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“PREFACE

The ﬁrst pa.rt entlt].ed o |

hlB. ﬁna.l report- is m two pa.rts.

'A, J o:.ntSource a.nd Channel Encodmg Schemen descrlbes a techm.que,.‘;i'_

fusiﬁg nega.cycl:.c codes whlch not only- reduces the redunda,ncy' of the - B
J\source but also ha.s error detectlon ca.pab:.llty'. 'The second pa,rt
'entltled "Some Results on Negacycllc Codes" 'glves results wh:.ch are

' 'parallel to certaln known results for cycllc codes a,nd Whlch are useful’

for da.ta.-compres sion. ..
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g 1 INTRODUCTION

In the conventlonal commumca.tlons system model redundancy

: exta.nt 1n the source output 1s reduced by source encod1ng, the" encoded
o data. be1ng further encoded 1n order to increase channel noise lmmunlty,

f,ﬁfsource -encoded data be1ng more vulnerable to channel noise thanl the _

or1g1na1 source data.. " '

: »--F':rom the n01se1ess cod1ng theorem (Shannon 1948 Ash 1965), 1t

‘1s knOWn that for any source codlng scheme the average length of an =
: _encoded sequence can. be no less than the source entropy divided by the '
- capac1ty of the. alpha.bet. : Source codlng schemes which’ approached thls
o 1ower bound were suggested by Shannon (1948) and Fano (1961) and an
e optlmal encodmg procedure developed by Huffman (1952)

Wlth the development of rate dlstortlon theory (Berger 197 1), Lt

o »,».«became clear that whlle entropy descrlbes the rate at whlch the source

»jfproduces dlstortlonless ("nmseless“) 1nformatlon, the rate dlstortlon
o functlon R(EID) descr1bes the rate of’ mformatlon productlon by the source; .‘
subJect to the cond1tion that all distortion be - constrained by a predeflned

’ ’value D. Clearly, as D increases, R(D) decreases.

* Inthis context, Shannon (1959) first. suggested the use of group

codes for source encodlng, and Gobl:.ck. (1962) proved the existence. of group '

cocles that perform arb1trar11y c105e to the R(D) curve.. J'elinek: (1969)
o | establlshed a s1m11ar existence theorem for tree codes. Subsequently, many

'lalgorlthms for sequent1a1 source encodlng wetre developed (J'e11ne1<: and Anderson )

| -}.19 71 ‘Anderson and J'e11ne1< 1973 Anderson 1974).

»IlAnother approach has. been to encode the source run lengths

1:7“(M011nder 1974 Meyr Rosdolsk:y and I—Iuang 1974), thlS has been attempted

4 in. many dlfferent Ways. Other methods 1nc1ude enumeratlve source encod1ng

(Cover 1973),~ time-encoding schemes (Lynch 1974) and sliding-block source

coding, to name only a few, 'A number of source encoding techniques are




“mentioned by Wilkins and Wintz (1971), in Section I of their .paper.

Hellman (1975) has suggested _]01ntly encodlng both the source
and the channel using a convolutwnal encoder and a sequential decoder. '

In this paper, another type of joint source and channel encoding is

presented based on a variation of syndrome encodlng. Using'negacyclic

codes. (Berlekamp 1968), a Wpe of block code, 1t results 1n data cornpressmn a57

:well as an error detectlon capablhty. While it 1s demonstrated that this

\ can be- ach1eved W1thout distortion, assummg that the source has the o
‘proper probab111ty d1st:r1but1on, it is also shown that if distortion 1s allowed
' both data compression and error detection can be achieved for other source.

' probability'distributions. Also, exp;‘es sions for the average length of the

encoded words, as well as. the average dlstortlon per digit,. for the cases
where d1stort10n is allowed, are derived. » V
Bef,o re developlng the main Ldeas, an 1ntroduct10n to negacycllc

codes is in order, thls is accompllshed in the next sectlon.

NEGACYCLIC CODES

Here we glve a brief treatment of the material neces sary for the -

developrnent of the coding tech.nique under consideration.

- Liet us. cons1der a source the output of Wthh is over the set

lS—{O + 1, +2.,...+t- E'--"}wherep is prime and > 2. Under

- modulo -p operat1ons, S is the same as GF(p). .

' With_reference to a2 seqQuence a aiaz. e @ n-i over S, the Lee
we1ght of a, is given by ] a, ] The Lee welght of the sequence is given
by s a|. . o

. _ it ) ) - :

i=o . " : : : r :
o . : » o ' _p -1,
A negacyclic code V over S with block length n = 5 1s the set

of all multiples of a gene rator polynomial which divides 1 +x" over S.

‘Here n is a nonmultiple of pand r is a positive integer. - The code can

be designed to correct any one error-pattern of Lee weight tor less.

From this point on, it will be understood that Liee weight is meant whenever




- Now B can be treated as the surn of m+1 n- tuples B

" Then we have

weight is mentioned. Hereafter we mean by an error-pattern,. one of -

'welght t.

Correspondmg to each di st1nct error-pattern the re is a dlstlnct

'(rt) e tuple over S ‘which is called an error- syndrome. We also note
 that each error—pattern can be treated as an n—tuple, over S W1th a Lee :

: ,..we1ght of t or less."

The 1deas of the 1ast paragraph forxn the bas1s of the encodlng

- scheme to be d1scussed next

3. ENCODING SCHEME WITHOUT DISTORTION

‘ W1th reference to V, 1et us partltlon the source output into blocks
of n d1g1ts. Let B be such a block with Lee weight w., -~ ‘
"If'w =0, then B can be replaced with the (rt) - tuple of all zeros.
_ Ifw £0, then 1et us write o

W mt+B,-0<BSto

1,
that the (m+1) -by-n matrlx B, in wh1ch the rows are B

m+1

1 Bz,oooB +1,

- satisfies the following properties : (1) every row of B has a Lee welght '

of t except the (m+1)st l’OW which may have a Lee we1ght <t. (11)

Every column of (B has at most 2 nonzero entries. 111) The Lee Weight ofi

every. colu:mn of (B is t or less., (1v) If a column has two nonzero entries,

then they are adjacent and are of the same sign.

- For example let us consider the case ofn = 12 and § ={0, + 1, iZ}.

Suppose B =0122

~ Let o-_l-represent the syndrome of Bi' Then the block B can be

BZ.,‘-_-J.B- ] SuCh.



_replaced wii':h‘the'encoded sequence = gy 5'2 cse g 3

;-the_avera.ge length L of o is g1ven by

ll.

H

o)
il

w We-._'note ~that f".'; Q

- L

,’\-44 N

m+ { which, .we .not_e-,-

.

. 1s (m+1)rt d1g1ts 1ong.

We tra.nsrrnt G- over the channel At the other end we rece1ve, S
[‘ .

| .s'_ay',,'_v ‘ 'g' cen & 1” Correspondlng to each syndrome 0'1 , We. get

"Pattern B'. and for:rn the matrlx (B' in wh1ch the 11:11 row is B' ." o

satlsfles a.ll of the propert1es satlsﬁed by@ then we add the .

rows ‘of Bt to bta1n whmh,we dec1de 1s the sequence put out by the source. ,

o ~-I£ not elther we ask for a: retransm1ss1on or Just abandon the block.

BRSNS 'AVERAGE LENGTH OF ?r'HE‘ENcob'ED“s'EQﬁENCEl

" DISTORTIONLESS CASE: . _
. Liet. P represent the probablllty that B ha.s Lee we1ght w. Then,

Q]:.rt +Q Zrt +Q . 3rt+...' +Q . nrt »

rt (Q +2Q +3Q + +nQ ), .

2. Pt .fPt+2 +~.'".' V*PZt?I‘}:

2 (n-i)t+1+"'+1° e

n = — = (P—-—L(1+p+p +...+p )
" 2 r-1 . ‘ -

we g‘eti : :
- ) r.(Q1+2‘ Q2+3 Q3 +eoot nQn)

n r-1i

1+p+p2+ ves P




computed.

._n

—

L et R
= T aiy (3.1.2)

- previous discussion , -> L should be unity or less for A < 0.666 ; this

-5 -

leen the dlstrlbutlonQ {Q QZ’ eee Q. } the: ratlo L can be
‘ o

For example 1:E Q Q )\ 1,, we get :

o 7',

L *  — (

r-1 a

SR

-
S

a-‘"\_in(i-k);.‘ )

Here we note that 1;1— is very near the right hand side quanfity,

.. - . n,, . : . : . .
since \ :is usually << 1, so that we can write

If the dlstrlbutlon Q is approprlate then “'L'- will be ¢ 1.

) __For 1nstance, in the case of the dlstrlbutlon Q Q )\1 _1, f

Flgure 1 is a. graph o:E equa.tlon (3. 1. 2) for the (n = 12 k = 8) Z-error-
correctmg negacychc code over S, for the source probability dlstrlbutmn

deflned by equation (3 1 1) For this code, r =t =2, and hence from the

~

n
is borne out in the figure.




=2

Fig. 1, Graph of the normalized average length of an encoded sequence for the

distortionless case,.
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'to be- Ty V where T

- 7 -

: Henceforth, for purposes of comparison, all examples..a.nd graphs

" will make use of the aforementioned negacyclic code.

The ca.se.'of'_-I_; = 1 is of particular inter'est. As already seen, '

!3

- .every t1me®' does not satlsfy- all of those propertles attributed to (B
C we have detected an error s1tuat10n. Thus the cocnng scheme ha.s an error- RS

— detectlng capablllty'. In v1ew of th1s, ‘the condltlon ;_II': = 1 1mp11es tha.t

,there has been some da.ta. compress1on, since otherw1se N can not pOSS].bly'

be equal to n. ‘
- Thus we ha.ve a cocnng scheme which, for approprlate dlstrlbutlons
Q, ha.s both- error-—detectmn and data-compression Ca.pa.blllt].eS. It is wo;'th "
»repea.tmg tha.t the scheme does not introduce distortion. . |
On the other ha.nd, 1f the dlstrlbutlon Q is’ such that L WOTYKS out
to be > n, we can 1ntroduce distortion .- to 1oWer the value of L down to n.‘

ThlS last a.spect w1]_1 be dlscussed next.

4. ENCODING m'qeﬁ]sisfomm

' 4.1 SCHEMES FOR THE INTRODUCTION OF DISTORTION

Distottion can be introduced in many _wa.'.y-s..
(a) Fcr_finsta.nce, the source output can be clipped so that Vthe
;'es_ulting sequence is over the set S.o = {0, _-I_-_»}i, +2,000 + to} where
t < te .If t =t-1, the average distortion per digit can be easily proved
is the probability that the source puts out-a +t or -t. e

t
'I'h1s scheme does not a.pprecnably' lower L unless there are frequently' t

or more + t's per block.

For exa.mple, :Eor n =12, S = {O + i, + 2} . (t 2), ifB = ‘
1 -2 2 11 O 0.2 1 1 1 then cllpplng to t =t-1 = | produces the sequence
= O 1 -.1 1 1 1 0 o ..1 L 1 1 . with a d1stort10n of 3, d1str1buted over the

sequence-:




(b) From the polnt of view of reduc1ng L an improvement over
- .the prev1ous scheme (a) would be to "cllp" the welght of the block put out

- ::,‘_by the source to some value, say, W. , For example let us conslder the

:ﬁ:ﬂ",l"'case of n = 12 and t = Z Max1mally the block. we1ght is 24 Suppose we set

;f8. Suppose B = 0 1

'-wthe sequence wh1ch would be encoded and transmltted. » 'I'he d1stortlon m A

(c) From the pomt .of v1ew“of dlstmhutmg the dlstortlon over the
- bloclc, 1t 1s desn:able to. comblne (2) and (b) « For the example con51dered
_ (a) and (b), this would transfor:m B 0 1 2 2 1 1 0 0 2 1 1 1 1nto '. »
| B -*0 1-1.1 1 10 0-1 1 1 0, for t : =1 andW 8. 'I’he d1stort10n in this case .
'would be 4 dlstrlbuted as follows :" 1 unit of dlstortlon in. the thlrd fourth
' _'mnth and twelfth d1g1ts of B. o

| We may note that for the examples cons1dered both (b) and (c) glve:

L fthe sSame total d1stort1on of 4 whlle (a) gJ.ves a dlstortlon of 3.

" '4: 2 AVERAGE LENGTI—I L OF TI-IE ENCODED SEQUENCE

The average length L of o in the case of (a) is glven by

E ) n[wr +21r2+3 1r3+...+(t .-1) 1TO 1+t( o+1+...+1r)] .
a < = — — — >tk .

e Where <x > means the "h1gher" mteger if x is. not an 1nteger and

'<x> = X if x‘ is an1nteger.

4.,3;‘ AVERAGE'LENGTH E’ oF THEENCODED SEQUENCE: ‘j‘-;:{

"The average length L of o in the case of (b) and (c) is glven by _,

'L_(": '=' rt(Q +ZQ. +3Q, +...+\)Q)

Where v 1s..g1ven by‘ |

» _Y‘f>
voTosp?



: .'the potentlal d1stort10n, nc

' '_7.4 4 TOTAL AVERAGE DISTORTION FOR CASES (a), (b) AND (c) .

.bynw

-9 -
: _Fcr’the 'distribution Q.1 = Qi.?&k— 19"'We get
' E_C. . r ' 1 . 1-)\,\)

= : : ( Y Vv ). (4.3.1)
s 2 a1 faxn - : e
B 1+p+p +...+p - M 12 ST S

Flgure 2 is a graph of equatlon (4 3. 1) for the source probab111ty' l 5

dlstrlbutlon deflned by equatlon (3 i.1), w:.th W as parameter. _

It can be read11y observed that as W decreases, thus 1ncreas:.ng ‘
I S o

decreases.

The decrease in the average 1ength is g1ven by'

L_,-.E':,rt[g 1(\,+1)+Q 2(\,+2)+...+Q n] ‘(4;-.3-2)'

F1gure 3is a graph of equation (4.3.2) (norma11zed by d1v1s1on by n)

with parameter W, for the source probab111ty dlstr1but10n defined by equation

BRNERS 2RO

j As expected as W decreases, the dlfference in lengths increases.

Let. 11-1 represent the probab111ty that the source puts out + ior -1,

Where 1 belongs to S.

L

Then in scheme (a) the total average distortion per block is given

- "'2 ses
£ (t -t ) +n1rt 1(t -t -1) +n1;c_2(t £ )+ +n1rt +1(1) so that the average

. _d1stort10n D per d1g1t is g1ven by

D

e 1 . . . '.. L - \N,

D, = (t t ) ta, g (t-1-t ) + w, _p(t=2-t ot + Trto+1(to+1to)
=»11'(6)+1r 1(6 1)+1rt2(6 2)+...+1rt +1 (1)

or

Doz  aye '

a “tgtl’-(l.{)-JF" Tt +2(2)+ “t +3( Nteee + . m (8)s

where § = t-t .

, o




Lo - - 10 ._.A

2:p
W24
W=20 ‘
. W=16 .'
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W= 8
0 N
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Fig. 2. Graph of the normalized average length of an encoded sequence for

the case with distortion, with W as parameter.

]
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. W=16

. W=20 -
o

| W=24'

o . . a5’ . .. 10

Fig. 3.  Graph of the differences in normalized average lengths between the
' cases with and without distortion, with W as parameter.



12
o ‘T:'hevéve‘rage .Wei.gh_t' w per blo-Cchi"S given by

mgR) Fw () +own) 4o twa)

In the next sectlon, agam for the dlstormonless case, an.
expres s1on for the a.verage length of an encoded seq,uence is derlved for

| another type of source probablllty dlstrlbutlon.

”’- '“,.5-‘.1:'~"~‘AVERAGE LENGTH‘ E ‘of ‘c‘r_:

”:-'s as defmed in sect1on 4 4 then the average Welght W Per -‘ -

blOCK B 13‘ glven bY (4 4 1), 1 e. . W

B ExPre"s sing’”.

W -. Nt + P 0'< P o SN ;’ i R .

;we see that B has N+1 rows s0 that the average 1ength L of o is glven by

o L (N+1) rt

2” (1 +p+p +...+p )_-= H+pHp +eeet D’ )y

' we-can- also erte

toecottm) > vt o e



- ?_so that

Given a distribution

~we can.compute ‘L . =

- For inétance,. if ™

w =

-

g

(
1 )\t+1 -

L.

or _

n)\"f | (
¥

RIER +.1) -

_' In der1v1ng thls we note that

1)\
1)\

To T T
‘As an example let us E:ohsider the case of n = 12, r =2, t=2, \ =
"Then_E' = 16. as against n

Figure 4 is a gréph of equation (5.1) (no'rmalized‘ by division by n)

with figure 1.

nk 4 -ab oo

-
o

{ﬂ'o, ™

1

;Xl‘, _thén—

<(I+p+p +...+Rr. ) .

= 12.

~ for the new source prob'ability distribution.

, ... LA }s

(5.1)

_This shoﬁld‘ be contrasigd:‘ ’




Q3

N S A — A
Y 0.5 ' 1.0

Fig, 4., Graph of the normalized average length of an encoded sequence for the
distortionless case.




o constralnts are be1ng placed on@ and hence on @

6. CONCLUDING REMARKS

.

After a short descr1ptlon of negacycllc codes s two var1atlons
'of a scheme for Jomt source and channel encod1ng were presented .
f Vthe flrst was dlstortlonless and always reduced source redundancy,

SN prov1d1ng the source stat1st1cs were approprlate. In the second method

d1stortlon was perm1tted and th1s allowed the constralnts on. the source
Sta.tLStLCS to be loosened. \ Both cases resulted Ln an error-detectxon

CapabllltY. e

» It 1s s clear: from the dlscussmn that the scheme could easﬂy be
modified such that the decompos:.tlon of a. source n-tuple produces an RECTRN
"_orthogonal matrlxﬁ s orthogonal in the sense that no column 01‘» row ofiB ‘ ouch
contain more than one non-zero entry.‘ Consequently, on: the average, the ‘
1nu1nber of rows of (B -and hence, the length of the encoded sequence, o R

w0uld 1ncrease but s0 Would the error-detectlon capab111ty, s1nce more

For ex:ample

‘then for B = (1‘ 1,7_,

1f we cons1der the usual negacycllc code of length 12. :
52 S we have S
0 100000000.0
0-20:00000000
0 2' 0000000

[y
o
o
o
o
o
Hoo¢coooo

1f no d1stortlon is- permltted. : Thus the number of rows. of 8 is equal (
o to the. number of nonzero elements Ln‘B. We further note that each row _
contains exactly one nonzero entry, and each. column, at most one ’

- nonzero entry.
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_SOME RESULTS ON NEGACYCLIC CODES =




L memosaefm“m“mmi; 7

| In thls part we- present a. few results concermng negacycllc codes

:\"rv(Berlekamp 1968) Some of these results ‘have a bearlng on the. problem .

':of data-compressmn. c

Smce the metrlc used 1n negacycllc codes 1s the Lee metrlc e

."‘_(Berlekamp 1968) we begm the dlscuss:.on W1th thls metr:.c .

The-\'.LEE WEIGHT ofa sequence a‘o a1 ‘ar

where._p 1s an odd prn'ne, is the sum of the Lee welghts of aqlls‘.'mf\“

'Lee welght of a1 is al_ 1f 0- s‘ a s -%1 and p._ a. 1f-L < al sp 1

o From the definltlon of Lee welght 1t is clear that we. can treat the R

-'negacycllc code as belng over ,d { P-i -LS .- 1 0 1 2.,. oo

, [

o P_ } 1nstead of be1ng over GF(P)

o By the LEE DISTANCE between two n—tuples a0 ai' .ea _1 d

both over GF(p), 1s meant the Lee welght of the n-tuple

B To mdmate the su:uatlons where the Lee metrlc is more relevant :_ :
: .l'.than the: Hammlng metrlc, we mention the follow1ng known po1nts . v
' (Berlekamp 1968) whlle the Hamnung metrlc is well smted to ortho gonald‘ .
" modulatlon schemes, the Lee ‘metric is well sulted to phase-modulatlon
I schemes. _ For channels usmg amphtude modulatlon, both the Hammmg
and Lee metr:.cs are not flawless. However, 1f the alphabet size is large, o
the Lee metr:.c prov1des a better approxu'natron than the Hamrnlng metr:.c.;”:_' o
“Generally' Speaklng, wherever the magn:.tude of the error 1s to be taken o
1nto account the Lee metrlc is a better ch01ce than the Hamnnng metr:.c.I S
The codes wh1ch are best smted to the Lee metr:.c are the nega- o
| cy‘cl:.c codes 1nvented by Berlekamp. ‘ L o
A NEGACYCLIC CODE of block length n and over GF(p), where p o

is'an odd prlme and n is-a nonmultlple of p, is the set of all of the



‘lee cyc11c codes negacycllc codes can. also be used for DATA

:.'.':COMPRESSION 1n many ways. One such method follows (Berger 1971)

::-'.Wlth reference to the source-—output Wh1ch is over GF(p), a. negacycllc

code of block length n 1s chosen and the standard array. formed. : We

~_"note that the standard array 1s notlnng but an arrangement of the code

the: ~-.block and th;e code word detennlned 1s the Ieast poss1b1e.: Then the k

vnformatlon d1g1ts correspondlng to tl'us code word are determmed and the L

-d1g1t block replaced w:.th thls k-—tuple. \ It 1s this K-tuple that is. fmally

. :tra_nsrmtted. The resultlng compress1on rat1o C 1s glven by



Qe T T e

“and .the average 'd'istortiorl.' D per digit"is'gi-\'ren' by . k'

: 'From the'prekus d1scus slon 1t 1s clear that the code has to be 8O-

f;_chosen that C 1s as h1gh as pOSSJ.ble for a g1ven D or D 1s as low as’ v R

-l,-.-'rposs1b1e for a glven C.

Now we come to a. d1scusslon of the error-correctlng capablllty

: o£ negacycllc codes (Berlekamp 1968) The most 1mportant result in th1s |

regard is contamed in. the followmg known g ‘. .

W1th o,‘ asAa prlrnltlve root of x ‘ —1, 1f the roots '

2 -
: t 1, where t 5 ‘Ez'—j" then the code can correct any- s1ng1e 2

s f'_"ierror-pattern of Lee welghtt or 1ess. ‘ e
- Recalllng the rule of constructlon for BCI-I codes We see a parallel

_ ’between that rule and Theorem 1. I—Iowever, there 1s a maJor dlfference f :
o in that the condltlon of t = 'Pi“i does not ex1st in the case of BCH codes. o

The Theorem 1 can clearly be used to obtam the generator poly-

?fnormalsg(x) of negacycllc codes. In thJ.s connect:.on we note that a. 1s a
'root of x. + 1 s1nce 1t has order Zn. Thus to obtam g(x), we ha.ve to

examlne the 1rreduc1b1e factors of x +1 whereas in the case of cyc11c " o

_,g(x) d1v1des x ‘-1 [R e S T
By now 1t should have becomerclear that there 1s 2 great deal of L
_ U s11n11ar1ty between Cy‘CllC codes and negacycllc codes. In fact many of the
R technlques obtamed for CYC].].C codes can eas11y be used with appropr1ate

g mod1f1catlon, for negacycllc codes. As an example of this situation we may




o :
v +vx+vx+... +v

Sat-

. mention the Bose-Caldwell tech.nique for synchronizetion in the case of

»CYC].J.C codes (Van Chinh 1974)

A ‘»An 0pen problem in the case of negacycllc codes 1s how to obtaln

_ S maJorlty' loglc-—decodable codes Whlch are- negacycllc or derlved from
‘.A;_’f,nega.cycllc codes (Van Chlnh 1974) We Wl].l not dlSC'l].SS thls aspect '

except to glve for the sake of mterest, the followmg example

1.et us cons1der the negacycllc code Whlch has p = 5 and ro= 2 so that

4 —i L- 12 and t _P;L 2 One poss1b1e g(x) for th:Ls code 1s .

3

' ‘.g(x) 2_'- 2x+3) (x + 2) —x4 - Zx +x+ 1

Now let us. conslder the (11 4) shortened subset of the negacycllc code,

Vgenerated by ‘

(x) : (x) (1-x+ Zx ) -:r..zi--x5 +x6 +»2:.:7.‘ |

| ' 'Every Word V(x) of th;Ls subset code can be expressed in the form

2‘+C3x )

—'V"V'i XZ eo e Viox ’

l'f

4where C(x) = C s C x + C xz + C x3 is the 1nformatlon polynom1a1°

~0 1 ~ 2 3
Comparlng the coeff1c1ents of the product gl(x) C(x) Wlth those of

10',_: and after suitable mampulatlon,

0 FYAFIVE Free TV *
- we get ' ‘ -
f'ZCO = 2%, L
_‘,_l.;'ZCo =- Z.v2 -2v4
JZCO = Zv +2v6, _
2Cq. = "2"5 " Vot

‘= 2 .
ZCO v7+2v8+ v9

Since these relatlons are orthogonal any error-pattern of Lee weight 2

or less will affect at most 2 out of 5 relations. Hence we conclude that




N . s < e LT . - . . . -, IR -

‘d1s cus swn,

.~'f_°para.11el to those known for cycl:.c codes. '

ThJ.s number 1s a.lso ca.lled the PERIOD of the negacycllc cla.ss.' I-Iere we

.1;”' reca.ll tha.t a. cycllc class ha.s perlod nora d1V1sor of n. .

Welght code in the sense- tha.t all of the nonzero Words have the same

o -22 ',-! .

‘the subset shortened code 1s 1 step maJorlty—loglc -decodable.

At tlns po1nt we der1ve a. result which W111 be requ1red 1n la.ter »I

. regardmg the number of n-tuples s over ,J hav1ng any Lee

"Lee Welght 1 From the preced1ng d1scus sioni 1t is clea.r tha.t the nu:nber

N depends on the number of Ways in Wh1ch w can be expressed as the

sum of nurnbers 1,2 3,. <o p- 1 Slnce ®w can be eXpres sed as the sum of

o J numbers in ( mJ ) Ways we conclude the folloW1ng

R PARALLE RESULTS

Next We present a few results, for negacycllc codes, th.ch are - -

Parallel to the concept of cycl:Lc cla.s ses in the case of cycllc codes,"\_.j |

. we defme a NEGACYCLIC CLASS as the set of a Code ‘word and all of the ) .
L -d1st1nct code Words obta.1ned by negacychcally' shlftlng th1s code Word. |

: ".'The nurnber of code Words in a negacycllc class is 2n or a d1V1sor of Zn.

Slnce the max1mal-length cyc11c code of block. length n. 1s a consta.nt' '

n+1i

: Ham;rmng Welght of = 1t seems reasona.ble to expect a similar result '

in the case of negacycllc codes. It is known that thls is 1ndeed the case.



S I—Iere we sta.te, W1thout proof the followmg k_nown (Berleka.mp 1968)

;::‘have block. 1ength 2 -1 and are mngle-error-correctmg,' are perfect

THEOREM 4 The negacychc code V w1th -n:

We'note. tha.t thlS V ha.s kqt* n T

I-I_ re‘we:also reca]l that a.‘ code w1th error-correcmng ca.pa.b111ty L

o B 1s sa.:.d to be PERFEGT 1f the max1mum coset - 1ea.der We1ght 1s t. r | e
The code is s a.nd to be QUASI-PERFECT if the maxlmum cos et-lea.der- N R
o Welght 1s £ 1. B e AR

From ‘I'heorem 4 1t follows that V has one coset Wlth the 1ea.der .



_ ‘,:of all zeros and B coset Wl‘(:h leader of’ welght 1 Usmg 'thlS fact and
‘fthe fact that k.

=n -1 in (1) and (2), we obtaln the follow1ng

THEOREM 5 The negacycllc code V thh n = ; = 5 . . and
2__1__)_1111 L Words ofwelght 3. ' DRI e o

':"_We begln the proofby notmg that V is over J:_‘ {"—1‘,_0,. 1}'} so._ -

W

words of Welght 3 has exactly 3 words of the form 1 + av x + a_ =% .‘ S
' :ij From ’I'heorem 4 we: see that V has one coset Wl’ch the 1eader N

all of the p k- 3 cosets. Smce V has mlmmum welght 3, all of the »

are contamed in the cosets Wlth 1ea.ders of welght 1 ThlS means, 51nce
1e:.‘negacyc11c and a]l of the n—tuples of welght 1 have been used as coset )

: 1eaders, that the nurnber of n-tuples of welght 2. per coset with 1eader o B
of welght 1 is. gwen bY _@ﬂz::_i_) = n- 1. We repeat th:.s fact in the followmg

e I-'______EMMA.. 2 InV of Theorem 5 every coset W1th 1eader of welght 1
o A has n-—i n—tuples of we1ght 2 _ ‘ C : > . -
- Now- 1et us cons1der, Wlthout 1osmg generallty, the coset with 1eader

e "xo_;ﬂ Th1s- leader can produce an n-tuple of weight 2 only with a code word



~Lemma 1 we now get the follow1ng '

o conta1n1ng words of welght 3.

‘ ‘welght 3 produces a negacy'cllc class with 2n words. Comblnlng thJ.S fact

of Theorem 5 by- 1 b1t is quas1-perfect .

‘ Accord1ng to Lemma 4, V! has __(g_il(n_) words of weight 3. Since all

w25 -

of the form 1+ a~V xv + an . This. means, in view of Liemma 2, that

oV has n-1 Words of the form 1 + avx + awx ~+ Therefore, using

LEMMA 3 | V. of TheoremShas n-1 nega;cy-clic classes—:‘

.r‘ - ‘-.

Slnce 3 does not d1V1de n -" %— A, 1t follows that a word of -

- with Lemma 3 we get Theorem 5.

Thls concludes the proof of Theorem 5.
It is known that the shortened-by--l-blt I-Iammlng code is: quam-

perfect._ Now we: prove the follow1ng parallel

"-'TI—IEOREM 6:. The (n 1 x-1) code V' obtalned by' shortemng V C

Slnce p-3, every word of V W1th we1ght 3 has the form au x + aV x +

as X ;.‘, where C a and a_are taKen from { 1 1} A.s already' seen.
WS a v W .

a word llke thls produces a negacy‘cllc class w1th 2n words. This means

that every negacy'cllc class with words of welght 3,inV, has 6 words

end1ng with a nonzero d1g1t. Using this fact w1th Le:mrna 3 we see that

| v h-a .6(11—-1-)- 2(n-1) words of welght 3 end1ng in a nonzero d1g1t.

.Thls leads, in. view of Theorem 5 to

2 -
LEMMA 4 V!‘ of Theorem: 6 has _&(n_l - z(n 1) 2(n- 31.n -3
: words of welght 3. ' ' A - : |
Now let us con31der the cOsets of V' S1nce V' has t= i, we have

1 coset W1th the leader of all zeros and- 2(n-1) cosets w1th leaders of
we1ght i, account:.ng for 1+2(n 1) 1+2n-2 = 2n=1 cosets.' Th1s means

that we have y-et to account for 3 - (2n=-1) = (2n+1) - (2n- 1) = 2 cosets..

of the 2(n~1) coset leaders of we1g-ht 1 have been used, the number of

words of weight 2, in the cosets of V!, which have already occurred is



3 = Z(n-_i)(n 3) But the total number of (n-i)—tuples of

Therefore we: have the follow:.ng

A leader oflf‘welght 2’ ca.n-'..procluce a word of wezght 2: only with those
“of V' Wha.ch have welght 3 or 4. oy

' :..‘.'Wlthout losmg general:.ty 1et us cons;.der the (n 1) - tuple

" )\2 1 1 0 0 e 0. A Word of V' : whlch has a dlstance of 2 from

)\2 has to be ofthe forrn 1 -1xxx ceo X or ) 1xxx.;. x, Where

‘ only one x 1s nonzero.. Slnce the dlstance between these tWo forms has

,A.f‘._’_ito be at 1east~3 we conclude the followmg '5

Wlth respect to .V' o‘f Theorem 6 a. 1eader of

;\;v'th odewords‘of “i’ght3»’,1[5,{:1nos.’c72".words“o‘f".'

Next We ha.ve to 1nVest1ga.te the number of (n-i) tuples, of Welght 2 L

:Ztha.t can exz.st a.t most in a coset Wlth leader of Welght 2 beca.use of code

>:.._{.5':‘fl_words of we1ght 4 in V‘ ThJ.s number ‘is the same as the nu.tnber g f . .

\) tuples pos; s1b1e such tha.t all of them have Lee Welght 4, have the forrn_ j B
7 ._of sa.yr, 1 1 X x X .. '. XWlth only 2 x's nonzero the mutual d1sta.nce
be1ng at least 3. For \) = 3 §3j isi Clearly zero. For V 4 §4 ~‘1

.""f_‘i-jsmce We can choose 1 1 1 1 1 1' -1 1 1 1 EE 1or 1 1 —1 -1;

r_W1thout los:.ng genera.hty. For \_)«-5 §5 |

-.:Suppose we choose 1 1 Li 3y
'1__1-101and110-1‘-1,or11110"”‘

mce We can have 1 1 1 1 0

1 1 - 1 0 - 1 and 1 1 0 - 1 .. Suppose we choose the former three Words ,l
o ; again. mthout 1os1ng generallty. For V = 6 561_ 3, since we cannot

'a.dd one: more Word. For v=1, N, = 4, since we can have i1 1 1 000,

'l .
'11,-1010.0,110—1—1.00 1100011 or1111000 11—-10100

]
|




n-i
n-‘if-r’f‘j"




il

is quasi 'per‘fec_t, - Now We prove the follovvlng parallel

(ni. -———- ok, =n, - 1{:"1) negacYcli’c code with ¢ = 1 hy 1 diglt and V

S R

We beg1n the proof by not1ng that'V can-correct any. error-pattern L
.-":'_:,Whlch-;:. on de1nter1eav1ng, reduces to a. slngle error, of Welght 1 per '
o ::code. _ Th_ts means that V can correct 1 error-pattern of Welght 0

| ".AZn =2n +Zn error—patterns of Welght 1 and 2n 2n 4n n, error-

L2 1 2 12

e v__";-_patterns of Welght Z Slnce 1 + Zn + 4n,n —’1+2(n +n2)+4n n2 = ‘1 + e

1z-.

=p " Zp " and since.

‘ —1': we conclude thatV' 1s quaslperfect.

Thls concludes the proof. of Theorem T
W:Lth reference to (1) and (2), Theorem 7 1mp11es the followmg

| -’-‘.:':.COROLLARY 4 For the code V of Theorem 7,

e _+n r,-ry o T om0 4 ndn, L0 L o

C: — and D'=r — | —— S

{_ From the eXpresslon for D 1n Corollary 4 We see, Wlth

L treference to Corollary- 2, that the average dlstortlon per dlglt of the

;1nterleaved code is. less than the su:n of the d:.stortmns of: the component

:'..“.We prove the follovvlng

THEOREM 8§: If v, [ is the code obtained by Vsh:ortening the

ST 2"

Now we- con51der 1nterleav1ng two codes of Theorem 6. ‘ Spec-iﬁcally__




code w1th t=1 by 1 d1g1t where P = 3 then for the (n=n,+n

interlea.ved code C-

CUN,, =20 Slnce V ca.n correct any error—pa.ttern Whlch on de- ‘»
,‘~1nter1ea.V1ng, reduces to coset leaders of V

SON=1, NS Z(n -1+n -1), = 2(n) ~1) Z(n -1) +z +z N““-Z(n -1) +2(n -1),

Lol

~ This completes.the proof of Theorem 8.

B the code obta.lned by shortenlng the ( n, =R"':-1" , K = n. ) nega.cycllc o

2. 2. fa”

L} 2,1< k1+k)

n1+n2'3 and B B Ry E1E

_z)

(Zn +1) (Zn +1) (n tn

2

_' ._.'ex_pressmn for D We proceed 1n the followmg wa.y.(

Deﬁmng N to be the number of cosets ofV W1th 1ea.ders of

we1ght _], i=1, 2 _we see from Theorem 6 that N, 0 = 1 N; l:_ Z(n 1), |

i o
L a.nd VZ’ 11: fo]lows tha.t

Q.= 3.
' :‘2, where N 1s the nu:mber of cosets, of V w1th leaders of we1ght"

(0) (1) +(1) Z(n 1+n -1) +(2) [4 +4;(n -1) (n —1)]

g [ 'vz' (513-"2

1) + Z (n ..1) ]\+ (4)(4) R

(n -1 +n2 1.)‘

;_é‘(‘.nfi‘F'indgt.‘.:;?>f+,s.caz- '+'(n1,-1>‘ (-7 4 (P aytbn, < 1T 4+1

T ety p D

Z(n +n -2) +8( -n n2+n1 2+2) +<6~[n1+nz.—~;]"+ 1‘-_.. _

(Zn +1) (Zn +1) (n 4. -2)

(n +n -2) [2-8+6]+8n1n2+16

(Zn +1) (Zn +1) (n +n —2)

8 nin2 + 16

(2n +1) (Zn +1) (n +n 2 ).
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