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Engineering, University of Ottawa, between March 75 and 

April 76. 

Dr. D.S. James was instrumental in beginning this 

project and offered valuable advice and help throughout 

its progress. Graduate students A. Chattopadhyay, 

M. Cuhaci, K. Masand and G. Painchaud made valuable 

contributions through experimental work and discussions. 

Prof. W. Steenaart offered many helpful suggestions and 

• ideas. 



1 	.INTRODUCTION  

•This final report summarizes the analysis of selected 

Microwave Integrated Circuit (MIC1 structures and provides 

formulas for their design. The open microstrip line which 

is the basic element common to all these structures, is 

consistently represented by a parallel plate model simple 

and accurate enough for the analysis of the following selected 

arrangements: Triangular planar resonators with galvanic, 

capacitive and hole coupling to microstrip,  transitions  from 

microstrip to waveguide and cavities, and some transverse 

obstacles in microstrip. 

Structures were chosen mainly because of their 

relevance to current projects at the Communications Research 

Centre in Ottawa. All analytical results (except those on 

triangular resonators) were experimentally verified and found 

•to be in good agreement with measurements. 

After a short description of the selected Microwave 

Integrated Circuit structures, the methods of analysis are 

outlined briefly. A description of the experimental techniques 

and a comparison between theoretical and experimental results 

conclude the report. 

2. 	DESCRIPTION OF SELECTED STRUCTURES  

2.1 THE MICROSTRIP MODEL  

Ail  structures discussed in this report include an 

open microstrip transmission line. Its analytical treatment 

becomes relatively simple.if it is replaced by a parallel 

plate moàel with magnetic sidewalls as shown in Fig. 1. The 

characteristic impedance and the effective dielectric constant 

of both model and original line are the same for the quasi-TEM 

mode. However, higher modes of propagation in the model 

approximate the behaviour of equivalent modes in the original 

structure to the first order only. Thus, the successful 
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Fig. 1 Microstrip line and its equivalent • parallel 
plate model with magnetic sidewalls. 

application of the model is limited to low frequencies, i.e. 

frequencies below cutoff of higher modes. The main advantage 

of the parallel • plate model resides in the simplicity of the ' 

propagating fields and the straightforward boundary conditions 

it imposes. 

TRIANGULAR PLANAR RESONATORS  

Triangular planar resonators are thin metallic 

equilateral triangular discs deposited on a dielectric 

substrate which is backed'by a conduotive ground plane. 

Such a structure is-not only ,interesting.from a theoretical 

:point  of  view but seems to possess lower radiation losses 

than circular.or'rectangular:planar.:resonators  of .equal. 

• :resonant.frequency. 
_J 

•Fig. 2 shows ,such a triangular resonator together . 

with:.a  model  • eaturing magnetic sidewalls. As in the case 

of the microstrip- line, this model provides simplified 

boundary.conditions while •exhibiting:the same resonant ' 

frequency and the same stored energy as the original resonator.' 

1 
1 
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Fig. 2a Shape and dimensions 
of a planar triangular 
resonator (top plate) 

Fig. 2b Model of triangular 
resonator featuring 
magnetic side walls. 

_2.3 COUPLING ARRANGEMENTS Aml TRANSITIONS  

2.3.1 Coupling between triangular planar  
resonators and microstrip/waveguide  

The following practical methods of coupling be.tween 

triangular resonators and microstrip/waveguide have been 

analyzed: 

(a) Direct (galvanic) coupling between a microstrip 

line and the'resonator (Tight coupling) 

• 

	

	(h) Capacitive  coupling between a microstrip line 

and the resonator (Loose coupling) 

.(c) Hole coupling between a microstrip line and 

the  resonator through the common ground plane 

(Loose coupling) 

(d) Hole coupling between a rectangular waveguide 

and a triangular resonator (Loose coupling). 

Fig. 3 shows some typical examples of these coupling arrange-

ments which have been studied. 



,:a. ...Direct coupling to micro strip 

b. Capacitive coupling to micro strip I 

c. Hole coupling to a waveguide 

d. Hole coupling to micro strip 

Fig. 3 Some possibilities of couPling between a 
microstrip/waveguide and a triangular planar 
resonator which have been studied under the 
present contract. 

The strength of coupling has-been evaluated in terms of the 

external loading factor (the inverse of the external Q-factor) 

of the resonator for each coupling arrangement. 

2.3.2 Hole coupling between cavities and  
microstrip  

In order to combine the high inherent Q-factor and 

frequency stabilitY of .a - cavity.with  the  advantages of MIC-

design, hole coupling between a
oln

-cavity of circular 

cross-section and a microstrip line has been analyzed in the 	. 

context of a previous contract. In the present report it 

is shown that the agreement between theoretical.and.experimental. 



results is improved considerably in the case of large coupling 

apertures if the external loading factor is evaluated on the 

basis of the average rather than the maximum magnetic field , 

over the hole area. Fig. 4 shows a typical arrangement for 

microstrip-to-cavity coupling through a hole in the common 

grandplane. 

' 	input 

Fig. 4 Microstrip-to-Cavity coupling through a hole. 

2.3.3 Hole coupling between rectangular  
waveguide and microstrip  

The transition from a waveguide to microstrip through 

a single hole in a common wall has been evaluated. Fig. 5 

depicts the fundamentàl arrangement the properties of which 

Fig. 5 Hole coupling between rectangUlar waveguide 
.and microstrip a) actual structure, b) model 
representation. 

may serve as a basis for the study of multi-hole transitions 

-and directional couplers. - 



MICROSTRIP DISCONTINUITIES 

The equivalent lumped element parameters of thin 

transverse metallic obstacles and transverse metallic posts 

of cylindrical cross-section have been calculated and measured. 

Fig. 6 shows such obstacles which possess geometries similar 

to coax-to-microstrip transitions or diode packages mounted 

across a microstrip line. 

Fig. 6 Thin transverse obstacle (a) and cylindrical 
post (b) in a microstrip line. 

I. Radiation from these obstacles has also been evaluated, and 

measurements of their Z-parameters have been made in a resonant 

microstrip ring. 

•In the following paragraph, the analytic ,a1 approach 

to each of the aforementioned structures will be described, 

and theoretical expressions for their design parameters will 

be given. 

3. 	ANALYSIS OF SELECTED STRUCTURES 

3.1 MODES OF PROPAGATION IN THE MICROSTRIP MODEL  

The parameters of the parallel plate model with magnetic 

sidewalls were first obtained by Wheeler
1 
through conformal 

mapping of the static field between strips separated by a 

dielectric sheet. More accurate values for the characteristic 

impedance Z
o 
may be obtained by calculating the capacitance per 
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-unit length of the microstrip with a finite difference routine. 

-Then c
eff 

may be determined via Getsinger's
2 
microstrip disper-

sion model. Finally, the dimensions of the model are given by 

the expression in Fig. 1. 

The solutions of the homogeneous wave equation in 

this model - unpublished as yet - are similar to the modes in 

a rectangular waveguide, with the exception of the TEM-mode. 

They are in the coordinate system of Figure 1: 

•-TEM-Mode in an ideal parallel plate waveguide with magnetic 

sidewalls (Microstrip model, height h, width A) 
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TM-Modes in an ideal parallel plate waVeguide with magnetic 

sidewalls (Microstrip model, height h, width A) 
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:The 'field patterns of  some of these modes have been sketched 

- by Wolff et al.
3 

Even though the modes in the model describe 

the actual microstrip modes only to a first order approximation, 

they improve the solution of certain discontinuity problems 

over the results obtained with static approaches as will be 

seen in section 3.4 of the present report. 

3.2 MODES OF RESONANCE IN TRIANGULAR PLANAR  
RESONATORS 

The straightforward boundary conditions of the 

resonator model shown in Fig. 2b can be related to the condi-

tions of a triangular waveguide by duality. A complete set 

of solutions for the latter problem has been described by 

Schelkunoff
4 

and was applied to the problem of resonances in 

triangular shaped ferrite posts by Akaiwa
5

. 

Let a triangular resonator with magnetic sidewalls 

be filled with a dielectric material of scalar permittivity 

=
r 
 and permeability p = p

o
. Among all the possible 

o  
resonant modes, only the so-called TM 	- modes are of 

1,m,n;0 
interest in microstrip applications. These modes exhibit an 

electric field which is independent of the z-coordinate (in 

the direction of thickness) and normal to the electric top and 

bottom walls of the resonator. The normalized expression for 

the electric field, as derived from Schelkunoff'
4
s formulae by 

. 
Akalwa

5 
 , Is as follows: 

ZIT 	X + 	cos [--3Bn ( 	B)  J  cos rr  (l -n1)Y 

9B 	• 

The magnetic field is obtained from (30) via Maxwell's 

equation: 
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The resonant frequencies are 
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) 2 (m
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1,m and n are integers which never 'take zero value simulta-

neously and satisfy the following condition 

= 0 	 - 	(34) 

The lowest resonant frequency -occurs for the 'following combinations.: 

+ m 

The corresponding field • configuration  could .be described as a quasi- 

•T.EM - -wave propagating in a tapered - microstrip which is open-circuited 

at the wide end. . The field distribution function. • 1;i  (x, y) is for the .funda-

- mental mode : 

•2Tr 
(x 	

,Y) = 2 cos  —3B 2  + B) cos 

+ cos 	Y 913 

. This expression may -be normalized .by- writing 

21,MT 
(35) 

- ZIT X 
= 2 cos 7

(
y +  I  ) cos 

2 V 3 1 1-r 
• + cos 

9 

This -function is represented graphically in Fig. 'I. 

Lines of constant value for (X,Y) are drawn and -projected upon the X-Y 

plane, representing the magnetic field lines of the fundamental mode - in 
• . the triangula i .resonator. 	 _ .  

Y 

(37) 
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Figure 7 Magnitude of the 
electric field of the funda-
mental resonant mode (TN ) 

in a triangular resonator. 
The dotted lines in the triangular 
plane indicate magnetic field 
lines. 



For the analysis of coupling arrangements and the eva.luation 

of Q-fact.ors associated with the mo.des, the energy ,stored in 

the resonator is of particular interest. The stored energy 

is obtained as the volume integral taken over the square of 

the mode function ip(x,y) in the resonator as follows: 

2 

tored 
(x,y) 	dV 	 (38) 

s 	 V res 

For a triangular resonator of hight h and side A = 2 n8, 

this integral becomes 

1  
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= chB
2

*I - 
12 

 chA 2
• I 

s  

where I is given by the following expression: 
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‘ 2 
• In .this expression, SI (x) = ( 

described earlic-:r (see ecru.. 3). 

Note that • 

1, m and ri are the integers 

{

1 for x. = 0 

0 for x + iTr, = 1,2,3,4,- ... 
SI (x) 
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Also 

2£ 2 
--- SI

2 
(ne.) = 0 

mn 

whenever one of the three indices (1; m; n) is zero. The 

integral I (equ. 40) can take two distinct values as follows: 

If one of the three Indices 1, m or n is zero or 

if two of the indices 1, m and n are identical (i.e. 1 = k, 

m= k, n = -2k, then I = 947/4. 

But if all three indices differ from each another - 

excluding the value zero for one of them - , then I = 917/8. 

This fact is presented in a compact fashion in Table 1. 

Table I Values for the Integral I (equ. 40) as a function of 

the values of the mode indices 1, m and n. 

The following section on coupling arrangements will repeatedly 

refer to the expressions for fields and stored energy derived 

above. 

(41) 
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-3.3  COUPLING BETWEEN MICROSTRIP AND SELECTED STRUCTURES  

3.3.1 Hole coupling between microstrip  and a cavity.  

,Small coupling  apertures  act ,as iadiating . dipoles when 

:excited by .a microwave field: -On the basis .of this concept, 

Wheeler
6 
has derived . simple expressions-to evaluate aperture 

coupling between resonant -cavities or waveguides in terms of 

volume ratios. -Hoefer and James
7 

have extended the method to 

the coupling between microstrip and cavities. A theoretical 

expression for the loading power factor p = 1/Q
ext 

of a cavity 

(resonating in the cylindrical 
TEOln 

- mode) has been derived 

and was found to be in good agreement with experimental values 

for coupling holes small compared with the guided wavelength 

in the microstrip. However, coupling through larger holes 

turned out to be weaker than predicted, due to the nonuniform 

distribution of the magnetic field over the hole area; initially, 

analysis was based on the assumption that this field was constant 

over the aperture. 

Agreement between theory and measurement can be 

considerably improved by employing the average magnetic field 

over the hole instead of its maximum value in the calculation 

of the hole reactance. When the wavelength in the microstrip 

becomes so short (large dielectric constant of the  substrate, 

high frequency) that the hole dimensions are no longer small 

compared with the wavelength, a first order correction amounts 

to multiplying the expression for the loading power factor p 
2 

by (H
average /Hmax

) . 

The average value H
average 

is obtained by integrating 

the expression for the magnetic field over the hole area and 

dividing the integral by the aperture surface. Figure 8 shows 

the situation in which all dimensions have been normalized to 

the hole radius. 
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Eigure.8 Field distribution over the circular aperture 
in the microstrip. 	 • 

The magnetic field is given by the expression: 

where P is  the  normalized guided wavelen.gth oii the  micro strip 

(P = .2X id) , 	= wavelen.gth and d = hole diameter.  The average 

value of the Magnetic field over the hole area is given by the following 

- expression: 
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Integration' With respect to x yields 

where arr/P has been replaced by the symbol k. 



z -  cos kz dz  
1 

o 

5 	6 	7 8 9 
10

-1 3 

1 

.8 

;6 

.4 

.2 

I. 

17 - 

The bounded integral in eqn. (3) is a constituent of an infegra1 

representation of the Bessel-Funktion J
1 
 (k) (see. .) 

• - 

(45) 
-) 2 
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;'1 	3 
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The average magnetic field is then 

2 	2  
"1  /1  Haverage 	

H
max 	

J
1
-(1c) = 

H X Ma 	d/X 	- 1 ‘1->1-/- 	'(-47)   IT 

Application of the correction factor (1-1
average

/11
max

)
2
, which 

is represented in figure '9, to the expression for the loading 

-power factor
7 

yields 

d
4
n
2
X
2
X 

p = 0.09399 	
o g 	

[3- 	(ird/X 	
2 

I,
3
D
2
Ah 	

1 

This expression is represented as a dashed curve in figures 

10 and 11. It can be seen that for large aperture diameters, 

the corrected curve fits the experimental values better than 

the uncorrected one, while for small apertures, the uncorrected 

curve predicts the measured values very well. 

Figure 10 Uncorrected and corrected theoretical 
curves for p are compared with experimental 
values 

(TE012 
cavity coupled to 50 Ohm 

microstrip on Rexolite, E
r 

= 2.6) 
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Figure 11 Uncorrected and corrected theoretical curves 
for p are compared with experimental values 
(TE

012 
cavity coupled to 23 Ohm microstrip on 

Stycast,
r 

= 10.8) 

3.3.2 Hole coupling between microstrip and a  
triangular planar resonator . 

The analysis of this coupling problem (see Fig. 12) 

goes along the same lines as the preceding section on micro-

strip to cavity coupling. The only difference resides in the 

expression for energy stored in the resonator which results 

in a different value for Wheeler's
6 

effective resonator volume 

in the formula for the external loading' factor p: 

Where x is the normalized coupling reactance between two 

identical microstrip lines connected by the coupling aperture, 

and k is the factor of coupling between two identical triangular 



-Fig. 12- Hole coupling 
• between microstrip 
and triangular 
resonator. 
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- -resonators connected by the same aperture. While x is thesame 

as in the'microstrip to cavity coupling problem (see:reference 7), 

. 	- the factor  k becomes 	 .  

V 1 	mc 
V m 

(50) 

where V 	is 
mc 

. 2d
3
/3 

,equation 

the effective volume of the coupling aperture 

for a circular hole of diameter d) and V
m 

is 

volume of the resonator defined by the following 

(V 
mc 

the effective 

In this expression, H c is the tangential magnetic field in 

the resonator at the position of the hole. 

The numerator of eqn. (51) is the energy stored in the 

resonator and therefore equal to the equivalent volume integral 

- over the electric field: 



(53) 

(54) 

1 
p=  -3-  

where 

- ill \If • 	1 e- 12 dv. 	C. 	f 	ii>12 dV = iCf 	
2 

[ 11) (x,y) 	dV .o..r V 	o r V 	(5) ° 'res 	 • res 	' . 

-On-the other hand, the , magnetic - field at the aperture can be 

expressed as -a .function of - the—electric field and is in view 

.of -equ. (32): 

, 	 . icuri[ * (x,y)]. e I :H lx ,y ) = 	 c c c 	w 

	

0 0 	 X cc 

where x ,y are the coordinates of the coupling hole. Equation c c 
(52)has already been evaluated [see (39), (40) and Table 1 for 

the value of the integral] . --W e  thus obtain the following 

expression for the effective volume of the triangular resonator: 

1 
V
m 

= 
-6"»  . 

(w
o
/c)

2 
 e

r
h
R
A2 
R 

I 'curl [ (x,y)] xi 
1 x ,y 
c c 

The external loading factor is then in view of equations (49), 

(50), and (54): 

2 
(71'd

6
c
2
)1curl IP(x,y) kl 	/ (I A h h

R  A
2
A w

2
E ) 

x .17 	MMRgor C c 
(55) 

d = 	Diameter of the coupling hole 

c 	= 	speed of light 

' A
M  = 
	Width of microstrip model 	 . 

h
M  = 
	Height of microstrip model 

A
R 

= 	Side length of resonator model 

h
R 

= 	Height of resonator model 

A
g 
 =. Guided wavelength (TEM) in microstrip at respnance 

w
o 

= 	Resonant angular frequency 

c
r 

= 	Rel. dielectric constant of resonator dielectric 

I 	= 	Integral as given in eqn. (40) 

II) 	= 	Field distribution function in the resonator as 
defined in eqn. (35). • 

The particular case of coupling to the fundamental mode through . 

a circular hole  -in --the centre of the triangular resonator is 

presented in Fig.12. 	If the hole diameter d is a . relatively 

large fraction of the wavelength A in the microstri,p,. p must , 

be corrected by multiplying eqn. (55) by the factor(H
average

/H
max

) 

represented in Fig. 9. 



(circular iris) 	 (56) 2ud
3 

3abX 

Hole coupling between .waveguide and - a  
- triangular planar resonator 	. 

This problem differs from the preceding case only by, 

the expression for the hole reactance x. 

In view of equations (49), (50), (54) and (56), the external 

loading factor p becomes: 

2-.+12 
P = 	(ud

62 ) lcurl ip(x,y) 	/ (Iabh A
2
X w

2
E ) 

rY 	RRgor 
C c 

where 

-(57) 

d 	Diameter of the coupling hole 

Speed of light 

a 	= 	Width of waveguide cross-section 

Height of waveguide cross-section 

A
R = 	

Side length of resonator model 

h
R 	

Height of resonator model 

A g 
 

Guided wavelength in the waveguide (TE10 ) 

w
o 	

Angular resonant frequency 

E
r = 	

Relative dielectric constant of resonator 
dielectric 

I 	= 	Integral as given in eqn. (40) 

Field distribution function in tlie resonator 

as defined in eqn. (35). 

Again, multiplication of p by a correction factor 

(H 	
r 

/H 	)
2 
 L(see eqn. 76)] is in order for large 

average max 
fractions d/X . Fig. 13 shows an example of the coupling 

situation described by eqn. (57). The same formula may be 

applied to an arrangement where the coupling hole is situated 

in the centre of the large wall of the waveguide at n - A/2 

before a short circuit, as shown in Fig. 3c. 



DIELECTRIC 	 t 	 GROUNDPLANE 

RECTANGULAR 
WAVEGUIDE 

1 Figure 13 Hole coupling (magnetic)between waveguide 
and triangular planar resonator. 

3.3.4 Galvanic  (direct)  coupling between microstrip  
and a triangular planar resonator  

Two examples of galvanic coupling are shown in Fig. 3a. 

To evaluate the external loading factor of the resonator in 

these cases, let •the centreline of the microstrip intersect the 

periphery of the resonator at (x 
c 
 ,y 

c
). If vie assume that the 

microstrip does not perturbate the field pattern in the resonator, 

the voltage across the microstrip line at (x ,y 
c
) is V : 

c  

I. 



(58) 

(59) 

(60) 

(61) 

24 - 

E (x ,y ) • h = 11)(x ,y ) e
jw

o
t 	

h
R R z c c 	c c 

If the microstrip is matched at the far end, the resonator 

Is loaded at (x ,y ) with the characteristic impedance Z o c c 
of -the microstrip. The energy dissipated per cycle in the 

- , external load is then 

W = V
2 	

/(2Z f ) = [ip(x y) 	h
2
R
/(2Z f ) 

cmax 	o o 	c 	
2 	

o o d  

and the external loading factor p becomes 

Energy dissipated in external load  
p 	1/Qext = 2IT -Energy stored in. the resonator 

W
d
/(2n 	W 

stored
) 

where Wstored 
is given by eqn. (39) and W

d 
by eqn. (59). 

Thus 

n 2 	2 
p =3h up(x ,y ) j 	/ (nf

ooorR 
ZEeA I) 

R - 	c c 

I is again the integral defined in (40). e is the dielectric 

constant of the resonator substrate of thickness hR' 
f
o 

is the 

• resonant frequency and AR t
he side length of the triangular 

resonator model. 

3.3.5 Capacitive coupling between microstrip and  
a triangular resonator  

Arrangements of this kind are shOwn in Fig. 3b. The 

analysis of such a case is very similar to the evaluation of 

direct coupling, the difference being the additional coupling 

capacitor separating the impedance Zo  from the resonator. 

For the calculation of the external Q, the series combination 

of Z
o 

and C
s 

is conveniently transformed into a parallel combi-

nation of f
o
. The resistive part of this parallel combination 

reflects the external losses while the capacitive part slightly 

-affects the stored energy and thus the resonant frequency of 

the resonator. Figure 14 shows the equivalent circuit of such 

a capacitive coupling arrangement. 
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a.) 

Figure 14 Capacitive coupling between microstrip and 
triangular resonator (a) and equivalent 
series (b) and parallel (c) circuits. 

The value of the series coupling capacity C s  may be obtained 

with a numerical method or an empirical formula for such 

configurations. The equivalent parallel elements are then 

found as follows: 

1 + (03 C Z )2 
o s o 

Z (
o

to C s) 2 
o  

C = 	 
1•+ (co C Z )2 

o s o 

For the evaluation of the external loading factot, the effect 

of C can always be neglected. .The expression for p, is then 

-the same as (61) mith Z
o 
replaced by Z as given by (62): 

P 

p = 3h
R 

[11)(x
c 3?' c 	

2 
).] 	/ (uf

o
Z
p

e
o

e
r
A2 

 R 
1) 

where all symbols are defined as in (61) . 

3.3.6 Hole coupling between waveguide and  
microstrip  

A narrowband transition from microstrip to waveguide 

and vice-versa may be built using magnetic coupling through 

a common aperture. Analysis for small coupling holes may be 

done using Bethe's
9 
small hole theory. According to this 

C s 

(62) 

(63) 

(64) 



Anotanaramnunwar.mwar 

theory, a hole is equivalent to a radiating dipole the strength 

of which depends only on the incident field. The power radiated 

from the hole is independent of the configuration and charac-

teristic impedance of the guide into which it radiates. 

The power transmitted through the transition can thus 

be predicted by assuming that the hole-connects.two identical 

waveguides of the type from which the power is incident.  Thus 

P 	V 	2 Z 	• 	2 	• 
transmitted  -  transmitted

) 	
01 - 

y
trànsmitted 	(65) 

- 	 ) 
P 	 (V. 
incident 	

7(y
incident 	

Z
02 

-
incident 

	

' 	.z
01

=Z
02 

where Z
01 

is the characteristic impedance of the guide from 

which the power is incident and Z
02 

is the characteristic 

impedance of the guide into which power is transmitted. 

.Figure 15 shows an arrangement for hole coupling between 

waveguide and microstrip and its equivalent circuit. The 

. normalized reactance of the -coupling hole is different when 

measured from the wavegilide and the microstrip side. In 

the case of a circular hole, these reactances  are, as  measured 

in the waveguide: 

x=  (2ud
3
) / (3abX ) 

• gw 

as measured in the microstrip: 

x
m 

= (nd
3
) / ) 

• gm 

-(66) 

(67) 

zo, W 
.3x z 

- 111A;tvo4ioo 

o  

o 

:-Neitlgeteicte_ 

Fig. 15 Arrangement for hole coupling between microstrip 
and waveguide. 



(68) 

(69) 

where d is the hole diameter,  •a and b are the sides of the 

-waveguide, A and h the sides of the microstrip model (see Fig. 1), 

and XgW  and X
gm 

are the guided wavelenghts in the waveguide 

and the microstrip respectively. 

According to Montgomery
10

, the voltage transmission 

-coefficient between two identical guides is 

2j 
V /V. 	.--- 
tr Inc 

where B = 1  . normalized susceptance of the hole. Thus 

4. 
P
tr

/Pi
nc 	= 

4x
2 

Since this power transmission coefficient is independent of 

the characteristic impedances of the output guide, 

it becomes 

For transmission from waveguide to microstrip: 

2 
 P

tr
/P

inc 
= 4 x 	= [(4Trd

3
) / (3abX )j 

2 
gw 

and for transmission from microstrip to waveguide: 

2 
P
tr

/P
inc 

= 4 x 	= [(2Trd
3
) / (3A11À )j 

gm 

(70) 

(71) -  

In order to calculate the voltage transmission coefficients, 

characteristic impedances may be defined as follows: 

For the waveguide, 

X gw 
ow 	o 

1 0  

For the microstrip, 

(TE - modes) 	 (72) 

. 	
• h 	1 

.Z 
 A 	
(TEM - mode) ' 	, 	. 	. . (73) 

rE=' 
eff 	 _ 	

_ 

In view of eqns. (65), (70), (71), (72), and (73), the voltage 

coefficient becomes 

for transmission from waveguide to microstx'ip: 



(74)  

(75)  

4Trd 3 	r 
y
tr

/1.7
1
.
nc 

- 
3abXgw 

L(hX
gm

) / (AX
gw

) 

and for transmission from microstrip to waveguide: 

3 

r
/V. 	- 

-21rd  
[(AX

gw
) / (hX 

gm 
 )] 

. 	. . 3AhX
gm   

Itmust be kept in mind that these expressions are valid only 

for small apertures. A first order correction consists of 

multiplying the value of x in eqns. (66) and (67) by a factor 

(H
average

/H
max

)2 
where 

 Haverage 
is the average magnetic field 

taken over the hole area and H
max 

is the maximum magnetic 

field in the centre of the hole. The power transmission 

coefficient must thus be multiplied by a factor (H
average

/H
max

)4 

to take into account the nonuniform field distribution over 

the hole area. 

The correction factor for circular apertures in wave-

guides may be found in the same way as the corresponding factor 

for microstrip derived and presented in section 3.3.1. The 

only difference resides in the additional nonuniformity of the 

field in transverse direction in the case of the waveguide. 

Since this variation is also sinusoidal with a period of 2a 

(a = width of the waveguide), the correction factor is 

2X 2 
(H 	/H 	)2 
	

C gw J (ud/X  )]214a J. (ud/2a)] 	(76) 
average max 	ud 1 	gw 	Lud 1 

Both terms may be obtained directly from Fig. 9 by reading 

d/X
gw 

on the abscissa for the first term and d/2a for the 

second term. 

The logarithm of the power transmission coefficient 

for transmission from waveguide to microstrip has been 

calculated and presented in Figure 16. The effect of the 

first order correction is quite remarkable for values of 

d/a > 0.3. 
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Fig. 16 Transmission through a circular.hole from 

a waveguide (a/b = 2.12) to microstrip as 

a function of the hole diameter d and wave- 

..lengths X (free Grace) and X . 	(Magnetic 

coupling as shown in Fig. lg ) . 

The action of several holes could be combined to achieve 

directional coupling between microstrip and waveguides. 

3.4 EQUIVALENT CIRCUIT OF TRANSVERSE MICROSTRIP  
DISCONTINUITIES 

Lossless discontinuities in transmission lines can be 

represented by a T or n - section of three lumped reactances 

as shown by Schwinger and Saxon
11

. If the discontinuity is 

symmetrical about a transverse plane (z = 0 plane, see Fig. 17, 

, e• 
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0 

Fig. 17 Thin transverse 
obstacle in the 
microstrip model 

Equivalent lumped 
element circuit' in 
the z = 0 plane 

---. 30 

the equivalent_circuit is-also:symmetrical, and the fields on • 

the line are conv.eniently represented as •the sum of_even and 

. odd functions about this plane. The  separation into even and 

-odd cases leads .to two variational-expressions for the discon-

'tinuity reactance-corresponding - to the-even and odd excitation 

respectively. 

•The variational expressions for the • discontinuity 

reactance contain a dynamic Green's function which must be 

derived for the particular type of transmission line. Since 

there is no such function available for microstrip to date, 

even for the dispersionless case, an approximate,Green's 

function has been derived using Wheeler's
1 
parallel plate 

model with magnetic sidewalls. (see figure 1). Even though 

this model describes fairly accurately the quasi-TEM mode 

propagation in a microstrip line, the higher modes in the 

•model represent the field at the discontinuity to a first 

order approximation only. However, in the absence of an 

exact expression for higher modes in microstrip, the solution 

of the inhomogeneous wave equation in the model is preferable 

to a stàtic approach. It can be expected that the analysis 

yields best results if the discontinuity is small with respect 

to the strip width and located close to the centre of the 

microstrip cross-section where the incident TEM-field is nearly 

homogeneous. It is always assumed that only the TEM-wave can 

Tropagate in the model whereas all higher modes are cut off. 



• The variational expressions for the  discontinuity  
reactance. 

• Since the transverse electric field as well as the 

dimensions of the discontinuities considered in this study 

are independent of the y-coordinate, (see Fig.17), the problem 

is described by the following two-dimensional scalar wave 

equation: 

• inc 
0(x,z)  = - Ø 	(x,z) 	f 	G(x,z;x 1 ,z 1 )K(x 1 ,z 1 )dS' 	(77) 

obstacle 

where 0
inc 

(x,z) represents the incident electric field (homo- 

geneous TEM-solution), and the integral is the particular 

solution, i.e. the field produced by the currents on the•

obstacle surface. G(x,z;x 1 ,z') is the Green's function 

defined as follows: jkcp G(x,z:x',z') • is the electric field 

produced at the point x',z'. K(x',z') is jkcpJ, where LI is 

the surface current density on the obstacle (which is in the 

y-direction only). 

0(x,z) is subject to the following boundary conditions: 

i) DØ/x  = 0 on the magnetic sidewalls of the 
model at x = 0 and x.= A 

ii) 0 = 0 	on the obstacle surface. 

After separation into even and odd fields about the 

z = 0 plane, a procedure described in detail by Schwinger and 

Saxon
11  

leads to the following variational expressions for . 

the discontinuity reactances which are shown in Figure 18. 

fKe (x,z)G 1 (x,z;x 1 ,z 1 )K
e
(x 1,zi)dSdS' 

ob  
Z
II 	

Z
12 

= j2kA 

[ f  obe 
K(x,z)

e
(x,z) dS] 2  

= j2kA 
Z
11

- Z
12

2  
[f K (x,z)

o
(x,z) dEj 

ob o 

1 
f K (x z)G 1 (x,z;x',z 1 )K (x l.,z')dEdS' 
ob o 

(78) 

(79) 



In these expressions, G' is the real part of the 

Green's function defined earlier. K
e 

and K
o 

are the even 

and odd current distribution functions on the obstacle, and 

and 11)
o 

are the even and odd standing wave fields of the 

fundamental mode. k = 2u/À , where X is the wavelength of 

the TEM-mode on the line. 

Evaluation of the Green's function G(x,z;x',z')  

By definition, the Green's function must •satisfy the 

inhomogeneous wave egliation 

2 2 
â 	a  

( 	+ 	 + k
2
) G(x,z;x',z 1 ) = (3(x-x') 	(z-z') 

Dx
2 

 
2

. 

and and fulfill the following conditions: 

DG 
a) --D-)-7 

= 0 on the magnetic sidewalls  •of the model 

at x = 0 and x = A since it is an elec-

tric field in y-direction. 

b) G must represent outgoing waves from the point 

x',z' since the current filaments act like sources 

and not like sinks. 

With these conditions, the Green's function in the microstrip 

model bebomes 

(80) 

where 

G(x,z;x',z')
221k 

 cos klz-z'l + G'(x,z;x',z') 

G'(x,z;x',z') = 	j 
 2Ak 
 sin klz-z'l 

(81) 

A m=1 k 	
cos (w m .x/A)cos(.ranx 1 /A 

• 

Expression (82) is real since only the TEM-wave was assumed 

to be propagating. It is to be introduced into the varia-

tional expressions (78) and (79). The wavenumber of the m-th 

mode is 

k 	(k
2
-(mu/A) 2

)- k 	= k 
(m = 0) 

• 

The  incident wave functions in the even and odd ease.are 

respectively: 

E 	1  c 
(82) 

(83) 



Odd excitation: 11,
o 	

sin kz (field node at z = 0) (85) 

Even excitation: lp = cos kz (field maximum at z = 0) 	(84) 

Approximate evaluation of the variational expressions  

a) Thin obstacles and windows  

Since a thin obstacle or window is entirely confined 

•to the z = 0 plane, the total input impedance of the bisected 

equivalent circuit must be equal to zero in the odd case, thus 

.Z
11 

- Z
12 

= 0 	Z
11 

= Z
12 • 

To evaluate the even case, we choose the current density.  

K
e
(x',z 1 ) to be constant over the whole obstacle surface. 

(x',z I ) = 1 

The denominator of eqn. (78) becomes in case of a thin centered 

obstacle (lp
e
(x,z) = cos kz = 1 on the obstacle surface): 

A + d 
2 

r n2 r r 
obK

e
(x,z)tli e (x,z)dSj = L J 	1-1 - dx 

A -  
2 • 

A - d  
2 

n 2 
1 -1 (-dx) j = 4d

2 

A d  
2 

Introducing the Green's function (81) and the approximate source 

function (87) into the numerator of eqn. (78) we obtain after 

integration over the whole obstacle surface and with some 

algebra: 

(86) 

(87) 

(88) 

-even m 
Z
11 	

Z - 	2Z =-2E 
12 - 

m = 

,A, 2 	k 	.2 ,m7r d, 
t -- ) 	k- 	2 -- sin 	—) d 	m 	A 

(89) 

The  equivalent circuit of the obstacle is thus a shunt induc-

tance Z = jX since k is positive imaginary for ail  higher modes. 
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The sum in eqn. (89) converges quickly and gives good results 

with a few terms. In case of non-centered obstacles or win-

dows, the limits of integration in both numerator and denomi-

nator of the variational expression (78) must be altered 

according to their particular geometry. 

b) Cylindrical posts of circular cross-section  

Again, very simple current distributions over the 

obstacle surface are assumed: 

Even excitation: K
e
(x',z 1 ) = 1/(.211R) (90) 

• 

where R is the radius of the cylinder and 0 is measured 

from the positive z-axis. Since two different types of 

co-ordinate systems, namely cartesian and cylindrical, ,  are 

involved in the integration within the variational expres- 

sions, the field in the microstrip model must be represented 

in terms of cylindrical wave functions. (For more details see 
11 

Schwinger and Saxon , p. 39 pp.) The results of the integra- 

tion are: 

r 	A 
Z
11 	

Z
12 

= j2  t— - ln( 	
1 

R 	
) i(kR) 2 

• g 	2n sin î x
o  

'flux 

	

co 	 1 	1 
2E , (cos

2 	 
O ) ( 	  

	

m= 	A 	e 2 	kA 	m ) 1 
')111 	- ( --) 

A  
(
2uR

)
2 	 • 

and 	Z
11 	

Z
12 

- 
2À 	A g 

where x
o 

is the distance of the centre of the cylindrical 

post from the z-axis. The theoretical expressions for the 

above discontinuity parameters are shown in Figures 25 and 26 

and are compared with experimental data. Some improvements 

of the theoretical expressions are discussed in Chattopadhyay's 

thesis
12 

and appear in these figures. It can be seen that the 

theory using the parallel plate model for the microstrip gives 

(92) 
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satisfactory results at frequencies well below the cutoff 

frequency of the first higher mode. 

The next section outlines the technique used to 

measure the parameters  •of the discontinuities which were 

analyzed in the present paragraph. 

4. 	EXPERIMENTAL TECHNIQUES 

In the following section, the technique of measuring 
• 

the parameters of microstrip discontinuities in a resonant 

ring is presented. A general analysis of the resonant ring 

is followed by some experimental results obtained with thin 

transverse obstacles and cylindrical metallic posts. 

A microstrip ring is defined as a microstrip trans-

mission line which is closed in itself. All radii of curvature 

are large with respect to the strip width so that the fields 

have practically the same configuration as in a straight line 

of identical cross-section. 
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4.1. Analysis of the Resonant Ring  

éontc.ining A Reciprocal DiscontinuitY  

A microstrip ring resonates if its electrical length is 

an integral multiple of the guided wavelength. When a discon-

tinuity is introduced into the ring, each resonance degenerates 

into two distinct modes. This splitting is conveniently inter-

preted in terms of even and odd excitation of the discontinuity. 

The even case corresponds to the incidence of two waves of equal 

magnitude and phase upon the discontinuity, while in the odd 

case, waves of equal magnitude but opposite phase are incident 

from both.sides. Eithe:: mode of resonance can be suppressed 

by an appropriate choice of the point of.excitation along the 

ring. 

4.1.1 	Symmetrical discontinuities  

If the discontinuity is symmetrical it can be represented 

by a symmetrical T or n section, in one single reference plane. 

This plane of electrical symmetry will henceforth be called 

z = 0 plane. 

As shown in Figure 18: the equivalent T-circuit of a 

symMetrical discontinuity can be divided into two identical 

half sections of zero electrical leng.th . If the circuit is 

excited in the even mode, no current crosses the z = 0 plane. 

Therefore, the input impedance of each half section is not 

altered if th .e connections in this plane are cut. The normalized 

even input impedance at either port is thus Z 	= Z
11 -I- Z

12. ie 

The normalized odd input impedance, in turn, is 

io 	11 - Z 12 
and represents the impedance of a half-section 

which is short circuited in the z = 0 plane. - 

A. Lossless symmetrical discontinuities  

' The even and odd impedances of the discontinuity cause 

.the shift in the resonance frequencies of the ring. . This 	' 



• • 

Z=0 

(c) 

z= 0 „ 

Figure 1? (a) Equivalent circuit of a symmetrical discontinuity. 
• 

(h) One half of the equivalent circuit for even • excitation 
Z
i 
 = ZZ

12' e 
(c) One half of the equivalent  circuit  for odd excitation 

10 
Z. = Z

1112
. _ 
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becomes evident if the (reactive) impedances are thought of as 

input impedances of fictitious transmission line sections which 

are open (even case) or short-circuited (odd case) at the ôther 

end. 	(Figures 19a and 19b ). 

The artificial increase of the electrical length of 

the ring resulting in the decrease of its resonance frequencies, 

is related to the normalized even and odd input impedances by 

the following expressions: 

Z
ie 

= Z 	+ Z 	= -j cot k £
e 	

(even case) 	(1.1) 11 	12  

Z
io 

= Z
11 

- Z
12 

= j tan k 	(odd case) 	(1.2) 

• k 	= 2i1-/X. , is the propagation constant of the 

qua si -TEM mode. 

. Figures 20a and 20 b- show the standing wave pattern on 

the ring resonating in the fundamental mode. -  For convenient ' 

presentation, the ring is cut open at z = 0  and  straightened 
• 

out. .The fictitious lines representing Z
ie 

and Z
. 

added on either side. 

have been 

Since at resonance, the total electrical length of the 

resonator (including the discontinuity) is n • X , where n is 

the harmonic number, the resonance conditions are 

in the even case: 	2 9, 	= nX.
te ring 

in the odd case: = 	
to 

t
ring 

4. 29„ 	nX 
o  

ring 
is the physical length of the ring along the-mean circum- 

ference, and X
te 

and X
to 

are the guided wavelengths correspon-

ding to the even and odd resonance frequency respectively. 

Since 
L,ring 

is known and X can be obtained from measurements, 

e 
and t

o 
are determined from equations (1.3) and (1.4). 

When introduced into equations (1.1) and (1.2) respectively, 

they yield 

••• • • 
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Figure '19 (a) Representation of the . even Input impedance Z, in 
plane 1 by a fictitious open-circuited line Uossless 
discontinuity). 	 • 

• .(b) RePresentation of the odd input impedance Z
io 

in - 
• plane 1 by a fictitious short-circuited line (lossless 

• discontinuity). 	S .  . 
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Z
ie 	

Z
11 	

Z
12 

= j cot 	 

1 

ir. 	 je 	( f 	) f ring 	eff 	re 	re 

Z.  = z 1 io 
Z
12 
 =-j tan 

- 

Z 12 = -j cot Eli k (nX 	-
ring

i..1= 	cot  
. 	 te 

te 

	

, 	. 

, 

	

2.11 - Z12 = j  tan  [II k  (nito 	
Zring ):1=-j tan

cir ring) ' 	
: '(1.6) 

	

.to 	• 

-Since.one measures resonance frequencies rather - than -wavelengths, 

it is more convenient to express X
te 

and A .  as follows: . 
to.. 

X
te 

-= 	(fre ) 	) re 	. eff 

A to 7 c/(fro 	eeff (fro) 
	) 

(1.7) 

(1.8) 

and to introduce these expressions into equations (1.5) and 

(1.6) respectively. Thus 

n  ring fe eff (f ro f  fro 
(1.10) 

where 6 	(f) is the dispersive effective dielectric constant 
eff 

of the ring, c is the speed of light, f 	and f 	are the even 
re 	ro 

and odd resonance frequencies of the perturbed ring. These 

expressions form the basis for the measurement technique des-

cribed later on. 

B. Lossy  symmetric .al  discontinuities  

Dissipation and radiation losses render the Z-parameters 

of discontinuities complex. The complex even and odd input 

impedances of the equivalent circuit can be represented by 

sections of transmission lines terminated in a pure resistance 

(Figures 21a and b ). 

The  terminating resistance must be larger.than Z o. 
in 

-the .even,case (voltage .maximum at z = , 0) and smaller than Z
o 

in the odd case (voltage minimum at z = 0).  Note  - that for the 

lossless case, R tends towards co, while r becomes zero. • 
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(a) 

— . 	• 	 ' . 	. 
Figure 21 (a) . -R'epresentatidn of the . évèn-input impedance Z: of ,  a 

Iossy discontinuity.in plane 1 by .a fictition line. 
- 	t.erminated in R>Z o . 

- 	(b) Representation of the odd input impedance Z io  of a .. 
. 1.ossy discontinuity in plane 1 by a fictitious line 

. 	. .terMinated in r<Z 0. 	« 	S . 	 . 
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The lengths and terminations of the fictitious lines 

are such that. 

uq, . 	, 
R 

	

	 R - j tan ( 	ring; + j tan 10,
e 

Z 	= Z 	4. Z12 	
Z
o 	. 	

Z
o 	

X
te 	(1.11) 

ie 	11 	12  
1 + j — tan k2, 	1 	j — tan (  ring)  

Z 	e 
o X 

- 
r 	r 	- j tan ("  ring) 	(1.12) 

+ j tan k2,
o 

= 
Z
o 	

X
to Z

io 
=Z 

 II 
- Z 

12 
= 	o 

1 + j 	tan ke„
o 

Z o 

.The wavelengths X
te

-and X
tO 	

--satisfy-equations (1-7) -and - 

(1.8) respectively and are determined as in the lossless case. 

R and r affect the Q-factor of the ring. 

Let Q1  be the unloaded Q of the ring, while Q
2e 

and Q
2o 

are the loaded Q-factors of the ring for even and odd excitation 

of the discontinuity respectively. Then 

te 

Tr 

1 - j 	tan(
u9,

ring) 
Z
o to 

R 	2 Q1 Q 2e — 
Z
o 	

Q-Q
2e 

un Q 1 -Q 2o  — 
Z2 	.Q

1 
Q
2o 

where n is the harmonic number. 

(1.13) 

(1.14) 

The circuit parameters Z
II 

and Z
12 
 are determined from 

R, X
te

, r and X
to 

using equations (1.11) and (1.12). 

4.1.2 	Unsymmetrical discontinuities  

A. Lossless unsymmetrical discontinuities  

A lossless unsymmetrical discontinuity can always be 

transformed into a symmetrical twO-port by adding an appropriate 



length.of line 1
a 

to one of . its ports. The plane of..electrical 

-isymmetry, z =-0, is-then - situated half way between the planes 

,•2with respect tà which the two-port is symmetrical. Once the 

.::Z-parameters in the plane  z = O'are known, the impedance  in  

• any other plane -can be found by simple transformation  along 

:the line. 

In  practice the z = 0 plane is easily determined since 

it is situated opposite to the point of optimum excitation of 

the ring at the fundamental even resonance. 

B.  •Lossy unsymmetrical discontinuities 

The concept of even and odd exci -tation can only be 

applied to those lossy unsymmetrical discontinuities which can 

be transformed into a symmetrical two port by adding an appro-

priate length of line to one of their ports. In termb of S-

parameters, this condition is fulfilled if 

Is 	I 
.• 11 

•The  Z-parameters in the plane of electrical symmetry are then 	 • 

, calculated using equations (1.11) and (1.12). 
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2. The Measurement Technique and 

 _Experimental Arrangement  

4.2.1 	Measurement Technique  

It has been noted in section 4.1 that for making the 

evaluation of discontinuity parameters, measurements of 

resonant frequencies and Q-factors are to be done. Resonant 

frequencies and Q-factors of the microstrip ring change due 

to the introduction of a discontinuity. So, the measurements 

are to be done in two stages. 

i) The resonant frequencies and the  unloaded Q-factors 

of the ring are measured before the discontinuity 

is introduced. 

ii) The discontinuity is then introduced (either into 

the same ring or, if this is impractical, into 

another identical ring), and the even and odd 

• resonant frequencies together with the corresponding 

loaded Q-factors of the structure are measured. 

The ring . should be as uniform as possible since .even a small 

irregularity may introduce effects of the same order as the 

effects to be measured. The ring is best excited by a capaci-

tive launcher which can be moved along the outer contour of the 

ring for about one quarter of its circumference to select the 

optimal point of excitation for each resonance. Coupling 

should be as light as the sensitivity of the measuring equipment 

permits. Even then, the launcher changes the resonant frequencies 

slightly. But as long as the measurements on the empty and the 

perturbed ring are made at the same coupling strength, the effect 

of the launcher is eliminated since it  affects  all measurements 

in the same way. 

Resonant frequencies can be determined frolQ either re-

flection or transmission measurements. The former method has 



1 

--46 

the advantage that only one' coupling link between ring and 

peripheralequipment is required. Care must be taken to measure 

all resonant frequencies with best possible accuracy since 

the discontinuity impedance values are very sensitive to fre-

quency variations. This accuracy is limited by the sharpness 

of the resonance response rather than the performance of 

available counters for the microwave range. 

Q-factors are best measured in the transmission mode
13 

'which, unfortunately, requires a second coupling link 

between ring and the  peripheral equipment, but may be evaluated 

from reflection measurements with*lesser accuracy. 

Changes in temperature alter the resonant frequencies 

of the ring. In most cases, it will be necessary to stabilize 

the temperature of the substrate within I- 0.5 0  C if meaningful 

measurements are to be made. 

4.2.2 	Experimental Arrangement  

A. The ring resonator  

_Measurements have been made in a ring which had 

the shap,e of a racetrack (Figure 22). The discontinuity could 

-thus .be -placed into a straight section of line, and the launcher 

could also be moved along a straight line on the opposite side. 

The ring had a characteristic impedance of about 27n(w/h=2.7) 

on a 5 mm Stycast substrate with a nominal dielectric constant 

of 10.6. The mean circumference of the ring was t i 
 = 59.124 cm 

rng 
for the measurements on metallic posts of circular cross-section 

and t
i 	

= 57.375 cm for measurements on.thin metallic obstacles. 
rng 	. 	. 

'The   oversize  substrate was chosen to minimize errors due to 

dimen -sional inaccuracies. 

B. The  obstacles (discontinuities) - 

Two types of discontinuities have been investigated, 

namely very thin metallic plates and cylindrical metallic posts. 

These were chosen because of the ease of introduction of obstacles 

after measurements on the empty ring were made.' In both these 



Figure 22 . MicroStrip ring Used .fCr measuring the Z parameters-
(eimensions in millimeters) 

60 mnr-for-oenterecl metallic posts . 
! (b) x = 51:25 mm for thin transverse obstacles. 
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cases, the discontinuities were centered in the cross-section 

of the microstrip. 

The thin metallic obstacles were made of strips of 

very thin copper sheets. These were introduced into the 

ring in the following way. The ring was cut open at the 

intended position of the obstacle. The thin metallic foil 

was introduced and then the ring was reassembled. For thin 

obstacles, only the even resonance measurements are to be 

made, and for even resonances no current crosses z= 0 -plane. 

Hence, cutting open of the ring does not affect the measure-

ments. • 

•  The metallic posts were realized by drilling holes 

across the microstrip and filling those with mercury. 

• In each case,  •good electrical contact was insured at 

the strip and the ground plane, and the electrical parameters 

of the discontinuity could be reproduced within the limits of 

accuracy of the equipment. 

C. The Temperature Chamber  

As  has been already indicated in section  4.2.1,to make 

-the measurements of discontinuity parameters, the temperature 

of the substrate has to be stabilized within 4. 0.5 °  C. Other- 

wise the dielectric constant of the substrate shows fluctuations 

to an extent that makes meaningful measurements impossible. For 

reducing the fluctuation of temperature, a temperature controlled 

box was designed, and the ring was placed in it. 

The box as shown in Figure 2,3 was lined inside by a 

2.5 inch thick layer of styrofoam on all sides, which is a 

very good temperature isolator. Only the upper lid could be 

removed to place the microstrip ring inside the box. A cable 

was introduced into the box through a very small hole in one 

side of the box, and that served as the connection between the 
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Figure  23 Temperature Controlled box used for the , stàbilization' 
.of the temperature of the substrate. 	• 



-50 

launcher  for the ring and the peripheral equipment. By pulling 

or pushing the cable from outside, the launcher could be placed 

at the appropriate excitation points along the ring. A tempe-

rature probe and a heater element, connected to a temperature 

control equipment outside, was also mounted within the box. 

During the course of the experiments, the temperature control 

equipment was set at 30.5 °C. The sensitivity of the equipment 

permitted the temperature within the box to be kept in the 

range 30.5°C ± 0.4 °C. To insure that the whole temperature 

chamber was being heated uniformly, a small fan circulated 

the air in the box continuously. The temperature inside the 

box was constantly monitored with the help of a thermometer 

which was introduced through a very small hole in the top lid 

of the box. 

D. The Measurement Procedure  

The circuit for the measurement of the resonance 

frequencies was laid out as shown in Figure 2:4_ The reflection 

characteristics of the resonant ring were measured using a 

network analyzer. The ring response was observed on a phase-

magnitude display. A spectrum analyzer was used to compare 

the resonance frequencies of the ring with the frequency of 

a precision frequency generator. The output frequency of the 

generator was displayed on a digital frequency counter. 

The vertical output of the spectrum analyzer was fed to the 

network analyzer as the z-axis marker. 

Now we shall describe the procedure followed to 

determine exactly any particular resonance frequency. To 

start with, the sweep oscillator was sweeping in Af mode. 

By changing the central frequency of the sweep, the response 

of the ring was centered on the screen of the phase-magnitude 

display. Then the sweep was changed to manuà.1 and the output 

frequency of 'the sweep oscillator was set as close to the 

peak as possible. Now the local oscillator of the spectrum 

analyzer was adjusted and tuned such that the sweep oscillator 



RF-SIGNAL  
GENERATO R 

I 	-r 
. 	

20 db 

DIGITAL 
FREQUENCY 
COUNTER 

EEP 
S - LATOR 
•t R esonant 

Ring 

-20 db 
S-PARAMETER 

13ef. • T EST SET 

11. 1 

n•n••••........a.01n•n••••n•••••••••• 

7- 51 - 

Figure 24 Circuit "diagram for measuring the resonance frequencies 
- of the microstrip ring. 
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frequency was in the centre of the spectrum analyzer screen. 

Then the scanning mode of the spectrum analyzer was changed 

to "manual". The sweeper was again swept in automatic mode 

at a very low speed. The vertical output of the spectrum 

analyzer density modulated the phase-magnitude display, pro-

ducing a dot on the absorption curve very near to its peak. 

The frequency of the spectrum analyzer was now finally adjusted 

to place the dot exactly on the peak. Now the frequency of 

the r.f. signal generator output was adjusted. As soon as 

this frequency became identical with the centre frequency 

of the spectrum analyzer (which'in turn was tuned to the ring 

resonant frequency), the intensity of the phase-magnitude 

display trace increase drastically over.the whole sweeping 

range. Under this setting, the frequency of the r.f. signal 

generator output is the required resonance frequency of the 

ring. 

The r.f. signal generator available for our experiments 

• had a frequency range much smaller than the range (.1-2GHz) 

over which the ring resonances were being studied. This 

difficulty was avoided by inserting a harmonic generator 

unit between the r.f. signal generator and the spectrum 

analyzer. By properly choosing r.f. frequency and using its 

proper harmoniG.'s it was always possible to match any ring 

resonance frequency. 

Measurements of frequencies of the peaks of absorption 

could be repeated within A- 20 KHz. 

E. Some Experimental Results  

Results of measurements made on metallic posts and thin 

obstacles are presented in Figures  25 and 26.,  For comparison, 

theoretical values which have been obtained using the varia-

tional principle, are shown concurrently. Both experiment 

and theory agree quite well for low frequencies. 
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_3. Error Analysis for Experimental Characterization  

-of Lossless Discontinuities in Resonant Rings  

A general study of the resonant ring method for the 

characterization of microstrip discontinuities have been 

given in 'section 4.1. In the present chapter we will analyze the 

accuracy with which the equivalent circuit parameters of 

reciprocal lossless discontinuities can be measured  in 

 resonant rings £3]. 

Let us recall from 'section 4.1 (equations (1.9) and (1.10) 

that the normalized nven and odd mode input impedances at 

ceither port of the equivalent circuit of-Tigure 22  can be 

given as 

n 	(f.  Z
ie 

= Z
II 	

Z
12  =j 

 cot 	ring 
‘i 
 eff re fre l 	(3.1) 

= Z 	z 	=-. t 	( 	
£
ring NIT  eeff (177 z 1 

	11 	12 	D  an 	
ro) (3.2) 

where 
Jtring 

is the physical mean length of the ring, e 	is 
eff 

the effective dispersive dielectric constant of the line at 

the resonance frequencies of the loaded ring for. even e ) and odd 
re 

(f 	)  ro excitation of the discontinuity, and c is the velocity 

of light. 

Moreover, as has been seen in •se ,ètil:m1-4,.2 thé  measure-. 

ment of the parameters of a lossless discontinuity is . performed 

in two stages: 

i) The resonant frequencies of the ring are measured 

before the discontinuity ,  is introduced. They 

yield the dispersive permittivity 
c-eff 

of the line. 

ii) The discontinuity is then introduced and the 

degenerated even and odd resonance frequencies of 

the structure are measured. Since these frequencies 



df
re 

. (3.3) 

-a.re in general different from those measured in 

the values of c
eff''

that are used in equations 

.(3.1)  and (3.2) must be found by interpolation.' 

When  •the systematic errors due to dimensional inac-

curacies of the resonant ring are practically eliminated, the 

accuracy of the measured discontinuity impedances depends on 

the accuracy with which the frequency of the resonance peaks 

can be located and measured. 

Let us first consider how the even discontinuity im-

pedance Z
ie 

is susceptible to the errors in frequency measure-

ments. Since the error in the measurement of Z
ie 

depends on 

the error with which both empty and loaded ring resonance 

frequencies are determined, we can write 

DZ
ie 	

az
ie 

dZ 	= ---- df + ---- 
ie 	af 	e 	af 

e 	re 

where f
e 

denotes the resonance frequendy of the empty ring.. 

We shall evaluate the two :terms  of  equation (37 :3) 	spperately. 

Z
ie 

is dependent on the -empty resonance .Èrequency 

..implicitly through E
eff' 

So, we can write . 
_  

Dz 	Dz 
le = 	

. • le 	eeeil 
f . 	f e e 	(r---"-eff) 

using equation ( 3 - 1). 

(3.4) 

' DZ

ie 	= -j 

11-2.

ring 

f

re 	. 	 (3.5) 
a S 	 C 

eff 	 Q . 	.-- 	• 	'. .ir2, 	' . 	 sin  2 c  ring
fc 

 eff  ire) 

Now, 

1 71. 2. 
= 1+cot

2 
 ( 	ring 	ceff 

f
re)  (3.6) 

Sa.'n 2 Iringfe effl f re) 



ne  
D f

e 	
2, 
ring 

nc  
L .  
ring -  e 

(3.10) 
eff 

iej (1-1-.1Z ie  I. 2)  • .7r2 ring 	r 	fre • 
ar C . 	f

e 

(3..12) 

3Zie 	-j (1 	1Z. 
12

) 
n2

rillar 	re 	-FiE 
bf 

le 	L 	1 	re ] 
Df

re 	
2 J 1

4.1pf 
re 

(3.14) 

= 1 + 	Z * 	(by equation 
le ie 

(3.1 )) • 

= 1 + IZ i 2
ie 

=Therefore, 

Dz 

eifeP 
= 	(1-1.1zie2 1) 	/T2'ring f re 

(3.7) 

(3.9) 

Again, 

(3.11) 
f
e 

So, using equations (3.4), (3.9) and (3.11) 

Now, let us see the dependence of Z
ie 

on f
re

. In 

equation (3.1) f
re 

appears both explicitly and implicitly 

•(due to the presence of E
eff

). Sincee- 
eff 

 increases linearly 
• 

with frequency, we may write 

•e
eff 

(f re ) = 
g + b f

re 	
(3.13) 

1 

where  C 	= effective permittivity at zero frequency 
1 

and 
deeff /df = slope of e

eff 
vs frequency plot. 

Using this we obtain, 

2 
7r2 	

3c 	- E 
•mj. 	IZ e  I ) 	ring 	eff 	7.] 

2 ja eff 

(3.15) 



(1+1Z.1
2

) 	u 
	 . 	ring 	ef f  c_df - df r 

Z. 
1 

(3-.17) •dZ.. 
1= 

-Hence combining equations (3.3), (3.12) and (3,15) we get, 

-dZ
ie = 	. 

(1+1Z. 1 2) 	u 2, e -3 E 
ring 4:/e. 	efi f  re df e+  1 	ef  f df r el (3:16; 

Z
ie 	

Z
ie 	

f
e 	eff 

-1?roceeding in a similar way for Z 	we get exactly the saine  
io 

expression for dZ
io

/Z
io

. 

Under the conditions that 

(a) even and odd resonance frequencies are very 

close to empty resonance frequencies. 

and 	(b) bf/c
1 

<< 1 (where f = either f 	or f ), 
re 	ro 

both of which hold in practice, the expréssion for the relative 

error in the measurement of even as well as odd discontinuity 

impedance simplifies to 

where df
e 
and df

r 
denote the absolute errors committed in 

the measurement of empty and loaded ring frequencies respecti-

vely. These errors reflect the precision with which the 

resonance frequencies of the ring can be located. It is not 

so much determined by the accuracy of the frequêncy counter 

as by the sharpness of the observed resonance peaks. A good 

estimate of df and dfr 
can be obtained by measuring several 

times the resonance frequencies and finding the standard 

deviation of the results from their calculated average. 

Table 2 presents the relative error in discontinuity 

impedance as a function of absolute impedance values for 

several standard deviations for the worst case where df= -Rdf
r _e 

The  same results are presented graphically in Figure 27. - 

From equation (3.17) and Figure 2".7 we can conclude 

• the following: 



'TABLE  

Relative Error in (Normalized) Discontinuity Impedance as a 

Function of Absolute (Normalized) Impedance. 

(Stycast Ring,
ring 

= 59.124 cm, E
eff 

= 7.60) 

	

Z
i 	• 	dZ./Z 	(normalized) 	in % for df 

e 
=-df 

1 	i 	 r 

(Normalized) 	30Kz 	•40Kz 	50KHz 	60KHz 

	

1 	0.205 	0.273 	0.342 	'0.410 

	

..1 	1.035 	1.380 	1.725 	2.070 

	

.01 	̂ 	10.249 	13.666 	17.082 	20.499 

	

.001 	102.483 	136.644 	170.805 	204.966 



6 1. - 

Relative error in discontinuity impedance 
vs. absolute irnpedance ror several values 

or resolution in irequency measurements. 

(e  = 7. 	 = 6 , 	 59.124 cm ) 
err 	*tring 

. Figure 2 7. : 
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I. 

1) The accuracy.of the discontinuity impedance' . 

values is directly proportional to the accuraoy 

with which the resonance frequencies can be 

located -and measured. 

I  

2) For a given accuracy in frequency measurements, 

the obtained impedance value is most accurate 

if the absolute value of •the normalized impe- 

' dance is close to unity. 

• 3) All errors affecting the measurement of f and 

f
r 

in the same way have practically no effect 

ontheaccuracyofZ..Thus the influence of 

the oapacitiveiauncher on the measurement of 

the discontinuity impedances can be neglected 

as long as the coupling gap is the same for all 

measurements. 

5. 	'CONÇLUSION  

In this report, several selected MIC-structures have 

been analysed using models with magnetic sidewalls for the 

open planar configurations. The reason for this was to . create 

reasonable boundary conditions in order to make closed form 

solutions for these problems possible. As a result, simple 

formulae have been obtained for the external loading factor 

of cavities and triangular planar resonators coupled to micro-

strip and waveguide in several ways, and for equivalent circuit 

parameters ôf some transverse microstrip discontinuities. 

Hole coupling between cavities and microstrip as well as 

scattering on microstrip discontinuities has been verified 

experimentally, and good agreement has been observed between 

theory and measurement for a wide range of parameters. When 

necessary, corrective expressions have been derived to better 

describe the physical situation in extreme cases in order to 

ensure that the theoretical formulae are appropriate for design 

over a maximum range of system parameters. . 
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