
/ON THE USE OF NEGACYCLIC CODES 

FOR SOURCE-ENCODING 

a, J.P. Dion 

Dept. of Electrical Engineering 

University of Ottawa, 

Ottawa, Ontario. KI.N 6N5. 

L.- 

FACULTÉ DES SCIENCES ET DE GÉNIE 
FACULTY OF SCIENCE AND ENGINEERING  

IC 

r  UNIVERSITÉ D'OTTAWA 
%47  UNIVERSITY OF OTTAWA 



e'' ,,,t, 
<c.,.q)- 



91 
C654 
S54 
1977 

Indystry Canada 

Library - Queen 

le,%.  1 6 2012 

Industrie Canada 

lue - àueen • 
. 	. 

COMMUNICATIONS CANADA 
• 

ON THE USE OF NEGACYCLIC CODES 
FOR SOURCE-ENCODING/ 

J.P. 'Dion 

Dept. of Electrical Engineering 

University of Ottawa, 
Ottawa, Ontario. K iN 6N5. 

Final report submitted to the Department of Supply  •and 

Services, for the Departm.ent of Communications (CRC) under 

Contract Serial No: OSU4-0162. 

February 1977 



T;)  
L7 e( 

(17 -7 



This final report is in two parts. The first part entitled 

Joint Source and Channel Encoding Schemess d.escribes a technique, 

using negacyclic codes, which not only reduces the redundancy -  of the 

source, but also has error-detection capability. The second part 

entitled 11 Some Results on Negacyclic Codes" gives results which are 

parallel to certain known results for cyclic codes and which are useful 

for data-cornpression 



PART / A JOINT SOURCE AND CH.ANNELL 

EIVCODING SCHEME, . 	 s 



In the conventional communications system model, red-undancy 

extant in the source output is reduced by source encoding, the encoded 

data being further encoded in order to increase channel noise immunity, 

source-encoded data being more v-ulnerable to channel noise thant the 

original source 

From -the noiseless coding theorem (Shannon 1948, Ash 1965), 

is known that for any source coding scheme, the average length of an 

encocièci sequen.ce can be no less than the source entropy divided by the 

capacity of the alphabet. Source coding schemes which approached this 

lower bound were suggested by Shannon (1948) and Fano (1961) and an 

optimal encoding proceciure developed by Huffman (1952) . 

With the development of rate distortion theory (Berger 1971), it 

became clear tha.t, while entropy describes the rate at which the source 

produces distortionless (unoiselessu) information, the rate distortion 

function R(D) describes the rate of information production by the source, 

subject to the condition that all distortion be‘ constrained by a predefined 

value, D. Clearly, as D in.creases, R(D) decreases. 

In this context, Shannon (1959) first suggested the use of group 

codes for source encoding, and Goblick (1962) proved the existence • of group 

codes that perform arbitrarily close to the R(D) curve. Jelinek (1969) 

established a similar existence theorem for tree codes. Subsequently, many 

algorithm.s for sequential source encoding were developed (Telinek and Anderson 

1971, Anderson  and jelinek 1973, Anderson 1974). 

.A.nother approach has been to encode the source run lengths 

(Molinder 1974, Meyr, Rosdolsky and Huang 1974); this has been attempted 

in. many different ways. Other methods include enumerative source encoding 

(Cover 1973), time-encoding schemes (Lynch 1974) and slidin.g-block source 

coding, to name only a few. A number of source encoding techniques are 



mentioned by Wilkins and Wintz (1971), in Section I of their paper. 

Hellman (1975) has suggested jointly encoding both the source 

and the channel using a convolutional encoder and a sequential decoder. 

In this paper, another type of joint source and channel encoding is 

presented, based on a variation of syndrome encoding. "Using negacyclic 

codes (Berlekamp 1968), a type of block code, it results  in data  compression as 

well as an error detection capability. While it is demonstrated that this - 

can be achieved without distortion, assuxning that the source has the 

proper probability distribution, it is also shown that if distortion is allowed, 

both data compression and error detection can be achieved for other source 

probability distributions. Also, expressions  for  the average length of the 

encoded words, as well as the average distortion per digit,. for the cases 

where distortion is allowed, are derived. 

Before developing the main ideas, an introduction to negacyclic 

codes is in order; this is accomplished in the next section. 

2. NEGACYCLIC CODES  

Here we give a brief treatment of the material necessary for the 

development of the coding technique under consideration. 

Let us consider a source the output of which is over the set 

P -1  S = [0, + 1, + 2, 	+ t = 	3 where p is prime and > 2. Under 

modulo -p operations, S is the same as GF(p). 

With reference to a sequence •  a a a. .. a 	over S, the Lee 
o 1 2n-1 

sweight of a. i given by I a. j.  The Lee weight of the sequence is given 
1 n-1 

by E I 
i=o 

P - 1   A negacyclic code V over S with block length n - 	i 2 	s the set 

of all multiples of a generator polynomial which divides  1 + Xn  over S. 

Here n is a nonmultiple of p and r is a positive integer. •  The code can 

be designed to correct any one error-pattern of Lee weight t or less. 

From this point on, it will be understood that Lee weight is meant whenever 



Then we have 

-1 • 0 0 0 0 0 0 0 0 0" 
. 0.0. -1 10  0 0 0 0 0 0 0 
•0.0  01  1 0 0 0 0 0 0 0 
0000010 0 -1000 
00  0 0 0 0 0 0-1 1 0 0 
0.00  0 0 0 0 0 0 0 1 1_ 

3 

weight is mentioned. Hereafter we mean by an error-pattern, one of 

weight t. 

Corresponding to each distinct error-pattern there is a distinct 

(rt) - tuple, over S, which is called an error-syndrome. We also note 

that each error-pattern can be treated as an n-tuple, over S, with a Lee 

weight of t or. less. 

The ideas of the last paragraph fo rm. the basis of the encoding 

scheme to be discussed next. 

3. ENCODING. SCHEME WITHOTJT DISTORTION 

With  reference to V, let us partition the source output into blocks 

of n .  digits. Let B be such a block with Lee weight w. 

If w = 0, then B can be replaced with the (rt) tuple of all zeros. 

• If w A 0, then let u.s write 

= nat- + 5, 	< p É t. 

• Now B can be treated as the sum of m+1 n-tuples B,B , ...B 	such 
12 m+1• 

• that the (m+1) -by-n matrix 6, in which the rows are B 
1

, B
2' 

... 
 

satisfies the following properties : (i) every row of e ha.s a Lee weight 

of t except the (m+l)st roW• which may have a Lee weight  <t  . (ii). 

Every column of 03 has at most 2 nonzero entries'. (iii) The Lee weight of 

every column of 63: is t or less. (iv) If a column has two nonzero entries, 

then they are adjacent and are of the same sign. 

For example let us consider the case of n = 12 and S =f0, + 1, + 2,1.•  

Suppose  B = 0 	 1.- 1 1 . 

TLet 	-represen.t the syndrome of  B.  hen the block B can be 



n•• 

(3.1.1) Q=. P  
3 	2t+1 	2t-F2 + 

P3P. J• 

We note that' Q 	Prob , (0- w 

3 - 1) t+1  e w e jt) , 
Noting that 

pr -1   
- 	

(P-1)  
2 

2 	r - / 
= t (1 +p+p +...+P 	) 

we get 
r(Q 1 +2 Q

2 +3 Q
3
+...+ nQn) 

n • = r-1 
P 	) 

replaced with the en.coded sequence 	= i 	which, we note, 

•is (m+1)rt digits long. 

We transmit a over the channel. At the other end we receive, 

1. 	... crni+i  . Corresponding to each syndrome 	, we get 
a .  

the .error -pattern B! and forxn the matrbt C3 in which the ith row is  B!'. 
- 

satisfies all of the properties satisfied bye , then we add the 

rows, "opf 8 1  to Obtain.B,twhich,wedéciede,is the sequence put out by the source. 

If not, either we ask for a retransmission or just abandon the block. 

3.1 AVERAGE LENGTH OF THE ENCODED SEQUENCE,  
DISTORTIONLESS CASE: 

Let P represent the probability that B has Lee weight  w.. Then, 
— 

the average length L of a  is given by 

Qrt'+ Q • 2rt Q • 3rt + 	+ Q  • nrt 
L 	2 	3 

+ nQ ) n .  

Q =: P + P + 	+ P 
1: • 	. 	0.- 	 t-' 

•. Q 2. 
= P

t+1
.P

t+2 
+ 	P 

+p+pz +  



•computed. 

For example if Q. =  Q 1 
 

i-1
, we get 

1 

we further g et 

+Q =Q 

'  1+p+p . • .r -1 
-  

n 
(- - n.X. ) •

i _xn 	1-X 

P•r 

• • 11,  

• from which we get 
. 	. 
rt 

n( -X) 

rt 
•n( 1-X) 

- 5 • - 

Given the distribution Q = [Q 1 ,  Q,  ...  Q.  , the ratio L can be 

Here we note that 	is very near the right hand side quantity, 

1 

1 

1 

1 

1 

1 

since X is usually << 1, so that we can write 

(3.1.2) 

If the distribution Q is appropriate then -- will be e . 

For instance, in the case of the distribution Q. = Q X 
- 

1 , if 
I. 	1 

Figure lis  a graph of equation (3.1.2) for the (n = 12, k  = 8)  2-error-

correcting negacyclic code over S, for the source probability distribution 

defined by equation (3.1.1). For this code, r  =t  = 2, and hence from the 

previous discussion ,  L  should be unity or less for X 	0.666 ; this 

is borne out in the figure. 



0.5 1.0 

- 6 - 

Fig. 1. Greph. of .the normalized average length of an encoded sequence for the 

distortionless case. 



Henceforth, for purposes of comparison, all examples and graphs 

will make use of the aforementioned negacyclic code. 

The case of L = 1 is of particular interest. 

every time(Bs does not satisfy all of those properties attributed to  

cwe have detected an error situation. Thus the coding s heme has an error- .. 

detecting capability. In view of this, the condition ---, r= 1 implies that . 

there has been some data compression, since otherwise L can n.ot possibly 

be equal to n. 

Thus we have a coding scheme which, for appropriate distributions 

Q, has both error-detection and data-compression capabilities. It is worth 

repeating tha.t the scheme does not in.troduce distortion. 

On the other hand, if the distribution Q is such that L wol'ks out 
— 

to be > n, we can introduce distortion to lower the value of L down to n. 

This last aspect will be discussed next. 

As already seen, 

4. ENCODING WITH DISTORTION 

4.1 SCHEMES« FOR 	INTRODUCTION OF DISTORTION 

Distortion ca.n be introduced in many ways. 

(a) For instance, the source output can be clipped so that the 

resulting sequence is over the set S
o 

= [ 0,  +1,  + 2, + t
o

} where 

t
o 

< t. If t
o 

= t-1, the average distortion per digit can be easily proved 

to be e
' 
 where 1r is the probability that the source puts out a + t or -t. 

t 
This scheme does not a.ppreciably lower L unless there are frequently t 

or more + tss per block. 

For example, for n =  12,.S  = [0, + 1, + 23 , (t =2), if B = 

0 1  :2  2 1 1 0 0  -2.1 1 1 'then clipping to t
o 

= t-1 = 1 produces the sequence - 

B = 0 1 -1 1 1 1 0 0 -1 1._ 1 1 , with a distortion of 3, distributed over the 
. 	_ 

sequence. . 



(b) From the point of view of reducing  L, an improvement over 

the previous scheme (a) would be to "clip" the weight of the block put out 

by the source to some value, say, W. For example let us consider the 

.case of n = 12 and t = 2. Maximally the block weight is 24. Suppose we 

Suppose B = 0 1.-2-2_1.1-  0 0  -zi  t / ; it has a weight of 12. 

Clipping this B to  a weight of 8 produces B = (Y-1=2"2 11: 0 0 

the sequence which would be encoded and transmitted. The distortion 

this case would be 4, concentrated, in the last 4 - positions. 

), From the point of view of distributing the distortion over the 

block, it is desirable to combine (a) and (b) . For the example considered 

	

in (a) and (b), this would transform B =0 1-2: 2 1 1 0 0-2 1 1 1 	.• into 

B=-. 0 -1-1. 1 1 1 0  04  1 1 0, for t = 1 and W = 8. The distortion:in this -  case 
o  

would be 4, distributed as follows : 1 unit of distortion in th-jiliird, fourth, • 	_ 

ninth and twelfth digits of B. 

We may note that, for the examples considered, both (b) and (c) give 

the same total distortion of 4, while (a) gives a distortion of 3. 

4.2 AVERÀGE LENGTH El OF THE ENCODED SEQUENCE: 
a 

The average length La  of a in the case of (a) is given by 

n r +2 Tr +3 Tr
3 
 +....+ (t -1) 	

1 	to +1 
j + .t err 	+....+ 	)] 

1 	2 	 o 	to - 	o 	t 

Where ..<x > means the uhigheru integer if x is not an integer and 

< x > x if x is an integer. 

4.3  AVERAGE  LENGTH  L  OF THE ENCODED SEQUENCE:: c 	 - 

— 
The  average  length L of a  in the case of (b) and (c) is given by 

t (Q + ZQ + 3Q + 	+ vQ ) , 
1 	Z. 	3 

Where N.) is given by 

= < 

rt 



4.3.1) i _ x 	v X , 1-0 

i-- 
 For the distribution Q. = Q1 X
1 

 , we get 
].  

L. 
C. 

n. 
11-p+p2 +... +pr- 

, Figure 2 is a graph of equation (4.3.1) for the source probability 

distribution defined by equation (3.1.1), with W as parameter. 

It can be readily observed that as W decreases, thus increasing 
Lc  

the potential distortion, — decreases. 

The . -decrease in the average length is given by 

L - L = 	 4  rt[Q • 	(.9+1) +Q 	(.9+2) + 	+Qnil] 	 (4.3.2) 
c 	 v 

Figure 3 is a graph of equation (4.3.2) (normalize d  by division by n) 

with parameter W, for the source probability distribution defined by equation 

(3. 1. 1). 

'As expected, as W decreases, the difference in lengths increases. 

4.4 TOTAL AVERAGE DISTORTION FOR CASES (a), (b) AND (c) : 

Let r. represent the probability that the source puts out + i or -i, 

where i belon'gs to S. 

Then in scheme (a) the total average distortion per block is given. 

by n et  (t-to ) + net _ 1 (t-t0 -1) + n 	 +net +1 (1) so that the average 

distortion D
a 

per digit is given by 

D a , = irt(t-to ) + 	 ) + et _ 2 (t-2-t0 ) + 	+ 

) 	Ti* 	(8. -1) ilet..2  (8-2) + 	+ (1) 
Irto +/ 

or 

Da = Tr.te (1)-F. 
t 

 e, +2(2)+ et +3( 3) + 	+ et  
, 	o 

where 8 = t-t
o 

. 



2: 

1 
L..  

o, 
0.5 	 1.0 

Fig. 2. Graph of the normalized average length of an encoded sequence for 

the case with distortion, with W as parameter. 



11 

Fig. 3. Graph of the differences in normalized average lengths between the 

cases with and without distortion, with W as parameter. 



block B is given by (4.4.1), i.e. 

w = n(ir + 2 , 

Expres sing 

— 
w Nt + 

•we see that 6, has N+1. rows 

E 	(N+1) rt 

so that the average length L of 	is given by 

+ 3 ir 
3 

+ t Tr ). 

r 1 
= <( 1 +P+P +. • • +P 	) (ir +2 

2
+ ...+ t ) > rt 

- 1 

— 
The average weight w per block is given. by 

ir
2 
 n(2) + 	+ 	n(t) 

ierefore the average distortion D per digit in,schemes (b) and 

yis given by 

+ 2 Tr... +3 ir_ •+ . 

In the next section, again for the distortionless case, an 

expression  for the average length of an encoded sequence is derived for 

another type of source probability distribution. 

• : 	LENGTH L of 	: 

If Tr. is as defined in section 4.4, then the average weight w per 



we can compute L . • 

For instance, i = Tr X. , then 

t.: x 
1 

nX 	• ;1 	Xt:• 
 

-X 

• t 

	

•• nX. - 	• 1-X 	- tX
t
) > rt - 

t+1  

	

- t(1-X 	) 	• •• 

= 

or 

= (5.1) 

r-1 
<( 

X 	, 1-X
t 
 - tX

t 
 

)›rt t+1 	1-X 
1-X 

Given a distribution Tr = tir 
 o

, Tr • • . Tr
t 

In deriving this we note that 

As an example let us consider the case of n = 12, r = 2, t =2, X = -1 • 

Then L = 16 as against n = 12. 

Figure 4 is a graph of equation (5.1) (normalized by division bY n) 

for the new source probability distribution. This should be contrasted 

with figure 1. 



•  In  

o.  

- 14 - 
4 - 

- 	 . 

0.5 	 1.0 

Fig, 4. Graph:of the normalized average length of an encoded sequence for the 

distortionless case. 



6. CONCLUDING REMA.RKS  

1 

•1 

1 

1 

if no distortion is 

After a short description of negacyclic codes, two variations 

of a scheme for joint source and channel encoding were presented ; 

the first was distortionless and always reduced source redundancy, 

the second' method, providing the source statistics were appropriate. 

distortion was perrnitted and this allowed the con.straints on the 

statistics to be loosened. Both cases resulted in an error-detection. 

capability. 

It is clear from. the discussion that the scheme could easily be 

modified such that the decomposition of a source n-tu.ple produces an 

orthogonal matrix& , orthogonal in the sense that no column or row  of  

contain more than one non-zero entry. Consequently, on the average, the 

n..urnber of rows bf  B  , and hence, the length of the encoded sequence, 

would increase, but so would the error-detection capability, since more 

constraints are being placed  on ';. and hence, on  

For example, if we consider the usu.al negacyclic code of length 12, 

then for B =  Œ t .:4Z-  2 1 0 0 	1 , we have - 	_ 

OE 1: 0 0 0 - 0-0 0 0 0-0 
0'.0-al0,- 0 0 0 0 0 0 0.0 
0 0 0  2.0  0 0 0 0 0 0 0 
0 0 0 0 1.0 0 0 0 0 0 0 
0:0-0 (YO 10 0 0 0 00 
0 ..0 0.0.0 0:0 0-10110' 
0-0.0 0 0 0' 0 0 0  100. 

 0' 	0. 0 0 -  0 0  10 .  
_0 00 0 0 0:0 - 0 0 00 1_ 

permitted. 	Thus the n-urnber of rows of e is equal 

to the number of nonzero elements in B. We fu.rther note that eaCh row 

contains exactly one nonzero entry, and each column, at most, one 

nonzero entry. 
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SOME RESULTS ON NEGACYCLIC CODES 



1 

1 

1 

1 

1 

INTRODUCTORY MATERIAL 

In this part we present a few results concerning negacyclic codes 

Berlekamp 1968). Some of these results have a bearing on the problem 

of data-compression. 

Since the metric Used in negacyclic codes is the Lee metric , 

erlekamp 1968) we begin the discussion with this metric. 

The LEE WEIGHT of 'a sequence a„ a, a,... a_ , over GF(p), 

where p is an odd prime, is the surn of the Lee weights of a. I S The 

Lee wèight of a. is a. if 0 e a. e and p - a. 2  s a. s ID -  • 3. 	 2 

From  the definition of Lee weight it is clear that we can treat the 

negacyclic code as being over /éj = [ - 2  , 	2 	, 	- I, 0, 1, 2,..,, 

3 instead of being over GF(p). 

By the LEE DISTANCE between two n-tuples a
0  a 1 

 ...a 	and 
 n-1 

- 
•bn_i  both over GF(p), is meant the Lee weight of the n-tuple 

a-, b  t. 2 2 	n-1 a-b 	a- b  1 	 n- t • 

To indicate the situations where the Lee metric is more relevant 

than the Hamming metric, we mention the following known points 	. 

(Berlekamp 1968): while the'Hamming metric is well-suited to orthogonal 

modulation schemes,. the Lee metric is well-suited to phase-modulation 

schemes. For channels using amplitude modulation, both the Hamming 

and Lee metrics are not flawless. However, if the alphabet size is large, 

the Lee metric provides a better approximation than the Harrn-ning metric. 

Generally speaking, wherever the magnitude of the error is to be taken 

into account, the Lee metric is a better choice than the Hamming metric. 

The-codes which are best suited to the Lee metric are the nega- 

cyclic codes invented by Berlekainp. 

A NEGACYCLIC CODE of block length n and over GF(p), where p 

is an odd prime and n is a nonrnultiple of p, is the set of all of the 



multiples of a generator polynomial g(x) which divides 1 + x over GF(p). 

Since the metric used for a negacyclic code is the Lee metric, we 

will treat the code as bei.ng over 	rather than as being over GF(P) 

vihenever it is convenient to do so. 

s :o. 

fh NrGACYCLIC SHIFT 	
1 

De—ning —e 	
_ 

tuple a
0  a. a- • • • 	

1 n  

" 	where we note, for the overas the sequence 	 / 2 	n7 
sake 

- 	 s si _n  _oes  with only a  
`Qf clarity, tna-t the  minus g g 	 n  i t we see tnat the 

th 	de o belong 
- 	 • 	d f negacyclic code, als a wor o a negacyclic  shift of 

, 
, 

d negacyc — This  explains why the wor since g(x) divides +lc . T 	 weascocoine.'  

by Berlekaxnp. 

We remark that the defi.nition of a negacyclic shift is parallel to that 

of a cyclic shift' which is relevant to cyclic codes. 

Following the usage in the case of cyclic codes, a negacyclic code 

of block length n =, where r is any positive integer, is said to be 

PRIMITIVE NEGACYCLIC: CODE: (Van.Chinh. 1.9. 74) 	• 

On the other hand  if th'e • -bicjék lengthi''n...is. a: 

the code.is aaid, to be à NONPRIMITIVE NEGACYCLIC CODE. 

Like cyclic codes, negacyclic codes can also be used for DATA 

COMPRESSION * in many ways. One such method follows (Berger. 1971). 

With reference to the source-output which is over GF(p), a negacyclic 

Code Of block length n is chosen and the standard array formed. 

note that the standard array is nothing but an arrangement of the code 

and its cosets in a certain mann.er. The source-output is partitioned into 

blocks of n digits. For a given block the relevant code word is determin.ed 

then 

We 

frôm.the standard array. This assures us that the Lee distance between,  

• the block.and the code word determined is the least possible. Then the k 

information digits Corresponding to this code word are determined and the 

n-digit block replaced with this k-tupie. It is this k-tu.ple that is finally 

transmitted. The resulting compression-ratio C is given. by 

C 

I. 

1 



With a as a primitive-root of x 
n. 

-1, if the roots .:'.THEOREM; - 

of the generator polynomial of a negacyclic code over, include 

1 

and the average distortion 

%=.  

D per digit is given by 
_ 

where K is the number of cosets, with leaders of Lee -weight e.,), in the 

-Standard array. With respect to (1) and (2) it is assumed that the source 

uts out all of the p symbols with the same probability. 

From  the previous discussion it is clear that the code has to be so 

chosen that C is as high as possible for a given D or D is as low as 

possible for a given C. 

Now we corne to a discussion of the error-correcting capability 

ofn'egacyclic codes ,(Berlekarnp 1968). The most important result in this 

regard is contained  in the  following known 

a, a".", 	 where t É 	, then the code can correct any single 

error-pattern of Lee weight t or less. 

, R.ecalling the rule of construction for BCH codes, we see a parallel 

- between that rule and Theorem. 1. However, there is a major difference  

in  that the condition of t É 	 does not exist in. the case of BCH codes. 

The Theorem 1 can clearly be used to obtain the generator poly-

nomials g(x) of negacyclic codes. In this connection we note that a is a 

root of xTu- 	since it has order 2n. Thus, to obtain g(x), we have to 

examine the irreducible factors of x'1+1, whereas in the case of cyclic 

codes t g(x) divides  x-1. 

y.  now it should have become clear that there is a great deal of 

-similarity between cyclic codes and negacyclic codes. In fact many of the 

techniques obtained for cyclic codes can easily be used, with appropriate 

modification, for negacyclic codes. As an example of this situation we may 
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mention the Bose-Caldwell technique for synchronization in the case of 

cyclic codes (Van Chinh 1974). 

An open problem in the case of negacyclic codes is how to obtain 

majority logic-decodable codes which are negacyclic or derived from 

negacyclic codes (Van Chinh 1974). We will not discuss this aspect 

except to give, for the sake of interest, the following example : 

let us consider the negacyclic code which has p = 5 and r = 2 so that 
r 

= 	= 12 and t = 	= 2. One possible g(x) for this code is 
'3 	 2 

(X): (x2 (x2 + 2) = x4  - 2x3  + x+ 1. 

'Every word: V(X) ofthis subSet code- can be express.edin. the form._ 

Now let us consider the (11,4) shortened subset, of the negacyclic code, 

generated by 

g .( ) -x
2 
 - x

5 
 +x6  + 2x . 

.(k): 	 4 C x, +  c3 	) 
.  

f v .x + 	+ 	4-v 10 
x , . 	=.. 

where C(x) = C
0 
 + C

1 
 x + C2 x

2 
 + C3 x

3 
 is the information polynomial. 

, 	 . 	, 

Comparing the coefficients of the product g
1 
 (x) C(x) with those of 

2 	 10 
+v

1 
 x +v x + 	+ v X , and after suitable manipulation, 

we get 

2C = v 
0 	0 

aC 
 0 	

- 2v
2 
 - 2 v 
 4' 

2 C = •2 v + 2 v 
0 	1 	6' 

2G = 2v - 0. 
	10' 

C
o 

=
7  + 

 2v8 .± 2v9 
 

Since these relations are orthogonal, any error-pattern of Lee weight 2 

or less will affect at most 2 out of 5 relations. Hence we conclude that 



the subset shortened code is 1-step majority-logic -decodable. 

At this point we derive a result which will be required in later 

discussion, regarding the nu.mber of n-tuples, over e/ , having any Lee 

weight. With N representing the number of n-tuples with Lee weight ce, -, 

we reaciiiï see that N = 0 and that N = Zn, since we can have a + 1 or 

in an-y one of the n positions. As regards co =2,, we have , 

, where 2n is the number of single errors of Lee weight 

2  is the number of 2-error-patterns, each error having a 
2 ' - 

Lee weight•1. From the preceding discussion.it is clear that the number 

N depends on the number of ways in which co can be expressed as the 

sum of n-urnbers 1,.2,3,... p-1. Since co can be expressed as the surn of 
-1 

j numbers in 
 (C9) 

 wa.ys, we conclude the following 

PARALLEL RESULTS  

Next we present a few results, for negacyclic codes, which are 

parallel to those known for cyclic codes. 

Pa.rallel to the concept of cyclic classes in the case of cyclic codes, 

we define a NEGACYCLIC CLASS as the set of a code word and all of the 

distinct code words obtained by negacyclically shifting this code word. 

The number of code words in a negacyclic class is 2n or a divisor of 2n. 

This number is also called the PERIOD of the negacyclic class. Here we 

recall that a cyclic class has period n or a divisor of n. 

Since the maximal-length cyclic code of block length n is a constant 

weight code in the sense that all of the nonzero words have the same 

Hamm 	
n+1

ing weight of --2-- , it seern.s reasonable to expect a similar result 

in the case of negacyclic codes. It is known that this is indeed the case. 



The code is s and to be  QUASI-PERFECT if the maximum coset-leader- 

weight is t + 1. 

From. Theorem 4 it follows that V has one coset with the leader 

Here we state, without proof, the followin.g known (Berlekamp 1968) 

'  THEOREM 3:  The maximal - length negacyclic code of block. 

P  1 h.a.s a constant Lee weight of. 	  

, 
For the .-_sake of completeness we mention tha.t a MAXIMAL - 

,ENGTH NEGACY  CLIC  CODE of block length n = 	 :is-the:code - 

enerateeby :'g(x) = 	, where h(x) is an irred.ucible polynomial, over 

'rF(p), which has degree -r and has exponent Zn in the sense that h(x) divides 
2n 	 - ' 

 and  not x 	for any ni < Zn.  

tom Theorem we readily get the following 

COROLLARY 1:  The maximal-length negacyclic code over 

corrects any single error-pattern of Lee weight 

or léss, where L 	is the largest integer contained in the  positive number 

With  reference' to Theorem .  3 and Corollary 1, we see t.h.at 

8 

P' _• fôr-r 

indicatin.g that the condition of t 	 in Theorem  I  is sufficient, but 

not necessary.  

In the context of the fa.ct that the binary Hamming codes, which 

have block length 
 2m_1 

 and are single-error-correcting, are perfect, 

we state the followi.ng known --- 

THEOREM 4:  The negacyclic code V with n - 	2  _and t = lis  

e note that this V has k = n-r. 

Here we also recall that a code with error-correcting capability 

is gaid. to be PERFECT if the maximum coset - leader -weight is•t. 



all zeros and• 1 coset with leader of weight 1. Using this fact and 

e fact that k = n - r in (1) and (2), we obtain the following 

COROLLARY 2:  The nega.cyclic code V with n = 	 and 
2 

= 1, h.as  C= 	 and D= 	 

It is known thatthe binary Harnming code with length 2 	has 

(2 -1) (2 -2  )  words of Hamming weight 3. As a parallel to this result 

we now prove the following 

	

- 	- 	 a - THEOREM 5:  The negacyclic code V, with n 	 = 31 	d 2 	 n 
2n(n-1)  

t = 1 ha.s 	 words of weight 3. 

' 	We begin the proof by noting that V is over e = 	0,  t 3 so 

that every word -V (x), of weight 3, lias the form 

V (x) = a x. + a, x + a x. where, a , a • and a are from t -1, 

This- means , in view of the definition of a negacyclic cla.ss, the following 

LEMMA 1:  In V of Theorem 5, every negacyclic class with 

words of weight 3, has exactly 3 words of the form 1 +a xv  + a xw. 

From Theorem 4 we see that V has one coset with the leader 

of all zeros and 2n cosets -with leaders of weight 1, thus accounting for 

aLl of the p= 3r cosets. Since V •has minimum weight 3, ali of the 

2, ( ) = 2n (n-1) n-tuples of weight 2, as computed from Theorem 2, 

are contained in the cosets with leaders of weight 1. This means, since 

- V is negacyclic and ail of the n-tuples of weight 1 have been used as coset 

leaders, that the , number of n-tuples of weight 2 per coset with leader 

of weight 1 is given by 2n(n-1 , - n-1. We repeat this fact in the following 

LEMMA 2:  In V of Theorem 5, every coset with leader of weight 1, 

has n-1 n-tuples of weight Z. 

Now let us consider, without losing generality, the coset with leader 

x0 .. This leader can produce an n-tuple of weight 2 only with a code word 
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v 
 of the form 1+a x +a x
w 

 . This means, in view of Lemma 2, that v 	w•  

W  V has n.-1 words of the forrn 1+a x +a x 
IT  

Lemma 1, we now get the following 

LEMMA 3: V of Theorem 5 has 

containin.g words of weight 3. 

Therefore, using 

negacyclic classes 

Since 3 does not divide n =
2 	it follows that a word of 

weight 3 produ.ces a n.egacyclic class with 2n words. Combining this fact 

with Lemma 3 we get Theorem 5. 

This concludes the proof of Theorem 5. 

It is known. that the shortened-by-1-bit Ham.ming code is quasi-

perfect. Now we prove the followin.g parallel 

THEOREM 6:  The (n- 1 i 1 -1) code V obtained by shortening V 

of Theorem 5 by 1 bit is quasi-perfect . 

Since p=3 every word of V with weight 3•has the forrn a xu+a x
v 

 + 

a x , where 'a , a and a are taken. from [ -1, 13 . As already seen 

•a word like this produces a negacyclic class with 2n words. This means 

that every negacyclic class with words of weight 3, in V, has 6 words 

ending with a.. nonzero digit. Using this fact with Lemrna 3, we see that 
6(n-1), 

V has 	-2(n-1) words of weight 3 ending in a nonzero digit. 3 
This leads, in view of Theorem 5, to 

LEMMA 4: Vs .of Theorem 	
2n(n- 1 ) 

6 has 	 - 2 
3 

words of weight 3. 

Now let us consider the cosets of Vs: 

1 coset with .the leader of all zeros and•2(n-1) cosets*with leaders of 

weight 1, accountin.g for 1+2(n-1) = 1+2n-2 = 2n-1 cosets. This means 

that we have yet to account for 3
r 

- (2n-1) = (2n+1) - (2n-1) = cosets.. 
n1)( Accordin.g to Lemma 4, Vs has 2(-n-3)

words of weight 3. Since all 3 
of the 2(n-1) coset leaders of weight 1 have been used, the n.umber of 

words of weight 2, in the cosets of VI, which have already occurred is 

Since Vs has t=1, we have 



1 

1 

1 

1 
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2(n-1)(n-3). But the total number of (n-1)-tuples 

weight a is 	_)= 2(n-.1)(n-2). Therefore we have the following 

LEIvIIVIA 5:  With respect to Vs of Theorem 6, there are 

n-1)(n-2)- 2(n.-1)(n-3) = 2(n-1) ' (n-l) '-tuples, of weight 2, available 

for the construction of cosets with leaders of weight Z. 

A leader of weight 2 can produce a word of weight 2 only with t.hose 

words of Vs which have weight 3 or 4. 

Without losing generality let us consider the (n-1) - tuple 

X, -= 1 1 0 O.... O. A word, of Vs, which has a distance of 2 from 
te• 

X has to be of the form 1 -1 x x x 	x or -1 1 x X X 	X, where 

only one x is nonzero. Since the distance between these t-wo forms has 

to be at least 3, we conclude the following 	 ' 

' LEMMA 6:  With respect to Vs of Theorem 6, a leader of 

weight 2 can produce, with codewords of weight 3, at most 2 words of 

weight 2. 	' 

Next we have to investigate the number of (n-1) tuples, of weight 2, 

that- can exist at most in a coset with leader of weight 2, because of code 

words of -weight 4 in VI. This number is the same as the number g of 

•- tuples possible such that all of them have Lee weight 4, have the form 

of,: say, 11xxx.. x with  only 2 xss nonzero*, the mutual distance 

= 3, g 3  is clearly zero.. 	For v = 4, 	= 1, 

1 1, 1 i 1 	or. i  1.-1.  

Suppose we choose 1 1  L 1 , without losing generality. For v = 5, 

incewecanhave 11110, 11 -101and.110 -1 - 1,orliil 0, 

i 1 i 0 -  land 1 1 - 1 1. Suppose we choose the former three -words, 

again without losing generality. For v = 6, § 6  = 3, since we cannot 

add one more word. For v = 7, N7  = 4, since we can have 1 1 1 1 0.0 0 , 

11-10100, 11 .0 -1-100, 1100011,or 1111000 ,11 	10100, 

Therefore we have the following 

being 'at- least 3.:. For'. v 

since we ca.n choose 1 i 1  i , t. 1 



r- 	- 

or.1 .  t  i 1 OA 0,, 	0'1 0;0 „• • 

10-1-100, 11000-11,
...•• . 	 • • 	.•, - • 	 , 	• 	,• 

• Or 	,t=„1..; 	 t 	t. CC- 	•' 

Continuine this 1h-1e:of reasoning --  

.VW.get tollowin 

, 
'LEMMA 7:  The number §, of .9 tuples, over GF(3), which are 

Uclith.a.t all  of them have weigh.t 4 and a mutual distance of at lea.st - 3, 
ij• 	' 	- 	- - 

nd  match  in two given positions is given by § = 3( '11 .-1 ). for v = 3 and 

3( III -1)-2 for v = 3 -2, where * .is a positive 

integer. 

From Lemma 7 we directly get the following 

: LEMMA 7 1 :  The nu.mber of (n-i) - tuples, of weight 2 that can 

exist in a coset of VI with a leader of weight 2, beca.use of words of 

*110- 1-100, 11.00. 0 

weight 4 in , is' at rnost n- 

1 

- -Combining Lemmas 6 and 71, we see that a leader of weight 2 

Can prodau.ice ,a± most n-4+2 = 	 upl e s of v.reight 2 in a cos et - 

of  V'. This  means , including the leader itself, that there can be at 
- - 	- 

rn.ost n-/ '-(n-1)"--tuples of weight 2 in a coset of VI with a leader of weight 2,„ 

This in turn implies, in view of Lemma 5, tha.t there are 2 cosets of Vs,,; 

, withIeaders of weight 2. 	 , 
, 

, 	To sumrnarize the discussion so far made, we have accounted for 

all  of the p = 3 cosets of VI. There are, in addition to VI itself, 

2(n-1) cosets with leaders of weight I and 2 cosets with leader; of weight 2, 

ixn.Plying that V of Theorem 6 is quasiperfect... 

'  This  concludes the proof of Theorem 6. 

reference to (1) and (2), Theorem 6 implies the following 

COROLLARY 3:  For the code VI of .Theorem 6, C = 
	

and.  

n.+1 

It is known that the code obtained by interleaving two Hamming codes 



is quasi perfect. Now we prove the following parallel 

THEOREM 7: Let V 4  be'the 

cyclic code with. t = 1 and V 2  the (n2  = p -  - 

code  with t = /. Then the (n = n + n2 ,  k = 

by interleaving V and V 2 , is s quasiperfec 

re begin the proof by noting that V can  correct  any error-pattern 

which, on deinterleaving, reduces to a single error, of weight 1, per 

code. This means that V can correct 1 error-pattern. of weight 0, 

= Zn +2/1 error-patterns of weight 1 and 2n
1 
 2n

2 
 = 4n

1  n2 
 error- 

patterns of weight. 2. Since 1 + 2n + 4n
1 
 n = 1+2(n

1  +n )+4n i  n 2  =
1. + 

	

r2..1 	r i 	r2  
+ P 	) 	4 ( 	 P -1  

V. has t=1, we conclude that V is quasiperfect. 

',This concludes the proof Of Theorem 7.. 

With referenàé to (1) and (2), Theorem 7 implies the following 

COROLLARY 4:  For the code V of Theorem 7, 

n +n 	 - n 	 n. . 	1 	2 	. 	 • 	1. 	2 	1 
and  D= 	+ 	-- 

n 1.÷112 -17 1 -r2. 	 n 1 +1 2 n 	n
1

+112 n 
• _ 	 1 . 	2 

From the expression for D in Corollary 4, we see, with 

1 Z 	n-k 
P 	= p' 	and:. since 

referencé to Corollary 2, that the average distortion per digit of the 

interlea-ved code is less than the suxn  of the distortions of the compon.ent 

codes. 

ow We-consider interleaving two codes of Theorem 6. Specifically 

we prove the following 

THEOREM 8: If V 1 
 is the code obtained by shortening the 

pr 

2 = n
1 
 - ) negacyclic code with t = 1 by 1 digit and V

z 
is 

 1 



or  
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the code obtained by shortenin.g the ( n2 	 = n2 -r2 ) negacyclic 

code -  with t =  J. by 1 digit, where p = 3, then for the(n=ni +n
2' 

 k = k
1 
 +k

2 
 ) 

a- 	• -+ -16-  interleaved code C = 	2: 	and D - n1 2 
(Zn-J-1.). (2n. 2 +i) (n i+n2  

The proof of Theorem. 8 is as follows: 

.,,) 	' n 1tn2 	 • 	 - 

, that C - 	  follows trivially from. (1). To obtain  the 

expression for D we proceed in the following way. 

Defi.ning N. to' be the number of cosets of V. with leaders of 
13 	 1  

weight . j, i = 1,2, we see from Theo  rem 6 that N = 1, N. = 2(n -1) 
Li. 	1 

N -= 2. Since V can  correct any error-pattern which, on de-

interleaving, reduces to coset leaders of V
1 
 and V Z'  it follows that 	, 

N0 =1, N = 2(n -1+n
2 
 -1) ,"N

Z 
 2(n

1 
 -1) 2(n

2 
 -1) + + 2, N

3 
 = 2(n -1) +2(n

1 
 -1 

- 	 1  
N, 	where N is the num.ber of cosets, of V, with leaders of weight tù'.. 

, 
This means that V gives, with reference to (2), 

(0) (1) + (1) 2(n 1 -i+n2 -1) + (2) E 4 +4(n 1 -1)*(n2 -1.)i 

3:r't+..r, 	..(rt i:- .1 

2(ni+nii-2) + 8 El + (n i -1) (n 2 -1)] +  61  n2 -1 +n 1 - 1 1+1 

• (2n +1) (2 2
n +1) (n

1  +n2  -2) 	• 	 , 
 , 

2(n i +n2: -zy + 8( -n i -n2 +n in2  + 2)  +6  E n 1 +n2 - 2J+ f.  

- 	"(2n.i.+1) (2n2 +1) 

(n 1 +n2 -2) E2 - 8 + 6] + 8 n 1n2  + 16 

• (2n
1
+1) (2n2 

 +1) (n
1

-1-n
2

-2) 

8 n in2  + 16 

(2n 1 +1)  (2n2 +1) (n12 	
) 

This completes the proof of Theorem 8. 

-2-r -r 
1 2 

nnn• 



CONCLUDING REMA.RKS 

We conclude this part by noting that, given the component codes 

e cos et -enurnerations of which are known, it is eas 

o.obtain.,. -:,.the•coset-enurnerati.on of the interleaved-  code V.  By a co- set-
, 

enumeration we mean, with reference- to (Z),  the  Set of numbers. - 11;Is..• 

'F.( 	 • 	h 	l'd'ty f thi K • - 	 K 	 The  va 	o 	s 
+... 	2 	3 	u 12

can be easily established starting with the fact that, if V. is (n.,k.), 

then K. +K. +... +K 	= p 	. An implication of the preceding 

discussion is that the compression-ratio C and the average distortion 

for V can be computed easily. 
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