SPECTRUM USAGE AND REQUIREMENTS
406 - 960 MHz

Central Region

spectrum Usage and Requirements

```
406 - 960 MHz
```


BrStitiki:
G.R. Stetski, P. Eng.,

Project and Interference Engineer

$$
\begin{aligned}
& T K \\
& 6553 \\
& C 32
\end{aligned}
$$

Acknowledgement
Major contributions from many areas of the Winnipeg Regional Office are incorporated in the following pages.

I thank all of you for your time, your ideas, and your essential assistance.

Table of Contents

page

Introduction 1.
Conclusions 2
Allocation' Recommendations 7
Other Pertinent Recomnendations 11
DETAILED ANALYSIS
Approach Explanation 12
Stage I 13
Stage II i8
Stage III 27
Stage IV 35
APPENDICES
Appendix I. A. 37
Appendix I.B. 47
Appendix I.C. 49
References 51
Bibliography 57
ATTACHMENTS
Attachment A
Attachment B

Introduction
This report explores the communications requirements for Central Region within the spectrum area of $406 \mathrm{MHz}-960 \mathrm{MHz}$. The recomendations are in support of these requirements.

Although the recommendations apply specifically to Central Region, many of the same considerations are applicable in other geographical areas of Canada. Where they are not applicable, we request a flexible national approach which will allow the necessary yariations to be applied in Central Region. We belive the subject frequency band, due to pertinent propagation characteristics, can be molded to compensate for Regional differences.

1. Dernand for land mobile sexvices in Central Region will continue to expand at rates over 20 s compounded anmually (see Appendix I.A., tables 1.b, 2.b, 3.b, and 4.b). Present methods of satistying this demand will soon be inadequate (see section I.A.A.), We have reached a turning point, whereby a new direction is required.

Genexally, the new direction is necessarily towards large integrated systems (see page 22, "New Approaches"). Specifically recomended are General Land Mobile Radio Systems (Public Mobile Telephone Systems), Restricted Common Carrier systems, and paging systems. These systems, when employing state-ofwthe-art techniques, are more efficient users of land mobile spectrum than most existing private systems.

While considering the types of systems referred to in the above paragraph; it should be realized that efrective usage of individual frequencies increases with the total number of Erequencies and usexs assigned to the particular system (see page 22, "New Approaches"). Considering also the practical limitations of modern radio equipment. (i.en at least 5 MHz spacing required between transmit and receive frequencies and preferably consecutively arranged transmit frequencies and consecutively arranged receive frequencies), block assignment of frequencies is mandatory.

Block assignments in existing land mobile bands wouldrequire the displacement of existing users. This is a difficult, if not impossible, process. 'Virgin' spectrum is required for the necessary block frequency assignments for integrated land mobile systems.

The advantages of assigning 'virgin' spectrun for the large integrated systems are apparent from the following predicted occurrence of events:
a) Block assignments are allocated for the pertinent integrated systems.
b) Initial users of the integrated systems will pay relatively higher costs (than would occur using available optional systems) for: the advantages of practically njil waiting time, secure expansion possibilities and potentially greater flexibility.
c) Presently existing land mobile spectrum will increase in

* congestion, and new users, along with existing users who are expanding their facilities, will opt for the large integrated systems.
d) With many users, the cost per user of the integrated systems will drop, eventually becoming lower than private system costs in many areas:
e) All new users, and all existing land mobile users whose equipment has been depreciatod, will utilize the large integrated systems. Existing land mobile bands will become vacant, and available for reassignment to large integrated systems.
f) The above (a) to (e) will occur to varying extent in vaxious sizes of urban centers. The presently existing land mobile bands will exist.as an altemative in rural areas for economically feasible private radio systems.

NOTE: Existing land mobile bands must be retained at this time to provide an alternative to the large integrated systems; thereby, encouraging the lowest possible usage prices in the integrated systems. Further, there will be no direct cost hardships introduced upon the land mobile user.

Given the inevitable trend towards large integrated systems, complications arise when attempting to foresce the composition and interrelations of these systems and their users. A basic ideology must be resolved, namely: Should there be one monopolistic integrated system, probably regulated,
to which all users must eventually yo; or should a number of integrated systems be encouraged to develop?

Central Fegion belicves competition, in the form of two or preferably more integrated systems, is desirable versus a regulated monopoly. This belief is based unon the cextainty that the regulated monopoly, in this instance, would be the common carrier, a body whose structure is not conducive to continual implementation of developing techniques (new services, spectrum efficiency techniques, etc.) . Adaitionally, competition is the optimum method of lowering user fees in this area.

The common carxier must make interconnection to the telephone network available to all integrated land mobile systems, and at a reasonable cost. This will ensure fair competition between the comnon carrier integrated systems and the privately financed integrated systems.

The amount of spectrum which should be set aside for the kloci allocations to integrated systems is difficult to determine. The allocation recommendations for $406-450 \mathrm{Myz}$ (see pagelo, Figure i) make available three blocks of spectrum for large integrated land mobile systems, each block composed of 3 MHz for transmit and 3 MHz for receive fiequencies. There is also one block of 1 MHz set aside for paging services. Of the three 3 MHz blocks, one is allocated to common carriers (public mobjle telephone system), one is allocated to restricted common carriers, and one is reserved for future allocation. These allocations will accommodate requirements in Central Region until at least 1990, at which time the situation will be reevaluated. If required, additional blocks in 806890 MHz may then be assigned to land mobile. (There may also at that time be available spectrum for block allocations within the presently existing land mobile bands).

[^0]2. Broadcasting services are essential to the people of Central Region. The type and varity of sexvices, along with the economic base available to support these services, are major considerations in this area.

Central Region, until at least the year 1990 , does not requixe UHF channels 70-. 83 (see section I.B.). It is, therefore, appropriate to reserve this portion of the spectrum ($806-890 \mathrm{HHz}$), with a review in 1990 of needs and foresecable possibilities.
3. Studio transmitter links (STL's) are currently operating in various land mobile and fixed bands. They are adversely affecting the optimum assignment of land mobile and fixed frequencies.

These one-way services are best combined with other one-way 'fixed' services. The ideal area for all STL's is within the UHF television band. The recommended spectrum is 794 - 900 MHz (UHF channels 67 and 68), which may be employed dependent upon the local allocated UfF channel. This spectrum is chosen as it is outside the shared (land mobile/television) channels proposed by the United States (Channels $14-20$) and outside the reserved spectrum proposed by Central. Region ($806-890 \mathrm{MHz}$): It is also outside the spectrum in which satellite broadcasting is permitted ($620-790 \mathrm{MHz}$).
4. Point-to-point services in the $890-960$ MHz band are subject to unique requirements in Central Region, particularly in Alberta (see section I.C.). There are a large number of systems in urban areas. This requirement will continue.

Accordingly, central Region recommends that there be no change in allocations for this spectrum.

Further, this band could be better utilized by the large variety of
users if only digital systems were allowed by 1990. This would enable implementation of a two frequency plan for the band. Subsequently, there would be sufficient spectrum available to encourage all point-to point systems (of greater than six voice channel capacity) to migrate to this band. (This would aid in clearing the land mobile bands for previously described future block land mobile allocations).
'Grandfathering' of existing analogue fixed systems should begin as soon as possible.

```
\(406.0-406.1 \mathrm{IIIz}\)
Primary Service -. Mobile - Satelilite
```

406.1 - 407.0 HIz
primary Service - Radio Astronomy
$407.0-410.0 \mathrm{MHz}$
Primary. Service - Mobile ${ }^{*(1)}$ - Common Carrier - P.M. T.S. (TX i)
(Public Mobjile Telephone)
$410.0 \therefore 420.0$ 1112
$410.0-413.0 \mathrm{miz}$

- Primary Service - Mobile $\mathrm{A}^{*(1)}$ - Restricted Commion Carrier (TX 1)
$413.0-414.0 \mathrm{Plz}$
Primary Service -- Mobile (Municipal/Safety Services)
$414.0-41.5 .0 \mathrm{ilz}$
Primary Service - Fixed (Except Studio Transmitter Links)
secondary Service - Mobile
$415.0-418.0 \mathrm{MIz}$
Prinary Service - Mobile ${ }^{*(1)}$ - Reserved (TX 1)
$418.0-419.01 \pi 1 z$
Primary Sorvice - lobile (Municipal/Safety Services)
$419.0-420.0 \mathrm{MHz}$
Primary Service - Fixed (Except Studio Transmitter Links)
Secondary Service - Mobile

$420.0-450.0 \mathrm{MHZ}$

420.0-423.0 M1z

Primary Service - Mobile ${ }^{*(1)}$ - Common Carrier - P.M.T.S. (RX 1) (Public Mobile Jelephone)
423.0-426.0 Mhz

Primary Service - Mobj le ${ }^{*(1)}$ - Restricted Common Carrier (RX 1)
$426.0-429.01112$
Prinary Service - Mobile ${ }^{*(1)}$ - Reserved (RX 1)

```
429.0-430.0. HIz
Primary Service - Paging
```

$430.0 \mathrm{MHz}-450.0 \mathrm{MIz}$
Primary Service - Radiolocation
Secondary Service - Amateur
$450.0-470.01112$
Primary Service . Mobile *(3)
Secondary Service - Fixea* ${ }^{*}$ (Except studio Transmitter Links)
$470.0-608.0 \mathrm{il1z}$
No change.
608.0-614.01412

No change.
$614.0-806.0 \mathrm{MHz}$
Primary Service - No change.
788.0 - 800.0 Pliz

Secondary Service - Studio Transmitter Links.*(4)
806.0-890.0 M1Z

Primary Service - None - Reserve untill 1990^{*} (5)
890.0-960.0 1 MHz

No change. *(6)
*(1) : - Systems aproved for use in this spectrum must employ the following spectrum conservation techniques:
a) Automatic frequency scanning;
b) sub-audio operated squelch;
c) diojital transmission;

NOTE: \quad.) The 'resorved' land nobile spectrum should be allocated to R.C.C. of comnon carrier as may be approporiate at a later date.
ii) Interconnection to the telephone network must be supplied at a reasonable cost by the common carrjer upon request.
iii.) Equipment parameters should be specified to incorporate state-of-the-art techniques. Spectrum conservation techniques should be employed (see page 2l, "Technological Advances").
*(2) - Systems approved for use in this spectrum must employ the following conservation techniques:
a) one-way only;
b) tone only;see Attachment B
c) digital transmission; ...see Attachment B
d) automatic frequency scanning.
*(3) - Only fixed services with 6 voice channels or less and a maximum 56 kHz bandwidth allowed. All other point-to-point must use $890-960 \mathrm{MHz}$ band.

* (4) - Either $788.0-794.0 \mathrm{MHz}$ (UHF Channel. 67) or $794.0-800.0 \mathrm{MHz}$ (UHF, Channel 68) will be used in an area, dependent upon the local allocated UHF channel.
*(5) - At 1990, this spectrum will be allocated according to conditions existing: or foreseeable at that time.
*(6) - By 1990, all systems should be digital transmission with a two frequency assignment plan.

Othex Pertinent Reconmendations

1. The military shouid be formally requested to review their requixements in the $21.6-375 \mathrm{kHz}$ band.
2. The fee structure for radio licences should be reevaluated with the establishment of:
a) a selective increase in fees to promote, where practicai, use of services alternate to radio systems;
b) a fee structure related to amount of spectrum used. (This could be based upon a nominal quantity, possibly the spectrum used by one-way tone-only digital paging).

Analysis Approach - Explanation

Abstract

The spectrum of $406-960$ NHz is subdivided into three sub-spederums. These sub-spectrums are:

$$
\text { A. } 406-470 \mathrm{NIZ} \text { and } 608-614 \mathrm{MHz} \text {. }
$$

B. 470-890 NHz (excluding 608-614. NIz) :
C. $890-960 \mathrm{MHz}$.

Analysis of the three sub-spectrums proceeds in four general stages. These four stages are:

I. Past usage trends and subsequent future trends.
II. Technical developments, new services, and cost considerations.
III. Social and economic considerations.
IV. Other considerations.

The format of the analysis in point form is:

PAGE
I.A ... 13
I.B .. . 15
I.C 16
II. \boldsymbol{n}.. 18
II.B 24
II.C . .. 25
III. ... $\quad 27$
rv. ... 35
I.A. $406-470 \mathrm{NHz}$ and 608-614 142

This sub-spoctrun is further subdivided into smaller frequency bands as indicated in succeeding paragraphs. Each of these bands is analyzed on a "woxst case" basis under the following assumptions and criteria: a) assuming past and present trends will continue;
b) assuming no increase in efficiency of spectrum utilization due to technologjcal developments or new approaches;
c) accounting for demand pressures firm other areas of the spectrum;
a) assuming no increase in existing frequency sharing levels (see Appendix I.A.5).

NOTE: Neqlected is consideration of new servies which may increase demands.

Additionally, this sub-spectrum is studied only in the "higher density" geographical areas of central Region. This confines the study in some bands to within approximately seventy miles of the centers of Winnipeg, Edmonton, Calgary, and Regina.

I.A.1. $406-410 \mathrm{MIIZ}$

There are no assjgnments in this band in Central Region. As no trends exist, tinis band will not be studied further until stage IV of this report.

I.A.2. $410-420 \mathrm{MIZ}$

This band is currently being reserved in Central Region for municipal
sefety services and other as yet undetermined services. The small number of assignments existing are not indicative of any trends. This band will not be studied further until stage IV of this report.

I.A.3. 420-450 1412

With the exception of $430 \mathrm{ME} z$ and 450 MHz assignments at Churchill, Manitoba, this band is used in Central Region for amateurs only.. Usage trends here are difficult if not impossible to detemine. This band is, therefore, not studied further. It will be treated axbityarjly in the reconmendations of this report.

None: High power radars axe employed by the United states in this band.

$$
\text { I.A. 4. } \quad 450-470 \mathrm{MFI} \dot{z}
$$

Inis band is studied in areas within seventy miles or the centers of Winnipeg, Edmonton, Calgary, and Regina. Potentidi demand pressures on this band may originate in the bands of $30-50 \mathrm{MHz}$; $138-144 \mathrm{MHz}$; 144-150.8 MHz; and 150.8-174 MHz. Given the "worst case" cxiteria referred to earljer, each of the "demand pressure" bands may increase demand upon the 450-470 MHz band in the manner indicated in Appendix I.A. Each area studied would exhaust (consume) available frequencies in the 450-470 MHz band as follows:

Area	Year of Consumption
Winnipeg	$\ddots 1983$
Edmonton	1980
Calgary	1980
Regina	>1990

It should be remembered that there exist a certain number of wideband point-to-point systems (including studio transmitter links) jn various
of these bands. These systems further reduce the total number of frequencies available in any area, to an extent which will be determ mined in a later investigation.

NOTE: i) In Appendix I.A., the 1966-1975 assigned frequencies are obtained from a report entitled "Rate of channel 'consumption'", issued by v. Sahay of DTSMS, ottawa on May 20, 1976. The subject reporti is based upon the domestic frequency list (DFI) data base, but: also accounts for frequencies unassignable due to FCC and IRAQ assignments.
ii) The 'sharing levels' in Appendix I.A.5. are derived from the Central Region VHF/UHF data base, which is current and accurate.

I.A.5. 608-614 M1z

There are no assigmments in this band in Central Region. As no trends exist, this band will not be studied further. It will be treated arbitrarily in the recommendations of this report.
I.B. $\quad 470-890 \mathrm{MHz}$ (exclucling 608-614 MHz).

This sub-spectrum is currently allocated in Central Region exclusively to UHF television broadcasting.

Current and previous assignment percentages and similar historical data do not relate simply to future needs or developments in this area. A more subjective analysis is required.

The analysis is based on a fundamental premise. Within the next twelve years (1990), the following services will be the maximum required in the cities of Central Region:

1 CBC English servioe

1. CBC French sexvice
2. CTV English service

1 Independent service
1 Educational service
1 Unforṣeen service

The above premise has been applied to all cities with a population of 10,000 or greater in Alberta, Saskatchewan, and Manitoba (the Northwest Jerritories is assumed to be adaptable to decisions which have been based upon the Prairie provinces). Appendix I.B., Table J., demonstrates that all services can be supplied without utilization of UHF channels 70 to 83.

It is interesting to realize that 10 of the cities studied have consumed their VHF allocations, while 5 more cjties have only one unused vir allocation. UHF will be required for future expansions.

NOTE: i) Existing programs and data incorporated by Ottawa have been utilized in this study.
ii) Existing full-power broadcast services which have been authorized as of December, 1976, are included for completeness in Appendix I.B. , Table 2.

I.C. $890-960 \mathrm{MHz}$

This sub-spectrum is currently utilized in Central Region by fixed point-to-point systems and studiowtransmitter links (SIL's). The development of usage in this spectrum is studied to determine whether the spectrum is insufficient for present services, or conversely whether sharing arrangements with new services are feasible,

Appendix I.C., Table 1 , shows the pressint distribution of frequency
assignments (not hops) among the various users in each province. Many of the systems in Alberta are situated in or near the large metropolitan centexs (Calgaxy and Edmonton), while in the other provinces (and Northwest Territories) the systems are located in. more remote areas (around smaller population centers).

In Table 2 of Appendix I.C. , is listed the breakdown of bandwidth utilized for each respective assigned frequency. Most of the assigned frequencies with bandwidths less then 2000 KHz (24 channels or less) are located in Alberta. (This is verified by Table 1 of Appendix I.C., which shows the high percentage of total frequency assignments in Alberta employed for pipeline commnications with typical utilization of 24 or fewer voice channel systems).

The major urban areas in Central Region, with the exception of those in Alberta, are minor users of this sub-spectrum, and there is no trend which indicates a future deviation from this situation.

The Alberta situation is currently being explored from the aspect of alternatives to this sub-spectrum for providing communications requirements, particularly for the major urban areas. A report. will be completed within the next few months.

Technical, Service, and Equipment Cost Considerations

This stage of analysis explores the above considerations, which STAGE I assumed constant. The pertinent factors may be generally classified into two groups: a) those Eactors which increase demand for frequencies; b) those factors which decrease demand for Erequencies.
a) Demand Increase Factors:
i) New services:
ii) Equipment cost considerations (i.e., new technology causing existing sexvices to be available at lower costs.)
b) Demand Decrease Factors:
i) Deleted services (due to movement to other spectrum areas).
$\because \quad i i_{0}$ Alternate services (i.e., non-radio).
iii) Spectrum efficiency increase due to:

风) Technological advances.
(3) New approaches (such as time sharing one or more frequencjes, multiple low power assignments, combination of services in one communications media) .

Various possible effects of these factors upon developments in Stage I are examiried. The applicable time spread is to 1990.

II:A. 406-470 M1z and 608-6.14 M1z
For bands 1 (406-410 MIz), $2(410-420 \mathrm{MHz}), 3(420-450 \mathrm{MHz})$, and 5 (608-614 MIz), referral. is made to Stage I.
a) Demand incxease Factors
i) New Services

Various services may exhibit a higher growth rate in the future than theix current average in each pertinent band (bands listed. in I.A.4). Other services axe in their infancy and will expand to varying degrees.

Modest demands may be expocted from railroad communications (1) transit systems. ${ }^{(2)}$, automatic vehicle location systems ${ }^{(3)}$, rural radio telephone systems (4), energy transmission systems (5), alarm monitoring systems (5), and telemedicine ${ }^{(6,7,8)}$. Meteor burst communications $(9,5,10)$, which utilizes $10-100 \mathrm{MHz}$ frequencies, will replace HF comunications in many areas, with eventual effects in $450-470 \mathrm{MHz}$.

High demands may oricinate from dissatisfied General Radio Service (GRS) users (1,1,12). A one percent movement from GRS to (say) the $30-50$ l1tz band would necessitate over 800 additional frequencies in this band in Central Region. This demand is eventually reflected in the $450-470$ Mizi band.

More frequencies will be required for studio transmitter links (STL's) in 450-470 MHz i.E the CRTC "suggests" that all AM radio stations also oferr an FM service.

There is also the granexal trend that labour intensive services are increasing in cost, and will, therefore, be replaced where applicable by communiczetions systems ${ }^{(13)}$.

ii) Lquipment cost essiderations

The greatest demond sorssiures for frequencies will probably originate with equipnert cost reductions.

Hicroprocessor modules, which have been used in radio equipment only one or two years, will accelerate in usage and will drop from a current $\$ 50.00$ price range to $\$ 5.00$ within the next two years ${ }^{(14,15)}$. Services supplied by pagers ${ }^{(16)}$, and portable telephones $(17,18,19)$, as well as by mobile radios, will be available to major portions of the consumer market. These demands could not possibly be accomuodated with existing approaches.
b) Demand Decrease Factors

i) Deleted Sorvices

Of the existing services in $450-470 \mathrm{MHz}$ and related bands, there is not seen at this time a drop in demand. There is only a possibility of movement of services to other spectrum areas.

As the frequencies of concern are appropilate for jand-mobile operations, the logical course is to disccurage point-to-point systems in these bands. The fixed services can be accomnodated at, higher frequencies. This action shoula apply particularly to wideband (greater than 6 voice chännel) systems.

ii) Alternate Services

Counteracting demand for more spectrum are options such as radiating cable for automatic vehicle location systems and road and rail transportation $(20,21)$. Also, time division multiplexed (TDM) coaxial cable is available for rural communications ${ }^{(22)}$. Certainly cable can cost-weffectively
substitute for backbone radio on pipline systems ${ }^{(23)}$.

Some of the alternatives are cost-effective and some are not. Many more alternatives would be feasible should the spectrum be assigned a monetary value (more than the token value assigned today). This approach should be applied where possibje ${ }^{(24)}$.

II.A.A.b. iii.) Spectrum Efficiency

The major decrease in demand for frequencies should definjtely originate in this area.
ex) Technological Advances

Spectrum may be conserved in many ways, but normally with some economic penalties. There axe some major impact possibilities which are current state-of-the-art.

Single sideband transmission would allow 12.5 KHz channel spacings, and thereby double the existing number of available frequencies $(25,26,27,28)$. Some countries, such as England, are studying 6.25 KHz channel spacing (below 100 MHz), although there is a trade-off with intermodulation levels (29).

Where $F M$ radio is employed, its characteristics should be employed to allow closer frequency spacing. VHF radios exist which can be co-located with a $5 \%-7 \%$ frequency spacing ${ }^{(30)}$.

Various types of tone signalling reduce interference and allow closer spacing of assigned frequencies ${ }^{(31)}$.

Utilizing two antennae on mobiles with proper combining circuits is an extension of a technique common in microwave systems. Measurements show, for example, that a mobile system with a reliability of 88% will increase its reliability to 99% with this technique ${ }^{(32-36)}$. This obviously would allow lower effective radiated powers (ERP) and a closer spacing of frequency assignments.

Null steering antennae is a more expensive technique, but one which can also be applied to advantage in some cases $(37,38)$.
newitoctraqums.

Finally, use of digital transmission versus analog transmission has great potential. Digital transmission allows savings in time and a greater reliability ${ }^{(39-46)}$. As data becomes more important in mobile communications (even to the extent of a njil requirement for voice conmunications), the fivefold spectrum advantace of transmitting this type of information over a digital versus analog system further substantiates the case for digital transmission $(47,48)$.

Although there are some initial economic penalties, the long term implications in conservation of frequency spectrum contribute to the attractiveness of the above technological possibilities.
II.A.4.b. iijo日, New Approaches

The greatest opportunity for satisfying increasing demand lies with new approaches.

One approach which is used to some degree today is assignment of one frequency to more than one user in one area. Time sharing of the assignment is then required ${ }^{(49)}$. The level of sharing in Central Region is shown in Appendix I.A. 5. Certainly this level will and should be increased. But this in j.tself is not the final solution, as jt does not allow 100% useage (which is the ideal) of a frequency while maintaining satisfactory (to the user) service.

Another possibility is sharing of frequencies between different services on a coordinated basis. Sharing of land-mobile and UHF television is an example ${ }^{(50)}$. This allows a greater reuse of frequencies, but is accompanied by administrative complications. situations may exist. which warrant implementation of this technique.

Certainly time sharing of many frequencies by many users provides the optimum use of assigned frequencies. Systems approaching this concept are restricted common carrier systems $(16 ; 53)$ paging systems $(51,52,54,55)$, and genexal land mobile radio service (GLMRS) systems $(17,18,19)$. These types of systems must be encouraged, and within the systems must be encouxaged the adoption of optimum techniques (computox or micxoprocessox controlled frequency selection, digital techniques, etc.). This will be the only way to meet the forecast demand (see Appendix I.A.) for frequencies (i.e., services) in 1990:

Development of the above systems should proceed recognizing that the final arrangement will consist of small zone (or cellular) systems $(56,57,58)$. These systems, more than any other concept, approach 100% useage of assjgned frequencies. Although they are not viable at this time in most areas (59), they will be mandatory in many areas by the end of the century. Systems incorporated in the next 25 years should not be allowed to conflict with this general principle, or in any way complicate its eventual implementation.
a) Demand Increase Factors

An increase in demand in Certral Region by the year 1990 would only result should a political decision be made to subsidize services over and above the six services referred to in Stage I of this report.

b) Demand Decrease Factors

i) Alternate Services

Cable television is competing successfully with offmaiz broadcasting in many areas. Where cable is available in Central Region, penetration levels of 70% and higher are common. In many towns, (e.g., Wainwright, Alberta) a cable television head-end provides all or most of television services. The wixed-city concept will contribute to this trend $(60,61)$. Although the wired-city idea is approaching slowly in some areas ${ }^{(62)}$, it is nevertheless becoming a reality in towns such as Portage la Prairie, Manitoba, where two-way cable and amplifiers, plus switching are avajlable.

Additionally, direct satellite television broadcasting may have a large impact. One hundred percent penetration is achieved and cost-effectively $(63,66)$.

ii) Spectrum Efficiency Increase

Initiated recently are attempts at upgiading UHF television receivers ${ }^{(64)}$. The objective is to reduce or eliminate as many of the UHF "taboos" as possible (65). Success in this area could increase the effective number of available UHF assignments.
a) Demand Increase Factors

Demand may increase as point-rompoint systems move into this sub-spectrum from lower frequencies (due to congestion in lower frequencies) and from higher frequencies (due to higher equipment costs at higher frequencies).

Also, particularly in Alberta, demand may rise with the implementation of more stringent pollution control reguiations for pipelines.
b): Demand Decrease Factors
i) Deleted Services

A decrease in demand may occur only in Alberta, and would result from the exhaustion of oil and natural gas reserves.

ii) Alternate Services

Should wire line links become less expensive than radio, studio transmitter links (STL's) would move away from radio. This could be encouraged through licence fee structures. The use of satellite, probably around 12 GHz frequencies, could substitute for, in particular, Jong-haul low capacity systems.

iii) Spectrum Efficiency Increase

of) Technological Advances

New technoloyy has made possible the re-use of frequencies on some adjacent hops of point-tompoint systems (67). This has the potential of effectively increasing the spectrum available.

Digital radio systems use spectrum more efficiently than
analogie systems, and should accordingly be encouraged.

P) New Approaches

Some decrease in demand would originate with an allowance for sharing of systems among utilities.

STAGG III

Population

To assess spectrum requivement in the band 406 m 960 mHz we must first know the Canadian population size and where it will be distributed thxoughout the forecast period. Two possibilities exist:

1) That uxbanization will continue till 90% plus of the population is urbanized.
2) Urbanization will peak at approximately 75-80\% and an ex-urbanization move will occur.

If we consider probabilities, uibanization of 75% has already been surpassed in ontario and Quebec ($8 \dot{2} .4 \%$ and 80.6% respectively in 1971), while British Columbia had reached 75.7% and Alberta 73.5% by this same 68 period. None of these provinces show any sign of letup in the urbanization process. When we consider that Australia reached an urban 69 population of 88.5% in 1970 , it is apparent that population density can rise considerably higher in Canada before jt becomes a controling factor in any ex-urbanization process: Thus, though two possibjlities for population distribution are possible, it would appear that 90% plus urbanization i.s a distinct probability. The ex-urbanization or rural non-farm population may at most provide up-to 10 of the total population with the majority clustered around the larger urban areas within commuting distance of thej.r place of employment. Though some communications demand as a substitute for transportation may be required, it is not
likely to be a significant factor in the central Region area.

Rural nonmerm as of population total.

As the foregoing chart indicates, the ex-urbanization process is not as probable as the 90\% plus urbanization process. However; though it represents a percentage decrease, this will still mean a rise in real numbers supplying a steady demand on the $450-470 \mathrm{MHz}$ Iarid mobile section of the spectrum.

The 1971 population projections for the year 2000 indicates that canada will consist of 19 metropolitan areas. Montreal, qoronto, and vancouver will be considerably larger than the remaining 16 metro areas. Central Region will probably have 3 major metro's, namely Edmonton, Calgary, and Winnipeg, with three minor metro's, these being Regina, Saskatoon, and Brandon. This is illustrated by the following chart:

Projected size of Metropolitan areas to 2000 .

Predicted overall Canadian population distribution is expected to take the following long-range pattern.

In essence, Saskatchewan and Manitoba will decrease as a percentage in overall population as will Quebec and the Maritimes. However, we must keep in mind that real numbers will slowly increase. the long-range concern for population and subsequent communication requirement for Central Fegion then will rest primarily in Alberta with Winnipeg also a
large centre. pressure will be aplied to the $890-960 \mathrm{MHz}$ point-tompoint sector and as well to the 4507470 Mlz land mobile sector of the spectrum.

Economid Trends

As the attached chart indicates, the Canedian GNP has shown a steady increase.

GROSS NATIONAL PRODUCI 1955-73 and index of gross national expenditure

rhough inflation has exagerated the curve over the latter years, the QuF based on stable 1961 dollars shows a steady rise. GNP predictions are extremely risky but if we assume a straight extrapolation with a built-in lo inflationary factor, the economy will still be strong in 25 years. Canada has the labour force and the resources to ensure such a probability. Tnis then implies a steadily increasing demand on the $450-470 \mathrm{MHz}$ land mobile and 890 m 96 point-mo-point sections of the radio spectrum.

Di.sposable Incomes

Previous increases in disposable income has slowed considerably and even shown a decrease over the past two years. This is indicated by the following chart:

real disposable income per capita

Thousands of 1961 doilans (ratio scale:)

Annual percentage change

Goins in reai disposable income per capita were substantially lower in 1974 than in the previous three years, on account of the general slowdown in economic activity and the rapid increases in prices.

The indicator for real disposable income per capita calls for an averag̣e annual rate of growth of 4.8 per cent over the 1974.78 period. The conjunc tion of cyclical recovery and favourable fisc:al policy to keep the cconomy on its upward trend is a prerequisite to the atainment of this target.

Ref: 74

Correspondingly, the amount of monoy available for items affecting communications should have been less. Sales of GRS Radios, however, have soaxed dramatically over the last year, apparently in contradiction to the amount of money people have to spend on this type of commodity. As the longmange (1978) forecast is for a rise in disposable income, we should expect an increased requirement in communications spending particularly in areas relating to recreational activity. This will primarily affect the land mobile $450-470 \mathrm{MHz}$ portion of the spectrum.

Leisure Tine

Leisure time is increasing constantly and this trend is likely to continue. As automation increases we can expect to see the 37 hour work week shrink to 35 and ultimately to a 4 or even 3 day work week by the year 2000, This additional leisure tine will be filled by entertainment and recreational sport. Some of this entertainment will undoubtedly entail expanded media facilities (Video/nudio) and some spectrun space will have to be alloted to communication requirements for transportation systens and associated recreational activjty. probability is high that this will also place. additional pressure on the land mobile portions of the spectrum.

Northern Development

Northern development has in the past years been primarily resourcewbased and will in all probability remain so in the foreseeable future. It is unlikely that large metropolitan areas will develop to a point where they will become a communications problem from a spectrum useage point-of-view. What is probable, however, is.the requirement for spectrum space for communications control and servicing for such development as gas and oil exploxation and delivery systems of Northern resources to Southern markets.
I.V.A. \quad 406-470 MHz
IV.A.1. 406-410 MHz

Refer to IV.A.2. for discussion.
IV.A. $2 \quad 410-420 \mathrm{M12}$

Recomendations regarding use of this band have previously been forwarded to ottawa (a copy of the memorandum is included as Attachment A). Sumnarily, the recommendation states or implies:
a) $414-415$ and $419-420$

Primary Service : Fixed
Secondary Service: Mobile
h) 413-414 and 418-419
i) Centres with population of 200,000 or more:

Primary Service : Municipal Safety
Secondary Service: Municipal Public Transportation systems
ii) Centres with population between 75,000 and 200,000 :

Primary Service : All Municipal Services
Secondary Service: Fixed Services
iii) Iow populated areas:

Frimary Service : Municipal and Fixed Services
c) 410-413 and 415-418

Common carrier (CICA) for public land mobile telephone requirements.

There has been discussion to the eflect that it may be preferrable to move the $410-413$ siot from (c) downwards into the $406-410$ Miz band. This would provide a separation of transmit/receive frequencies for the mobile'telephone systens.

TABLE $1 . a$

Past Progression of Assigned Frequencies

Year	30-50	M1z	138-	44 Mmz	148	0. 8	150.8	174	MHz	0-470 M1z		
	$1{ }^{1}$	$\underline{2}^{\text {** }}$	1	$\underline{2}$	1	2	1	$\underline{2}$		1	2	
1966	1	0	3	0	3	0	145	19		17	0	
1967	3	300	3	0	4	33	177	22		18	6	
1968	3	0	8	267	8	100	191.	8		19	6	
1969	6	100	8	0	. 9	13	212	11		24	26	
1970	10	67	8	0	1.5	67	227	7		27	13	
1971	11	10	10	25	19	27	250	10		33	22	
1972	15	36	10.	0	24	26	276	10		45	36	
1973	19	27	31.	10	30	25	319	16		58	29	
1974	31	63	13	18	38	27	357	12		76	31	
1975	36	16	16	19	47	24	400	12		85	12	

* Frequencies Assigned (including all previous assignments);
** Growth from previous Year (\%)

TABLE 1.b

Band
$30-.50 \mathrm{MHz}$ 138-144 MHz 148-150.8 MHz 150. 8-1.74 MHz 450-470 14z

29\%
15\%
26\%
12\%
26 \%
$\frac{\text { Standard Deviation }}{1970-1975}$
20.8\%
9.7\%
1.38
2. 5\%
9.3%.
*predicted Future Progression of Assigned Frequencies
Year $\frac{30-50 \mathrm{MHz}}{(1000 \text { Avail })} \frac{138-144 \mathrm{MIz}}{(200 \text { Avail })} \quad \frac{148-150.8 \mathrm{MHz}}{(88 \text { Available })} \quad \frac{150.8-174 \mathrm{MHz}}{(691 \text { Available })} \frac{450-470 \mathrm{MHz}}{(800 \mathrm{Avail})}$

1977	-	75	-	
1978	-	9.4	-	
1979	-	118	629	-
1980	- -	149	705	270
1981	-	188	790	340
1982	-	237	884	429
1983	-	299	990	540
1984	-	376	1,109	680
1985	-	474	1,242	85 \%
1986	-	597	1,391	1,080
1987	. -	753	1,558	1,361
1988	986	948	1,745	1,715
1989	1,272	1,195	1,955	2,1.61
1990	1,641	1,505	2,189	2,723

* i) Using 1970-1975 growth rates (See Table 1,b)
ii) Pssuming unlimited available Erequencies

NOTE: Figures are reproduced only as they approach the actual nunter of frequencies available in each band.

TABLE 1.d

Predicted Number of $\bar{n} s$ signed Frequencies in $450-470 \mathrm{MHz}$ with
Year Additional Load from Excessive Requirements in other Bands

1980
345
1981
539
1982
1983
1984
1985
1986
1987
1988
771
1,050 <-- Available Frequencies (800) Fxceeded in 1983.
1,386
1,794
2,289
2,893
3,629
4,804
6,279

TABIE 2.a

Past Progression of Assigned Frequencies

Year	30-50	M1z	138-144 M12		$\underline{148 \cdots 150.8 \mathrm{MHz}}$		150.8-174 MHI		450-470 MIIz	
	1*	$\underline{2 x}$	1.	$\underline{2}$	1	2	1	$\underline{2}$	1	$\underline{2}$
1966	4	0	2	100	3	0	157	30	13	117
1967	6	50	2	0	4	33	191.	22.	17	31.
1968	10	67	10	400	7	75	222	16	21	24
1969	11	10	11	10	7	0	240	. 8	26	24
1970	12	9	14	27	8	14	281	17	35	35
1971	18	50	18	29	8	0	321	14	67	91
1972	21	17	26.	44	10	25	369	15	91	36
1973	32	52	26	0	33	230	420	14	118	30
1974	42	31	29	12	37	12	466	11	143	21
1975	62	48	46	59	40	8	492	6	161	13

* Frequencies Assigned (including all previous assigments)
** Growth from Previous Year (s)

TABLE 2.b

*Predicted Future Progression of Assigned Freguencies

Yeas:

$$
\frac{30-50 \text { Miz }}{(1000 \text { Avail })} \quad \frac{138-144 \mathrm{Miz}}{(200 \text { Avail) }} \quad \frac{148-150.8 \mathrm{Miz}}{(88 \text { Available) }} \quad \frac{150.8-174 \mathrm{Miz}}{(691 \text { Available) }} \frac{450-470 \text { Niz }}{(800 \text { Avail) }}
$$

1977	-	-	76	-	-
1978	-	-	105	691	405
1979	-	-	145	774	551
1980	,	-	200	86%	749
1981.	-	193	277	971	1,019
198\%	-	245	381	1,088	1,385
1983	864	311	526	1,218	1,884
1984	1.,201	395	72.6	1,364	2,563
1985	1,669	502	1,002	1,528	3,485
1986	2,320	638	1,383	1,711.	4,740
1987	3,225	810	1,908	1,917	6,446
1988	4,483	1,029	2,633	2,147	8,767
1989	6,2.32	1,306	3,634	2,404	11,922
1990	8,652	1,659	5,015	$2{ }_{r} 693$	16,2.15

* i) Using 1970-1975 growth rates (See Table 2.b)
ii) Assuming unlititited available frequencies

NOTE:
Figures are reproduced only as they approach the actual number of frequencjes available in each band.

TABLE 2.d

Predicted Number of Nssigned Erequencies in 450.470 MHz , with Additional Load from Excessive Requiremerts in other Bands

1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990

161
219
298
422
611.

957 <-- Available Frequencies (800) Exceeded in 1980.
1,408
2,040
2,1880
4,190
6,127
8,733
12,247
17,000
23.439
. 32,185

TABLE $3 . a$
Past Progression of Assigned Frequencies

* Frequencies Assigned (including all previous assignments) ** Growth from frevious Year (\%)

TABLE 3.b

	Compounded Annual Growth		Standard Deviation
Band	1963-1973	1970-1975	1970-1975
30-50 MHz	39%	40\%	15.3\%
138-144 MHz	45\%	42 6	19.5\%
148-150.8 M1\%	138	31\%	31.4\%
150.8-174 MHz	15\%	12\%	3.0\%
450-470 NHz	62\%	47\%	23.08

*predicted Future Progression of Assigned Frequencies

Year
$\left(\frac{30-50 \mathrm{MHz}}{(1000 \text { Avail })} \frac{138-144 \mathrm{MHz}}{(200 \text { Avail) }} \cdot \frac{148-150.8 \mathrm{MHz}}{(88 \text { Available })} \frac{150.8-174 \mathrm{MHz}}{(691 \text { Available) }} \frac{450 \cdots 470 \mathrm{MHz}}{(800 \text { Avail) }}\right.$

1977	-	.	72		210
1978	-	149	94	-	308
1979	-	211	124	714	453
1980	-	300	162	800	666
1981	-	426	212	896	979
1982	780	605	278	1,004	1,439
1983	1,092	860	364	1,124	2,115
1984	1,529	1,221	477	1,259	3,109
1985	2,140	1,733	625	1.410	4,570
1986	2,997	2,461	829	1,579	6,718
1987	4, 3.95	3,495	1,073	1;769	9,876
1988	5,873	4,963	1,405	1,981	14,518
1989	8,223	7,048	1.841	2,219	21,341.
1990	11,512	10,008	2,412	2,485	31,372

* i.) Using 1970~1975 growth rates (See Table 3.b)
ii.) Assuning urilinited available frequencies

NOTE: Figures are reproduced only as they approach the actual number of frequencies available in each band.

TABIE 3.d

Predicted Number of Assigned Frequencies in 450-470 Miz with Additional Load from Excessive Requirements in Othex Bands

Year
1976
1977
1978
1979 1980 1.981 1982 1983 1984 1985 1986 1987 1988 1989 1990

143
210
314
500
869
1,454
2,267
3,496
5,536
8,419
12,515
18, 349
26,681
38,613
55,729
(--.. Available Frequencies (800) Exceeded in 1980.
.
.
-

Past Progression of Assigned Frequencies

Year $\frac{30-50 \mathrm{MHz}}{\underline{1^{*}} 2^{* *}} \frac{138 \cdots 144 \mathrm{MHz}}{1} \frac{148-150.8 \mathrm{MIz}}{\underline{2}} \frac{150.8-174 \mathrm{MHz}}{\underline{1}} \frac{450-470 . \mathrm{MHz}}{\underline{2}}$

1966	6	20	0	0	1	0	67	26	5	0	
1967	8	33	0	0	2	100		77	15	5	0
1968	10	25	6	-	4	100		86	1.2	8	60
1969	10	0	7	17	5	25		98	14	8	0
1970	13	30	8	14	6	20		101	3	10	25
1971	15	15	8	0	7	17		113	12	10	0
1972	20	33	8	0	7	0		127	12	10	0
1973	22	10	8	0	9	29		146	15	3	40
1974	26	18	9	13	10	11	.	161	10	17	21
1975	32	23	11	22	10	0		186	16	23	24

[^1]TABLE 4.b

	Compounded Annual Growth		Standard Deviation
Band	1963-1973	1970-1975	1970-1975
30-50 M17	20\%	20%	8.8\%
138-144 NHz	-	7 \%	10.1\%
148-150.8 MHz	37\%	11%	12.38
150.8-174 MIz	12\%	13\%	2.4\%
450-470 MHz	16\%	18\%	17.2%

*Predicted Future Progression of Assj.gned Erequencies

Year

$$
\frac{30-50 \text { Miz }}{(1000 \text { Avai })} \quad \frac{138-144 \mathrm{Mlz}}{(200 \text { Avail) }} \quad \frac{148-150.8 \mathrm{Mlz}}{(88 \text { Available })} \quad \frac{150.8-174 \mathrm{Miz}}{(691 \text { Available })} \quad \frac{450-470 \mathrm{MHz}}{(800 \text { Avaji) })}
$$

* i) Using 1970-1975 growth rates (See Table 4.b)
ii) Assuming unlimited avajlable freçuencies

NOTE: Figures are reproduced only as they approach the actual number of frequencies avai.lable in each band.

1985
1986
1.87

1988
1989
1990

Predicted Number of Assigned Freqeuncies in 450-470 NHz with Additional Load from Excessive Requirements in Othex Bands

120
142
203
338
491.

667 \&-... Does Not Exceed Available Erequencies by 1990.

Winnipeg Eamonton Calgary Regina

TNBLE 1

Channel Now Allocated

MLBERTA
Calgary
Edmonton
Grande Prairie
Lethbridge
Lloydminster
Medicine Hat
Red Deer
$2,4,9,16,22,38,44,50,73,79$
$3,5,11,13,17,23,46,52,58,74,80$
$10,13,51,80$
$7,10^{L}, 13,23,58,64,80$
$2,4,8,16^{L}$
$6,8,49,65,71$
$6,8,31,59,65$

Additional Allowable Allocations
(not required)
(not requixed) 18, 34,68
(not requixed)
25,43
20,37 47

SASKATCHEWAN

Regina
Moose Jaw
$2,9,13^{\mathrm{L}}, 18,24,47,53,71,77$
4,7,16,26,55
Swift Current
Saskatoon
5,12,40,56
North Battleford
Prince Albert
8,11,13-17,23,33,54,70,76
$6,7,39,71$

MANITOBA
Brandon
Portage la Prairie
Thompson
Winnipeg)
$2 L, 4,5,21,37,63$
17,38, (but covered by Winnipeg) 4,5L,7,9,16
$3,6,7,9,13,20,26,36,42,48,71,77,83$
(not requixed)
35,44
1.4,27
(not requixed) $14,49,58$
50
(not required)
(not requixed)
(many additional possible)
(not requixed)

NOTE: With the exception of limited allocations (indicated by an $L_{\text {l }}$, all of the above are full power allocations. Nll existing UHF allocations and "taboos" have been accomed for.

TMSIE 2

Authorized Services - December, 1976

Alberta	CRC ENGLISH	CBC FFENCH	C'IV ENGLISH	OTHER
Calgary	CBRI (Ch 9)	-	$\mathrm{CPCN}(\mathrm{Ch} 4)$	CEAC (Ch .2)
Edrionton	CBXT (Ch 5)	CBXFT (Ch 11)	CFRN (Ch 3)	CITV (Ch 13)
Grande Prairie	CBXAT (Ch 10)	-	CFRN (Ch 13)	- .
Lethbridge	CBRT (Ch 10)	-	CRCN (Ch 13)	$\mathrm{CJOC}(\mathrm{Ch} 7)$
Lloydminister	CKSA (Ch 2)	-	CITL (Ch 4)	-
Hedicine fiat	CHnT (Ch 6)	-	CFCN (Ch 8)	-
Ied Deer	CKRD (Ch 6)	-	CFRN (Ch E)	-

Saskatchewan

Regina	CBKFIT (Ch 9 9)	CBKFT (Ch 13)	CKCK (Ch 2)	-
Moose Jaw	CBKPT (Ch 4)	- -	CKMJ (Ch 7)	
Swift Current	CJFB (Ch 5)	-	CKMC (Ch 12)	
Saskatoon	CBKST (Ch 11)	-	CFQC (Ch 8)	-
North Battieford.	CKBI (Ch 7)	\sim	CFOC $(\mathrm{Ch} 6)$	**
Prince Albext	CKBI (Ch 5).	-	-	-
Manitoba				
Brandon	CKX (Ch 5)	-	CKYB (Ch 4)	-
Portage la Prairie	-	-	"'	-.
Thompson	CBWTT (Ch 7)	CBWFr (Ch 5)	CKYT (Ch 9)	-
Winnipeg	CBWT (Ch 6)	CBHFT (Ch 3)	CKY (Ch 7)	CKND (Ch -9)

Appendix I.C.

TABLE 1
Cumulative Licensed Frequencies (890-960. MIz)

		ber			k.			to				
	C.C.*	P.	0.*x*	c.	P.	0.	C.	P	0	C.		0.
1966	5	0	5	0	12	4	0	0	3	0	0	0
1967	7	1	6	0	12	4	0	0	3	0	0	0
1968	7	7	6	0	24	4	0	0	3	0	0	0
1969	7	7	6	0	24	4	0	0	5	0	0	0
1970	7	7	6	0	24	6	0	0	5	0	0	0
1971	14	9	6	0	24	6	0	0	5	0	0	0
1972	21	12	6	25	24	6	4	0	5	10	0	0
1973	21	31.	6	53	24	6	4	0	5	18	0	0
1974	33	45	6	81	24	6	10	0	5	18	0	0
1975	51	73	8	141	24	6	16	0	5	22	0	0
$1976{ }^{\text {\# }}$	76	77	8	189	24	6	32	0	5	26	0	2

[^2]NOTE: This sub-spectrum became popular in 1972, probably due to farinon equiphent.

TABLE 2

Bandwidth (KHz) Frequencies (Number of)
<500 50
500~1000 19
1000-1500 26
1500--2000 10
2000-2500 1.5
2500-3000 108
3000‥3500 61
3500-.4000 1.48
4000 8NOTE: The approximate range of usual bandwidthsfor a particular number of voice channelsare as follows:

12 Channels	$567-1022 \mathrm{KHz}$
24 Channels	$705-2716 \mathrm{KHz}$
60 Channels	$2120-3640 \mathrm{KHz}$
120 Channel.s	$2850-4596 \mathrm{KHz}$
(STL's)	$(6500 \mathrm{KHz})$.

REFERENCES

Ref. No.
1 "900 Miz Band Provides New Opportunity for Improved Railroad Communications" - Martin Cooper, Communications News, November, 1975.

10 General Principles of Meteor Burst Technology and Applications", Joe D. Grantham, Government Systems Division, Western Union Telegraph Company.
11. "NABER Meeting Explores Management of Spectrum", Communications News, October, 1976. Communj.cations, January, 1976.
"Location Services for Urban Haul Venicles" - Samuel R. Rondberg, Urban Mass Transportation Administration, Washington, D.C. National Radio Navigation Symposium (Proceedings), held Washington, D.C., November 13-15, 1973. Published by Institute of Navigation, Washington, D.C.
"Israeli Firm Develops Rural Telecom System" - Communications News, September, 1976. Canadian Electronics Engineering, August, 1976.

6 "Communications Requirements in Telemedicine systems" - Roger G. Mark from text Telemedicine-Exploxations in the Use of Telecommunications in Healih Care, by R. Basinshur, P. Armstrong, and. Z. Youssef.
"The Role of Communication Systems in Emergency Medical Services" Arthur J.J. Sluyter, Jr., IEE Transactions on Vehicular Technology, Volume VT-25, No. 4, November, 1976.
"Arizona's kural Emergency Medical Services Communications Systems" Bernard H. Fiood, niember, IEEE, and Leo K. Russell. IEEE Transactions on Vehicular Technology, Vol. VT-25, No. 4, November, 1976 :
"Western Union Data System Reflects Off Meteor Trails". Communications News, July, 1976.
"Radio Use is 'Up' on the Farn" - Craig B. Wolfe, W.W. Company, New Carlisle, Ohio, Communications, December, 1976.
"Five-Year Planning for Data Comunications", Joseph Ferreira and Jack M. Niles, Datamation, October, 1976.

14 "Let Your Radio Do Your Thinking", Judy S. Lockwood, Managing Eaditor, Communicatjons, December, 1976.
$15 \checkmark \quad$ "New Techniques in Mobile Equipment", M. Arrowsmith Pye Teleconmunications Ltd; Cambridge, U.K., Conference on Commmications, 1976, Equipment and Systems.

16 "Satellite Networking for RCC's" .- Nrthur K. Peters, Consulting Engineer, Comminications, September, 1976.
2.7V "Applications of a Computer-Controlled Terminal to Mobile Telephone Comunication Systems" - Wilson T. Outlaw, Westinghouse Air Brake Company Gatesburg, South Carolitia, 26th Annual Conference IEEE Vehicular Technology.
i8 "A Comprehensive Automatic Mobile Radio Telephone Systera" Edward G. Frost, Frost Commications, Inc., Rockville, Maryland - 26th Anmal Conference IEEE Vehicular Teghology.

19 "Fublic Nobile Telephone - A Comparative Analysis of Systems Worlduide", R.L. Lagace and H.L. Pastan - Arthur D. Little Inc,, Cambridge, Mass., 26 th Annual Conference of the IEEE Vehicular Technology Group.
"nhe poscible Impact on Spectrm Conservacion of Radiating Cable systems Carrying Speech and Data to Road and Rail Transportation", P.M. Deane, B.Sc., Conference on Civil. and Mobile Radio, November, 1975, \#33.
"Radiating Cables - A Solution To Many Comunication Problems" R. Johannessen, Standard Telecommunications Laboratories Ltd., International Conference on Comunications Equipment and Systems, June, 1976.
"New Subscriber System Takes the 'Remote' Out of Rural". Telephony, Maxch 1, 1976.
"Teleconmunications Via Cable on Two Russian Pipelines", Pipeline Industry, November, 1975.
"The Washington Scene" - Eric Schimmel, Washington News Editor, IEEE Nowsletter. November, 1976.
"An Independent: Sideband (I.G.B.) Communications System" Bob Holbecho, Conference on Civil and Mobile Radio, November, 1975, \#33.
"A figh Efficiency vif s.S.B. Transmitter", Vladimir Petrovic, Conference on Civil and Mobile Radio, November, 1975, \#33.

7 "S.S.B. Uncrowds CB Channel.s, Ups Useful Power", JEI, March, 1976.

28 "Compaxison of S.S.B: FM Modulation Technique in Tactical Mijitary Communications in $20-80 \mathrm{Mlz}$ ", P. Bradik, M. Rebolj, M. Zornada, Conference on Comunication Equipment. and Systems, June, 1.976 .
$29 \checkmark \quad$ "The Potential For Further Reduction in Chamel Spacing in the VHF Band", M.C. pinches and R.D. King, Conference on Commination Equipment and Systems, June, 1976.
"A New VHF Military Radio with Excepicional Co-siting Capability" D. J. Martin, Conference on Commuications Equipment and Systems, June 1976. M. Henze, P.A. Ratliff, and Michael J. Withers, IEE Trans actions on Vehicular Technology. Nov. VTr 25 , No. 3. August, 1976.
"Experimental Switched - Diversity System for Viff AM Mobile Radio", J.D. Parsons, Proc. IEEE Vol. 122, No. 8, August, 1975.

36 "Mobile Radio Research at the University of Birmingham", J.D. Parsons, Conference on Comnunications Equipment and Systems, 8-11 June, 1976.
"Null-Steering Antenna For Mobile Conmunication" - Electronics. Letters, Maxch 4, 1976, Vol 12, No. 5.
"Electronically-Steered Antennas with 360° Coverage for Mobile Use", D.W. Atchley, Jr., M.E. Hines, H. Howe, H.E. Stinehelfer, Sr., and J.F. White, 26th Annual Conference IEEE Vehicular Technology.

39
"Adaptive Digital Communication Systems for Mobile Applications", J.R. Edwards, Conference on Civil and Mobile Radio, November; 1975, \#33.
$40 \checkmark$ Medium - Speed Land Mobile Radio Data Transmission System Parameters", N.J. Wheaton, Conmunications 74 conference, Brighton, England.

41 "Britain's Bobbies Evaluate Mobile Data Commuications" ." Telecommunications, February, 1975.

42 "Conputer - Controlled ViF Radiotelephone Network" - M.E. Freaz゙, and G.C. Hodden, Conference on Communications Equipment and Systems, 8-11, June, 1976.
"Mopjile Radio Data Transmission - Some Techniques and Resuliss" R.C. Prench, Conference on Communications Equipment and Systems, 8-11, June, 1976.
"Feasibility Study for a Voice Plus Data Mobile Radio system Communications Equipment and Systems, 8-11, June, 1976.
"A Mobile Data System" - J.B. Richardson, M.J. Tippett, Conference on Communications Equipinent and Systems, 8-11, June, 1976.
"Improving Spectrum UtiJization in Mobile Radio Communication" Henry Magruski, 26th Annual Conference IEEE Vehicular Technology.
$47 \checkmark$: The Overlapping Problem and Performance Degradation of Monile Digital Comunication systems" - Katriel Dan Levin, IEEE Transaction on Comunications, November, 1975.
"Mobile Printers Technology on the News", A.E. Crump, Managing Director, Spectronics - Electronjcs (GB), 11 March 1976; NC 91.
"Twelve on a Channel" .- Howard Plotkin, Conmunications, September, 1975.

50 . "The Land MobiJe Stampede" - Raymond J. Carnovale, Chief Engineer, The Ontario Educational Comunications Authority, Broadcast Equipment Today, September/October, 1976:

51 "Eaging Systems" - S. Hirschbach; Communications, September/ October, 1975.
52. "Vancouver's Wide-Area Paging System", Communications, March, 1976.
53. "The Use of 15 kHz Offset Channels for Radio Common Carriers in the 250 HItz Band", Richard L. Plessinger, 26th Annual Conference IEse Vehicular Technology.
"Telecommunications -- Far Reaching Changes on the Horizon" Electronic Engineering, November, 1975.
"Engincering Aspects of the Post office London Radiopaging Service" R.H. Tridgell, Conference on Communications Equipment and Systems, Jure, 1976.
"Application of the Smal1-Zone Concept to Police Commnications in Population Centres: An Explanatory Study" - Arthur C. Stocker, IEEE Txamsactions on Vehicular mechnology, Vol. VT-25, No. 2, Mayr 1976.
"On the Design of a Small-Zone Land Mobile Radio System in UHF Band" - Noriaki Joshikawa and Takuya Nomura, IEEE Transactions on Vehicular Technology, Vol VT- 25 , No. 3, August, 1976.
"Multiple Radio Zone Plans in Mobile Radio Systems", Takuya Nomura and Noriaki Yoshikawa, IEEE Transactions on Vehicular Technology, Vol VT-25, No. 3, August, 1976.
"Assessing the Impact of Mobile Communications" - Cary Hershey and Eric D. Shott, Comunications, September, 1976.
"Will. Fibre Optics Start Another Revolution" - Ron Whittaker, proadcasting Engineering, December, 1975.
"Japanese System Goes With Fibre Optics", Broadcast Engineeing, December, 1976.
"Drospects for Broadband Two-Way Services" - Joseph G. Wohl, Retrieval from CAN/SDI.
"Direct IV Broadcasting Economics and the Impact on Spacecraft System Design and Operations" - Helmut Schweig and D.E. Koelle, Raumfahrtforschung Heft 1, 1976.
"They Are Trying to Make UHF 'Equal'" - BM/E, November, 1976.
"Communications' Editorial Adviser Examines the Artificial Spectrum Shortage Created by the FCC's UHF Taboos" - William L. Detiwiler, Communications, September, 1975.
"Satcllite-to-Home Television" - J.W. Edens, Jr., Canadian Electronics Enginecring, December, 1976.
"R.F. Repeators provide Alternative For Point-to-point Relay Systems" -- Jose C. de Leon, Communications News, October, 1976.

Perccptions 1 - Population Growth and Urban Problems, ottawa, Queens Printer, Cat. No. SS21-3/1-1975.

Ibid.

Ibid.

Ibid.
Canadian public Telecommunications Perspective, 1985 , ottawa, 1975, Departreent of Communications, (J.W. Halina).

Options for Growth - Economic Councij of Canada, 12th Annual Report.

Economic and Social Indicators, 2975, Queens Printer, Ottawa, Cat. No. EC 21-1/1975-2.

BIBLIUGRAPHY

"CEPT Long Term Telecommunjeations Studies", A.A.L. Reid, IEEE Transactions on Communications, Vol. Com-22, No. 9, September, 197d.
"Transmission Objectives For Subscribers' Networks During the Evaluation Towards an Mll-Digital Telephone System", J.E. Flood, D.L. Richaids, and R.W. Whorwood. Retrieved from CAN/SOI.
"Allocation of Erequency Bands for the Development of Space Commuications Systems" A. A. Badalov. Retrieved from CAN/SDI.
"Frequency Assignment Games and Strategies": J. Arthur Zoellner, IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-15, NC. 4, November, 1973.
"A Look at the Future Impact of Computer Communications on Everyday Life", Daniel Z. Goodwill, Technological Forecasting and Social Change 4, 1972.
"The Present Status, and Future Trends in Computer-Communications Technology", A. G. Fraser. The text of a talk given at a meeting of the Japanese Electronic Jnclustries Development Association, Tokyo, Japan, in October, 1975. The author is with Bell Laboratories, Murray Hill, N.J.
" A Methodologjocal Approach to the Integration of Technological and Social Forecasti", Gto Sulc, Technological Forecasting 1, 1969.
"Changing Role of Common Carxier World-Wide View", Emanuel. Fthenakis, American Satellite Cosporation, Telecommunications, September, 1976.
"Efficient Uiilization on Orbit 1 Frequency for Satellite Broadcasting", Misao Matsushita and Junji Majima, IEEE Transaction on Aerospace and Electronic Systems, Vol. AES-9, No. 1, January, 1973.
"Relating Organization Goals and Technologjcal Forecasting for Research and Development Resource Illocation", C.M. Schoman, Jr., D.N. Dick, and T. R. McKnight, IEEE Transactions on Engineering Management, Vol. EM-16, No. 4, November; 1969.
"When is a Need a Need? The Problem of Normative Forecasting in a Changing Environment". Harold A. Linstone, Technological Forecasting 1 , (1969) .
"Direct Current from D.C.", Broadcast Engineering.
"Digital Techniques. Enhance Colour Television". John Lowry, Canadian Electronics Engineering, June, 1975.
"North Sea Communications", Communication and Broadcasting, Spring; 1975.
"Exrox Performance of M - ary Noncoherent FSK in the presence of $C W$ Tone Interference", Michael J. Massaro, IEEE Transactions on Communications, November, 1975.
"Adjacent Chennel Protection Ratios for LF/RF Sound -- Broadcasting (150" $1605 \mathrm{KHz})^{\prime \prime}$: V.A. Shamshin and I.S. Shlyuger (USSR), Telecommunication. Journal, Vol. 42-X, 1975.
"Study of the Attitudes and Needs of Present and Potential Land Mobile Telephone Users", Matti Kangasluoma, Administration of posts and Telegraphs of Finland, Helsinki, Telecommunication Journal, Vol. 43-1/1976.
"English CATV System Using Optical Cable", Communications News, October, 1976.
"Fibre Optics Advances Improve Commuications", Communications News, October, 1976.
"Telecommunications 2000", J.L. Martin de Bustamante, Telecommunication Journal, Vo1. 43, V/1976.
"Satellites: Growing Competitor to Land Lines and Air Freight", Octobes", 1976. B.M/E.
"Comnunication Satellites: The Future", John Falmer, Yun-Foo Lum, Telesis, March/April, 1974.
"Multipurpose Wide-Band Local Distribution--proposals for an Integrated Systern", A.G. Hare and A.H. Ithell, IEEE Transactions on Communications, Vol. Com. - 23, No. 1, January, 1975.
"Reflections on Interactive Cable Systems and the Forces that Affect their Evolution", D.M. Atkinson, JEEE Transactions on Communications, Vol. Com. 23, No. 1, January, 1.975.
"The Evaluation and Design of Mobile Gain Antennas by Computer Simulation", Richard 5 . Kommrusch, IEEE Transactions on Vehicular Technology, Vol. VT- 25 , No: 3, August, 1976.
"Economics of Network. Delivery of Computer Services", Einar Stefferud, Second U.S.A.-Japan Computer Conference, 1975.
"The Present Status and Future Frionds in Computer/Communication Technology", A.G. Fraser, the text of a talk given at a meeting of the Japanese Electronic Industries Levelopnent Association, Tokyo, Japan in October, 1975.
"Pager in Every pocket", N.A.R.S. Members (National Association of kadiotelephone Systems), Comnunications, November., 1976.
"Spectrum Efficiency key to North Sea Tropo Network", Micirowaves, November, 1976.
"The French Railways Tolecommuncations Systems", Charles G: Gourdon, Assistant Chief relecom Division, SNCF, Paris France, Telecommunications, October, 1976.
"Computers in Communications", J.W. Hughes/E.F. O'Neil, Telecomunications. Ocotber, 1976.
"A Spectrum Manager Speaks" (interview), Brian Lamb and Wilfred Dean, Jr., Comunications, November, 1975.
"Jmpact of Telecommunications Outlined in A.D.L. Study for Planning by the O.T.P." Communications News, November, 1.976.
"Local Neťwork Planning and Economics", H.J.C. Spencer, U.K. Post office, Telecommunications Headquarters. Retrieved fron CAN/SDI.
"Design of Radio Equipment for 19 GHz High Speed Digital Radio Systems", J.M. Robinson and L.J. Stagg, G.E.C. Hirsh Research Centre, U.K. Retrieved frora CAN/SDI.
"Exploring the Limits to Growth of Telecommunications - A summaxy of Two Conferences", Louis Feldner and William H. von Alven.
"G.T.E.I. to Install Microwave Systems in Mexico, Malaysia", Comunioations News, December, 1976.
"Surface Acoustic Wave Oscillator Modules for Mobile Radio", P.M. Grant, R.C. Corner, and J.H. Collins, Edinburgh, Scotland, Conference on Communications Equipment and Systems, June, 1976.
"An Approach to Digital Signal Processing for a High Capacity Mobile Telephone System", E.J. Addeo (New Jersey), 26 th Annual Conference IEEE Vehiculà Technology.
"The Outlook for U.S. Air - Ground Public Radio/Telephone Services", E.A. Grabhorn, 26 th Annual Conference IEEE Vehicular Technology.
"Urban Indicators", B. Danson P.C. M.P., Ottawa, Queens Printer, Cat. No. SU 31-26/1976.

Hindsight on the Futuce, J. Kettle, Toxonto, MacMillan Co. of Canada, Itd., 1976.

Perspective Canada. S. Ostry, Ottawa, Queens Printer, statistics canada, 1974.

Economic and Social Indicators, A. Raynald, 1975, Ottawa, Queens Printer, Cat. No. EC 21-1/1975.
"Telecommunications: Thejr Development and Impact on Urban Patterns" Rebecca Kam-Hung Luk, Department of Communications, ottawa, 1971.
"Options for Gxowth", Economic Council of Canada, Dwelith hinual Review, ottawa, Queens Printer, 1975.
"Internal Migration and Immigrant Settlement", Ottawa, Queens Printer, Cât. No. MP 23.39/1975.
"Economic Circunstances and Opportunities", Series of foux regional papers for Alberta, Manitoba, Saskatchewan, and Western Nowthlands, April., 1973.
"Perceptions 1", (Population Growth and Urban Problens). Frank Kelly (ed), Science Council of Canada, Ottawa, Queens Printer, Cat. No. Ss2l-3/1-1975.
"Urbanization and population Redistribution", H.L. Laframboise, a presentation to the National Social Science Conference, ottawa, November 2l, 1975.
"World Population Erojections: Alternative Eaths to Zero Growth", population Reference Bureau Inc., Vol. 29, No. 5, 1974.
"Statistical Review": August, 1976, edje, Queens Printer; Ottawa.
"population Figures", "Urban and Rural Distributions", 1971 Census of Canada, Statistics Canada.

Gonemment ot Callillat
 chatombilla

MEMORANDUM
Attachment A
NOTE DE SERVICE

Sub-Allocation of Frequencies in the $410-414$ and $415-419$ whiz Bands

 Cor Municipal ServicesThe frequencies presently available for municipal services in the VHF and UIF bands cannot accomodate future grow h requirements for these services without a considerable amount of hardship. This hardship is primarily due to the limited number of available RF channels in the bands which were sub-allocated for municipal services. This necessitates the use of frequencies outside this sub-allocation when additional radio channels are required. In most cases the existing radio equipment is incompatible for this type of expansion.

Preliminary forecasts for Edmonton and winnipeg indicate that at least 30 duplex pairs are required by the year 1985 for the municipal. safety services. To prevent "boxing in" of these services the Central Region intends to open the sub -bands $413-414_{4} \mathrm{MHz}$ and $418-419 \mathrm{MHz}$ for municipal safety services. It is intended to use the following criteria.
I. Centres with populations of 200,000 or more

Primary Service: Municipal Safety (Police, Fire, and Ambulance)
Secondary service: Municipal Public Transportation Systems
II. Centres with population between 75,000 and 200,000

Primary service: All municipal services
Secondary Service: Fixed Service
III. Low populated areas

Primary Service: Municipal and Fixed

The reason for selecting the $413-414$ and $418-419$ MHz slots is two-íold.

1. These slots are adjacent to the 414-415 and 419-420 slots which are presently allocated for the fixed service. There is a great demand, in the remote areas, for fixed systems which require capacities equivalent to $12-24$ voice channels. Since in these areas criteria III applies sone existing congestion will be alleviated by the arrangement suggested.
2. With a change in technology, such as, software controlled digital systems, it is possible at a future date, municipal services could use a single integrated system. Such a system may require less than a I MHz wide slot. when this materializes part of suggested spectrum can be allocated to the fixed service at a later date.

The selection of the municipal sub-allocations will also leave two 3 imp slots. These slots can be used for the CTCA requirements. The chairman of the CTCA, Mr. G. Hench of the Manitoba Telephone System (NTS) has indicated that the proposed sub-allocation does not have an adverse impact on the CICA proposal submitted to the lepartinent.

The Central Region has to assign frequencies for the Winnipeg and Edmonton systems by the end of January 1.977, and it would be appreciated to receive your comments by January $26,1.977$. . Jeff these comments are favourable, arrangements should be made to insert an appropriate statement in BRSP-50].

W. A. R. Johnston Regional Director Central Region
c.c. DUTN, J. Gilbert

DKS, N. W. Scott
RDA
FiDO
RD?
REP
RR
RE

Attachment B

Gevemament Gnmarmement Ol Cambas

WIDE AREA PAGTNG

(The use of radio links to intercomect locai paging systems.)

This refers to your memorandum with attached report, dated September 10, 1976, concerning the MacLean-Hunter ($M-H$) application for a multipoint distribution system (MDS) to serve a paging network in the roronto area.

The report, entitled "wide Area Paging", actually is a survey to determine the best suitable way to acconnodate the Mactean-Hunter application. The rationale used for this application then forms the background to the proposed use of the 2500 MHz band.

Although the 2500 MHz band appears to be the most suitable frequency band, from a technical point of view for an MDS, the use of point-tompoint radio links to interconnect, and the use of MDS to serve various paging systems, raises the question whether such applications should be entertained before a policy has been adopted for wide area paging.

It is felt that with the non-existence of such a policy, the allocation of frequency band to accomnodate wide area paging systems is premature.

Whe questions which should be considered can be summarized as follows:

1. What is the Department's view on wide area paging?
2. If wide area paging is allowed:
a) should such a system employ "tone-only" or "tone plus voice"?
b) How many competing systems should be allowed?
c) Should radio trunking systems be permitted to interconnect systems in various cities or cowns, or should the interconnection be supplied by the relco in that area?
d) To what extent should wide area voice paging be allowed in areas where SWAp exists?

On page 3 of the refrot, alternatives to the proprosed Macleanmunter applacations aro considored. The Contral mogion would offex the following comments on thoso alicerrativest
l. The prosent trend is towards tho use of packot broadcasting, i.e Bell Canade.s Swaf 3 n now in opexation in parts of ontaxio and quobec, pacing systems in Mmsterdam, Vienina ind Chicago omploy digltal teohnduues. These techntques are aleo consichored for the Eurocom concept. Packet broadcasting ds also utilized to distribiato digitized Insomation to mobile printers and other display devioos.
2. Voice paging does not ropxesent an offective use of the radio spectrun.
a) Ifice capacity is $1 / 50$ th or less than that of a tono paging system.
b) A higher ETfP is required for the same coverago area.
c) Jone paghng systems can use up to a single frequency for tor transmitienta that are soquentially activated.
d) Vojee paging transmitters havo to be phased witinjn alose tolexance, making the use of telephone lines more expenstvo on account of phase and delay sumallenre.
e) prediminary roriults of the Bell Sinnp system indicate public acceptance and good growth.
3. Storage devjees are state-ofatheart, but availahility depends on the markat potontial, j.e. tiw coploment of voice systoms instead of dightal paging

It is reconammon that tho unc of a radio systeh for the distiobution of faghag sjomals bo kept in aboyance untij a policy fox the pauturg and other nec types of systems has beon atoptod, and wat a roeting bo held betwon blabibuaxtors and

W. A. R. JOMNSTON
W. A. R. Jolnn:mom
deghonal bisector:
Central forion
HT:by
co DGIN - J. Gilbert
RDP
RDO
RLX
RDAl
RCR
RCJE

Introduction.
The basic data for this appendix were obtained from a survey carried out under contract for the Spectrum \& Radio Systems Policy Branch of the federal. Department of Comunications over the period July 1975 to July 1976. The study was carried out as a survey of users of land mobile radio in an attempt to determine certain parameters of their usage as well as their present and future needs. The survey was approved by the Special Surveys Coordination Division of Statistics Canada, with respect to study objectives, methodology and content. The data from the survey respondents was coded and processed by computer to form the statistical outputs which are presented later in this report. Respondents to the survey were segregated into three main groups:

1. Business and commercial users
2. Federal and provincial users
3. Municipat users.

It should be noted that the municipal category contained the emergancy services, such as police, fire and ambulance.

Objectiyes of Survey.

The abjectives of the survey were to gather data necessary to enable the Deparment of Comminications:

1. to trace the :historical pattern of land mobile radio development within user categories and geographic regions of Canada;
2. to assess the types of services provided by mobile radio, the prevalent types of technical features of mobile radic systems, and the extent of usage;
3. to assess the probability of adoption of new Tand mobile radio facilities and services.

Methodoloay.

Question 18 of the survey (shown as an attachment) refers to the possibility of incorporating new facilities into the land mobile radio systems of existing users. This question was asked of each of the three main types of users and the responses have been aggregated: These are shown in Tables 1, 2, 3 and 4, referring to the responses of

1. Business and Commercial
2. Federal and Provincial
3. Municipal, and
4. All Respondents to the survey respectively.

Although the total number of responses is small. in comparison to the total number of land mobite radio systems in Canada, the sample can be expected to given an assessment of the probability of incorporating new facilities into the systems of existing users in the future.

An assessment of the estimated spectrum requirements for operation of each of the new services listed in Question 18 has been made. These estimates range from no additional bandwidth or channel requirements (but increased loading) for particular services to a full additional land mobile channel for other services. An example of the first case would be Automatic Vehicle Identification while an example of the latter situation could be services such as Facsimile. Table 5 is the estimate of spectrum required for the operation of each service.

Observations

(a). Sunnary of all User Categories.

Out of a total of 630 respondents, of all three user classes, approximately 230 did not answer one of the sub-questions.

Summary of responses:

- 3% now utilize some form of nei facility as specified in Question 18.
$\cdots \mathbf{1 1 \%}$ have no information on these new facilities and declined to comment on possible usage.
- 77\% will not use new facilities.
- 7\% undecided as to possible usage.
- 8% definitely will use new facilities.

Out of all classes of respondents who stated they would incorporate new facilities into their systems:

- 50 stated they would incorporate new facilities within the next 5 years.
- 8 only respondents stated that incorporation of new facilities would be beyond 5 years from the 1975-76 survey period.

On a summary basis, 10% of all classes of respondents expressed a definite viewpoint in support of the incorporation of new facilities (no-Yes in the Tables), and 86% of these indicated such facilities would be incorporated within the next five years.
(b). Spectrum Requirements for New Facilities.

As shown in Table 5, out of 11 new facilities, 6 would definitely require use of an additional channel and a further three could utilize the existing channel adding to its utilization only two of the facilities were anticipated to have a negligible effect on spectrum requirements.
1.

The new facilities listed in the survey appear not to have been widely marketed at this point due to the relatively large proportion (11\%) of survey respondents unfamiliar with them.
2. Although not widely marketed, 3% of existing systems already are making use of some new facilities and an additional 8% indicated that they intended to incorporate such new facilities, most within the next five years. Therefore, approximateiy 11% of the existing iand mobile system markets will form a base for the marketing of new facilities. When sold on a wider basis, the market for such new facilities should be considerably larger than this 11% figure.
3. least, increased loading of the existing channel in most cases. From a review of Table 5, the additional overall spectrum requirement arising out of an 11% market penetration for new services would amount to approximately 8% (ie. a land mobile system spectrum requirements will, in future, be approximately 8% greater due to the use of new facilities than if conventional land mobile systems were in use).

4.

Although the sample size for the survey was small, it was representative of the mobile user. population. Due to its small size, extropolation of the figures above over the whole mobile population would not likely give an accurate assessment of future use; however, lacking further data this report can serve as an indication of future needs.

TABLE 5

SPECTRUM REQUIREMENTS FOR NEW FACILTTIES

- . NEW FACILITIES	CHANNEL REOUIREMENTS		
1	Additional	Increased l.oading	No Spectrum Effect
(a) FACSIMILE	X		
(B) TELETYPE (HARD COFY)	X		
C) DATA. TERMINAL (1) From Dispatcher to MoDile (2) From Mobile to Dispatcher	$\frac{x}{x}$		
D) SLOW SCAN TELEVISION (1) From Dispatcher to Mobile (2) From Mobile to Dispatcher	χ		
(E) COMPUTER ASSISTED DISPATCH...>		X	
(F) COMPUTER INPUT FROM VEHICLE	X		
(G) COMPUTER RETRIEVAL FROM VEHICLE	χ		
(H) INDIVIDUAL SELECTIVE SIGNALLİNG	\therefore		X
(I) SELECTED GROUP (NOT "ALL-CALL") SIGNALLING			X
(3) AUTOMATIC VEHICLE IDENTIFICATION		X	
(K) AUTOMATIC VEHICLE LOCATION		X	

linere are a mubre of facilities that are tochnically feasible nor and will, in all probability, beccie availeble on mbile radio systems. Scme of those facilities have been listel belowo Tf you are likely to incurorate any facility (i.e. if you check either "Jkely" or "Definitely". फhich are in the cheded areal indicate the time frame of possible apolication by checking tire mone aporopxiate box of the next two If the facility is alreany in use, check the first colvm.

BUSIAESS \＆COMMERCIAL

FACILITY	00	01	02	03	04	05	06	07	08	09	NO	YES	TOTAL
01．FACSIMILIE	137	6	27	70	39	． 7	2	1	1	1	169	3	297
－2．FELETH2E	137			56	4	3		－	\div		$1: 2$	6	－297
03．Data tegminal（1）	135	7	19	74	44	6	6				218	6	297
04．DATA TEFMINAL（2）	134	－ 8	18	75	42	$?$	6		1		217	6	297
	2		z2	75	4	3.					120	－	－297
OS．SLOW SCAN iV（2）	140	2	22	75	45	3	2		1		120	2	297
07．C．A．0．	135	2	21	70	： 47	7	8				117	8	297
$-6 B=-6 \cdot \frac{7}{1}-4$	± 96		14	-76	4	9					－184	$\pm{ }^{\circ}$	-297
OH．C．R．V．	136	1	19	69	46	8	8	1	2		115	9	297
10．I．S．5．	127	9	20	49	45	12	22	2	4		94	2%	287
	± 33	6	27	S3	50	Hi	1		z		-23	4	－297
12．A．V．I．	127	5	23	57	45	14	15	2	$?$		102	17	297
13．A．V．L．	127	5	25	58	43	16	14	1	1		101	15	297

CODE
Ou－Number of respondents to survey who did not respond to this question．
01 －Number of respondents whose system presently uses the new facility（Questionnaire：In System Now）．
02 －Number of respondenes who had no information on the facillty．
03 －Number of respondents．who definiteiy would not．．．．．．． incorporate the new fachlity．
04 －Number of respondents who thought it unlikely they would incorporate the new facility．
05 －Number of responcents who were undecided
05 －Number of responcents who would likely tncorporate the ney faclilty．

07 －Number of respondents wo would derinitely incorporate the nex facility．

08 －Number of respondents who would incorporate 太he new facility in the next five years．

09 －Number of respondents who would incorporate the new facility later than：the next five years．
so－Number of respondents who would not forecast use of the new fachlity．（codes 03 and 04 combined）．
Yes Number of respondents who would forecast use of the new foctilty（Codes 06 and 07 combined）．

SPECIAL FACILYTILS／IHTRODUCTIUN OF゙ NEW TECHNOLUGY

FEDERALJY：XOVINCIAL

06 －Number of respondents who would lheely incorporate －r．，fon the nes factilty．

Municipal

CODE

00 - Number of respondents to survey who did not respond to this question.
01 - Number of respondents whose system presentiy uses the nes facility (Questiomaire: In System Now).
02 - Number of respondents who had no information on the facllity.
03° - Number of respondents. who definitely youid not... incorporate the net facility.
04 - Number of respondents who thought it unlikely they would incorporate the new factlity.
05 - Number of respondents who were undecided.
05 - Wumber of respondents who would likeiy incorporate the new facintty.

07 - Number of respondents who would defintice?y incorporate the new facility.
08 - Number of respondents who wouid incorporate the new facility in the next five years.
09 - Number of respondents who would incorporate the new facility later than the next five years.
No - Number of respondents who would not forecast use of the new facibity. (Codes 03 and 04 combined).
Yes -Number of respondents tho would forecast use of the new facility (Codes 06 and 07 combined).

FORECAST FOR CONVENTIONAL LAND MOBILE SPECTRUM REQUIREMENTS

Introduction.

The material presented in this forecast of land mobile spectrum requirements was developed from a report by Quasar Systems Ltd. entitled "Land Mobile Systens: A Forecast for Major Urban Centres". In addition, assumptions and loading criteria supported by various departmental and external studies including the FCC have been used.

The forecast of spectrum requirenents for mobile are presented in terms of ranges of additional spectrum rather than specific values to parallel the forecasts of land mobile systems given the Quasar report. An intermediate range foracas is given for the year 1985 and a long range forecast for the year 2000.

The spectrum requirements for each forecast period result from loading the land mobile chamels by vafying numbers of land mobile systems. The number of systems per channel (i.e., loading ratio) which can, in practice, be employed is based on the number of mobiles in each of the systens and their collective operational message requirements (i.e., maximum permissible waiting time, average message length, etc.).

Loading criteria

A review of the present lard mobile systems indicates that there are approximately 6.2 mobile licences for every land mobile base station in 1976.

Therefore, on a Canada wide average, there are 6.2 mobiles in the average Canadian land mobile system. There are however, indications that the average number of mobiles per system in the larger urban areas is higher than this figure and vice.versa.

The loading of channels by land mobile systems is treated in two ways. The first method uses \the FCC land mobile loading criteria developed for assigning channels to new systems in the 900 MHz frequency band ($806-890 \mathrm{MHz}$). These criteria relating to conventional dispatch type systems in terms of mobile loading are:

\cdots	police traffic	50 mobiles per duplex pair				
-	business	90	"	1	1	1
-	other	70	1	1	"	B
-	motor carrier, buses	150	"	"	"	"

The criteria also specify that no more than 5 independent user systems may share a duplex pair nor when a duplex pair is shared, canomore than a combined total of 50 mobiles operate on it.

From the Quasar study which was based upon numbers of land mobile and using the FCC loading criteria, no more than 5 systems could sliare the same duplex pair (or 2.5 systems per single channel). Under the assumptions that:
a) all new conventional land mobile systems will be operated in the duplex mode
b) new land mobile systems will have on average less than 10 mobiles each (i.e., to ensure no more than 50 mobiles operating on a duplex pair) and using the FCC loading criteria, the following analysis has been prepared for Toronto:

In Toronto, approximately 40% of allocated land mobile frequencies are not useable due to:

- intermodulation products or other interference with existing licences stations
- prior co-ordinated U.S. use of a portion of the channels (for users in Buffaio, etc.)
* protection of off-air reception of channel 7 VHF-TV by Toronto viewers (land mobile assignments in the $170-174 \mathrm{MHz}$ portion of the VHF mobile band interfere with reception)

Assuming that some new land mobile systems can be accommodated in existing land mobile allocations until the FCC loading level is reached, the following spectrum requireinents are necessary

For Toronto - 1985
Mos't' probable number of systems forecast (from the Quasar study)

Nunier of channeis required to accommodate new systems

$$
8,900 \rightarrow \text { (Low estimate } \quad \text { (High estimate } 11,400
$$

2.5

Although at present only 60% of allocated land mobile channels are useable for reasons already discussed, this ratio should increase to approximately 70% since interference to the channel 7 TV assigmment causes a fixed reduction in useable spectrum, not one which increases with the air increase in the land mobile allocation. Therefore, a figure of 70% useable will be used below. Number of allocated channels required $=\frac{3,560}{.7}=5,0386$

Number of channels presently allocated in existing land mobile allocations $=3,000$ channels (approximately) Additional number of channels required 5,086

$$
-\frac{3,000}{2,086}
$$

Assuming a standard 25 KHz required channel bandwidth, additional land mobile spectrumi requirement to accommodate new systems:
$=2,085 \times .025 \mathrm{MHz}$
$=52.1^{\mathrm{MHz}}$ additional

The table: gives the results' of the analysis of spectrum requirements for 1985 for other major Canadian cities using the FCC loading criteria and also the existing loading level for the $150-170 \mathrm{MHz}$ portion of the VHF 'band in Toronto.

As an alternative to the use of the FCC loading criteria of 2.5 systems. per channel, the existing level of loading for the $150-170 \mathrm{MHz}$ band in Toronto could be chosen. As may be seen in Appendix I, Attachment B additional system growth (i.e, base station growth) has not occured apparently due to its already high level of assignment. The band is in essence saturated at an average level of 3.25 systems per channel. (There are 1972 base stations in the $150-174 \mathrm{MHz}$ band shown in Attachment B and 58 i charinels in the 150.8 to 170 MHz band and approximately 25 channels in the $170-174$ band in Toronto). As most systems in this band are simplex, no correction for low proportion of duplex systems will be made.

CITY
-

NUMBER OF
LAND MOBILE SYSTEMS PRESENT USEABLE 19761985

The following points should be noted concerning the analysis:
\%. The loading ratio of 3.25 systems per chanmel presently existing in Toronto in the $150-174 \mathrm{MHz}$ band can be assumed to be the practical saturation level for loading as the growth of new base station assignments in this band in Toronto has dropped to zero due to the problems of acconmodating new systems. in the existing electromagnetic environment.
2. The distance from the border and from U.S. population centres has a significant impact in determining spectrum requirements.
3. The overall land motile system loading existing in Toronto for all 1 and mobile bands at present is approximately 1.5 systems per channel. To increase this loading to the maximum FCC rate of 2.5 may be very difficult or impossible due to the present electromagnetic environment in Toronto(i.e., piacement and power levels of existing stations, operational constraints, etc.)

Surmary and Conclusions

1. Using the forecast of land mobile systems for 1985 presented in the Quasar study, and two different loading ratios; the additional spectrum requirements for Toronto lie between $23^{\text {and }} 52^{\prime} \mathrm{MHz}$. Additional spectrum requirements for Vancouver and Montreal for 1985 lie between 5 and 29 MHz .
2. It is anticipated that η either Edmonton nor Halifax will require additional land mobile spectrum by 1985.
3. Due to likely changes in technology; uncertainty in and lack of data, no definitive forecast of land mobile spectrum requirenents could be given beyond 1985 in the Quasar Report; however, using the same assumptions and techniques used above, the range of spectrum requirements for 2000 will lie within the following bounds.

Spectrum Requirements for 2000

CITY
TORONTO
MONTREAL
VANCOUVER
EDMONTON HALIFAX

MINIMUM
32 MHz

9

16
0
0

MAXIMUM
205 MHz
142
164

0

In arriving at these boinds, the lowest and highest estimates for land mobile systein growth was used from the Quasar Report. The minimun spectrum requirement show about was calculated using this lowest forecast of system growth at an assumed maximum level of system loading (3.25 systems per channe). To determine the maximum spectruin requirement, the highest forecast of system growth shown in the Quasar Report was used using the FCC proposed loading level of 2.5 systems per channel. For each city, the percentage of useable land mobile channel to allocated channels shown earlier in this appendix was used.

An outline of the forecasts and conclusions of the Quasar Report are attached to this appendix.

In sumary, this report and analysis relate only to the present day conventional land mobile systems. Any spectrum required for new types of systems (i.e., cellular radio telephone, new citizens band, etc.)., would be in addition to the above requirements.

A FORECAST FOR MAJOR URBAN CENTRES - QUASAR SYSTEMS LIMTTED.

OUTLINE.
The purpose of this study was to forecast the number of land-mobile systems likely to be in operation in the year 2000.

Since the greatest congestion in the radio spectrun is in densely populated areas, it was decided to prepare estimates of the number of land-mobile systems in five of Canada's larger centres. These centres are Vancouver, Edmonton, Toronto, Montreal and Halifax.

Data giving the number of land-mobile systems for each of these centres for 1973-1977 was obtained from the Integrated Radio Licensing System (IRLS). At the same time, data was obtained for 14 other centres. Statistical analysis of this data suggested that an expoential trend was present. In view of the small number of years of available data, it was necessary to examine other data extending over a longer time period for confirmation. Data examined from these other several other sources also suggested that the underlying growth was exponential. Further, there is very litite evidence in the data of a reduction in the rate of growth even when examining sectors that were said to be mature in 1973.

FORECASTS:

The forecast is presented in two parts. It seems likely that the growth in the number of land-mobile systems will continue strong in the short range. This is especially true with the energy crisis and the escalating cost of labour. The use of land-mobile communications can reduce costs in both of these areas [see, for example, Plotkin (1974)]. Therefore, it is possible to obtain figures through to 1985 based on current growth. For the period 1985 to 2000, it seems likely that the growth in the number of land-mobile systems will be more closely tied to increases in population than it has been in the past. For this period, we present forecasts based on the number of land-mobile systems per 1,000 population and population forecasts prepared by the Ministry of state for Urban Affairs (MSUA).

Since the current strong growth in the number of landmobile systems shows no sign of diminishing, the forecasts for 1985 are based on a continuation of this growth during the intervening period. Gxowth in moronto in the period 1973-1977 occurred at a rate which approximates closely an exponential curve with a growth rate of 13.61% per year. Projecting this forward to 1985 we obtain a figure of 8,900 land-mobile systems in Toronto in that year. The comparable figures for Montreal. are a growth rate of 12.79% and 7,800 land-mobile systems in 1985 (for full details, see Chapter 5, Figures 5.1 and 5.2, pp. 26-27).

The forecasts for the year 2000 were based on three hypotheses. The first is that the ratio of land-mobile systems to population will remain constant from 1985 to 2000. It should be pointed out that this is somewhat conservative; between 1973 and 1976, in Toxonto this ratio increased by 35.46% or 10.65% per year. The second is that the ratio of land-mobile systems to population will increase by 50% over the period 1985 to 2000 , or some 2.74% per year. The third is that the ratio of landmobile systems to population will increase by 100% (i.e. double) over the period 1985. to 2000; this is equivalent to 4.730 per year.

The second hypothesis leads us to the figure of 14,700 systems in Toxonto in 2000. Ihis compares with 9,800 systems under the first hypothesis (no growth), and 19,600 under the third hypothesis. Figures for the other centres show a similar pattern; these appear in Table 5.5, p. 30. An illustration of the growth in Toronto appears in Figure 6.1; growth patterns for the other centres are similar.

FIGURE 6.1: The Growth in Land-Mobile Systems in Toronto
(for illustrative purposes only)

NOTES :
(1) Assuming no growth in market penetration (number of systems per 1,000 population) after 1985
(2) Assuming 508 growth in market penetration from 1985 to 2000 (2.74\% per year)
(3) Assuming 100% growth in market penetration from 1985 to 2000 (4.73\% per year).

CONCLUSIONS

In this section we summarise briefly the findings of this study.

The objective of this study is to forecast the number of conventional land-mobile systems* in 5 major urban centres across Canada, namely Vancouver, Edmonton, Toronto, Montreal and Halifax.

As part of this study we considered land-mobile systems in almost all the metropolitan areas across Canada (four were excluded; see Chapter 2). In addition, we looked at various sectors of the economy, including Transportation, Commications, public.Administration and Construction.

In all. of the major centres except Sudbury; the growth rate of the number of land-mobile systems exceeded 11% per year. The growth rate in the sectors of Forestry and Mines and Oils was low, as might be expected; in all other sectors the growth xate exceeded 9\% per year. The overall growth rate for all the centres was 14.13% per year. This compares with a growth rate of 10.07% per year in the number of land licences in the Private Commercial service category since 1963, and a similar growth in the U.K. of 13.57% in the number of radio-mobile licences issued since 1964.

Two forecasts were prepared; a medium range forecast to 1985 , and a long range forecast to the year 2000.

[^3](1)
(2)
roronto
3,320,141
9,800
14;700
19.600

Montreal
3,019,339
8,200
12,200
16. 300

Vancouver
$1,473,592$
8,900
13,400
17:900

Edmonton.
858,163
5,500
8,200
11,000

Halifax
317,518
1,600
2,400
3,200

TABLE 5.5: Number of Land-Mobile systems in the year 2000

NOTES:
(1) Assuming no growth in market penetration (number of systems pex 1,000 population) after 1985
(2) Assuming 50% growth in maxket penetration from 1985 to 2000 (2.74\% per year).
(3) Assuming 100% growth in market penetration from 1985 to 2000 (4.73\% per year).

CENTRE	1973	1974	1975*	1976	YEARLY AVERAGE (COMPOUND) GROWTH (吕)

Toronto	0.74	0.79	0.90	1.00	10.65%
Montreal	0.67	0.74	0.84	0.97	13.21%
Vancouver	1.05	1.16	1.43	1.66	16.65%
Edmonton	1.41	1.69	1.82	2.15	15.03%
Halifax	1.40	1.43	1.69	1.88	10.37%

TABLT 5.4: Number of Land-Mobile Systems per 1,000 population (1973-1976)

* estimated

CENTRE	REGRESSION ESRIMATE	$\begin{gathered} \text { HJGH } \\ \text { ESTJMATE. } \end{gathered}$	$\begin{gathered} \text { LOW } \\ \text { ESTTMAT } \end{gathered}$
Ioronto	8,900	13. 400	7.000
Montreal	7,800	10,000	6,200
Vancouver	7,800	11.900	5,200
Edmonton	4,200	7,1.00	2.500
Halifax	1,500	2,500	900

TABLE 5.2: Estimated Number of Land-Mobile Systems in 1985 (rounded to the nearest 1.00)

[^4]
ASSESSMENT OF EXISTING USE OF LAND MOBILE ALLOCATIONS

INTRODUCTION.
This report will provide an analysis of the extent of usage of the existing land mobile allocations in various cities in Canada. In the report, the land mobile allocations have been subdivided into six or seven bands. The channel bandwidth and the total number of frequencies or channels which are theoretically availabie in each band is shown.

As may be seen from reviewing the number of clear frequencies still available, in any of the Canadian cities shown in Attachment A, the usage of each of the land mobile bands differs. The lowest band between 30 and 50 MHz is not particularly attractive for land mobile operations due to the interference potential at those frequencies from distant assignments. Each of the other bands appears relatively attractive for use by land mobile operations with the exception of the band from 170-174 in the vicinity of a channel 7 TV assignment where land mobile operations causs interference to television reception.

METHODOROGY.

An assessment of the overall band utilization was made by comparing the number of clear frequencies to the total number of land mobile frequencies available in the five major Canadian cities shown in Attachment A. The extent of band utilization is shown as a percentage of the number of clear frequency channels compared to the total number of allocated channels for any particular city.

Attachment A-Summary gives the results for these cities. In total, there are approximately 3,068 frequencies or 1 and mobile channels available for use in any one locality.

OBSERVATIONS

Attachment A for each of the cities, gives a point-in-time assessment of the utilization of each of the land mobile bands.

Attachment B for Toronto and Hamilton shows the growth in base station assignments and in nobile licences in the land mobile service in each area over the last five years. The growth rate shown" in "Attachment B for stations in each of the land mobile bands gives a direct indication of the extent of utilization of that band. For example; in the Toronto district office area, the band from 150-174 MHz has experienced a declining growth rate from 7% during 1973/74 to approximately 0% in 1976/77. This indicates that the band is fully utilized and that all further growth in base stations is directed or diverted into other bands, notably bands 4 and 5 shown in Attachment B. As may be expected, the number of mobiles in the district office areas increase in all bands. This relates basically. to the additional loading of mobiles on to existing systems. However, the growth in the number of land mobiles operating in a band will approach zero some years after the growth in base stations has reached the zero level, as each of the channels available in the band reaches its maximum carrying capacity* in terms of number of mobiles.

From a review of Attachment A .. Sunmary, it may be seen that the land modile utilization of the existing allocations is highest in Toronto and lowest in thalifax, among the five cities surveyed. In Toronto, only 6% of the total number of charinels allocated to land mobile are available as clear frequencies to meet the need of additional users in future. Montreal, Edmonton and Vancouver, all have approximately 25-30\% of their allocated land mobile channels available for future assignnents. The smallest of the cities, Halifax, still has 85% of its existing land mobile allocation available for future use.

CONCLUSIONS.
The following points may be concluded from the assessment of existing land mobile allocation utilization in these five cities of Canada:

1. Toronto has virtually no clear channels for future use and expansion of land mobile systems in the existing land mobile allocations.
2. Montreal, Edmonton and Vancouver, while they do have existing capacity in the present land mobile allocations, will require additional allocations prior to the year 2000 to accomodate even conventional land mobile growth.

ATTACHMENT A - SUMMARY.

LAND MOBILE BANDS - VANCOUVER B.C. AREA

BAND MHZ	CHANNELLED	NO. OF FREQS.	CLEAR FREQUENCIES STILL AVAILABLE
30. .- 50	20 kHz	999	559
138-144	30 kHz	200	66
148-150.8.	30 kHz	88	25
150.8-174	30 kHz	581	0
$410-420$	25 kHz	400	200 (Approx.)!
$450-470$	25 kHz	800	101

NOTE: (1) : Unable to determine actual number of frequencies still available for assignment in $410-420 \mathrm{MHz}$ band as U.S. listing shows a large number of assignments as continental U.S.A. (Actual co-ordination of specific frequencies needed to obtain more accurate results).

LAND MOBTLE BANDS -- EDMONTON ALBERTA AREA

BAND MHZ	CHANNELLED	NO. OF FREQS.	CLEAR FREQUENCIES STILL AVAILABLE
30-50	20 kHz	999	145
138-1.44	30 kHz	200	33
$\begin{array}{llll}148 & -150.8\end{array}$	30 kHz	88	17
150.8-174	30 kHz	715	87
410-420	25 kHz	400	316
$450-470$	25 kHz	80.0	302

NOTE: Central Region have indicated that about 600 of the 999 Chanels int the $30-50 \mathrm{MHz}$ band are not being uscd in the Edmonton area due to possible interference to TV reception. This constraint plus current assignments leaves a balance of 145 channels available for assignment.

LAND MOBILE BANDS - TORONTO ONT. AREAS

BAND MHZ	CHANNELLED	$\begin{aligned} & \text { NO. OF } \\ & \text { FREQS. } \end{aligned}$	COMMENTS
$30 . \cdots 50$	20 kHz	999	About 100 clear frequencies still available for assignment.
138-144	30 kHz	200	About 15 or 16 frequencies still available for assign ment.
148.0-150.8	$30 \% \mathrm{kHz}$	88	About 5 or 6 frequencies still available for assignment.
150.8-170	30 kHz	581	No clear frequencies available.
170-174	$30 . \mathrm{kHz}$	134	This portion of the spectrum restricted in its use due to reception of Channel 7 , Buffalo; N.Y. About 20-25 frequencies can be utilized however for low power systems on a case by case basis.
$410 \cdots 4.20$	25 kHz	400	Reserved primarily in Toronto for Government use. Unable to determine actual number of frequencies still avajlable for Canadian use as U.S. lists show a large number of frequencies as continental U.S.A. (Actual co-ordination of specific frequencies needed to obtain idea).
$450-470$	25 kHz	800	About 20 clear frequencies still available for assignment.

ATTACHMENT A (CONT'D)

LAND MOBILE BANDS - MONTREAL QUE, AREA

BAND MHZ	CHANNELLED	$\text { NO } \therefore \text { OF }$ EREQS.	CLEAR FREQUENCIES STKLL AVAILABLE
$30-50$	20 kHz	999	449
$138-144$	30 kHz	200	0.
$148-350.8$	30 kHz	88	1
150.8-174	30 kHz	715	17
$410{ }^{\circ}-420$	25 kHz	400	204 (approx.)
$450-470$	25 kHz	- 800	101

NOTE: Unable to determine actual number of frequencies still still available for assigmment in 410-420 NHz band as U.S. listing shows a large number of assignments as continental U.S.A. (Actual co-ordination of specific frequencies needed to obtain more accurate results).

BAND MHZ	CHANNELLED	$\begin{aligned} & \text { NO. OF } \\ & \text { FREQS. } \end{aligned}$	CLEAR FREQUENCIES STILL AVAILABLE
$30-50$	20 kHz	999	943
$138-144$	30 kHz	200	147
$1.48-150.8$	30 kHz	88.	67
150.8-174	30 kHz	715	307
$410-420$	25 kHz	400	382
$450: 470$	25 kHz	300	759

IN THE TORONTO DISTRICT OFFICE AREA

442: TORONTO	1972/1.973	1973/1974	1974/1.975	1975/1976	1976/1977
EAND $1-(27.2250-50.0000 \mathrm{MHz})$ - Actuai Number Land Stations Licensed at Years End - Annual \% Growth at Years End	1096	1126 2.74%	1061 -5.77%	1113 4.90%	1119 $.54 \%$
BAND $2-(138.0000-150.0000 \mathrm{MHz})$ - Actual Number Land Stations Licensed at Years End - Annual \% Growth.at Years End	± 26	$\begin{gathered} 176 \\ 39.68 \% \end{gathered}$	$22 x$ 25.57%	$\begin{aligned} & .232 \\ & 4.98 \% \end{aligned}$	$\begin{gathered} 246 \\ 6.03 \% \end{gathered}$
BAND 3-(150.0001-174.0000.MHz) - Actual Number Land Stations Licensed at Years End - Annual \% Growth at Years End	1718	$\begin{aligned} & 1840 \\ & 7.10 \% \end{aligned}$	$\begin{aligned} & 1922 \\ & 4.46 \% \end{aligned}$	$\begin{aligned} & 1973 \\ & 2.65 \% \end{aligned}$	$\begin{aligned} & .1572 \\ & -.05 \% \end{aligned}$
BAND $4-(410.0000-421.0000 \mathrm{MHz})$ - Actual Number Land Stations Iicensed at Years End - Annual \% Growth at Years End	- 30	$\begin{gathered} 30 \\ \therefore .00 \% \end{gathered}$	$\begin{gathered} 35 \\ 16.57 \% \end{gathered}$	$\begin{aligned} & \therefore \quad 53 \\ & \therefore 51.43 \% \end{aligned}$	$\begin{gathered} 68 \\ 28.30 \% \end{gathered}$
EAND $5-(450.0000-470.0000 \mathrm{MHz})$ - Actual Number Land Stations Licensed at Years End - Annual \% Growth at Years End	236	$\begin{gathered} 308 \\ 30.51 \% \end{gathered}$	449 45.78%	$\begin{gathered} 550 \\ 24.72 \% \end{gathered}$	$\begin{gathered} 688 \\ 22.86 \% \end{gathered}$
4k					

LAND MOBIEE STATIONS IN THE TORONTO DISTRICT OFFICE AREA

. .	1972/1973	1973/1974	1974/1975	1975/1976	$3976 / 1977$
$\mathrm{D} 1-(27.2250-50.0000 \mathrm{MHz})$ - Totai Number Stations Licensed at Years End - Anmual a Growth at Years End	5773	$\begin{aligned} & 6213 \\ & 7.62 \% \end{aligned}$	$\begin{gathered} 5369 \\ 13.58 \% \end{gathered}$	5414 $.84 \%$	$\begin{gathered} 6067 \\ 12.05 \% \end{gathered}$
$\begin{aligned} 10 & -(138.0000-150.0000 \mathrm{MHz}) \\ & - \text { Total Number Stations Licensed } \\ & \text { at Years End } \\ & \text { - Annual \% Growth at Years End } \end{aligned}$	516	$\begin{gathered} 853 \\ 38.47 \% \end{gathered}$	$\begin{gathered} . \\ \therefore \quad 1390 \\ \therefore \quad 62.95 \% \end{gathered}$	$\begin{aligned} & 1410 \\ & 1.44 \% \end{aligned}$	$\begin{aligned} & 1546 \\ & 9.65 \% \end{aligned}$
```O-(150.000I - 174.0000 MHz) - Total Number Stations Licensed at Years. End - Annual % Growth at Years.End```	14970	$\begin{aligned} & 18639 \\ & 24.51 \% \end{aligned}$	$\begin{aligned} & 19600 \\ & 5.23 \% \end{aligned}$	$\begin{aligned} & \$ 3681 \\ & -4.69 \% \end{aligned}$	$\begin{aligned} & 20350 \\ & .8 .93 \% \end{aligned}$
(D $4-(410.0000-421.0000 \mathrm{MHz})$   - Total Number Stations Licensed at Years End   - Annual \% Growti at Years End	0	0	90	$\begin{array}{r} 353 \\ 292.22 \% \end{array}$	$\begin{gathered} 457 \\ 29.46 \% \end{gathered}$
ID $5-(450.0000-470.0000 \mathrm{MHz}$   - Total Number Stations Licensed at Years End   - Annual \% Growth at Years End.-	1637	$\begin{gathered} 2437 \\ 48.87 \% \end{gathered}$	$\begin{gathered} 3964 \\ 62.66 \% \end{gathered}$	5233   $32.01 \%$	$\begin{aligned} & \because 6301 \\ & .20 .41 \% \end{aligned}$
cs/0/hase					

[^5]| 443: HAMILTON | 1972/2973 | 1973/1974 | 1974/1975 | 1975!1976 | $1976 / 1977$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BAND 1 - ( $27.2250-50.0000 \mathrm{MHz}$ ) <br> - Actual Number Land Stations Licensed at Years End <br> - Annual \% Growth at Years End | $\because \quad 116$ | $\begin{gathered} 141 \\ 21.55 \% \end{gathered}$ | $\begin{gathered} 151 \\ 7.09 \% \end{gathered}$ | $\begin{gathered} 198 \\ 31.12 \% \end{gathered}$ | $\begin{gathered} 239 \\ 20.71 \% \end{gathered}$ |
| BAvD $2-(138.0000-150.0000 \mathrm{Myz})$ <br> - Actual Number Land Stations Licensed at Years End <br> - Annuai \% Growth at Years End | 26 | $\begin{array}{r} 37 \\ 42.31 \% \end{array}$ | $\begin{gathered} 41 \\ 10.81 \% \end{gathered}$ | $\begin{array}{r} 51 \\ 24.39 \% \end{array}$ | $\begin{array}{r} 77 \\ 50.03 \% \end{array}$ |
| BAND, $3-(150.0001-174.0000 \mathrm{MHz})$ <br> - Actual Number Land Stations Iicensed at Years End <br> - Annual \% Growth at Years End | 545 | $\begin{gathered} 710 \\ \because 0.08 \% \end{gathered}$ | $\begin{gathered} 759 \\ 6.90 \% \end{gathered}$ | $\begin{aligned} & \mathrm{T}_{816} \\ & 7.51 \% \end{aligned}$ | $\begin{gathered} 898 \\ 10.05 \% \end{gathered}$ |
| SAND $4-(410.0000-421: 0000 \cdot \mathrm{MHz})$. <br> - Actual Number of Land Stations Licensed at Years End <br> - Annual \% Growth at Years End | 0 | $\begin{gathered} 0 \\ 0.00 \% \end{gathered}$ |  | 7. | 11 $57.14 \%$ |
| AND $5-(450.0000-470.0000 \mathrm{MHz})$ <br> - Actual Number Land Stations Licensed at Years End <br> - Annual \% Growth at Years End | 44 | $\begin{gathered} 68 \\ 34.55 \% \end{gathered}$ | $\begin{gathered} 95 \\ 39.71 \% . \end{gathered}$ | $\begin{array}{r} 118 \\ 24.21 \% \end{array}$ | $\begin{gathered} 171 \\ 44.92 \% \end{gathered}$ |

LAND MOBILE STATIONS IN THE HAMILEON DISTRICT OFFICE AREA

, • .	1972/1973	1973/1974	1974/1975	1975/1976	$1976 / 1977$
SD 1 - (27.2250-50.0000 MHz)   - Total Number Stations Licensed at Years End   - Annual \% Growth at Years End	277	$\begin{gathered} 401 \\ 44.78 \% \end{gathered}$	$\begin{gathered} 568 \\ 1.65 \% \end{gathered}$	$\begin{gathered} 590 \\ 21.48 \% \end{gathered}$	822 $19.13 \%$
```&D 2-(138.0000-150.0000 MHz) - Total Number Stations Licensed at Years End - Annual % Growth at Years End```	46	$\begin{gathered} 267 \\ 480.43 \% \end{gathered}$	$\begin{gathered} 320 \\ 19.85 \% \end{gathered}$	$\begin{gathered} 423 \\ 32.19 \% \end{gathered}$	$\begin{gathered} 563 \\ 33.10 \% \end{gathered}$
```ND 3-.(150.0001-174.0000 MHz) - Total Number Stations Licensed at Years Ind - Annual% Growth at Years End```	3833	$4911$ $28.12 \%$	$\begin{array}{r} 5550 \\ 13.01 \% \end{array}$	$\begin{aligned} & 5710 \\ & 2.88 \% \end{aligned}$	$\begin{aligned} & 6105 \\ & 6.92 \% \end{aligned}$
ND $4-(410.0000-421.0000 \mathrm{MHz})$   - Total Number Stations Licensed at Years End   - Annual \% Growth at Years End	0	: 0	0	44	$\begin{gathered} 109 \\ 147.73 \% \end{gathered}$
ND $5-(450.0000-470.0000 \mathrm{MHz})$   - Total Number Stations Licensed at Years End   - Annual \% Growth at Years End	$458$	$\begin{array}{r} 586 \\ \therefore \quad 25.21 \% \end{array}$	$\begin{gathered} 776 \\ 32.42 \% \end{gathered}$	$1170$ $50.77 \%$	$\begin{gathered} 1394 \\ 19.15 \% \end{gathered}$

c) (v) Rate of Channel Consumption for Land Mobile Radio


Pate of Channel "consumption"
Gne criteria for the state of congestion in a band is the rate at which channels are "consumed". In this context, the word "consumed" is used to imply that in a given area the consumed chanmel is no longer vacant. If, in a given city, there are $H$ channels available for land moblle usage in a given band, then that band is said to be in a state of "congestion" when all N channels are consumed. Congestion, however, does not imply that further assignments cannot be made in the band, because charnel sharing does permit further loading of these channels. lihen further loading is impossible without severely degrading the quality of the service, the band is said to be in a state of saturation.

The attached computer printout represents the state of congestion of each UHF/UHF land mobile band within a radius of 70 miles from the centre of each of the major Canadian cities. The data is extracted from the FCC, IRAC and the DOC frequency list data tapes. There are two tables and a graph per page. The fiqures in the tables represent the total numer of channels consumed durina or prior to the year indicated. Thus, in Montreal, by 1972, there Were 146 channels constined ir the $450-470$. ithz band out of a total of $N=600$. The asterisk graplis are pictorial representations of the number of channels consumed in the tand inmediately to the . left of the graph, and can be used for visual extrapolation. The scale is 1 asterisk per 20 channels for all tables except for the "all bands" table Where it is 1 per 35 channels.

A table is also attached indicating the number of channels avallable to the land mobile service in the various hands in various cities. Note that in certain cities certain charmels are not available due to prior allotments as is the case for maritime mobile service in cities within 100 miles from the water bodies. Using this table along with projections in the repevant table the expected date of congestion an be estimated. This congestion date is also shom on the graphs.

Appendix H: Supporting Studies and Reports
c) (v) Rate of Channel Consumption for Land Mobile Radio

Page 2.

The congestion dates as derived from this extrapolation are not to be interpreted as the dates of saturation. The latter is difficult if. not impossible to determine with the present state of knowledge because more and more systems can be shoemorned into a band by sharing, offoset assigning, power limiting and system tailoring using directional antennas. The final state of saturation can only be reached when a specified percentage of users has to wait more than a specified length of time to get on the air, for a specified portion of the day. In fact the only reliable means of predicting saturation is by experience when assignments commence being difficult to make. The congestion date concept, however, is still useful for policy and strategic planning purposes wherein potential problems can be avoided by timely action. It provides a framework within which national solutions (such as spectrum reallocation) can be imposed given that a problem is only localized in a few key areas. It provides the measure of the urgency for solutions.

Note that in certain areas the number of channels consumed exceeds the number of channels in the bands. This is due to the use of offset channels which. is becoming a widespread practice in Canada and the USS.

For further discussion, please contact V. Sahay of DTS $\sim$ S at 6.4749.



Att.

The Economic Aspects of Land Mobile Radio:
Background Paper for Spectrum Allocation in
the $406-960$ mHz Band

In the study of spectrum demands at $406-960 \mathrm{MHz}$, economic factors must take second place to other considerations for most of the services involved in the band. The economic motive is not paramount in the anateur, radiolocation, radioastronomy and TSM services, and even in TV broadcast it is overshadowed by social and cultural concerns. For the fixed service there is the altemative of other frequencies, or the nonmradio medium of cable, to relieve commercial pressures in this band. It is in land mobile, made possible by radio alone and ideally suited to the $406-960 \mathrm{MHz}$ band by transmission, that economics comes into its own. Aeronautical and marine mobile pale by comparison, owing to their much smaller role in the business world and greater freedom from transmission restraints.

An appreciation of the commercial nature of land mobile radio can be obtained from a review of license data. As of March 1977 , there were 215,000 mobile units licensed to business users, concentrated in the transport, taxi and construction industries (attachment 1). Only 40,000 licenses were issued to all government agencies, although these represented a somewhat greater number of mobile units since municipal. and national defence users operate under a blanket license. If 15 mobiles per license are assumed in the municipal and defence categories, the total mobile population becomes 300,000 units in early $1977,70 \%$ of them in comercial service.

Since the oil crisis of 1973, energy conservation has taken on a new dimension, transcending the familiar boundaries of cost. The public need to relieve the dependence on oil has now a significance not reflected by the market, and in this regerd the contribution of mobjle radio should be acknowledged. The 24 hour ability to communicate with a vehicle on the road will manifestly save the wasted trips that would
otherwise result from the contingencies of business or government. The difficulty is to calculate the saving; for the reasons discussed below, users do not possess the necessary source data. In the absence of detailed, factual records from the user, recourse must be had to the published estimates of the mileage saved by mobile radio. Those vary from $1.5 \%$ to $40 \%$ and if the lower value is applied to the existing population of radio equipped vehicles, the indicated saving is 100 million gallons of motor fuel per year. This benefit is a surprisingly high $0.4 \%$ of the total domestic oil consumptŝon for all purposes in 1976. The future growth in oil consumption' is difficult to predict, since it will be affected by shortages, conservation and the development of substitute energy sources. What seems certain is that the demand for robile radio with its attendant fuel efficiencies can only be enhanced as oil supplies become scarce. In Attachment 2 this factor is discounted, and the projected fuel saving of 400 million gailons in the year 2000 may be taken as a conservative estimate.

In order to obtain the benefit of first-hand experience, discussions were held with as many users of mobile radio as time permitted, seven in number:
Diamond Taxi )

CP Rail : )
Abitibi Paper ) . Reported in a companion paper
Smith Transport ) by P. Julien

Ontario Department of Transportation
Ontario Hydro
Consumers' Gas

In such a small sample, no attempt could be made to represent the population of mobile users. Major firms were selected as these would have the resources necessary to study the cost effectiveness of radio;
should they find it desirable. None had done so ${ }^{1}$ on the grounds, that radio is essential to the firm's operation, and its costs negligible in relation to other business expense, Under these circumstances, there is little justification for elaborate cost studies. An objective assessment of radio would involve a "before and after" comparison, not available in retrospect for most firms and requixing now an expensive, controlled experiment.

The economic justification for moble radio in the simple case, without considering data systems or specialized design, can be demonstrated by a comparison of vehicle and radio costs. At the very least a vehicle driver, who may also perform other duties; will command $\$ 5$ per hour whereas the radio will typically cost 52.50 per day
(attachment 3). This calculation assumes that dispatehing can be accomplished with no increase in staff, which wonld be true in small radio systems. In large systems the allowance for a full-time dispatcher would be prorated over 25 or moxe vehicles with little effect on the unit cost. At the above rates, the cost of radio will be pajd if 30 minutas of driver time can be saved in the day, a not unreascnable expectation. Similarly, an automobile operating at a typical 7 c per mixe, ${ }^{2}$ or a small delivery truck at 15 c per mile, ${ }^{2}$ will defray the cost of radio:if less than 40 miles can be saved in the day. The combination of driver and vehicle economies makes a powerful aggment for radio.

On some occasions the cost of a mobile system can be repaid in a single radio call. The Ontario Govermment reports of such a case, in which $\$ 80,000$ was saved by instructions from the field to delay the pour for a concrete highway bridge. Ontario Hydro expedite the restoration of transmission lines by using a radio-equipped helicopter to locate storm damage and direct the ground crews. The saving of even a

1. For a complete answer on cost effectiveness studies, refer to the companjon paper. Data for these studies is being provided by some of the companies.

2 These costs are for gasoline, maintenance and tires. Fixed costis such as depreciation are excluded.
few hours in this operation is highly significant to the utility, which sustains a loss of $\$ 500,000$ per day when a power station is disconnected from the grid. An 8 yard shovel used in open-pit mining is equipped with radio to minimize work stoppages, which cost $\$ 2000$ per hour. Numerous other examples can be drawn from industry, wherever vehicles or roving personnel are essential to the functioning of a large undertaking.

It is perhaps unfortunate that the user organizations interviewed in this part of the study (Ontario Hyçro, Ontario Department of Iransportation, and Consumers' Gas) are utilities or quasj-utilities, with all the priority in radio service that that implies. In the Policy Manual, services for the safety of life and property such as fire, ambulance and police are given precedence over services essential to the operation of utilities, transportation, etc. The line between these two service categories is very thin. Fire protection, for example, is difficult if the roads are not plowed in winter; mobile radio is required for both. In such cases, there is little doubt that frequencies will be made available to meet the public need. What about the small user, not engaged in so important an.affair?

The myriad small users of mobile radio, in the construction, manufacturing, resource and service industries; also have a clair on radio frequencies. If the economic impact of radio is not visible because it is diffused over many small users, there is no reason to suppose that it is any the less real, or significanc. The public still benefits from improved productivity, fuel savings, and a standard of service not otherwise obtainable. In view of the public benefits it would be preferable not to restrict the demand for mobile services, relying instead upon spectrum management to avoid an undue proliferation of channels and wastage of spectrum. The merit of any mobile licence must be judged in retrospect, by the exercise made of it. For new businesses or service applications, radio usage is necessarily a matter of conjecture, being dependent on the success of the venture. It would be undestrable to stifle opportunities for the small user through the lack of spectrum allocations.

The problera of wasted spectrum is likely to occur Jeast among the major users of radio, who have systems large enough to pemit efficiencies through trunking and frequency reuse. Already the firms interviewed have taken steps towards frequency conservation, with the active support of the Department. The Ontario Government proposes to operate its entire radio systam for highway maintenance throughout the province on 8 VhF charnels and 12 UHF chanmels. Ontario Hydro conducts all its construction and maintenance of transmission lines on 24 channels in the low band ( 50 NHz ); additional channells are required for generating stations and other purposes. Consumers!. Gas needs only 10 UHP channels for its operations, distributed oveŕ several communities. These economies of scale are not open to the small mobile user, who must combine with other users to achieve the same result.

The real impact of mobile radio is to be found in the public domain, where unfortunately it is least susceptible to definition in econoric terms. Mobile radio was first used in police work, in the early $3.930^{\prime}$ s. Here the public benefit from the protection of life and poperty is indisputable, although no dollar value can be placed on it. The next mobile application was in taxis, yielding a significant gain to the public in the form of faster service. Since those early days, the instances of public benefit have grown in proportion with the spread of mobile radio. Consumers' Gas undertake to have a repaiman on the scene in 15 minutes if a gas leak is reported, minimizing the risk to human life, The public safety depends on the continuous delivery of energy, food and other essential supplies, 211 requiring radio. The cost of a mobile telephone call is far below the return to the user. How can all these benefits be assessed at their true worth to the public? Not by any known technique of economic analysis.

For anyone familiar with mobile radio, this paper will be no more than a statement of the obvious. The paper is therefore directed to those not conversant with the subject, in the hope that nobile radio will receive its due in the forthcoming reallocation of the $406-960 \mathrm{MHz}$ band. Mobile radio speaks with a small public voice because its economic benefits are incapable of precise determination, and pass unnoticed. This should not be allowed to detract from iRs rightful claim to spectrum.
J.B. YNoung

15 July 77

Distribution of Mobile Licences by Industry Sector - 15 March 1977

## Setvice Category

Construction ..... 19,673
Taxt. ..... 19,557
Truck Transport15;845
Ais: Transport ..... 15,117
Special Trade Contractors ..... 12,755
Electric Power ..... 12,463
Railway Transport ..... 10,936
Logging ..... 10,590
116,536 ..... $45.6 \%$
Other Industry ..... 98,399 ..... $38.7 \%$
Govermment Services
Forestry ..... 7,203
Hrghway and Bridge Maintenance ..... 7,200
Other Federal. ..... 12,623
Othex Provincial ..... 9,990
Other Municipal ..... 2,93839,954 15.6\%

Municipal and National Defence users operate under a blanket
licence. On the assumption of 15 mobiles per licence for these users, the total population would be 300,000 mobile radios tin March, 1977.

## Tuel Savings Due to Land Mobile Radio

In 1976; the total domestic oil consumption for all purposes was $1,796,000$ barrels per day, or 23 billion gallons for the year (1 baxrel $=35$ impogat.)

In the EEMAC Submission "Spectrum Allocations in the 406-960 MHz Frequency Band"? dated 3 Dec 76 , a $7.5 \%$ annuel growth is projected for lad mobile radio in the period 1981-2001. This rate allows for maxket saturaibion in relation to the $11.5 \%$ annual growth experienced in 1964-74, and appears to be reasonable. A $7.5 \%$ rate of increase implies that mobile radio and its aitendant fuel efficiencies will quadruple by the year 2000 .

Assuming a $15 \%$ mileage saving due to mobile radio, at 25,000 miles/year and 10 miles/gallon for each vehicle:

Year 1976 Fuel saving per vehicle

$$
\frac{25,000 \text { miles } X .15}{10 \text { miles/gal. }}=375 \mathrm{gal}
$$

Total fuel saving
300,000 radiomequipped vehicles X 375 gal. $=100 \mathrm{million}$ gallons, approx. or $0.4 \%$ of total oil consumption

Year 2000 Total fuel saving $=400$ million gallons




[^0]:    GLagRS
    To reiterate, large integrated land mobile systems (P.M.T.S., R.C.C.) and paging systems, which are efficient users of the frequency spectrum, must be encouraged.

[^1]:    * Frequencies Assigned (including all previous assignments)
    ** Growth from Previous Year (\%)

[^2]:    * Common Carrier
    ** Pipeline
    *** Other
    As of November 1, 1976.

[^3]:    * New types of land-mobile communications, such as cellular, are not included in these forecasts.

[^4]:    TABER 4.1: Total Nsmber of Systems

[^5]:    IN THE HAMILTON DISTRICT OFFICE AREA

