major" state. '

a) The components of the state space S, of the module M, cor-
respond to the variables of the specified module, including the
STATE variable as first component. The state gpace contains also
a component, called "last-input"”, of type + I§f11ﬁ§)) into which
the last input interaction of the module iskstored.

Note: this 1is necessary since the sequence of minor transitions

resulting from the translation from a single FDT transition may

~all use the parameter values of the input that triggered the tran-

sition. ‘
b) The possible values of the £first component of a state Sy
called "STATE,", are partitioned into "major-states,” which cor-

respond to the major states defined by the FDT specification, and
into "intermediate—statesi", as introduced under point(2).

Note: Usually, input transitions are only possible in major
states, 1.e. STATE in intermediate-states, implies P(<STATE,...>,
input) = false for any input. Note: Due to potentiel deadlocks
identified, precise rules ' for the translation of the zero-queue
case require further investigation.

Note: Due to lack of time, the formal semantics of DELAY has " not
yet been included.

After having obtained all minor transitions of a module Mi as
explained under points (2) and (4) above, the following minor
transitions are added. They define the action of the module in
the case that a received input 1s not matched by any transition:
For each interactZon point referen%in;(i,k) the following minor
input transition t of the form tg is added

—-

- - - -

- 32 -

Pt(si,input) = (ST?%E} in major-statesy)
and for all t Kk N7 48 obtained under point (2) and (4)
P(si,%nput) = false .

P _ 84 (option of "NULL transition')
t(si,input) = or
arbitrary value
(not defined by the specification)
(option of "undefined error handling")

Note: The first option implies that the input is ignored. With
the second option, the resultant next state is defined by the
implementation.

5.4.2 Module with infinite queue option

A module specification with infinite queue option written in

the F¥DT is translated into two modules Q4 and My of the BSM. Qy is
the input queue described below, and Mi is "as described in section
5.4.1 with the following exceptions:

(Ql) There is an additional interaction point IPj with the sets of
possible interactions q

(queue) _ (r(i,k))
Ij? HARERE D
Ij queue) _ ipe empty set (no interaction)
q
(Note: this is a one-directional interaction point)
and the range of functions

CEj(queue) = the empty set
q .
(queue)

q
Explanation: The module Mi indicates whether it is ready for the

next input.

CEj = (ready, wait)

(Q2) The module M, has an additional reference k_ to the interaction
point IPj with role '"queue". The function 'Cj 4 has the form
q ’7q
Ci k (<STATE, +++>) = 1if (STATE in major-statesi)
*Tq then ready else wait
Explanation: The module is ready for the next input when the
module is in a major state.

(Q3) The.other interaction point references (corresponding to the
. channels of the module in the FDT) are only used for output.

(Q4) The input queue module Q4 has 4interaction point references
jli,k) (k = 1’2""’Ki; corresponding to the channels of the
‘module in the FDT), which are only used for input. An addi-

tional reference j(i,kq) refers to the interaction point IPj
. . q

(Q5)

(Q6)

- 33 -

with role "queue".

The state space of Qi has a single comgonent:
a queue of elements of type + I r(isk),
k j ik

The following transitions are defined for Q,:
(a) TFor each in ?r§ction point reference j(i,k), there is an
input transition tikn with

P = true

¥(q, input) = append (q, input)

Note: the input is appended to the queue.
(b) For the interaction point reference j(i,k), there 1is an
output transition tiﬁ:t with 1

P(q,f) = (q is not empty) and (&t = ready)
F(q,f) = tail (q)
0(q,f) = first(q)

Explanation: Output to the module M, may be initiated when the
queue contains on input and M, is rea%y to receive one (i.e. in
a major state, according to Q2). The transition has the first
element of the queue on output and retains the other elements in
the queue. '

- 34 -

Note: The minor transitions corresponding to two tramsitions of
two different modules in the FDT do not influence one another
directly (except possibly enabling the other). Therefore they
may be executed in parallel.

5.4.3 Module with infinite queue and SAVE options

A module specification in the FDT with infinite queue and
SAVE options 1s translated into two modules Q;, and M of the basic
semantic model as described in section 5.4.2 with the following excep-
tions:

(s1) Cquueue) = set of (+I(f§f§§))), however, the values of the

in%&raction parameters m¥y be’ignored.

Explanation: the module indicates which kinds of dinteractions
are presently in the '"save set".
(s2) ¢ (<STATE,...>) = if STATE in major-states;
q then "save set'" of STATE
else "all kinds of interactions".

i,k

Note: ©No change to (Q3) through (Q5).

(S6) The transition téOUt) has the form
q

P(q,f) = q contains an element not part of the '"save-set" t.
0(q,£) the first such element of q.
F(q,f) the queue q with the output element removed.

]

54.5. FExamples of translations:

Example A:
from A to B
when IP-reference, .primitive-in
provided <exp> (*may depend on parameters of primitive-in%)
begin <statements Ll>; ‘
out IP-referencek..primitive—out(<effective parameter
list>); . .
<statements 2> endj;
may be translated into the following two minor transitions of
Mi:

téfgn) : P = (STATE=A) and input is a case of primitive-in
: and <exp>
F ¢ last-input := input;
STATE:=intermediate-1;
other components changed according to
<statements 1>

- 35 =

(out)
tik'

d
|

(STATE = intermediate-l)

0 : defined by output statement
(depending on the module state at the
b?%%%?ing of the minor transition

)

F ST&TE:=B;

other components changed according to
<statements 2>

6. Verification rules for checking that an (N)-service

is rendered by an (N-1)-service and an (N)-protocol.

To be provided.

7. Conformity rules for checking implementations

to be provided

8. Terminqlogv

to be provided

Annex 1l: User guidelines

Annex 2: Applications to draft standards

Annex 3: Language support tools

Annex 4: Check against evaluation priteria

- 36 -

Annex 5: Relation to graphical description techniques

1. Introduction

Graphical description techniques are often used to give an
overview of a protocol or service specification, and sometimes are
enhanced to provide a complete specification. Different graphical
representations of extended state transition models are in use. Some
of these representations are shown in section 2. The systematic
translation of 1linear specifications written in the FDT described in
this document, into graphical representations is discussed in section
3.

2. Different graphical description techniques

The following subsections present overviews of the Transport
protocol class 0O connection establishment phase (a complete specifica-
tion is given in Annex D) wusing ditferent graphical description
techniques. This may be used for a comparison of these graphical
techniques.

2.1 Common state transition diagrams

The diagram of Figure 1 gives an overview. It specifies the
major states and the types of transitions, indicating for each transi-
tion only the kind of the relevant dinput and output. A similar
description technique is used in several CCITT Recommendations, such
as X.25, etce.

2.2 Enhanced state transition diagrams

The diagram of figure 2 contains the basic information of
figure 1, but it also includes some additional information about con-
ditions and actions of transitions relating to the interaction
parameters and additional state variables of the extented state tran-
sition model. Such a description technique is used in several SC6
documents, such as N228l.

2.3 The System Description Language (SDL) of CCITT SGXI

The diagram of figure 3 contains the same information as
figure 2, using the SDL of CCITT.

- 37 =

3. The translation of the linear FDT into graphical form

The translation is relatively straightforward if the linear
specification contains the transitions sorted by major present states
(FROM clause), input interactions (WHEN clause) and additional condi-
tions (PROVIDED clause), as in the example below. Any specification
may be put into this form by a simple rearrangements of the order of
the different transitions. The following example is considered:

(*transitions*)
“from A
when AP.reql
provided Cl
to B
begin Actionl; AP.indl end;
provided C2
begin Action2; AP.ind2 end;
when AP.req2
to C
begin Action3; AP.ind3 end;

The translations of these three transitions into the different graphi-
cal representations are shown in figures 4, 5 and 6.

3.1 Translation into common state diagrams

All states shown in the diagram are declared in the <major
state declaration> part of the linear specification. Each defined
transition gives rise to an arrow in the diagram, as shown in figure 4
(using the information of the FROM and TO clauses). The information
for the annotation of the arrows is taken from the WHEN clause and the
BEGIN statement of the transition <block>. This statement must be
scanned to extract the <output statements> which are wused for the
annotation of the arrows.

3.2 Translation into enhanced state transition diagrams

While 1in the overview diagrams of common state diagrams the
information of the PROVIDED clauses and the BEGIN statement (except
for the output) is usually lost (see figure 1), this information may
be included in the enhanced transition diagrams, as shown in figure 5.
The translation process is similar to the case of common state

diagrams.

- 38 =

3.3 Translation into SDL

The process of translating a linear specification into SDL
is closely related to the embedded structure of the linear specifica-
tion (see example above). Each FROM clause corresponds to a '"large"
graphical state symbol. Each WHEN clause, within a given FROM clause,
corresponds to a graphical input symbol connected to that state sym-
bol. 1If for a given WHEN clause, there are embedded PROVIDED clauses,
then a graphical decision symbol represents the choice between these
alternative transitions, as shown in figure 6. The BEGIN statement
corresponds, in general, to an action symbol and possibly some output
symbols. (The relevant outputs must be extracted £from the BEGIN
statement, as explained in section 3.2). The TO clause corresponds to
a "small" state symbol which terminates a transition.

- 38@~

_ CR/DR
T_CONVECT. +eg
/ T-DL5C d
CR /T. CoMvECT. bl
_convECT. <4

7/ cR

T_DIsc-
/ M)Z 5¢ —A’Ci

H

NoDISE el
/ ToDIsC o el

/T:. ACCE?T. t\ucl

Figure 1

- 39 -

(R amd wit shle
T_DISC - iwd |

‘T_cow;;cﬁ:ﬁ omd ¥ able ¥o f”sﬁ-fe

.T.\.DISC-P\:?

\' cC | - wM%CT_
d

T_ACCEP. ~q

T_ACcEPT. LA

T_Drsc - cR

w‘vi ‘ $ N
idle wa‘ff-for- ccC idle va‘l‘f.fsr..
’ C > T ACCEPT

T_DIsc. T_Ate EPT.
“ 1, acq

Lo |

Figure 4

Ac'“m?;;
twok 3

S A T A U B0 O fE 0 U Gm A o b Oh A UE B =R

- 42 -

ca

Figure 6

- 43 =

Annex 6: Language elements for further extension

This annex gives a list of elements for further extension in
the sense that solving the issues which are raised here 1s mnot con-
sidered as necessary before considering the language as stable.

a - user_data_type operation

b - coding/decoding

- address manipulation

- SAP management

- module management

include

- channels with states and other intelligence

ote: however point b 1is considered of primary importance (further
study)

20 ® rho®
1

The following contain a preliminary proposal made by some
experts which has been presented during the Catania meeting but
neither deeply discussed nor agreed.

- 4ip -

Some preliminary proposal for user data type,
coding functions, SAP and address manager functions.

(this requires further consideration and is viewed as a candidate for
extension of the language)

1. The following functions and procedures (predefined) are associated
with the predefined user data type.

dassemble (ul, u2: wuserdatatype);
ul and u2 are assembled and the result is assigned to
ul

dfragments (ul: userdatatype, l:integer): userdatatype
ul is fragmented into two parts. The first part of ul
(from octet 1 to octet 1) is assigned to u2;
ul contains the remaining part

dcopy (u : userdatatype): wuserdatatype;
a "copy" of u is retained by the user and can be
affected to an other variable.

dlength (u : userdatatype): integer;
gives the length of variable u.

2. Particularity

Since the predefined type is not specified (i.e. abstract) the
so-called ‘octet’ could be anything (e.ge. digit, byte of 7
bitSess)

3. Function allowed with this type

The only operations allowed on user_data_type are the predefined
function or _procedures.. Assigment or tests of variables of the
type are prohibited. The only way to assign a variable of the
type is to use a for or procedure

exemple
ur=v is illegal

u:=dcopy(v) is legal.
Note

as soon as a variable of this type is put in the parameters of
an interaction passed through a channel then the variable has a

- 46'_

length of 0. This modelizes the fact that the data received
from the user are passed to the layer above.

Additional operation

dassign (utudata_type):udatatype

this allows an entity to move a userdata from a variable to an
other one - for instance because a received user data cannot be
transmitted immediately

durger (u: udatatype)

a received user data is dropped

Pdu coding/decoding

A

new keyword in the language is created called “PDU’ which allows

to declare under this new section the PDU sent or received in the
same way interaction are declared (Pascal like record).

This section allows the following types and functions for each
‘name’” declared in the PDU Section.. ’
- an “encode-name’ function 1s predeclared having as parameters

the parameters of the PDU called “name’ and as a result result a
variable of the wu_data_type [this function allows to formally.
describe that before sending a PDU it is necessary to transfer
the ‘logical’ format (i.e. the local variable) into the ‘physi-
cal’ format (i.e. the real string of bits in the real encoding
method used by the protocol)]

a ‘decode_name’ function i1s predeclared making the opposite
translation

a ‘identify-pdu” function

‘exemple

PDU
CR (credit:integer;destref,localref:integer;
clan:clan_typejalt_class:class_type;
option:option_typejudata:user_data_type);
CC(ene idem)
DT (etc: boolean;u_data:userdata_ type);

when N.DTindication

provided identify_pdu (netudata)=CR

decode_CR;

- 4é7_

decode_CR;.

provided identify_ﬁdu(netudata)=CC
decode_CC;

provided identify pdu(netudata)=DR
decode_CC;

when N.DTindication. priority O (*protocol error¥%)
begin
out N _DISCONNECT 0
end

when CR
«e similarly

when CC
' ee similarly

when DT
«o similarly

- notice that the ‘“decode-name” function performs an internal
“call’ the interaction labelled by the PDU_name.
This feature allows to deal in the same automaton with (N-1)
service events and (N) PDU events (which are in fact intermnally
generated when receiving an other interaction).

- notice that this allows to have PDU received and decoded in user
data of different (N~1) interactions.

- notice that this proposes coherent solution for

- coding/decoding
- (N-1)SDU/(N)PDU
- abstract user data manipulation.

[complete example can to found in CATANIA 19]

Address SAP manipulation function

the following predefined procedure or function can be defined

mappaddress ((N)-address, (N-1) address, N_suffix);
buildaddress((N)-address, (N-~1) address, N_suffix);
testaddress ((N)-address, (N-1) address):boolean

. testhigSAP((N)address):boolean :
testlowSAP((N)~1) address):boolean
createhighCEP((N)~1)address):CEP_id_type
createlowCEP ((N)-1)address):CEP_id_type

- 4 -

They use the predefined types'

N_address_type
N_suffix

Nminsl address_type
CEP_id_type.

| 4y |
. 1 ()-sev il | Lﬁ@‘&_
| | (L T T T e rzer
'?{{méuf"(r' :] __%'\! _‘ : 1\
\ .: {
i . J <
td O T o |] oo
. fe
Lamm T
W . \
(u-\)%g% 1 n | —
M=y
;&Zﬁw{it 08\ e cLJ’ Auud vr—data=t Di,ua't\'\‘m 5"%

- oxe-da Vo—\l:Jl-L.—

This paper is submitted to the meeting of ISO TC97/SCl6/WGl ad hoc group

on FDT,
Title :

Source:

Enschede, April 1982.
Formal description of the Transport service

G.V. Bochmann (Canada)

1. Introduction

The formal description given in section 2 uses the language defined in
Part II of this report, which was defined by the IS0 TCO7/S016/UG 1 ad
hoc group on FDT (working document December 1981). The following
paragraphs are intended to explain some characteristics of the
Transport protocol specification given below in order to facilitate
its reading.

lel. Connection identification

The specification of the communication service foresees an arbitrary
number of service access points identified by the address, and
distibuted over the different systems of the Open Systems environment.
Each access point can handle an arbitrary number of simultaneous
connections to different other access points. The connections at a
given accesss point are distinguished. by the connection end point
identifiers (CEP_id).

Since the above connection identification is specific to each end
point of a connection, the service specification introduces an
independent connection identification bases on connection identifiers
("conn_id" of type "TC_id_type"). The mapping hetween this internal
identification and the identification at the endpoints is given by the
functions "find_TC_id" which finds the internal identification from
the identification at one endpoint (address and TCEP_id), and
"this_side" which determines for a given connection end point
identification (address and TCEP_id) whether this endpoint is the
calling or called side of the connection.

1.2. Buffers for data transfer

For each connection, two data buffers are used to hold the user data
in transit in the two directions of data transfer. The interactions of
these data buffers are described, but their properties are not
formally defined. We note, however, that service data units (TSDU’s)
are exchanged between the user and the Transport service in fragments
(fragmentation may be different at the two endpoints of a connection),
and the end=of-TSDU mark is handled as well. Flow control for normal
data at an access point is related to the flow control into the
corresponding data buffer.

1.3. The states of the Transport service

The internal states of the Transport service is an array which
contains for each connection the following state information:
(a) for each TCEP (i.e. calling and called side)
- a major "state" indicating whether the connection is open etc.
-~ the endpoint identification of the conection,
: - some additional information related to the endpoint;
(b) information about options used, quality of service parameters,.

ect.
1.4. Grouping of tramnsitions
The transitions of the specification are grouped according to the

funtion they perform, i.e. into CONNECTION ESTABLISHMENT, DATA
TRANSFER, EXPEDITED DATA TRANSFER, and TERMINIATION.

2. Formal specification

type
T_address_type = <o}
known_T_addresses = «.+3 (* sub-type of T_address__

TCEP_id_type = +++; (* implementation dependent *)
quality of_ TS_type = record
class_of_service : (basic, enhanced);
throughput_average : integer; (* in seconds *)
(* and possibly other quality parameters *)
end;
option_type = set of (expedited_data (* and possib
string_of_octets = record
length : pos_integer; .
contents : array [l +« ¢ee] 0of O oo 2553
end;
TS connect_data_type (* property: maximum length
TS_accept_data_type (* property: maximum length =
TS expedited_data_type (* property: maximum length
TS_user_reason_type (* property: maximum length =
= string_of_ octets;
TS_disconnect_reason_type = (TS_U_NRM, TS_CONG, TS
U_UNKNOWN) 3
both_sides = (calling, called);

n

type *)

ly other options *))

80 *),
80 #*),
= 16 *),
80 *#*)

_FAIL, TS_QUAL_FAIL,

interaction .
TS_primitives (TS_user, TS_provider)

by

by

TS_user :
T_CONNECT_req (TCEP_id
to_T_ad

¢ TCEP_id_type;
dress,

from T_address : T_address_type;

propose
propose
data

d_options : option_type;
d_QTS : quality of TS_type;
TS_connect_data_type):

T _CONNECT_resp (TCEP_id : TCEP_id_type;

propos
propos
data :

ed_QTS : quality of TS_type;
ed_options ¢ option_type;
TS _accept_data_type);

T DISCONNECT_req (TCEP_id : TCEP_id_type; .
TS_user_reason ¢ TS_user_reason_type);

T_DATA_req (TCEP_id :
TS_user_da
is_last_fr

T_EX_DATA_req (TCEP_id

TCEP_id_type;
ta : string_of_ octets;
agment_of_TSDU : boolean);

: TCEP_id_type;

TS_user_data : TS_expedited_data_type);

T_EX_D READY resp (TCE

TS _provider :
T_CONNECT_ind (TCEP_id
to_T_ad

P_id : TCEP_id_type)

: TCEP_id_type;
dress,

from_T_address : T_address_type;

propose
propose
data :

d_options ¢ option type;
d_QTS : quality_of TS_type;
TS_connect_data_type);

T_CONNECT conf (TCEP_id : TCEP_id_type;

propos
propos
data :

ed_OTS : quality_of TS_type; -
ed_options ¢ option_type;
TS_accept_data_type);

T_DISCONNECT_ind (TCEP_id : TCEP_id_type;

TS_disconnect_reason : TS_disconnect_reason_type;

TS _user_reason : TS_user_reason_type);

T_DATA_ind (TCFRP_id :

TCEP_id_types

TS_user_data @ string_of_octets;‘
is_last_fragment_of_TSDU : boolean);

T. EX_DATA_ind (TCEP_id

: TCEP_id_tyve;

TS _user_data : TS_expedited_data_type);

T_EX_D_READY conf (TCEP_id : TCEP_id_type);

type
TC_1id_type = «es}
interaction
TS_data_buffer (user, buffer)
by user :
clear;
append (fragment : string_of_ octets;
is_last_fragment_'of _TSDU : hoolean);

(* another data fragment is inserted into the buffer *)
by buffer :

" next_fragment (fragment : string_of_octets;
is_last_fragment_of_ TSDU : boolean);
(* the buffer delivers another data fragment to the user *)
free_space; (* used for Transport protocol specification *)

module TS (AP : array [T_address_type] of TS_primitives (TS_provider);
buffer : array [TC_id_type, both_sides] of TS data_buffer (user

var

TC : array [TC_1id_type]l of record

EP : array [both_sides] of record ‘
state : (closed, open_in_progress, open, close_in_progress);
address : T_address_type;

id : TCEP_id_types

QTS_estimate : quality_of TS type;

EX_D_state : (idle, EX D in_ transit, wait for_resp,

EX_ D _ conf in _transit);

(* this state concerns the transfer of expedited data
from this EP to the opposite one %)

last_EX_data : TS_expedited_data_type;

end; '

options : option_type;

connect_data : TS_connect_data_type;

accept_data: TX_accept_data_type;

TS_reason : TS_disconnect_reason_type;

user_reason : TS_user reason_type;

end;

function opposite (side : both_sides) : both_sides;
begin : '

if side = calling
then opposite := called else opposite := calling
end;

function find_conn_id (T_addr : T_address_type;

TCEP_id : TCEP_id_type) : TC_id_tyve;

begin «.. (* property: see property below *) end;

function this_side (T_addr : T_address_type;

TCEP_3id : TCEP_id_type) : both_sides;

 begin ... end;

(* property:
with TC [find_TC_did (T_addr, TCEP id)]
EP [this_side (T_addr, TCEP_id)] holds
address = T_addr
and 1d = TCEP_id
and state <> ‘closed

or TC [find_TC_4id (T_addr, TCEP_ id)]. EP [side}. state = closed

for both sides}
i.e. find TC_id returns the TC identified by TCEP_id at the AP
at the address T_addr;
this_side indicates whether this end of the connection is
calling or called. #*)

(* CONNECTION ESTABLISHMENT PHASE %)

any T_addr : T_address_type do
when AP[T_addr]. T CONNECT_ req
provided ... (* property: for all conn_id : TC_id_type,
. all side : both_sides holds
with TC [conn_1id}. EP[side] do
state <> closed implies
address <> T_addr or
id <> TICEP_id *)
(* i.e. the TCEP identifier is not yet in use at the
same AP *)
and from_T_address = T_addr
and ... (* able to provide the service asked for *)
var conn_3id : TC_id_type;
begin
conn_id := «..3; (* property: for all side : both_sides holds
TC [conn_1id] .FP[side]l .state = closed
(* i.e. connection not yet in use %)
initialize (conn_id); '
with TC [conn_3id] do begin
with EP [calling] do begin
state := open_in_progress;
id := TCEP_id;
address := T_addr;
QTS_estimate := proposed_QTS;
EX D state := idle;

end;
with EP [called] do begin
address := to_T_address;
EX D state := idle;
end;
options ¢= proposed_options;
connect_data := data;
end;

buffer[conn_id, callingl.clear;
buffer[conn_id, called].clear;
end;

provided ... (* not able to provide the service asked for *)
begin
AP[T_addr]. T DISCONNECT_ind (TCEP_id, ... (* property:
if not to_T_address in known_T_addresses then U_UNKNOWN *),
see (* dummy *));
end;

A

any conn_id ¢ TC_id_type do with TC [conn_id] do
provided (EP[callingl. state = oven_in_progress)
and (EP{called]. state = closed)
(* when the connection request reaches the called side *)
begin with EP[called] do begin
state := open_in_progress;
id := +.s3 (* property: for all conn_1id® <> conn_id,
all side : both_sides holds
with TC [conn_id’].EP[side] holds
state <> closed implies
address <> TC[conn_id].EP[called] .addr
or . id <> TC[conn_1id].EP[called].id
(* i.e. the identifier is not yet in use %)
QTS_estimate := ..e3 (* not defined by this standard *)
AP [address]. T_CONNECT_ ind (id, address, EP[calling].address,
options, QTS_estimate, connect data);

end end;

any T _addr : T_address_type do
when AP[T_addr]. T_CONNECT_resp with TC [find_conn_1id (T_addr, conn_id)]
provided (this_side (T_addr, conn_1id) = called)
and (EP([called].state = open_in_progress)
and ((data = undefined) or (connect_data <> undefined))
and (proposed_options in options)
begin .
EP[called]. state := open;
options := proposed_options;
accept_data := data;
end;

(* There is also the possiblity of disconnection, see termination phase *)

any conn_id ¢ TC_id_type do with TC [conn_1id] do

provided EP[callingl]. state = open_in_progress
and EP[called]. state = open
(* when the connect response reaches the calling side #*)

begin with EP[calling] do begin '

state := open}
QTS_estimate := ...3 (* not defined by standard *)
AP [address]. T _CONNECT_conf (id, optiomns, QTS_estimate, accept_data)
end end}

- .||/

10.

(* DATA TRANSFER %)

any T _addr : T_address_type do
when AP[T_addr]. T_DATA_req
with TC [find_conn_1id (T_addr, TCEP_id)].
EP [this_side (T_addr, TCREP_id)] do
provided state = open
and +.. (* property:
flow control to the Tramsport entity 1s ready *)
begin
buffer[find_conn_id (T_addr, TCEP_id),
this_side (T_addr, TCEP_id)].
append (TS_user_data, is_last_fragment_of_ TSDU);
end;

any conn_id : TC_id_type do
any side : both_sides do
_ with TC [conn_1id] .EP [opposite(side)] do
when buffer[conn_id, side]l. next_fragment
provided state = open _ '
and +.. (* property: flow control to user is ready *)
and +¢+ (* there is no expedited data in transit
(in the same direction of transfer) which was sent pri
to the next normal data fragment *)
begin
AP [address]. T_DATA_ind
(id, TSDU_fragment, is_last_fragment_of_ TSDU);
end; .

_ -\ -
. - g

SN WR -GN =N aE am

11.

(* EXPEDITED DATA TRANSFER *)

any T_addr : T_address_type do
when AP[T_addr]. T_EX_DATA req
with TC [find_conn_id (T_addr, TCEP_id)] do
with EP [this_side (T_addr, TCEP_1id)] do
provided expedited _data in options

and state = open
and EX_D state = idle
begin

last_EX_data := TS_user_data;
EX_D_state := EX DP_in_transit;
end;

any conn_id : TC_id_type do . with TC [conn_1id] do
any side : both sides do
provided EP[side]. state = open
and EP[side]. EX D state = EX D in transit
(* when the expedited data reaches the destination %)
begin
AP [EP [opposite(side)].address]. T _EX_DATA_ind (
EP [opposite(side)]. id,
EP[side] . last_ EX_ data);
EP[side]. EX_D state := wait_for resp;
end;

when AP[T_addr]. T_EX_ D READY resp
with TC [find_conn_id (T_addr, TCEP_id)] do
provided expedited_data in options
and EP [this_side (T_addr, TCEP_id)]. state = open
and EP [opposite (this_side (T_addr, TCEP_id))].
EX_D state = wait_for_resp
begin
EP [opposite (this_side (T_addr, TCEP_id))].
EX_D_state := EX_D_conf_in_transit;
end;

any conn_id ¢ TC_id_type do
any side : both_sides do :
with TC [conn_id]. EP[side] do
provided state = open
and EX_D state = EX_D_conf_in transit
(* when the confirmation reaches the sender of the expedited data *)
begin ‘
AP [address]). T_EX_D_READY_conf (id);
EX_D_state := idle;
end;

12,

(* TERMINATION PHASE *)

any T_addr : T_address_type do
when AP[T_addr]. T_DISCONNECT req
with TC[find conn_id (T_addr, TCEP id)] do
with EP [find_side (T_addr, TCEP_id)1 do
provided state in [open_in_progress, open]
begin
state != close_in_progress;}
TS _reason := TS _user_initiated_termination;
user_reason := ... (* property: either equal to "TS_user_reason"
or undefined, i.e. the transmission of this additional
information is not guaranteed by the TS provider *);
end;

any conn_id ¢ TC_id_type do with TC [conn_1id}l do
any side ! both_sides do with EP[side] do

provided state in [open_in_progress, open]
and ... (* when internal problem of TS provider *)
begin
state := close_in_progress; : _
TS_reason != ++.; (* property: not U _UNKNOWN *)
AP[address]. T DISCONNECT ind (id, TS_reason, «.. (* dummy *));

end;
provided EC [opposite (side)]. state = close_in progress
(* when the disconnect reaches the other end of the connectio
begin

if state in [open_in progress, openl]

then AP [address]. T_DISCONNECT ind (id, TS_reason, user_reason

state := closed;]
EP [opposite(side)]l.state := closed;
end;

4

ANNEX

T NN S NS BN WP Y B WS me e D S Y me aN s A

— . ooy - d 7 S

\
- T

Contribulion Lo The meating (July 19232 af the Subgroup B of Lhe
Tel TOR7/5016/7WGEL ad hoe group on FOT

Title: Example description of fThe Transport service

Aunthor: G v, Bochmann and K. 2 Raghunathan

=
4

e LEE

L Introadaction
1.1, Connecetion identification

The specification of The communicalion service foresses xn
arbitrary numbaer of sarvice aecess points identified by the
address, and distibuled over The different systems of Lhe Dpen
systems anvironment, Each aceess point can handle an arbilrarcy
number of simullaneous connections Lo differsnt othar acoess
points. The connections &t a given accesss point are
disatinguished by the connection end point identifiers (CEP_id).

ehoend

al
0 an

Zincw The above conneclion identificaltion is specific to aa
point of a connection, the sService specification introduce
independent connection identificalion based on sonnechion
identifiers ("conn_id" of type “TC_id_type™). The mapping belwesan
This internal identificalion arnd The identification a3t Thae
gndpoints is given by the funeltions “+$ind_TZ_id" which finds The
internal identification from The identification al ane endpoint
(address and TCEP_id), and "this_side" which detarminaes for =
given connection end poinl identification (address and TOEF_id)
whelher this endpoinl is the calling or called side of the
nonnaction, :

1.2 Bufters +for data ITransfaer

For esach connection, Two daltla bufters are usad Lo hold the usaer
data in tramsif in the Two directions of daltla Transter. Tha
interactions of These dalta buffers are described, bul their
properties are not formally defined We note, however, thatl
sarvice data unils (TSDWs) are exchanged belwsan The user and
Lhe Transport service in fragments (Fragmentation may be
different alt Lhe two srndpoints of a conneation), and the
erd—of-TSD mark is handled as well, Flow conlvrel for normal daia
al an aceess point is related Lo LThe flow contral into the
cortresponding dalta buffar

7 I I

FAX]

1.3 The statas of LThe Transport service

The intsrnal states of LThe Tramsport service is an array which
1

1

contains for sach conmection the following state information:
(a) ¥or sach TCER (i e wealling and ealled side)d

~ a major "state" indicating whether Lhe connection i3 open
et :
~ The endpoint identification of the conectior,
- gmome additional information vrelated fto the endpoints

(b)) information aboul oplions used, qualily of sarvice
parameters, alo

1.4, Specifying local rules for interactions at anm access point

In the description of The Transport servicse, The loacal rules thal
determine the order in which the service primilives may be
evaecuyted at a given copnection and point (TCEP), has bean
spenified as Coonstraintl of the TCER. The synlax assumes Thal
The symbol Cinteractions in the syntacetic role Yor <ohanmnael Type
Froinm the FOT is replaced by the two symbols Sinteractions:
anstraint and the constraint is defined by
Teanstraint> o= amply | <module body>

The first parit of the description defines the service primiftives
with their paramelers (using The Subgroup B syniaw), while tha
second parit, viz Ceonstraint® defines the local order in which
Thaszse primitives may be sxeculed (using the exiandsd stale
transition model, withoutl oulputs), For instance. LThe first
transition of The <eonstraint® is interpreted as: From Soelosads
shate a “T_COMNECT reqs dnteraction will lead to Lhe
“apen_in_progresss state with the variable “sides assigrned The
value “callings. The Zeconstraint? defines essentially the siate
transitions of the axtendsd state transition model of the TCEP.

The fThird part of the deasceription, viz {modulel, definses The
glabal snd-to-end propariies of the service which vwelate the
intaractions taking place at diffent access poinis. In this pari.
Lhe state variables of The TCEP s are someitimes refared to (using
Lhe dot motation: <endpoint name . <state variable namal), '

<

; . . N

L5 Grouping of Transitians

The transitions of The spescification 2re grouped according o The
funtion they perform. i, & into CONMNECTION ESTARLISHMENT, DATA
TRANSFER, EXFEDITED DATA TRANSFER, and TERMINIATION.

2. Formal spseification

Lype
T_address_typs = ...
kroown_T_addresses = . . (% sub-typse of T_address_ltyps #)
TCEP_id_type = ... (¥ implementation depandsnt #)
quality of TS _typse = record
class_of_sarvice @ (bhasio, enhanced);
Thiroughput_average : intaeger; (# in sscands ®)
(# and possibly othsr quality paramslers %)
g rl;
oplion_type = sel of (expeditaed_data (¥ and possibly
ohhEr aptions#))d;
sheing_of _oontats = record
langth :© pos_integar;
coptents @ arvay DL o0 o001 of O 0, Z55;
e
TS _osonneet_data_typs (¥ property: maximum leoglih = 20 %),
TS accept_data_type (% proparty: maximuam lerngth = 230 ¥).,
TS _expedited_data_typs (% property: maximum langth = 1& #),
TS _user_raeason_typs (¥ properiy: magimum length = 230 #)
= altring_of_octals;:
TS _disconnent _reason_type = (TE_LNRM, TS _CONG, TI_FAIL,
' TE_GUAL_FATL, U_LNENGWN)
Cboth_sides = (ocalling:. callead); o

intaeraciion _
TCEF _primitives (TS _ussr, TS5 _provides)
by TSE_user
T_DONNECT _raq (Lo T _addrass,

from _T_address © T_address_lyps
proposed_oaptions @ opltion_types
proposed_HBTS @ quality_of TS _typa;
data ;o TS _conneci_data _Type):

T_CONMECT _resp (proposad_ QTS @ guality _of _TS5_type
proposed_oplions @ oplion_Typss
data ¢ TS _seccapl_data_typed);
T_DISCONNECT _raq (TS _user_reason o TS5 _user reason_Lype);
T_DATA_reg (TS _user_daia @ string_of_noetaels;
is_last_fragmenit_of TIEDW © boolean)i

T _EX_DATA_req (TS_user_dala @ TE_sxpediled_data_Typed;
T_EX_D_READY _resp;

by TS _provider
T_CONNECT _ind (Lo _T_addrass,
from_T_address « T_address_typei
proposaed_aplions @ oplion_Type;
proposed GTS «© qualily _of TS5 types
data @ TS _connect__data_lype)d;

T_CONNECT _cont (proposed QTS 0 quality of _TE5 _type;
proposed_oplions o oplion_Typea;
data @ TS _aeccepi_data_typsl);

T _DISIONNEST _ind (TS _disconneci_reasaon
TS _disconnect_raason_lype;
TS _user_reason ;@ TS _user_reason_Lype);
T_DATA_ind (TS _user _data @ string_of _oclels;
is_last_fragment_of _TIDW o boolsan)i

T_EX_DATA_ind (TS _user_data : TE_sxpediled_data_lype)d;
T_EA D READY _cont;

interaction :
TEAF = array [TCEF_id_typel of TCEP_primitives;

constraint

var
state « (elosed, open_in_progress, open)d;
side : bhoth_sides;
EX_D_send_stals,

EX I _receive_=state ¢ (EX_idle, EX_transfer);

fraom oclaosed

whan T_CONNECT rag o spen_in_prograss

begin
side = calling:

ard;
when T_CONNECT _ind To apen_in_prograss

bagin
side = Qalleds
e no;

From opan_in_progress
whan T_DISCONNECT _reqg o closaed
when T_OLSCONNEST ind To olosad
whean T_CONMECT _resp

provided side = called : oo opeans
when T_CONMECST _conf
provided side = calling Lo open;

from opan
when T_DISCONNECT _req . T 2 losed,
when T_DITSCONNECST _ind To alosads
whan T_DATA _rag T opeEn
when T_DATA _ind T apan;
whan T_EX_DATA_raq
provided EX_D _zend_state = EX_idle

begin
EX_D_send_state = EX_transfar:
and;

when T_EX_DATA_ind
provided EX_D_raceive_stalte = EX_idle

begin -
EX _D_recaive_state = EX_transfar
end;

whan T_EX_D_READY_ _resp
provided EX_D_recsive_stale = EX_transfar
baegin
EX_ D _receive_state := EX_idla;
g
when T_EX_D_READY_cont
provided EX_D_send_stats = EX_transtar
begin
EX 1 _send_stalte = EX_idls;
and;

to

to mpen

to opan

O G

Gpen

i G el B R ok S M A U B m

init begin
state := aolosad;
EX_D_send_state := EX_idlea;
EX_D_receive_state = EX_idlea;
end;

Lype
TC_id_ type =

.

interaction
T _data_buffer (user, buffer)
by usear
nlear;
append (fragment : string_of _oolels;
is_last_fragment of _TEDW . hooleand;
(# anocther data fragment is inserted into the buffers)
by buffer
next_fragment (Fragment : string_of oclels;
is_last_fragment_of _TSDW : booleandi

(% The buffer delivers another data fragmant To The usear #)

free space; (% used for Transport protocol
spacificalion #)

module TS (AF ¢ array ET_addresémtype] of TSAF (TS _provider);

buffer : array LTC_id_type, both_sidesd of
TE_data_buffer (user));

var .
TS array [TO_dd_typel of record

EF : array [hoth_sidesl of record

close _in_progress @ boolean; (% This side has initiated
R disconnact 3#)
address : T_addrass_typ
id ¢ TCER_id_types
(% proparty:
AFLaddressICidl. side = index (both_sides) in EF %)
TS _estimate quality_of TS _type;
EX_in_transit : boclean: (¥ from Lhis side to
opposite side %)

EX_data « TS_axpedited_data_Type: (% ..., if any %)
erdi

options @ aplion_typss

connacet_data @ TS_connect_data_type;

accept_data: TS _aceepi_data_type;

TZ_reason @ TS _disconnect_reason_Lypsa;

user reason @ TS_user _reason_Typs;

end;

i

i

funetion opposite (side : both_sides) : both_sides;
begin
it side = calling
than oppossite ;= called wlse apposite @ = calling
2rd;

Funehion Ffind_econn_id (T_addr . T_address_typses
TCEP_id @ TCEP_id_typs) o To_id_Typs;
Begin ... O# proparly: sae property below %) end

function Lthis_side (T_addr @ T_addrass_typs:
TCEF i @ TCEP_id_type) o both_sides;
begin ... end;

(# property: '

with TO CFind_ TO_id (T_adde, TCEP_id) 1.

EF Cthis_side (T_addr, TCEP_id)] holds

addrass T_=ddr

and id TCER id

and state < closed

o TO DFind_TC_id (T_addr, TCEF_id2]. EF Dsided. state =
closed for both sides;

iooe Fipd _TCO id returns The TD identified by TOEFP_id

at the AP at the address T_adde;

this_side indicates whether this end of the connaction is
calling or called)

I

S

10

init begin
plose _in_prograss
EX_in_transit .=
&

(# CONNECTION ESTABRLISHMENT FHAZE #)

whan AFLCT _addrlLTCER _1dd. T_CONNECT _req
provided ... (F property: for 2ll conn_did o TC_id_Type
‘ all side : bolh_sides holds
with TCLeonn_idl, EFLsidel do
state < olnsed implies
addrass < T_addr ar
id S TCEP _id #) A
(% 1.2 the TCEP idantifier is nol yel in use
at Lhe sams AF #)
and from_T_address = T_addr :
and ... (% abla to provide the serviece asked for %)
var wonn_id o TC_id_fypes '
begin
saonn_did o= 000 (% proparty:
for all side @ both_=ides holds -
ToCeonn_idl EFCsidel. stale = closed %)
(% i e conmection noet oyel dn ouse ®)
initialize (conn_id):
with TC Ceonn_id] oo beain
with EF Ceallingd do begin
id = TOERP_id
address = T_addr;
l;.‘TE:___EStima'[.E{ o= pI"‘ljpl:l-_sx;‘-gaj__lllTE;j
g
with EF [oallsadl do begin
address = To_T_addrass;
e nid;
aplions = proposad_oplions;
connect_data = datla;
&l
butferleonn_id, 2a3llingl aleard
bufferfeonn_id, eoalledl clear;
=R

provided ... (% not able to provide the service asked far #)
begin
AFLT_addrlCTOER _idl, T_DISCONNECT ind
(... (% property:
it not to_T_address in known_ T_addresses
Then U_UNENDWM %), .. (¢ dummy %))i
g

el

any conn_id . TC_id _fTyps do with TCLeonn _id]
pravided (AF [EFLCcallingl. address]
FEFCeallimgd, idl. state = apan_in_progreass)
and (AF [EFLcalled]l. address]
[EFLealled]l idl state = oclosed)
(# whern The conmection requaest reaches the called side ®)
begin with EFLcalled] do begin
idi= ..
(% properiy: for all conm_ide <% econn_id,
all side : both_sides holds
with TCLeonnm_id 1 EFLsidel holds
state O closed implias
address <F TCLeonn_idl EFLcalled]. addrass
o id x TCLeonn_idl EFCeallsedld id %)
(# i, e The identitier is nmol yel in use #)
BTS_estimate := ... (% noft defined by This standard ®)
AFLaddressI0idl, T_COMNMECT ind (address,
EFLecallingl. address,
oplions, QTS _sstimate
connect_datal;
ard and

when ARLT_addrlCTCER _idl. T_CONNECT _rasp
mith T2 EFfind_conn_id{T_addr, TCEF_1d4)1 do
pravided ((data = undatfinad) o
(ponnect_data UF undefined))
and (proposed_oplions in options)
begin
aplions = proposed_oplions;
accrpl_dalta := data;

ard;
A% There i3 alsc LThe possiblity oof disconmection &

Termination phass #)

any conn_id @ TO_id_types do with TCLOeonn_1idl do
provided (AP [EFCecallingl. address
» ‘ [LEFCecallingl. idl. stale = open_in_progress)
and (AF [EFLcalladl. addressl
LEFPLoalled] idl, stale = apan)
(% wheaen the connect response reaches The calling side %)
begin wilh EFLeallingl do begin
ETS_astimate o= .. . (¥ nol defined by standard #)
AFLaddressIDidl., T_CONNECT _conf (opltions,
BTS_gstimatea,
accepl_datal;
arnd end; '

el
i

(# DATA TRANSFER #)

whern AFCT _addrICTCEF 441, T_DATA_raq
with TCLFfind_conn_id (T_addr, TZEP_id)1.
EF Cthis_side (T_addr, TCEF_id)1 dno
praovided .. (% proparty:
Flow controal fto the Transport antity
is raady #¥)
hegin
bufferffind_sconn_id (T_addr, TCOER_1d).
Lhis_side (T_adde, TCEP_id)1.
append (TS _usar_data,
is_last_fragment _of _TI0OLD;
snd;

arny oconn_id o TC_id_type do
any aide : both_sides do
with TCCeonn_idl EF Lopposite(zside)l do
when bufferleonn_id, sideld. next_fragment
provided AFLaddressICLidl, stats = opan
and ... (¥ property: Flow conteal Lo user is rsady
and ... (% theare is ro expedited data in transit
(in Lhe sams dirsction of Lransfar)
which was sent prior :
o Lhe next normal data fFragmant #®)
begin
AFLaddressICidl. T_DATA_ind
(TS ¥ragment, is_last_fragment_of TS
e

)

(x EXFEDRITED DATA TRANSFER %)

cwhen AFLT _addrlLTCER_id1. T«Exmﬂﬁfﬁ_req

with TS Lfind_conn_id (T_addr, TCERP_id)1 do
Cwith EF Dihis_side (T_addr, TCEF_id)1 do
provided axpadilted_data in oplions
begin
EX_data := TE _user_dala;
EX_in_transit = trus;

&l
any conn_id o TC_id_ _typs do with TCLeonn_idd dao
any side : bolth_sides do '

provided AF [EFfopposite(side)l. address]
[EFLoppositedside)d idl. state = opan

and EFCsidel. EX_in_transit
(# when Lhe sxpedited data reaches the destinalion #)
bagin . : :
AF LEF Lopposite(side)], address] [EFCfappositedside)ld idl.
T_EX_DATA_ind (ERIsidel. EX_data);
and; '

when ARLT_addelITCEP_id1. T_EX_D_READY resp
with TC Cfind_conn_id (T_addr, TCEP_id)1 do
provided axpediled_data in oplticons
bagin
EF Lopposite (this_side (T_addy, TCEF_id)) 1.
EX_in_transit := false;
s

any eonn_id o TC_did_typs do
any side : bolth_sidas do
with TCLeonn_1dl, EFDsideld do
provided AF [address, idl state = apan
and EX_in_transil = falssa \
and AF [EFLopposite(side)]l address
CEFLopposite(side)d idl, EX_D_send_state = EX_idla
and AF [addressIiCidl. EX_D_ssnd_state = EX_transfar
(¥ when The confirmaltlion reaches Lhe sendear
of Lhe expadilad data #)
begin
AF CaddresslLidl. T_EX_B_READY _conf;
arid;

14,

(% TERMINATION FHASE ®#)

whern AFCT_addrlDTCER_i4d1. T_DISCOMNECT _reqg
with TCOFind_conn_id (T_adder, TCEF_id)1 do
with EF [find_side (T_addr, TCOEFP_1id)1 do
bagin
close _in_prograss = Lrue
TS _reason = TH _user_initiated _termination:
M3 ar_Fe’son o= (% proparty:
wither agqual to "TE_user_reason®
o undetfined, 1. s The Lransmission
af this additicsn’l information i3
not guarantesd by The TS_praviders

*)i
i
any wvonn_id - T _did_type do with TELeonn_1idl do
any side : both_sides do with EFCsidel dao

providad AF [addrezsiUidl. state in Lopen_in_progeaess, opeand
and ... (% when internal problem of TS _provider #)
begin
clese _in_progress = Troe;
TE reason = ... (F propaerty: not L_UNENCOWN #)
AFTaddressIiidl, T_DISCONNECT ind (TS _reasons. .. (3% dummy
*#));
' ard;

praovided EF Copposite (sided)l close _in_prograss
(% when the disconnect resches the other and of the connesctian

#)
begin .
i¥ AF [addressICidl. state in L[open_in_progress, opend
then A
AFLaddressiidl, T_DISCONNECT _ind(TS_reasan Usar_reasdan);
EF Capposite(side)] eclose_in_praogress = falsas

@il

ANNEX 5

IS0
International Organization for Standardization
Organisation Internationale de Normalisation
IS0/TC97/sCl6/WG1

Contribution to the meeting of the WGl ad hoc group on FDT,
Nov. 1982

Title: Some enhancements to the syntax of the Subgoup B FDT

Source: Canada

Contribution to the meeting of the ad hoc group on FDT, Nov. 1982
l. Introduction

Canada would recommend that the following elements be proposed to
be included in the Subgroup B FDT. These are .minor elements which
are either important to make the language complete, or add some
feature that makes the use of the language more convenient.

2. Queuing option

The .option of zero and infinite input queue should be specified
for each specification of a module type. The following syntax
could be used:
<input queue option> : : = INPUT <yes or no> QUEUED ;
<yes or no> ! : = empty
| NOT This should be the first part in a
<module body>.

3. More flexible embedding structure for transitions

The present syntax allows embedded transitions only in a certain
way, where throughout a module specification all transitions must
start with the same clause (e.g. the WHEN clause). In order to
indicate the end of a certain embedding structure (e.g. the start-
ing with WHEN clauses), and to allow in the subsequent transitions
a different embedding structure, the construct explained below is
proposed.

Example: when <input>
provided <condition>
from <present state>
to <next state>
begin ... end;
provided <condition>
¢ceeseesss end when; provided <condition>
from seosees

(* spontaneous transition, not requiring input *)
\ , _
The construct " END WHEN ; " is used to terminate the WHEN embed-
ding structure. Similarly, END FROM, END PROVIDED, etc. constructs
could be included in the language definition.

A possible syntax, equivalant to the present syntax of the working
document, except for the introduction of the END WHEN etc. con-

‘structs, is as follows:

<transition> : : = <gome clause>

<some clause> : : = <ANY clauge>
| <WITH clause>
| <WHEN clause>
| <FROM clause>
| <To clause>
| <PROVIDED clause>
| <PRIORITY clause>
| <block> *%* 5

<FROM clause> : : = FROM <major present state> <some clause>
‘ <FROM suite>

<FROM suite> HE S

<FROM clause>
| END FROM

| empty

etc. for the other type of clauses
4. Arrays of interaction points

In the case that an entity services several service access points,
for insgtance, it 1is important to be able to specify a number of
access points refering to the same type of channel. For this pur-
pose, the use of "interaction point arrays' in the <interaction
points> declaration of a module type definition is proposed.
Examples have appeared in several previous contributions on
Transport service and protocol specifications.

The precise syntax could be as follows: <interaction point decla-
ration> ¢ ¢ = <interaction point id>

: <interaction point type> <interaction point type> : : =
<channel type 1d> (<role 1id>)

| ARRAY (<index type>) OF <channel type 1d> (<role 1id>)

5. Separation of module type definitions and internal definitions

5.1. It is foreseen that the <internal definition> of a module may
either be given in the form of an extended state transition
machine (i.e. <module body>) or in the form of a <substructure
definition> which declares sub-module ‘instances and their dinter-
connections. In order to make such alternate specifications more
easily replaced ‘by one another, within an overall system

_specification, it is proposed to separate somehow the <module type

definition> from the internal definition.

The following syntax could be used: <system> : : = SYSTEM <system
id> ; <specification part>* <specification part> 3 : = <channel
type definition>
' | <module type definition>
| < extended state transition machine>
| <substructure definition> <module
type definition> : : = MODULE <module type id>
_ (<interaction points>) ;
<extended state transtion machine> : : =
ESTM <module type id> ; <module body>

5.2. Instead of the reserved words MODULE and ESTM, the words
BLOCK and PROCESS could possibly be used.

6. End indications

For the overall structure of specifications, it seems to be useful
to indicate clearly the end of a specification part. For this
purpose the construct

END <module type id> ; or

END <channel type id> ; could be used, to be placed at the end
of a module or channel type definition.

7. Including informal elements in a specification

In many cases, certain properties of a specified module are not
defined 1in a formal way, but as an informal specification element
in (semi~) natural language. The notation " (/ <informal text>
/) " is included for this purpose in the Subgroup B language.

It is proposed to allow this construct to be used instead of iden-
tifiers anywhere 1in a specification. To simplify the syntax
analysis, it should not be placed where comments may be placed (as
now defined in the working document).

This approach allows a more flexible use of this construct, as
shown in the example below.

Example: (a) graphical<specification with informal text
(b) equivalent linear specification

6

ANNEX

Contribution to the ISQO TC97/SCL6/WGl ad hoc group on FDT meeting
in Paris, Febr. 1983.

Title: Semantics of spontaneous transitions

Source: G.v. Bochmann

The semantics of spontaneous transitions has been refined during
the Last ad hoc group meeting. This contribution gives some
examples of applications for spontaneous transitions in the
Annex, and proposes the following revision to the semantics of
these transitions.

Proposal:

(a) To distinguish two kinds of spontaneous transitions:
"facultative" and "required" ones, as explained in Annex 2 of the
companion contribution "Comments on ...".

(b) To leave for further study the association of performance
attributes to "required" spontaneous transitions. This study
should address the question of time~out tramnsitions, and
probabilistic performance considerations for the execution of

these transitions related to protocol and service performance
characteristics.

Rational for proposal:

(1) The semantics of "immediate" execution (as defined now,
DELAY(0,0)) is not well defined (consider for example the
Example 3 in the Annex).

(2) The proposed semantics of "required" transitions is similar
to "immediate execution”.

(3) The semantics of "facultative'" transitions is the same as now
defined for DELAY(O0,*). _

(4) The use of DELAY(dl, d2) transitions for the definition of
time-out transitions is not as straightforward as may seem from
the example in section 3.6 of the working document. In fact, that
example is in contradition with the semantics of the ESTM
considering a transitionm as an undivisible operation (see also
comments in the companion contributeion).

Annex: Examples for the use of non-deterministic extended finite
state machines.

The following examples include situations where more than one
transitions are possible from a given state of process, and the

" specification does not define which one will be executed. However,

it 1is assumed that any implementation of the specified process
must. make a choice in some way or another.

Example 1: A user process may accept or reject an incoming call,
or while "thinking" the call may be cleared by the other party:

Input: call indication Output: Accept

are spontaneous

Input: clear indication

Example 2: Considering the '"mapping" process of a Transport
entity which handles the mapping of Transport connections onto
Network comnnections, any Network connection not in use, at any
given time, may or may not be disconnected. ‘This 1s most
naturally modeled by a spontaneous transition which is enabled
when a Network connection is idle. This transition may, or may not
be executed (this decision is up to an implementation). This
transition applies to all major states of the mapping process.

Example 3 Considering again the mapping process and assuming

that it looks after concatenating the PDU’s to be sent for a given
Transport connection into the Network service data wunits (NSDU),
as' modeled in FDT 78. If there is a PDU buffer for each type of
PDU to be sent and one NSDU buffer then the following spontaneous
transitions can be identified:

(a) Sending the NSDU, enabled when the NSDU buffer contains at
least omne PDU.

(b) For each type of PDU:

Appending the PDU in the corresponding PDU-buffer into the
NSDU buffer, enabled when the PDU buffer is not empty and the

Note: The fat transitions

NSDU buffer has enough free space:

Depending on the overall state of the mapping process, all these
transitions may be enabled at the same time. The specification
does not indicate which one to choose, since this is an implemen-
tation issue.

7 a

ANNEX

International Telegraph and Telephone
Consultative Committee
(CCITT)
Original: English
Period 1981~1984

Question :+ 39/VII Date: November 1982

STUDY GROUP VII ~ CONTRIBUTION No.

This contribution is for input to the Special Rapporteurs meeting
on Q 39/VII held in Geneva, November 1982.

Title: Proposal for contents for section 3 (Semantic Model) of the
Draft Recommendation

Source: Camnada

1. Introduction

The semantic model is defined in three parts:
(a) the part relating to the system structure defined in terms of
functional blocks, subblocks and channels (see sections 2 and
3 below);

(b) the part defining the model of an extended state transition
machine (see sections 4 and 5 below), and

(c) the part defining the handling of data structures as used by
the extended state machine.

2. Blocks, channels, and interaction points

2.1. The concepts

\

A system 1s defined by a set of interacting “blocks’ and
the structure by which they are interconnected.

Blocks share channels with each other and with blocks in
the system’s environment. The channels embody the interactions
between the blocks, and between the blocks in the system and those
in the system’s environment. The blocks embody the actions
exclusively allocated to blocks.

channel [}

The configuration of channels and blocks represent the
system’s structure. An example is shown in the figure belows.

| []
notation: l—

module i l [’_’? _

Blocks bear different responsibilities in the perfor-
mance of interactions. For example, 1f in an interaction a value
is passed, then one module is responsible for providing that
value, and the other block is responsible for accepting the value.

The allow for modelling of these different respon-
sibilities, we introduce the concept of “interaction point”.

An “interaction point” 1s a view of a channel as seen
from one of the blocks that is connected to the channel.

Using an alternative graphical notation, the above
example can be represented as follows:

notation:

channel with two
interaction points

RO
1 [

The concepts of ‘channel’ and ‘interaction point” are
useful for the description of the OSI architecture. They are
related to the notion of ‘abstract interface’ in the £following
sense: the interactions of a blocks with other blocks or with the
environment of the system occur through channels between the
blocks. In a real system, such a channel 1is realized by an
“(real) interface”’. For the specification of communication
protocols and services we are not concerned with the specification
of real interfaces, but only with the abstract properties that any
such interface for a givem block-to-block interconnection must
satisty. These properties are called the “abstract interface’
between the two blocks. ‘

The concepts serve for:

a) the partitioning of the interactions of a given block into
separate groups concerning different blocks forming the module’s
environment. A block has contact with its environment only
through a well-defined set of “channels’.

b) the specification of the interconnections between the dif-
ferent blocks within a system (or the sub-blocks within a block).
A channel connecting two blocks could be specified by naming an
interaction point of one block and an interaction point of the
other block with which the former is to be connected.

For example, typical channels of a layer entity execut-
ing the layer protocol are: :

a) the access point(s) to the layer above through which the ser-
vice is provided,

b) the access point(s) to the layer below through which the

. underlying service is accessed,

c) an (abstract) interface to the local system management block,
and possibly a local channel through which local services such as
buffer management, time-outs, etc. can be obtained.

2.2 The specification of a channel

The purpose of a channel type definition is to be used
in the specification of a block (see section 2.3.), where each
interaction point of a block is characterized by the type of chan-
nel which it represents.

In order to distinguish between the two blocks that use
the channel for their interactions the concept of a "role" is
introduced. For each type of channel two roles are defined.
These two roles are ‘played’ by the respective blocks instances
that are connected to an instance of a channel. It is then pos-
sible to define the possible dinteractions through a. channel
without explicitly defining the blocks that interact through the
channel. However, it is necessary to refer to the roles that the
blocks play in this interaction.

The specification of channel type includes:

a) an enumeration of the possible types of interaction primitives
that may be invoked through a channel of that type.

b) the names of two "roles’ which distinguish the two sides of
the channel, and hence the two connected blocks (e.g. ‘service
provider’ and “service user”’).

c) the properties of the interaction primitives. The invokation
of an interaction primitive consists of the exchange of an inter-
action, called “‘signal’, form the ‘outputting” block to the
inputting’ block. A signal may include parameters of various
data types. The values of these parameters are determined by the
outputting block.

d) possibly certain rules about the order in which the dinterac-
tion primitives may be executed over a given channel of that type.

2.3 The specification of a block

The purpose of a block specification is to define the
behavior of the block as observable at the interaction points to
which it 4is connected. Therefore a block specification cannot be
given without a definition of the interaction points through which
the module interacts with its environment. The set of these inter-
action points is called the "boundary" of the block.

The specification of a block may be given in each of the
following forms: '

(a) by a fixed substructure definition (see section 3), where
each subblock in the substructure can be defined either according
to (a) or to (b). . ,

- (b) by defining the behavior of the block modeled as one or

several instances of ‘processes’. The behavior of a process is
defined in terms of an extended state machine, as explained in
section 4.

(c) Other techniques for defining the behavior of a block are for
further study.

Process instances may exist from the beginning of the

system or they may be created during the life of the system.

Process instances may cease to exist during the 1ife of the sys-
tem. :

The environment of a process instance is all the other
process instances within the block and all the channels connected
to the block. Process instances interact with their environment
solely by means of interaction primitives.

A process instance is created by requesting that an
initialization action be performed. This initialization action
can be requested initially when the system is created or dynami-
cally during the life of the system.

The initialization action 1initializes the process
instance variables, sets an initial major state and dinitializes
the input queue of that process -instance.

3. Substructure definitions

A specification of a block may be given in the form of a
substructure definition, as shown in the figure below. 1If the
behavior of each of the subblocks is defined, such a substructure
defines the behavior of the block.

Xl

'
Sloslee fos Fr awd A
repred eu/u'.(] Ve

hﬁéﬁ:@acén_ .5/ VA

In the example above, the block A interacts with other
blocks in the system through the channels X-X1 and Y-Yl. The
substructure of block A consists of two sub-blocks Al and A2.
The connections Z-U and V-W are called internal channels and
connect interaction points by which the block Al and A2 inter-
act. The notation of the example also means that the interactions
of A at X and Y are realized by the interactions of Al at X,

and A2 at Y, respectively.

The above structuring has assumed that the interaction
points X and Y of A and X and Y of Al and A2 remained
unaltered, i.e. only the functionality of A was represented by
two sub-blocks Al and A2 connected by internal channels.

One could also consider a substructuring for the inter-
action points X and Y, and represent this by an alternative way
of picturing '

—-

We leave this possibility for further study.

It is possible to further subdivide the structure of a
block. TFor example a possible substructure of block A2 would be
as follows:

Sometimes several steps of refinement are shown in a.

single diagram. For example, the figure below shows the two steps
of refinement for block A given above:

s Um ok 4 un B e

s
\ |

s
L-L:_"‘: = :K Y= _]

4. The extended state transition model

The extended state transition model assumes a model of
interaction where each interaction of the specified process with
its environment can be considered an atomlc event. The transition
model distinguishes between interactions that are initiated by the
environment and received by the process (inputs), and interactions
initiated by the process (outputs). The reception of an interac-
tion from the environment leads to a transition of the specified
process which may give rise to other (output) interactions.

In order to define the possible orders in which interac-
tions may be initiated by a process, the state transition model
introduces the concept of the ‘'"intermal state" of the process
which determines, at each given instant, the possible transitions
of the process, and therefore the possible interactions with the
environmente.

The possible order of interactions of a process is given
in terms of '

(a) the state space of the process which defines all (internal)
states in which the process may possibly be at any given time, and

S —

(b) the possible transitions. For each type of transition the
designer specifies the states from which a transition of that type
may take place, and the "next" state of the process. A transition
may also involve one or more interactions of the process with its
environment (see below).

Since finite state diagrams or equivalant methods often
lead to very complex specifications when a complete protocol
specification is required (partial specifications, can be more

‘readily comprehended) the following approach to the specification

of modules in the extended state transition model is wused. This
approach combines the simple concept of states and transitions
with the power of a programming languages.

The state space of the process is specified by a set of

"variables. A possible state is characterized by the values of each

of these variables. One of the variables is called "STATE". It
represents the "major state" of the process.

The possible transitions of the process are defined by
the specification of a number of transitionm types. Each transi-
tion type is characterized by

(a) an enabling condition: this is a combination of a Dboolean
expression, called ‘enabling predicate’, depending on some of the
variables defining the process state, and (possibly) the
specification of an input. A transition may occur in a given
state only if the enabling predicate has the value true, and the
interaction in question (if it exists) 1is dinitiated Dby the
environment. A transition without input is called a spontaneous
transition. It can be executed, independenly of input, whenever
the enabling predicate is satisfied.

(b) an operation: this operation is to be executed as part of
the transition. It may change the values of variables, and may
specify the initiation of output interactions with the environ-
ment. The operation is assumed to be atomic.

The model is non-deterministic in the sense that in a
given state (at some given time) and a given input interaction
several different transitions may be possible. Only one of these
transitions is executed, leading to a next state which determines
which transitions may be executed next. If several transitions

are possible at some given time, the transition actually executed

'is not determined by the specification model. An implementation

of the process could choose any of these possibilities. In many
cases, the specificaton of a process may be deterministic, in the
sense that (at most) one transition is specified in any reachable
state and given input.

l -

e W am

e —

- 10 -

An input interaction to the process is either considered
immediatly by the state machine or first put into the (conceptualy
infinite) input queue of the module (depending on the queuing
option used); if it is put into the input queue it is considered
by the machine when it becomes the first in the queue.

The model allows inputs to be "saved". For each major
state of the machine a set of input interaction types may be
declared to be saved. This means that inputs of these types
should remain in the input queue and not be considered by the
state machine when the machine is in the given major state. The
first input in the queue not corresponding to any of the saved
interaction types should be considered as input to the- state
machine.

In addition to input-output interactions, the model
provides for continuous output functions. While interactions
represent "events" and are generated during state transitions,
continuous output functions provide steady output from one process
through a channel to another process. The '"receiving" process may
use the wvalue of such a function (provided by its neighbour
process) within an enabling predicate, that is, it may influence
which transitions are enable.

The name and type of output functions are declared in a
channel definition. The value provided by the £function is deter-
mined by the function body which is defined within the process
body which plays the role of the outputting process.

5. Formal semantics of the extended state transition model

(to be provided, based on the '"Common Semantic Model..."
(Melbourne meeting)).

7 b

ANNEX

-y om s

- . o

International Telegraph and Telephone
Consultative Committee
(CC1ITT)
Original: English
Period 1981-1984

Question : 39/VII Date: November 1982

STUDY GROUP VII - CONTRIBUTION No.

This contribution is for input to the Special Rapporteurs meeting
on Q 39/VII held in Geneva, November 1982.

Title: Proposal for contents for section 4
(Language for describing system structure) of the Draft

Recommendation

Source: Canada

le Introduction

(to be provided)

2., Graphical language

The concepts of “block’, ‘channel’ and ‘process’ as
defined in section 3 of the Recommendation correspond to the con-
cepts of ‘functional block’, “channel’ and ‘process’ as defined in
SDL (Draft Recommendations Z10l and Z102). Therefore the graphi-
cal representations, as defined in Z101 and Z102, can be used for
these concepts. Substructure diagrams can also be drawn as shown
by the examples of section 3 of the Recommendation.

It 1is noted that Recommendations Z10l and Z102 do not
define block and channel types, only instances of blocks and chan-

- nels are considered.

3. Program-like language

Note: The options of multiple processes per block and dynamic
process creation are not supported by the language defined below
(they are left for further study). A single process per block may
be defined using the program-like language for extended state
machines (see section 7 of Recommendation).

am oe 00 WP Em ww o

- -‘

-

3.1. Syntax overview

Notation: Extended BNF where "+" means one or more occurences,

"x" means zero, one or more occurrences of an expres-
sion, and "|" separates alternatives'". "#*" means that
the construct is the same as in Pascal.

3.1.1. Overall structure of a specification
(to be provided; includes channel types, block type,
substructure, and extended state machine definitions, as
well as possibly block instance declarations).

3.1.2. Channels and interaction primitives

The <channel type definition> defines a type of interac=-
tion point.

<channel type definition> ::= <constant definitions>%*
<type definitions>* <channel>

The possible interactions at a given type of interaction
point are enumerated by a definition of the following form:

<channel> ::= CHANNEL <channel type id>
(<role list>) <exchanges> ;

<role list> ::= <role id>
| <role list> , <role id>
<exchange> = <BY clause>

| <exchanges> <BY clause>

<BY clause> ::= BY <role list> : <exchange list>

<exchange list> ::= <exchange>
| <exchange list> <exchange>
<exchange> = <interaction id> <interaction parameters> ;

| <function heading>*¥%

The declaration of <interaction parameters> 1is in the
same form as function parameter declarations in Pascal (i.e. for
each parameter its name and type).
<interaction id> ¢ := <identifier> (*Notel%*)
<channel type id> : := <identifier>

Note 1: Identifiers may include both upper and lower case letters
as well as the u nderscore character (" "), which 1is
considered to be a letter, and numerals.

B - . . ~

3.1.3. Blocks and their interaction points

The definition of a block type contains the declaration
of all abstract interaction points through which a block of this
type interacts. This includes the service access points through
which the communication service is provided as well as the system
interface for timers, ete. and the access point to the layer
below, through which the PDU’s are exchanged.
<block type definition> ::= BLOCK

<block type id>
(<interaction points>) ;
<interaction points> : := <interaction point declaration>
| <interaction points> ; <interaction point
declaration>
<interaction point declaration> ::= <interaction point id> :
<interaction point type>
(<role id>)
<interaction point type> = <channel type id>]ARRAY [<index type>]

OF <interaction point type>

(* Note 9 *)

The <role id> indicate which role the entity plays as
far as the declared interaction point is concerned. We note that

- the distinction of these roles permits the checking that the

invocation of interactions in the conditions and actions of tran-
sitions is comnsistent with the possible exchanges defined in the
channel definition.

3.1.4. Substructure definitions
<substructure definition> ::= REFINEMENT FOR <block type id>;
<list of sub~-blocks>
INTERNAL CONNECTION
<list of connections between sub-blocks>
EXTERNAL .CONNECTION <list of connections
of sub-blocks
to interaction point(s) of refined block>
END REFINEMENT;

<list of sub-blocks> : := <sub-block declaration>
(, <sub-block declaration>)*¥

<sub-block declaration> ::= <sub-block id> : <block type id>
<list of connections between sub-blocks> : :=

(<sub~block id> . <interaction point id> =

<sub~block id> . <interaction point id>;) + (*Note 10%)

Note 10 : The two sides identify the connected interaction points
(which should be of the same type).

-4 -
<list of connections of sub-blocks to interaction point(s) of refined
block> : :=
(<block type id> . <interaction point id> =

<sub-block id> . <interaction point id>) + (*Note 10%)

<process definition> : := PROCESS <process type id>

<input interaction mechanism definition>
<process body>

7 ¢C

ANNEX

(CCITT)
Period 1981-1984

Question : 39/VII

I3

Source: Canada

le« Introduction

(to be provided)

A o

2. Language elements

2.1. State variables

The state space of
variables. A possible state
these wvariables. =~ One of
represents the "major state"

var

s . =

International Telegraph and Telephone
Consultative Committee

Original: English

Date: November 1982

STUDY GROUP VII - CONTRIBUTION No.

This contribution is for input to the Special Rapporteurs meeting
on Q 39/VII held in Geneva, November 1982.

Title: Proposal for contents for section 7
(Language for describing dynamic behavior based on Pascal)
of the Draft Recommendation

the process is specified by a set of
is characterized by the values of each of
the variables is called "STATE". It
of the process.

As an example, the following lines specify the state space
of an entity implementing the Transport protocol:

‘state : (idle,wait_for_CC,wait_for_T_CONNECT_ resp,data_transfer);
local_reference : TP_reference_type;

remote_reference : TP_reference_type;

TPDU_size :max TPDU_size type;

QOTS_estimate : quality of TS_type;

2+2. State transitions

The possible transitions of the process are defined by the

specification of a number of transition types. Each transition type

is

(a)

(b)

characterized by:

the enabling condition: this includes

- the present major state (FROM clause)

- the input) (INPUT clause)

- the "additional enabling condition" (or "predicate')
(PROVIDED clause)

~ the priority of the tramnsition type (PRIORITY clause)

the operation of the transition: this includes

~ the definitiom of the possible next major states (TO clause) -

the operation (BEGIN statement of the <operation>) including the
generation of output.

- A spontaneous transition may include a delay clause with two

parameters, d1 and d2. The transition may not occur until the ena-
bling condition has remained true continuously for dl time. It must

be

considered immediately if the enabling condition remains true con-

tinuously for d time. If the delay clause is absent, a delay of

= infinity is assumed. (This is written '"delay (0,*)".)

I% means that the transition may occur at any time the enabling condi-
tion is true, possibly never.

A

delay(0,0) has the semantic meaning of the immediate spontaneous

transition of the basic semantic module.

As

an example, the follow1ng lines specify some transition types for a

Transport entity:

trans

from idle
input TSAP.T_CONNECT_req

provided ...(* Transport entity able to provide the quality of
service asked for *)
to wait_for_ CC

begin
local_reference := <.}
TPDU_size := ...}

output N.CR(0,local_reference,class_0 normal,varlable_part to_send);
end;

from data_transfer to same
input TSAP.T_DATA req

provided ... (* flow control from user ready %)

- 3 -
begin

output out_buffer.append(user_data);
end;

input out_buffer.fragment_ready(TPDU_size)
provided ... (* Network layer flow control ready ¥)
begin .
output N.DT (out_buffer.get_fragment(TPDU_size));
end;

trans
provided no_tc_uses_ne and ne_locally_open
begin
output N.DISCONNECT req (*close any unused network connection %)
end;

trans
from data_transfer to same
provided credit_to_be_sent delay (0,evaluate_delay_max_agreed)
begin
output N.ACK(credit,tpdu_nr) (* send credit if any *)
end;

2.3. Embedding of transitions

The syntax for transitions permits the different clauses
(FROM, INPUT or DELAY, PROVIDED, PRIORITY, and TO) -to be written in
arbitrary order, followed by the <block> which includes at least BEGIN
END. The order has no influence on the meaning of the comnstruct.

The syntax also permits the embedding of the different
clauses. This embedding structure is simply a shorthand notation with
the following rules: The '"scope'" of a clause is defined to be the
specification text corresponding to "<transition>+" in the syntactic
rule of the clause (see section 3). The meaning of the clause extends
over its entire scope. Each BEGIN END statement -of a block within the
specification text identifies a transition. All clauses in the scope
of which a given transition falls apply to this transition. For

eXample
trans
input AP.I
from A provided E to B

begin X end;
provided F to C
begin Y end;
from B to C
begin Z end;
t rans
from C to D begin U end;
is a short hand notation for

trans _

input AD.I from A provided E to B begin X end;
trans

input AD.I from A provided F to C begin Y end;
trans
~input AD.I from B to C begin Z end;
trans

from C to D begin U end;

It is noted that the following scope rules must be followed:

(a) The parameters of the input interaction (declared in the cor-
responding channel type definition) become accessible within the
scope of the INPUT clause.

(b) As in Pascal, the WITH clause makes the fields of a record vari-
able directly accessible within the scope of the clause.

(c) The ANY clause dintroduces a '"variable" identifier with an
arbitrary value within the range defined by the type identifier.
The meaning is that the embedded transitions are defined for each
of the possible values of this variable.

2.4, Predefined language elements

Some predefined 1language elements are provided. These
include types, procedures, functions and blocks. The predefined iden-
tifiers may be redefined by the user of the FDT. 1In this case, the
user’s element is the one used.

Details are for further study.

3. Syntax overview for extended state transition machine model

This section defines the syntax for extended state transi-
tions specifications, excluding the part that deals with data struc-
ture definitions and manipulation. The latter part i1is specified in
Pascal, as explained in section 4 below.

The same notation is used as in section 4 of the Recommenda-
tion.

<process definition> ::= PROCESS FOR <block type id>;
<input interaction mechanism definition>
<process body>

<input interaction mechanism definition> ::= RECEPTION <reception

mode>
<reception mode>
ASYNCHRONOUS | SYNCHRONOUS
<process body> ::= <label definitionsg>%*%*
' <constant definitions>#*%*
<type definitions>**
<variable declarations>#*%*
<major state declaration>
<state set definition>%
<proc func or init etc.>%*
<embedded transitions>+
<embedded transitions> ::= TRANS <transition>+ _
<major state declaration> ::= STATE : <enumeration type> ; .
<state set definition> ::= <state set 1d> = <set definition>*%* ;
(*Note 4%)

<proc func or init etc.> ::= <procedure definition>** (* Note 2 %)
<function definition> (* Note 2 and 3 %)
| <continuous output definition>
| <initialization> (* it is suggested that
the initialization be
placed at the beginning %)
<continuous output definition> ::= FUNCTION <interaction point ref>.
<function name> ; <block>
(* the parameters of the function
are already declared in the channel
definition %)
<interaction point ref> ::= <interaction point id>
| <interaction point id> [<index variable>]
<index variable> : :=<identifier>
<function name> ::= <identifier>
<initialization> = INITIALISE BEGIN
STATE TO <major state value>
<additional init>; "
<additional init> ¢ := END

| <statement sequence>** END

<transition> ::=
| ANY <identifier> : <type identifier** DO <transition>+ (*Note 5a%)
| WITH <variable>** DO <transition>+ (*Note 5b%*)
| INPUT <interaction point ref> . <interaction id> <tramnsition>+
(*Note 5c%*)
| DELAY(<delay value>,<delay value>)<transition>+ (* Note 5c %)
| FROM <major present state> <transition>+ <*Note 5d¥%)
| TO <major next state> <transition>+ (*Note 5e%)
| PROVIDED <expression>*%* <transition>+ (*Note 5f%)
| PRIORITY <priority indication> <transition>+ (*Note 5g#*)
| <block>** ;
| SAVE <interaction point ref> . <interaction id> <transition>+

-6 -
<delay value> ::= <expression> | * (* Note 10 #*)
<priority indication> $:= <identifier>#** (#*constant of some

enumeration type¥%)
| <integer>#*%* ‘

<major present state> :!:= <major state value list>

| <state set id>

<major state value list> ::= <major state value >

<major state value list>,<major state value>

|
<major next state> ::= <major state value list>
| SAME :
<major state value> t:1= <identifier>#*% (*must be element of the

<output statement> : := OUTPUT <interaction point ref> . <interaction id>

enumeration type of the <major
state declaration>%)

<effective parameter list>*%* (*Note8%)

<nextstate statement> ::= NEXTSTATE <major next state>

Note

Note

Note

Note
Note
Note
Note
Note
Note

Note
Note
Note
Note

Note

Note

f

5¢:

as oo we

o]

O

| NEXTSTATE SAME

Within a transition, "..." may be written for an expression
that is implementation dependent (not defined by the
specification). The body of a procedure or function that is
implementation dependent (not defined by the specification)
is written in the form "PRIMITIVE" or "...". Other possible
uses of ... are for further study.

A boolean function X(<parameters>) with no side effects may
be declared in the form "predicate X(<parameters>)".

The elements of the set must be included in the enumeration
type of the <major state declaration>.

These transitions may not .include a ANY clause.

These transitions may not include a WITH clause.

These transitions may not include a WHEN nor DELAY clause.
These transitions may not include a FROM clause.

These transitions may not include a TO clause.

These transitions may not include a PROVIDED clause. The
expression must be boolean.

These transitions may not include a PRIORITY clause.

Each <block> must be preceeded by a FROM and a TO clause.

To refer to the input parameters, the parameter identifiers
of the interaction in the <channel type definition> are
used.

This kind of statement (for producing an output interaction)
is an extension of Pascal. ’
The wusual multi-dimensional array mnotation, e.ge. ARRAY
[indexl,index2], is also allowed.

The delay value must be either an integer valued expression
or “#’, which represents infinity.

Other Syntax elements

(a) Informal specification elements, which define system
properties that are part of the specification (not
merely comments), are written as text enclosed in " (/"
and "/)" and may be placed wherever comments or ... may
be placed. It may also replace a procedure call state-
ment or a <interaction id>.

(b) A facility for describing optional parameters is intro-
duced. To indicate that a parameter (or field of a
record) is optimal, its type definition is preceeded by
the keyword OPTIONAL. The value UNDEFINED means that
the parameter (or field) i1s not present. A default
value may be associated with the type definition by a
succeeding "DEFAULT=<constant>" clause.

4. TLlements of Pascal used

4¢l . General

The elements of the Pascal programming language are used for
the following parts of the specifications:

(a) For channel definitions:
- defining the parameters of interactions and their data type;

(b) For process definitions:

- defining the variables of a process and their data types;

- defining the enabling predicates and operations of the transitions
using Pascal expressions and statements. This includes the use of
Pascal functions and procedures.

- defining continuous output using Pascal function definitions.

Note that two additional kinds of statements are added to

those provided by Pascal, namely the <output statement> and the
<nextstate statement>.

4.2. Removal of certain restrictions

t

Functions are permitted to return arbitrary values.

4.3. Elements of Pascal not used

To date, we have not found the following features of

o b Pascal
O be necessary: pointers, and files (and go to and labels).

NNNNNN

IS0
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/TC 97/SCl6/WG1
OPEN SYSTEM INTERCONNECTION

Contribution to the meeting of the WGl ad hoc group on FDT, Nov.
1982 |

Title: Comparison of FDT proposals from ISO (subgroup B) and CCITT

Source: Canada

1. Introduction

During the last Subgroup B meeting in Enschede (April 1982), there
was not enough time to discuss the FDT proposal from CCITT
Rapporteurs group on Q39/VII (CCITT liaison report ..., TWENTE-4)
fully. The present paper points out the main differences in the
syntax and semantics of the CCITT proposal with the Subgroup B
working document. The purpose of the paper is to simplify the
discussion at the next meeting towards a resolution of the dif-
ferences.

It dis to be noted that the formal semantics of the two FDT
proposals from Subgroup B and CCITT are not yet finalized.
Nevertheless, the following differences in the syntax and seman-
tics may be identified.

2. List of differences

2.1. Choice of reserved identifies

2.1.1. The CCITT syntax uses PROCESS instead of MODULE.

2.1.2. The CCITT syntax uses SIGNAL instead of INTERACTION.

2.1.3. The CCITT syntax uses INPUT instead of WHEN.

2.1.4. The CCITT syntax uses the additional reserved didentifier
OUTPUT, which is omitted in the Subgroup B syntax.

2.1.5., The CCITT syntax uses ENDPROCESS '<process identifier>
instead of END at the end of a module specification.

2.2. In the CCITT syntax, the <major present state> in a FROM
clause may be a list of states, thus allowing the introduction of

- O Uh 0 UE 4 0 & O =) O s R M e

state sets without declaring them in a <state set definition>.

2.3, The CCITT syntax provides the <reception mode> clause for
specifying whether a module has a zero or infinite input queue.
Such a specification is missing in the Subgroup B syntax.

2.4, In the CCITT syntax, sSeveral possible next states are
foreseen for a single group of transitions (such a group is simply
called a "transition" in the CCITT document), while the Subgroup B
syntax only foresees a single next major state per tramsition.
This difference was discussed at the last meeting in Enschede (see
minutes for April 15, last paragraph).

2.5, The CCITT proposal includes the SAVE construct. This con-
struct is not foreseen in the Subgroup B proposal. Subgroup B
considers that there is no need for a SAVE construct for OSIT
specifications (see minutes of last meeting).

2.6, Appendix 1 of the CCITT proposal outlines a method by which
the interconnection structure between several submodules may be
expressed. Such considerations have been outside the scope of
Subgroup B, however, the separation of a module specification into
a <block heading> and a <process definition> (see Appendix 1) is
directly related to the Subgroup B syntax.

3. Conclusions

It is Canada’s opinion that the following points be seriously
considered by the FDT ad hoc group to resolve the differences
between the IS0 and CCITT FDT proposals.

(a) Concerning point 2.l.1l: The separation of heading and body
definitions (see point 2.6) seems useful, and the proposal in a
companion paper (see section 5 of "Some enhancements to the syntax
of the Subgroup B FDT") should be adopted, using the reserved
identifiers BLOCK and PROCESS.

(b) Concerning point 2.4: The CCITT proposal is based on wupward
compatibility with SDL, which 1is considered to be important in
CCITT. Multiple next states should be included.

(¢) Concerning point 2.5: The SAVE construct seems not to be
required for the specification of 0OSI protocols and services. It
may, however, be considered as an option of the FDT when the FDT
is - used for applications outside the scope of OSI.

9

ANNE X

1S0/TC97/SClé6

1s0/1c97/sc1g/wel N\ 58

FEBRUARY 1983

IS0
International Organization for Standardization
TC 97 - Computers and Information Processing
- SCl6 =~- Open Systems Interconnection

Source: Canada

Title : Towards a common FDT for ISO and CCITT

Discussions for harmonizing the development of FDT’'s for OSI
specifications between IS0 and CCITT have been going on for a
while. The following approach is proposed as a possible position
for the ISO working group on this topic:

Given that remaining differences between the ISO Subgroup B FDT
and the FDT developed under Q39/VII in CCITT are summerized in
the CCITT liason report (Comparison of SDL and Subgroup B FDT
language) prepared dfthe Catania meeting, and further :
understanding on these differences has resulted from the
discussions at the last Q39/VII Rapporteurs meeting (Geneva Dec.
1982), the following approach is proposed:

(a) The semantic model of the Subgroup B FDT will be included in
the semantic model of the Q39/VII FDT in a form as outlined at
the Geneva meeting. :

(b) A linear syntax pased on the Pascal programming language will
pe included as a possible syntax of the Q39/VII FDT. .This linear
form should be compatible with the syntax of the Subgroup B FDT.

(c) The Subgroup B FDT will be changed in order to accomodate the
tollowing:

(1) An option for multiple next states for a single transition.
(2) A SAVE option (probably not required for 0SI specifications).
(3) Multiple processes per module and dynamic process creation
are considered for further study.

(4) The reserved identifiers INPUT and OUTPUT will be used in the
linear syntax, instead of WHEN and OUT respectively.

(5) The term "module'" will be replaced by "block" without
implying any change in the semantics.

(6) The reserved identifier PROCESS will be used in the linear
syntax to introduce a module body.

10

ANNE X

I1S0/TC97/5Cl6/N

1s0/Tc97/sc17,mcl N 59

FEBRUARY 1983

IS0
International Organization for Standardization
TC 97 - Computers and Information Processing
SCl6é - Open Systems Interconnection

- Source: Canada

‘Title: Proposal to Produce an FDT Standard

INTRODUCTION

Canada believes that the work on FDT should be aimed at
producing an International Standard on formal description
techniques for OSI protocols and services. The reasons are
the following:

1)

2)

3)

4)

The FDT document would be referenced by future protocol
and service standards which will include formal specifica-
tions.

The standard status would give the FDT a stronger stability.
This is desirable in view of the future investments in the

form of consistency checkers, compilers, simulators and

similar software, and also in view of the formal specifications
written in the future.

CCITT's Rapperteurs group on Question 39/VII is working
on a Draft Recommendation on an FDT, which hopefully will
be as close as possible to the FDT developed by Subgroup B
of the adhoc group on FDT.

Various formal description techniques are being used by
different groups to add more precision to their protocol
and service specifications in natural language. Therefore
it is useful to have a standard FDT for ensuring a common
understanding.

Canada therefore proposes that urgent consideration be given to
producing such a standard.

11

ANNEX

o oy o

3 mai

Title' Delegate’s Report of the ISO TC97/SC16/WGl meeting
on Formal Description Techniques (FDT) in Enschede, April 1982.

From: G.v. Bochmann

The meeting was held at the Twente University, April 13 through 16,
with fourteen (l4) participants. C. Vissers chaired the meeting with
short notice from the chairman of the ad hoc group on FDT, who could
not come. Most of the time was spent by discussions within the
subgroups B and C in parallel. Some time was also spent with
discussions in the plenary and Subgroup A.

Two delegates from CCITT made the liaison with the CCITT Rapporteurs
group on Question VII/39 (FDT) and SG XI/WP 3-1 (SDL).

In Subgroup B, most time was spent on the discussion of the formal
semantics (section 5 of the working document, which was not yet
written). The discussion was stimulated by the "Common semantic model
for CCITT and ISO" submitted by the CCITT Rapporteurs group on
Question VII/39 and a personal contribution from G.v. Bochmann on a
possibly simpler exposition of such a common model. The subgroup
agreed that G.v. Bochmann should write an initial draft of section 5
of the working document based on the contributions and the discussion
during the meeting. '

There was mnot enough time to discuss the questions related to the
CCITT proposal for revisions of the Pascal oriented syntax of the
Subgroup B language. Among some minor points, one important issue was
discussed: Should several different major final states be allowed for
a single transition, as proposed by CCITT in order to make the syntax
compatible with the existing SDL Recommendation ? No agreement could
be obtained. Consultation from the member bodies is sought on this
question.

The task of Subgroup A was extended according to 1its present
activities. The subgroup met shortly to discuss some revisions of its
working document.

Subgroup C met in parallel with Subgroup B. For a review of its
progress we refer the reader to ;he minutes.

1

The next FDT meeting is foreseen for next October, in time to prepare
a reply to the CCITT Rapporteurs group on Q VII/39 which meets in
December. The different subgroups may meet in between.

We believe that Canada should continue its participation in the work
on FDT s.

Title: Delegate’s Report of the ISO TC97/SC16/WGl meeting
on Formal Description Techniques (FDT) in Catania,
November 1982.

From: G.ve. Bochmann
ls Introduction

The meeting was held in Catania, Sicily, 8 - 12 November, with 23
participants. Most time was spent with parallel discussions in
Subgroups B and C. Some time was also spent with discussions in
the plenary and Subgroup A.

2. Liaison with CCITT

A delagate from CCITT SWP XI/3-1 (SDL) attended the meeting for
some days. He reported on recent meetings on SDL and mentioned

that the liaison document from Subgroup B (prepared during the
previous Subgroup B meeting in July) was not considered during
the Rapporteurs meeting in Brazil in October (since the person
carrying it arrived only for the second week of the Rapporteurs

meeting. The document would be considered during the December
meeting in Geneva.

Liaison documents to CCITT were written by the three subgroups
and presented by G.v. Bochmann at the meetings of Q39/VII and SWP
XI/3-1 in Geneva in December. A list of remaining differences
between the FDT of Subgroup B and SDL was elaborated by Subgroup
B and included in the liaison document.

3. Work in Subgroup A

Subgroup A revised its working document based on the proposals

" for a new section 2 submiited by G.v. Bochmann and C. Vissers.

Also the annex was extended based on a contribution from experts
from Sweden. The new version of the document is submitted as a N-
document for the next WGl meeting in February.

The new item of work on the possible interworking of
specifications made in the respective FDT’'s of the Subgroups B
and C was initiated. A possible approach to such interworking was
identified. However, further work is required on this topic.

4. Work in Subgroup B

The work on Subgroup B centered around refinements of the
extended state transition model, possible extensions for future
study, and a detailed comparison with SDL and the "Common
semantic model ..." developed in CCITT Q39/VII. An editing party
revised the working document, including many additions in the
informal explanations of the model and editorial improvements.
The new version was reviewed in the Subgroup, and is submitted as
a N_document for consideration at the next WGl meeting in
February.

5. Work of Subgroup C

The author was unable to attend the Subgroup C meetings. The
reader is refered to the minutes of the meetings.

6. Next meeting and future work

The next meeting of the ad hoc group on FDT 1is held jointly with
the next WGl meeting in Paris, February 1983. The FDT issues will
be discussed during the WGl meeting. The following 1ssues are of
particular interest: FDT work item, the application of an FDT
(possibility of setting up an editing group to develop a fromal
description of Transport and Session services and protocols),
whether there should eventually be a standard omn FDT, the
relation of formal descriptions with testing and conformance
issues, etc. It seems also important to come to a definite
proposal for a common FDT to be used by ISO and CCITT for the
descritpion of 0SI protocols and services.

Within Subgroup B an important issue to resolve is the zero-queue
option, for which certain difficulties were identified during the
Catania meeting. There was not enough time to resolve this issue
in Catania. Another item is the leaboration of an example
specification of the Transport protocol.

We pelieve that Canada should continue its participation in the
work on FDT s. ’

‘-
'

Title: Delegate’s Report of the CCITT Rapporteurs meeting

on Q39/VII (FDT) iu Geneva, Dec. 1982.

From: G.v. Bochmann

The meeting was attended by only 7 delegates (see attachment).
The author could not attend the meeting during the second and
third days because of other commitments. There were relatively
few contributions, including a relatively large number of contri-
butions from Australia on Numerical Petri nets. No proposal for
the text of the Draft Recommendation planned during the last
meeting in Melbourne was submitted. The chairman of the group
could not attend due to personal reason. The meeting was chaired
by J. Park from Australia.

Work was done in continuation bf the general direction determined
during the last meeting in Melbourne. Most work was in relation

with the liaison report from the SDL group imn SG XI, which deals

with extensions of basic SDL for incorporating features that were
identified in Melbourne as requirements for a FDT for protocols.

A two hour’s joint meeting with SWP XI/B 1 was held on the fourth
day of the meeting.

A proposal of text for the Draft Recommendation was presented by
the author at the morning of the last day of the meeting. This
includes text on-several sections of the Recommendation, and it
is largely based on the ISO Subgroup B working document and on
certain sections of the new Draft Recommendations on SDL. There
was not enough time to discuss this text in detail. It is sub-
mitted for consideration at the next meeting, which will be held
in Geneva, June 1983.

Concerning the development of a common FDT for use by ISO and
CCITT, the idea of a "common semantic model" was further persued.
A basic semantic model was identified, with a certain number of
optfone (such as SAVE, zero-queue, etc.) to cater for particular
teat.ves of SDL or the Subgroup B FDT. .

It is the author’s opinion that relatively little progress was
made during this meeting due to small attendance. Sizce the next
meeting will be the last occasion within this study period for
the elaboration of a Draft Recommendation, it seems important to
prepare proposals for text of this Recommendation prior to the
meeting. This would include the first sections of the Recommen-
dation for which relevant sections of existing documents were
identified during the Melbourne meeting.

by G.v. Eochmann

(the report below only covers the topic of formal description
techniques (FDT))

The following lines outline the discussions and conclusions
in the WE1 meeting concerning formal description technigues (FDT)
for protocols and services. Thisz topic was handled (together with
conformance gquestions) by the ad hoc group E during the meeting.
A review of the work on FDT performed so far by the FDT
Rapporteurs group was given to the planary during the first day
of the meeting.

The previous work on FDT was endorsed. The need for claoser
callaboration with other working groups, in particular WG6 and
WGE was pointed out. & detailed program of work until the next
WGL meeting in October was worked out, which respects the
following recommendations which were passed by the WGL plenary
(the content of the Recommendations is summerized here):

Recommendation 1% A joint meeting between WGH experts and
axperts on FDT will be held around mid 1983 in order to develop a
trial specification of the Transport protocol in the Subgroup E
language. : ’

Recommendation 24:@ The evaluation criteria (NB4, slightly revised
from the Canadian contribution) iz approved by WGEl§ comments are
invited.

Recommendation 21! Liaison with CCITT 86 VII and XI: & certain
number of documents on FDT are transmitted.

Recommendation 17! The gquestion of an FDT standard is an issue
for consideration at the next WGL meeting in October.

Recommendation 18: The FDT subgroup will meet around July 1983 in
order to progress the technical work.

In addition, Subgroup B of the FDT group will have a meeting
in May or June in order to prepare for the joint meeting with the
WGSH experts. The elaboration of a trial Transport specification
in the Subgroup B FDT is given priority over the finalisation of
certain remaining issues in the FDT definition, some of which are
related to the coordination with the FDT developments in CCITT.

duwring the meeting. There seemed general agreement that either a
Technical Report (type 2) or a Standard should be aimed at. In
both cases the present tutorisal documents must be complemented
with a definition of the FDT suitable for the Technical Report /
Standard document. Some consideration on this issue were

cassembled into the document NBS.

|

- aE e

The results of the discussions on conformance are included
in the documents NB87 ("Comments on whether or not product '
standards are needed": the need for product standards was pointed
out by the UK) and N8B ("Propasal for unambiguous drafting of
protocols"). It is proposed to establish a separate subgroup on
conformance! comments from the member bodies are requested on
this question.

B3

12

ANNEX

' \

;

A PARSER _FOR AN FDT LANGUAGE

George Gerber and Gregor v. Bochmann

March 1983

TABLE OF CONTENTS

1. Iﬁtroduction

2. TFDT model and language survey

3. Parser overview

4. Modifications in relation to ISO"s FDT

5. References

Appendix A: Sample specification processed by the parser
Appendix B: Syntax accepted by the pafser

Appendix C: Calling sequence for uéing the parser

le 1Introduction

The parser outlined herein accepts source input pertain-
ing to a language based on the Formal Description Technique (FDT)
for the specification of communicafion protocbls, known as
"Subgroup B language", as developed by the standardization com-
mittee of IS0 TC97/SC16/WGl. Originated within the framework of a
compiler project for automated implementation, in Pascal, of FDT
specifications, the parser performs lexical and syntacticél
analysis, as well as certain semantic checks particular to the

features of FDT that transcend Pascal.

2. FDT model and language survey

The following discussion assumes . that the reader is
reasonably familiar with the proposals put forward by ISO in the
references [1] and [2]. Some concepts, nbtably the refinement
method and the separation of process declarations from module
declarations, have been borrowed from the présent CCITT proposal
for this 1language [3]. Other influences ~ref1ected in syntax
updates stem from implementation considerations and exposure to

modern Pascal derivates like Modula-2, Portal and ADA.

An FDT system’s architecture is defined by a collection
of interacting modules and a set of channels that embody the
interconnections through which the modules communicate. Modules

interact with their environment, i.e. other modules they are con=-

-4 -

nected to, by excﬁanging messages, ca%led "signals" in FDT ter-
minology, over their channels. Regarding the ihternal contents of
a module, it can either be given a process, in which case it is
atoﬁic, or it can be refined into another set of modules that are
again appropriately interconnected by channels. A process
representé the actual computing activity of its module, in the
form of an extended finite state machine, and can execute - at

least conceptually - 1in parallel with other processes. In the

case of a refinement, the one-to-one correspondance between the

channels of the enclosing module and their local aliases must be

established.

Accordingly, four basic language elements are provided
for specifying and implementing a system: the type declarations

for channels, modules, processes and refinements.

The channel (type) declaration defines and restricts the
kinds of signals that can be exchanged between two modules it

joins, in compliance with the IS0 proposal.

A module (type) declaration only defines its interface,
i.e. occurencés of external channels together with their types.
Thus we have a typical black box formalism, where all but the
nature of the interactions with the environment is concealed. If
such a module interface specification suits a variety of module
instances, it only has to be declared once, whence the

appropriateness of the designation "module type".

A process (type) always belongs to a given module
(type). This relationship must be explicitly stated in the
process header. Otherwise, the declaration of a process closely
resembles the module body description suggested by IS0, very

similar, for that matter, to CCITT s process definition.

The refinement (type) relies to a great extent on
CCITT s refinement part. As for processes, the refinement type
header must contain a reference to the module ‘type it is further
detailing. An instantiation pattern for sﬁb—module internal

structure 1is given by furnishing each submodule occurrence with a

process or refinement type.. (A more flexible - but not carried
out =~ approach would allow the body of submodules to remain
undefined, and require an expliéit system instantiation part).
Connections between submodules and assignment of local channels td
channels of the enclosing module are defined in the manner put
forward by CCITT. Another purpose refinements sérve for 1is the
nesting of specification parts, providing thus the means for hid-
ing local information (e.g. local channel types) and £for neater

system structuring.

3. Parser overview

The syntactic description of the FDT language can be
made in terms of a context-free grammar with the LL(l) property
(éxcept, of course, for the well-known Pascal flaw for embedded

if-then-else statements; the wusual precedence rule applies to

. y

resolve the conflict). A Backus-Naur Form description of the

language syntax appears in appendix B.

Since our grammar is essentially LL(l), a standard
parsing-table representation can be used, upon which a language
independent driver routine will operate. The parsing table is

produced automatically from the BNF description.

Although the 1lexical and syntactic analysis could, in
principle, be performed in two separaté passes, this method was
avoided in order to prevent the need> of intermediate files.
Therefofe, the lexical scanner is embodied by a procedure which is

called upon by the parser when an input symbol is required.

Relying solely on syntax information, the parser takes
as input the source file, and produces as output a parse tree,
generated top~-down from the root, and possibly error messages.
The resulting parse tree is, in general, a sub-tree of a tree that
represents a syntactically correct FDT program: some "branches"
may have been truncated because of syntactic errors. Each node is
associated to a symbol of the language and possibly to a set of
attributes. These attributes are evaluated in a subsequent pass

over the tree, when semantic checks are handled.

Three kinds of error messages can be distinguished:
lexical, syntactic, and semantic errors. A lexical error indicates

that an illegal character or a malformed dinput symbol was

encountered. A syntactic error message is issued when an input
symbol 1s ignored because it couldn’t, in spite of a certain
effort, be placed in the current tree context, or when the parser

assumes that some preliminary input is missing before accepting

the given symbol. In the latter situation, the inserted string is.

displayed. The set of expected symbols at the point where the
errbr occured is given in both cases. (Actually, it is omitted if
it hasn’t changed since the ﬁrevious error message). All other
error conditions tested - incidentally those that least lend them-

selves to systematic processing - produce error messages in the
semantic verification phase. However, many possible semantic
errors are not tested for; they would usually be found when the

resulting Pascal program is compiled by a Pascal compiler.

The FDT language parser has been implemented on VAX/VMS
and CYBER/NOS BE computer systems and should be easily trans-

ferable to other computing environments supporting Pascal.

4. Modifications in relation to ISO’s FDT

The following list gives an informal overview of the

main deviations and enhancements applying to the current IS0 FDT

standard proposal.

- There’s no special construct for overall system structure

specification. System disn‘t a reserved word; use module

instead.

| n WE 2N EE B N ER B R G uE A B U I T o

Channel, Module, Process and Refinement declarations are ter-
minated with "end <name>" clause in the style of the following
example:

channel timer interface(...)}

end timer_interface;
A module declaration only defines its external interface:
module p_modules |

U: wuser_access_point (provider);

N: network_access_point (user);

T: timer_ access_point (user);

. end p module;

Processes and Refinements always refer to a module:

process alternating_bit_protocol for protocol_module; ...
refinement system refinement for system; ...

Process and Refinement declarations can be "empty", meaning
that the actual declarations are specified in a separate com~
pilation unit (program): refinement R for M; end R;

Processes and refinements can have formal parameters to convey
initial values to process state variables:

process terminal (hw_addr:integer) for terminal module;

var addr:integer;

initialize begin addr:=hw_addr end;

end terminalj

The default signal input queue discipline is ''not queued"; if

the discipline is "queued", this must be stated in the process

declaration for the pertinent channels:

process p for p_module

queued U, N; <.

Major state and state set initialization in processes:
initialize stateset_l = [running,idle,blocked]; ...

begin state := idle; ... end;

Continuous output functions aren’t currently recognized.
The delay clause isn’t currently recognized.
Output statements are prefixed by the reserved word "OUT"

Any and when clauses should not be used for the same transition

; théy“re incompatible.

All transition clauses are optional.

A transition block can be tagged with an identifier that will
be wused i1n the code generated from this transition. This is
especially useful to keep track of spontaneous transitions,
because their triggering by means of pseudo-signals must be
custom-programmed for a given system implementation.
Refinements are supported, similar to the proposal in [3].

The "(/" and "/)" enclosure for informal specification elements
isn’t (yet) recognized.

Comments can be embedded.

The proposed facility for describing optional or undefined
parameters or fields isn’t supported.

Pascal pointers, files, goto jumps and labels are allowed.

- 10 =

References

[1]

[2]

[3]

IS0 TC97/8C16/N, Subgroup A of ad-hoc group on FDT

"Concepts for describing the O0SI architecture", November

1982.

IS0 TC97/SCl6/WG1, Subgroup B of ad~hoc group on FDT of WGI1,
"An FDT based on an extended transition model", November

1982.

"An FDT/L?R Syntax based on Pascal", Annex 8 of meeting on

Q39/VII, CCITT, March 1982.

Acknowledgements:

The approach to the syntax analysis realized in the

parser is based on the concepts of an experimental system built by

Michel Gagné. We thank Michel for his support by providing his

syntax table generator for this project.

1

- 11 -

APPENDIX A

A sample specification processed by the parser

(*example of system specification with f£dt#*)

module system; (*outermost ﬁodule*)
end system;

refinement system_refinement for system;

LoNSTUIS~~WLWN -

const.maxseq=1; maxlin=80;

type seq type=0..maxseq;
data_type=

record line:array{l..max1lin] of char; ind:0..maxlin

msg_type=record nr,ns:seq_type; d:data type end;

channel medium_access_point(all);
by all: msg(m:msg_type); ack(nr:seq_type);
end medium_access_point; '

module medium;
port: array[zero..l] of medium_access_point(all);
“unknown const
end mediumg

process ex medium for medium;
trans
when port[i].msg
begin out port[l-i]l.msg(d) end;
when port[il.ack
begin out port[l-il.ack(nr) end;
end ex_medium;

module syde;

port:medium_access_point(all);
end side;

“wrong ident

refinement side refinement(choice:boolean) for sidej

“unknown

channel terminal_access_point(all);
by all: data(d:data_type);
end terminal access_point;

module terminalj
port:terminal_ access_point(all);
end terminal;

end;

module

- 12 -
45 process ex_terminal for terminal;
46
47 var this_side:boolean; ch:char; x:data_type;
48
49 initialize
50 begin this_side:=choice (*refinement parameter¥);
51 x.ind:=0
52 end;
53
54 procedure getch(choice:boolean; var ch:char); primitive;
55 procedure write_data(choice:boolean; data:data_type);
56 primitive;
57
58 trans
59 when port.data
60 begin write_data(this_side,d) end;
61" trans (*spontaneous*) keyboard:
62 begin getch(this_side,ch);
63 if ord(ch)>0 do (*character available%*)
kkkk “"then" expected; symbol ignored
64 if ch in ["a"«."2",70"..79°] then (*store character¥®)
Kk k% : “insertion:"then"
65 begin x.ind:=x.ind+1; x.line[x.ind]:=ch;
66 if x.ind>=maxlin then
67 begin out port.data(x); x.ind:=0 end
68 end
69 else 1if x.ind>0 then
70 begin out port.data(x); x.ind:=0 end
71 end;
72
73 end ex_terminal;
74
75 channel clock access_point(user,provider);
76 by user: set_clock(delay:integer); disable_clock;
77 by provider,sneaky: time out;
kkkk ’ “undeclared role
78 end clock access_point;
79 '
80 module clock;
81 port: clock access_point(provider);
82 end clock;
83 ,
84 process ex_clock for clock;
85
86 var state:(running,idle); this_side:boolean;
87
88 initialize
89 begin state:=idle;
90 this_side:=choice (*refinement parameter%*)
91 end;
92 :
93 procedure settimer(choice:boolean; delay:integer);
94 primitive;
95 . procedure resettimer(choice:boolean); primitive;

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
*kkk
111
112

113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
Kkkk
*kkk
139
140
141
142
143
144
145
146

- 13 -

function timeout(choice:boolean):boolean; primitive;

trans
when port.set. clock to running
begin settimer(this_side,delay) end;
when port.disable clock from running to idle
begin resettimer(this_side) end;
trans (*spontaneous¥*)
provided timeout(this_side) from running to idle
begin out port.time_out end;

end ex_clock;

module protocol;
t_port: terminal_ackcess_point(all);
“unknown channel
c_port: clock_access_point(user);
m_port: medium_access_point(all);
end protocol;

process ex_protocol for protocol;
queued t_port,m_port;

type bufelptr="bufel;
bufel=record next:bufelptr; info:data_type end;

var ptbufelptr; next_frame to_send,frame expected:seq type;

initialize
begin p:=nil;
next frame to_send:=0; frame expected:=0
end;

procedure sendmsg;
var x:msg_type;]

begin x.nr:=l-frame_ expected; x.ns:=next_frame_ to_send;
x.d:=p~.info}
out m_port.msg(x); out c_port.set_clock(1l0);

end;

procedure putbuf(d:data_type);
var q,r:bufelptr;
begin new(rl; r~.info:=d; r~.next:i:=nil;
~")" expected; symbol ignored
“insertion:")"
if p=nil then begin p:=r; sendmsg end
else
begin q:=p;
while q 7 .next<>nil do q:=q " .next;
q .next:=r
end
end;

- 14 =
147 procedure getbuf;

148 var gq:bufelptr;

149 begin q:=p; p:=p~.next; dispose(q);

150 out c_port.disable clock;

151 next_frame to_send:=l-next_frame to_send

152 end;

153

154 trans

155 ~ when t_port.data

156 begin putbuf(d) end;

157 trans

158 when m port.msg any k:integer do when m_port. ack
kkkk “incompatible clauses
hkkk “doubly used clause
159 begin "
160 if m.ns=frame_expected then

161 begin out t_port.data(m.d);

162 frame_expected:=l-frame expected

163 end;

164 if m.nr=next frame_ to_send then getbuf;

165 if p=nil then out m port.ack(l-frame expected)
166 else sendmsg

167 end;

168 trans

169 when m_port.ack

170 begin

171 if nr=next_frame_to_send then getbuf;

172 if p<>nil then sendmsg

173 end;

174 trans

175 when c¢_port.time_ out

176 begin sendmsg end;

177

178 end ex_protocol;

179

180 (*instantiation of modules in side refinement*)

181 t: terminal with (*process*) ex terminal;

182 c: clock with (*process*) ex_clock;

183 p: protocol with (*process*) ex protocol;

184

185 internal connection t.port=p.t_port; c.port=p.c_port;
186 external connection side_refinement.port=p.m_port;
187

188 end side_refinement;

189

190 (#instantiation of modules for system_refinement¥)
191 sl: side with (*refinement*) side_refinement(true);
192 s2: side with (*refinement*) side_refinement(false);
193 m: medium with (*process*) ex medium;

194

. 195 internal connection sl.port=m.port[0]; s2.port=m.port[l];
196
197 end system_refinement}
198 '

199 process incomplete
200
Rkt N (H/H; "/"for" expected;

_1.5..

insertion:"for" ident ";" "end" ident

n.n
s

- 16 -

'APPENDIX B

Syntax accepted by the parser

<axiom> = <seqsect>.

<seqsect> = <section> ";" <seqsect> / empty.
<section> = <channel> / <module> / <process> / <refinemt>.
<§hannel> = <constd> <typed> "channel"” <ident>

"(" <rolelist> ")" ;" <byclause> "end" <ident>.
<rolelist> = <ident> <seqident>.
<seqident> = "," <rolelist> / empty.
<byclause> = "by" <rolelist> ":" <signal> <byclause> / empty. -

<signal> = <ident> <signalpara> ";" <signal> / empty.

<signalpara> = " (" <paradef> ")" / empty.

<seqparadef> = ";" <paradef> / empty.

<paradef> = <rolelist> ":" <ident> <seqparadef>.

<module> = "module" <ident> ";" <portlist> "end" <ident>.
<portlist> = <rolelist> ":" <array> <ident> "(" <ident> ")" ";"

<portlist> / empty.
<array> = "array" "[" <indextype> <seqindext> "}" "of" / empty.

<indextype> = <simpletype>.

<seqindext> = "," <indextype> <seqindext> / empty.

- <refinemt> = "refinement" <ident> <signalpara> "for" <ident> ";"

<refbody> "end" <ident>.
<refbody> = <seqsect> <instance> <intconnec> <extconnec> / empty.

<instance> = <rolelist> ":" <ident> "with'" <ident> <lparacint> ";"
<seqinst>.

<seqinst> = <instance> / empty.

<intconnec> = "internal" "connection" <connectn> / empty.

1

<extconnec> = "external" "connection" <connectn> / empty.

<portspec> = <ident> "." <ident> <optindex>.
<connectn> = <portspec> "=" <portspec> ";" <seqconnectn>.
<seqconnectn> = <connectn> / empty.
<optindex> = "[" <constant> <listconst> "]" / empty.
<process> = "process" <ident> <signalpara> "for" <ident> ";"
<procbody> "end" <ident>.
<qchannel> = "queued" <rolelist> ";" / empty.
<procbody> = <qchannel> <constd> <typed> <pvard> <init> <procfuncd>
<trans> / empty.
<pvard> = "var" <procvar> / empty. |
<procvar> = "state" ":" "(" <rolelist> ")" ";" <seqvardecl>
/ <vardecl>.
<stateset> = <ident> "=" "[" <seqsetint> "]" ";" <stateset>
‘ / empty. |
<init> = "initialize" <stateset> "begin" <initstatmt> <seqstatmt>

"end" ";" / empty.
<initstatmt> = "state" ":=" <ident> / <plainstatmt>.
<trans> = "trans'" <seqclause> <opttrans>.
<opttrans> = <trans> / empty.

<seqclause> = <clause> <seqclause>
/ <opttag> <block> ";" <seqtrans>.

<clause> = "any" <paradef> "do" / "with" <variable> "do"
/ "when" <ident> <vparam> "." <ident>
/ "from" <rolelist> / "to" <nextmstate>
/ "save" <ident> <vparam> "." <ident> :
/ "proemptyd" <expression> / "priority" <idorint>.

<seqtrans> <seqclause> / empty.

<opttag> <ident> ":" / empty.

<vparam> "[" <constant> <listcomst> "]" / empty.
<listvariable> = "," <variable> / empty.

<nextmstate> = <rolelist> / "same".

<idorint> = <ident> / <integer>.

- 18 -

<block> = <labeld> <constd> <typed> <vard> <procfuncd>
"begin" <statmt> <seqstatmt> "end".

.<1abeld> = "label" <integer> <seqinteger> ";" / empty.
<seginteger> = "," <integer> <seqinteger> / empty.
<constd> = "const" <defconst> / empty.
<defconst> = <ident> "=" <constant> ";" <seqdefconst>.

<seqdefconst> = <defconst> / empty.

<constant> = <optsign> <numconst> / <string>.
<sign> = "4 / v.v,

<optsign> = <sign> / empty.

<numconst> = <integer> / <real> / <ident>.
<typed> = "type" <deftype> / empty. |
<deftype> = <ident> "=" <type> ";" <seqdeftype>.

<seqdeftype> = <deftype> / empty.

<type> = <simpletype> / <optpack> <typstruct> / """ <ident>.

<simpletype> = "(" <rolelist> ")" .
<sign> <numconst> ".." <constant>
<string> ".." <constant>

<integer> ".." <constant>

<ident> <optconst>.

"

NN NN

<optcomnst> = ".." <constant> / empty.

<optpack> = "packed" / empty.

<typstruct> = "array" "[" <simpletype> <seqsimplet> "]"
/"record" <field> "end"
/"set" "of" <simpletype>
/"file"™ "of" <type>.

<seqsimplet> = "," <simpletype> <seqsimplet> / empty.

<field> = <fixedpart> <seqfield>.
/ "case" <ident> <typselect> "of" <variant>.

<fixedpart> = <rolelist> ":" <type> / empty.

<seqfield> = ";" <field> / empty.

llofl'

<type>

- 19 -
<typselect> = ":" <ident> / empty.
<variant> = <constant> <listconst> ":" “(ﬁ <field> ")" <seqvariant>
/ empty.
<seqvariant> = ";" <variant> / empty.
<listconst> = "," <constant> <listconst> / empty.
<vard> = "var" <vardecl> / empty.
<vardecl> = <rolelist> ":" <type> "3" <seqvardecl>.

<seqvardecl> = <vardecl> / empty.

<procfuncd> = <pfheader> ";" <pfbody> ";" <procfuncd> / empty.

<pfheader> = "procedure" <ident> <lpara>
/ "predicate" <ident> <lpara>
/ "function" <ident> <lpara> ":" <ident>.

<pfbody> = <block> / "external"™ / “forward" / "primitive"™ / "...".

<lpara> = "(" <spara> <seqspara> ")" / empty.

<seqspara> = ";" <spara> <seqspara> / empty.

<spara> = <rolelist> ":" <ident> ,
/["var" <rolelist> ":" <ident>
/ "procedure" <ident> <lpara>
/ "function" <ident> <lpara> ":" <ident>.

<factor> = <real> / <string> / <integer> / "..." / "nil"
/ 'l[" <Seqsetint> ”]" / l'(l' <expression> ")"
/ "not" <factor> / <ident> <seqfactid>.

<seqfactid> = <lseqvaria> / " (" <index> ")".

<index> = <expression> <seqindex>.

<segindex> = "

»"" <index> / empty.

<lseqvaria> = "[" <index> "]" <lseqvaria>
‘ / "." <ident> <lseqvaria>

/ """ <lseqvaria>

/ empty.
<seqsetint> = <setint> <lseqset> / emptye.
<lseqset> = "," <setint> <lseqset> / empty-
<setint> = <expression> <segxpset>.
<seqxpset> = ".." <expression> / empty.

<term> = <factor> <seqfact>.

<seqfact> = <opermult> <term> / empty.

<0permult> "y n / "/" / l|divll / l!modll / llandll.

<simplexp> = <optsign> <term> <seqterm>.

<seqterm> = <operadd> <term> <seqterm> / empty.

<operadd> LR A Y AL YL
<expression> = <simplexp> <seqsimplexp>.

<seqsimplexp> = <operel> <simplexp>.

It

<0perel> nu / ll<>|| / H<ll / ">|l / ‘"<=|l / ">=" / 'linll.

<statmt> = <integer> ":" <plainstatmt> / <plainstatmt>.

<plainstatmt> = "goto" <integer> / <ident> <appendix>
"out" <ident> <seqind> "." <ident> <lparacint>
"nextstate" <newmstate>
"begin" <statmt> <seqstatmt> "end"
"if" <expression> "then' <statmt> <optelse>
"case" <expression> "of" <case> <seqcase> "end"
"repeat" <statmt> <seqstatmt>

until" <expression>

/ "while" <expression> "do" <statmt>

/ "for" <ident> ":=" <expression> <directiomn>

<expression> "do" <statmt>

/ "with" <variable> "do" <statmt>

/ empty. ‘

NN N

<lparacint> = "(" <index> ")" / empty.

<ident> / "same".

<newmstate>

<seqstatmt> ";" <statmt> <seqstatmt> / empty.

<optelse> "else" <statmt> / empty."

<seqcase> ";" <case> <seqcase> / empty.

<case> = <constant> <listconst> ":" <statmt> / empty.

<direction> = "to" / "downto".

<variable> = <ident> <lseqvaria> <listvariable>.
<appendix> = <lparacint> / <lseqvaria> ":=" €expreésion>.
<seqind> = "[" <index> "]" <seqind> / empty.

- 21 -

APPENDIX C

Calling sequence for using the parser

The FDT parser is currently available on two of the
University of Montreal’s computer systems, and can be incited by

the following calling sequences:

~ On CYBER/NOS BE through TELUM interaction facility:

SO FDT u=1394 Pl=n P2=source

The parameters n and source are provided by the user. n
(octal) is the maximum central memory space, in words, required
to run the parser. This value depends on the length of the FDT
source program.. The example in appendix A, for instance,
requires about 61000 (octal) memory words. The generated program

listing is routed to the standard output file.

On VAX/VMS at the Department of Computer Science and Operations
Research, type

@SYS$DISK: [GERBER]FDT

and answer the subsequent questions.

