## HERMES PROJECT

## SECOND PART

FINAL REPORT ON THE DEVELOPMENT OF THE HERMES III MODEL.
prepared for the

## NATIONAL TELECOMMUNICATIONS BRANCH DEPARTMENT OF COMMUNICATIONS

by<br>LE LABORATOIRE D'ECONOMETRIE de L'UNIVERSITE LAVAL

Industry Cenada Library Queen<br>JULL 161998<br>Industrie Canada Bibliotheque Queen

and

SORES Inc.
Montreal

March 31,1973

herams project
sECOND PART

## (1) final report on the development of the hermes ill model

prepared for the

NATIONAL TELECOMMUNICATIONS BRANCH DEPARTMENT OF COMMUNICATIONS
by
LE LABORATOIRE D'ECONOMETRIE
de L'UNIVERSITE LAVAL
and
SORES Inc.
Montreal

| March 31, 1973 | COMMUMICATIONS CiNAIA |
| :---: | :---: |
|  | NOV 61.990 |
|  | Libaby .- mabrataus |

This report concerns the description of an Operarions Research model designed to examine certain economic aspects of the planning of relecommunications neiworks expansion with particular reference to inter-toll switching and transmission facilities. It does not profess to be a comprehensive freatise on the technical engineering principles of telephone, parricularly in an operarional context.

This report replaces the Interim Report of November 1972. It should be noted that whereas the Interim Report's rôle was, to a large extent, to formulate the problem and explain the approach adopted, the present report is essentially a technical document addressing itself to a necessarily more restricted audience and assuming knowledge both of the erlier project developments and the characteristics of the Canadian Inter-toll telecommunications network. A good deal of viatl information is contained in the appendicies. A User's Manual will complete the Hermes III peackage, however such a manual is not scheduled until a later phase of the project.

## ABSTRACT

This Report contoins a description of the Hermes III Model. This is a planning model dealing with expansion of interurban telecommunications capacity. This model, designed for the Federal Depariment of Communications, is a substantially extended version of the Models Hermes I and Hermes II designed and developed previously. One of the original features of these earlier models was that they handled cost functions which were step functions.

The fundamental difference consists in that the Hermes III Modal starts from an earlier stage than its predecessors: data concerning traffic. One is thus forced to handle the switching network as wall as the facilities network of interurban telecommunications. One of the essential characteristics of the Hermes III Model is that it handles these two neiworks simultaneously and not in succession, as in the conventional approach which is still in general use.

The methodology is chiefly that of linear mixed-integer programming, of network theory, of certain simulation techniques and of the economic theory of investment decisions.

## RESUAE

Ce rapport décrit le modèle Hermes Ill. C'est un madele de planification de l'expansion de la capacité des telécommunications interurbaines. Ce modele; conȩu pour le Ministère féderal des Communications, est une exiension substontialle des deux modeles Hermes I ef Hermes II formules et developpés précédemment. Un des traits saillants originaux de ces trois modeles asi leur prise on compte de fonctions de coûts qui sont des fonctions en escalier.

La difference essentielle entre le modèle Hermes III er sos deux prédécesseurs consiste en ce que ce dernier part d'une Éape anterieure, c'est à dire, les donnees concernants le trafic. On est aimsi amene \& traiter aussi bien le réseau de commutation que le reseau physique des télécommunications interurbaines. Une des caractéristiques originales importantes du modele Hermes 111 est qu'il traite ces deux réseaux simultanément et non pas successivement comme cela se fait dans l'approche conventionnelle géneralement employę.

La méthodologie employé est principalement la programmation linéaire partiellement en nombres entiers p theorie des graphes, certaines techniques de simulation et la theorie des choix d'investissements.

## TABLE OF CONTENTS

Pago

1. NNTRODUCTION ..... 1
1.1 Relationstip with the preceding pheses ..... 1
1.2 Objectives of the Hermes Project ..... 2
1.3 Contents of the report ..... 3
2. FORMULATION OF HERMES III ..... 4
2.1 General remarks on the nature of the problem ..... 4
22 Description of the model ..... 4
2.2.1 Switching network ..... 4
2.2.2 Facilities network ..... 7
2.2.3 Funcrions of CHARGE ..... 8
2.2.4. Funcrion of CADUCEE ..... 14
2.2.5 Funciion of TRANCHE III ..... 14
3. THE SOFTWARE OF HERMES III ..... 18
3.1 The overall structure ..... 18
3.2 CHARGE ..... 22
3.2.1 L'algorithme ..... 22
3.2.2 Exemple d'application du module CHARGE ..... 28
3.3. CADUCEE lll ..... 32
$3.4 \frac{\text { TRANCHE Ill: Identification of minimum cost }}{\text { expansion programs }}$ ..... 333.4.1 Formulation of the TRANCHE III module33
4. THE USES OF HERMES III ..... 47
4.1 Deiermining the capacity expansion program ..... 47
4.2 Determining the effect of changes in ..... 48 predefined condirions
4.2.1 Certain types of reliability condirions ..... 48
4.2.2 Consequences of changes in hiererchical structure ..... 50
42.3 Changes in blocking probabilities ..... 50
4.2.4 Changes in overflow rules ..... 50
4.2.5 Changes in the set of contemplated trunk groups ..... 50
4.2.6 Changes relating to the facilities neiwork ..... 51
4.2.7 Planning over period of time ..... 51
43 Ubilisation partielle du modele ..... 52
5. POSSIBLE EXTENSIONS OF HERMES III ..... 53
51 Conceptual extensions ..... 53
5.1.1 Survivability. ..... 53
5.1.2 Plemning over several periods of time ..... 53
5.1.3 Cosifuncrions ..... 53
5.2 Sofrware extensions ..... 53
52.1 Inter-module linkages ..... 54
5.2.2 Report writer and plotring routine ..... 54
5.2.3 Automation of simularion procedure ..... 54
52.4 User's manual ..... 54
5.3. An extension of the model's use as a ..... 54

planning model
APPENDIX 1: Working bibliography
APPENDIX 2: Marhemarical fomularion of TRANCHE III
APPENDIX 3: Sample Problem *
APPENDIX 4: Program Listings*
*These constitute Volume II

## 1. INTRODUCTION

The first part of the Hermes Project resulted in the development of a modal named Hermes I, the Sofiware and Users Manual for Hermes 1, and the extension of the model to include some more realistic features. This latter, known as Hermes II, was more efficient and sophisticated than Hermes I upon which it was based.

The second part of the Hermes Project, from April 15, 1972 to March 31, 1973 had, as its objectives:
a) completion of the work begun on Hermes II in order to obtain a realistic and totally operarional model, without increasing the number of geographic nodes which comprised the model as of March 31, 1972
b) the development from Hermes 11 of a network model of transmission and switching, named Hermes III, capable of satisfy ing a given demand af minimum cost and taking into account :
i) The trade-off existing beiween the costs of transmission and the costs of switching using a simulation approach.
ii) The optimal allocation of circuits by assigned quality of service (PO1, PO2, PO3, ... Etc.); or in other words, of the optimal breakdown of circuits with respect to first choice circuits and to last choice circuits.
iii) The reliability of the network.

The completion of the work on Hermes II was the subject of an earlier report and a Hermes II Users' Manual. The purpose of this report then is to present the Hermes III model as described in sub-section "b" above.

The development of the Hermes III model was carried out by a project team consisting of T. Maruszewski, C. Autin and B. Paquê from le Laboratoire d'économétrie de I'Universite Laval and R. Riendeau, D. Geller and M. Hupe from Sorès Inc. The Department of Communications was represented primarily by J. Cline and J. Guerin.
1.1 Relationship with the preceding phases

The first phase of the Hermes project resulted in the development of a transmission facilities expansion model called Hermes I and its development to include some more realisric fratures and greater computational efficiencies in Hermes II.

In essence, the capabilities of the Hermes I and II models lay in the development of the least cost facilities expansion program for a given transmission facilities neiwork. That is, problems were posed by specifying one or more pairs of nodes in the facilities network between which one or more additional broad band chanm nels were required. The model would then choose the least cost means of providing these addifional facilities.

In the development of Hermes I and $\|_{r}$, a new approach was taken to the solution of such problems based on the use of mixed-integer linear programming.

The approach proved to be very useful in the treatment of some aspects of the problems which more traditional approaches were incapable of handling.

While the formulation of Hermes III must go beyond that of the earlier models and consider as well the routing of traffic in the switching nework, our understanding remains that the primary concern is with an optimal capacity expansion program for the facilities network. Accordingly, the work of the first phase and the formulations of Hermes I and II provide valuable background and a base upon which to build the Hermes III Model. A complete description of the formulations of Hermes I and 11 and their various components are the subject of a lengthy series of reports and working papers on the Hermes project. In preparing this report, frequent reference is made to the reports and working papers of earlior phases and some familiarity with the concepts presented in these roports is expected on the part of the reader.
1.2 Objectives of the Hermes Project

The terms of reference prepared by the Department of Communication, Neiwork Development Group, specify the following requirements:

The development of a neiwork model of transmission and switching capable of satisfying a given demand at minimum cost and taking into account :

- The trade-off between transmission and switching costs.
- The optimal allocation of circuits by assigned grade of service.
- The reliability of the network.

The main objective of the study was to develop a model of a hypothetical telecommunications network consisting of less than sixty nodes for a given network hierarchical structure, this model would be capable of determining the number of circuits in high usage groups, full groups, and alternate groups which would sarisfy a defined grade of service at minimum total annual costs. While the network used to develop the model is hypothetical, it is a representative abstraction of the Canadian interurban telecommunications network of the Atlantic provinces and displays as many of its characteristics as possible.

Again, as was the case with Hermes I and II, a new approach to the modelling of a telecommunications network was necessary to produce a tool which is capable of addressing questions of policy as opposed to the operational type of problems faced by the utilities. In the Hermes III Model, for example, switching and transmission facilities are treated simultaneously. As well, in this model the marginal cost ratio beiween high usage and final/full groups is not accepted a priori, as is the current practice in the traditional approach.
1.3 Contents of the report

The specifications of the finel report as laid down in the Statement of Werk appended to the contract call for:

- an exhaustive description of the formulation of Hermes III, by then operational
- a set of recommendarions concerning the perfection of Hermes III

The report is organized accordingly. Sections 2 and 3 of the report give an exhaustive description of the Hermes III formulation. Section 2 deals primarily with the theory of the overall methodology: Section 3 deals with each of the mojor components of Hermes III in turn.

While the model uses rigorous optimizorion techniques in developing solutions, it is clear that because of certain important non-convexities which result in combinatorial problems affecting problem size, some aspects of the problem cannot be so treated. Section 4 of the report deals with the uses of model and the methodology whereby some of these problems can be avoided.

Section 5 of the report deals with possible extensions of the methodology that is a set of recommendations concerning the perfecting of Hermes III. It will be noted that although the handling of "enlarged netowrks" (a concept allowing to rake account of the coexistence of different carriers and/or of different types of facilities, such as micro-waves and the coaxial cable) had been originally considered as a possible extension and given only a summary treament (see the terms of the reference of the phase April 1972 - March 1973.) it was decided to incorporate fully this feature into the Hermes III model. As the work proceeded it became clear to us that leaving this major refinement to a future stage would have involved a duplication of effort and hence obviously a higher overall cost and would have of course resulted in Hermes III so much less realistic.

## 2. FORMULATION OF HERMES III

The formulation contained herein represents a new approach to the solution of relecommunications neiwork problems. This approach was adapted in response to the need to examine certain aspects of telecommunicarions nelwork associated with policy and regulatory functions. It is based on the use of mixed-integer linear programming and differs from the conventional appraach to network analysis in several important areas. One of the more important of these is in the handling of non-linear cost functions. To describe the investments in facilities, step cost functions are used and these functions show a tendency to decreasing overage cosis. Another important difference is in the simuliancous handling of the switching network as a whole rather than suboptimization by treating successive triangles of the nelwork. A third difference is in the simulianeous handling of the switching and transirnssion networks. The model thus contains several important breakthroughs in the existing methodology. It is laso, to our knowledge, the first model of this broad category and this size designed expressly to serve the needs of a regulatory agency and not those of the carriers.

### 2.1 General remarks on the nature of the problem

The formulation of Hermes III uses as a base, the approcah and methodology developed for Hermes I and II which are basically models to compute facilities expansion cost given demand increases from point to point, these demands increases being expressed in number of channels. However, the starting point of Hermes III is, now, at the level of the increased charges from point to point w ith the possibility of creating high usage ( $\mathrm{H}, \mathrm{U}_{0}$ ) and full groups ( $\mathrm{F}_{\circ} \mathrm{G}_{0}$ ). The ways in which traffic could flow under various hypothetical conditions of existence for the $\mathrm{H} . \mathrm{U}$. and the F. G. and given the grade of service must be established and translated into a set of alternative switching and transmission facilities increases. The least cost facilities expansion program must then be found, given a set of constraints on such things as authorized paths in the physical network, survivability and total cost. The optimizarion problem just mentioned can be solved again with a different set of parameters and networks initial states, therefore Hermes III can be viewed as a simularion model.
2.2 Description of the model

We will first clarify the concepts of switching and transmission facilities networks. Then we will describe the functions of the modules CHARGE and CADUCEE III and finally we will describe the module TRANCHE III.

### 2.2.1 Switching network

For purposes of the Hermes III model, the term "switching network" means a graph used to describe the paths along which calls may be routed between any two points. This is an artificial "network" not having necessarily any direct physical counterpart.

In the model, local switching is not included. It is to be noted thet in drewing this greph; one is concerned with only those points where switching is reguired. Ler us consider a hypotherical refocommunications network containing thirieen demond points. Figure 1 illustraies a basic final tree corresponding to the thirieen demend points. It must be noted that, if there are more than two Status I switching nodes, a cycle inevirably appears and the graph is no longer strictly speaking a íree.

This fact should be borne in mind wherever we refer to a basic final tree in this report. A further assumption is that switching mechines are instelled in demand points only. (In other words, in our hypothetical network, there are no pure switching nodes but such a node amounts to zero original point to point demand and thus can be readily handled by Hermes IlI without any modification of its formulation or of the corresponding software.)

FIGURE I
Basic final tree


.. hierarchical status 1


- hierarchical status 2

hierarchical status

Therefore the switching nerwork shown in Figure 2 is made up of a basic final tree with the accompanying hierarchical status of each node, the final group connecting these nodes, the full groups and the $\mathrm{H}_{\mathrm{o}} \mathrm{U}$. groups. It is to be remembered that a given ser of nodes with hierarchical status assigned may correspond to several different basic trees because homing rules could vary.

FIGURE 2
Switching network

final groups
H.U. groups
full groups armon
Let us identify the path followed by a given call by a sequence of nodes through which it passes.

According to the switching network and to the usual overflow and routing rules, a call from node 3 to node 4 can only follow the parh $3-9-4$. (The numbers underlined indicate that switching takes place ar these nodes).

On the contrary, for a call from node 2 to node 3 , the switching arrangements will try the following parhs, in the order indicated.

2-3
$2-8$-3
$2-\overline{8}-9-3$
$2-8-T 2-9-3$

For a call from node 6 to node 7 , the only parh possible is $6=7$, which is a full group.

### 2.2.2 Facilities network

For purposes of the Hermes III Model, this is a "physical" natwork representing transmission link and nodal transmission and switching facilitios in their geographic setring. Cost functions are defined on the elements of the facilities nefwork. This is the type of network handled in the first part of the Hermes project. In the second part of the project, concerned with the Model Hermes III, we shall have to use the concept of the enlarged network to take account of the coexistence or potential coexistence of different transmission systems on a link and/or of different cerriers. (See Report on the Second Phase, March 1972).

In the facilities network, one finds switching nodes and transmission nodes. Transmission nodes are transparent in the facilities network.

To each link of the switching nefwork there corresponds a set of transmission facility assignment chains, which obviously are defined with reference to the facilities neiwork. These chains indicate the physical "pipes" which may be followed by the circuits corresponding to links of the switching network. The number of focility assignment chains may be quite large, even if the number of pairs of demand points under investigation is small. The sum of the circuits finally allocated to these chains must be equal to the number of circuits allocated to the switching network link to which they correspond. In the model the circuits are two way circuits.

Figure 3 illustrates a transmiission facilities network supporting the swithing network shown in Figure 2.

FIGURE 3

## Transmission faciliries neiwork



In the facilifies network, all the links consist of sets of circuits. The nodes numbered 14 through 79 are trensparent and do not appear in the cowesponding switching neiwork shown in Figure 2.

It should be noted that in the facilities network, there is no link between nodes 8 and 3 , while there exists a high usage group beiween these two nodes in the swifching network. Let us suppose that this high usage group contains 100 circuibs. To sustain this group, one can have, for instance, 75 circuits going through the nodes $8-12-9-4-3$ and 25 circuits going through the nodes $8-2-18-3$ (with respect to these two chains the nodes $12-9-4-18-2$ play the role of transparent nodes).

Let us now suppose that the link $5-10$ of the facilities network containe:50 circuits. It may happen that 25 of these circuits support the final group 5 m 10 of the switching neiwork and the 25 remaining circuits support the high usage group 5-6 (we assume here that the chains going through the link 5-10 of the facilities network and which are associared with the link 5-6 of the switching nerwork contain in total 25 circuirs).

Dedicated lines and television do not correspond to any concept of the switching neiwork and have to be handled separately. The task is, however, simplified by the fact that the demand for dedicated lines and for television is expressed in number of circuits. Futhermore, the eircuits serving that type of demand cannot give rise to swithing in the sense covered herein. In this case, the demand constrainis are formulated directly in the faciliries network (as in the models Hermes I and Hermes II). However, where services requiring transmission band width greater than one circuit (4khs) are involved all circuits serving to transmit such a service must pass through. the same facility assignment chain. Moreover, it is essential that the fransmission path for broad band data, television, picture phone, etc. be made available as one band width. This refinement will not be treated in the model.

### 2.2.3 Functions of CHARGE

Suppose we are given an initial state on the switching network; that is we know :

- The number, location and identification of the switching nefwork nodes;
- The node hierarchy and the homing arrangement; that is to say, the basic tree of the lost choice (final) structure;
- The loss probabilities on the final groups;
- The set of already installed H.U. and Full groups;
- The overflow rules for the H.U. groups;
- The set of overflow probabilities for the H.U. groups;
- The initial origin-destination offered traffic matrix for switched traffic in Erlangs (note that traffic is directed).

With the above informarion, the graph of the switching neiwork is complately defined. The module CHARGE can compute the offered traffic generated on each arc by each origin-destination.

Take for instance the switching network on Figure 2. For an offered traffic of $a_{910}$ directed from the node 9 to the node 10, the relevant partial sub-graph becomes (given the homing arrangement and the overflow rules) the sub-network described in Figure 4 below. Nore the existence of two possible parths from 9 to 10 : the paths 9-13-10 and 0-12-13-10.

FIGURE 4

Sub-Neiwork: Nodes 9 and 10


- final.
$-\infty$ - H.U.

The charge genernted by a 9,10 on the arc $(13,10)$ for example, can be computed once the blocking probabilities $\mathrm{P}_{9,12}, \mathrm{P}_{12,13}$ on the final route and the overflow probability $\mathrm{P}_{9} 13$ are known. That charge is :

$$
a 9,10\left(1-P_{9} 13\right)+a_{9} 10 \mathrm{P}_{9}, 13\left(1-\mathrm{P}_{9} 12\right)\left(1-\mathrm{P}_{12}, 13\right) .
$$

Therefore; for any initial state, CHARGE can compute the generated traffic on each arc of the switching network. Since we postulate two way circuits, CHARGE give the generated traffic on each link of the switching network by adding the generated traffic in both directions from all pairs of demand poinis.

The charge on each link having being obtained, CHARGE computes the necessary number of circuits given the blocking or overflow probabilities. The Erlang-B formula was used for this version of the software but with a little more software development, the Poisson formula con be substituted for Erlang-B where final links are concerned.

We must now hypothesize increases in origin-destination offered traffic combined with the possibility of creating new $H_{0} U_{0}$ 's. For instance, again referring to Figure 2 suppose 3 new $H . U_{0}$ 's are contemplated : one beiween 9 and 10 , one between 4 and 13 and one beiween 10 and 11 . Since the H.U. may or may not be created, building on the initial switching nerwork, we have $2^{3}=8$ possible switching networks on which to consider increased traffic. When there are n contemplated H . U. the number $2^{n}$ can be very high and it is not efficient to envisage the use of $2^{n}$ zeromone variables in our problem. Rather, we use the concept of relevant sub-graph as described above. Continuing our example, we find that the relevant sub-graphs for the new offered fraffic from 4 to 10 is as shown in Figure 5. We are left with $2^{2}$ sub-graphs according to the crearion

FIGURE 5
Sub-Neiwork: Nodes 4 and 10

or non crecrion of the 2 contemplated $\mathrm{H} . \mathrm{U}$. If we call $s_{i j}$ a zero-one variable which takes the value one when the H.U. between $i$ and $i$ is created and zero otherwise, we get the 4 following configurations:


For each switching network configuration relevant to 4-10 the charge generated by the new offered traffic from 4 to 10 on each are of the graph can be computed. All pairs of origin-destination offered traffic can be so treated. It is to be noted that the configurations are not independent in general. For instance, the configurations ( 910,413 ) for the demand pair $(4,10)$ are not independent of the configuretions 9,10 for demand pair $(9,10)$ This interdependencey will be handled in the IRANCHE III module.

The problem we must solve is: knowing the charge generated on a given link by a set of initial offered traffic and knowing the charge generated on the same link under different configurations after increases of the offered traffic, what demand, in term of circuits, will be submitted to the optimization problem in TRANCHE III?

If the transformation from charge to circuit were a simple straight line through the origin, there would be no problem. Unfortunately the fransformarion for a given blocking or overflow probability has the shape shown in Figure 6:

FIGURE 6
Charge to circuits conversion curve


For the initial state (given the switching network and the offered traffic) there is only one resulting charge for a given link. This charge is called $C_{0}$ and $N_{0}$ the corresponding number of circuits. It musi be emphasized that $C_{0}$ resulis from all the origin-destrination pairs of demand points, whereas the resulting charge for a given relevant configuration is for one pair of demand points only. Even with reasonable large demand increases, it is quite possible that the resulting charges will be less than $C_{O}$ for links which are part of the initial switching network. For contemplated H.U.'s the initial charges are zero. Therefore, whatever the configuration, the new charges are to the right of the initial charge as on Figure 6. It is clear from the data available on the facilities network that we will not be able to decrease the number of circuits allocated to a given link of the switching network since we do not know where the initial number of circuits are installed in the faci lities network. Moreover precise economic criteria are not available to make the adjusiment. If, for a given combination of configurations, a decrease should occur, it will be interpreted as a zero variation for TRANCHE III and will be noted in the output of CHARGE. Since the model is to simulate medium term demand increases; it is foreseen that there will be high enough increases on all pairs of demand points to offset decreases in charges due to traffic being taken over by new H.U.'s.

The proposed solution, which could be improved in subsequent phases of the project, is the following :

We assume we are on the very flat portion of the transformation curve (Figure 6)
For each link and each pair of demand points, for the unique initial state configuration, the initial charge is computed.

For each link, summing on the number of demand points, the total initial charge is computed.

For each link, each pair of demand points and each relevant configuration, the new charge is computed.

For each link, the maximum charge is found with respect to all the relevant configurations associated to a given demand pair. This is done for all demand pairs.

For each link, the preceding maxima are summed even though the configurations from which they are issued are not necessarily compatible: Therefore, there is a risk of overshooting but the flatness of the curve attenuates the consequences of that risk.

For each link the number of circuits is computed, first for the initial total charge, second for the summation of maxima just mentioned. The difference is calculated and the slope:
$\frac{\text { numbers of circuits difference }}{\text { charges difference }}=s$
is the coefficient which is used in the computation of the number of new circuits required by the increased charges as follows :
number of new circuits for a given configuration $=s$ (new charge - total initial charge).

These required numbers of new circuits will be used in the optimization problem in TRANCHE III.

For links whose initial charge was zero (contemplated $\mathrm{H}_{\mathrm{H}}$ U. for insiance), to avoid poor linear approximation, we substitute for the zero initial state, the summation of all minimum non zero charges generated by the demand pairs: that is the total minimum charge when the H.U. is in fact created. If we had to design a complotely new network, such as approximation would be used as well.

Note: The reader must be careful in interpreting the s coefficient described above. This coefficient is not a pure marginal coefficient as it seems to be. It has been computed under the hypothesis that one configuration is chosen for each pair of demend points and that the resulting total charge increase generates a eircuit requirement. The s coefficient is a kind of compromise since we do not know what will be the total charge increase before TRANCHE III chooses among the configurations.

The last function attributed to CHARGE is to determine the coefficients associated which each configurations in order to compute the required capacity at the switching machine level. Given a switching node, the choice of a given configuration associated with a know demand increase generates charge variations for all the arcs adjacents to that node. The summation for all those charge variations is done and it is converted in number of lines according to the formula given by the D.O.C.:

Required number of lines $=$ Total charge variarion in Erlangs $\times \frac{36}{21}$.
If the total charge variation is negative, the required number of lines is negative. It seems highly improbable that, for a node, the grand total charge variation for all demands will be negative in TRANCHE III. If this is the case, the solution will show an increase in unused capacity for that switching node.

The sum up, CHARGE determines :

1. For each pair of demand poinis, the several configurations of switching networks which are relevant.
2. For each pair of demand points, the requirement in terms of new circuits for each relevant configuration and each link of the switching network involved in that configuration.
3. For each pair of demand points, the requiremenr for new lines for each relevant configuration and each switching node involved in that configuration,

The section describing the software will deseribe the algorithm used in CHARGE.

## 2.2 .4 Function of CADUCEE III

As CADUCEE I and II were indispensable in earlier versions; CADUCEE III is a necessary module in Hermes III. Without it, no reasonable sized problems can be solved.

CADUCEE I and II provided the set of admissible physical transmission chains for each considered demand pair in order to reduce the number of activities in the linear programming module. CADUCEE III is designed to provide the set of admissible physical transmission chains as well but in this case for each pair of adjacent nodes in the switching network as described in section 2.2.2.

Therefore, even if we considerer only a few pairs of demand points, there will be many more pairs of adjacent nodes in the relevant switching networks associated with these pairs of demand poinis. Moreover, the "enlarged network" concept multiplies the number of possible chains between two points of the transmission network. For all these reasons, CADUCEE had to be rewritien to improve its efficiency. The detailed algorithm is described in the software secrion of this report.

It suffices here to mention that for each link of the switching network the module CHARGE computes the maximum charge increase generated by each pair of demand points, then, the summation of all these maximum charges increases is made and the number of new circuits wanted at that maximum level is computed. This maximum requirement for new circuits is used in CADUCEE III to find the admissible chains which would be able to support the new circuits connecting the extremal nodes of the considered link. We recall that the concept of "admissible chain" is one which may intervene in the optimal solution in TRANCHE (see the report on the second phase, March 1972). If a chain is found nonadmissible for the sum of the maximum new circuits requirements, it is also nonadmissible for lesser requirements.

Briefly, the module CADUCEE III furnishes TRANCHE III with one set of transmission activities (chains) for each link of the switching network since the original increases between paired demand points have been translated in requirements for new circuits between adjacent nodes of the switching network.

### 2.2.5 Function of TRANCHE III

As its predecessors, TRANCHE $I I$ is the optimization module. It solves a mixed linear programming problem which minimizes the expansion cost required by a given demand increase.

### 2.2.5.1 The cosif functions

The general form of the cost functions used in Hemes I and II have been rebained. Siap cosi functions are the only functions accepted, for the moment in the medule. The new olements are the following:

1. The unit of measurement for the arguments of the functions is the circuit instead of the channel. Capacity is installed by circuits blocks of any rechnically desired sizes.
2. The assumprion of no unused capacity has been elimated and is is possible to stary with a certain number of unused circuits on a physical link. As soon as one wants to use these circuits to satisfy the new requiremenis; one hes to incur a small fixed cost (a kind of connecting cost). This fecture has been included to avoid unrealistic allocation all around the network. Ohherwise, if the existence of unused capacities was the rule "no cost" criteria could lead to the allocation of circuits to very long routes for close demand nodes. Moreover, the screening of CADUCEE III could in this case be less efficient in terms of admissible chains.
3. In TRANCHE III, nodes of the switching network can have switching capacifies and therefore step cost functions can also be defined in order toincrease the capacities of these nodes.

More detail on the cost functions is contained in preceding reports. It should be noted that the cost functions deal with total expansion cost.
2.2.5.2.1 The circuits assignment acriviries

For each link of the switching network, there is a set of admissible chains in the facilities network. Each chain can receive a certain number of circuits that pertain to the group of circuits assuring communications between the extremal nodes of the above link. It is understood that the assigned circuits form a group, from the accessibility point of view, even if ceriain circuits are physically separated on several chains. This divisibility potentially obrained without adding special constraints is obviously a first step toward meeting survivability requirements. For computational considerations, a level of activity (assigned number of circuits to a chain) is a real non-negative variable, except for non-divisible groups of circuits as, for example, television in which case a lavel is a zero-one variable mutually exclusive of the other zero-one variables associated to the chains in the same set. In that later case, each zero-one variable is mulriplied into the same coefficient which gives the required number of circuits for the indim visible demand (see CHARGE).
2.2.5.2.2 The relevant switching network configuration creation activities.

For each pair of demand points of the switching network as we explained in 2.2.5, a set of relevant switching network configurations is established by CHARGE. A zero-one variable creates, when it has the value one, an associated configuration. The other configurations in the same sef do not come into existence. In other words, for each pair of demand points there is a ser of mutually exclusive zero-one variables. These creation activities generate circuit requirements and line requirements by multiplying the zeroone variables inio the right coefficients established by CHARGE.
2.2.5.2.3 The investment activitios

For each link and node of the facility nerwork, a sequence of investment activities will express the new transmission capacity to be insialled, as in the previous Hermes models. As well, for each switching node, a sequence of investment activities will express the new switching capacity to be installed. All the investment activity levels will be integer variables. If there is unused capacity for a link, the first activity is not properly an investment activity but a a "filling up" acrivity.

### 2.2.5.3 The constraints

The constraints mathematically force the model to respect the proper relationships between :

1. The circuit assignments and the demand for circuits;
2. The circuit assignments and the capacities of links and nodes;
3. The sequencing of investment variables: a facility has to be put in place before any addition to it can be made.
4. The compatibility of the configuration creation activities;
5. The variables and their value range.
2.2.5.3.1 Assignment of a sufficient number of circuits to satisfy the demand

For each link of the switching network one configuration must be chosen in each set of configurations associated with each pair of demand points. As we have seen each zero-one variable so chosen has for coefficient a required number of new circuits. The total of these required circuits must be equal to the total number of circuits assigned through the circuit assignment activities.
2.2.5.3.2 bimitation of circuit assignments and augmentation of the installed capacifias

For each link of the facility norwork a corstraint oxist which limits the number or circuits assigned to the link. The limit on any link is the number of circuirs already installed as specified in the intrial stote plus the invesmant estivitios for that link. This constroint is ine same type of capacity constraint that wess used in the Hermes I and II models.

For each node with switching facilifies, a constraint of the same fype limits the lines entering and leaving the node. The limit in this case as wall is the capacity available from the initial stare plus the investment acriviries for that node.
2.2.5.3.3 Sequencing of investment activirios

The method of ordering the entry of investment variables in the solution has been thoroughly discussed in the reports prepared in the first part of the Hermes project. In the model, a set of precedence relationships is established which require that full capacity, associated with a given level of investment activity, is utilized before the next level is considered.
2.2.5.3.4 Compatibility constraints

For each set of configuration creation variables associated with a pair of demand points, a consiraint secures mutual exclusiveness.

For all the sets of configuration creation variables, constraints insure that, if an HU or FG exists for one configuration, it also exists for all other configurations in which it appears.

### 2.2.5.4 The objective function

In TRANCHE III, only the invesiment and "filling up" activities have non zero coefficients. The value of the linear form we which to minimize is thus the total expansion cost of an investment program.

## THE SOPTWARE OF HERMES III

In Choprar 2, the overall sinueture and the formulation of HERMES III was discussed in detail The purpese of this cheprer is to describe the sofiware of each of the major modulos of Hermas. Ill as they relate in the overall structure and individually.

## The overall structure

Chapier II of the report on the preliminary Phase of the Hemes project, issued in December 1971, discusses in detail the narure of the problerns faced in developing Hermes soffware and the reasons for adopting the modular approach, The model discussed in that report was Hermes I. Hermes $I I$ followed and built upon the experience gained in developing Hermes!.

As was the case for Hermes I and II, the Hermes III version of the model takes the form of a set of modules. These modules are represented in figure 7 The modular approach has proved to be of significant value in the development of the Hermes series of models as it has allowed that major portions of the software remain "active" during development of a more odvanced Hermes package. The modules which are shown in the figure and which will be discussed in the course of this chapter are CHARGE, CADUCEE III and TRANCHE III.

The charge module did not appear in the preceding versions of the model. Its principal objective is to colculate the loads on the links of the switching network, given a set or paired demand points on this neiwork. The module calculates the different loads (in terms of Erlangs) on each link of the network, and for each possible alternarive profile of the switching network, i.e. each alternarive sub-set of the overall of poiential H.U. groups.

Hence, for each link of the switching network, the module CHARGE gives a load vector. Each component of the vector corresponds to a load (in Eplangs) on the link in question, this load being associated with a pariicular profile of the switching network. To reduce the number of chains given to TRANCHE III, the module chooses the maximum component of this vector and transforms this load in terms of circuits: these values are then used as inputs to CADUCEE III, and TRANCHE III. CHARGE is described fully later in this chapter.

Each of the values transmitted to CADUCEE III represents a demand in terms of circuits between paired demand points of the physical network: the nodes of each pair are the end nodes of the link of the swirching networks to which this demand applies. At the level of CADUCEE III, we may have a large number of demand pairs for each demand pair in the switching network. This has necessitated sorne major changes in the software which are described in a later section of this chapter.


FIGURE 7

FIGURE $7\left(\operatorname{con}^{1} \mathrm{t}\right)$

## Légende

(1) Dascription du raseau de commutation y compris l'ensemble dos HU ou FG porentiels.
(2) Matrice de trafic initial entre tous les sommets du réseau de commutarion.
(3) Matrice de trafic total (y compris les accroissements de demande)
(4) Tableaux des charges sur le réseau de commutation, par paire de points de demande et pour chaque profil pertinent. Ces charges découlent de (3) et tiennent compte de l'éct initial défini en (2). Ce sont donc des accroissements de demonde.
(5) Cette filière continent toute l'information definie en (4) ainsi qu'un vecteur d'accroissement maximum de demande par arête du réseau de commutation.
(6) Définition des accroissements de demande entre les paires de points de demande du réseau physique pour lesquels au moins un des sommets d'extrémités n'appartient pas au réseau de commutation. Cet ensemble comprend Egalement les paires de points de demande où l'accroissement de demande est' indivisible.
(7) Descripiion du réseau physique '.
(8) Tableaux des staristriques sur les chaines admissibles
(9) Chainnes admissibles pour les paires de points de demandes su réseau de commutation.
(10) Chaînes admissibles pour les paires de joints de demande du réseau physique.
(11) Choinnes admissibles pour les paires de points de demande où l'accroissement spécifié est indivisible.
(12) Progromme optimal d'accroissement de capacite. Au niveau de réseau physique nous parlerons d'accroissements des capacités de transmission tandis qu'au niveau du réseau de commutation, il s'agira des accroissements de capacité de commutarion aux sommets.

The TRANCHE III module will work ar fwo levels : af the level of the faciliries neiwork and ar that of the switching network. Its objective, however, is not chenged from that of TRANCHE I or II, and because of the infroduction of additional activities to deal wi th the switching neiwork; the oprimal solution covers both naiworks.

TRANCHE III is described larer.

### 3.2 CHARGE

This medule did nor gipear in the preceding versions of the model. Its principal objective is to calculate the logeds on the links of the switching nework, given a set of paired demend points en this network.

For a given pair of demand pointsp this module ealculates as many load vectors as there are relevant profiles for this pair of demand points. We recall that this set of profiles is defined from the switching network, the set of poiential HU or FG groyps and the set of homing rules and that all calculations are performed according to the theory of "multiple overflow". From this set of vectors, CHARGE calculetes an "upperabound laad vector" for that pair of demand points. When all paired demand points have been processed. CHARGE adds up the set of "upper-bound leced veciors" to obiain a vector of "demand increase" in terms of circuits. This vector will then be used as input to CADUCEE III.

### 3.2.1 L'algorithme

Le texte qui suit dacrit de façen assez formelle l'algorithme permetrant l'evaluation des charges sur les ares d'un reseau de commutation.

Soit le reseau de commutation suivant:


Les règles de débordoments multiples sont contenues dans la mârice des débordements $D$ suivante:
101
102
103
104
105
106 $\left[\begin{array}{lll}101 & & \\ 101 & 102 & \\ & & \\ \end{array}\right]$

Une ligne de la marrice $D$, notée $D_{M=(1, J) \text {, définit les origines possibles }}$ des dábordements sur $1 / \operatorname{arc} M=(1, J)$.

Finalement, nous avens la merrice de trafic 7 suivente, contenemi les donnés de trefic entre les couples de poinis de demande qui nous inveresseni pour un probleme donnes.
1

1 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 2 |  |  |  |
| 3 |  |  |  |
| 4 | $a_{12}$ | $a_{13}$ | $a_{14}$ |
|  |  | $a_{23}$ | $a_{24}$ |
|  |  |  | $a_{34}$ |

### 3.2.1.1 Principe de l'algorithme

Le principe de l'algorithmen est simple ef consiste, pour un arc donné $M=(1, d)$ du réseau de commutation, a calculer la charge sur cet are générée par un couple de points de demande. En itérent cette procédure pour rous les points de demande et en cumulant les charges obrenues, on obrient finalement la charge totale sur l'arc $\mathcal{M}=(1, J)$ decoulant de la matrice $T$.

Cetre façon de procéder nous permer de réduire considérsblement le volume des calculs puisqu'on ne travaille plus au niveau de réseau de commutarion tout entier mais seulement sur un sous-réseau, nomménent le sousoréseau perinent au couple de points de demande considere à ce moment.

Pour chacun des couples de poinis de demende considérés, on définit le sousreseau qui lui est pertinent, le mairice Ajj. Pour l'exemple discute iei, nous aurons:


Note: Nous appelerons cet sousmeseau, le "profil."



Dans l'exemple considere ici, nous qurons $2=8$ profils possibles. Si nous posons simplement:

| $K=$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 13 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 14 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 24 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

L'objecrif est maintenant d'évaluer les charges sur les arcs du réseau de commutation pour chacun de ces profils. Or, grâce aux calculs effectués précedemment, le calcul des charges génerées par un couple donné n'est pas necessaire pour tous ces profils.

Dans l'exemple discuté ici, nous avons:

Couple de points de demande
$(1,2)$
$(1,3)$
$(1,4)$
$(2,3)$
$(2,4)$
$(3,4)$

Profils
pertinenis
(K)

1
1,5
188
1
1,2
1
ef $(K=2,3,4,5,6,7,8)=1$
et $(K=2,3,4)=1 ;(K=6,7,8)=5$
et
et $(K=2,3,4,5,6,7,8)=1$
et $\quad(K=3,5,7)=1 ;(K=4,6,8)=2$
et $(K=2,3,4,5,6,7,8)=1$

Par exemple, le calcul de la charge sur I'arc $M=(1, J)$ généré par la demande entre $(2,4)$ sera calculé uniquement pour les profils $K=1,2$ et les charges pour les profils $K=3,5,7$ seront Egales a la charge obienue pour le profil $K=1$ ei celles pour les profils $K=4,6,8$ égales à celle obtenue pour le profil $K=2$.
3.2.1.2 Notarions utilisées

| $A_{L, N}^{K}$ | sous-reseau perinent au couple ( $\mathrm{L}_{8} \mathrm{~N}$ ) pour le profil (K). Par exemple, pour $(\mathrm{L}, \mathrm{N})=$ $(1,4)$ er $K=3$ |
| :---: | :---: |
| $\mathrm{A}_{1,4}^{3}$ | 12.34 |
|  | $1 \longdiv { 1 0 3 1 }$ |
|  | $2 \quad 105$ |
|  | 3.106 |
|  | 4 \% |
| $M=(1, J)$ | $l^{\prime} \operatorname{arc}(1, J)$ du réseau de cominutation. (Ex: $103=(1,2)$ ) |
| $C_{M=(l, J)}^{(L, N)}$ | charge sur 1 'arc $M=(1, j)$ generee par lo demonde pour le couple ( $\mathrm{b}, \mathrm{N}$ ) érant donne le profil (K) |
| ${ }^{\mathrm{L}_{8} \mathrm{~N}}$ | demande entre le couple ( $L, N$ ) |
| $\mathrm{CH}{ }^{(\mathrm{L}, \mathrm{N})}(\mathrm{K})$ | L'ensemble des chemins entre ( $\mathrm{l}, \mathrm{N}$ ) pour le profil (K). |

3.2.1.3 Calcul de $C_{M=(1, j)}^{(L, N)}(K)$
a) Construire la matrice $A \underset{L, N}{K}$
b) Construire l'emsemble $\mathrm{CH}{ }^{(L, N)} \mathrm{K}$ en respecionit les regles d'acheminement
c) $\operatorname{Poser} C_{M=(1, J)}^{(L, N)}(K)=0$ (Initialisation)
d) Considérer un chemin de l'ensemble trouvé en b). Si tous les chemins ont été considérés, conserver $C_{M=(1, J)}^{(K, N)}(K)$ et passer à $h$ ).
e) Si le chemin ne passe pas par $M=(1 ; J)$, passer à d).
f) Si le HU installé vient après $M=(1, J)$, passer àd d). Sinon définir:

1) $W^{*}=\left\{\begin{array}{c}\operatorname{arcs} \text { qui précédent } M=(1, j)\}=\left\{W_{j}^{*}\right\}_{j=1, n}, ~\end{array}\right.$
2) $\quad W * *=\left\{H \in A K_{L, N}^{K}\right.$ qui débordent sur au moins un des arcs du chemin jusqu' $a M=(1, J)$ compris $\}=\left\{\begin{array}{l}w: 0\end{array}\right\}=1, \mathrm{~m}$
3) 

g) Uiiliser l'expression

ef passer d d).
h) Si tous les profils pertinents ont été considérés passer à i).

Sinon, définir le prochain profil et passer da).
i) Si rous les arcs ont été traités, passer à i).

Sinon, définir le prochain arc $M=(1, J)$ et passer à c).
i). Si ious les couples de points ont été considérés passer à $k$ ). Sinon, définir le prochain couple ( $L, N$ ) et passer à a).

### 3.2.2 Exemple d'application du module CHARGE

Soit le réseau de commutarion représenté à la matrice de trafic T (dont̀ certains élements sont nuls afin de simplifier l'expose) associée à ce réseau (figure9).


FIGURE 8


FIGURE 9

Les données de trafics sonì en erlangs mais les résultats obtenus par le module CHARGE demeurent invariants par rapporit à une matrice de trafic en cos puisque la transformation de ccs à erlangs est linéaire ( 1 erlang $=36 \mathrm{ccs}$ ). Cette matrice de trafic nous serviro d'état initial du réseau de commutation.

A partir de ces éléments, nous désirons évaluer les charges sur les arêtes du réseau de la figure 1; tour en admettant la possibilité d'installer un HU entre les sommeis. 1 et 4 , soif parce que la qualite de service entre ces sommets $n$ ' est plus acceptable ou encore parce que le volume de traffic entre ces sommets est suffisant pour en justifier la mise en place. Le réseau obtenu est celui de la figure 10. En plus de considerer la possibilité d'installer un HU entre les sommets 1 êt 4 , nous supposons également des accroissements de demande tels que spécifiés dans la matrice $\Delta T$ (figurell).



FIGURE 11
L.e problème peư maintenant s'énoncer comme suit: đ partir des charges initiales sur les arcs du réseau de commutation de la figure 1, charges générées par la matrice $T$, déterminer le nouvelles répartitions de charges suite aux accroissements de demande contenus dans la matrice $\Delta T$ et la possibilité supplémentaire $I^{\prime}$ d' installer un HU entre les sommets 1 et 4.

L'algorithme utilisé dans CHARGE consiste á diviser ce problème en sousproblème complémentaires à l'aide des étapes suivantes.

Etape (a)
Calcul des charges générées par la matrice $T$ sur le résẹa de la figure 8.

| arc couple | $(1-2)$ | $(1-4)$ | $(2-3)$ | $\therefore(2-4)$ | $(3-4)$ | Etat initial |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| 1 | 400 | 300 | 0 | 0 | 0 | 700 |
| 2 | 0 | 270 | 300 | 200 | 0 | 770 |
| 3 | 0 | 243 | 0 | 180 | 100 | 423 |
| 4 | - | - | - | - | - | - |

TABLEAU 1

La dernière colonne de ce tableau nous donne l'état initial sur les arcs de réseau de commutation.

Etape (b)
Calcul des charges générés par la matrice $T+\Delta T$ sur les arcs du réseau de la figure 10.

| arc | $(1-2)$ | $(1-4)$ |  |  | 1 | $(2-3)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(2-4)$ | $(3-4)$ |  |  |  |  |  |
| 1 | 500 | $\therefore 500$ | 150 | 0 | 0 | 0 |
| 2 | 0 | 450 | 135 | 400 | 350 | 0 |
| 3 | 0 | 395 | 121 | 0 | 315 | 200 |
| 4 | 0 | 0 | 500 | 0 | 0 | 0 |

TABLEAU 2

Erape (c)
Calcul des modifications de charges suite au passage de la figure 8 à la figure 10 et de la marrice $T$ a une marrice $T+\Delta T_{\text {. (Tableau 3: Tableau } 2 \text { - }}$. Tableau i)


TABLEAU 3

Les deux dernières colonnes du Tableau 3: représentent les accroissements de demandes sur les arêtes correspondantes du réseau de la figure 3 générées par la motrices $\triangle T$. Jusqu'à maintenant, yous les calculs ont été effectués en erlangs. La prochaine étape concerne le passage d'erlangs au nombre de circuits.

Erape (d)
Si nous désignons par $C_{1}^{0}$, la charge initiale sur l'arc 1 et par $D_{1}$, l'élément correspondant ¿'l'arềè I dans l'avant-dernière colonne du Tableau 3, nous aurons:

$$
S_{1}+\frac{F\left(C_{1}^{0}+D_{1}\right)-F\left(C_{1}^{0}\right)}{D_{1}} \text {. où }
$$

$S_{1}$ désigne le coefficients de transformation d'erlangs à circuits et $F$, la fonction de transformation d'erlangs à circuits. Par exemple, pour l'arc l; nous qurons:

$$
S_{1}=\frac{F(700+300)-F(700)}{300} \text {, où }
$$

encore, graphiquement,
circuits
$F(700+300)$

F (700)


Finalement, il suffit de multiplier chaque elément du Tableau 3 par le coefficient $S_{i} q u i l u i$ est associé.

Etape (e)
Parallèlement aux calculs effeciués à l'érape (c), le modéle évalue les variations des charges commutées aux sommets du réseau de commutation. Ces calculs s'effectuent à partir du Tableau 3 et, dans l'exemple ci-adessus, nous obtenons le tableau suivant:

| couple | $(1-2)$ | $(1-4)$ |  | 1 | $(2-3)$ | $(2-4)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| sommers | 0 |  |  | $(3-4)$ |  |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 0 | 180 | -135 | 0 | 0 | 0 |
| 3 | 0 | 152 | -122 | 0 | 135 | 0 |
| 4 | 0 | 0 | 0 | 0 | 0 | 0 |

TABLEAU 4

Ainsi, pour |'ensemble des accroissements spécifiés, la capacité des equipements de conmutation au sommet 3 devrà être augmentée de $287(=152+135)$ unité lorsque le i: U entre 1 et 4 n'est pas installé. Cependant, se le HU est installé, la capacité supplémentaire requise $n$ 'est plus que de $13(+-122+13.5)$ unités.

Les résultats de chacune des étapes sont stockés sur fichier pour être utilisés au niveau de module TRANCHE III. Le conîrôle est ensuite passé au module CADUCEE.

## 3.3: CADUCEE III

Each of the values transmitted to this module represents a demand in terms of circuits berween paired demand poinis of the physical neiwork: the nodes of each pair are the end nodes of the link of the switching neiworks to which this demand applies.

As was pointed out before, at the level of CADUCEE III, we will have to treat as many pairs of demand points as we have links in the switching neiwork. Since the formulation of CADUCEE II could not handle the problem of simultaneously trearing a very large number of demand pairs, our primary concern was to increase the performance of this module. This has been achieved through implementarion of some of the improvements discussed in Working Paper No. 6. . The CADUCEE III module uses the framework of CADUCEE II except ther the original neiwork has been reduced to a set of admissible nodes through the use of. CADUCEE I. When convergence is obtained (at the level of admissible nodes), a "Maximum Relevant Demand Vector" is obtained and then CADUCEE II rakes control.

We recall that the identification of admissible nodes with CADUCEE 1 is very fast so that the cpu (centrol processing unit) time required for these calculations is much less than the corresponding cpu time reduction ot the CADUCEE I| level.

Finally, as was the case with CADUCEE I and II, this module will provide the set of admissible physical chains for each paired points of demand considered. These sets are then transmitted of the TRANCHE III module.
3.4 $\frac{\text { TRANCHE IfI: Identificarion of minimum cost capeciry }}{\text { expansion progrems }}$

The TRANCHE III module identifies the minimum cost exponsion progrean in comms of acriviry analysis. The added feafures in Hermes III of Switching norwortse and the concept of Enlerged Networks (parallel routes, distinct carriers, indivisible demand) necessitated the reformulation of the TRANCHEmodule. The sefinate described under the general title TRANCHE consists of two parts. These can be described as the problern matrix generator (SETUP) and the mixed infeger linear programming package.

### 3.4.1 Formulation of the TRANCHE III module

For purposes of clarity in outlining the processes and operation of the seffing up of a problem, a simple switching and transmission facilities network is amployed. The switching network is the same as described in section 3.2.

Figures 12 and 13 respectively show the switching and transmission facilifies nefwork.

FIGURE 12

Switching network


FIGURE 13

Transmission facilities network


It is so be noted that the nodes of the switching neiwork must be a subser of the fransmission facilities network. The link numbers in the two neworks are for identification purposes only and do not have any other signifigance. Furtharmore. the nework shown and problew posed is frivial and is in no way insended to show the power and versatility of the softwore developed.

In addition to the demand on the switching nerwork we wish to setisfy the following demand increases (Table 5).

TABIE 5
Demand rable

| Node to node |  | Demand in voice circuits. |
| :---: | :---: | :---: |
| 5 | 9 | 200 V.C. divisible |
| 6 | 3 | 100 V.C. divisible |
| 8 | 4 | 240 V.C. television (non divisible) |
| 6 | 9 | 900 V.C. television (non divisible) |

Tables 6 and 7 show the Transmission Facilities and Switching Nodes data for the neiwork shown in Figures 12 and 13.

TABLE 6
Transmission facilifies data

|  | Nod | Node | Mileage | V.C. type | Toral V.C. blocks available | Cost/V.C. block (\$100) x miles |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 1 | 2 | 3 | 4 | 5 |
| 1 | 1 | 5 | 0 | 600 | 4 | 100 | 100 | 100 | 300 |  |
| 2 | 1 | 6 | 65 | 600 | 1 | 100 | 300 |  |  |  |
| 3 | 5 | 2 | 60 | 1,200 | 5 | 100 | 300 | 100 | 100 | 100 |
| 4 | 6 | 2 | 75 | 960 | 4 | 100 | 100 | 100 | 300 |  |
| 5 | -2 | 7 | 20 | 600 | 3 | 150 | 150 | 4.50 |  |  |
| 6 | 2 | 8 | 20 | 1,200 | 4 | 100 | 100 | 100 | 300 |  |
| 7 | 7 | 3 | 10 | 600 | 4. | 100 | 100 | 100 | 300 |  |
| 8 | 8 | 3 | 20 | 1,200 | 4. | 100 | 100 | 100 | 100 |  |
| 9 | 8 | 9 | 65 | 1,200 | 4 | 150 | 450 | 150 | 150 |  |
| 10 | 3 | 9 | 60 | 1.200. | 5 | 150 | 450 | 150 | 150 | 150 |
| 11 | 9 | 4 | 20 | 600 | 3 | 350 | - 150 | 150 |  |  |

TABLE 7
Switching nodes data

| Nodes | Lines/step. | Total no. of steps | Cost/300 line step (\$100) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 |
| 1 | 300 | 2 | 1,900 | 580 |  |
| 2 | 300 | 3 | 1,900 | 580 | 580 |
| 3 | 300 | 2 | 580 | 580 |  |
| 4 | 300 | 3 | 580 | 580 | 580 |

Admissible chains:
Adminible chains are of three types (from CADUCEE III)

1. chain; for demand from switching network (CHARGE)
2. chains for demand as in Hermes I and II
3. chains for indivisible demand (i.e. T.V.)

Tables 8,9 and 10 tist the admissible chains for the three demand types respectively.

TABLE 8
Admissible chains for divisible demand generoted by CHARGE

| Node to | Node | Chain no. | Chains, nodes and links |
| :---: | :---: | :---: | :---: |
| 1 | 2 | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | $\begin{array}{r} 1-1536 \\ 132 \end{array}$ |
| 2 | 3 | $\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$ |  |
| 3 | 4 | $6$ $7$ |  |
| 1 |  | $\begin{gathered} 8 \\ 9 \\ 10 \end{gathered}$ |  |

## TABLE 9

Admissible chains for divisible demand as in Hermes I \& II



TABLE 10

Admissible chains for non-divisible demand

The Problem Matrix Generator (SETUP) converts the information from Tables 5,6 and 7, the sets of admissible chains, and the profiles from CHARGE into a "Basic Problem Marrix" as shown in figure 14. All rows, columns "bounds, costs, righthand sides, are generoted in the SETUP module.

## Demend Rows and Columns

There are three types of demand rows and columns that we must consider.

## 1. Demand generated by CHARGE

2. Demand as in Hermes I and II
3. Indivisible demand

## Type 1: Demand Rows and Columns

The demand on any link in the switching network is not constant but is a function of the profile chosen from CHARGE. In the previous Hermes phases, demand was given as a righthand side constraint and was assumed to be a constant value.

Sub-blocks 1 and 2 in figure 14, along with their corresponding righthand side constraints define the variable demand required on the switching network. Row names beginning with the letters SN identify the pertinent links in the switching network, i.e. SN12 refers to the switching neiwork link joining the nodes I and 2 of the switching network.

Columns beginning with the letter $S$ identify the admissible transmission facility chains fjoining the nodes of the switching network, i.e. S0101 refers to the first chain made available to sarisfy a demand or link SN12 of the switching neiwork. Similarily, S0102 refers to the second chain which can be used to meet a demand or link SN12 of the switching neiwork.

Sub-block 3 identifies the links of the facilities network making up the associated chains, i.e. matrix element $M(L N 01, S 0101)=M(L N 03, S 0101)=1$ identifies a chain made up of the transmission facility links 1 and 3 that join the switching network nodes 1 and 2 or link SN12 of the switching network.
$M($ SN12, S0101 $)=M($ SN12, S0101 $)=-1$ identifies two chains that can be used to fulfull the variable demand as chosen from sub-block 2.

Sub-block 2 contains the values as generated by CHARGE. The columns of sub-block 2 of gigure 4 (beginning with the letter c) define the profiles of the switching network i.e. C0100 refers to the first demand pair of the switching network. The last two digits (00) indicate that only one profile for the first demand pair of the switching network is available. Columns C0201, C0202 refer to two profiles of the second demand pair of the switching network.

$M(S N 12, C 0101)=100$ infers that for the first demand pair of the switching neiwork; the switching network link joining nodes 1 and 2 (SN12) is used and the demand on this link is 100 voice circuits.
$M(S N 12, C 0201)=M(S N 12, S 0101)=-1$ refer to the second demand pair of the switching network. Two profiles are possible. The first profile, if chosen, places a demand for 200 voice circuits on the switching neiwark link SN12. If on the other hand the second profile is chosen, 1550 voice circuits are released from SN12. It should be noted that when a demand on the switching network results in more than one profile, the profiles for that demand pair are mutually exclusive and only one profile may be used at a time.

The demand on link SN12 can, therefore, vary. as a function of profiles chosen. In this example the demand on SN12 can be either 300 voice circuits $(100+200)$ or -50 voice circuits $(100+(-150))$ depending on the profile chosen by the branch and bound algorithm of TRANCHE III.

## Type 2: Demand Rows and Columns

In Hermes I and II demand was defined in blocks of channels. The Hermes III model has the capability of accepting demand in units of voice eircuits (or 4 Kg circuits).

Rows beginning with the letters RT identify a demand found in sub-block 6 (rightside sides) i.e. RT59 refers to a demand on the transmission facilities neiwork between nodes 5 and 9. The demand required must be greater than or equal to 200 voice circuits (sub-block $6 \geqslant 200$ )

The admissible chains that can possibly satisfy this demand are the columns beginning with the letter R. Column ROI 01 identifies the first admissible chain for the first demand pair. Similarily R0201 refers to the second admissible chain for the first demand pair.
$M($ RT 59; R0101 $)=M($ RT 59, R0201 $)=1$ (in sub-block 4) sets the corresponding for the chains R0101, R0201 which may possibly safisfy the demand of 200 voice circuits for demand pair RT 50.

Sub-block 5 identifies the transmission facility links making up a specific chain (activity levels for chains).

## Type 3: Demand Rows and Columns

The new formulation of Hermes Ill permits the specificarion of row divisible demands (i.e. Satellite Television).

Rows beginning with the letters DD identify non-divisible demand found in sub-block 7 (right hand sides) i.e. DD 84 refers to a non divisible demand on the transmission facilities network between nodes 8 and 4 . The demand required (as in the sample problem) must be greater or equal to 240 voice circuits. (sub-block $7 \$ 240$ ).

Columns commencing with the letter $D$ idenrify the associaied admissible chains i.e. D 0101 is the first chain made up of links (sub-block 8) LN 09 and LN 11 which may be capable of satisfying indivisible demand DD84 ? 240 voice circuits. The matrix element $M(D D 84, D 0101)=240$ along with the right hand side constraint 240 ensures that only one chain can be chosen to satisfy this indivisible demand.

In the preceeding discussion we have used the phrase "admissible chains that can possibly satisfy this demand". It should be noted that the admissible chains are not tested for capacity requirements in CADUCEE III. The link capacities are only tested for TRANCHE III. If, for example, there exists only one chain for a particular demand and furthermore a specific link on the chain does not have sufficient capacity to fullfill this demand, then a feasible solution does not axist.

## Facility Rows and Columns

There are two fypes of facilities which need po be considered.

1) Transmission facilities
2) Switching facilities

Transmission facilities
The transmission facility links are identified by rows beginning with the letters LN. Link 1 of the transmission facilities network is named LNO1 .

The investment activities on the links LN are associated by the columns beginning with the letter $X$.

The marrix element $M(L N 01, \times 1001)=-600$ (sub-block 10 ) infers that the first set of investment activities on link LN01 is measured in a unit block of 600 voice circuits. The maximum number of these 600 voice circuit blocks that can be used to satisfy a specific demand has an upper bound of three (sub-block 12) and a lower bound of zero. Furthermore the installation of each 600 voice circuit block cosis \$ 10,000.00.

A demand of 300 voice circuits on link LN 01 would require the installation of the first 600 voice circuit block at a cost of $\$ 10,000.00$. Extending this a nalysis, a demand increase from 1 to 600 voice circuits would cost $\$ 10,000.00$. Table 11 shows the range of circuits and associated costs for link LN 01.

TABLE 11
Ranges of demand and associated costs of link LNOI


To ensure that the requirring of facility insiallations are met, ordering constraints are required.

The rows beginning with the letter $\cdot \mathrm{y}$ and sub-block 11 and 13 are employed for this purpose.

| $x$ | $x$ | $x$ | $x$ | $x$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 1 | 2 | 3 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 3 | 3 | 3 |

Y 1001

Y 1003
Y 2003
Bound up
Bound lo


TABLE 12
Sequencing constraints

Referring to table 12, it is shown that in order to install the second set of facilities on link L.N 01 (i.e. X 2001) the constraints force the first set of facilities $\times 1001$ to be installed up to the maximum of 3 blocks of 600 voice circuits or 1800 voice circuits. If $X 1001$ is set to zero by the lower bound, and $\times 2001$ is set to 1 by the upper bound, than $y 1001$ equals -3 which does not satisfy the constraint that y 1001 must be greater than or equal to zero.

Tables 13 and 14 depict whe ther the :onstrants are met for ali possible values of X1003, X1003, X 1003 for link LN 03 respectively.


TABLE 13
Test of ordering constraints on LNO1

| $x$ 1 0 0 3 | $\times$ 2 0 0 0 | $x$ 3 0 0 3 | $\begin{gathered} \text { Value } \\ \text { of } \\ \text { Y } 1003 \end{gathered}$ | Volue of $\text { Y } 2003$ | Is the constraint met? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | yes |
| 1 | 0 | 0 | 1 |  | yes |
| 0 | 1 | 0 | -1 | 3 | no |
| 1 | 1 | 0 | 0 | 3 | yes |
| 0 | 0 | 1 | 0 | -1 | no |
| 1 | 1 | 1 | 0 | 2 | yes |
| 1 | 1 | 2 | 0 | 1 | yes |
| 1 | 1 | 3 | 0 | 0 | yes |

## TABLE 14

Test of ordering consiraints on LN03.

## Switching focilities

The Hermes III model permits the utilization of investment activities at switching nodes. The CHARGE module generates the number of lines required to be switched of the switching nodes in the switching network.

The switching nodes are identified by the rows beginning with the letters SW. Row SW 001 refers to node 1 of the switching neiwork. The profiles of the switching nodes (sub-block 14) and the corresponding number of lines therein are generared by CHARGE.

Matrix element M (SW 002, C 0201) = 180 infers that for a demand between nodes 1 and 4 in the switching neiwork and the choice of profile C0201 (contemplated HU group between nodes 1 and 4 not installed) there is a requirement to switch. 180 lines at switching node 2 (SW 002). Also, node 3 requires swirching capacity of 152 lines $M(S W 003 ; C 0201)=152)$.

Sub-block 15 is analogous to sub-block 10 , and sub-block 16 is analogous to subblock 11.

The invesiment acrivities of switching facilities are identified by columns beginning with the letter $\mathcal{N}$. These columns are analogous to the investment activities of columns beginning with the letter $X$. Also the rows starting with the letter $Z$ are for the purpose of sequencing constraints on switching activities and are similar to the Y rows.

Rows beginning the the letter P are compatability constrainis on the profiles chosen from CHARGE. Columns C $0201, \mathrm{C} 0202$ are two profiles created by the non-inclusion or inclusion of the HU group between switching nodes 1 and 4. As previously mentioned, these profiles are mutually exclusive and only one may be chosen.

When matrix element $M$ ( $P 0001, C 0201$ ) $=1$, the righthand side constraint $=1$ (sub-block 18) must be met. This constraint faces the element M (P0001, C0202) to zero. Similarly, if $M$ (P0001, C0202) $=1$, then the constraint faces $M$ (P0001, CO201) to equal 0 .

## 4. THE USES OF HERMES III

The original purpose of the Hermes projeci was to develop methodology for planning inferregional telecommunicarions network capacity expansion from an inifial state ar minimum capital cost, given certain hypotherical configurations of demand changes and other consiraints. The result of the Hermes project to date has been the series of models Hermes I, II and III.

This chapter describes the possible range of uses of the Hermes III software. In the course of developing Hermes III, considerable improvement has been made to the original software developed for Hermes 1. However although the formulation of Hermes III goes beyond that of the earlier models, the fundamental purpose remains the same. Therefore the primary use of the Hermes III model musi be as a tool for determining the least cost capacity expansion program for the interregional, or more properly, inter--toll facilities network.

As well as the primary use of the software, this chapter describes the possible uses of Hermes III as a simulator. In addition, the uses which can be made of certain modules of the software independently to solve certain types of problems are described.

### 4.1 Determining the capacity expansion program

The determination of a least cost capacity expansion program is the basic purpose of Hermes III. The basis of deiermining this program is a mixed-integer lineas programing formulation. The description of the whole of the software of Hermes 111 and its use in determining the least cost facilities expansion program is the subject of the rest of this report and will not be dealt with at length here. A full description of mathematical programming and its application to telecommunications networks is contained in the reports produced during the earlier phases of the Hermes project.

The outputs which describe the minimum cost facilities expansion program are as follows:

1. A facility network represented by: - a link capacity matrix (indicating the number of trunks by pairs of connected nodes)

- a node capacity matrix

2. A switching neiwork identifying the final, HU and Full Groups and the number of circuits of each group.
3. The minimal total capital (on annual basis) and operating costs of the above proposed network divided into: total nodal cost, total transmission cost, additional cost occasioned by the survivability requirements.

### 4.2 Defermining the effect of changes in predefined conditions

The Hermes III Model makes use of techniques which ensure that any capacity expansion program obrained is mathemarically rigorously optimal. However, the optimal solution is obtained within the configuration of a set of predefined condirion. These conditions are necessary due to the very large number of variables, nonconvexity, and the combinatorial nature of the problem. In order to evaluate the wide range of possible alternatives which could be posed by the D. O.C., recourse to simulation becomes inevitable. This approach differs from the simularion approach using Monte Carlo methods whire sub-optimal solutions are aimed at.

Although the model proceeds by searching for an optimal solurion among the feasible solutions it is practical to remember that the model's imporiance lies in the first place in sorting the feasible and non-feasible solutions. The non-existence of feasible solutions simply means that the predefined conditons contain contradictions.

In view of the above observarion, it would be wasteful and virtually impossible to develop a software package capable of handling any possible situation that might be required. There is a trade-off between a large unwieldly soffware package versus repeated uses of a more compact package with user intervention between successive runs. This section of the report deals with the use of the Hermes software as a simulator. Table 15 shows those those preconditions or simulations which are considered suitable and useful for the inotial Hermes 111 software.

### 4.2.1 Certain types of reliability conditions

The March 1972 report discussed the question of handling survivability in the Hermes family of models. It is to be remembered that survivability requirements refer to the facilities network and not to the switching and the facilities neiworks simultaneously. The principle of handling the survivability requirements remain essentially the same as those outlined in the 1972 report.

The main burden of dealing with the survivability requirement is likely to fall on the simulation approach. It must be stressed how important it will be to narrow the range of possible survivability requirements to be considered and to identify all the special features of any given problem which might reduce the number of simulations required.

An important by produced of using the model to handle survivability requirements will be, of course, the estimation of the additional cost of satisfying them.

It is to be pointed out that the imposition of survivability requirements enhances the likelihood of the non-existence of feasible solutions. This is one of the reasons why provisions are being made for partial relaration of these requirements.

TABLE 15: POSSIBLE SIMULATIONS WITH HERMES III

1. Certain types of reliability conditions (survivalbility)
2. Changes in hierarchical structure
a) Changes in homing rules (Final basic trees with no changes in hierarchical statius of any node)
b) Changes in hierarchical siafus (changes in homing rules become inevitable)
3. Changes in blocking probabilities
4. Changes in overflow rules (single vs multiple overflows)
5. Changes in contemplated HU groups
6. Changes relating to the facilities network
a) Changes in cost functions
b) Changes in initial stote (important for planning over a period of time)
c) Adding financial constraints (important for planning over a period of time)
d) Changes in the facilities network itself.

### 4.2.2 Consequences of changes in hierarchical structure

These are essentially of two types dealing respectively with changes in homing rules with the hierarchical stotus of every node remaining the same and changes in the hierarchical status of one or more nodes (the second type necessarily involves changes in homing rules). These would be handled by the simulation approach. In order words the implications in terms of costs of changes in the hierarchical structure would be determined by successive runs of the model.

### 4.2.3 Changes in blocking probabilities

In the formulation of Hermes III, the blocking probabilities on final groups and the overflow probabilities on HU groups must be given. In orher words a single run of the model will not indicate what these probabilities ought to be.

On the other hand, questions dealing with the consequences of having alternative blocking probability requirements, consequences which effect the capacity expansion program and the associated cost, which are the main output of the model, are of obvious interest to the D.O.C.

Blocking probability on final groups determines a lower bound on the overall grade of service between pairs of demand points. In this case overall grade of service is defined in terms of "point-tompoint" blocking probability. The blocking probability on final groups (and hence the lower bound on overall grade of service) can be changed from run to run and the resulting changes in cost calculared.

If the blocking probability on final groups is fixed, the overall grade of service associaied with each solution depends on the overflow probability of the HU groups. Various levels of overflow probability could be assigned and the cost of the optimal solutions determined for these levels. The costs of these solutions could then be compared.
4.2.4 Changes in overflow rules

Overflow rules deal with diverting traffic load from HU groups to other groups.
As in the case of blocking probabilities, overflow rules are part of the input data of any given problem submitited to the model. The capacity of assigning different overflow probabilities to each link is essentially a question of making the model more sophisticated and more realistic. Changes to overflow rules would be handled by simulation.
4.2.5 Changes in the set of contemplated trunk groups

A switching network consists of a basic final tree and a set of HU and full groups. In any problem, this constitutes part of the data. The optimization problem
considers a reasonable finite number of contemplated or potential HU and/or full groups with a clear identification of either caregory., The model then chooses the optimal capacity expansion program of the facilities neiwork, deciding as it goes along which of the contemplated HU groups are to be installed and what their capercities are to be.

The model is restricted in choice to selecting from the specified list of con templated HU and/or full groups. It is thus clear that the solution obtained is a sub-optimal solution of the more general problem, in which all possible HU and/or full groups are specified as contemplated. Solving a problem of such magnitude is clearly beyond the realm of practicality. Investigating the consequences of altering the set of contemplated trunk groups will be handled by simulation. It is stressed, however, that within the terms of any problem specified as above, the madel will yield a mathematically rigorously optimal solution.

### 4.2.6 Changes relating to the facilities network

This simulation problem has been previously handled in Hermes I and II. Since we are incorporating every essential feature of Hermes I and II into the Hermes III Model, it is clear that Hermes III is capable of simulating changes in the physical network.

Several passages in earlier reports and working papers deal with this question.

### 4.2.7 Planning over a period of time

The definition of cost functions is annual operating and investment costs. This feature of Hermes III makes it more realistic in handling planning over time than Hermes I and II. However, this problem must be handled by simulation.

A small number of successive periods could be considered. Two to four periods would tee reasonable. Demand increases over time are step functions of time and assumed to be deterministic. Demand for any period, actually specified, may exceed the minimal requirements for that period. It may include a margin of excess capacity which will not be used until some future period but which it may be advantageous to put in place already now because of the economics of scale. The The results of the simplation could be used to adjust the intial capacities of the second second period and so on. This procedure would be continued until the final period period were reached. Of course, the state of the network at the end of the planning period must be specified. The arbitrariness of this specification is softened by the use of present discounted values.

The number of simulation runs could be quite considerable even for a small number of per periods.

The simulation methodology would not result in a global optimum for planning over time but will permit the comparison of alternative expansion programs, and the orders of inagnitude of trade-offs between them over various planning horizons and hypotheses.

### 4.3 Utilisation partielle du modele.

La version acfuelle de Hermes III permet à l' utilisateur de ne faire appel qu' \& certains modules. Les options sont les suivantes:
(a) Module CHARGE seùlemen
(b) Modules CADUCEE III et TRANCHE III
(c) Modules CHARGE, CADUCEE III ef TRANCHE III.

Lorsque I' utilisaieur ne s'intéresse qu' aux accroissements de charges sur le réseau de commutation générées par des accroissements de demande entre paires de points de ce réseau, il utilise l'option (a). Par contre, s'il ne s' intéresse qu'au réseau physique, il utilise l'option (b), ce qui revient à utiliser le modele Hermes II. S'il désire tenir compte et du réseau de commutarion et du réseau physique, alors il ưtilise I' option (c), c'est-d̀-dire le modèle Hermes III.

Ainsi, nous pouvons voir que le modele Hermes II correspond formellement à l' oprion (b) du présent̀ modèle. Cependant, nous soulignons ici que le fait d'utiliser I' option (b) revient à utiliser une version améliorée du modéle Hermes 11 puisque le module CADUCEE qui sera utilise est CADUCEE III et non CADUCEE II.

## 5. POSSIBLE EXTENSIONS OF HERMES III

The Hermes III software is an extension of soffware developed during the earlier phase of the Hermes project. While Hermes III represents a very large step forward both conceptually and in programming from the original model, there are several areas where improvements should be made. There are treated here at íwo levels: conceptual and sofiware.

### 5.1 Conceptual extensions

5.1.1 Survivability

As describes in the interim report on Part 2 of the Hermes project, it would. appear possible that certain aspects of survivability could be handled by incorporating them as constraints in the model. While survivability must now be treated as a simulation application of the sofiware, it would be possible, if this method of handling survivability were developed, to reduce the volume of required simulation. If would of course mean increased complexily in the software and in the model formulation.

### 5.1.2 Planning over several periods of time

Optimizing on two simultaneously should be studied. The size of the problem with one period only is more than doubled when we considered 2 periods, for two reasons: 1) we need compatibility constraints for the configurations of the two periods; 2) in order to find the admissible chains for the second period we need high upper limit since we don' $\uparrow$ know what the results are for period $l$ and we must content ourselves with the lower limit of the 1 period for the same reason.

### 5.1.3 Cost functions

It has been brought up in several earlier reports, that we could use piecewise linear cost functions with real arguments. The problem in using such type of funcrions is at the CADUCEE level. We would have to work with slopes and steps instead of slopes only. This amounts to increase the rario between the upper and lower bounds and we don't know if CADUCEE will be efficient enough in screening the dominated chains. In any case, a new CADUCEE should be written and a new TRANCHE also.

### 5.2 Software extensions

The software of Hermes III is operational in that CHARGE, CADUCEE III and TRANCHE III are running and can produce acceptable results. However, the software is still largely experimental, and lacks the polish of earlier versions of Hermes. The improvements which should be made at the software level are described below.

### 5.2.1 Intar-module linkages

The output of one module acts as input to the next and therefore these linkeges must exist or the software is not operational. However, at present, some manual intervention is required to effect this linkage. As a first improvent, the linkage should be made fully automatic and under the control of option selection inputs from the user. As described in the section on the usage of Hermes III, the selection of modules and their independant operation would be very desirable and prectrical if done in this manner.
5.2.2 Report writer and plotring routine

The output of Hermes III is still at the level required for the development of the soffware. While this is sufficient from the point of view of those who use the soffware regularily, the output is in fact difficult to read. A report writer, therefore, would lie a very usefull extension of the software. As an extension of the report writer, a routine which produced maps or plots of the solutions would be usefull from a legibility point of view.

### 5.2.3 Automation of simulation procedure

At present, if the software is to be used for simulation, requiring several passes of the model, each pass must be set up as a seperate run. Certain types of simulation runs, which might be required more frequently; might well be considered as cancidates for automation. Essentially, this would involue the development of a "front end" program which would specify the inirial conditions and changes to these conditions to the Hermes sofiware.

### 5.2.4 User's manual

While not strictly a software extension, the utility of a user's manual for the Hermes III software is obvious.
5.3 An extension of the model's use as a planning tool

The proposal outlined here describes in brief the type of siudy which could be carried out by D.O.C. using Hermes sofiware to its fullest as a planning tool. This project is offered by way of an example.

The suggestion made here starts from the assumption that a large number of users, business, but mostly households would be prepared to wait a "reasonable" period (say, up to 10 minutes on the average) before having their long distance calls put through, if they get a reasonable price reduction. The idea is, of course, borrowed from that used by the airlines. There would be 2 types of direct-dialing
long distonce calls. The first would remain as it is. The second, which might start with the digit 2 instead of the digit 1 for instance, would be a stand by call. The user would dial the regional code and the number she wants to reach and will then hang up and wait. As soon as a connection is esteblished the phones would ring in both places.

This would of course require appropriare arrangements including equipment to store the waiting calls. These should not be too complicated. One might note that no more than 26 digits will have to be stored: 10 digits for the call of origin, 10 digits for the destination eall and 6 digits to record the time the call was placed. It is by no means necessary that this storage of the wairing calls be done at all the levels of the switching hierarchy. One might well imagine that this storage takes place only of some higher level of the hierarchy. It is to be noted that this arrangement could be introduced piecemeal on different parts of the system, starting even with a single pair of demand points.

If would probably be too complicated to search continuously for free circuits and to put throuth the waiting calls of the second type. Though this might perhaps be possible with Full Groups and perhaps even High Usage groups. It not, every, say, 1 or 2 minutes the system would try to put the waiting calls through. As with air freight (though not with "stand-by" passengers) one could envisage that calls that had been waiting, say, 10 minutes, are automatically put into the stream of regular long-distance calls.

It will be noted that this arrangement will inevitably lower the quality of service of the regular calls (the capacity of the facilities being kept constant, of course). A very important problem would be to find the appropriate price differential between the two types of long distance calls. We have absolutely no experience on which to base estimates of the responsiveness of consumers to the quality of service as it is understood in the sense used here, that is, in the sense of having to wait for a long distance call to go through.

The Model Hermes III is perfectly capable of handling the extension outlined above, given, of course, time and the resources necessary which it would be difficult to estimate at the present stage. In any case, any serious discussion of this proposal would involve very intense collaboration with the technical personnel of the D.O.C. The objective of the proposal is, of course, to reduce the facility expansion requirements in the coming years while giving the users a choice, compatible with the logic of the price system, between at least two different qualities of service.

## APPENDIX 1

## Working Bibliography

a) Hermes Project

Report on the Preliminary Phase
prepared for the National Telecommunications Branch Department of Communicarions
by le Laboratoire d'économétrie de I'Université Laval and Sorès Inc., Montréal December 1971
b) Hermes Project

Report on the Second Phase
prepared for the National Telecommunicarions Branch
Depariment of Communications
by le Laboratoire d'économérrie de l'Université Laval and Sorès Inc., Montréal
March 1972
c) "Nore technique concernant les hypothèses et la position du problème: Hermes III" Laboratoire d'économétrie
et Sorès
le 21 semptembre 1972
d) Document de travail No. 1 (revisé) :
"Le problème de la qualité de service et du dimensionnement des faisceaux: Hermes III" Jean A。Guérin
le 21 août 1972
e) "The expected input/ouiput structure of the model Hermes III." Jean A. Guérin September 6, 1972
f) "Derivation of point-to-point traffic demand: a tentative approach." Jean A. Guerin
August 30, 1972
g) Progress Report

Sorès Inc.
September 13, 1972
h) "Statement of the Work" included in the contract signed by Laval University and the Department of Supplies and Services, on behalf of
the Department of Communications
i) Transmission and Switching-Costs and Capabilities and their Effects on Network Structure J.tio Weber
(69C P351-COM)
i) The One - Terminal Telpak Problem B. Rothfarb; M. Goldstein

Operotions Research, Vol. 19, No. 1 Jan. FFb. 1971
k) Planification des réseax de télécommunicarions-wprogramme écrin Jean Paul Maury
Annales des Télécommunications, Vol. 25, Nos 5-6, 1970

1) Utilisations de calculatrices pour la planificarions des réseaux C.C.I.T.T., commission d'études XIII, contribution No. 62. septembre 1971
Nippon Telegraph and Telephone Public Corporarion
m) Hermes Project Evaluation
J. de Mercado

January 1972
n) Comment on "Hermes Project Evaluation"
R. Riendeau

February 1972
o) Gestion du Réséau de Circuiìs Téléphoniques Interurbains à l'aide d'un Calculateur Numérique
D. Suiton; R. Volt; J.C. Henon

## APPENDIX 2

## APPENDIX 2 <br> MATHEMATICAL FORMULATION OF THE MIXED LINEAR PROGRAM IN TRANCHE III

1.3 Jor investment activities

- Setss of indicess:

KJ.: is the set of links of the transmissjon network for which capacity expansion activities (or finling up activities) are possible.

TL( $k$ ): is the set of capacity expansion (investment or' filling up) activities for $k$ belonging to KL .

KS: is the set of switching nodes for which capacity expansion
activities (or filling up activities) are possible.
TS(k): is the set of capacity expansion (investment of filling up) activities for $k$ belonging to KS.

- Variables:
$\mathrm{y}(\mathrm{k} ; \mathrm{j}):$ is the number, an integer, of blocks of circuits put into
place to increase the capacity on link $k$ belonging to KL
or node i belongjng to KS by means of investment activity
j belonging to TL(k) in the case of a link or belonging to
TS $(k)$ in the other case.

Note we use the same symbolism for the level of a "filling up". activity and we will not mention this type, of activity anymore.

THE CONSTRAINTS
2.1: Assignment of a rufficient number of circuits to satisfy the demand
$\sum_{j \in R(i)} x(i ; j)-\sum_{t \in D} \sum_{k \in C(t)} n(i ; k ; t) \cdot d(k ; t) \geq 0$, $i \in A$
Note that the coefficient $n(i ; k ; t)$ : number of new circuits required when configuration $k$ for the pair of demand points $t$ is chosen, has been computed by CHARGE.
2.2 Limitation of circuit assignments and augmentation of capacities

- For the transmission links:

$$
\sum_{i \in A} \sum_{j \in \mathbb{R}(i)} \delta(j ; k) \cdot x(i ; j)-\sum_{j \in T L(k)} b(k ; j) \cdot y(k ; j) \leq 0, k \in K L
$$

where $\delta(j ; k)$ takes the value 1 if the chain $j$ uses the link $k$, and takes the value 0 otherwise; where $b(k ; j)$ is the number of ojrcuits installed by one block of type ( $k ; j$ ) in transmission faciljty investments.

- For the swittching nodes:

$$
\sum_{t \in D} \sum_{k \in C(t)} s(i ; k ; t) \cdot d(k ; t)-\sum_{j \in T S(i)} b(i ; j) \cdot y(i ; j) \leqslant 0, i \in K S ;
$$

note that the coefficient $s(i ; k ; t)$ : number of new lines required when configuration $k$ for the pair of demand points $t$ is chosen, has been
computed by CHARGE. The coefficient $b(i ; j)$ is the number of lines installed by one block of type (i;j) in switching facility investments.
2.3 Sequencing of investment activities

For a given $k$ belonging to KL (or KS):
First case: all levels of investment activities take the values 0 or 1 only.

The sequencing constraints are
$y(k ; j) \geq y(k ; j+J) \quad j \in T L(o r T S) \quad \because$,
since the investment activities are ordinally ordered and we assume. that the numerical indices are assigned in the same order.

Second case: the levels of investment activities alternate in the following sens:
the first activity has a 0,1 range of integer values, the second activity has a $0,1,2,3, \ldots, \bar{y}(k ; 2)$ integer values, the third activity has a 0,1 range again, the fourth activity has a $0,1,2,3, \ldots, \bar{y}(k ; 4)$ range, and so forth.

Thjis kind of pattern is always possible to impose.
The sequencing constraints become
$\bar{y}(k ; 2) \cdot y(k ; 1) \geq y(k ; 2)$

$$
y(k ; 2) \geq \bar{y}(k ; 2) \cdot y(k ; 3)
$$

etc ...
2.4. Compatibility constraints

- Mutual exclusiveness for the configurations:
$\sum_{k \in \mathrm{C}(t)} d(k ; t)=\mathrm{J}, \mathrm{t} \in \mathrm{D}$.
- Compatibility of configurations:

A contemplated link $i$ in the switching network belong to $H=\underset{t}{u} H(t)$. Call $t_{j_{1}},{ }^{t} j_{2}, \cdots, t_{j_{n}}$ a permutation of the $n$ elements of $D$. If the link $i$ belongs to only one $H(t)$ there is no need of compatibility constraints, since the mutual exclusiveness constraint for the set $C(t)$ will be sufficient.

If the link $j$ belongs to more than one $H(t)$, we will establish compatibjility constraints, for each i, the following way.

Call $H\left(t_{j_{1}}\right), H\left(t_{j_{2}}\right), \ldots, H\left(t_{j_{k}}\right),(k \leq n)$, the sets which contain the link j .

Then, for each link $i$ belonging to $H$, we have the set of constraints as follows:
$\sum_{k \in C\left(t_{j_{1}}\right)} \delta(i ; k): d\left(k ; t_{j_{1}}\right)-\sum_{k \in C\left(t_{j_{2}}\right)} \delta(i ; \dot{k}) \cdot d\left(k ; t_{j_{2}}\right)=0$

where $\delta(j ; k)$ takes the value $l$ iff the link $i$ is involved in configuration $k$ and 0 otherwise.

Since the mutual exclusiveness constraints secure us with only one $d(k ; t)$ in each set of configurations $C(t)$, we will have a pattern as shown below:

$$
\begin{array}{rrrrl}
1 & -1 & & & =0 \\
& 1 & -1 & \ddots & =0 \\
& 1 & -1 & =0
\end{array}
$$

which implies the simultaneous existence of a given contemplated link in all the chosen combination of confjgurations that need it. In other words we have the following string of equivalent propositions:
(The configuration chosen for ${ }_{\mathrm{t}_{\mathrm{j}}}$ has the link i.) if and only if (the configuration chosen for $t_{j_{2}}$ has the link $j$ ) if and only if ... if and oniy if (the configuration chosen for ${ }^{f_{j}}$, has the link j.) .

Note that this string of propositions is equivalent to the string of negations of the same propositions, so it is not necessary to impose compatibility constraints for the configurations which do not contain the link in question.
2.5 Bounding constraints on the activity levels
$x(i ; j) \geq 0, i \in A, j \in R(i)$.
$d(k ; t)$ is a zero-one variable, $t \in D, k \in C(t)$.
$y(k ; j)$ is a non negative integer less than or equal to $y(k ; j), k \in K L, j \in T L(k)$.
$y(k ; j)$ is an negative integer less than or equal to $\bar{y}(k ; j), k \in K S, j \in T S(k)$.
THE OBJECTTVEE EUNCTION
Call $z$ the total expansion cost. The investment activities only liave nonzero marginal cost coefficients in the linear form we want to minimize, therefore the objective function is
$z=\sum_{k \in K I} \sum_{j \in T L(k)} c(k: j) \cdot y(k ; j)+\sum_{k \in K S} \sum_{j \in T S(k)} c(k ; j) \cdot y(k ; j)$.
This sumntion i: , the expansion cost for transmission facilities and fon switching facilities. TRANCHE III chooses the best combination of variables subject to the above constraints.

