
BOCHMANN, GREGOR V.
--Formal description techniques for
protocols : final report

or

Industry Canada
Library Que en

JIJIL 17 JUL 	1998

l
1 Industrie Canada , 1 Bibliothèque

Queen H

Œ."). 	
.. . . 	 .

e>
Formal Description Techniques for Protocols-7>

 Final Report for DOC contract Nô. OST83 -00100

(î) by(regor v.LBoc mania) 	 .

Département d'informatique et

de recherche opérationnelle 	•

Université de Montréal 	• 	.

March 1984

This report was prepared for the Department of Communications Canada ,

under contract No. 0ST83-00100. The report presents the views of the

author. Publication of this report does not constitute DOC approval of
the report's findings or conclusions. This report is available outside

the Department by special arrangement.

Appendix 12r. Meeting reports

1

il

•

ICcnietifEerlit

Executive Summary

1. Introduction
•

•. 2. Overview of FDT developments and results of the work 	.

.3. International meetings. attended and contributions presented ,

4. Proposal for future work

References

Appendix 1r. Translating a multi-module Transport protocol

specification into : a Single -modUle specification

Appendix 2u Concise definition of the semantic modal.

. Appendix 	Proposed syntax for refinements

Appendix 4:; Canadian position on the FDT question

APPendix 5r. Form Of FDT definitions for a Teéhnical Report Type 2 "

Appendix 	Notes on module refiniments

Appendix 7» Introduction to a specification language with examples

Appendix SU Introducing implementation details into Subgroup B
• specifications

4 Appendix 9:: Comparison of CCITT and ISO FDT.'s •

Append ix 10U Comparison of Subgroup El FDT and CCITT's Draft
Recommendation for Question 39/VII

Append ix 11U Considerations concerning the so-called "zero-queue"
optfon for thè Subgroup B FDT • 	" _ 1 ; .COMMUNIC•TIONS CANADA , , ; 	. 	- 	-- , 	,

OCT 1 ,?, .984
t,

uuRARY - geoiem

•

-t ni. = 	4_1 min iaL r-)00-

, Introduction to formal description techniques (FDT) for OBI .

The goals of Open System Interworking: . (OBI) . reqpre,

that implementors throughout the world develop correct' and

coMpatible protocol implementations. During the early work' .ori

OBI > it was recognized that formal description techniques (FDT)

would be desirable for attaining these goals. ,Therefore an ad

hoc group on FDT was fOrmed within the Working Grotup Wel - of .1 80

TC97/SC16. The FDT's to be developed.by this group should. .bè
helpful for

(a) previnding unambiguous, clear and concise specificationSof

the comMunciation services, protocols, and interfaces,

(b). analyzing the specifications in view of their correc.t,nem

'alutuil Consistency, efficiency, etc. -

(c) provinding support for the development of implementations e - .

(d) assessing existing protocol implementations in view of. their

conformance with the specifications.

• The ISO TC97/8C16/W01 ad hoc group on FDT .had .itÉ

first meeting in January 1980. 	During its meeting in February

1981, -three Subgroups were formed. They are called A . B. and C q .
and their respective areas of . conCern are as folloWs

Sùbgroup • A: 	Architectural concepts and how these concepts

support the work of Subgroups D and C.

Subgroup B: 	Description techniques based - on extended finite

- strate machines.

- Subgroup 	C: Description techniques•based on temporal ordering

of.interaction_primitives. •

Subgroup -D 	has defined an FDT baSed on Pascal and a

state transition mOdel. - It defines- the .behavior of a'module in

terms of a state transition machine which is specified in terms

of an internal 'state and transitions which change the module .

state 	and 	involve input and 	output 	interactiOns. 	The

specification language is largely based on Pascal 	which is now

an ISO Standard. 	Extensions ta Pascal were introduced for.

handling "major strates" and for supPorting thOse concepts defined •

by Subgroup A which are u5ed by the Subgroup B language.

During' it5 1980 	1984 Study Period, - the CCITT . covered'
the 	area of FDT for OSI in Question VI 1/39 of its Study OroUp 	-
VIi. 	The purpose of this question was to develop FDT's
application to OBI protocols and services, and to deterMine.

bort the technique SDL previously deveidped within, Study OrouP :
XI for appllcations to switching systems Could be used in the OSI
context. The result of this work j. r. a (Draft) Recombendation on
FD"1"s for data communication protocOls and services. This

, document .recommends the use of SDL and the use of a Pascal-

oriented linear language. The latter is a basic subset of the

Subgroup I:it - language developed in ISO with some minor syntactic

differences . Further study is foreseen in the next Study Period

on - the Pascal-or iented-language and other FDT's in coordinaticin

with the ISO developments.

SDL isHalso,a language based on a extended.finite state.
transition model. 	Its syntax is oriented towardS a graphical- !
representation, 	which 	jets SDL specifications appear . like '
flowcharts. 	However, 	a linear . syntax is also 'available'.
Compared to what is available in the Pascal7oriented FDT 	SDL
does not .have much power and flexibility for specifying .data
types and variables of more complex nature. -

Work performed uàder the contràct

• 	,The'work under this Contract was closely related tb the
-state of the - FDT developement activities in the-corresponding : 1SO'

and CCITT working groupS. The work of 'the author was oriented

towards the:following objectives:: • •

(a) Stabilization of the Subgroup B FDT:: The Subgroup B FDT is_in
a phase Of stabilization. The author contributed by providip'g
-example specifictions, proposing text for the precise definition

of the semantic ' modal of the language, and by helping the

establishment of a Canadian position concerning future, work

towards the development of a FDT standard. He also contributed a
paper to ISO TC97/SC16/Wel on the suitable form..of the language

definition in vie of a standardization of the language.

•

•

•

(b) Harmonization with the CCITT 	Ely • participating in thé ISQ-as
well as in the CCITT meetings an FDr's for OSI, the authOr
contributed to a harmontzation of the FDT developments-for OS I
applications in ISO and CCITT, by providing liaison between •.,the-

respective groups" Many contributions on the similarities - and•

remaining differences between the Subgroup B FDT and the, Pascal

oriented form of SD[defined in the CCITT Draft Recommandati on
..FDT were presented to the different groups.

(é). Extensions to the Subgroup.B language 	An extension to.the

Subgroup B language was proposed in the following area:: 'A methed-

for specifying substructures of modules in terms of submodules

. and their interconnection were developed in collaboration ii. t.

the CNET, Lannion (France). Such extenSions are important for

 defi'ning more complex system structures, • and are'- Useful 4or.

defining implementation and slmUlation -tools.

International meetings attended

. 	 The following meetings .iere attended by the author, and

a number of contributions were presented to these meetings, many

of which were prepared under this centract. 	 . 	.
4;,..

ISO T8971SC16/W01 ad hoc group On FDT: Subgroup B• meetinç)

(May 2 	 5, 1983, Boston)

80" TT SO VII 'Rapporteurs meeting on OLtestion 39/v]: :i: 	(Fir.) •
•((:.3enc..n..a, 15-2:3 June 1903)

Editimj group for Subgroup B:of the ISO FDT ad - hoc-group .(June

13-14, 1983, Paris) revising the Transport protocol trial

specification.

Ipo TC97/SC16/W61 ad hoc group on FDT meeting 	(Enschede,

Netherlands,' 4-8 july 1983)

ISO T093/SC16/W01 . meeting . (10-13 October 1983, Ottawa)

ISO 1803/8C16/W81 ad hoc group on FDT meeting, (January 1904,

- . 	Munich)

. Editing group for Subgroup D of the ISO FDT ad hoc group (Soston.,-

• March 1984) revising the document defining the Subgroup Ei EDT
› language.

.Proposal for future work

We think •hat a natural continuation of the wOrk- .

performed under this contract could be a continuing support :of

the ISO and CbITT discussions on FDT's. 	We think that Canadian

. inpUt• woul.d be much welcome in view of its past participation.* .

In •order to increase the usefulness of the pro:o cI

FDT, the following additional research activities are proposed'i...

a) 	To apply the method to several protocols and services ah

l(rvels higher than the transpert layer in order .to test lts

applicability in all areas of OSI. • 	 •

110 	b) 	• o improve the protocol implementation too1s which cou]. cl

partly automate the production of a protocol implementation

from the formal•specification of the protocol.

c) To imProve the tools that coulebe used• to test 'that a

protocol implementation conforme with the protocol specifi-

cation. 	Such tools coul.d be useful +or the certification,',of

coMmuni .cation software and systeMs.

d) To develop a protodol simulation tools that would make .

• simulations of communication . subsystems based •on , the formal'

Specifications of the protocols to be uSed in the system.

Such a' tool would be useful.during the development of proto-

col standards foi'» analyzing the behavior of the protocol,

finding eventual Malfunctions ,(deadlocks, etc.), and deter-

mining the efficiency of its operation ..

•
rzr

•

•

S 1. Development of formal description techniques (FDT) for OSI

The goals of Open System Interworking (OSI) requirei •

that implementors throughout the world -develop correct . - and:

compatible protocol implementations. 	During the early work Hol'i

OSI • it was recognized that •ormal description techniques (FOI) '

Would be desirable for attaining these goals. 	Therefore an ad

hoc group on FDT was formed within the Working . Oroup W81 of ISIJ
TC97/SC16. 	The FDT's to be developed . by this group should• be.

helpful for

(a)'provinding unambiguous, clear and concise specifications:of

the communciation services, protocols, and .interfaces,•

(17.0• analyzing the specifications in view of their correctness,

.mutual consistency, efficiency, etc.

(c)• provinding support for the development of implementations, .

(. d) assessing existing protocol implementations in view of their

conformance with the specifications.

• The :i: st 	TC97/SC16/W81 ad hoc group - on FOI had its 	'

first meeting in January 1900. 	During its Meeting in February.

199 1, three subgroups'were formed. They are called A, D, and

, and their respecti've areas of concern are as follows

Subg1HOup 	A: 	Architectural concepts and how these conceptis•

Support the work of Subgroups .E3 and C.

Subgroup B: 	Description techniques based on extended finite.

state machines.

Subgroup: C.: Description techniques- based on temporal -Orderi.ng

of interaction primitives.

The FDT's develeped by the subgroups are described in
I . 	 . working documents whlCh are periodically Updated, and which are 	 i

distributed 	as ' N.. 	documents - within the 	standardization 	 .
.community. The result of this work May be summerized as follows::

, Subgroup 	has defined the concepts of "modulw0,,

"diannelf.:::.", module "irlterdonn«?ct.icem" via channels, and the

"refinement" of a module • in terms of .submodules and, their

interconnection. These concepts can be used, in particular.„ for
defining the architectural .meaning . of protocol . .and service

specifications within the OSI Reference Model.-

• Subgroup B 	has defined an FDT based ,on Pascal .',und •..
state transition model. 	It defines the - behavior of a module ïn:
terms -of a • tate transition machine which, is specified in, ,
O f an 'internal state and transitions which change the modUle•
State ' and involve input and output . interactions. The

 specification language is largely based on Pascal, which iS.new
an- ISO Standard. Extensions to Pascal were introduced forH
handling "major states" and for supporting those concepts defined
by,Subgroup A wiliCh are used by the Subgroup B language. 	 .

• Subgroup C has developed an FDT which is based on the
temporal ordering of the interaction primitives executed by the
specified module. A first version of .a language was presented in
Octeber :1. 9B1 which after some important revisions lead to 'the
present document. 	The language iS oriented towards functional
programming and uses many concepts from CCS.

During - its 1980."1904 Study Period, the CCITT covered
'.the area of FDT 'for OSI in Duestion - VII/39 of its Study Group -
VII. The purpose of this question' was to develop FDT's for
apPlicati,on to OSI protocols and services, and to determine

whether the technique SDL previously developed within Study Group
XI :fcw applications to switching systems could, be used in the OBI
context.

. • Theresult of this work' ...i.s. e . (Draft) Recommendati -on on ›
FDT's for data communication protocolS and services. . This
document recommends the use of SDL and the use of
oriented linear language. The latter is a basic subset of the

 Subgroup B language developed in IEM. wfth soma minor syntactic
• .differences. 	Further study is foreseen in the. next Study - Period

•on the Pascal-oriented language and other FDT's in -.coordinatiOn
with the ISO developments.

SDL is also a language based on a extended finite state
transition model. 	Its syntax is on. antan towards a graphical
representation, 	which 	lets SDL specifications appear like

flowcharts. 	However, 	a- linear syntax is also available.
Compared to What is available in the Pascal-oriented FDT, SDL
does not have much power and flexibility-for specifying data
types . and variables b4: more coMplex nature. •

'7

1)

• 2.:Overview of FDT developments and results of the work

The work under this contract was closely .related to the
state of the FDT developementactivities in the correspohding ISO
and CCITT working groups. .The work of the author was oriented .
tbWe.Ards the following objectives:

(a) Stabilization of the Subgroup D.FDT: The Stibgroup D FDT is• in
a 'phase of stabilization. The author contributed by providing .

 ,example specifictions, proposing text for the precise definition
of the semantic. model of the language, and by helping the
establishment of a Canadian position concerning future wOrk -
tbWards the development of a FDT standard. He also contributed a.
Paper to ISO TC97/SC16/WO1 on the - suitable forM of the language-

definition in view of a standardization of the-language.

ODY_Harmonization with the CCITT: Dy participating in M-W ISO' as
well as in the CCITT meetings on FDT's for OSI, the author .

contributed to a. harmoniation of the FDT developMents for osr
apOications - in.I50 and CCITT, by providing liaison between . the
reSpective groups. Many contributions on the similarities and
remaining differences between the Subgroup B FDT and the Pascal —

oriented form• of SDL. defined in the CCITT Draft Recommendation'
X.FDT. were presented to the different groups.

(cji Extensions to the Subgroup D language:- An extension to - the.

SUbgroup D language •wam proposed in the - following area:, A method -
for. specifying substructures of modules in terms of smbmodules - • '
and . their interconnection were. developed• in collaboration .with
the CNET, Lannion (France). Such extensiôns are important for
defining more complex system structures,. and are useful for
defining tmplementation and simulation tools.

• The .following vliectiori conta'ins a list of the meetings
attended by the author and the, contributions presented. An
overview of the present state'of the FDT Oevelopment +Or OSI
applications is given in boch 84bJ and UViss S..:›71: •

•

4.

•

•

3.. International meetings attended and contributions presented- _

This sections lists the international meetings which::

were attended by the author in the framework of this contract,-

and:- the contributions presented at these. meetings. • The -

contributions which were prepared as part of the work for thiS

contract are indicated by a star "*".

3.1. ISO TC97/SC16/W61 ad hoc group on FDT Subgroup B meeting
(May 2 - 5, 1963, Boston)

"Examples 	of 	Transport protocol 	specifications" 	(BoUrce::-

O.v.Bochmann) CAM-11 [se • Doch 82i].

* ‘ "Trans].ating a multi 	module Transport protocol . specificatton

into a single-module speCification"'(Source. O.V.Bochmann),CAM -12

. Esee Appendix 1].

* ."Concise definition of the semantic model for the extended

-State transition FDT" (Source:: On V.. Bachmann) CAM-13 [see Annex'2

• of:Appendix 5].

3.2. CCITT SG VII Rapporteurs meeting on Questicin 39/VII (FDT)
(6eneva,.15-23 June 1983)

"Proposal for sectiOn 3 of the draft recommendation"

Canada) D 437 Csee Annex 7 of Doch 83d].

"Propesal for section • of the drift recommendation" (SoUrce::.

'Canada) D 438 [see Annex 7 of- Doch 03d].

"Proposal for .section 7 of the draft recommendation" (Source:: •

Canada) D 439 Esee Annex 7 of Bach - 1:33d].

Ni ne contributions froM the-ISO TC93/SC1)/W81 FDT group were

presented by the author in his function as ltason representative

of the ISO FDT group.

* "Concise defihition o4 the semantic model" (Source: Canada) D

568 Esee Appendix 2].

9

3,3. Editing .group for Subgroup B of the ISO FDT ad hoc grlagp•
(June 13-14, 1983, Paris) revising the Transport protocol

Specification. 	 . .

Isp TC97/SC16/W61 ad hoc group on FDT meeting (Enschede,
Netherlands, 4-8 July 1983)

. 	.

Terformance considereations for a state transition 	model" •
(Source C.jard and (3 .V.Dochmann) THT -14 Esee Boch 04 1 .

* "Proposed syntax for refinements" , (Source :1 0.v.Bochmann and'

• C.Jard) THT-15 Esee Appendix 33.

Tin contributions 'F rom the CCITT Rapporteurs group on (7.139/VII,

including- the new draft Recommendation, were presented by the

author in his function as liaison representative.

3,5. ISO TC93/SC16/WG1 meeting (10-13 October 1983, Ottawa)

*• "Canadian position on the FDT question" 	(elaborated. :'..1.1"1
Collaboration with L.Logrippo and the Canadian com (T1 ittee on OSi):.

110 	
W01 N140 (CAC document 03'43) Esee Appendix 4:1.

*•.• "Form of FDT definitions for a Techni cal Report Type 2"
(Source Onv.Bochmann) W6 :1. N104 (CAC document 03-44) Esee
Appendix 5].

* "Notes on module refinements" (Source:: 0.v.Bochmann) OTT-FDT-2 : •
fsee. Appendix 63.

* "Introduction to a specifiCation language with examples"

(Source:: (3 .v.Dochmann) OTT-FDT 	3•Esee Appendix 73.

* "Comparison 	of 	"transition 	oriented" 	and . "structured"

' specification languages" (Source„ G. v. 	and J.P.'Vergus) '
OTTFDT 	12 Esee revised version as Annex of Appendix 11]..

10

•

3..6. ISO TCO3/SC16/WS1 ad hoc group on FDT -meeting (January 1984,. - .
- 	Munich)

*' 	"Introducing 	implementation 	detai I s' 	into 	Subgroup.
specifications" (Sci,.r:e 	G y 	Bochmann) MUN-2 tsee Appendix-0 -J*

*. "Comparison of CCITT and ISO FDT's" 	(Source: CCITT ;;::9';I 3:
(roup) 	:1. 	.1 N 211 Esee Appendix-91. 	 •

* "Comparison of Subg•oup D FDT and CCITT's Draft Recommendation
fer Q39/VII" (Source:• (3 .v. Bachmann) MUN -3 Esee Appendix ig].

* "Considerations concernin(j the so-Lcalled "zero-queue" opt:lon
for the SubgrouP B - FDT" (Source: G.. y.. Bochmann and j.P. VerjUs)
MUN-4 Esee AppendiX 11].

* "Alternate.syntax for transitions" 	(Source:. (3.. V.. Bochmann,• -
prepared during the meeting) MUN-15.

Editing .group for Subgroup 'Et of the ISO FDT ad hoc groilp-
(eoston, March 1984) revising the document defining the SubgrOup'
D ÉDT language.

Meeting reports for the variouS meetings.are given in Appendix 12,

- 11 -

•

•

4. froposal for future work

We think that a natural continuation of the Work'

performed under this contract could be a,continuing support of

the ISO and CCITT discussions on FDT's. We think that Canadian

input would be much welcome in Vie of its past participation.

In order to increase the usefulness of the proposed',

FDT„- the following additional research activities are proposed:. ,

,a) 	To apply the method to several protocols and services at..

leVels higher than the transport layer in order to test its:'

apPlicability in all areas of OBI..

h) 	To improve the protocol implementatfon tools which could.

partly automate the production of a protocol implémentatiOn

from the formal specification of the protocol.

c) To improve the tools that could be used to 'test that a

protocol implementation conforms with the protocol speciff+

cation. 	Such tools cou:Id be useful for the • certification:of

communication software and systems.

d) To develop • a protocol simulation tools that Would make -•

simiflations of communication subsysteffis based on the formal

specificationS of ,the protocols to be used in .the systeffi.

Such a tool woufd be - useful during:the development of prOto7. •

. col I standards for analyzing the behavior of. the prottical,•
finding eventual marfunctions (deadlocks, etc.), - and deter-

mining the efficiency of its operation.

12

-F r-

CBoch 021] 0.v. Bachmann, "Examples of TransPort1Jrotacol
. 	.

specifications", contribution tri ISO TC97/SC16/W13lacr

hoc group on FDT, Twente -3, 1902. Originally prepard
. 	 .

under contract for COST . 11 bis (CEE).

Moch 03d] o.v. Bachmann, "Formal description techniques for

protocols", Final report, DOC research contract

. 08U92 -00210 (l b° pages), 1903.

PBoch 84] o. y. Bachmann, "Performance statements in Subgroup . B . ,

specifications",-Report for DOC research contract

oSTO3 	00002, CERBS informatique Inc., Feb. 1904. 	.

Moch 04b] S.v. Bachmann„ "Formal description techaiques +or

. an example",i to be presented at INFOCOM '04, San 	• . •

FranciSco, April . 1904.

EViss 83] C.A.Vissers, G.v. Bochmann and R.L.Tenney, "Formal

description techniques by ISO/TC97/SC16M01 'ad hoc

group on FDT", Proceedings of the IEEE', to be

published.

•

•
13

Appendix 1

•

C A -

Title: Translating a multi-module Transport protocol specification
into à single-module •specification

Atithor: G. v. Bochmann
_ 	.

DUring the last meetins of Subgroup El, there has been some diScUssion
Pn the issue whether a protocol specification should be given•as one

 Module or as a structure of several interconnected Modules. This
contribution does not address this discussion, but simply pointsout
that the Transport protocol specification given by thisauthor : dru,
terms of several modules can be easily translated into a form
containing only a single module. To point out the principle of the
translation, only some examples of certain transitions In the single-
module version are given.

The'following example assumes that the semantics of the consthadt
"from <state> to <next state)" is defimed'to be equivalent to the
the additional PROVIDED condition "'and STATE 	state> " and an

additional Pascal statement in the transition action of the-form "
STATE := <next state>

EXAMPLE

(* this specification is obtained as a combination of the ATP and -
Mapping module Specifications given earlier *)

module T_entity (TS 	array ETC_id_type] of TCEP_primitives (provider);

1110 	 NS : array ENC._id_type3 of NCEPprimitives (user).);:

var
TC 	array ETC_idtype] of record

in use 	boolean;
remote_T_addr 	"Laddress_type; (* see TS *)
remote_ref 	reference_type;

• assignedj.NC 	NC_id_type;
• max_PDU_size 	PDU_size_type;

clams • class_type;' 	 •
OTS 	quality_of_TS_type; (* see TS *)
,PDU_buffer 	array ETPDU_code_typej of record

full •: boolean;
PDU 	TPDU_and_control_information
end; 	'

state 	(closed, open_in_progresscalling, open_in_progress_called,
open, 'wait_beforeclosing, closing);

options 	option type
class := class_type;
TR,
TS 	seq_number_type;
R_credit, 	•
S_credit 	credit 	type;
receive_buffer,
send buffer 	data 	buffer;
EX_D_sent.

EX_D_received 	boolean;

: PDU_and control_information; (* temporary variable *
:end;

• NC : array ENC_id_type3 of record
NC_state : (closed, open_in_progress, open);
remote_N_addr 	N_address_type; (* see NS *)
this_side 	both_sides; (* see NS *)
QNS 	quality_of....NS_type;
received_NSDU,

• NSDU_to_be_sent : record 	 •
user_data_present 	boolean;
data : string_of_octets;
end; 	 •

supports_class_O 	boolean;
• corresponding_TC....id 	TC_id_type; (* used for class 0 only *)

end;

- (f DEFINITION OF INTERFACE FUNCTIONS *)

any. NC_id 	.NC_id...;type do 	 .
.1\1S.ENC...id]. user...ready (data_length) :=

(NC ENC...id].receiyed_NSDU.data.length = 0
and data_length <= (/ some implementatdon dependent Maximum 1)

(*. procedures ancrfunctions:- see Mapping *)

110 	.(*..TRANSITIONS *)

(*.HANDLING REQUESTS FROM THE ATP MODULE *)

thè following three transitions are to be converted into procedurei
-*) •

when ATPETCEP...id -J.forward (* PDU *)
(* this input may occur with ANY value of TCEP_t

begin with TCETCEP...idl do begin
PDU_buffer EPDU.kindLfull := true;
PDU...buffer [PDU.kind3.PDU := PDU;
wtth PDU_buffer EPDU.kind3.PDU do begin -

case kind of 	 •

CR : begin
in_use := true; -
QTS := QTS_ind;
remotej_addr := peer_address;
end; (4 next transition is the selection of an appropriate

Network connection, possibly after the establishment
of •a new Network connection *) •

CC begin
max....PDU_size := (1 check_PDU_size_negociation_rule

(old value,- new value) /
• -

11, 	
class := 	(* may possibly be changed *);
with NCEassigned_NC3 do-begin

supports_class_O := (class =
if supports_class_O then çorresponding_TC...id :=-TCEP_id;

,

•

•

•
end;

end;
DR, DC, DT, AK, EDT, EAK, ERR :;
end;

end end;

when ATPLTCEP_id].implicit_termination
begin with TCETCEP_id3 do begin

if assigned_NC = undefined
then (* wait_for_NC state; no action *)
else NS Eassigned_NC3.N_DISCONNECT_req;

_ 	close_and_clear_buffers(TCEP_id)";
end; end;

when ATP UTCEP_id3 !.terminated
begin close_and_clear_buffers (TCEP_id) end;

.(* .Concatenate a'PDU to be sent into thé NSDU to be sent *)

any NC_.id :.NC_id_type,
, TC_id 	TC_id_type,
Wind TPDU_code_type
• do with NCENC_id3, TCETC_id3 do
•provided PDU_bufferEkind3.full

and not NSD(J_to_be_sent.user_data_present
and NSDU_to_be_sent.data.length

determine_PDU_length (PDU_bufferEkind3) •= max ._PDU_size
and assigned_NC.=,-NC_id
and not ((Class = class_0).and -(NSDU to be _sent.data,length <> 0)

(* no concatenation for Protocol class 	*)
. and not (.(kihd = DT) and PDU_bUfferEEDTJ.full)

(* normal data may not overtake expedited data *):,
- begin

• with NSDU_to_be_sent do begin
encode_PDU (PDU_buffer Ekindj, data); 	 •
PDU bufferEkind -J.full := false;
if user data <> undefined then user_data_present := trbe;
end;

if PDU_bufferEkind3.PDU.is_last_PDU
' 	then close_and_clear_buffers (TC_id);

end;

(* send a NSDU *)

any NCEP_id 	NC:.id_type do with NCENC_id3 do
provided NSDU_to_be_sent.data.length <> 0

and NS_state =. open
and NSCNCEP_id3.NS_ready (* flow.control to Network layer ready *.

.begin
NSENCEP_id]. N_DATA_reci

(NSD(J_to_be_sent.data, true (* complete NSDU *))5
NSDU_to_be_sent.data.length := 0;

end;

Ye

rface

(* - HANDLING OF INCOMINO POWS *)

(* receive a NSDU with one or more PDUs'*)
, 	• 	! 	-
when NSENCEP_id3. N_DATA_ind (* NS_user_data, is_last_fragment_of.,:MSDU

• with NC ENCEP_id3 da
provided received_NSDUAata.length = 0 (* NSDU buffer is empty; thi

means that the flow control to the Transport entity is rea

as defined by the function nuser_ready" of the NCEP .*)
and fs_last_fragment_of_NSDU (* it'is assumed that the N-it

transfers complete SDU in.each N_DATA primitive '*)
begin

received_NSDU.data := NS_user_data;
end;

(* handling a received PDU *)

'(*,.here are changes .,.*)
• Wsee later

*.• MANAGEMENT OF NETWORK .CONNECTIONS *)

(* refuse Transport connection; not able to provide serVice *)

any TC_id 	TC_id_type do with TCETC_id] do
provided PDU_bufferf:CR3,full

and (1 not able to provide service /)'
begin

ATP CTC_id3.close_indication (/ 	 •
• if mapping. between Transport and Network addresses

is not possible then U_UNKNOWN;
• if a N_CONNECT_req was sent,to establish a neW network,

• connection for this TC, and N_DISCONNECT wat received ,
• TS_disconnect_reason :=

if NS_discohnectreason = NS_U_NRM
then TS_FAIL else TS_UUAL_FAIL;

• UTS.class_of_service = enhanced
implies TS_QUAL_FAIL ne

• gnu (* dummy user reason *));
close_and_clear_puffers (TC_id);

•end;

(* assign a Transport connection to a •Network connection *)'

any TC_id 	TC_id_type, NC_id 	NC_id_type do
with TUTC_id3, NCENC_id3 do

provided PDU_bufferECR3.full
and NC_state = open
and QTS.claSs_of_service = basic

4

. 	 1. 	. . 	 . 	 i
and (/ check throughput quality /) 	 , ,
and (/ check addressing /) 	 . 	

■

and (/ able to provide service 1) - 	 I
begin 	 i . 	.1

assigned_NC := NC_id;

	

_ 	 ' 	1 local_ref := (/ ... e <> 0 and not in use with the same NC / 1
, . 	 ! . 	.

remote_ref U= 0; 	 . 	!
. 	 I class := ...; (* select appropriate protocol class *).

(* property: -(data <>• undefined) or (expedited_data i..11 optic)!
ris) 	 1 :

• or (this_side = called) implies class e--.çlass_2 1

(* conformance property: 	
not class_0_implemented implies clasS <> c]ass_O

and not class_2_implemented implies class <>.class_2 *,

max_PDU_size := ...y
(ié property: class = class_O implies

'Max_PDU_size in [.256, 512 e 1024 e 2040] , *)
end; end anY;

(* TRANSITIONS *)

(* taken from- ATP module *)-

(*CONNECT): ON ESTABLISHMENT *)

(* when TS.T CONNECT req *)
when TS CFC_id]. Î_CONNECT_re

- with TCETC id] do

. provided TS.TS_ready_for_CONNECT_req
from closed tp operUn_progresscailing
begin

options := proposed_options;
TR := 0;
TS := 0;
EX_D_sent 	false;
EX_D_received := falSe;
with Ppo do begin

kind :=CR •
peer_address := to_T_address;
option_ind := options;

proposed_QTS;
user_data := data;
end;'

ptee»forward'(PDU); *)
forward (TC_id e PpU);

end;

(* when Map.forward (* PDU *) provided PDU.kind = CR
*)

(*

•

any NC_id 	NC_id_type do 	with NC ENC_id3 do
provided received NSDU.data.length <> 0

and not((7 PDU_kind(received_NSDU.data) /) = Dl and supports_cla
ss_O

and not ATP[corresponding_TC_id].ready_for_receiving)

with TCEdetermine_TC(NC_id, decoded_PDU(received_NSDU).dest_ref)3,
'decoded_PDU(received_NSDU) do

rc...)Vided kind = CR
and not in use
and remote_ref = source_ref
and dest_ref = 0
and (/ not exists ... 1)
and determined_PDU_length 	

• and not (class_ind = class_O and this_sice = calling)
• and (/ able ta provide service and destination address known /)

•from closed to open_in_progress_called
begin

(* normal processing *)
TC_id.T_addr := determine_T_addr

calledad-(Jr-');
TC_id.id 2= (/ ... such that

not TCETC_idLin_use
remote_T_addr := determine_Taddr

(NŒNC_id3.remote_N_addr, calling_addr

received_PDU.peer_address := remote T addr;
QTS :=
received_PDU.QTa_ind := - OTS;•
remote_ref 2= source_ref;
asSigned_NC := NC_id;
ATP ETC_id3.forward- (receiveÉLPDU);

options U= option_ind;
class := class.Lind;
'TR := 05

• TS 	05
S_credit
R_credit := credit_value;
EX_D_sent 	false; -
EX_D_received . := false;
TS

Edetermine_TC(.....)3

.T_CONNECT_ine (local_T_addr, PDU.peer_address, options,
PDU.GITS_ind, PDU.user_data);

fite

end;

6

•

Appendix 2

COM VII No.

CAN COM V11 No. 13

International Telegraph and Telephone
COnsUltative Committee

(CCITT)

•

Period : 1980-1984 • 	 Original: English

Question : Q39/VII 	 Date : May 1983

Study Group VII 	TEMP« DOC. NO. = =. 	,== = = == .i=====

TITLE: Concise definition of the semantic model

SOURCE: Canada

This contribution is far input to the Special Rapporteurs 	Group
meeting on 039/V11 to be held in june 1983 in Geneva. 	 •

1. General

Canada considers that high priority should be given to the
elaboration of the Draft. Recommendation as outlined during the .•
laSt Rapporteurs meetings'in 'Melbourne and Geneva;

2. Proposed text for semantic model

The annex contains a concise definition for.the semantic model. of. •
the extended state transition FDT. It is proposed to be uSed as 'a

- first draft. of the text for Section 3 ,of the Draft-
Recommendation. It is believed that this text is more appropriate
than.the one proposed in D.439 (Geneva Dec 82) , since it is more
concise and does not contains examples. Examples could be given
as an annex to the Recommendation.

In order to reflect current developements in the FDT defined by
Subgroup B of the ISO FDT group, the text ln the anneX does not
include rendez-vous interactions, and considers the possibility
of having separate input. queues for each input channel of a
process.

In order to align the.terminology with current practice.in the
area of programming language design, the term "interaction point"
has been replaced by the term "port

Otherwise the text of the annex is believed to be in line with
U he "Common Semantic Model" defined during the Melboiarne meetin g.
and the conclusions of the last Rapporteurs meeting in Geneva. •

1

•

•

oni

3,. 1 	Introduction

(to be provtded)

. 3.2. General Considerations

TypeS and instances

For each of the fol lowing concepts (e. g. block, signal, channel,
protess), <concept> types and instances thereof.are defined. Each
instance belongs to a particular <concept> type. The latter
'defines all generic properties of all instances belonging to that
type,

3.2.2. Concepts borrowed from a base lancipage

A certain number of concepts used by the semantic mode]. are taken
from a base language (e.g. Pascal, etc.). Various base languages
could be used in conjunction with the semantic model defined
belOw. The base language concepts are used far the description of
data structures and the rules for processing the values of data
structures.

The following concepts are used:

A data structure type defines a set of 'possible values that a
variable of that. type may,assume.

An expression is a functionwhich defines a a value depending
.On .the values of the subexpression out of which the expression 'is-
formed.

A task statement defineS an update operation• of a set of state •
varlables.

3.3. Definition of the semantic Model

1.......fehAnnel

3.3.1.1. A cbanne1 . type describes possible: interactions
between two blocks. For each channel type, a number of signal„
types are defined. Each signal type is characterized by a number
of panarpeters. Each parameter of a signal type is associated
with a parameter Dame. and a data structure type. Each
occurence of a signal of a given type ig characterized by
instances Of parameter values, one parameter value for each
parameter of the signal type. Each parameter value must conform
to the associated data.striacture type of the parameter.

3.3.1.2. Each instance of a signal is initiated as output by
one of the connected blocks and is received as inputby the
other block. The definition of a channel type also includes a

•

specification, for each signal type, of the direction (between
the two connecte(:I blocks) in which it may be initiated (possibly H,
lh - both directions). . 	.

• 	 .

3.3,1.3. In each direction of interaction ovèr'a giVen
instance, the signals initiated as output at the one side are .•
received on the other side in the same order and with the Same. :-
parameter values, but possibly with some delay.

3.3.1.4. A channel type may also be associated with continuous
interaction types. Each type of continuous interaction is
associated with .a data structure type and a direction (from the 	.
dutputting block to the receiving block). For any instance ofthe. .
channel type, the outputting block instance determines at any -
given time an interaction value, and this value is received as
continuous input by the other block instance Connected to the
thannel instance. At all times, the continuous interaction value - .
must tonform to the'associated data strudture type, except wherÈ 'H
the value is undefined.

3.3.2.1. An instante of a bloc k is a unit of description. It
represents a part bf the described system. A block instance
interacts with its environment through a number of ports. Each
port is, associated With a channel type. '

\ 3.3.2.2. Further 'properties of a block type may_be defined in
either of the following ways

(a) by . the specification of a precess type aSsociated with the
block type; a process instance of this type is'associated with
each . instance of the block; .this process is the initial process
Of thé block, and may create additional process instances during
its execution.

,

(b) by the-specification of a refinement type associated
the block type. 	 .

(c) other means for defining the behavior of a block type are for
further study.

3.3.2.3. The brwn(jany of a block is defined by the set Of ail
parts of the block.

3.3.3.1. A refinement type for à- given block type defines a
number of sub-blocks, internal connections, and external
connections. Each sub-block is associated with a block type. An
internai connection identifies two ports of two sub-blocks. An
external connection identifies a port of a sub-bloCk,And a port
of the block type to which the refinent is associated.'

3.3.3.2. The interpretation of a refinement - is as follows An

4

instance of the block typé associated with the refinement is
equivalently described by a number of block instances., one for
each sub-block of the refinement (of corresponding block types
Connected through channel instances such that for each internal
connection, there is a channel instance (called :internal
C:.ftannel.) of the type associated with the ports of the connection .
'('-the two connected ports must be associated with - the same channel .
type). The ports of the block instance are realized by the ports
Of .the sub-block instances as indicated by the external 	 .
connections (again, the two "connected" ports must .bé of
identical channel type).

33.3030 Refinements may be used in several levels (levels of
abstraction) that is, the block type asSociated with a sub-blodk
maY.again be defined in terms of a refinement, and So on.,

'3,0 3 0. 0 4 n A system is spedified as a block type.

. 3,4 Frc:H:ess

• 3.3.4.1. A process type is defined in terms of its possible
states and its possible transitions.

3.3..4.2. At any given time, an instance of a process type is

either in one of the possible states, Or is in the process of
doing one of the possible transitions.

3..3.4.3. The possible states of a process type are - defined in
terms of a number of state variables. Each variable is assodiated.
with:a data structure type. When the proCess is in a state, thi's.
state is identified by the values taken by the state variables.
The value of each state variable must conform ta the data
structure type associated with the variable.

3.3.4.4: The variables of a process type can be identified by 	.
their name. One of the state variables may have the name "STATE"..
The. value of this Variable is cal led the major state of, the
process.

3.3. 4. 5. 	A j7.rapsi.j;.i.pri, s def ined by . an el,..a.bj ing_pqncljtimi.
and an operation. . An enabling condition may consist of the
following partial enabling conditions,

. (a) an input condition, -
(b) a cOndition on the present major state,
(c) an additional enabling condition, and
(d) a priority condition.

3.3,4.6. h transition which has -nt) input condition is called a
gpontaneous transition. The other transitions are sometimes
cal led inflUt transitions.

110 	
3.3.4.7. - An input condition identifies a port of the block to
which the process is.associated',.and an input signal: type.

3.3.4.8. A condition on present major state identifies one major
state, or a set of major states.

3.3.4.9. An additional enabling candition'is a boolean 	 .
expression which.may depend on the following information: 	.
(a) The values of the state variables - (except for the major state- -
variable named "STATE"),
:(b) the parameter values of the input signal identified by the

• input 'condition, and . 	.
(c) the continuous input interadtions-received,at the ports
thé block to which the process is associated.

3.34.10. A priarity condition ... (for further study) .

3.3.4.11. The operation of a transition is defined in terms of .e
ta‘sk statement, and defines a new...state, that is, new values
for, the state variables, and possibly one or several output
signals. Each output signal is associated with a part of the
block to which the process is assaciated. The new values of the :
state variables . and the parameter values of the output sigPals,
may depend on the informations (a), (b) and (d) above.

3.3.3. Interpretation of a process definition

3.3.5.1. A prpcess instance is either in a state or doing a
transition« When a process instance is in a state, it may begin
the execution of a transition if all partial enabling condition
of .that transition are satisfied

•
3.3.5.2. Only one transition may be executed at any given time -
by a given process instance. During the execùtion of . a- •
transition, the new values of the state variables and the
parameter valueS of the output signalsare determined.

The output signals of the transition - are made availele
• ta the channel instanceS connedtecrta the ports assaciated with
the output signals during the transition in the order as
specified by the operation of the tranSition.

3.3.5.4. The continuous output generated by a process instance
iS pndeftped during the time when the process does .è.à.
'transition. As soon as the execution of a . transition terminates,
the continaus output is determined acdording to the new values of
the state variables of the process.

3.3.5.5. An input condition is satisfied when an instance of the
signal type 'specified by the input condition is the next input
signal to be received by . the process from the channel instanc e.

 connected to the port speclfied by the input condition. This
signal instance is consUmed When (and only when) the transition
is executed. (That is, testing the input condition does not-
change the state of the channel).

3.3.5.6. . A condition on the present major state is satisfied if
the state variable named "STATE" has the value, or one of the

6

• values specified by the condition..

An additional enabling condition is satisfied.if (and
only if) the specified boolean expression evaluates to TRUE. If
the expression includes a reference to a continuous output _
function the value of which is undefined then the expression has . :
the value FALSE.

3.3.5.0. A priority condition is satisfied ... (for further
study)

3w3.5.9. If a process instance is in a state and the enabling .
'conditions of•several different transitions are satisfied, at 	•
mOst one. of these transitions will be executed by the process.
The other transitions may be executed later if their enabling ,
condition is still satisfied. Which of the possible transitiOns -
will be selected for execution at any given time is.not
determined by the'model.

3.3.5.10. A transition is called-potential if it may not be
executed by a procesS instance . for which it is definec4 even when
its 'enabling condition remains satisfied forever. A transticin
that is not potential and the enabling condition of which reMains
satisfied (from a certain point in time onwards) must eventually'
be:executed by the process.

3.3.5.11. Input transitions are not potential. (Note: That its l a
"fair" processing of the different input signals is assumed)..

3.35.12 	When the option of global input prioritm is used, 	.
any input transition ln the system has. priOrity over•anY
spontaneous transition within the system.

3.3.5.13. When the option of common input queue is used for a
given process type„ . the input interactions,received by an
instance of that process from its Ports, are first put into ah
input queue before they are considered as input for transitions.
They'are considered as input for transitions in FIFO order.

3.3.5.14. When the save option is used,', input
stgnals in a queue (either the càmmon input: queue or the queue
of p channel)•may be saved instead of being considered as input
for a transition. In this case, which input signal is saved and
which input signal is considered as input depends on the major
state of the process instance and the type of signal in question.
Saved signal remain in the input queue and maybe considered às
input at a later stage of the execution of the process.

3.3.5.15. A . process instance dan create other process instances
(possibly• of other type) by the exécution of a start action
during the operation of a transition When - created,-,a process
instance has an empty common input queue (if any), and the values
of all state variables are undefined. The 'created process
instance begins its execution by the execution of its g:t.Dr.t
transition operation,

• 3.3.5.16. A process instance may execute a stop action_ during-,H• •
the—operation of a transition. The execution of this action leadS'
to:the immediate termination of. the process instance and the
discarding of all input signal retained. After this the process'::
filstance, its common input queue (if any) and any-other retained
information will no longer exist

•

•

•

Appendix 3

•

Title: Proposed syntax for refinements

Source: G.v. Bochmann (Canada, Univ. of Montreal), C. Jard (France, CNET)

The annex A contains a proposed syntax for the specification of a block
refinement which is more general in nature than the syntax proposed during the
Melbourne meeting. The following are the main différences and the rationals for
proposing the more general syntax below:

I. Parameters for refinements and processes
The definition of refinements and processes may include parameters which

are determined during system initialization. This is required for determining such
things as identifiers or names of a process (as seen by that process itself), the
number of subblocks in a refinement, etc.

2. Arrays of subblocks
It is possible to define arrays of subblocks within a refinement

(corresponding to arrays of interaction points, as already allowed in the
language).

3. Flexible establishment of interconnections
The syntax for the establishment of internal and external interconnections

between subblocks in a refinement is somehow modified, in such a way that each
connection is established by the execution of an internal or external "connect
statement". These connect statements can be controlled, like the usual
statements of Pascal, with loop and if statements, which allows a flexible
establishment of complex interconnection patterns.

4. Separate statement for block initialization
The same kind of flexibility as for the interconnection establishment is

foreseen. Each subblock is initialized by the execution of an "initialization
statement", which defines the behavior of the subblock (in terms of a further
refinement or an extended state machine, i.e. "process") and defines the
effective values of the parameters of the refinement or process, respectively.
This facility is, for instance, useful for specifying a system which contains tvvo
transport entities, each of which follows its own version of transport protocol.
(Such a system may be considered when the compatibility of the two protocol
versions are tested by a simulation study).

5. Scope rules and embedding
The usual scope rules of programming languages with embedded "blocks" is

introduced by the possibility of including "sections" in a refinement (see syntax
rule for <substructure definition>). Such a structure is useful for top-down
design.

Note: Although the elaboration of the interconnection structure and the
definition of the behavior and initialization of subblocks is defined by the
execution of a series of programming language statements, the defined system
structure is considered a static one; the structure is established during an "initial
phase" of the system phase, which is followed by the normal execution phase of
the system which is determined by the transition rules of the extended state
machines initialized during the "initial phase".

Annex A : Syntax for substructure definition

<substructure definition> ::=
REFINEMENT <refinement id> <parameters> FOR <blocktype id> ;
<section>*
<constant definition>

<type definition>
VAR <subblock instance>*
<procedure and function definition>

INITIALIZE <block> ; 	 (* Note a, Note b *)

<section> ::=
I <channel type definition>
I <module type definition>
I <substructure definition>
I <process definition>

I INCLUDE <section id> 	(* Note d *)

<subblock instance> ::= <subblock id> : <module type id> ;
I <subblock id> : ARRAY I <index type> I OF <module type id> ;

(* Note c *)

<section id> ::= <refinement id>
I <module type id>
I <process id>

Note a: The syntactic construct "block" includes statements of the following
forms:

<internal connect statement> ::=
CONNECT <qualified port ref> = <qualified port ref> ;

<external connect statement> ::=
REPLACE <port ref> BY <qualified port ref> ;

<qualified port ref> ::= <subblock> . <port ref>
<subblock> ::= <subblock id>

<subblock id> I <index> I (* Note c *)

Note h: The block includes statements of the following form:

<initialization statement> ::= INIT <subblock> WITH <behavior> ;

<behavior> ::= <process id> <effective parameter list>
I <refinement id> <effective parameter list>

Note c: Multidimensional arrays are also allowed.

Note d: This construct is used to indicate that a separately specified section is
assumed to be included here. Its meaning is equivalent to having the referenced
section specification included at the place where the INCLUDE construct occurs.

Note x: The following module and process definitions are assumed:
<module type definition> ::=

MODULE <module type id> (<interaction points>) ;
-2-

<process definition> ::=
PROCESS <process id> <parameters> FOR <block type id> ;

<module body>

Note y: <port ref> is the same as <interaction point ref>.

Appendix 4

e

• ISO/TC 97/SC 16 N XXXX
Date: 1983 08

ISO
-INTERNATIONAL ORGANIZATION FOR STANDARDIZATICN
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/TC 97/SC 16
OPEP SYSTEM INTERCONME=ON

SECRETARIAT: USA (APSI)

Source: Canada

Title:. Canadian Position on the FDT question

1) Canada maintains that the FDT should be a ISO standard.
The reasons for this were presented in documents

• ISO/TC97/SC16/N 1409 and EGle 59.

2) Canada recommends that the following steps be taken by
the FDT Group of EG1:

a) Work should be done to completely align subgroup
B's language with the language of the draft recommendation
prepared during the June meeting of the CCITT Special
Rapporteur Group on Question 39/VII. A compromise
should be sought towards one single syntax for both
ISO and CCITT.

Special difficulties are:

- The NEXT STATE feature, which Canada believes could he
added to Suhgroup B's language.

- The SAVE feature, which does not seem to be needed for
the description of protocols, but which could also
be added to the language for compatibility with the
CCITT recommendation.

b) Concerning language elements that are included in the
current SubgrouP B language, but do not exist in CCITT's
draft, and are not mentioned for further study, Canada
recommends that, if possible, they be taken out of Sug-
group B's language. •

PAGE 2

• c) . , Work should proceed in coordination between ISO and
. CCITT on the language e]ements left for further study

in the CCITT draft, and other future enhancements of
thé FF. Tt is honed that in the future a cammon text
of the FPT definition can be developed.

3) The auestion of syntax and semantics for module inter-
connection (as discussed in document THT 15, submitted to
the July meeting of the PDT group) is particularly urgent,
because it is an imnortant missing element in Subgroup B's

•

•

Appendix 5

•

•

\G1 kh

I S 0

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/TC 97/SC 16

OPEN SYSTEMS INTERCONNECTION
SECRETARIAT : USA (ANSI)

To : TC 97 / SC 16 / WG 1

a
From : G. V. BOCHMANN, Canada

Title : FORM OF FDT DEFINITIONS FOR A TECHNICAL REPORT TYPE 2

During the last WG-1 meeting in Paris, I tôok on the task of •
investigating what work would be required to transform the definition of an FDT
into a Technical Report type 2. The following is the result of this investigation.

The purpose of ISO Technical Reports and the procedure for
publishing them is explained in Section 7 of Part 1 of the Directives for the
Technical Work of ISO, which is attached for convenience as Annex 1. It can be
concluded that the procedure for publishing a Technical Report is similar to the
one for a standard, except that one of the voting stages (corresponding to the
DIS) is missing.

Since in the case of a Technical Report of type 2, it is foreseen that
there is the possibility, in the future, for an agreement on the subject as a
standard, it seems appropriate to present a Technical Report already in a form
similar to the one prescribed for a standard. The rules applying to the
presentation of international standards are explained in Part 3 of the ISO
directives. An overview of the required structure of a standard is included for
convenience in Annex 1.

•••1•••

In the case that the definition of an FDT is to be given in a form . 	.
similar to the one prescribed for a standard, some rewriting of the working
documents of Subgroups A, B and C of the ad hoc group on FDT seems necessary.
In fact, the present form of these documents is tutorial-like, including many
examples and other kinds of informal explanations. It is the opinion of the author
that for the purpose of a Technical Report or a standard, the definition of an
FDT should concentrate on the syntactic rules that define the language
constructs and the meaning (i.e. semantics) of the specifications that can be
construdted by the language. A tutorial explanation of the language may be given
separately, possibly as an annex.

There seem to be essentially the following two methods by which the
technical content of an FDT definition could be structured :

(a) structured by language concept, where each subsection on a particular
language element includes the syntactic and semantic rules, or

(b) structured first into (1) semantic model, (2) syntactic rules, and (3) rules .
defining the semantics of the syntactic constructs, and then by language
construct.

Structuring method (a) is used in the standard on Pascal (IS 7185). The
method (b) is related to the present structure of the FDT working documents.
Methods similar to (b) have also been used for recent definitions of FDT's by
CCITT (see for example Draft Recommendation Z.101 (SDL), where points (2)

• and (3) are combined, and Q39/VII Draft Recommendation "Formal Description
Techniques for Data Communications Protocols and Services" where point (1)
corresponds to the semantic model of SDL as defined in Z.101).

In the case that structuring method (b) is used for the definition of
the Subgroup B language, the following approach could be taken :

(1) Define the semantic model in English, making sure that the text is well
structured and all definitions are stated in a clear and precise form. A first
attempt at making such a definition is included as Annex 2.

(2) The syntactic rules could be given in BNF, complemented with additional
rules which are given in English with partial formalizations as used in the
Pascal standard. This section could be based on Section 4 of the present
1,vorking document.

-
(3) The semantics of the syntactic constructs could be defined using English with

partial formalizations (as above), refering to the semantic model and the
syntactic rules. This section is relatively straight forward to write, based on
the present working document, once the sections (1) and (2) are written.

•

Title
Introducgion
Scope

Field of application
References "Body"

of the
International

Standard

{

Document number
Title-page
Foreword

Contents

Definitionser terminology
Symbots and abbreviations
Materiats, design and manufacture
Requireof characteristics
Sampling
Mothocfs.of test or inspection
Product classification and designation
Marking, labelling, packaging

Annexe

(see 3.1.1)
(see 3.1.2)
(see 3. 1.5)
(sou 3.1.4)

(soc 3.2.1)
(sec 3.2.2)
(see 3.2.3)

(see 3.2.4)
(see 3.2.5)

(see 3.3.1)
(see 3.3.2)
(see 3.3.3)
(see 3.3.4)
(see 3.3.5)
(see 3.3.6)
(see 3.3.7)
(see 3.3.8)

(see 3.4.1)

Preliminary elenients (see 3.1) '

,General elements introducing the technical content
of the standard (see 3.2)

"Title", "Scopo" and "Field of application" shall atways be
included; "References" may bo included as appropriate

Elements constituting the technical content of the
standard (see 3.3)

This list is not exhaustive; neither will any one International
Standard necessarily contain all of them. (Certain
documents may contain only one element.) In each case the
elements required be determined by the nature of the
International Standard

Stinnh?rnnntnrii ph+m,,,,te In. •1 A%

4 .

AN N 	1
Yse

tee may propot:e to Cotincil that the information be published
as a technical tr-rport (type 3). •

7 Publication of technical reports

7.1 The primary duty of a technical committee is the prepara-

tion and review of International Standards. The publication of

technical reports is an exception and should be considered only

under the circumstances given in 7.2, 7.3 and 7.4 below.

7.2 When, despite repeated efforts within a technical com-

mittee, the necessary majority (or substantial support, ar, the

case may be) cannot be obtained for submission of a draft pro-

posal for registration as a draft International Standard, or for

approval of a draft International Standard at member body

voting stage, the technical committee may decide to request

publication of the document in the form of a technical report.

The reasons why the necessary majority could not be obtained

will be mentioned in the document (type 1).

7.3 When the subject in question is still under technical

development or where for any other reason there is the

possibility of an agreement at some time in the future, the

technical committee may decide that the publication of a

technical report would be more appropriate (type 2).

7.4 When .a technical committee has collected data of a dif-

ferent kind from that which is normally published as an Interna-

tional Standard (this may include, for example, factual informa-

tion obtained from a survey carried out among the member

bodies, information on Work in other international bodies or in-

formation on the "state of the art" in relation to standards of

member bodies on a particular subject), the technical commit-

7.5 Tochnical reports of types 1 and 2 shall contain the

following parts:

historkol background;

— explanation of the reasons why the technical commit-
tee has considered it necessary to publish a technical report
instead of an 'International Standard;

— technital content.

7.6 When the.rnajority of P-members of a technical commit-
tee has approved a technical report it is submitted by the
secretariat of the technical committee to the Central
Secretariat, normally within two months.

7.7 The Central Secretariat submits the technical report
immediately to. Council requesting within six weeks agreement
to its publicatrord. •

7.8 In the absence of agreement by Council to publish the
document as a ttechnical report, the matter is referred back to
the secretariat rof the originating technical comrnittee.

7.9 Technicalt reports of types 1 and 2 shall be subject to
review by the technical committee not later than three years
after their publlication. The aim of such review, will be to re-
examine the duration which resulted in the publication of a

technical report and if possible to achieve the agreement
necessary for the publication of an International Standard to
replace the technical report. •

• 7.10 Withdrawal of a technical report is decided by the 	I
responsible technical committee. 	 •

•

•

A keteX2-

Title: Concise definition of the semantic model for
the extended state transition FDT

Source 0.v.. Bachmann

COntribution to the FDT Subgroup B meeting in
Roston, Mai 1903.

In.troduction
•

the following paragraphs are a preliminary version
of .*a concise definition for the semanticmodel of
thefFDT. It could be used for the editing of a
Technical Report or Standard text defining the FDT.

Types and instances.

For each of the following concepts (e.. g .. module, interaction, channel,
state machine), <concept>

types and instances thereof are defined. Each instance
beldngs to a particular <concept> type. The latter
defines all generic properties of 	instances
belbnging to that type.

. 	.
Channel

A channel type describes possible
interactions between two modules. For each channel
type, a number of interaction types are definedi, Each
interaction type is characterized by a number of.
parameters. Each parameter of a interaction type is
associated with a parameter naffie and a data.
structure ty_pp. Each occurence of a interaction of a
given type is characterized by,instances of
parameter values, one parameter value for each

. parameter Of the interaction type. Each parameter value
must cohform-to the:aSsociated data structure type
of .the parameter.

Each instance 	a interaction is initiated 'as.gmtpu.
by one of the connectep modules and is received as
input by the other module. The definition of a
channel type also includes a specification, for each
interaction type, of the direction (between the two
connected:modules) in which it may be initiated (possibly in
both directions).

In each direction of interaction over a given
channel instance, the interactions initiated as output
at the one side are received on the other side in
the same order and with the same parameter values,
but possibly with Some delay«

A channel type may also be associated with

• continuous interaction types. Each type of
continuous interaction is associated with a data
structure type and a•direction (f rom the outputtin g .
module to the receiving module). For any instan'ce of
thè:•channel type, the outputting module instance- -
determines at any given time an
interactiOn yal4g, and this value is received as
cOntinuous input by the other module • instance
connected to the channel instance. At all times,
the continuous interaction value must confOrm to
the . associated data structure type.

Module

An instance of a module is a unit of description.
It represents a part of the described sYstem. A
module instance interacts with its environment
through a number of ports. Each port is asSociated
i. th a channel type. 	-

Further properties of a module type may be defined
in either (or both) of the following ways
(a) by the specification of a eate_maphine type
associated with the module type; or .
(b) by the specification of a refinement type
associated wïth the module type.

11, 	
Refinement.

A refinement type for a given module type defines a
nuMber of sub-modules, internal conneètions, and
external connections. Each sub-module is associated.
with a module type. An interna i connection
identifies two,ports of two sub-
modules, .An externa l . connection identifies a port of
a . sub:-modUle and a part of the module
type-to which the refinent is-associated.

The interpretation of a refinement is as fol lows
An, instance of the module type associated with the
refinement is ere.àvalently desCribed, by a number of
module instances, one for each sub-module of the
refinement (of corresponding module types),
connected through'channel instances suCh that fàr
each internal connection, there is a channel
instance .(called internaLlghanpel) of the type
associated with the ports of the connection (the
two cennected ports must be associated with the
same channel type). The ports of the module instance
are realized by the ports of the sub-module
instances as indicated by the external connections
(again, the two "connected" ports must be of
identical channel type). •
Refinements may be uSed in several levels (levels of

•

. abstraction), that is, the module type associated
,with a sub-module may again be defined in terms of a
refinement, and so on.

• A system'is specified as a module. type.

• State machine

A state machine type is defined in terms of its possible
states and its possible transitions.

At any given tiMe,.an instance of a state machine type is
either in one of the possible states, or is in the
state machine of doing one of the possible
transitions.

• The 'possible states of a state machine type are defined
in terms of a number of. state variables. Each
variable is assoCiated with a data structure type
When the state machine is in a state, this state is
identified by the values taken by the state
variables. The value of each state variab:le must
conform to the data structure type associated with
the variable.

The variables of a state machine type can,be identified
by.their name.

- One of the state variables may have the name
"STATE".'The value o4 this variable is callecrthe major
state of the state machine.

A trapsi.tion is defined by an pnablinq
condition and an appration.

An enabling condition may consist of the'foilawing ,
 .partial . enabling conditions:

(a) an input condition,
(b) a condition on the present major state,
(c) an additional enabling condition, 'and
(d) a priarity condition.;

A transition which' has no input condition is called
a spontaneous transition. The other transitions
are sometimes called isept_trapsitions.

An input condition identifies a port of the module
to which the state machine is associated, and an inaut
interaction type.

A condition on present major state identifies one
major state, or a set of major states.

An additional enabling condition is a boolean

... ..

expression which may depend on the fpllowing
I nformation:
(a) The values of the state variables (except for

.the major state variable named "STATE"),
• (h) the parameter values of the input interaction
_identified by the input condition, and
- .-(c) the continuous input, interactions received-at
the ports of the module to which the state machine is
associated.

A priority • condition 	(to be completed)

The operation of a transition defines.a'
new state, that is, new values for the state

> variables, and possibly one or several output
interactions. Each output interaction ds'associated.with a
port of the module to which the state machine is -
associated. The new values of the -state variables .
and the parameter values of the output interactions may
depend on the informations (a), (b) and (c) above.

Interpretation of a state machine definition

A state machine instance is either in a state-or dolma
trap»i.ti,on..

When a state machine instance is in a'state, it may begin
the .execution of a transition if all partial
enabling condition of that transition are:
satisfied.

Only.one transition may be.executed at any-given
time'by a given state machine instance. During-the
eXeCution of a transition', the new values of the
state variables and the parameter values of the
output interactions are determined.

The, output interactions of the transition aremade
available to the channel instances connected to the
ports associated with. the output interactions during the
transition in the, order as specified - by the
operation of the transition.

The continuous output generated by a state machine"
instance is umtpfLuel during the time when-the .
state machine does a transition. As soon'as the eXecution
of a transition terminates, the continous output is
determined according to the new values of the state
variableS of the state machine.

An input condition - is satisfied when an instance of
the interaction type speci:fied by the input condition is
the hext input interaction to be received by the state machine
from - the channel instance connected to the port •
specified by the input condition. This interaction

instance is consumed when (and only when) the
transition is executed. (That is, testing the input
Condition does not change the state of the
channel).

A condition on the present major state is satisfied
if the state variable named "STATE" haS the value,
or one of the values specified by the condition.

An additional enabling condition is satisfied if
(and only if) the specified boolean.expression
evaluates to TRUE« If the expression .includes a •
reference to a continuous output-function the value
of whicWis undefined then the expression has the
value FALSE.

A priority condition is satisfied ... (to be
• , >completed)

If a state.machine instance is in a state and the
enabling conditions of several
different transitions are satisfied, at most one of .
these.transitions will be.executed by the state machine.
The other-transitions may - be.executed.later if
their enabling condition.is still satisfied. Which
Of the possible transitions will be selected:for
execution at any given time is not determined by
the model.

A transition is called potential if it may not be
executed by a State machine instance for which it is
defined, even when itS enabling condition remains
satisfied forever. A transtion that is not
Hpotential and the enabling condition of-which

• remains satisfied (from a certain point in time
. ohwards) must eventually be executed by the
State machine.

Input transitions are not potential . . (Note: That is,
a "fair" state 'machineing of the different input interactions
is assumed).

..« Optionally: input transition priority over
spontaneous transitions ... (to be comPleted)

Save concept . (to be completed)
(single input queue ???)

•

•

Appendix 6

•

11, 	To: ISO TC97/SC16/W01 ad hoc group on FDT 	
I

•

Title: Notes on module refinements

Source: G.v. Bochmann, Canada

The contributiôn "Proposed syntax for refinements" to : the
Enschede FDT meeting in July 1983 presented language elements for
specifying module refinements. The anneX contains an example of a
Transport layer specification in several-steps of . ,refinements,.
including the entities of the Transport layer and their
interconnection through the Network Service, and the 	 . .
specification of a Transport entity in terms of either a "trial
specification" or a refinement of submodules.

The syntax used in the annex is slightly different from the on
 Proposed in the contribution mentioned. The syntax of the annex

permits the speCification of dynamic submodule creatiOn.and
interconnection (in addition to the static structures.(:onsidered.
in the example) if the CONNECT, REPLACE and INIT statements are:.
allowed to•be used not only within the initialization part of a
refinement, but also withina process definition specifying an'. •:
extended state machine. The variables of the machine, then, may , .
also include variables''of module type, and the CONNECT, REPLACE.
and INIT statements in the initialization part of..the..proce'ssor'
Within the actions of transitions may connect and initialize the
module instances defined by thèse variables.

Interactions at the unconnected ports of the submodules and of
 the unreplaced,ports of the. process are handled by-the

transitions of the extended finite state'Machine of the prodeSs
definition.

For dynamic submodule structures, it may be desirable to allow
the declaration of pointer variables which point to lists of
module instances. (It is sufficient for this purpàse ta consider
a module type as a particular case of a data type for a variable,
or a component of a record type).

A refinement specification, then, corresponds to a process
specifièation where the initialization part REPLACES all Port.n,of
the process and completely INTERCONNECTS ail ports of the defined
submoduleSo

•
1

•

•

À - 14
OSI simplified architecture showing the Transport layer

module Tranport_layer_simulation;

>refinement systeffi_structure for trial_specification;

con st
N_address = (left, right);
T_address = (/ 	1);
NCEP_id_type = 	1)1,
TCEP_id_type = (/ 	/)u

channel NCEP_primitives. (user, provider);
... etc.

channel TCEP_primitiVes .(user, provider);
.., etc.

module Network_proVider (NS : array EN_address_type,
NCEP_id_type]

of NCEP_primitives (provider));

module TP...entity (TS 	array CT_address_typew
TCEP_id_type3

of TCEP_primitives (provider);
NS : array ÇNCEP_id_type3

of NCEP_priffiltives (user),);

module TSuser (. TS : TCEP_primitives (user));

include
Network_simulator,

• trial_specificatfon,
.TP_structure,

• - user_behavior;

. 	 .
,

c 1 asv«:>....t. ype = (c 1 ass...0 „ . c 1. ass....1, ri. asteL2„ c 1 ass_3, c 1 ass....4)

var
entities: array CN_address_typej of TP_entity;
NetwOrk 	Network_provider;
users : array ET_addresis_type,

TCEP_id_Type] of TS_userg 	•

. function NC_supported (KLaddr 	N_address_type;
NCEP_id 	NCEP_id_type) 	boolean;

begin (/ indicates whether NCEP_id value is valid ;
for the given N_addr'value /) end. ;

function TC..„.supported (N_addr 	N....address_type;
T_addr 	T_address_type;
TCEP_id 	TCEP_id_type) 	boolean;

begin (/ indicates whether the T.,...addr is attainable

•

through the N_addr e and the value of TCEP_id
is valid for this T_addr 	end;

initialize begin
' 	(* interconnections *)

all N_addr 	N_addresstype do begin
all NCEP_id 	NCEP_id_type do

if NC_supported (N_addr e NCEP_id)
then connect Network.NS EN_addr e NCEP_id] =

• entities EN_addr3. NSA:NCEP_id3;
all T_addr 	T_address_type e

TCEP_id : TCEP_id_type do
if TC_supported (N_addr, T_addr, TCEP_id)
then connect entities [N_addr]. TS ET_addr e TCEP_id3 =

• users 1:Taddr e TCEP.j.dJ. TSg
end;

• (* initializations *)
init entities neft -J with TP_structure (Eclass_21, left);
mit entities fright]

with trial_specification (Eclass_2 e class_03, right); .
 ihit Network with Network_simulator (0.3 e 16000)g'

all T_addr 	Laddress_type e
TCEP_id 	TCEP_id_type do
mit users CT_addr e •TCEP_id3 with user_behavior;

end;

file Network_simulator

type '
seconds = realg

• octets_per_second = real;

process Network_simulator (delay 	seconds;
throughput : octets_per_second)

for Network_prbvider;

var .-. etc.

trans'... etc.

**
file trial_specification

process trial_specification'(classes_implemented 	class_type;
local_N_address 	N_address_type)

for TP_entity;

var 	etc.
trans 	ec.

• **
.fi le TP_structure

TP_structure (classes_implemented • class_type;
local_N_address 	N_address_type)

for TP_entity;

channel TPOUs_and_control (provider, user);
... etc.

Module ATP (TS : TCEP_primitives (prOvider)g
M 	TPDUs_and_control (user));

module mapping (TC : array ET_address_type,
TCEP_id_typel

of TPDUs_and_control (provider);
NS : array ENCEPLid_type]

Of NCEP_primitives (user));

process ATP...behavior (which...classes 	class_type)
for ATP; .

var ... etc.
trans ... etc.

11› 	Process mapping_behavior (own_N_add u N_address_type)
for mappingg

var ... etc.
trane ... etc.

var
Connection_control 	array ET_address_type,

TCEP_id_type3 of ATP;
Map : mapping;

iMitialize begin
(* interconnections *)

- all T_addr 	T_addrees_type,.

	

TCEP_id 	TCEP_id_type do
if TC_supported (loCal_N_addr, T_addr, TCEP_id)
then begin

connect Map.TC CT.Laddr, TCEP_id3 =
Connection_control CT_addr, TCEP_id3. M;

' replace •S LT_addr, TCEP_id3 by
Connection_control [T_addr, TCEP_id]. TSg

end;

	

all NCEP_id 	NCEP_id_type do
if NC_supported (local_N_address, NCEP_id)
then replace NS ENCEP_id3 by

Map. NS ENCEP_trng •

• (* ewbmodule initialization •*)
all T.....addr 	T_address_type,

TCEPw id 	TCEP_id_type do
mit Connection_control ET..•«addr, TCEP_id3

with ATP_behavior (classes_implemented);
mit Map with mapping_behavior (local_NLaddress);
end;

•

•

•

Appendix 7

(* conneét request *)
(* (:onnect response *)
(* disconnedt request'*) •
(* Sending data *)

(* connect indication *)

•

•

. 	
, A -t-i,464-;,J 4 .-ez s- ...,6 ?, 	--6 	/ ,___ , 	•

4, G .v...--e, o4.1 Pi.,A.i4.44 	• • 	 .06,,stt, c v3
15.2. Introcruction to a specification language -'with examples ,.

Var- bus specification languages can be used for writing formaL.: -
specifications of protocol or service specifications (for further
'reading see Section 15.3). This section gives an introductory
explanation of the concepts and notations used by a formal
discriptioh technique (FOI) which is based on Pascal and a model'
of extended finite state machines. This is one of the FDT's which
are'being developed within ISO • and CCITT for the description of.'

- OBI .protocols and services.

The major.concepts of the FDT are named "module, "channel", • • .•
"refinement" and "extended finite state machine" (sometimes
simply called "process"). The concepts of "module", "channel",
and "refinement" are used • for describing the architectural
Structure of a system. They are independent of the finite•stat4 	.
model. The "extended finite state machine" is used to describe.-
the dynamic 'behavior , of a.given module within a system.

A major exaMple e4ill be used for the explanation of the FDT
elements. This example is a simPlified version of the Transport
protocol and service. This example will be developed in severat
phases, as the discussion of the FOI Concepts proceeds.

15,2.1, Modules, channels and ports

A module is a part of a system. It represents a unit of
. Specification. At the highest level of abstraction, a module can .

be considered as a "black box". The sPeCification of the module
IS given in this case in terms of the interactions the. modules ›-
performs with its environment. The environment.of a module . within
a given system are those parts of the system that interact with
the module in question, that is,,the other modules of the systèm.

InHorder to make the Specification of a module independent.from:
its environment, the concept of a channel.is introduced- The
interactions between modules take place through channels. A
channel type definition specifies a set- of interaction primitives
that may be invoked between two modules that are connected by a'
channel of that type.

For eXample, a channel type may be used to define the Transport
service interaction primitives by which the user ofthe Transport
layer interacts with the service provider..SUch a definition can
be given in the following form

de

channel TSAP (user, •provider)
by user

TCOMreq (/ parameters
TCOMresp (/ parameters 1)Y
-TDISreq (1•parameters /);
TDATAreq (/ parameters /);

by provider
TCONind (/ parameters ny

t.

•

TCONconf (/ parameters /); (* connect confirmation *)
TDIBind (/ parameters /); (* disconnect indication *)
TDATAind (/ parameters /); (* receiving data *)

This definition specifies that . there are eight possible 	 .

interaction primitives. Four of them e called.@TCONreq@,
@TCONresp@ e @TDIBree, and @TDATAreq@e , can be initiated by the

 Module which plays the role of a @user@ in. respect to this
channel e and the other-primitives can be initiated by the other
module, which plays the role of a @provider@. The notation "(/- -
some text /)" is used-to introduce "some text" . as an informal. 	.
part of the specification. The meaning of the interactions will.. .
be explained below.

• As already indicated by the example, a channel connects two
modulés within the system. The interactions initiated by one • 	-
module . are•received by the other, and vice versa. The two modules.

 play, in general e .two different roles.

An example.of a simple system structure is shown in Figure 15.2.-'
. It consists of a module e .called @Transport@, and a nUmber of user

modules. The Transport module consists of the OBI Transport layer
- and the layers below e and provides . the Transport service to the ,

user modules .. Each user module-is connedted with the Transport.
module through a channel,of type-@TCEP_primitives@. This means
that each user module may interact with the Transport module
through its associated channel using the interaction primitives •
defined above. 	 , •

In order to distinguish between the interactions belonging to
different channels within the context of a given module (for 	:
instan (: e, from the point of view of the Transport module in
Figure 15.2) e the concept of a "port" (or "interaction point") iS
introduced. For specifying the possible interactions of a : given
module, a set of ports with associated channel types are defined
fôr that module.- An interaction by the Module is then identified -
by the, name of the. port over which it occurs, and the name of the
ihteracticin e which must be one of theliames défined in the
corresponding channel type de-finition.

For example; the possible interactions of the Transport and user
modules in Figure 15.2 could be specified as follows

module Transport_provider
(AP 	array [Taddress3 of TCEP_primitives(provider)

);

module user_module
(TS 	TCEP_primitives(user));

The first module definition specifies that the module has a
number of ports, one for each possible value of the data type
@Taddress@ (which is used to distinguish different users in thè
system). Ail these points are associated with the channel type
@TCEP_primitivesQ, and the module plays the role of a @provider@.

• herefore the module may initiate over each of these ports the
interaction primitives.IDTCONindel, @TCONconf@, edTDISindaâ, nd
IDTDATAindgl mentioned above, and it may receive the other
interactions defined for the channel.

11:. is noted that the above notation defines module types, ancl it ..
is assumed that the module instances Transport and user_i of
Figure 1..2 are of type Œffranspert_providerall and ŒluserjmodUleœl,

. respectively.

15.2.2. Module interconnections

It is important-to note that the above module type definitions- do
not specify that modules are interconnected. - The fact that the . •

• same channel type is used by the two types of modules only 	.
indicates that instances of that type of modules may be
interconnected through à channel. For the purpose of this
informai exposition, we assume that the interconnection structure-
is defined by diagrams such as Figure 15.2.

In the context of distributed systems, the notion • of several
Ports.of a module may be used for • distinguishing different points
(in space) of a module which is distributed, as in the•example•
above Dif • erent ports of a given module may also be used for - •
distinguishing, from:the point of view of that module, several. • ,
parts of its environment. For example, a Module representing e•
Transport entity (the part of the system executing the Transport.
protocol) may distinguish three ports. for interaction with (a):
the user,. (h) the underlying Network service, and (c) a timer 	•.
respectively. The module and its enVironment would all reside
within a single host computer.
15.2.3. Local rules for channels

The channel type definition, as introduced above, specifies thé
possible interaction primitives that may ocCur over a channel.: It -
is assumed that they may ocdur in an arbitrary order. In most H
real systems, however, thé order of interactions over a given

'channel is often constrained, and this independently of other 	-
interactions occùrring in the system. Such constaints are.
sometimes cailed:"local r'ules" EBoch 3, and their specifi.cation-,
seems important since they apply to the behavior of both modules
connedted through the Channel. They 'are,observed : at the tWo ports
of the interconnected modules.

The local rules pertaining ta a given port of a module can often,
be derived from certain global interaction properties of that 	›
module.-In.the case of communication services, global interaction
properties are often characterized by time-sequence diagrams:
which give examples of typical interaction sequences. For the
Transport service, such a diagram is shown in Figure 15.3,.which
shows the interactions occurring at the two ports of a Transport
module (See Figure 15.2) through which a Transport connection iS
established.

• The diagram shows that a Transport connection must be established
before data can be exchanged, and the connection must be
disconnected before another one can be established. The global .-
interaction rules, as expressed informally by the diagram, implY •
Certain rules on the order in which interactions.can be executekt.

. over a given channel. These local rules may be captured by the ..
finite state machine diagram of Figure 15.4. It shows four states
and a number of transitions associated with interactions. Each-
sequence of interactions that occurs over the channel should have
corresponding transitions in the diagram. For example, the
interaction sequence @TCONree, LaTDISree is not allowed, since .

• after the interaction @TCONreed . the machine is in the
IPWait_for_TCONconfID state, and no transition labeled @TDISreqe . is ,
available.

15.2.4 	Defining module behavior

The kind of information given in a module type definition, as• -
discussed above, corresponds loosely - to the . "specification part"
of a task:or package in ADA EADA3 or the list of operations
defined for an abstract data type CLisK 753. However, this 	. .
information does not present a complete specification of the
module.. The "semantics" of the interactions is not defined.

If an abstract specification is desired the semantics of the .:.
interactions should be given by defining the-rules which
determine the possible order of execUtion of interactions-and
their possible parameter values. - (Such à specification would
relate the interactions occuring at the different ports of the
Module in addition to the local rules appying ta each port).
While some specification methods try to give such specifications
without introducing additional assumptions.about the "inner part"
Of the module (pure "black-box" approach), the here described •FDT
always introduces some kind of "inner structure" in order to 	•
define thè module 's behavior. It is important to note, •however''
that the implementation of a specified module does not
necessarily have to realize that "inner structure", as long as
the implementation realizes the same interaction sequences and
parameter values (as seen by a hypothetical observer) as the,
specified "inner structure" would produce.

In the • ramewor • of the here described'FDT p the behavior of à
module may be defined either in terms of an extended finite state
machine,.or in terms of a refinement which specifies a structure
for the module in terms of submodules and their interceinnections.
Such a refinement uses the concepts of modules, ports, and
channels, as described above.

•
15.2.5. Refinements •-

A typical refinement of a Transport module is shown in
According ..to this refinement, a module of type

• @Transport_providerœi consists of à submodule of type .
ffletwork_providerge, and several submodules of type @TP_entity@.
The submodule types may be defined as follows:

4

•
'module Network_provider

••

module TP_entity
(TS : TCEP_primitives(provider);
NS : NCEP_primitives(user)1
Timer : Timer_service(user));

In this example, it has been assumed, for Simplicity, that theré•
is a one-to-one correspondence between Network . and : Transport
addresses.

The above example shows that the same channel type definitiOn,
that is,.the specification of @TCEP_primitives@, is used in
Several module specifications. It is . used here in the
specificationS of the Transport service and prOtocol, and would
also be used in the specification of the Session protocol
(because the Session entity executing that-protocol-is the user
of the Transport service). This demontrates the advantage of
specifying the channel properties separately from the
Specification of modules. The consistancy betWeen the different
module specifications can be checked by verifying within the'
Specification of an interconnection structure that the channel
types of interconnected module ports are the same.

A refinement in terms of submodules can be performed recursively.
For example, the @TP_entity@ module defined above may be further
subdivided into @AP@ and"@MaPping@ submodules, as shown . in Figure'
15.6.. The @AP@, or "Abstract Protocol", submodule determines:the
Transport protocol in an abstract sense, determining the kind 43f
Protocol data units (PM's) to be exchanged with the remote peer
@TP_entity@, and the @Mapping@ submodule performs the the.en- and
0e-coding of the PDU's exchanged over the Network service. The
two submodules interact with one another by exchanging the PDUes..
in an abstract farm, ..as defined in the @PDU_ancLcontrol@ channel -
definition given below.

This second step of refinement could bë speCified by the
definitions-below and the interconnection structure of figure
15.6.

channe]. PDU_and_control :(AP,
by AP, mapping:

CR (/ parameters /);
CC (/ parameters /);
DR (/ parameters 1);
DC (/ parameters /);
DT (/ parameters /);

mapping);

(* connect request PD(J *)
(* 'connect confirm' PDU *)
(* disconnect request PDU *)
(* disconnect confirm PDU *)
(*Aata PD(J *)

•
module AP

(TS : TCEP_primitives(provider);
map : PDU_and_control(AP);
Ti mer : Timer_service(user) 1;

•

•

module Mapping
(P 	PULand_control(mapping);
NS : NCEP_primitives(user));

15.2.6. Extended finite state machines

The behavior of a module can be specified in terms of an extended -
finite state machine. In this case the module is modeled as a
state transition system which, at each instant, is either in a -
given state or performs a transition into a next state. Received '
interactions give rise to such transitions, and the execution of '
a transition May give rise ta the initiation of output
interaction(s).

The possible module states are determined by à set of variables!'
a state is determined by the values assuffied by each of these 	-
variables. One of these variables may be a,distinguished
variables called @STATEga it represents what is traditionally
thought of as the state of a•finite state automaton. It is
sometiffies called "major state" to distinguish it from the other
variables which are sometimes called "context Variables" or
"additional state variables".

Transitions have an enabling condition and an action. The
enabling condition may depend on the present state of the module
and a received interaction and its parameters. If the enabling
condition of a transition is satisfied, the transition may be
executed in which . Case the action is performed. The action ls
spetified in terms of programming language statements (t.e'i in'
Pascal) and may includeassignments of new values to - the state
variables and the initiation of output interactions.

Two kil'ids of transitions are distinguished: input transitions a..nd
spontane -ous transitions. The input transitions include in :their
enabling condition the reception of an interaction.:over a
specified port. The transition can only be executed when such an
interaction is'received. Spontaneous transitions have no_received
interaction in their enabling condition; their condition depends'
only on the state of the module.. Such transitions May be executed
disregarding any received input interactions.

Only one transition can be executed at any given time; they are ,
considered atomic. However, in a given module state - and poésibly
some interaction received, the enabling conditions , of several
transitions may be satisfied. If this situation.can occur, the
module specification is said to be "non-deterministic". In,such a
situation, the specification does not determine Which:of the
enabled transitions will be executed.

A Transport protocol specification is discussed below in order to
demonstrate the extended finite state machine specification
method with a simple example. The specification of the behavior
of the AP submodule introduced - in Section 15.2.5 is considered. •

•

•

, A state transition diagram defining the major aspects of the .
protocol is shown in Figure 15.7. .Each circle in the diagram
cOrresponds to one possible value of the major state variable.. -. .
The transitions in thé diagram are labeled with the input ancri
output interaction they involve. A notation is used where the

 symbol "/" follows each input interaction, and .preceeds any
Output. This diagram Only defines the "major" aspects of the -
protocol, ignoring any aspects related to the parameters of the
'interactions and the additional state variables. Such .aspects -
will be donsidered below.

The state diagram of Figure 15.7 can be translated in a
straightforward manner into the linear syntax of the FDT giving
rise ta the following specification far the IDAPœi module behavior-
The enabling conditions of •the transitions are written in the -
form
INPUT <received interation>
FROM <present major state>
PROVIDED <additional condition>
followed by the action. in the form
TO <next major state> BEGIN <statements, including output> END; .
It.is noted that the FDT allows much freedom in the order. in '
which these different clauses can be written. The PROVIDED clause
is not used in the example below.

process AP_process for API:

state u (CLOSED, OPEN,
wait_for_CC, wait_for_TCONresp, waitfor_DC);

trans'

input TS.TCONreq
to wait_for_CC

input TS.TCONresp
to OPEN

input TS.TDISreq
- 	to CLOSED

inpUt TS.TDISreci
to wait_for_DC

input TS.TDATAreo
to 'OPEN

from CLOSED
begin output map.CR end;

from wait_for_TCONresp
. begin:output map.CC end s

from wait_for_TCONresp
begin output map.DR, end;

frOm OPEN.
begin output map.DR end;

from OPEN
begin output map.DT end;

input map.CR 	from CLOSED'
to wait_for_TCONresp begin:output TS.TCONind end;

input map.CC
tà OPEN 	•

from wait_for_CC
begin output TS.TCONconf end; • input Map. DR . 	from wait for CC _

to CLOSED 	begin output TS.TDISind end;

•
end;

• input map.DR 	from OPEN
ta wait_for_DC begin output map.DC; output TS.TDISind

•

	

input map.DC 	from wait_for_DC

	

-to CLOSED 	begin end;

While the example above demonstrates the notation of the FDT in
the case of a pure finite state machine model, the model is
usually extended to include aspects depending on interaction

- parameters and additional state variables. In the case of the
Transport protocol, for instance, a. request for a new connection -
is only accepted if the destination address is attainable, and - -H
the requested options for the connection are supported by the.. i :

 protocbl éntity. Jr' addition, the options accepted by the user in
the TCONresp in response to a connect indication should have been
included in that indication. These additional considerations
others, - are included in the extended sPecification àiven below
This extension uses an additional variable @option's@ in the 	.
extended state machine definition of the module behavior (which
records the set of options requested or accepted by the local or
remote user). The PROVIDED clause is.used ta check that the part .

 of the enabling condition which depends on additional variables . -
and/or parameters of the received interaction is satisfied.

An extended definition of the @TSAP@ channe]. (already defined in
 Section 15.2.1) is giVen below. It consiSts of the definition of

the parameter data types, followed by . the interactions for the ,
channel together with their parameters.

type
Laddress = (/ 	/)U. .
option_type = set of

(/ expedited_data_transfer, etc. I);
datà_type = (/ string of octets 1)u:

•
channel TSAP (user, provider)

by user
TCONreq (dest_address g Taddress;

	

proposed_options 	option_type)5 (-* connect
request *)

TCONresp (proposed_options g option_type); (*'connect
response *)

TDISreq u (* disconnect request *)
TDATAreq (TB_user_data g data_type); (* sending data *)

by provider
. TCONind (source_address 	Taddress;

	

proposed_options 	option_type)U (* conhect
-indication *)

	

TCONconf (proposed_options 	option_type); (* connect
confirmation *)

*)

*)

TDISind (DIS_reason 	reason_type); (* disconnect
indication *)

TDATAind (TS_user_data 	data_type); (* 'receiving data
. 	•

The parameters of thé interactions are •inditated with their name
and a definition of their data type. For example, the parameters..
Of lite connect request ILITCONreed, to be determined by a module
playing the role of a Ceuser@, are the address of the destinationH •
user and proposed options for the connection, such as expeditecL •
data transfer, etc. In order to keep the example simple, the
detailed form of these options are not considered fUrther.

Similarely, the @PDILand_Control@ channel can be refined as
follows:

type .
reason_type = .(Taddress_invalid,

options_inacceptable, remotely_initiated)1

channel PDU_and_contrôl (AP,
by AP, mapping:

CR (TSAP_id_calling
TSAP_id_called g
option_ind 	option_tYpe); (* connect request ppu •

CC (TSAPLid_calling 	Taddress;
TSAP_id_called 	Taddress;
option_ind 	option_type); (* connect confirm PM-

DR y (it disconnect request PDU *)
DC 	(* disconnect confirm PDU *) 	„
DT (TS_user_data 	data_type); (* data PDU

The following extended specification of the AP module behavior is
based on the finite state machine specification given above,'Iput — .
introduces some additional transitions which are executed wherL
certain conditions on ,the additional state variable' @options@
and/or the input interaction parameters are not satisfiecL.

mapping);

Taddress;
Taddress5

•

process AP_process for AP;

con st
my_Taddress = (/ ... of type Taddress /);

var
'state : (CLOSED, OPEN,

wait_for_CC, wait_for_TCONresp, wait_for_DC),5
options : option_type;

function attainable (addr 	Taddress) 	boolean;
begin (/ determines whether a given Transport address

is serviced by a Ce_entity@ module /) end;

trans

9

input TS.TCONreq 	from CLOSED 	to wait for CC _
provided attainable(dest_address)
begin output map.CR;

• options := proposed_options end;

. input TS.TCONreq from CLOSED to CLOSED
provided not attainable(dest_address)
begin output TS.TDISind (Taddress_invalid) end;

input TS.TCONresp from wait_for_TCONresp to OPEN
provided proposed_options in options
begin options 	proposed_options;

output map.CC (my_Taddress, dest_address, options);
end;

input TS.TCONresp from wait_for_TCONresp to CLOSED
- provided not (proposed_options in options)

begin output TS.TDISind (options_inaCceptable)
output map.DR end;

, input TS.TDISreq 	from wait_forLTCONresP to CLOSED
begin output map.DR end;

input TS.TDISreq 	from OPEN 	to wait_for_DC
begin output map.DR .end;

input TS.TDATAreq from OPEN to OPEN

110 	 begin output map,DT (TS_user_data) 'end;

input map.CR from CLOSED ta wait_for_TCONresp
provided (TSAP_id_called = my_Taddress)

and (option_ind in (/ locally supported options /):).
begin options := option_ind;

•output TS.TCONind (TSAP_icLcalling, options) end; .

input map.CR from CLOSED 	to CLOSED 	 ,
provided (TSAP_id_called <> my_Taddress)

. or not(optiorUnd in (/ locally suPportectoptions /)
begin output map.DR end;

input map.CC ' from wait_for_CC 	ta OPEN
begin options := option_ind;

output TS.TCONcohf (options) end;

input map.DR 	from wait_for_CC 	to CLOSED
begin output TS.TDISind (remotely_initiated) end;

input map.DR from OPEN 	ta wait_for_DC
begin.output map.DC;.

output TS.TDISind (remotely_initiated) end;

1110 	
input map.DC 	from wait_for_DC 	ta CLOSED.

begin end;

1 0

IL is noted that the parameters of the received interactions-can
be refered to by simply invaking their name, as for instance
Œldest_address@ in the first transition above. A situation where.:
an Interaction is received for which none of the Specified
transitions is enabled is considered an "error situation" for '
Which the behavior of the module is not defined.

In addition to the concepts discussed above, the FDT includes:
Some elements which are not included in the discussion above. 	-
These are channels with or without queuing, priorities among
transitions, continuous output, -and,some real-tithe specificatian.-'.
elements in the form of delays before:transitions can•be
executed, etc. 	.

15.3. Further readings 	 .

Sod, go
A. revie of various-specification and validation techniques can
be in EJ. Recent work on protocol specification, validation and

 testing was reported in'recent-conferenceS_and•waekshops 	 •

specializing on this topic CSunj82], CRudi 83],; Experience with . -
the use of an FDT based,on a. madel of extended •inite state
machines is described .in' [Boch 82c]. The issue'of "local" versusi
"global" rules are further explored in .[Bach 833..

The FDT described above is one of the FDT's which are being
deVeloped by ISO SC/16 and CCITT to - be used for the descriptian

gl,
 of. 051 protocols and services (see for example [FDT B], or CFDT

CCIT]). The present state-of thiS standardization effort (as of
 1983) is described in [Bach 83c], [Dick 113], and TTenn 83]. The

latter also includes the specification of the alternating bit as
an example for the here deScribed FDT.

•

•
1 1

-r-com,„4,

• XT4
`1--"hAYA

•

Appendix 8

•

•

Ile 	
To: ISO TC97/SC16/WS1 ad hoc group on FDT

Title: Introducing implementation details
into Subgroup B specifications

Source: S.v. Bachmann, Canada

October 1983

In general, a specification given in the Subgroup El FDT is not,.
automatically translatable into an implementation since certain
parts of the specification may only be defined informally using..
the "(/ some text /)" construct. We think that it should be easy
to introduce additional detail into a given specification in .
order to make it suitable for automatic translation into an
implementation, but that such additional detail for
fmplementation purposes shOuld be clearly separated from the part,
of the specification which defines the required system or module
behavior.

Concerning the scheduling of spontaneous transitions for
implementation purposes, we . would consider this clearly a matter
of •implementation details. Automatic scheduling may be obtained.
bY trying all spontaneous transitions after the end of executiàn
of each transition.. This would often lead to very inefficient .
implementations. The following paragraph explains how scheduling-
hints may be added to a specification in order to obtain More -.

 efficient implementations. Such- hints would be considered
implementation detail which are not part Of the Specification - :-
proper. 	 •

A transition in the specification may be identified by a,label of
the form of an identifier- The syntax "<idéntifier> 	"
preceeding the BEGIN ... END part of the transition may be used -
for this purpose. These transitiOn identifiers may be-used-in
statements of the form "TRY (<identifier>) " which may be added
to the action of transitions. The execUtion of the statement
"TRY (X)" implies, for instance, that the spontaneous
transition identified by "W', shoUld be tried to be executed after
the execution of the transition which includes this statement. -
This approach has been implemented in the FDT specificatiOn
compiler built bY G.Gerber at the University Of Montreal -

• 1

Appendix 9

•

ISO/TC 97/SC 16 N

October 1983

I S 0

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO TC 97/SC 16 .

OPEN SYSTEMS INTERCONNECTION

Secrétariat: USA « (ANSI)

• Title: Comparison of CCITT and ISO FDT's

Source: CCITT Q39/VII Group

The CCITT Rapporteur's group on Question 39/VII had developed a Draft Recommendation
on PDT for data communication protocols and services which was presented to the

• ISO/TC97/SC16/WG1 ad hoc group on PDT meeting held in Enschede„.July 1983, together
with a liaison statement to WG1 (documents THT 17 and 18). Only draft copies of
these documents were available at that time. It seems that the final copies of
these documents are not yet available. The purpose of this contribution is to make
this information more readily available to ISO/TC97/SC16 and to point out the
remaining differences between the Pascal-oriented program-like form of FDT defined
in the CCITT Draft Recommendation and the- present version of the PDT developed by
Subgroup B of the ISO FDT group.

Annex 1 is Appendix 4 of the last CCITT Rapporteur's meeting report. It contains a
plan for resolving the remaining differences that were seen at the time of the
meeting and which was followed in the elaboration of the Draft Recommendation.

Annex 2 is the liaison report to ISO. It includes as Attachment 1 a list of
differences that remain between the Draft Recommendation and the Subgroup B
language.

Annex 3 is an annotated dopy of the relevant pages from the Subgroup B working
document (see WG1 N117) which shows which parts of the syntax of the Subgroup 13
language are affected by the differences with the Draft Recommendation (indicated by
a vertical bar on the margin or underlining) and which parts are left for further
study by the CCITT Rapporteurs group (indicated by a curly line on the margin). The
numbers indicated refer to the respective points in the Attachment in Annex 2. in
addition to the points annotated in this Annex, the Draft Recommendation containS
the additional statements NEXTSTATE and SAVE.

It is noted that the Canadian contribution WG1 N147 proposes that the remaining
differences between the Subgroup B language and the CCITT Draft Recommendation be
resolved. This could be done during the next meeting of the ISO FDT ad hoc group
meeting planned for January/February 1983 in Munich. .

4.

Annex 1

APPENDEN 4

SOME DIFFERENCES . BETWEEN CCITT-SDL AND ISO SUB-GROUP B LANGUAGE

AND POSSIBLE RECONCILIATION 	-

1. 	Transition triggering

In SDL a transition is caused by the reception of a signal which has been
sent by another process. In ISO-B a transition is enabled by a condition becoming
true : part of the condition may be the arrival of a signal from another process.

- This problem is avoided by subsequent agreements on spontaneous transitions,
nondeterminism and continuous output functions.

2. 	Determinacy

In ISO-B there may be several transitions enabled simultaneously : which
is taken is indeterminate. In SDL there is never more than one transition possible
at any instant.

- SDL should be extended to conform to ISO semantics.

3 	Immediacy of transitions

%
In SDL a transition is imperative if the appropriate conditions are met,

• 	 whereas in ISO-B, for some forms of spontaneous transitions, the appropriate
à 	conditions only enable the transition : it need not occur immediately, indeed it

need not occur at all.

- As an interim solution ., transitions should be imperative but-further
study is required and the epontaneousitransition with:no delay clause
may be added later on.

. 	4. 	Fersistance Of signale

In SDL a signal is always accountable; it may-be saved at some etate but
Must eventually be consumed by causing a transition. A signal, for Which no
processing is defined at a given state, automatically causes a "null traneition°
(i.e. back to the same state). In ISO-B the situation is less well defined a
signal for which no processing is detined may optionally be ignored or cause an
error condition. The ISO-B semantic model discusses a "save-set" but there is no
syntax for saving a signal.

The SAVE concept and a syntax should be added to the ISO language. NULL
transitions must be explicitly defined in. the 280 Aentax.

5. 	Decision leading_t_e_alternative new states

SOL providos that a decision may he mado during a transition to determine
the new state reached hy the transition. This permits data carried by à signal to
influence the haw stata. I0O- 13 requires the haw scate hi* knoten at tiie aàrisman..:4-

ment of the transition, but does permit . intei.nal transitions based on local data
signal. data can therefore be used to form a local valu u whizh causes a second
transition from a fixed intermediate state to the appropriate final,state. The two
methods are not equivalunt. •

ISO to allow multiple next statea for a transition.

e. 	Providine multiple instances of behaviour
For the servicing of multiple connections hy a layer entity, SDL provides

the capability to initiate several instances of the same process which may operate
in parallel, each with its own data and each with a unique process instance
identifier. ISO-B provides instead arrays of interaction points (i.e. channel ends),
each member being identified by a unique index, and all accesaible to a single process
which interleaves transitions appropriate to the various interaction points. ISO-B
has introduced the possibility of having more than one major state. A PASCAL "with"
statement can be incorporated after a "when" clause (i.e. a signal input) to
designate without ambiguity the major state referenced in the "from" and "to" clauses
(which refer to the initial and final states). Thia concept ie called "context".

- ISO to add dynamic module instance creation and multiple instances of the -
same behaviour. SDL to add context.

7. Channel/block/Process structure

SDL provides a system structure in which blocks are linked by channels,
each block and channel needing to be individually defined. Within a block there may
be several processes, including several instances of the eame process. On the other
band ISO-B provides only block and channel concepts, each of which is defined as a
type and can have several instances. There is cagy one proceas (instance) per
block instance.

- SDL adds the concepts Of block and channel instance°, and Q.39/11I1 agree::
to.use a subset Of SDL in which there ia , onii one process:definition per

 block.

• 8. UnderlVing semantic mgdel •
•

The underlying cemantic models of the two languages are different:in
principles of operation, and in method of presentation.

A common semantic model, is desirable..

Visibility- of signal_ da

SDL declares that the data values carried by a signal-cannot be seen by the
recipient process until the signal initiates a transition. The method adopted in

• SDL to simulate enabling conditions requires that the condition be evaluated - before
entering an appropriate substate from which a signal will cause a transition': data
carried in this signal thus cannot-be used in the enabling condition. ISO-B allows;
signal data to be umcd in =enabling condition.which doterzines , whother the
signal will initiate a transition.

- Tho =anti= ot tho'WL onabling condition arc different from Ile FritL•
tamoling oonuition with - refeavo co tno pQrsisulnee ov Jiewn j . ehe 	.
concept should be given a different name. The ISO enabling oondition,'
which depends on signal data can be translated into'an input:node f011owed .
by a decision node in the SDL abstract,entajc.

10. 	Continuous output functions

ISO-B has continuous.output functions which are data values belonging to one
prooese and visible to other processes. ISO-B . makes no statement:on propagation
delays for these functions and so it is inferred'that current:values - can be:seen bY
an Observer. SDL has a very similar concept inmehared valueà" except that Such
values can only be obeerved within the block from which they.originate; a useless':
concept when related to the ISO-B requirement of only one precess.per block. SDL.
aimulates continuous output emotions across blocks with exported values, using a
method which involvee the exchange of Signals between importer and exporter such that
the value observed Is not necessarily the current one. The: potential differences. .
in timing of the two languages means that eideIs will not be:equivalent.

- Continuous output functions, continuous signals and shared data will not
be used in Initial Recommendations but should be COntidereefor addition
later.

11.. 	geleZEI

; 	ISO-B provides delay values on spontaneous transitions, thus giving an
elegant way by which timeouts can be specified. SDL has no such feature t-inatead
it is neceesary to define a special emcee& witlassOciated signala for titeoUt
request,'indication, and cancellation. 	 :

. 	- SDL to add timer with semantics corresPonding to an ISO spontaneous
- 	. 	transition with the minimum delay value equal to the maximum

12.: 	SvmehrOnoue communications and rendez-voue

This needs tether study since the zero-queue option in ISOra was dropped,
as it was proved that collisions using this option could lead to deadlocks (in this
case, unexpected inputs may occur using the queue option). A deadlock-free
implementation of rendes-vous for Certain cast» of collisions ahmild be considered
since a considerable amount of scientific work supports the-rendes-vous and it Pan
be cOnvenient for service descriptions and protocol validation.

Note that the synchronous send proposed in SDL dOes not fulfil these
requirements and would not fit in the ISO-B language.

- Delete zero-queue option and synahronous communication. Rendez-vous as'
in CSP is for further study.

13. 	Multiple input Queues for each module

Each SDL procese has only one input queue for receipt of eignale. Exten-
sions to ISO language allow for matiple queues with a priority assigned for
treatment of signals in the queues.

- SDL to incorporate ISO semantics.

• .

3D1:. rt.uileulation Z.104 allows the use of abstract data types and InclUdes
A syntax for definition of associated axioms. ie includes the keyWord "primitive"
- Lo allow informal definition of prncedures.

- .Abstract data types for further study in ISO.
•

15. 	Refinement of structure .

Z.102 and the concept of refinement in the SUb-Group A'and-B propose“iffer.

• - Harmonization between SDL and ISO required. 	 • •
•

16. 	Procedures 	 •

• The procednre concept in Z.103 is more general than the PASCAL procedure.

• Do not use statee and inputs in SDL procedures for Question 39/Vu.

•

le. y

, • .

r . le. • . E.

Annex 2

Appendix 9 Liaison Report to ISO

Title: Liaison Report to ISO/TC97/SC16/WG1

Source: Special Rapporteur's group on Question 39/VII

1. Introduction

At the Working Party VII/5 meeting, June 1983, the Rapporteur's group prepared
a draft Recommendation on formal description techniques and prepared a plan of
work for the next stue period.

2. Recommendation and New Question 39A

- 	The proposed draft Recommendation defines a minimum workable extended finite
state machine language based on harmonisation between SOL and the Subgroup 8
language. Further tmprovements and developments are foreseen (see points for
further study in Section 3.4 of Recommendation, Appendixes 4 and 11 of meeting
report, and attachments 1 and 2. Close liaison is required for maintaining
and developing the language in collaboration with Subgroup B.

It is desirable that CCITT and ISO publish a common text for the language
definition. The proposed new Question 39A (Appendix 8 of meeting Report) is
framed to allow for compatibility with Subgroup 8 and for trial application of
the technique (attachment 5 and appendix 5 of meeting report).

3. ,New Question 39 B

This question allows for the study of new developments in formal description
techniques. The Q.39 rapporteur's group . has noted some commonality in the
objectives of the Subgroup C language (Temporal logic) and the Numerical Petri 	.
Net language proposals (attachments 3 and 4). Closer liaison is desired in
the next study period.

Attachments

1. Differences between the Pascal -oriented program-like form and the Subgroup 8 .
FDT.

2. Delayed contribution 0481, "Comments on ISO Subgroup B formal description
technique".

. Delayed contribution 0484, "Numerical Petri Nets - A tutorial°.

4. Delayed Contribution 0458, "Proposed abstract specification of the draft
transport service definition".

5. Delayed Contribution 0485, "Specification of the CCITT transport protocol
entity (classes 0 and 2) using SOL".

,

4,

Attachment 1 to Appendix 9

Differences betWeen the Pascal-oriented program-like form and the Subgroup B POT.

The following list points out certain differences between the Pascal-oriented
program-like form defined in Sections 3 and 4 for , of the Draft Recommendation and
the Subgroup B FOT. This list does not include those points which are left for
further study.

1. System-definition: The syntax is slightly different:

2. Channel: The syntax contains an additional ";" which was introduced to make
the syntactic style of the language more uniform.

3. There are separate parts for specifying interaction points of blocks and the
behaviour of a block (in terms of a process).

4. The syntax for the queuing-discipline simplified.

5. Some keywords are different:

INPUT for WHEN

OUTPUT for OUT

BLOCK for MODULE

6. The NEXTSTATE statement is introduced.

7. The semantics of the TO clause is considered to be a comment.

8. The SAVE is introduced. '

9. The initialization does not include a "STATE TO" construct, because a
NEXTSTATE statement could be used for that purpose.

10.The PREDICATE is not included, since a boolean function can be used instead.

11.The PRIMITIVE is not included, since a "BEGIN (/.../) END" construct can be
used instead.

A vaitex 3: xrec,ck 41-1,-. 54.4r. 4..gi tev etatt:ina, otoeet
mitt - 22 -

<sYstem> 	::= 	SYSTEM <system id>1
<channel typé definition>*

• 	
<module type definition>*
<system structure>

<system id> ::= <identifier>
The <system structure> is for further study.

4.1.1 Channels and interaction primitives

The <Channel type definition> defines a type of interaction "joint.

<channel type definition> ::= <constant definitions>*
<type definitions>* <channel>

The possible interactions at S given type of interaction ,
point are enumerated by a definition - of the following
form:

<channel> 	::= CHANNEL <channel type id>
(<role list>) 	<exchanges> ;

<role list> ::= <role id>
1 	<role list> , <role id>

<exchanges> ::= <BY clause>
1 <exchanges> <BY clause>

<BY clause> ::= BY <role list> : <exchange list>
<exchange list>

<exchange>
1 <exchange list> <exchange>

<exchange> ::= <interaction id> <interaction parameters> ;

<function heading>**

The declaration of <interaction parameters> is in the
same form as function parameter declarations in Pascal
(i.e. for each parameter its name and type).

<interaction id> 	: := 	<identifier> 	(*Notel*)
<channel type id> 	::= 	<identifier>

Note 1: Identifiers may include both upper and lower case let-
ters as well as the underscore character ("_"), which is
considered to be a letter, and numérale.

•

- 23 -

4.1-2 Modules and their interaction points

The definition of a module type contains the declaration of
all abstract interaction points through which a module of
this type interacts. This includes the service access
points through which the communication service is provided
as well as the system interface for timers, etc. and the
access point to the layer below, through which the PDU's
are exchanged.

<module type definition> ::= <module heading>
<module heading>
MODULE <module type id>
amirmue 	 (<interaction points>) ;
<interaction points> ::= <interaction point declaration>

1 <interaction points> ; <interaction point
declaration>

<interaction point declaration> ::= <interaction point id> :
<interaction point type>
(<role id>) <queue discipline>

<queue discipline> ::= COMMON QUEUE1INDIVIDUAL QUEUE
<interaction point type> ::= <channel type id>

1 ARRAY [<index type>]
OF <channel type id>
(* Note 9 *)

<internal definition> ::= <module body>
1 <substructure definition>

The <role id> indicates which role the entity plays as far
as the declared interaction point is concerned. We note
that the distinction of these roles permits the checking
that the invocation of interactions in the conditions and
actions of transitions is consistent with the possible
exchanges definediin the channel definition.

4.1.3. Extended state transition module

<module body> ::= <label definitions>**
<constant definitions>**
<type definitions>**
<variable declarations>** 	(* Note 11 *)
<state set definition>*
<proc func or mit etc.>*
<embedded transitions>+

<embedded transitions> ::= TRANS <transition>+
<major state declaration> ::= STATE : <enumeration type> ;
<state set definition> ::= 	<state set id> = <set definitiou>** ;

(wNote 4*)

<internal definition> ED

- 24 -

<proc func or mit etc.> ::= <procedure definition>** (* Note 2 *)
1 <function definition> 	(* Note 2 and 3 *)
1 <continuous output definition>
1 <initialization> (* Note 12 *)

<continuous output definition> ::= FUNCTION <interaction point ref>.
<function name> ; <block>

• (* the parameters of the function
are already declared in the channel
definition *)

<interaction point ref> ::= <interaction point id>
<interaction point id> (<index variable>]

(* Note 9 *)
<index variable> : :=<identifier>
<function name> ::= <identifier>
<initialization> 	: := 	INITIALIZE BEGIN

STATE TO <major state value>
<additional mit>;

<additional mit> : := END 1; <statement sequence>** END

•e
<transition> ::=

ANY <any list> DO <transition>+ (*Note 5a*)
WITH <variable list> DO <transition>+ (*Note 5b*)
WHEN <interaction point ref> • <intraction id> <transition>+

5c)
DELAY(<delay value>,<delay value>)<transition>+ (* Note 5c *)
FROM <major present state> <transition>+ <*Note 5d*)
TO <major next state> <transition>+ (*Note 5e*)
PROVIDED <expression>** <transition>+ (*Note 5f*)
PRIORITY <priority indication> <transition>+ (*Note 5g*)
<block>** ;

<any list> : := <identifier> : <type identifier>**
1 	<any list>, <identifier> : <type identifier>**

<variable list> : := <variable>**
1 	<variable list>, <variable>**

a)
(*Note

<delay value> ::= <expression> 1 * 	(* Note 10 *)
<priority indication> ::= <integer expression>** (*constant or some

integer expression*)
1 <integer>**

<major present state> ::= <major state value list>
1 <state set id>

<major state value list> ::= <major state value>
1 <major state value list><major state value>

<major next state> 	::= <major state value>
1 SAME

<major state value> 	::= <identifier>** 	(*must be element of the
enumeration type of the <major
state declaration>*)

<output statement> ::: := OUT <interaction point ref>
10111.

- 25 -

<interaction id>
• 	 <effective parameter list>** (*Note8*)

<all statement> : := ALL <all enumeratton> do <statement>**
- <all enumeration> : 	<any list>

<identifier> IN <identifier>

Note 2 : Within a transition, "..." may be written for an expres-
sion that is implementation dependent (not defined by
the specification). The body of a procedure or function
that is implementation dependent (not defined by the
specification) is written in the form "PRIMITIVE" or
It ... • 	Other possible uses of ... are for further

•

study.
Note 3 : A boolean function X(<parameters>) with no side effects

(e may be declared in the form "predicate X(<parameters>)".)
Note 4 : The elements of the set must be included in the enumera-

tion type of the <major state declaration>.
Note 5a: These transitions may not include a ANY clause.
Note 5b: These transitions may not include a WITH clause.
Note 5c: These transitions may not include a WHEN nor DELAY

clause.
Note 5d: These transitions may not include a FROM clause.
Note 5e: These transitions may not include a TO clause.
Note 5f: These transitions may not include a PROVIDED clause.

The expression must be boolean.
Note 5g: These transitions may not include a PRIORITY clause.
Note 7 : To refer to the input parameters, the parameter iden-

tifiers of the interaction in the <channel type defini-
tion> are used.

Note 8 : This kind of statement (for producing an output interac-
tion) is an extension of Pascal.

Note 9 : The usual multi-dimensional array notation, e.g. ARRAY
(indexl,index2], is also allowed. 	 •

Note 10: The delay value must be either an integer valued expres-
sion or 'et', which represents infinity.

Note 11: The variable declaration may include one STATE declara-
tion, and possibly more than one provided the rule given
in 3.4.1 an respected.

Note 12: Only one initialization clause is allowed. It is sug-
gested that it be placed at the beginning.

4.1.4. Other extensions

(a) Informal specification elements, which define system
properties that are part of the specification (not
merely comments), are written as text enclosed in
"(/" and "/)" and may be placed wherever comments
or ... may be placed.

(b) A facility for describing optional parameters is
introduced. - To indicate that a - parameter (or field
of a record) is optimal, its type definition is

- 26 -

preceeded 	by the keyword OPTIONAL. 	The value
UNDEFINED means that the parameter (or field) is not
present. A default value may be associated with the
type definition by a succeeding "DEFAULT=<constant>"
clause.

4.2. Removal of certain restrictions

Functions are permitted to return values of -arbitrary
types (not necessarily simple types).

4.3. Elements of Pascal not used

To date, we have not found the following features of
Pascal to be necessary: pointers, files, go to, and labels.

5. Formal .semantics

5.1. General approach

The semantics of the specification language is defined
by a translation . of the language into -a basic semantic model

-desCribed in section 5.2. The translation is eXplained in section

Appendix 10

gl, 	
To: ISO TC97/SC16/WG1 ad hoc group on FDT

Title: Comparison of Subgroup B FDT and CCITT's Draft
Recommendation for Q39/VII

SoUrce: 8.v. Bachmann, Canada

dctober 1983

• • Ag-a contribution to the discussion of the harmonization between
, the Pascal-oriented program-like form of FDT defined in the CCITT

- Draft Recommendation for Question 39/VII and the Subgroup B FDT,
this contribution presents in Annex 1 possible changes to the ,
Subgroup D working - document to reflect syntactic differences of
the_two FDT>s, under the assumption that the . syntax of the CCITT'
document were adopted. In Annex 2,some technical arguments are

 giYen in respect to:some of theSe.changes.

•

lieNh4P4EL- 3(1 	Possible changes to the Subgroup El document
to reflect different syntax of CCITT FDT

The numbering of points in this annex is the Same as in
Attachment 1 of the CCITT ".Liaison report ta ISO (THT 17).

The replacements refer to Section 4 of the Subgroup Et- working'.
document (last revision,.see W (3 1,N177).'

The following changes are chosen such as to'minimize the amount '-
of text to be changed in the working document. The question of
rewriting the whole syntax of the FDT in a different.format is
another question not addressed here.

1. System definition

In the definition of <system>, replace
<module type definition»
<system structure>

where <system structure> is for further study
by

where

<module heading>
<inner module definition>
<inner module definition>

<EFSM definition>.
, 1 <substruCtUre definition>

2. Channel

Insert a "5" after "(<role list>)".

3. Separate definition of interaction points
and behavior of a module

Replace the definition of <module type definition> by the
following two definitions:

<module . heading> as defined now, and
. 	 <EFSM.definitiOn>-::::: PROCESS <EFSM type id>

. 	FOR <module type id> ; <module body>
The non-terminals <module type definition> and <internal
de•inition> are not needed any more.

4. Queuing discipline

Add an "empty" alternative to the definition of the <.eueue
discipline>, Which has the same meaningas the COMMON . QUEUE
alternative.

5. Different keywords

The change is straightforward: Replace the keywords WHEN, OUT,
and MODULE 13y INPUT, OUTPUT, and BLOCK, respectively.

6. NEXTSTATE statement

' Add the following statement which can be used in the action part
of a transition. and the initialization part:

<NEXTSTATE statement> ::= NEXTSTATE <major next state>

7. TO clause

Peplace the alternative
1 TO <major next state> <transition»

by 	1 TO <TO. list> <transition» 	.
where

<TO list> ::= SAME
1 <major state value list>

8. SAVE clause

Add the following alternative to the definition of <transition>:
- 1 SAVE <interactiàn»
where <interaction)

- <interaction point ref> 	<interaction id:: 	.

9. Initialization

Delete "STATE . T0-<major state value>" in the definition of
<initialization>.

10. PREDICATE

Delete Note 3.

• 11- PRIMITIVE
. 	.

Delete Note 2, and replace in Section 4.1.4 (a) the text
"wherever-comments or 	may be placed." -
by* 	:
"wherever an identifier may be placed,- except at the'left side of
an.assignment stateffient."

NOTE: There are the following additional syntactic differences:

(a) The list.of Parameters of an input interaction may
optionnally be listed In the WHEN clause (or INPUT cLause,
respeCtively).

(b) The "..." construct is not allowed. The "(/ some text /)"
construct cari be used instead.

•

eNNINIEEDC .72:: Comments on some of the differences

Th* numbering of points in this annex is the same as in'
Attachment 1 of the CCITT Liaison report to ISO" (THT 17).

Point 3: Separate definition of interaction points and behavior
of a module

. 	. The approach of separate definitions has the, advantage that 	.
architectural definitions, such as discussed in PTT-FDT-2
(assuming a language extension for describing module refinements- :
initerms of submodules as discussed in THT-15), can•be given 	›
independently of the definition of the behavior of a module in-
terms of an extended finite state machine. Several different -
specifications far a refinement of a EFSM behavior (i.e.protocoi:
speéifications) may be defined and used in a simulation system•to•
check that they are compatible. (For an exaMple, see OTT-FDT-2)..., .

Point 6: NEXTSTATE statement

• The experience with the description of . the Transport protocol . .
trial specification- has shown that the NEXTSTATE statement may be ,
useful in some cases for avoiding the need for the introduction
of Spontaneous transitions, because it allows several different -.
next major states for one transition depending on the resultsof..
some processing which,is part of the action of the transition...

gl› 	Point 9: Initialization

Use of the NEXTSTATE statement makes the syntax simpler.

Points 10 and 11: Simplification of the language

As pointed out in the CCITT liaison report, .these differences
make the language simpler. It is our opinion that theiPREDICATE,.-
PRIMITIVE, and "..." Constructs are not needed in the language , .
and should be deleted.

4

Appendix 11

•

l ■

'To .J. 	TC97/SC16/W01 ad hoc group on FDT

Tltle„ Considerations concerning the:so-called "zero-queue"
option for the Subgroup B FDT

Source„•0.v..Bochmann

'During Previous meetings, it was .agreed to concentrate at the '
present time on the "'queue" option of interaction, and leave the
"zero 	queue" (or,rendezvouls) option for further study. Since
then, interest in the rendezvous Option for interaction has been.
expressed from time to time« The annex of this contribution
Contains a disscussion which shows ho w rendezvous interactiOn cah
be integrated into the Subgroup B FDT in a natural way, also
allowing a more "structured" . specification• style than ts posSible
wi th the "transitioP-oriented" syntax imposed by the current
Subgroup B FDT language. It is proposed to Start working on this
issue in the near future.

Annex: Some Comments on "Transition-Oriented" vs. mStructured" Specification
of Distributed Algorithms and Protocols.
by G.v. Bochmann and J.P. Verjus

. Publ. #495, Département d'informatique et de recherche opérationnelle,.
Université de Montréal.

A kt kle-X

Some comments on "transition-oriented" vs. "structured"
specification of distributed algorithms and protocols

6.V. - Bochmann, Departement d'IRD, Universite de Montreal
J.F. Verjus, .IRISA, Univerite de Rennes (France)

(N(vémber 1903)

1. Introduction

Formal description techniques (FDT) for the Specification Of • .
communication protocols and services are being developed by ISO
and CCITT to be used in the area of Open SyStem Interworking
EViss 03c, Dick 033. It is expected that these techniques could
alSo be used as specification language in other areas of
application. One of the FDT's, the so-called "Subgroup B FDT"
CFDT B, FDT CCIT], uses a descriptive model based . on Pascal and
thé concept of finite state machines. (for references to.related
work, see for instance CBoch 02c1). Using this FDT, a system is. 	•

described as conSisting of a certain number of "modules", each
specified as an extended state machine. The sYsteffi structure
defined by a static interconnection pattern, and two
interconnected modules may interact through the exchange of
"signal's" which may include parameters.. Iwo options are foreseen -
-for the interactions between two given modules: (a) rendezvous
interaction, where the "sending" module must wait until the
"receiVing" module is ready for the reception of. the signal, and
(b) interaction with queuing, where the.signals generated by the
sending module are put into a (conceptually) infinite queue and
are received by the "receiving" module in FIFO order as soon as
it is ready. (The latter option is Selected to be used for the

 initial protocol specifications).

.At the same time, much research ln the area of distributed
system specification methods is aimed at a better understanding
of . the basic probleffis of distributed system design through the '
study of such language concepts as CSP. [Hoar 701 and CCS CMiln
0(0. Other work concerns the systematic derivation . of distributed
algorithms from some specification of the 'requirement which is

 often given in a centralized view (see for example CPake 033. In
this kind of work, a distributed algorithm or protocOl is often
given in a style, usually called "structured", which corresponds
to structured programming practice and its familiar nested
program structure, as supported by mciSt modern programming
languages.

The purpose of this paper is to relate the rendezvous option -
of the Subgroup B FDT to language concepts found in CSP and CCS,
and relate its descriptive power to other languages designed for
distributed systems, such as ADA CADAL It. is shown that the
rendezvous.option of the Subgroup B FDT can be defined in .such a-
way a5 to realize concepts close to the "rendezvous" and "guarded '
command" defined in CSP or CCS. In addition, the "transition-

1

•

•

oriented" specification style promoted by the present Subgroup 0
EDI:can be seen as a special case of a' more general "Structured"
specification style which can be supported by the FDT assuming
simple extenSion of the language. 	 .

The paper is organized as followsu Section 2 presents a
simple example system and the specification of one the of system •
modules in the "structured" specification style using the
(slightly) extended Subgroup B FDT. A definition of the semantics: •
of this version of the Subgroup B FDT is then given in Section 3.
The relation between the "structured" and the "transition- 	 •
oriented" specification styles is explored in Section 4, where• :-
trans.formation rules between thé two approaches are discussed.
This section also includes a discussion of advantages and
disadvantages of these two approacheÈ.; Some concluding remarks 	•
are given in Section 5.

2. An example

The example considered here iS an algorithm which•attributes
•privilege (for example, access to a resource) in mutual

,exclusion to a . number of user modules which communicate with one
another in the form - of a virtual ring which is suppOrted by a 	.
physical network to which the modules are connected. The •
description given here is based on an original algorlthm of
Dijkstra CDijk 741 further discussed and modified in'EMoss 773.
description of the algorithm using the Subgroup B FDT was also .

:given in CGroz 031.

• The overall system structure is Shown in Figure 1. Each user
medule is connected to the virtual ring through a ME_COntroller'- i.
(mutual exclusion controller)'which.determines then the user in 	--
question may obtain the privilege. The implementation of=the
virtual ring is not considered in this paper; details about thé
maintenance of the Virtual ring structure in the preSence of .
faults May be found in EMoss 773 and E8reiZ 833.

The idea of the mutual-exclusion algorithm is that each ›
'ME controller module can consult the "state" .of its left

-
neighbour on the ring and is able to determine whether . it may
give the privilege to the user from the knowege of its'-own .and - •
the neighbour's state. The own state is updated after the

, privilege has been used.

The possible interactions of the ME_controller module are
specified below using the Subgroup B FDT.syntax. : For each of the. •
two channels through which the ME_controller module may interact,.
the types of possible interactions are listed with an indication
which module may initiate the interaction and select the ValueS
of the parameters. For the ME_service channel, .for example, the
two roles ME_user and ME_provider are specified. The' module
.playing the ME_user role initiates the four interactions •
mentioned in the • channel specification, while the other Module
plays a passive role, receiving these.interactions. •

•
• channel ME service (ME_user, ME_provider);.

f bY ME_user:
ME_begin
ME:_end;
F_beging

. F_end;

In the case of the VR_service channel below, both modules have
some. active part to play. Only the two interactions S_resp and •
S_conf have a parameter, Which is used to convey state
information between adjacent modules on the ring.

channel VR_service (ring, user);
by user:

F_begin5
F_end;
S_req;
S_resp (S State_type);

by ring:
S 	ind;
S_conf (S 	state_type);

It is noted that the user initiates the MELbegin interaction when:'
it wishes to obtain the privilege. When the ME_controller 	 • •. 	.
executes this interaction in rendezvous with the user the 	, •
"privilege" is passed to the user. When the user does not'require: -

the priVilege any more, it initiates the ME_end interaction. In .
the- case of 'a failure, the user initiates the FJ3egin
interaction. The terminatiàn of a fail .ure situation is indicated: .
by the F_end interaction. Similarly, the MEcontroller module may
indicate failures to the virtual ring. The order of interactions
for the exchange of state information between a ME_controller 	H
module and itS "left" neighbour is indicated:by the time-sequence .

diagram in Figure ?: A S_re4 interaction initiated by the module
in question is followed by a S_ind initiated by the virtual ring
to its neighbour; thé state information is returned throUgh the I -

 S_rep and S_conf primitives«

The mutual-exclusion algorithm can be described by the
following program which defines the behavior of a ME_controller
module. 	 . .

module ME 	controler (up 	ME 	service (ME_proVider .);
down : VR_service (user));

var My_S state_type;

begin nut downS_req;
while • true do begin

•

•

•

. <normal>:
select

when down.S_conf (left_S)
begin

if some_predicate(my_S, left_S)
• then begin •

<privileged>:
select

when up.ME_begin
<ME>:
begin select when up. .MEend begin end;

end select
end;

otherwise begin end;
end select;
change_state (my_S);
end 	 •

elSe; 	 •
out down.S....req

end;
when down.S_ind

begin out tiown.S.....resp(my_S) end;
• when up.F__begin 	 •

begin
out down.F_begin;
<F>: 	 •

• select when •p.F_end
begin out down.F_end; '

	

.• 	 out down.ELreq end; 	 •
end select; 	 -

• end;
end select;

. end;

The interpretation of the algorithm given above is
relatively straightforward. The modUle sends periodically a Sind'
Over the ring to its left neighbour and waits for one of the
following events to happen.

(a) The answer from the left neighbour in the'form of a S_conf
interaction: If some_prediCate is true, the privilege cari be 	-
given to the user module, since this predicate can only be true
for at most one site. The predicate dépends on the state Of the
module itself (variable my_S) and the state of the left neighbour
which is passed as parameter left_S through the'S_conf
interaction. (As explained in [Moss 77] , the state of a site is -.

composed• of two parts: the site number, and a counter variable.
The latter is updated by the operation change_state whi(ch has-the. •
effect that the predicate becomes true for the neighbour to the
right. In this example the circulation of the privilege is
assured by the periodic status requests ta the left neighbours;
other approaches to énsuring this circulation are described in
EGroz 03]).

If the predicate is true the privilege is passed to the user onl ■'
if,the latter requested it. Whether the privilege was requested
is:.checked by determining whether the ME_begin interaction with::
the 'user can be executed or not. If yes, the privileged region
(mutual exclusion) is entered until its end is indicated by the '
execution of the ME_end,interaction. Otherwise the prévilege is'
imMediately passed on to the next site through the execution of
the change_state operation.

If the -predicate is not'true nothing is to do, except a 'periodic •
retry of the status request to.the left neighbour.

•
(b) Reception of a status request from the right neighbour: A
response is returned immediately. Note that the structure of the
program implies that such a request cannot be received when the

'site is in the privileged or failure state.

(c) Entrance into a failure state, indicated by the user through
the F_begin interaction: The module waits that the fail.ure is
terminated, as indicated by the reception of e Fend interaction
from the user over the channel identified by the up port. The 	-
Fja.egin and F_end indications are propagated to the 'Virtual rind_
through the down port. Note that it is. assumed that a - failure-
never occurs directly within the privileged state (see discussion
in Section 4).

11› 	3. Language definition

, This section provides an informal definition-of the language'.
used for describing the example above» The definition is given..int
comparison with ADA and the Subgroup D FDT (queuing option). .

3.1. . The nature of module interactiOns

'. Module interactions have the rendez vous semantics as defined
for-ADA or CSP. This implies that an interaction between two '

:mcdUles 'can only take place when one module is ready for the
• execution of an output statement, and the other module is ready
for eXecuting an input reception of an interactiOn of
corresponding type and over the same channel, If the latter
modulé'is not ready (i e. executing internal operations,
outputting, or waiting for another type of input or over another
channel) then_the former module has to wait. This may well lead -
to a deadlOck if the system specification allows such a situation .
to happen.

In contrast to ADA, each interaction allows the transfer of,
parameters only in one direction ., from the outputting module to
the receiving one. This is also the case for the queuing - option
of the SubgroUp Et FDT.

3.2. Language definition

The syntax for the definition of the channels and the

6

•

headïng of the module is taken from the Subgroup B FDT CFDT B3,
as well as the syntax for the input and output« The only 	 .

. extensions to the Subgroup B FDT is the select statement which •is
decribed below. .

A select statement is introduced (replacing the trans
construct of the Subgroup B FDT). The seMantic of this statement- •
is as in ADA namely the selection of one of the possible
"choices" given inside the statement. Two kinds of choices may be
included in a select statement: (ï) input choices which
correspond to the reception of an interaction of a specific type
oVer a particular channel, or (ii) spontaneous choices which may -
be chosen based Solely on the internal state Of the module. (No
example of a spontaneous choice is given in this paper).

A spontaneous choice begins with provided <boolean
expression> where the expression indicates the condition which
.must be true for this choice to be selected. Ifit• is selected. -
the following "begin...end" statements are executed.

An input choice begins with a when clause which•indicates
the kind of interaction to be receive& for this Choice to be
selected. It may also be followed by a provided clause which
indicates an additional condition depending on the internai

• module state and the parameters of the received input
interaction. The following "begin...end" statements indicate the
actions to be taken if the choice in question is selected.

If•several choices are possible in a given system state, an -
implementation of the specification will select One Of the

• possible choices; which one'is not specified.

The•otherwise choice indicates that a "begin,..end"
cônstruct is to be executed if on the entry to the select
statement none of the explicitely defined choices is possible..
Th:is. can be conSidered a special case Of static "briorities"
asSociated with choices, as defined in the Subgroup B FDT.

Some labels are incLuded in the example Of Section 2 using
the notation " < label id > ". They are only introduced in •
order to show the relation of the "structured" specification Of -
Section Zwith the "transition-oriented" specification given in
Section 4 and shown in Figure 3.

3.3. Considering the Subgroup B FDT as a special case

The Subgroup. B FDT (rendezvous option) may be considered a
special case of the-language described above. The transitions, -
defined in a Subgroup B specification may be considered to

• correspond, one by one to choices in a• single select statement -
which is repeatedHindefinitely, according to the following -
program structure. Such 'a program structure is called
"transition-oriented" in this paper.

•

•

module
:var

:begin while true do select
<transition 1>;
<transition 2>;
..•
<last transition›;

end;

4. Transformation between "structured" and "transition-oriented"'
specifications

4.1. Transformation principles

• ; The relation between "Structured" and transition-oriented"
specifications are considered in - this section, as well as
transformations that go from one specification style to the .
other. The transformation from a "structured" spedification to an
equivalent "transition-oriented" one is discussed below. On the . .
other hand, Section 33. takes the view that a "tranSition-
oriented" specificatiOn may be considered as a special case of a • ,
"structured" one. , However, this view ignores the possibility that• •
an - equivalent specification may be found with additional
structure. Methods for finding such structure are outSide the .
scOpe of this Paper«

As fer as .the transformation of a,"structured" specificatiOn
into a "transition-oriented" one is concerned, it is important to
note that several methods for automatic transformation may be
enVisaged. Depending on the, complexity of, the control,structures.

 in the programming language used for the "structured"•
. specification, such transformation will become more or,less 	.
complex«

If the "structured" specification uses no GOTO statements,
transformation methods may be developed Using the following
approach A control,, state variable is introduced, sometimes
called "mai or state" and usually 'represented by the \iariable name.
state. The possible values of this variable correspond to places
in the program text of the "structured" speèification. (In the
example, they are indicated by the labels). The beginnig of each
select statement, in particular, corresponds to a value of this
variable. There is at least a transition for each choice of a
select statement. The action of a transition will usually extend
up to the beginning of the next select statement in the program
text« If a loop of the "structured" specification contains a
select statement then. the loop will be "cut" leading to one or
several transitions tO be executed for each iteration Of the
loop. This approach has been uSed for the example given below,

7

• 4.2. The mutual exclusion algorithm

The mutual exclusion algorithm described in e "struCtured"
style in Section 2 may be rewritten in a "transition-oriented
styje as follows. A number of so-called "major states" (possible 	•
valnPs of the state variable of the module LFDr WI) are 	 -
introduced which correspond to the places in the program . text
the "structurecP specification indicated by the labels. the
notation from <present major state> to :(next,major state> LFDT . 0 .3
used below indicates that a . given choice (i.e. "transition") is
only possible if the présent state has a particular value, and it :-
indicates the value of the state.variable after the eXecution of
the "begin...end" statements of the choice. An overview of the»: -
major states and "transitions" of the specificaticin is given in. . -

 the diagram of Figure 3. 	 •

Module ME_controler (up : ME_service (ME_provider); •
down : Wq • service (user))y

, var my 	S 	state_type;
STATE 	(normal, priVileged, ME, F);

begin state 	normal; out down.S_reg; while true do select

. when down.S_conf (left_S)
. provided some_predicate (my_S, left_S)

from normal to privileged
begin end;

when down.S_conf (left_S)
provided not some_predicate (my_S,left_S)

from normal to normal
begin out down.S_req end;

when up.ME_begin
from priVileged to ME
begin end;

provided true priority lower
(4(- normally:if no ME_begin is waiting *)'
from privileged to normal

• begin change_state . (myfl);
out down.S_reg 	end;

when up.ME_end
from ME to normal
begin change_state (rly_S);

out down.S_req 	end;
when down.S_ind

from normal to normal
begin out down.S_resp (my_S) end;

when up.F_begin
from any to F
begin out down.F_begin end;

when up.F_end
+rem F ta normal 	 • 	 -
begin out down.F_end;

put down.S_req 	end;
end select;
end;

• The transition indicated inTigure 3 by the dashed line
flot included in the "structured" specification given in Section
2. Ip fact, for the specification of Section 2, it is assumed
that a user module never initiates a fault indication when it ib •

in the mutual exclusion state. This assumption is not necessary •
for the "tranSition-oriented", specification 'given above. It is
interesting to note that the introduction of the dashed
transition poses no "structural problem" in the specification. It •

is siMply "another transition", in this case actually included,in H
the before last transition using the from any construct to - .
indicate that the transition Ittay be chosen in any Major. state.

4.:3. Exception handling

The introduction of the equivalent of the dashed transition:
in the "structured" specification of Section 2 leads to some-
statements concerning the failure interactions in the innermost
select st 	mente. This results in a somehow "unstructured"'
specification since considerations of failure woUld be
distributed to two places in the program..

An:alternative method for handling this situation . is the 	,
introduction of an additional control structure to the language
for handling "exceptions" with higher priority. Associating.an
exception clause with a statement in the language,. and assuMing
that the scope of the exceptional', high priority choice specified
in the claus 	pplies to the whole statement the specification of
Section 2 may be rewritten in the following form.

module ME_controler (up : ME service (ME_Orovider).; -
down : ;:5R_service (user));

var . aly 	S 	state_type;

begin out down.S_req; while trLie do
begin

select .
when down.S_conf

see Section 2 	 •
when down.S_ind
• see Section 2

end select;
end exception select

when up.F_begin
• .begin

out down,F ;_begin;
• select when up.F_end

begin out down.F_end end;
end select;

end;
end select;

end;

9

•

•

•

5. Conclusions

• This paper compares the "transition-oriented" specification
style promoted by certain specification techniques, sych as the .'
Subgroup D FDT EFDT B3 develoPed for .the specification of OSI
prOtocols and services, and a "structured" spécification style
based on programming languages, such as ADA or CSP, using

rendezvous primitives for inter-process communication. The

similarity of the Subgroup D FDT using the rendezvous option for
inter-process communication with the "structured" sPecification
style is pointed out in Section 3. The following.remarks conclude -
the discussions of this paper.

(a) Rendezvous communication: The rendezvous interaction
primitives have-the property that the receiving module'may
determine if and when a particular interaction may be executed- -

 This power is essential for 'many examples. It.alloWs the writing,H

of "'structured" specifications, but care must be taken to avoid -

the possibility of deadlocks« (This power ts not providecrby the
queuing option of the Subgroup El FDT EFDT B3).

(b) Non-determinism: For a specification language, the
possibility of leaving certain properties of.the specified system .
undetermined seems .important. In the case of the specification
language considered here, non-determinism, can be introduced by •
the undetermined selection of a choice within a select statement.
However, the non-determinism is. partly reduced.by the environment

which may determine the next interaction.' Sometimes the non-
determinism is further reduced by defining.priorities among the
different choices, for instance through the otherwise clause used
in the example of Section 2.

It is important to note that the discussion in this paper
does not address the problem of "liveness" (see for example [Lamp .
02]). In the case that a specification alloWs.a choice between
severai'different alternatives, how does one sPecify that the -
choice between the alternatives should be fair,' that is each of

the choices will eventually , be executed, it this:is possible at
all? It seems that considerations of liveness, as well as
performance are usdally part of a specification and Should be
addressed by a specification language. •

(c) Parallelism: Certain languages alloW for the expression
of processes or sequences of statements which are executed in •
parallel, and May share some common data Not all "structured"
languages allow far this possibiliby. However, in the
"transition-oriented" style of specification, such a, situation
may be expressed bY.-decomposing each of the parallei.processes-
into a number of transitions, such that these transitions
belonging to different processes may be executed in ah
interleaVed manner. Although this is no true parallelism, this -
approach allows nevertheless an arbitrary fine interleaving of
the processes depending on the size of.the'indivudual
transitions.

10

• (d) Exceptions: The "transition-oriented" . style invites
designer to write a transition of the form
:provided (/ some'exception /)•from any to.fai.led
begin (/ do exception processing /); •

which will be eXecuted in any circumstances when the spectfied
exCeption occurs. This approach is straightforward and eauy to
use, however, it covers the'fact that for certain- systems
speCific exception processing is required depending on the
context'in which .the exception occurs. In the example above, the.
occurence of .a failure during the holding of a privilege .may _
rem:lire a different processing - than in other circumstances. The:',
"structured" specification , style forces the designer to. consider.
the .different circumstances-more explicitly, as discussed in
Section 4.3.

•

•
11

• References

LADA 82 1 Reference•Manual for the ADA Programming Language, DOD,.
USA (duly 1982). • .

• LDOch 02n1 G.v. Bochmann,.E. Cerny, M. Gagne, C. jard, A.
Leveille e C. Lacaille, M. Maksud, K. S. Raghunathan and
S. Sarikaya, "Experience with formal specifications
using and extended state transition model", :IEEE'TranS. - -
COM-30, No.12 (Dec. 1902), pp. 2506-2513 • 	.

EDick 03 1 G.j. Dickson, and P. de Chazal, "Application of the_ •
CCITT SDL to protocol specification", IEEE Trans. COM ;
to be published.

CDijk 74 1 E,W.Dijkstra,."Self-stabilizing systems in sOite of
distributedcontrol",. Comm. ACM 17, 11 (Nov. 1974). .

CFDT D 1 ISO 1C97/SC16 N1347 (revised July 1903), "A FDT based•
on an exténded state transition model" .. -

•

•

CFDT CCIT1 CCITT SG VII, Draft Recommendation "Formal description , '
techniques for data communications protodols'and
services", 1903. •

CGroz 83 J R. Groz, "Description de Palgorithme de
Mossiere-Tchwente-VerjuS avec le langage• de descriptiOn,
FDT de l'ISO et du CCITT", Note interne,..,CNET/EVP ;
(1983), Lannion, France. 	 .

CHoar 78 1 C.A.R. Hoare, "Communicating séquential proceSses",
Comm. ACM 21, 8 (Aug. 1970), pp. 666,-677.

[:111 in 80 1 R.Milner, "A Calculus of communicating, systems"',
Lecture Notes in CS, NO. 92, Springer Veriag, 1900.

• CMoss 77 1 j.Mossiere, 0.Tchwente, and J.P.VerjuS, "Sur
l'exclUsion mutuelle dans les reseaux informatiques",. -
IRISA Publ. 75 (1977), Rennes, France.

•rOwic 02 .1 S.(Jwicki,and L.Lamport, "Proving - liveness properties of,
concùrrent prograffis", ACM Trans. PrOgr.• Lang. and
Systems 4, 3 . (july 1982), pp. 485-49S.

CPake 03 1 Y.Paker and d.P.Verjus, edsi, Distributed Computing ,
Systems, Synchronization, Control and Communication,
Academic Press, 1903.

CViss 83 1 C.A.Vissers, (3. y. Bochmann and. R.L.Tenney, "Formai,
description.techniques :by ISO/TC97/8C16/W01 ad hoc
group on FDT", Proceedings of the IEEE, tu be
published..

channel ME service

channel VR service

Virtual Ring

Figure 1

•
•

• • •
•

S conf

(state-info)

ME controller Virtual Ring ME controller1.4.1

req

Sind

S_Fesp

(state-info)

Figure 2

•

S conf provided
not some-predicate

S-req
ME end/change-state, S reg

S reg

F end
/F end,S_rè

Figure 3

APpendix 12

•

e

Title: ,. Delegate's , renort on the m7 97/SC le/wn 1 me meeting in
. 	- f Enschede, July 4-8, 1983. 	 . 	.

Source: Luigi Logrippo, University of Ottawa

Attendance. The meeting was attended by about twenty people, from the
USA, UK, the Netherlands, France, Germany, Italy. The Canadian
delegates were G.v. Bachmann and myself. Contrary to previous
meetings, where the attendance was usual:1.N - limitee to rpm experts,
this time there was a fair contingent of outside experts, especially
from WG5 and EC-, including Andrew rhandler, J•P. Ansart, Eddie
Michiels, and David Bleth (the latter from the File Transfer group). .
For the first time, there were also two experts from the USA National -.,.
Bureau of Standards. 	The NBS had Previously been following the FDT
question through the person of Richard Tenney, however now is starting
to participate directly.

Main Achievements. According to the decisions taken during the
February 1 G1 meeting in Paris, main purposes of the meeting were:

- to support Transport and Session experts in applying the available
FDTs, in particular the Suhgroun n technique, to Transport'
protocol and Session protocol

- to further stabilize. the FDTs.

The meeting was very successful on both accounts. The outside experts
were very interested in the FDTs, and participated actively towards
the preparation of trial specifications. Several formal
specifications of various classes of the Transport protocol already
existed, some prepared hy people who hae not participated to previous
work of the FDT group, such as the Isms representatives. Study and
discussion of these specifications enabled the outside experts to
familiarize themselves with the technioue. noth FDTs were considered
by the outside experts, and both were found to be equal to the task.
Same improvements were suggested. At the same time, the FDT experts
had the opportunity to familiarize themselves with the fine points of
the Transport and Session laver protocols.

Work within Subgroup B. Subgroup B's technique is currently the best
known and the best developed of the two techniques currently under
study. Very substantial trial specifications already exist, written
either in Subgroup B's technique, or in other similar techniques (such
as France's PDIL). These specifications were developed within Canada,
France, and the U.S.A. Almost complete specifications already exist
for the Transport protocol, classes 0 and 2. Work on other classes
has already started. Work on the Session layer was started during
this meeting. Some minor problems keep showing up here and there,
however on the whole there is no doubt that Subgroup B's technique is
well on its way to beccming a practically usable FTIT.

Two major points facing Suhgroup B are:
a) definition of syntax and semantics for module interconnection.

Delegate's Report on the work an FDT
during the ISO TC97/SC16/W61 meeting in Ottawa, October 1983

by. 	v. Bachmann

An ad hoc group on FDT met during most of the time allocàtetr
to.WG1 during its October meeting in Ottawa. The main points +Or ' •
discussion were.
(e) a time table fôr the application of FDT's within OBI.,
.(1:) ' the document on service conVentions, and 	 . • . •
(c) subgrouP meetings for'technical discussions. 	 .

The subgroup meetings were very short, and not much progress
was made..It is to be mentioned that there is now an almost
coMplete tutorial document on the Subgroup C FDT. A first draft •:- •
on "interworking of Subgroup B and C specifications" ((JTT-FDT713)'.
was elaborated, which explains how specifications.given - in the 	.
two different languages could be combined into à single systeMin,.
a; meaningful way.

The discussion on the service conventions resulted in smile •
Minôr revisions of the document, and the submission of the
document as a DP in view of making it a standard. There Was
objection from the US on this point, which will probably comé up:
in the DP voting process again.

Concerning the time table for thé application of FDT (N
1644), a new Work item on FDT (N 1650) is proposed. Whether this
work should reSult in a standard or a technical report of typé
isleft open at thiS point in time. The target date for either
standard of techincal report is February 1985.

In the meantime, it is proposed that work on trial
specifications should continue in liaison with. WW,S 4,5, and 6.
The WG>s are invited to identify their - experts ah FDT. An FDT
wOrkshop is pl.anned for MailJune 1984 to give a detailed
introduction to the use of the FDT's.

It was agreed to revise the working documents on the FDT's
to make them in line with the format required for à Standard or
technical document (which would be essentially the same).. This
work should start at the next FDT meeting which is planned in
January 1984 in Munich.

Concerning liaison with CCITT on the Subgroup B:FDT, not
much has happened, partly due to the lack of effective liaison
representation from CCITT Q39/VII. Concerning the long range''
planning for the next CCITT study period,'it is proposed to
organized meetings on FDT jointly-with the CCITT (see
Recommendation 24 for more details).

Concerning harmonization of the Subgroup B FDT with the
present 0.39/VII Draft Recommendation as proposed in the Canadian
contribution (WO1 N 147), no progress was made.. It seems that the

• US are reluctant ta go that way. In any case s this question
'should be brought up again in the next technical FDT" meeting in
January 1984. This seems the More important as the text of the:
Draft Recommendation was submitted to the FDT group already in

 July 1983 (and no time for discussing the issue of harmonization
has been found so far), and some positive reaction from ISO - baCk
to CCITT seems important in order to make the attempt of
harmonization between ISO and CCITT credible» (Note that the .— •
pascal-oriented form of FDT i,ncluded in the 039/VII Draft
Recommendation goes a long way" from standard SDI" as defined in „
Z.101, to come close to the present form of the Subgroup El
language).

Continuing support of the FDT work by Canada seems
desirable.

