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~ FOREWORD

‘The work described in the present final repqrt'was
sponéored by the Department of Communications,'Communications‘ R,
Research Centre, Ottawa, Canada, under”Contfact Seridl

. .Number OSU5-0026, D.S.S. File Number. 0lSU. 36100-5-0222.

The analytical wéfk and most .of thé‘expefimental
work was carried out in the Department of Electrical
Engineering, University of Ottawa, betweén Maxrch 75 and
" April 76. ‘

Dr. D.S. James was instrumental in beginning this
project and offered valuabie_advice and help throughout  |
its progress. Graduate students A. Chattopadhyay,

‘M. Cuhaci, K. Masand and G. Painchaud made valuable
contributions through expefimental.work and diécussioné.
Prof.’W. Steénaart offered many hélpful suggestions and

ideas.
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1 - - INTRODUCTION

‘This final report summarizes the . ana1ysis of selectedi

‘Microwave Integrated Clrcult {MIC) structuree and prov1des

formulas for their design. - The open mlcrostrlp llne whlch

1sethe»ba51c element common to all these structures, is

~consistently‘represented by a parallel plate nodel simplee.
.and accurate enough for the analeis of the following selected

.arrangements: Triangular planar resonators with galvanic;,

capacitive and hole coupling to microstrip, transitions from
microstrip to .waveguide and cavities, and some transverse

obstacles in microstrip.

v Structures were chosen mainly because of their
relevance to current projects at the. Communlcatlons Research
Centre in Ottawa. ALl ‘analytical results (except those on

triangular resonators) were expellmentally verified and fouhd_

to be in good agreement with measurements.

"After a short description of the selected Microwave

Integrated Circuit structures, the methods of analysis are

6utlined.briefly. " A deseription of the experimental techniques

and a comparloon between theorethal and . experlmental results

conclude the report. ‘ N .

2. v DESCRIPTION OF SELECTED STRUCTURES

2.1 THE MICROSTRIP MODEL

All structures discussed in this report include an

open microstrip transmission line. Its analYtical.treetment

“becomes relatively simple.if it is replaced by a parallel

plate model with magnetic sidewalls as shown in Fig. 1. The
characteristic impedance and the effective dielectric constant
of both medel and origiﬂal line are the same_for the gquasi~TEM
mode. quever,lhigher modes of propagation in the model
approximate the behaviour of equivalent modes in .the original

structure to the first order only. Thus, the succegsful
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Fig, 1 Microstrip line and its equivalent-parallel
‘ plate model with magnetic sidewalls.

bt

,application of the model is limited to low frequenéies, i.e.

frequencies belOW‘cutoffvof.higher'modés. The main advantage

of the parallel plate . model resides in the simplicity of the”

‘propagating fields and the straightforward boundary conditions

it imposes.

.2.2° TRIANGULAR PLANAR RESONATORS B

Triangular planar resonators are thin metallic
equilateral triangular discs deposited on a dielectric

substrate which ‘is backed by a conductive giound plane.

. .Such a structure is not only .interesting. from a theoretical
point of: view but seems to possess lower radiation losses‘ 
than circular or rectangular-planar resonators of equal

‘resonant. frequency.

1
-

- 'FPig. 2 shows such a triangular resonator together .

 with:a model featuring magnetic sidewalls. A&s in the case

of the microstrip line, this model providés simplified
boundarylconditions while¢exhibitingfthé'same resonant

frequency and the same stored energy .as the original'resbnator;
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" ¥Fig. 2a Shape and dimensions Fig. 2b -Model of triangular
of a planar triangular .resonator featuring.

resonator (top plate) : magnetic side walls.

2.3 " COUPLING ARRANGEMENTS AND TRANSITIONS

2.3.1 Coupling between triangular planar
resonators and microstrip/waveguide

.The following practical methods of coﬁplihg between

triangular resonators and microstrip/waveguide have been

- analyzed:

(a) Direct (galvanic) coupling between a microstrip .
line and the resonator (Tight coupling) '

(b) Capacitive coupling between\a microstrip line
-and the resonator (Loose coupling)

Xc) Hole coupling between a microstrip line and
"the resonator through the common ground plane

|
|
(Loose coupling) s C - o
(4) Hole coupling between a rectangular waveguide

-and a triangular resonator (Loose coupling).

Fig. 3 shows some typical examples of these ¢oupling arrange—

ments which have been studied.
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-sa, “Direct :coui:ling to microstrip

B

= | ) I b, ~Capacitive coupling"-to microstrip

« 9

c. “Hole coupling to a waveg{lide

d. Hole coupling to micro stz‘ip:.

Fig. 3 Some possibilities of .coupling between a
" microstrip/waveguide and a triangular planar -
resonator which have been studied under the
present contract.

.

The strength- o0f coupling has .been evaluated in terms of the
‘external loading.factor (the inverse of ‘the external Q-factor)

of the resonator for each coupling arrangemeﬁt,

2.3.2 Hole coupling between cav1t1es and
“microstrip

In order to combine the high inherent Q—factot and
frequency stability of .a cavity with the advantages of MIC-.
oln-cav1?y;of circular ,
cross-section and a microstrip line has been analyzed in the

design, hole coupling between a TE

context of a previous contract. 'In the present réport it

is shown that the agreement between theoretical -and experimental -




" .results is improvedqconsiderably in the case of. large coupling
=apertﬁres*if the external loading factor is evalua@ed on;the'
" basis of the average rather than the maximum magnetic fieldA,
rover the.~hole~area; FPig. 4 shows a‘typidal arrangement for
smicrostrip-to-cavity coupling through a hole in the common

.grandplane.

input

Fig. 4 Microstrip-to-Cavity coupling through a hole.

2.3.3 Hole coupling between rectangular
~waveguide and microstrip ’ '

The transition from a waveguide to microstrip through

"a single hole in a common wall has been evaluated. Fig. 5

-depicts the fundamentdl arrangement the propertiés of which
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Fig. 5 Hole coupling between rectangular waveguide -
.and microstrip a) actual structure, b) model
representation.

may serve as a basis for the study of multi-hole transitions

-and directional couplers.




-

2,4  MICROSTRIP DISCONTINUITIES

The equivalent lumped element parameters .of thin:

transverse metallic obstacles and transverse metallic posts

‘of -cylindrical cross-section have been calculated and measured.

Fig. 6 shows such obstacles ‘which possess:geometriés similar
+to0 coax~to-microstrip transitions or diode packages mounted

across a microstrip line.

Fig..6 Thin transverse obstacle~(a) énd.cyliﬁdrical
) post (b) in a microstrip line.

Radiation from these obstacles has also been evaluated, and.

-measurements of their Z-parameters have been made in a resonant.

microstrip ring.

.In the following paragraph, the analytical approach
to each of the aforementioned structures Will be described,
and theoretical .expressions for their design parameters will

be given.

3. ANALYSIS OF SELECTED STRUCTURES

3.1 MODES OF PROPAGATION IN THE MICROSTRIP MODEL

The parametersg of the para11e1 p1ate«modelvwith~magnetic

sidewallé'were first obtained by Whéelerl‘thrdugh‘conformal

mapping of the static field between strips seéarated by a -

.dielectric sheet. More accurate values for the characteristic

impedance ZO may be obtained. by calculating the capacitance per
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~unit length of the microstrip with a finite difference routine.

. . . 2 . . .
“Then € may be determined via Getsinger's microstrip disper-

eff

-~sion model. Finally, the dimensions. of the model are given byv

-the -expression in Fig., 1.

The solutions of the homogeneous wave equation in

this model - unpublished as yet - are similar to the modes. in

‘a rectangular waveguide, with the exception of the TEM-mode.

‘They are in the coordinate system of Figure 1:

E = O . ' ‘ ' -tl‘)i

X
_ ' -3 +3vz (

E,= 4 Vo (an)TF e Z @
Ezz 0 | | - | (3)
H = I (ah)"? o XIvZ : S 4)

X (o] . R ;
H = 0 | (5)

Yy . ’

Z .

Characteristic impedance:

- -3 A

Zo = Ch/A = Co(eeff) h/A< | (?)
‘Cutoff wavelength:

A = S : e

co ~ -
Propagation constant:

=w(e e w) = (we) e b (9)

v o eff o ef £ o .

“TEM~Mode in an ideal parallel plate waveguide with magnetic

sidewalls (Microstrip model, height h, width A)
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B = :cv'i . —‘—‘;l-i— m - K sin (mwx/A). sin (nmy7h) e -9 Vi
(e &) L
' . n E2]Y.zZ
Ey_: ivi 3 35— =n-K cos - (mmx/A) cos (nmy/h) e i%:
ﬁ = I“;(;m;n)%gk k"1 co (mmx/A) si (nw /h) é ij#fz
g = i 2Ah s n (nmy 1~.
N e € 3% : : +."
Hx = Ii - 3 i~%—2l n « XK cos (muwx/A) cos (nmy/h) e =375
B E_ € 3 ~ i
H = I * ] {mn) m ° K sin {(mwx/A) sin (nmy/h) e _jYi

H = 0
| 1 if m = O 1 ifn = 0
with e = ' e =
m , n
2 if m % 0 2 if n £ 0
-
and K = (m2h/A + n2aA/h) ?

‘Characteristic Impedance:

_— t t _ 1 3 ) —. 2 %
2} = V,/Ii = EMAg; = r[1 (/a0 ]

Cutoff Wavelength:
' t ) -2 2 —%.
Ay = 2W/kgy = 2w [ (mw/a)° + (am/h)” ]

Propagation Constant:

v, = [ wle &

' 2 24 %
i Eegghe - (mm/R)T - (am/h) 7]

TM-Modes in an ideal parallel plate waﬁeguide with magnetic

sidewalls (Microstrip model, height h, 'width A)

Loy

(11)

1(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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cutoff Wavelength: \
n - ) - X
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AAcit='2ﬂ/kci

A'Propagation Constant:
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TE-Modes in an ideal parallel plate waveguide with magnetic
sidewalls (Microstrip model, height h, width A)
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(27)

(28)

(29)



»Akaiwas is as follows:

The field patterns of some of these modes héve been sketched

- by Wolff et al.3 Even though the modes in the model describe
-the actual microstrip modes only to a first order approximation,
~they improve the.solution of certain discontinuity problems’
-over -thé results obtained with static approaches as will be

~.seen in section 3.4 of the present report.

e

3.2 MODES OF RESONANCE IN TRIANGULAR PLANAR
RESONATORS

The straightforward Dboundary conditions of the
resonator model shown in Fig. 2b can be related to the condi-

tions of a triangular waveguide by duality. A completé set

of solutions for the latter problem has been described by

Schelkunoff4 and was applied to the problem of resonances in

triangular shaped ferrite posts by Akaiwas.

i

Let a triangular resonator with magnetic sidewalls

_be filled with a dielectric material of scalar permittivity

& = €&/ Er' and permeablllty U = uo. Among all the possible

resonant modes, only the so-called TM - modes are of
l_,m,n;o .

interest in microstrip applications. These modes exhibit an.

electric field which is independent of the z-coordinate (in

the direction of thickness) and normal .to .the electric top and

. bottom walls of the resonator. The normalized expression for

“the electric field, as derived from Schelﬁunoff §4formulae by

VR SN ) _,;.._-.

E (x,y,z,t)

T~ s
21 V(s :
‘l’ (X,Y) = COS [ 1 (—-— +B ]'COST TT;TJ;~11)Y | | (31)
. 2 N .. B | ' . _ul -
+ o cos [g‘lgm( > +B)] cos Vl’%%_lz

ZS-!“B) ] cos V?_L_.___h__“ 1-m

.l. ——
cos [3Bn (2 0B

The magnetic field is obtained from (30) via Maxwell's

4

equation:
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= curl B ' o S T (32)

‘The resonant frequencies are

22 @2 +amn + 0] P 63

- -3
£, = 3 (en) | L (BA_

l,m,n;0

1l,m-and n are integers which never take .zero value simulta- .

‘neously and satisfy the following condition
1 +m +n =0 L . . (34)
The lowest resonant frequency occurs for the following corabinations:

~1

1
[
B

1l

1 =0 ;. m
1 = -1, m =0 ] n = i
1 = -1, om =1 ‘n = 0.

The corresponding field .configuration could be described as a quasi-
"TEM - wave propagating in a tapered microstrip which is open-circuited

at the wide end. = The field distribution function  y(x,y) is for the funda-

‘mental mode

2 x V3w
b (X, =2 —_— pay
? (x,v) .\ .cos 38 ( > + B) cos 9B vy
+ cos 23T y N ‘ . . (35)
9B o

This expression may be normalized by writing

B—.X : B Y o _ . S ':(36)
Thus A :
2 ’ 3
(X, Y) = 2cos '}f‘ ("ZX' + 1 ) cos V3 v
- +-cos >

(37)
This function is i‘epresented graphically in Fig. 7.,

Lines of constant value for (X,Y) are drawn and projected upon the X-Y

. plane, representing the magnetic field lines of the fundamenfal mode in

the : friangular .resonator. R © e e e
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Figure 7 Magnituae of the
electric field of the funda--
mental resonant mode (TM_ . )

. . 0i;1;-1:0
in a triangular resonatoXx. -
The dotted lines in the triangular
plane indicate magnetic field
lines. ' : ’

Line of zero electric
fieid '
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For the analysis of coupling"arrangements and the evalﬁation

.of Q~factors associated with the modes, the energy stored in

- the resonator is of particular interest. Irhe stored energy .

----- ‘is obtained as the volume integral -taken over the square of

the mode function Y(x,y) in the resonator as.follows:

, 2 . '
W =3e/ [v (x,v).] av , (38)

stored
res

-For a triangular resonator of hlght h and side A = 2 V'—BIB,

this 1ntegral becomes

5 .
Wstore_c'i = ehB I = 12

ehAZ- I ~ _ (39)

. where I is given by 'the following expression;

3
8

{ 3+ 2 [SI(2nl) + SI (Z2mm) + SI (21\’1’1).]

2. ' 2 S 2

| 2 m 2 _
+(1 +i2;;ﬁ;“) S1 (ﬂl) + (1 f 233;*) SI_(ﬁtn) + (142 I—*—)SI (1)
m-n  m-n
H2gma tT ) - 1) s1° [5 (m-n) )
n-l n-1- 2 T :
f [2(111—1 ‘n-m ) -1 ]sI [—; (n-1)]
; 1-m | 1-m 2
. 2 —) - 1 — (] -
F_“[-( l-n n-m . : J 8L [3 (1-m) ]
+opa 4 2t BT (m-1
. L m-n «1] 3 (m-1) ]
1-n 1-n 2 2u -
+[4 + — (1~
[ S omen 4 1-m ] St L 3 (-n) 7]
‘ : n-1m. n-m . 2 zﬁ ’ o "j
+ [4. + n-1 1-m ] st [—3— (n-mm) ]} _ - . (40
s . 2 sin x 2 ; o
In this expression, SI (x) = (“"X—") + -1, mand 1 are the integers

described earlier (see equ. 3).

. (1 for ®x =0 .
ST (x) = ' '
I (x) 0 for x=4# im, i=1,2,3,4,....

Note that




Also

2 . . o
22 512 (ng) = 0 S (4
SN .
whenever one of the three indices (1; m; n) is zero. The

integralII {equ. 40) can take two distinct values as follows:

ITf one of the three indices 1, m or n is zero or

if two of the indices 1, m.and n are identical (i.e. 1 = k,

m=%X, n=-2k, then I = 9-{3 /4.

But if all three indices differ from each another -
excluding the value zero for one of them - , then I = 9-?3 /8.

This fact is presented in a compact fashion in Table 1.

1=0 m=%X n=-+-k ]
1 =k m = 0 n = -~k
1l =k m=+-k n= 0
. I = 9-V3 /4
1 = k m = k n = =2k
1 =k m =-2k n = k
1 =-2k m = k n=.%k
1 Fm ¥ n
and simultaneously I = 9~V3 /8
1 # 0 m ¥ O n ¥ 0

Table I Values for the Integral I (equ. 40) as a function of.

the values of the mode indices 1, m and n}

.

‘The following section on coupling arrangements will repeatedly

refer. to the expressions for fields and stored energy .derived

above.




‘expression for the locading power factor p = 1/Q

3.3 COUPLING BETWEEN MICROSTRIP AND SELECTED STRUCTURES

3.3.1 -Hole cbupling between microstrip and - a davity,: 

~#Small coupling apertures act‘és-radiatingfdipoles>when

.excited by a microwave field: -On the basis of this concept}

Wheeler6 has derived simple -expressions  to evaluate aperture
coupling between resonant cavities or waveguides in-terms>of:
volume ratios. Hoefer and James7 have extended the method to
the coupling between microstrip and cavities. A theoretical
£ i
ext OF @ cavlty

(resonating in the cylindrical TE - mode) has been derived .

Oln

and was found to be in good agreement with experimental values

for coupling holes small compared with the guided wavelength
in the microstrip. ‘However, coupling through larger holes -

turned out to be weaker than predicted, .due to the nonuniform

distribution of the magnetic»fiéld over the hole area; 'initially,

-analysis was based on the assumption that this field was constant

over the aperture.

-Agreement between theory .and measurement can be

congiderably improved by employing the .average magnetic'fieid
~over the hole instead of its maximum vélue in the calculation
-of the hole reactance. When thevwavelength in the microstrip.
.becomes so short (large dielectric constant of the Substréte,
~.high frequency) that the hole -dimensions Are_no longer shéll

~compared. with -the wavelength, a first order correction amounts

to multiplying the expression for the loading power factor p
9 :
by (H /H ).

average max

- ) N . nt ati
The average value Haverage is qbtalned by integr ing

the expression for the magnetic field over the hole area and . .

dividing the integral by the aperture surface. Figure 8 shows
the situation in whigh all dimensions have been normalized to

the hole radius. " R
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Figure -8 Field distribution over the circular ap.erturé

~in the microstrip.

The magnetic field is given by the expression:

gy

H=mn 2w
= cos —— °
‘max P z

where P is the normalized guided wavelength on the mic.r'ostrip
(P = .Zkg/d) , }\g = wavelength and d = hole diameter. The avei~age

value of the magnetic field over the hole area is given by the following

) 1 l1~zz

J' J' H cos 6“—“2“ z) dx dz [ [ = cos(®= z) dx dz
max P . max P
_ Hole area : O _a .

expression:

H = = - ) —
average Hole area _ /4

Integration with respect to x yiélds

1 ° ) R .
‘r ‘-1 - z2 cos kz d=z

. A
o ‘ . .

:iH
iy

average ma

where 2m/P has been replaced by the symbol k.

(42)

(43)

(44)
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npower"factor7 yields

‘The average magnetic field is then

2 o s 2
x Jpk) = H

Haverage.= Hmax k max‘:ﬂd/lg 1

ApPlication of the correction factor (H JH )z,vwhich 
- "Taverage’ "max .

is represented in figure 9, to the expression for the loading

‘d4n2)\§)\ , o

p = 0.09399 ——ﬁ—'g—— [ 3, (ma/x )] (48)
L D"Ah 9 '

This expression is represented as‘a dashed éurvé in figures

10 and 11. It can be seen that for large aperture diameters,
the corrected curve fits the experimental values better than
the uncorrected one, while for 'small apertures, the uncorrected

curve predicts the measured valﬁes-very"well.
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Figure 10  Uncorrected and. corrected theoretical

‘curves for p are:compared with experimental -
values (TEo cavity coupled to 50 Ohm
microstrip On Rexolite, e, = 2.6) ..

3 _(vrd./,g)., an
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Figure 11 Uncorrected and corrected thedreticalicurves
for p are. compared with experimental values
(TE012 cavity coupled to 23 Ohm microstrip on

Stycast, er = 10.8)

3.3.2 Hole coupling between microstrip and a
triangular planar resonator

‘The analyéis of this coupling problem (see Fig. 12)
goes along. the same lines as the preceding section on micio—

strip to cavity coupling. The only differende resides in the

- expression for energy stored in the resonator which results -

. . 6 - .
in a different value for Wheeler's effective resonator wvolume

in the formula for the external loading‘factor p:

p:-x.k (‘l‘g)

‘Where x is the normalized coupling reactance between two .

identical microstrip lines connected by the coupling aperture,

and k 'is the factor of coupling between two identical:triéhgular
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‘-resonators connected by the same aperture; While x is the same _
as in the microstrip to cavity coupling problem (seg;refe;encé 7)., -

the. factor k becomes

“Fig. 12- Hole -coupling
-between microstrip
~and triangular
resonator.

RESONATOR
DIELECTRIC

COMMON GROUNDPLANE |
MICROSTRIP DIELECTRIC =~ =~ =

mcoc

A%
m

k 5% (s0)

-where vmc is the effective volume of the coupling aperture
~(Vmc = 2d3/3 for a circular hole of diameter d) and Vm is
" the effective volume of the resonator defined by the following

-equation

' A 2 S -
V_ o= (3u s |H|%av) / GulE_ D ~ (51)
' res ) '
In this expression, H_ is the tangential magnetic field in

_ the resonator at the position of the hole.

The numerator of eqn. (51) is the energy stored in the
‘resonator and therefore egual to the equivalent volume integral

over the electric field:




. . .
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-}po J Il?lz'dV: e er \'r’ Iﬁlz dv = {‘Eoer \'g [lll(x,y)] 2dV (52)

res o 7 res o o res -

v*0n~the‘other-hand, the magnetic field at the épertufé can be

-expressed as a function of the-electric field and is in view

Aof ‘equ. (32):

‘H (x ,v ) = 3 ‘-curl4[¢(x,y)]-Aﬁ lx » o (53)

c c'“c ®
0 0 c:YC

-where.xc,yC are the coordinates of the coupling hole. Egqguation

(52) has already been evaluated [see~(39), (40) and Table 1 for
the value of the integral] . ‘We thus obtain the following

.expression for the effective volume of the triangular resonator:

V. =
m

ol

(wo-/c)2 gthAg I |cu;1.~[¢(x,y)] K];i'yc _ - - (54)

The external loading factor is then in view of egquations (49),

(50), and (54):

P = % (ﬂd6c2)lcurl P(x,y) Kl.iC,yc/ (x AMthRAEAgmzer) ’ ~.(55)_
where
-a = Diameter of the cpuplingAhole
c = speed of light _
| AM = »Width-of mic;ostrip model
: hM = Height of:microstrip model
) AR = Side length of resonator model
hR = Height of resonator model - .
Ag = jGuided~wave1ength (TEM) in.micrpstrip_at respngnce
w, = ‘Resonant angular frequency
€. = ‘'Rel. dielectric constant of resonator dlelectrlc
I = .Integral as given in eqn. (40)

= Field distribution function in the resonator as
defined in egn. (35). : :

“The particular case of .coupling to the fuhdaméntal mode through .

a circular hole in the centre of the triangular resonator is

presented in Fig.i2 . I the hole diameter d is a relatively

large fraction .of the wavelength Ag in the microstrip, p must -

_ : . . . : et _ 2
be corrected by multlplylng eqn..(SS) by the faCtor(Haverage/Hmax)-.-

represented in Fig. 9.
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'3.3.3  Hole coupling between .waveguide and a
“triangular planaxr resonator

This problem differs from the preceding -case.only by,

.the expression for the hole reactance x.

12ﬂd3

3abA
g

(circular iris) S . .(56)

~In view of equations (49), (50), «(54) .and (56), the external

loading factor p becomes:

p = % (ndﬁcz) | curl ¥ (x,y) ﬁ[iC'YC/.(IathAgxgmier) o (57)
where
da = Diametexr of thé coupling hole
c = Speed of light
a = Width of waveguide'cross—seétion
b = Height of waveguide cross-section
AR = Side length of resonator model
hR = Height of resonator model .
~Ag 2 Guided wavelength in the waveguide (TElb)
mo = Angular resonant frequency
€. = Relative dielectric constant‘of_resonator
dielectric
= ‘Integral as given in eqgn. . (40)
P = Field distiibution function in the resonator

as defined in eqn. (35).

Again,Amultiplication of p by a correction factox

(H /H

average’ "max ‘
fractions d/kg. Fig. 13 shows an example of the coupling

)2 E(see eqgn. 76)] is in order for large

situation described by eqn. (57). The same formula may be
applied to an arrangement where the coﬁpling hole is situated
in the centre of the large wall of the waveguide at n - Ag/z

before a  -short circuit, as shown in Fig. 3c.-




" DIELECTRIC

———— RECTANGULAR
WAVEGUIDE.

‘Figure 13 Hole coupling (magnetlc)between wavegulde
and trlangular planar resonator.

3.3.4 Galvanic'(direct) coupling between microstrip
.and a triangulax planar resonatorxr

‘"Two examples of galvanic coupling are shown in'Fig..3a.
To evaluate the extérnal loading factor of the resonator in
these cases, let the centreline of the microstrip intersebt the
pexriphexry of the resonator at (xc,yc). If we assume tha£ the
microstrip does not pertprbate the field pattern in the resonator,

the voltage across the microstrip line at (xc,yc) is Vc:




jou 't

V., =B _(x_,y) " h = ¥(x_,y) e o . h - o (58)

C 2 o] [ R R

If - the microstrip is matched at the far end, the resonator'
is loaded at (x ,y ) with the characteristic 1mpedance Z
:of“the.microstrlp. The energy dissipated per cycle in the

-external load is then

2 ~ 2 2 _.
Wa = Vomax/ (%5850 = [¥(egiy ) 17 mp/2z £0) (59)

vand the external loading factor p becomes

Ehergy dissipated in external load

P = l/Qext = 21 - Energy stored in. the resonator
= . ’ ' ‘ 60)
Wd/(zﬂ : Wstored). ' ( :
- is gi ) ‘eqn. (59).
where Wstored is given by edn (39) and Wd by eqt (59)
Thus '
p = 3h tw(x y )] 2 / (tf Z e ¢ A2 1) ' (61)
TR % c'?c ‘0”0 0o r R

I is.again the integral defined in (40). ei is the dielectric'

-constant of the resonator substrate of_thickness_hR,'fO is the

“-resonant frequency and A_ the side length of the triangular

R

‘resonator model.

3.3.5 Capacitive coupling between mlcrostrlp and
a triangular resonator

- Arrangements of this kind are shown in Fig. 3b. The
-enalysie of such a case is very similar to the evaluation of
direct coupling, the difference being the additional coupiing
capacitor separating the impedance ZO from the resonatorxr.

For the calculation of the external Q, the series combination

of Z - and C is conveniently transformed into a parallel combi-—

~natlon of fo' The resistive part of this parallel combination

reflects the external losses while the capacitive part slightly
.affects the stored energy and thus the resonant frequency of
the resonator. Figure 14 shows the equivalent circuit of such

a capacitive coupling arrangement.




b.)

Figure 14 Capacitivé coupling between microstrip and
. triangular resonator (a) .and equivalent
. sexries (b) and parallel (c) circuits.

The value of the series coupling capacity CS may be obtained

‘with a numerical method orx ah-empiricalfformula for such -

configurations. The equivalent parallel elements are then

found as follows:

2
1o+ (woCSZ )

2
Zo(wocs)

C ' : : .
c_ = = | | S (63)

p , 2
.l + (wOCSZO)

- For the evaluation of the extexrmnal loading factor, the effect

of CP can always be neglected. The expression foxr p, is then

-‘the same as (61) with Zo replaced by ZP as given by (62)}

‘ 72 ' 2 _ =
p = 3hy [V(x vy )] " / (nf z € e np 1) - (64)

“wheré‘all symbols are defined as in (61).

'3.3.6 ‘Hole coupling between waveguide and
-microstrip

A narrowband transition from microstrip to waveguide
and vice-versa may be built using magnetic coupling through

a common apertﬁre.» Analysis for small coupling holes may.be

done using Bethe‘s9 small hole ‘theory. According to this

o Lo ' (62)




theory, a hole is -equivalent to a-radiating-dipole.the s£rength-

-of .which depends only on .the incidéht'field."The-powérsradiated

from the hole is independent-of the-configurationﬁand charac-

teristic impedance of the ‘guide into which it radiates.

The power transmitted'through\thé transition can thus

‘be predicted by assuming that the hole-connects.two identical

waveguides of_the type from which the power is incident. ‘Thﬁs

. 2 ) : '
Ptransmitted = Vtransmitted ZOl = v-trlansmi'i:'i:e"d

“( )y . ( )

incident _ ,Vincident 02 Vincident'

2

(65)

2017202

where ZOl»is the characteristic imbedance of the guide from

which the power is. incident and Z 05 is the characteristic

impedance of the guide into which power is transmitted.

. Figure 15 shows an arrangement for hole coupling between.

‘waveguide and microstrip. and its equivaleht circuit. The
~normalized reactance of the -coupling hole is different when.

.measured from the waveguide and the microstrip sdide. In

the case of a circular hole, these reactances are,as.measured

in the waveguide:

R | . : . K
X, = (2wd”~) / (3abkgw) . . (66)
as measured in the miérostxip:

3 » to
x, = (1d7) / (3BEA_) . , . (87)

3

Fhemd b S .
- ¢ - . R
TSNS S NS . ‘ :

e e e e’ i S ) i .'I__ilii—" ; . ) ‘ )
Eo 7 |I Aow M b Zoy P jxmzoa Zop
A A 0 7 A SO AR T T va ‘L < - 5 -

a.) :»MQ\(c%u{dg_ . o "w(c\—og‘v\'? -

Fig., 15 Arrangement for hole coupling between microstrip
and waveguide. ' : '




and Agw

. 10
According to Montgomery

. 27
Vtr/vinc - B
1 .

where B = ; = normalized
. 4.

Ptr/Pinc - B2 =

‘Since this power transmission coefficient is independent of

the characteristic impedances of the -output guide,

it becomes

susceptance of the hole.
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‘and "the microstrip respectively.

-coefficient between two identical guides is

-where d is the hole diameter,-a.and.b\are:thé'sidés»of-the

,and.Agm are the guided wavelenghts in the waveguide

, "the voltage ‘transmission

Thus

For transmission from waveguide to microstrip:

trx inc

X 2 3, 12
P /P =4x = [(ana”) 7 (3abxgw)]

.and for transmission from microstrip to waveguide:

2

P,__ /P, = 4 x w

tr inc

In ordexr to calculate the voltage transmission coefficients,

For the waveguide,

2 -=§o A

>
o I@-
£

For the microstrip,

h -1

z =L Tmn:ﬁ
om . o A €aff

In view of egns. (65), (70), (71), (72), and (73), the voltage

coefficient becomes

for transmission from waveguide to microst¥ip:

3 2
[ (2ma”) / (3Ahxgm)]

(TE —fmodes)

(TEM - mode)

-characteristic impedances may be defined as follows:

-waveguide, A and 'h the sides of'thefmicrostrip~model>(see-Fig. 1)y,

(68)

(69)

(70)

(72)

(73)



.coefficient must thus be multiplied by a factor (H /H

3
v, /v And

tr’ Vine T 3ab>\gw [(hkgm) / (Akgw)] _ : ' ,(?4)'

.and for transmission from microstrip to waveguide:

. . 3 ) .
vV 2wad 3 A (75) -

“tx inec © «3Ah>\gm [(Akgw) / .(h}‘gm)]

Itimust be kept in mind that these expressions are valid only

for small apertures. A firxst order correction consists of

multiplying the value of x in .egns. (66) and (67) by a factor

2 . . . .
{(H /H )7 where H is the average magnetic field
average’ "max . Taverage
taken over the hole area and Hmax is. the maximum magnetic
field in the centre of the hole. The power transmission
average’ max
to take into account the nonuniform field distribution over

the hole area.

The correction factor for circular apertures in wave=-
guides may be found in the same way as the corresponding factor

for microstrip derived and presented in section 3.3.1. . The

-only difference resides in the additional nonuniformity of the

field in transverse direction .in the case of the waveguide.
Since this variation is also sinusocidal with a period of. 2a

{a = width of the waveguide), the correction factor is
da

2 gw . 2rda” . o
average/Hmax) - [ wd Ji(ﬂd/kgw)] [ﬂd Ji (nd/2a)] (76)

("

Both terms may be obtained directly from Fig. 9 by reading

d/kgw on the abscissa for the first term and d/2a for the

‘second term.

A The 1ogarithmiof the power transmission coefficient
for transmission from waveguide t0 microstrip has been

calculated and presented in Figure 16. The effect of the

‘first order correction is quite remarkable for values of

d/a > 0.3.
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Fig. 16 Transmission throﬁgh a circular-hole from .
a waveguide (a/b = 2.12) to microstrip as
a function of the hole diameter d and wave-

. lengths A (free space ) and A_ . ‘(Magnetic
coupling as shown in Fig. 15). : :

The action of several holes could be combined to achieve

directional coupling between microstrip and waveguides.

3.4 EQUIVALENT CIRCUIT OF TRANSVERSE MICROSTRIP
DISCONTINUITIES : '

Lossless discontinuities in transmission lines can be
represented by a T or m - section of three lumped reactances
. 11 X . . e
as. shown by Schwinger and Saxon . If the discontinuity is

stmetrical about a transverse plane (z = O plane, see Fig. 17,
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.-the equivalent circuit is -also :.gsymmetrical, and the fields on -

the line are conveniently represented ‘as -the sum of even and

-~ o0dd functions about this plane. .The separation into even and"'

.0odd cases leads to two variational -expressions for the discon-

‘tinuity reactance corresponding to thée even and odd excitation

respectively.

2447890 Zyq4=Bqp

- - WAN——0
] 292
- l - - o ———
Z=0 z
Fig. 17 <Thin transverse Equivalent lumped
obstacle in the element circuit’ in
-microstrip model - the z = 0 . plane

-The variational expressgions for the discontinuity

reactance contain a dynamic Green's function which must be

"derived for the particular type of transmission line. Sinée
“there is no such function available for microstrip_fo date,
even for‘the dispersionless case, an;épproximate.Greends'.
-function has been derived uéing Whéeler'sl parallel'plate

model with magnetic sidewalls. (see figure 1). Even though

this model describes faifly accurately the quasi-TEM mode

propagation in a microstrip line, the higher modes in the

- .model represent the field at the discontinuity to a first

-order approximation only. However, in the absence of an

exact expression for higher modes in microstrip, the solution

of the inhomogeneous wave equation in the model is preferable
+to a static approach. It can be expected that the analysis
yields best results if the digcontinuity is small with tespect.

‘to the strip width and located close to the.centre of the

microstrip cross-section where the incident TEM-field is nearly

--homogeneous. It is always assumed that only the TEM-wave can: -

‘propagate in the model whereas all higher modes are cut off.




i

‘ . . . .

The variational expressions for the discontinuity
reactance. S

-dimensions of the discontinuities considered in this study

.are independent of the y-coordinate, (see Fig.l1l7), the problem

is described by the following two-dimensional scalar wave

' since the transverse electric field as well as the .. . ’.>> w
: : : - |
equation: |
|
|

Bix,z) =g "%(x,2) + J G(x,zix", 2" )K(x',z')ds'  (77)
T obstacle ) .
where ﬁlnc(x,z) represents the incident electric field'(homoF

geneous TEM-solution), and the integrél'is the particular
solution, i.e. the field produced by the currents on the
obstacle surface. G(x,z;x',2') is the Green's function

defined as follows: jkeuw G(x,z;x',2') is the electric field

.produced at the point x',z'". K(x',z') is jkcud, where J is

the surface current density on the obstacle (which is in the

y-direction only).
B(x,2z) is subject to the following bouhdary conditions:

i) . 9@/9x = 0 on the magnetic sidewalls of the
model at x = 0 and x. = A o

ii) ,g = 0 " .on the obstacle surface.

After separation into even and odd fields about the

z-= 0 plane, a procedure described in detail by Schwinger and

Saxon11 leads to the following variational expressions for

the discontinuity reactances which are shown in Figure 18.

fKe(x,z)G'(x,z;x',z')Ke(xﬂz')deS'
ob

Z + Z = j2kA (78)
11 12 7 5
| [ K (xe2) ¥ _(x,2) as]
L - [} 1 ' ' '
1 - ébKo(x'Z)G (x,z;x",2")K_(x',2')dsds
-5 j2ka 7 > (79)
117 “12 [J K (x.2) y_(x,2) as] ° |




Green's function ‘defined earlier. Ke.and Ko are the even-

.and odd.current distribution functions .on the obstacle; and

,we.and wo"are the even and odd standing-Wave fields of the

fundamental mode. k = 2ﬂ/kg, where )\g is the wavelength of

the TEM-mode on the line.

- 32 -
In these expressions, G' is the real part of the o :

-Evaluation of the Green‘é function G(x,z;x',z2"')

. By definition, the Green's function must .satisfy thel' '_i
inhomogeneoué wave eguation l |
|

82 32

3x2 3y

(

+ k2) G(x,z;x',z]) = 8(x-x") &(z-2"). (80)

-and fulfill the following conditions:

G - ) '
a) 3G _ 0 on the magnetic sidewalls of the model

Bx

at x = 0 and x = A since it is an elec-

tric field in y-direction..

b) G must represent outgoing waves from the point .
x',z"'" since the current filaments act like sources

and not like sinks.

With these conditions, the ‘Green's function in the microstrip

*

~model becomes

G(x,z;x',2"') = E%E cos k[z—z'[ + G'(x,z;x‘,z'). (81)
‘'where
' G'(x,z2;x',2"') = E%E sin k[z—z'l
] ' . ) C-— . . — ' . ‘ )
-+ % m§1 cos (mm x/A)cos(mux'/A)e jkmIZ 2 l (82)

Expression (82) is real since only the TEM-wave was assumed .

-to be propagating. It is to be introduced into the varia-

.tional expressions (78) and (79). The wavenumber of the m-th

mode is

_ 2_ 2y% — . o
km._.~ (k“— (mw/Rn) )', k(m=o) = k. o | (83)

"The incident wave functions in the even and odd dase .are

respectively:




Even excitation: me,=fcosikz'{field:maximum at z = 0) (84).“

..0dd excitation: wo = rsin kz (field node at z = 0) _ - (85)

Approximate evaluation of the variational expressions

.a) Thin obstacles and windows

,

Since a thin obstacle or window is entirely confined

to the z = 0 plane, the total input impédance~of.the bisected

equivalent circuit must be equal to zero in the odd case, thus

Zyy T %y, =0 Ziq = %y S (86)

To .evaluate the even case, we choose the current density.

Ke(x',z') to be constant over the whole obstacle surface.

XK (x',z') = 1 ' . (87)

“The denominator of egn. (78),bec§mes in case of a thin centered

-obstacle (¢e(XrZ) = cos kz = 1 on the obstacle-surface)f
A+ d
2
[f K (x,2)9 (x,z)as]®=[ / 1.1 . ax
ob e e :
. , A - 4d .
2
A - ad
2 : -2 2 | '
+ I3 1-1 (-ax)]*° = 4a“- _ (88)
A + d : :
2

Introducing the Green's function (81l) and the approximate source

Ffunction (87) into the numerator of egn. (78) we obtain after
integration over the whole obstacle surface .and with some

algebra:'

--even m 2 AL 2

. C 2 k .2 ,m - .
+ e = = N = . — — .
le le 2% 2E ) ( p- ) (d) P §1n. ( 5 A) (89)

‘The equivalent circuit of the obstacle is thus a shunt induc-

“tance Z = jX since km is positive imagihary for gll higher modes.
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" The sum in eqgn. (89) converges quicklyfdnd gives good results

with a few terms,. In case of non-centered obstacles or win=

. dows, the limits of integration in both numerator and denomi-
-nator of the variational expression (78) must be altered

.according to their particular geometry.

b) Cylindrical posts of circular cross—section‘

‘Again, very simple current distributions over the

. obstacle surface are assumed:

Even excitation: Ke(k‘,z')' 1/(2mR) . (90) -

0dd excitation: Ko(x',z') ‘[1/(5“R)]cos.e; (91)
where R is the radius of ﬁheicylinder and»G is measured

from the positive z—-axis. Since two different types df(
co-ordinate systenms, némely cartesian and cylindridai,,are
involved ‘in the integration within the variational expres-
sions, the field in the microétrip model must be reppesénted

in terms of cilindrical wave functions. (For more details see
Schwinger and Saxonl} r. 39 pp.) TheAresults of the integra- - -

tion are:

A A 1 2
+ - = - +
Zyy * Zy, = 32 3 [1n(R ) -1 (kR)
27 sin — x
A "o
- nTx
® 2 1 1 - : ‘ ,
2 n kg (eos /) ‘%2 _ (kA)Q“ m)] I (92)
) ! S
' . A ,2TR,2 - . .
and le - le = =] il_g. ( A ) . . | . (93)

where X is the distance of the centre of the cylindricai

post from the z~axis. The theoretical expressions for the

~above discontinuity parameters are shown in Figures. 25 and 26

and are compared with experimental data. Some improvements

of the theoretical expressions are discussed in Chattopadhyay's
1 . '

thesis 2 and appear in these figures.. It can be seen that_the

theory using the parallel plate model for the microstrip gives'



satisfactory results at‘frequencieé wéli below'thé cutoff

.frequency of the first higher mode.

‘The next section outlines the  technigue used to

‘measure -the parameters of the discontinuities which were

analyzed in the present paragraph.

4. EXPERIMENTAL TECHNIQUES

In the following section, the technigque of measuring -
the parameters of microstrip discontinuities in a resonant
ring is presented. A-general analysis of the resonant ring

is followed by some experimental results obtained with thin

transverse obstacles and cylindrical metallic posts.

A microstrip ring is defined as a microstrip trans-

‘mission line which is closed in itself. All radii of curvature

are large with respect to the strip width so that the fields
have practically the same configuration as in a straight line

of identical cross-section.




.
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4.1, Analysis of the Resonant Riﬁg[j .

Containing A Reciprocal Discontinuity

A microstrip ring resonates if its electrical léngth is

an integral multiple of the guided Waveiength. When a discon-

tinuity 1s introduced into the ring, each resonance degenérates-_

~into two distinct modes. This splitting is conveniently inter?

" preted in terms of even and odd excitation of the disconﬁinuity.

The even case corresponds to the incidence of two waves of equal

magﬁitude.and rhase upon the discontinuity, while in the odd
- case, waves 6f equal magnitude but oﬁposite phase~are incident
from both. sides. Eithe: mode of resonance can be suppressed
by an appropriate choice of the point of .excitation along the

ring.

4.1.X Symmetrical discontinuities

If the discontinuify is symmetrical it can be represented
- by a symmetriéal T or T section, in onelsingle'referehce plane.
“This plane of electrical symmetry will henceforth be called

z = 0 plane.

As shown in Figure ﬂi the equivalent T~c%£cuit of a
symmetricél discontinuity can be divided into two identical
half sections of zero electrical'léhqth, 1f the circuit is
excited in the even mode, no current crosses the z = 0 plané.
"Therefore, the input impedance of each half section is not

altered if the connections in this plane are cut. The normalized

‘even input impedance at either port is thus 2, = Z +_212

ie 11
The normalized odd .input impedance, in tufn, is
Z. =% - Z ‘
o 11 12
" which is short circuited in the z = 0 plane. -

and represents the impedance of a half-section

A, Lossless symmetrical discontinuities

The even and odd impedances of the discontinuity cause

"~ the shift in the resonance frequencies of the ring. . This
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.'_F:L_gure i@ (a) -Eq@ivale.nt circuit of‘-a‘ _é;ymmetn;ical discontinuity..

o (b) One-half of the equivalent circuit for even excitation..
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+end. (Figures 19a "and 191 ).

‘bécomes evident if the (reactive) impedances-afelthoughtwoffas

‘input impedances of fictitious transmission.line_sectionsQwhichw

-are open (even case) -or short-circuited (odd case) at the other o

The artificial increase of the electricaldlength»of
the ring resulting in the decrease of its resonance frequenc1esi

is related to the normalized even .and -odd input 1mpedances by

-the following expressions:

Zie = le>+ 212 = -3 dot k 26 t(even case) ~‘.(1fl)
Zio = le --,Z12 = .j tan k 20 {odd case) (1.2)
-k = 21r/)\t r is -the propagation:cohstant of the

quasi-TEM mode.

-Figures 20a and 20b - show the standing wave pattern on

the ring resonating in the fundamental mode. For convenient

"presentation, the ring is cut open at z = O-and-Straightenedf

out. The fictitious lines representlng Z, e>and Zio have been

added on elther side.

Since at resonance, the total electrical length of the

t
the harmonic number, the resonance conditions are

-resonator (including the discontinuity) is n ¢ A,, where n is

ni , - (1.3)

- f in the even case: 2 + 22

rindg e . te
in the 0dd case: L, + 28 = nl - . (1.4)
: ring o) ' to .
2ring is the phy51ca1 length of the rlng along. the-mean c1rcum-
‘ference, and At and A 'are the gulded-wavelengths correspon-

ding to the even and~odd resonance-frequepcy respectively. »
Since xring is known and At~can be obtained from measuiemegts,'”
Re and 20 are determined from equatlons (1.3) ‘and (1. 4).A

When introduced into-equatlons (L. 1) and (1. 2) respectlvely,

they yield
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B e m . om - Ty - _~r_a&9_
Zy1t Fao 1 eot [% kondeo ™ ring{] j cot Mea yr x.s)

1l 12 ring

2z - Z = j tan [% k‘(nlto “‘z ‘ )]*~j tan- (W—Eiﬂg) '(1;5)_

.to

ﬁ51nce one measures resonance frequencies rather than wavelengths,

it is more convenient to express kte and A as follows’
Ate = c/(fre V/Feff (fre) ) o - ‘ (1.7)
= ( [N . . - ‘ . L A .
Ato : c/(frOﬁ/ eff (fro) ) o : : . (1r.8)

and to introduce these expressions into equations (1.5) -and

(1.6) respectively. Thus

- 2. JE (£ ) £ ‘ '
- _ ‘ - : ring eff re re ~
Zie_" Zyy * 3, j cot o ;1.9)_
: - S B Y L (£_ ) £
_ - —— ring eff . ""ro xro
Zio = le ,le j tan o (1.10?
..where eéff (f) is the dispersive effective dielectric constant

of the ring, c is the speed of light, fre and fro‘are the even

and odd resonance frequencies of the perturbed ring. These

expressions form the basis for the measurement technique des-

cribed later on.

B. Lossy symmetrical discontinuities

- Dissipation and radiation losses render the Z—parameters
of discontinuities complex. The compleXx- even and odd lnput '
impedances of the equivalent circuit can be represented by
sections of transmission lines terminated in a pure resistanee

(Figures 2la and - b ).

_ “The terminating resistance must be 1aiger-£han Zo_in
+the even .case (voltage”maximum at z =-0) .and smaller than Z
in the odd case (voltage minimum at z = 0). Note that for the

)
lossless case, R tends towards ®, while x becomes ‘Zero.
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Figure 21 (a) 'Representatlon of the even - 1nput lmpedance Z. of a
' lossy discontinuity.in plane 1 by a flctltloﬁg line..
: " terminated in- R>Zg. L .
{b) . Representation of the odd 1nput 1mpedance Z;o of a
. lossy dlSCOntlHUlty in plane 1 by a flCtlthuS llne
"« ..terminated in r<Zg, . - .~ : :
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are such that:

-~ “The lengths and terminations of the fiétifiousﬁlines

: . . S LN
| ‘gR‘“ + 3 tan kL_ %3— -3 tan ( ——-——-——'r;ng) o
Zie = le + le = “o . = o - 'ﬁglte' ~(;;11)
1+ 3 5= tan k& 1 - 3 5 tan ( ring)
(o] - o) . . A
te
v . ‘ . - A‘A‘ta .('rr.%r--.'n y o (1.12) -
. + 3 tan kko : 7 J n '—xi—i ST :
Zi0 T 211 T %1 7 8 - = -2 ——t°
1+ 3§ __ tan k&_ 1 -3 % tan( _xing)
' Z . . Z A
o o to
-The wavelengths Ate"and Atd ';satisfy~éduationé (1.7) -and

(1.8) respectively and are determined as in the lossless case., '

R and r affect the Q-factor of the ring.

.Let;Ql be the unlocaded Q of the ring, while QZe and 920".

are the loaded Q-~factors of the ring for evén and odd excitation

.of the discontinuity respeétively. Then,

R .2 21 226 , o o (1.13)
Zo Tn Q_Qze : . ‘ :

r _m 217%, ‘ e (1.14)
Zo 2 . 91 QZO A o

where n is the harmonic number.

4.

The circuit parameters le and le are determined from
R, Ate' r and xto using equations (1.1ll1l) and (l.lg).
1.2 Unsymmetrical discontinuities

A. Lossless unsymmetrical discontinuities

A lossless unsymmetrical discontinuity can always be

transformed into a symmetrical two-port by adding an appfopriate:'




. .
. , . . . .

. calculated using equations (1.11) and (1.12).

length of line 1 to one of its ports. The pléne Qf*éiecﬁficél
symmetry, z =.0, is-then situated half way-betweeh the planES
~with respect tpxwhich the tQOﬁport is symmetriéél. Once the
“Z-parameters in the plane z = 0 are knowﬂ, the impedance"in'.
-any other plane can be found by simple transférmation.along

-the line.

In practice the z = 0 plane is easi;y-de;erminéd since .

it is situnated opposite to the point of optimum excitation of

the ring at the fundamental even resonance.

B. Lossy unsymmetrical discontinuities

‘The concept of even and odd excitation can oﬁly be

Lapplied to those lossy unsymmetrical discontinuities-which can
be transformed into a symmetridal two port by adding an appro-

priate length of .1ine to one of their pérts,’ In terms of S-

parameters, this condition is fulfilled if

_.|511|'5 Iszzl

~The Z-parameters in the plane of electrical symmetry are then




2. The Measurement Technigue and

_Experimental Arrangement

4.2.1 . Measurement Technique

It has been noted in secthxl4.} thatefor“making the
-evaluation of discOntinuity parameters,:measurements‘of
resonant frequencies and Q- factors are to- be done. Resonant
frequencies and Q-factors of the microstrip ring change due
to the introduction of a dlscontlnulty. So, the measurements
are to be done in two stages.

i) The resonant frequencies and "the unloaded Q—factors
‘of the ring are measured before the discontinuity

is introduced.

ii) The discontinuity is then introducedn(either into
‘the same ring or, if thie~isiimpractical;jinto
another jidentical ring), and, the even - and odd .. _
resonant frequencies together with the corresponding

doaded Q-factors of the structure are measured.

T".l‘he ring should be as.uniform-asipossible since .even a small‘
irregularity may introduce1effects~of‘the<same»order as the
effects to be measured. The ring,is'best'excited.by a{capaci-
'tive launduﬂ'which can be moved along the outer contour of the -
rrlng for about one quarter of 1ts clrcumference to ‘select the_:
~optimal point of excitation for each resonance. Coupllng _
‘should be as .light as the sensitivity of ‘the measurlng equlpment
permits. Even then, the 1aummer changes the-resonant frequencres
slightly.‘ But as long as the measurements on the empty and the
-perturbed ring are made at the same coupling strength, the effect
of the launcher is eliminated since it afifects ‘all measurements

in the same way.

Resonant frequencies can‘bevdetermined from either re-

flection or transmission measurements. The former method has




the-advantagé that only one coupling 1ink between ring and
~péripheralequipment is required. Care must be‘takenwtd measure
~all resonant ffequencies with best possible accuracy'since
- the ‘discontinuity impedance values are very sensitive to fre-
S .gquency Variatidns. This accuracy is limited'by the‘sharpness'
of the resonance response rather than the performance of ‘
‘available counters for the microwave range.
p-factors are best measured in the_transpission mode13
which, unfortunately, requires a second coupling link
between riné and the peripheral egquipment, but may'beievaluated

from reflection measurements with lesser accuracy.

‘Changes in ‘temperature alter the resonant»frgquencies
of the ring. In most cases, it will be necessary to stabilize
the tempefature of the substrate within # 0.5° ¢ if meaningful

" measurements are to be made.

4.,2.2 °  Experimental Arrangement

"A. The ring resonator

" Measurements have been made in a ring which had

+the shape of a racetrack (Figure 2é). The discontinuity could
+thus be -placed into a -straight section of 1ine,:and~the launcher
could also be moved along-a straight.line oh'the‘opposite side.
‘The ring had a characteristic~impédance'of about 27Q(w/h=2.7)

on a 5 mm Stycast substrate with a nominal dielectric constant

of 10.6. The mean circumference ©f the ring was &in§=‘59‘124 cm
~for the measurements on metallic posts of circular cross-section
;and &, = 57,375 cm for measurements on .thin metallic obstacles.

ring
"The -oversize substrate was chosen to minimize errors due to

dimensional 1naccuraCies.

B. ‘The obstacles (discontinuities)

Two types of discontinuities have been investigated,
ndmely Very thin metallic plates and cylindrical metallic posts
These were chosen because of the ease of introduction of obstacles

after measurements on the empty ring were made.' In both these
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.cases, the discontinuities were centered in the cross-section

~of the microstrip.

The thin meﬁallicJobstacleSnwere made of strips of
very thin copper sheets. These were introduced into the
ring in the following way. - The ring was cutAopen at the
-intended POSitiOn:Of the obstaclé. “The.thin metallic foil
‘was introduced and then the ring was reaséembled. For thin
-obstacles, only the even résonance,measurements ére to be

. made, and for even resohances no current crosses z= 0. plane.
Hence, cutting open of the ring does notAaffect the measure-

.ments.

" The metallic posts were realized by drilling holes

across the microstrip'and £illing those with mercury.

In each case, good electrical contact was insured ét
‘the strip and the ground plane, and the electrical parameters
"of the discontinuity could be.reproduced within the. limits of

accuracy of the equipment.

C. The-Temperatﬁre Chambex

"‘As has been already indicated in section 4.2.1,to make
the measurements of discontinuity parameters, “the temperature -
of the substrate has to be stabilized within + 0.5° ¢. other-
wise the dielectric constant of the substrate shoﬁs'fluctuations
to an extent that makes meaningful measurements impossible. For
reducing the.fluctuation of temperature, a temperature coﬁtrolled-

' box was designed, and the ring was placed in it.

The box as shown in Figure 23 " was lined inside by a

2.5 inch thick layer of styrofoam on all sides, which'is a

.‘very good temperature isolator. Only the upper lid could be

removed to place the microstrip ring inside the box. A cable
was introduced into the box‘through.a very small hole in one

side of the box, and that served as fhe connection between- the
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- “TO TEMPERATURE CONTROL .

Figure 23 . Temperature controlled box used for the 'stabilization
' .of the temperature of the substrate.
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launcher for the ring and the peripherai"equipmeﬁt;' By pulling
or pushing the cable from outside, the launchafcould be placed .

at the appropriate excitation points along the ring. A tempe-

- -rature probe and a heater element, connected to a temperature .

control equipment - -outside, was also mounted within.the box. -

‘During the course of the experiments, the tem?erature control
-equipment was set at 30.5%. The sensitivity of‘the‘equipment
-permitted the temperature within the box to be kept in the
range 30.5°Cc + 0.4%C.  To insure that the whole temperature

chamber was being heated uniformly, a small fan circulated

the air in the box continuously. The temperature inside the

box was-constantly%mohitored with the help of‘a‘thermomeﬁer_

-which was introduced through a very small hole in the top 1id

of the box.

“D. The Measurement Procedure

The circuit for the measurement of the resonance
frequencies was laid out as shown in Figureéﬂu The reflection

characteristics of the resonant ring were measured using a

- network analyzef, The ring response was observed on a phase- .
. magnitude display. A spectrum analyzer was usedvto compare
~the resonance frequenciesiof the iing with the,frequency of
:a precision.frequenqy generator. The outputvfrequency of the
generator was displayed .on a. digital frequency coﬁntef.

The vertical output of the spectrum analyzer was fed to the

network analyzer as the z-axis marker.

Now we shall describe the procedure followed to

determine exactly any particular resonance frequency. To

start with, the sweep oscillator was sweeping in Af mode.
By changing the central frequency of the sweep, the response

of the ring was centered on the screen of the phase—magnitudé

.display. Then the sweep was changed to manual and the‘dutput -'

frequehcy of ‘the sweep oscillator -was set as close to the
peak as possible. 'Now the local oscillator of the spectrum

analyzer was adjusted and tuned such_that the sweep_oscillafor“
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Figure 24 (Circuit diagram for measuring the resonance frequencies
of the microstrip ring. S : :
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frequency was in the centre of the spectrum analyzer screen.’
" Then the scanning mode of the spectrum analyzer was changed”‘

“to "manual". The sweeper was again swept in automatic mode

at a very low speed. The vertical output of ‘the spectrum

- analyzer density modulated the phase-magnitude display, pro-

ducing a dot on the absorption curve very near to its peak.

" The frequency of the spectrum analyzer was ndw'finally adjusted

to place the dot exactly on.the peak. Now the frequency of
the r.f. signal generator output was adjustéd. ‘As soon as
this frequency became identicél Qith the centre frequency

of the specﬁrum ahalyzer (which in turn was tuned to the ring.
resonant frequency), £he intensity of the phase-magnitude

display trace increase drastically over ‘the whole sweeping

range. Under this setting, the frequency of the r.f. signal

generator output is the required resonance frequency of the

ring.’

" The r.f. signal generator available for our experiments
had a frequeﬁcy range much smaller than the range (.1-2GHz)
over which thé‘ring resonances werehbeing studied. This
difficulty was avolded by_ihsertiﬁg'a harmonic generator

unit between the r.f. signal generator and the spectrum-

.analyzer: By properly c¢hoosing r.f. frequency and using its

proper harmoni@s it was always possible to match any ring

resonance frequency.

Measurements of frequencies of the peaks of absorption

could be rgpeated within i 20 KHz.

E. Some Experimental Results

Results of measurements made oﬁ metallic posts and thin
obstacles are presented in Figures .25 and 26.. For comparison,
theoretical values which have been obtained using the varia-
tional principle, are shown concurrently. éoth experiment

and theory agree quite well for low frequencies.
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3. Error Analysis for Experimental characterizetioﬁfv

-of Lossless Discontinuities in Resonant Rings

A general study of the resonant ring method for the
characterizatlon of - mlcrostrlp dlSContlnultles ‘have .been

given in ‘“section 4.1. In the present chapter we will ana;yze_the"

"accuracy with which the equivalent circuit parameters~bf:-

reciprocal lossless discontinuities-can -be measured in-

resonant rings [3].

Let us recall from “section 4.1 (equations (1. 9) and . (l lO)

~that the normalized even and odd mode input impedances at

~weither port of the equivalent -circuit -of “Figure22 can be

.given as

_ . e, [E G, T £
'Zie = le + le =3 cot « ring sff rey - (3.1)
. = g -_ . =—4 tan ‘iﬂ 2ring Jrseff(fro) fro') "(3;2)
io © f11 7 %12 77H ' ' ) T
. . s N . . .->E .
where zring is the physical mean length of the ring, eff . ig

the effective dispersive dielectric constant of the line at

the resonance frequencies’ of the- 1oaded ring for eyen G ) and odd.
(f ) excitation of the dlscontlnuity,and c is the ve1001ty
of llght. ' '

‘Moreovexr, as has been seen in °“section 4.2 the measure- .
ment of the parameters of a lossless discontinuity is performed

in two .stages:

i) The resonant frequencies of the ring are measured
‘before the discontinuity is introduced. . They
vield the dispersive permittivity eeff'of the line.

ii) The discontinuity'is then introduced and the
degenerated even . and odd resonance. frequenCLes of

the strxucture are measured. Since these frequen01es.




implicitiy through € sg- SOr we can write

- 57 ="

-are .in general different from those measured ln'
:4d), the values of IS "that are used in equations
(3.1) and (3.2) must be found by'lnterpolatlonc

When the systematic errxors due to dimensional inac-‘

.scuracies of the resonant ring are practlcally ellmlnated, the

-;accuracy of -the measured discontinuity impedances depends on

the accuracy with which the frequency of the resonance peaks

can be located and measured.

Let us first consider how the. even discontinuity im=
pedance Zie is susceptible +to the errors .in frequéncy measure-
ments. Since the error in the measurement of Zie depends on
the error with which both empty and loaded ring resonance

frequencies are determined, we can write

3z ' 3z

' ie _le df o o {3.3)
dZie = SE——'dfe + Bf re ‘ ) -
' e re

where fe denotes the resonance frequency of the empty ring.:

We shall evaluate the two terms of equation (3.03) sgperafely.

Zié is dependent on the empty resonanceAfrequency

aZie = .azie Bd eff) IR -  _ : (3.%)
afe 9 ( -aeff A

~using equation ( 3.1),

._a_z,_i.s_._ = -] ”ring‘ fre , : 1 . (3.5)
3% £t c | i'f,s';iﬂziﬂkfingm fre)
. . - 8]
Now, '
| S ~ - 1teot? | ”;ing J %ess Frey (3.6)
'Sinzeﬁ gxingJE;;; fre) _ | | ‘ c - .
. po .




=.1 +.2

ie zie ,(by~equatlop_ (3.7}_
(3.1)) ~
Ly 2 e ey
= 1 f‘lziel (3.8)
.Therefore,
aZie = -j (l+lziézl).'nzriﬁg fré ' _ : (3.9)
% off’ . ¢
- Again,
= . o |
_a(Jeff) = -__Dng . 1 C ‘.'"Qeeff = ne 7 (3.10) ¢
o £ L . £ 2 ' . £ ' :
e ring e - o ring e

x?s. ' , - o ‘ ’
- - eff ‘ . ' E (3.11)

So, using equations (3.4), (3.9).and (3.11)

. : fe -
azie = j (1+|Zief 2) wzrinq eff | fre (3.12)
Bfel . _ . c- fe .

Now, let us see the dependence of Zie~on fre' In
eguation (3.1) fré appears both_expiicitly and implicitly

-(due to the presence of €

. .Since & - i |
eff) Since incr?ases llnearly

ef £

“with frequency, we may write

(£_) =E, +D £ » E . _.t3.13)

-eff. re re
"where El = effective permigtivity at zero frequency |
and b = dgeff /df = slope of aeff vs frequency plot.
Using this we obtailn,
92,6 = -3 (1 + |z, 1% " ring [ PE o +jEZ?EE;~’j- . (3.14)
afre © 21;1:g§;2" |

2

iel) il

ring [3Eeff‘ € (3.15)

"1
1
c 2 /aeff

=i A 4 | 2
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-Hence combining eqdations (3.3), (3.12) ahd_(3,15) we get

: 2 ’ : s ‘ : -
- y ‘ . . ) , £ _=~3E .
azg . oy Arlag 0N ma, oy fre as + Ta7? eff af, 9 (3:16
%ie : Zie ¢ : fe v ef £ . .
‘Proceeding in a similar way for 2 we get. exactly the same

io

‘ex i £ . .
expression for dzlo/?io

Under the conditions that’

(a) even and odd resonance frequencies are very
close to empty resonance frequencies.
g, << ' = ei '
and (b) bf/ 1 1 (where £ either fre or fro)'

both of which hold in practice, the expréssion for the relative

-error in the measurement of even as well as odd discontinuity

impedance simplifies to

. N . 2 e ] - ) . . .
azg g Azl o a0 S e (g - af ) (3.17)
z, . ' z, ¢ ' "

where dfe and dfr_denote the absolute errors committed in

the measurement of empty and loaded ring frequencies respecti-

~vely. These errors reflect the pfecision with which the
. resonance frequencies of the ring can be located. It is not

-so much determined by the adcuracy of the f:équéncy counter

as by the sharpness of the observed resonance peaks. A good
estimate of dfe and dfr can be obtained by measuring several
times the resonance frequencies and finding the standard

deviation of the results from their calculated average.

‘Table 2 presents the relative error in discontinuity
impedance as a function of absolute impedance values for
several standard deviations for the worst case where df?*dfr.

The same results are presented gtaphically_in Figure 27, -

‘From equation (3.17) and Figure 27 we can conclude

the following: “xe




TABLE 2

Relative Error in (Normalized) Discontinuity Impedance as a

Function of Absolute (Normalized) Impedance.

{Stycast Ring, lring“= 59.124 cm, Eeff = 7.60)
Zi . : dZ./Z.‘(normalized) in % for d4df =.-df~ =
. . - 1 : _ e. B xr .
(Normalized) 30Kz ‘ 40Kz 50KHz |  60KHz
1 ' ~0.205 0.273 . 0.342 "0.410
.1 . 1.035 '1.380 . 1.725 2.070
.01 10.249 13.666 17.082 20.499
- .001 102.483 136.644 170.805 204.966
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‘over a maximum range of system parameters.

1) The accuracy of the discontinuity impedance
values 1is directly proportional to_the‘accuraoy
with which the resonance freqnencies»can be

" 1located -and measured.

'2) -For.a given accuracy in frequenoy méasureménts,,
_the -obtained impedance. value is most accurate
'if the absolute value of the normalized impe-

‘dance is close to unity.

3)  All . errors affecting the measurement of f and
fr in the same way have practically no effectA
on the accuracy of Zi' Thus the ‘iufluence of
the capacitive launcher on the measurement of’
the discontinuity impedances can be‘néglected
as .long as the coupling gap is the.same for all

‘measurements.

5. ‘CONCLUSION

In this report, several selected MIC-structures. have
been analysed using models with magnetic sidewalls for'the

open planar configurations. The reason for this was to create

’reasonable boundary conditions in order to make ¢losed form

‘solutions for these problems possible. As a result, simple

formulae have been obtained for the external loading factor

of cavities and triangular planar resonators. coupled to micro-

‘strip and waveguide in several ways, and for equivalent circuit

parameters of some transverse microstrip discontinuities.

.Hole coupling between cav1t1es and mlcrostrlp as well as

scattering on mlcr0qtr1p dlscontlnultles has been verified
experimentally, and good agreement has been observed between-
theory and measurement for a wide range of parameters.. When
necessary, corrective expressions have been derived to better’

describe the physical situation in extreme cases in order to

-ensure that the theoretical formulae are appropriate for design
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