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Abstract 

This report discusses fast-frequency-hopped (FFH) noncoherent-frequency-shift-keyed 

(NCFSK) communication systems with time diversity and diversity combining. A litera-

ture review of diversity-combining techniques is provided. An analytical method has been 

developed for one of the techniques, linear combining. The method combines circularly 

symmetric function theory, Fourier-Bessel series, and Fourier series. With this method, 

the bit-error probability for the demodulation of FFH NCFSK systems with time diversity 

and linear diversity combining and the probability of detection and probability of false 

alarm for uplink coarse-time synchronization of a FFH NCFSK satellite-communication 

system with time diversity and linear diversity combining have been computed in broad-

band noise and multiple-tone jamming. Where possible, the results obtained with this 

method were compared to other reported results, and the two results agreed well. A novel 

analytical result was derived for computing the bit-error probability for the demodulation 

of FFH NCFSK systems with time diversity and 4-2- or 2-1-moment-method diversity 

combining in independent Rayleigh fading. 

For demodulation, linear diversity combining is an excellent method in broad-band 

noise. In severe multiple-tone jamming, linear diversity combining is good. In weak 

multiple-tone jamming, linear diversity combining is not a good method because it is 

susceptible to Houston-sense multiple-tone jamraing with a small jamming fraction. In 

independent Rayleigh fading, square-law combining is the best method for the particular 

situa-  tion which was considered. 

For uplink coarse-time synchronization, time diversity and linear diversity combining 

could be used to improve performance. 
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Chapter 1 

Introduction 

1.1 Objectives 

Fast-frequency-hopped (FFH) noncoherent-frequency-shift-keyed (NCFSK) commu-

nication systems have inherent time diversity which can be used to improve anti-jam capa-

bilities for demodulation. Time diversity is introduced at the transmitter by fast hopping 

and is removed at the receiver by an operation called diversity combining. There are many 

methods of diversity combining. Considerable work has been done in obtaining measures 

of performance for these methods in various interference and fading environments. How-

ever, because of the complexity of the problem, most work has involved special cases, 

simplifications, or computer simulation, and many aspects of the problem have not been 

considered. 

Time diversity and diversity combining can also be used to improve the anti-jam 

performance for uplink coarse-time synchronization and uplink fine-time synchronization 

of a FFH NCFSK satellite-communication system. The diversity-combining methods are 

similar to those used for demodulation. Little work has been done in obtaining measures of 

performance for coarse-time or fine-time synchronization for any of the diversity-combining 

methods. 

Analytical techniques would provide insight into some aspects of the demodulation and 

synchronization problems; however, such techniques are quite difficult to derive. In this 

report, the objective is to develop analytical techniques for obtaining performance mea-

sures for FFH NCFSK systems. The analytical techniques can then be used to gain insight 

into the demodulation performance of FFH NCFSK systems and into the uplink-coarse-

time-synchronization performance of a FFH NCFSK satellite-communication system. 

1 
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1.2 Scope 

In this report, a novel analytical technique is developed which can provide the general 

solution for one diversity-combining technique — linear diversity combining. Measures of 

performance are obtained in broad-band noise, multiple-tone jamming, and Rayleigh fad-

ing for demodulation in FFH NCFSK systems. Measures of performance are also obtained 

in broad-band noise, and multiple-tone jamming for uplink coarse-time synchronization in 

a FFH NCFSK satellite-communication system. 

Also, a novel analytical technique is developed for obtaining performance of a special 

case of 4-2- or 2-1-moment-method diversity combining in Rayleigh fading for demodula-

tion of FFH NCFSK systems. 

1.3 Outline 

Chapter 2 presents a background in modulation and demodulation of FFH NCFSK 

systems with time diversity and diversity combining and in uplink coarse-time synchroniza-

tion of a FFH NCFSK satellite-communication system. Chapter 3 presents the analysis 

method for linear combining. Chapter 4 presents performance results for demodulation 

in FFH NCFSK systems with time diversity and diversity combining. Chapter 5 presents 

performance results for uplink coarse-time synchronization in a FFH NCFSK satellite-

communication system. Chapter 6 presents conclusions. 



Chapter 2 

Background 

2.1 Introduction 

This chapter presents a background in the modulation and demodulation of FFH 

NCFSK communications systems with time diversity and diversity combining. Frequency-

hopped communication is achieved by varying the carrier frequency of the transmitted 

signal pseudorandomly over a wide bandwidth. The receiver has knowledge of the hopping 

sequence and knows in which frequency channel the transmitted signal is located at a given 

time. The receiver can then demodulate the signal. Demodulation is performed assurning 

perfect time synchronization and frequency synchronization between the transmitter and 

the receiver. A coarse- time- synchronization algorithm is discussed towards the end of this 

chapter for the uplink of a FFH NCFSK satellite-communication system. 

2.2 Modulation and Demodulation for FFH NCFSK Sys-

tems 

The transmitter considered in this report is shown in Fig. 2.1. Binary data is passed 

through an error - correction encoder. The coded bits are then converted to M - ary symbols 

with period, T,. The M - ary symbols are applied to a frequency synthesizer where the 

output signal is a tone at frequency, f„„ having one of M possible frequencies. For the ith 

hop period, the symbols are mixed with a frequency tone, fm, generated by a frequency 

synthesizer driven by a pseudonoise-code generator. The tone, fhi, has a hop duration, 

Th = T„,/L. The hop rate for the system is fixed. The integer, L, is the number of 

hops per symbol and is termed the diversity level. If L > 1, the system is called fast 

3 
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frequency hopped; in this report, only fast-frequency-hopped systems are considered. The 

transmitted waveform consists of a series of tones at frequency, fhi f,„, of duration, Th. 

As shown in Fig. 2.2, the received signal is mixed with the output of a local frequency 

synthesizer driven by the same pseudorandom code used at the transmitter. The output 

of the mixer is then a tone, f„„ of duration, Th. This tone is passed through a bank of M 

matched filters with envelope detectors which is shown in Fig. 2.3. Each filter is matched 

to one of the M tones, f„,, and uses noncoherent detection. A matched filter with envelope 

detector is shown in Fig. 2.4. The outputs are the samples, zmi, for rrz = 1, M, and 

i = 1, ..., L. The subscript, m, denotes the frequency bin, and the subscript, i, denotes the 

hop period. The diversity combiner forms the decision statistics, vm , based upon the L 

samples, zmi, using one of many diversity-combining techniques. A decision is then made 

as to which symbol was sent based on these M statistics. The M-ary symbols are then 

converted to binary and passed to the error-correction decoder. Finally, the binary data 

is received from the decoder. 

2.3 Optimum Receiver 

The optimum receiver for a FFH NCFSK system can be found using Karhunen-

Loève expansions and Bayes' criterion [1]. For additive white Gaussian noise (AWGN), 

this results in a receiver consisting of a bank of matched filters with envelope detectors 

followed by a diversity combiner. The optimum method of diversity combining involves 

calculating the a posteriori probability for each hypothesis [1]. Therefore, the decision 

statistic is 

Am  = Probability(tone m sent 	=1,..., L, m = 1, M). 	(2.1) 

The largest Am  indicates the most probable tone that was sent. 

For M-ary communication in AWGN, the optimum statistic can be derived from (2.1) 

and is given by 

(2.2) 
' i=1 

where .si is the rms signal-tone amplitude on the ith hop period,  0.2 = N0/2Th, No/2 is 

the two-sided noise power-spectral density, and 100 is the zeroth-order modified-Bessel 

function. The largest v, indicates the transmitted tone. This result was first derived for 

the binary case in [2]. The combining method of (2.2) is often called "optimum combining" 

[2],[4], but it requires knowledge of si and or. Since these are not known a priori, they 

EingZmjSj)) ° (72 
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must somehow be estimated, and therefore, it is not practical to use this method in an 

actual system. It is desirable to have a decision statistic which does not require knowledge 

of si or a. Below, many other diversity-combining methods are presented. 

2.4 Diversity-Combining Methods 

2.4.1 Selection Diversity Combining 

This combining technique, sometimes called switched diversity combining, picks the 

largest zmi over the L hop periods as the decision statistic. Thus, [5] 

Vm = max(x„,,i). 	 (2.3) 

The largest v m  indicates the transmitted tone. 

2.4.2 Linear Diversity Combining 

If zmis 1 /o. 2  >> 1, the statistic of (2.2) can be apprœdmated using /0(x) exp(x)N7rx 

	

[3]. Taking the logarithm of both sides, ln(/0(x)) 	z  — (0.51n(2rx)). For x >> 1, 

>> 0.51n(2/rx). Now, the statistic is [2],[4],[6]-[9] 

Zmi3i 	Zini3i 
(2.4) 

i=i 	 i=1 

Assuming that si and a do not change from hop to hop, a decision statistic is 

vm = Ezmi . 	 (2.5) 

The largest vm  indicates the transmitted tone. This combining method is called "linear 

combining" and should also have near-optimal performance in AWGN. 

2.4.3 Square- Law Diversity Combining 

If zmi3i/a 2  << 1, the statistic of (2.2) can be approximated using /0 (x) ge 1 + (x 2 /4) 

and ln(1 + x) 	x [3]. This results in [2],[4],[5],[10]-[14] 

L 
Zmi3; 22

(2.6) 
cr 	4(74  

Assuming that si and a do not change from hop to hop, the decision statistic can be 

chosen as 

Vm  = E zm2 (2.7) 
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The largest vm  indicates the transmitted tone. This combining method is called "square-

law combining" and should have near-optimal performance in AWGN. 

2.4.4 Hard-Decision-Majority-Vote Diversity Combining 

Hard-decision-majority-vote (HDMV) diversity combining performs a hard decision 

on each hop. This means that [9],[15],[16] 

1, zmi > zki for ali k 
fhdmv(zmi) = • 	 (2.8) 

0, otherwise 

Then, the decision statistic is 

vm = E fhdmv(zmi). 	 (2.9) 

The largest v, indicates the transmitted tone. 

2.4.5 Ratio -Statistic -Envelope Diversity Combining 

Ratio-statistic-envelope diversity combining normalizes samples on each hop by the 

largest of the samples on that hop and then sums the normalized samples. Thus, the 

decision statistic is [4],[13],[17] 

Zmi 
V m  = E 	 

s. =1 maxm(zmi)• 

The largest vm  indicates the transmitted tone. 

(2.10) 

2.4.6 Self-Normalized-Envelope Diversity Combining 

Self-normalized-envelope (SNE) diversity combining, sometimes called normalized-

envelope detection (NED), normalizes samples on each hop by the sum of the samples 

on that hop and then sums the normalized samples. Thus, the decision statistic is 

[9],[13],[16],[18]-[211 

vm  = E 
i=i E..1 zmi 

The largest vm  indicates the transmitted tone. 

(2.11) 

2.4.7 Ratio-Statistic - Square-Law Diversity Combining 

Ratio-statistic-square-law diversity combining normalizes the squares of the samples 

on each hop by the square of the largest sample on that hop and then sums the normalized 
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samples. Thus, the decision statistic is [13] 

Vm 	
z2 =  

i=1 	rni 

The largest v m  indicates the transmitted tone. 

(2.12) 

2.4.8 Self-Normalized-Square-Law Diversity Combining 

Self-normalized-square-law diversity combining normalizes the squares of the samples 

on each hop by the sum of the squares of the samples on that hop and then sums the 

normalized samples. Thus, the decision statistic is [13],[22] 

L 	z 2 

vm  = ms 	 (2.13) E 	2  . 
i=1 2..m=1 zmi 

The largest vm  indicates the transraitted tone. 

2.4.9 Clipped- Linear Diversity Combining 

Clipped-linear diversity combining clips the samples at a prescribed level above the 

desired-signal level and then sums the clipped samples. This means that [7] 

f C, for zmi > C 

1 zmi, otherwise 

Then, 

tim = Efc,(zmi ). 	 (2.15) 

The largest vm  indicates the transraitted tone. It requires side information to set the 

threshold, C. 

2.4.10 Clipped-Square-Law Diversity Combining 

Clipped-square-law diversity combining clips the squares of the samples at a pre-

scribed level above the desired-signal level and then sums the clipped samples. This 

means that [13],[14] 

fd(zrni) = (2.14) 

C, for zm2  > C 
fcei(zmi) = 

Z
2 

• otherwise 	• 
mo 

Then, 

(2.16) 

Vm = Efcs,(z,no. 	 (2.17) 
i=1 

The largest v, indicates the transraitted tone. It requires side information to set the 

threshold, C. 



L 
2 Vrn  = E qiz ;  . (2.18) 
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2.4.11 Ratio-Threshold-Square-Law Diversity Combining 

The ratio-threshold technique orders the input data from smallest to largest. It then 

takes the ratio of the two largest samples on each hop and assigns on each hop a quality 

factor, qi, of 1 (good) if the ratio is greater than a threshold and assigns a factor of 0 

(bad) if the ratio is less than the threshold. The threshold is chosen to be greater than 1. 

The decision statistic is formed by [23] 

The largest 4,, indicates the transmitted tone. If all qi = 0 for i = 1, ..., L, then a decision 

is based on the zmi with the largest sample ratio. 

2.4.12 Ratio -Threshold - Majority-Logic Diversity Combining 

The ratio-threshold-majority-logic method assigns the same quality factor to each 

hop period as the ratio-threshold-square-law method. Then, a hard decision is performed 

on each hop. This means that [23],[24] 

1, Zmi > ZkifOr  ail  k 
frttnI(Zrni) = 

0, otherwise 

The decision statistic is formed by 

(2.19) 

L 

vrn = E qi.frtrni(zmi). 	 (2.20) 
i=1 

The largest 1,,,, indicates the transmitted tone. If all qi = 0 for i = 1, ..., L, then a decision 

is based on the zms  with the largest sample ratio. 

2.4.13 4-2-Moment-Method Diversity Combining 

The 4-2-moment-method diversity combining forms a decision statistic, [9],[19] 

L 11 L  
V rn  = 2(-, E z2 .)2 — (--,. E z4 •) 

L i=1 
7118 

ir21 

(2.21) 

The largest vm  indicates the transmitted tone. This method attempts to subtract the 

interference power from the samples. 
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2.4.14 2-1-Moment-Method Diversity Combining 

The 2-1-moment-method diversity combining forms a decision statistic, [9],[19],[20] 

L  ‘-‘ Vm  = 2( — 	z •)
2 
 — 	L 

L i=1 	L i=1 m 
(2.22) 

The largest v, indicates the transmitted tone. This method also attempts to subtract the 

interference power from the samples. 

2.4.15 1 - 1/2 - Moment -Method Diversity Combining 

The 1-1/2-moment-method diversity combining forms a decision statistic, [9] 

, L 

v,„= 2(- E Vij)i 2  - -1" E zmi ). 
i=l 	i=1 

(2.23) 

The largest vm  indicates the transraitted tone. This method also attempts to subtract the 

interference power from the samples. 

2.4.16 Order- Statistic Diversity Combining 

The use of order statistics (OS) for diversity combining requires the sorting of the L 

values in each bin so that 

(2.24) Zmi2 5.•.. < zmi L _ i  < zm i L , m = 1,2, • • • , M 

where zmii  is the smallest OS of the mth bin, and zmiL  is the largest OS of the mth bin. 

For a previously specified value of 1, the decision statistic is chosen as [9],[25]-[27] 

vm  = zmi i . 	 (2.25) 

The largest vm  indicates the transraitted tone. 

2.4.17 Weighted - Order-Statistic Diversity Combining 

Order-statistic processing is done first by (2.24) in order to rank zmi. Then, the 

ranked values are summed by [8],[27] 

vm  = E wmii zmi i  
1=1 

where wmi l  are weights. The largest vm  indicates the transmitted tone. 

(2.26) 
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2.4.18 Order- Statistic -Self-Normalized-Envelope Diversity Combining 

The order-statistic and self-normalized-envelope methods can be combined to form 

OSSNE combining. Order-statistic processing is done first by (2.24) in order to rank the 

zmi. Then, the ranked values are normalized to 

Zrnii  
%it = 

Len=1 

The decision statistic is formed by [26],[27] 

vm  = 	zmi ,. 

(2.27) 

(2.28) 

The largest vm  indicates the transmitted tone. 

2.4.19 Order-Statistic-Hard-Decision-Majority-Vote Diversity Combin-

ing 

The order-statistic and hard-decision-majority-vote methods can be combined to form 

OSHDMV combining. Order-statistic processing is done first by (2.24) in order to rank 

zmi. Then, on each hop period, a hard decision is made such that 

1, zmi g  > zkii  for ail k 
fosildmv (zmi i  ) = 

0, otherwise 

Then, the decision statistic is 

vm = E foshdmv(zmo• 
i=1 

The largest vm  indicates the transmitted tone. 

(2.29) 

(2.30 ) 

2.4.20 Weighted-Order-Statistic-Self-Normalized-Envelope Diversity Com-

bining 

This method forms a weighted sum of the moclified values in the OSSNE method. 

The decision statistic is [271 

vm = E 
1=1 

where w mi l  are the weights. The largest vm  is chosen as the transmitted symbol. 

(2.31) 



2.4.21 Recursive-Excision Diversity Combining 

The average of the L values in each bin is computed as [27] 

1 L  
= 

L i=1 
The ratios, 
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(2.32) 

qmi = z,ni/vm , 	 (2.33) 

are calculated on each iteration. If any of the qmi exceed the threshold, C, the corre-

sponding zmi is deleted from the L-bin values, and L is decremented for that bin only. 

The calculations (2.32) and (2.33) are iterated until qmi < C for all remaining bin values. 

The decision statistics are then the final averages from (2.32). The largest vm  is chosen 

as the transmitted symbol. 

2.5 Literature Review 

This section provides a literature review of previous work in obtaining performance 

measures for the demodulation of FFH NCFSK systems with time diversity and diversity 

combining. Previous work, which is summarized in Table 2.1 and Table 2.2, presents re-

sults from theoretical analysis, computer simulation, or experimental analysis of various 

systems in different interference and fading environments. Prior to reviewing the literature, 

some terminology pertaining to the types of interference and fading must be introduced. In 

a broad-band-noise environment, the system is subjected to AWGN across its entire band-

width. In a partial-band-noise environment, the system is subjected to AWGN across part 

of its bandwidth. In a tone-jamming environment, the system is subjected to multiple-

tone interference. In an independent-Rayleigh-fading environment, the fluctuating signal 

amplitude has a Rayleigh probability distribution. In an independent-Rician-fading en-

vironment, the fluctuating signal amplitude has a Rician probability distribution. In a 

correlated-fading environment, fluctuations in signal amplitude are correlated across hop 

periods. 

Optimum diversity combining is discussed in [2] and [4]. In [2], the probability of error 

for a FFH binary NCFSK system in broad-band noise is presented. Results are generated 

by computer simulation for levels of diversity ranging from L = 1 to L = 10. In [4], the 

probability of error for a FFH 8-ary NCFSK system is presented for two cases: partial-

band noise with broad-band noise, and tone jamming with broad-band noise. Results are 

generated by computer simulation for L = 4. 
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Combining Method 	Ref. 	Analysis 	Interference 

optimum 	 [2] 	simulation 	broad-band noise 

[4] 	simulation 	tone jamming, partial-band noise 

selection 	 [5] 	exact 	Rayleigh fading, broad-band noise 

linear 	 [2] 	simulation 	broad-band noise 

[6] bounds 	partial-band noise, tone jamming 

[7] exact 	partial-band noise 

[8] simulation 	partial-band noise 

[4] 	simulation 	tone jamming, Rayleigh fading, 

partial-band noise 

[9] simulation 	broad-band noise 

square-law 	 [5] 	exact 	Rayleigh fading, broad-band noise 

[10] exact 	Rayleigh fading, broad-band noise 

[11] exact 	Rician fading, broad-band noise 

[12] exact 	Ricia,n fading, broad-band noise 

[2] 	simulation 	broad-band noise 

[13] assumptions 	partial-band noise 

[14] bounds 	partial-band noise 

[4] 	simulation 	tone jamming, Rayleigh fading, 

broad-band noise 

hard-decision-majority-vote 	[15] 	exact 	partial-band noise, tone jamraing 

[16] experiment 	partial-band noise, tone jamming 

[9] 	simulation 	broad-band noise, tone jamming 

ratio-statistic-envelope 	[13] 	simulation 	partial-band noise 

[17] exact 	partial-band noise 

[4] 	simulation 	partial-band noise, tone jamming, 

Rayleigh fading 

Table 2.1: Literature Review of Diversity-Combining Techniques 
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Combining Method 	Ref. 	Analysis 	Interference 

self-normalized-envelope 	[13] 	simulation 	partial-band noise, tone jamming 

[18] assumptions 	tone jamraing 

[16] 	experiment 	partial-band noise, tone jamming 

[9] 	simulation 	broad-band noise, tone jamming 

[19] simulation 	broad-band noise, tone jamming 

[20] simulation 	broad-band noise, tone jamnaing 

[21] exact 	Rician fading, partial-band noise 

ratio- st atistic- square-law 	[13] 	simulation 	partial-band noise 

self-normalized-square law 	[13] 	simulation 	partial-band noise, tone jamming 

[22] exact 	partial-band noise 

clipped-linear 	 [7] 	exact 	partial-band noise, Rician fading 

clipped-square-law 	 [13] 	simulation 	partial-band noise 

[14] 	exact 	partial-band noise 

ratio-threshold-square-law 	[23] 	exact 	!Udall fading, partial-band noise 

ratio-threshold-majority-logic 	[23] 	exact 	Rician fading, partial-band noise 

[24] 	exact 	tone jamming 

4-2-moment-method 	[9] 	simulation 	partial-band noise, tone jamming 

2-1-moment-method 	[9] 	simulation 	partial-band noise, tone jamming 

[19] simulation 	partial-band noise, tone jamming 

[20] simulation 	partial-band noise, tone jamming 

1-1/2-moment-method 	[9] 	simulation 	partial-band noise, tone jamming 

order-statistic 	 [25] 	exact 	partial-band noise 

[9] 	simulation 	broad-band noise, tone jamming 

[26] simulation 	broad-band noise, tone jamming 

[27] simulation 	broad-band noise, tone jamming 

weighted-order-statistic 	[8] 	simulation 	partial-band noise 

[27] 	simulation 	broad-band noise, tone jamraing 

OSSNE 	 [26] 	simulation 	broad-band noise, tone jamming 

[27] 	simulation 	broad-band noise, tone jamming 

WOSSNE 	 [27] 	simulation 	broad-band noise, tone jamming 

recursive-excision 	 [27] 	simulation 	broad-band noise, tone jamming 

Table 2.2: Literature Review of Diversity- Combining Techniques continued 
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Selection diversity combining is discussed in [5]. The probability of error for a binary 

NCFSK system in broad-band noise with independent Rayleigh fading is derived. Exact 

analysis is used for arbitrary level of diversity. Results are shown for L = 2, ..., 10. 

Linear diversity combining is discussed in [2], [4], and [6]-[9]. In [2], the probability 

of error for a FFH binary NCFSK system in broad-band noise is presented. Results are 

generated by computer simulation for L = 1, ..., 10. In [6], the probability of error for a 

FFH M-ary NCFSK system is presented for three cases: broad-band noise, partial-band 

noise, and tone jamming. Each case is treated separately. The analysis makes simplifying 

assumptions and uses bounds. Side information concerning the hops that are jammed 

is assumed to be available. Results are presented for M = 16 and optimum level of 

diversity. In [7], the probability of bit error is calculated for a FFH M-ary NCFSK system 

in partial-band noise jamraing using an analytical method based on repeated convolutions 

which is only practical for small levels of diversity. Results are shown for L = 3. In [8], the 

probability of error for a FFH M-ary NCFSK system is presented for partial-band noise 

with broad-band noise. Results are generated by computer simulation for L = 1,3 and 

M = 4,8,16. In [4], the probability of error for a FFH 8-ary NCFSK system is presented for 

two cases: tone jamming with broad-band noise, and broad-band noise with independent 

Rayleigh fading. Results are generated by computer simulation for tone jamming with 

L = 2 and for Rayleigh fading with L = 8. In [9], the probability of error for a FFH 

8-ary NCFSK system is presented for two cases: broad-band noise, and tone jamming 

with broad-band noise. Results are generated by computer simulation for L = 1, ..., 32. 

Square-law diversity combining is discussed in [2], [4], [5], and [10]-[14]. In [5], the 

probability of error for a binary NCFSK system is presented for three cases: independent 

Rayleigh fading with broad-band noise, correlated Rayleigh fading with broad-band noise 

and independent Rayleigh fading with correlated noise. Exact analysis is used. Results 

are presented for the above three cases with L = 1, ..., 20, L = 2, and L = 2, ..., 10, 

respectively. In [10], the probability of error for a M-ary NCFSK system is presented for 

independent Rayleigh fading with broad-band noise. Exact analysis is used. Results are 

presented for M = 2 with L = 1, ..., 20, for M = 4 with L =1,...,10, and for M = 8 with 

L = 1, ..., 5. In [11], the probability of error for a M-ary NCFSK system is presented for 

independent Rayleigh and Rician fading with broad-band noise. Exact analysis is used 

for arbitrary M and L. Results are presented for M = 2 with L = 1, ..., 19. In [12], 

the probability of error for a binary NCFSK system is presented for correlated Rayleigh 

and Rician fading with broad-band noise. Exact analysis is used. Results are presented 
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for M = 2 with L = 1, ..., 15. In [2], the probability of error for a FFH binary NCFSK 

system in broad-band noise is presented. Results are generated by computer simulation 

for L = 1, ..., 10. In [13], the probability of error for a FFH M-ary NCFSK system is 

presented for two cases: broad-band noise, and partial-band noise. For broad-band noise, 

exact analysis is used for arbitrary M and L. Results are presented for M = 8 with 

L = 1, ..., 64. For partial-band noise, the analysis assumes no broad-band noise. Results 

are presented for M = 8 with L = 1, ..., 8. In [14], the probability of error for a FFH 

binary NCFSK system is presented for partial-band noise with broad-band noise. Exact 

analysis is performed for arbitrary L. Results are presented for L = 1, ..., 6. Results from 

exact analysis are compared to results calculated by using bounds. In [4], the probability 

of error for a FFH 8-ary NCFSK system is presented for two cases: tone jamnaing with 

broad-band noise, and broad-band noise with Rayleigh fading. Results are generated by 

computer simulation for L = 2,4. 

Hard-decision-majority-vote diversity combining is discussed in [9], [15], and [16]. In 

[15], the probability of error for a FFH M-ary NCFSK system is presented for two cases: 

tone jamming with broad-band noise, and partial-band noise with broad-band noise. Exact 

analysis is presented for arbitrary M and L. Results are presented for M = 2,8 and 

L = 1, ..., 9. In [16], the probability of error for a FFH 8-ary NCFSK system is measured 

for two cases: tone jamming with broad-band noise, and partial-band noise with broad-

band noise. Experimental data is presented for L = 1, ..., 32. In [9], the probability of 

error for a FFH 8-ary NCFSK system is presented for two cases: tone jamming with 

broad-band noise, and broad-band noise. Results are generated by computer simulation 

for L=  1, ..., 32. 

Ratio-statistic-envelope diversity combining is discussed in [4], [13], and [17]. In [13], 

the probability of error for a FFH 8-ary NCFSK system is presented for two cases: broad-

band noise, and partial-band noise. Results are generated by computer simulation for 

L = 1, ...,6. In [17], the probability of error for a FFH binary NCFSK system is presented 

for partial-band noise with broad-band noise. Exact analysis is presented for arbitrary 

L. Results are presented for L = 1, ..., 5. In [4], the probability of error for a FFH 

8-ary NCFSK system is presented for three cases: partial-band noise with broad-band 

noise, tone jamming with broad-band noise, and broad-band noise with Rayleigh fading. 

Results are generated by computer simulation for L = 4. 

Self-normalized-envelope diversity combining is discussed in [9], [13], [16], and [18]-[21]. 

In [13], the probability of error for a FFH 8-ary NCFSK system is presented for three 
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cases: broad-band noise, partial-band noise, and tone jamming. Results are generated 

by computer simulation for L = 1, ..., 6. In [18], the probability of error for a FFH 

binary NCFSK system is presented for tone jamming. Apprœdmate results are derived 

for arbitrary L since broad-band noise is not considered. In [16], the probability of error 

for a FFH 8-ary NCFSK system is measured for two cases: tone jamming with broad-band 

noise, and partial-band noise with broad-band noise. Experimental data is presented for 

L = 1, ..., 32. In [19], the probability of error for a FFH 8-ary NCFSK system is presented 

for two cases: tone jamming with broad-band noise, and broad-band noise. Results are 

generated by computer simulation for L = 1, ..., 32. In [20], the probability of error 

for a FFH 8-ary NCFSK system is presented for two cases: tone jamming with broad-

band noise, and broad-band noise. Results are generated by computer simulation for 

L = 1, ..., 28. In [9], the probability of error for a FFH 8-ary NCFSK system is presented 

for two cases: tone jamming with broad-band noise, and broad-band noise. Results are 

generated by computer simulation for L = 1, ..., 28. In [21], the probability of error for 

a FFH binary NCFSK system is presented for partial-band noise with broad-band noise 

and independent Rician fading. Exact analysis is presented for arbitrary L. Results are 

presented for L = 1, ..., 4. 

Ratio-statistic-square-law diversity combining is discussed in [13]. The probability of 

error for a FFH 8-ary NCFSK system is presented for two cases: broad-band noise, and 

partial-band noise. Results are generated by computer simulation for L = 1, ..., 6. 

Self-normalized-square-law diversity combining is discussed in [13] and [22]. In [13], the 

probability of error for a FFH 8-ary NCFSK system is presented for three cases: broad-

band noise, partial-band noise, and tone jamming. Results are generated by computer 

simulation for L = 1, ..., 6. In [22], the probability of error for a FFH binary NCFSK system 

is presented for partial-band noise with broad-band noise. Exact analysis is presented for 

arbitrary L. Results are presented for L = 1, ..., 4. 

Clipped-linear diversity combining is discussed in [7]. The probability of error for a 

FFH M-ary NCFSK system is presented for partial-band noise with broad-band noise. 

Exact analysis is presented for arbitrary L and M. Results are presented for M = 32 and 

L = 3,5. 

Clipped-square-law diversity combining is discussed in [13] and [14]. In [13], the prob-

ability of error for a FFH 8-ary NCFSK system is presented for three cases: broad-band 

noise, partial-band noise, and tone jamming. Results are generated by computer simula-

tion for L = 1,...,6. In [14], the probability of error for a FFH binary NCFSK system is 
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presented for partial-band noise with broad-band noise. Exact analysis is presented for 

arbitrary L. Results are presented for L = 1,2. 

Ratio-threshold-square-law diversity combining is discussed in [23]. The probability of 

error for a FFH binary NCFSK system is presented for three cases: partial-band noise with 

broad-band noise, independent Rayleigh fading with broad-band noise, and independent 

Rician fading with broad-band noise. Exact analysis is presented for arbitrary L. Results 

are presented for L = 1, ..., 5. 

Ratio-threshold-majority-logic diversity combining is discussed in [23] and [24]. In 

[23], the probability of error for a FFH binary NCFSK system is presented for three cases: 

partial-band noise with broad-band noise, independent Rayleigh fading with broad-band 

noise, and independent Rician fading with broad-band noise. Exact analysis is presented 

for arbitrary L. Results are presented for L = 1, ..., 5. In [24], the probability of error for a 

FFH binary NCFSK system is derived for partial-band noise with broad-band noise, and 

and tone jamming with broad-band noise. Results are presented for L = 4 and M = 2,8. 

The 4-2-moment-method diversity combining is discussed in [9] and [19]. In [19], the 

probability of error for a FFH 8-ary NCFSK system is presented for two cases: partial-

band noise with broad-band noise, and tone jamming with broad-band noise. Results are 

generated by computer simulation for L = 1, ..., 32. In [9], the probability of error for 

a FFH 8-ary NCFSK system is presented for two cases: partial-band noise with broad-

band noise, and tone jamming with broad-band noise. Results are generated by computer 

simulation for L = 1,...,32. 

The 2-1-moment-method diversity combining is discussed in [9], [19], and [20]. In [19], 

the probability of error for a FFH 8-ary NCFSK system is presented for two cases: partial-

band noise with broad-band noise, and tone jamming with broad-band noise. Results are 

generated by computer simulation for L = 1, ..., 32. In [9], the probability of error for 

a FFH 8-ary NCFSK system is presented for two cases: partial-band noise with broad-

band noise, and tone jamming with broad-band noise. Results are generated by computer 

simulation for L = 1, ..., 32. In [20], the probability of error for a FFH 8-ary NCFSK system 

is presented for two cases: partial-band noise with broad-band noise, and tone jamming 

with broad-band noise. Results are generated by computer simulation for L = 1, ..., 28. 

The 1-1/2-moment-method diversity combining is discussed in [9]. The probability of 

error for a FFH 8-ary NCFSK system is presented for two cases: partial-band noise with 

broad-band noise, and tone jamming with broad-band noise. Results are generated by 

computer simulation for L = 1, ..., 32. 
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Order-statistic diversity combining is discussed in [9], and [25]-[27]. In [25], the prob-

ability of error for a FFH binary NCFSK system is derived for partial-band noise with 

broad-band noise. Results are presented for L = 1, ..., 8. In [9], the probability of error for 

a FFH 8-ary NCFSK system is presented for two cases: broad-band noise, and multiple-

tone jamming with broad-band noise. Results are generated by computer simulation for 

L = 1, ..., 32. In [26], the probability of error for a FFH 8-ary NCFSK system is presented 

for two cases: broad-band noise, and multiple-tone jamming. Results are generated by 

computer simulation for L = 1, ..., 32. In [27], the probability of error for a FFH 8-ary 

NCFSK system is presented for two cases: broad-band noise, and multiple-tone jamming 

with broad-band noise. Results are generated by computer simulation for L = 1, ..., 32. 

Weighted-order-statistic combining is discussed in [8] and [27]. In [8], the probability 

of error for a FFH M-ary NCFSK system is presented for partial-band noise with broad-

band noise. Results are generated by computer simulation for M = 2,4,8,16 and L = 1,3. 

In [27], the probability of error for a FFH 8-ary NCFSK system is presented for two 

cases: broad-band noise, and multiple-tone jamming with broad-band noise. Results are 

generated by computer simulation for L = 1, ..., 32. 

OSSNE combining is discussed in [26] and in [27]. In both papers, the probability 

of error for a FFH 8-ary NCFSK system is presented for two cases: broad-band noise, 

and multiple-tone jamming with broad-band noise. Results are generated by computer 

simulation for L = 1, ..., 32. 

WOSSNE combining is discussed in [21. The probability of error for a FFH 8-ary 

NCFSK system is presented for two cases: broad-band noise, and multiple-tone jamming 

with broad-band noise. Results are generated by computer simulation for L = 1, ..., 32. 

Recursive-excision combining is discussed in [27]. The probability of error for a FFH 

8-ary NCFSK system is presented for two cases: broad-band noise, and multiple-tone 

jamming with broad-band noise. Results are generated by computer simulation for L = 

1, ..., 32. 

Some observations pertaining to the use of the various diversity-combining methods in 

the demodulation of FFH NCFSK systems are presented. Optimum diversity combining 

is not a practical method because it involves estimation of signal and noise powers. Selec-

tion diversity combining is not a practical method because it is susceptible to partial-band 

interference. Clipped-linear, clipped-square-law, ratio-threshold-square-law, and ratio-

threshold-majority-logic diversity combining are not practical methods because side infor-

mation is required to set a clipping level or a threshold. Hard-decision-majority-vote di- 



21 

versity combining is not a good method because it does not utilize all the information from 

the matched-filter output samples. 4-2-moment-method, 2-1-moment-method, and 1-1/2- 

moment-method diversity combining perform poorly in fading. Linear diversity combining 

is an excellent method in broad-band noise. Square-law diversity combining is an excel-

lent method in fading. Ratio-statistic-envelope, self-normalized-envelope, ratio-st atistic-

square-law, self-normalized-square-law, order-statistic, weighted-order-statistic,  OS SNE, 

 OSHDMV, WOSSNE, and recursive-excision diversity combining are excellent methods in 

multiple-tone jamming. The methods based on order statistics are computationally inten-

sive. Lineas, square-law, ratio-statistic-envelope, self-normalized-envelope, ratio-statistic-

square-law, self-normalized-square-law, order-statistic, weighted-order-statistic,  OS SNE, 

 OSHDMV, WOSSNE, and recursive-excision diversity combining are all possible methods 

of choice. 

2.6 Uplink Coarse-Time Synchronization for a FFH NCFSK 

Satellite-Communication System 

The overall uplink coarse-time synchronization system for a particular FFH NCFSK 

satellite-communication systems is shown in Fig. 2.5. In this application, the transmitter 

of Fig. 2.1 is used to send a series of synchronization-probe bursts in a serial-search pro-

cess. Onboard the satellite, the payload processor makes a decision as to whether a probe 

burst has been received. Only the probe bursts falling within the onboard hop-pattern 

window can be detected. An acknowledgement is sent back to the orig,inating terminal 

for use in adjusting the hop-pattern timing. Synchronization-search strategies are consid-

ered elsewhere [28],[31]. Once coarse-time synchronization has been achieved, fine-time 

synchronization aligns the two hop periods to within the required tolerance [28],[34],[35). 

The synchronization probe, shown in Fig. 2.6, consists of a tone at a frequency, fhi +fp , 

for the ith hop period. The probe frequency, fp , is usually chosen as one of the M 

frequencies of the M-ary NCFSK channel so that no additional hardware is required. In 

Fig. 2.6, the probe arrives at the receiver with a timing error of AT relative to the onboard 

hop pattern. The dehopping process gates and downconverts the probe so that only the 

section of the probe falling within the onboard dehop period is seen at the output of the 

dehopper. If IATI is greater than Th, there is no probe energy available. 

Following the dehopper is a bank of E 1 matched filters and envelope detectors of 

the form shown in Fig. 2.3. One filter is matched to the probe frequency, fp , and E are 
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Figure 2.5: Simplified coarse-time synchronization system. 

matched to frequencies other than the probe frequency. The outputs are the sampled 

values, zpi and zei, for i = 1, L, and e = 1, ..., E. The empty bins are used to obtain 

noise and interference statistics. The diversity combiner forms decision statistics, v p  and 

ve  for e = 1, E, using one of the diversity-combining methods described previously. The 

decision statistics are then used to make the decision as to whether a detection has been 

made. 

2.7 Summary 

This chapter has provided the background in modulation and demodulation for FFH 

NCFSK systems with time diversity and diversity combining. A literature review of 

the various diversity-combining methods has been presented. For demodulation in FFH 

NCFSK systems, linear, square-law, ratio-statistic-envelope, self-normalized-envelope, ratio-

st atistic-square-law, self-normalized-square-law, order-statistic, weighted-order-statistic, 

OSSNE, OSHDMV, WOSSNE, and recursive-excision diversity combining are ail possible 
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Figure 2.6: The gating of the dehopper. 

methods of choice. 

This chapter has also provided the background in uplink coarse-time synchronization 

for a FFH NCFSK satellite-communication system. 

Since linear diversity combining is an excellent method for demodulation of FFH 

NCFSK systems in broad-band noise, it merits further study. In the next chapter, a 

novel analytical technique is derived which can be used to obtain performance results for 

demodulation of FFH NCFSK systems with time diversity and linear diversity combining 

and for the uplink coasse-time synchronization of a FFH NCFSK satellite-communication 

system. 



Chapter 3 

Analysis Method for Linear 

Combining 

3.1 Introduction 

A receiver often used in communications and radar is shown in Fig. 3.1. The input, 

x(t), can be modelled as one or more tones plus AWGN. The tones, if present, can be 

a desired signal or interference. The receiver is assumed not to have knowledge of the 

phase of the desired signal. The desired signal has a basic period of duration,  T.  This 

input is applied to a filter noncoherently matched to the desired-signal frequency and 

then sampled at intervals of T to generate a complex sample, 9i , in the ith interval. 

Envelope detection is then performed to generate the envelope sample,  z.  Finally, L 

samples over the period LT are added together in an operation sometimes called "linear 

diversity combining" or just "linear combining", to obtain the decision statistic, v. The 

term "linear" refers to the sample combining, and not to the envelope-detection process 

which is actually nonlinear. This distinction is important since it is common practice to 

replace the envelope detector with a square-law detector. Unfortunately, this second type 

of combining is often misnamed "square-law combining" even though the actual combining 

is linear. 

In order to analyze the performance of such a system, it is required to derive the 

probability density function (pdf) and cumulative distribution function (cdf) of the L-

sample sum. There has been considerable previous work in deriving the pdf and cdf 

for the process where a square-law detector is used in place of the envelope detector. 

Much less has been done for envelope detection. In this chapter, a method of analysis is 
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described that provides the pdf and cdf for the output, y, of the envelope detector and 

linear combiner of Fig. 3.1. 

In previous work on envelope detection with linear combining, the pdf and cdf of the 

sum have been derived for some special cases of the stochastic process, x(t). Brennan [36] 

computed the cdf of the sum of independent Rayleigh random variables, which occur if 

the input, x(t), consists of white Gaussian noise, by doing repeated convolutions using 

numerical integration. Marcum [37] derived a method of evaluating the cdf of the sum 

of independent Rayleigh random variables, and of the sum of independent Rician random 

variables, which occur if the input, x(t), consists of a sine wave plus white Gaussian 

noise, using Gram-Charlier series. Beaulieu [38] derived an efficient way of evaluating the 

pdf and cdf of the sum of independent Rayleigh random variables using Fourier series. 

Helstrom [39] derived a method of evaluating the pdf and cdf of the sum of independent 

Rayleigh and the sum of independent Rician random variables using Laplace transforms 

and saddlepoint integration. These methods either are not general enough to cover all 

cases of interest or are very difficult and labourious to implement computationally. 

In this chapter, the technique developed by Bird [40] to analyze the pdf for a single 

sample using circularly symmetric function theory and Fourier-Bessel series is combined 

with a method [38],[41] which uses Fourier series to analyze the pdf and cdf of the sum 

of independent random variables in order to provide a method of analysis that is capa-

ble of calculating the pdf and cdf of the decision statistic, v. This method is not only 

computationally efficient and accurate, but is applicable to more general problems. 

Once the pdf and cdf have been found, a variety of performance values can be deter-

mined. In particular, it can be used for computing the probability of error in demodulation 

problems, the probability of detection and false alarm in detection problems, and the mean 

and variance of estimates in estimation problems. 

This method can be used to obtain performance measures for FFH NCFSK systems. 
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For demodulation of the dehopped signal in a general FFH NCFSK system [15 ]419],[28], 

there are M branches with M outputs, vm , for m = 1, M, as shown in Fig. 3.2. 

The largest value is selected as corresponding to the symbol received. For coarse-time-

synchronization algorithms that require the detection of synchronization probes, there is at 

least one branch like that in Fig. 3.1 to detect the probes, and possibly others to sample the 

interference background [28]-[33]. For fine-time-synchronization algorithms that employ 

synchronization probes, two or more branches are used, and the outputs, vm , are used to 

calculate an estimate of the timing error (281,[341,[35]. In this report, the analysis method 

is applied to diversity combining for the demodulation of FFH NCFSK systems and for 

uplink coarse-time synchronization of a FFH NCFSK satellite-communication system. 

3.2 Mathematical Approach 

Consider the general block diagram shown in Fig. 3.2. Let the input consist of a 

signal tone, plus one or more interfering tones, plus white Gaussian noise. In the ith 

transmission interval of duration,  T,  a sample is taken in every branch. Then, L of these 

are accumulated over the total symbol period LT . The output of the mth branch is 

V m  = E Zmi 

izr.1 

where zmi is the envelope sample for the mth branch during the ith interval. To find the 

pdf and cdf of vm , the pdf of zm i is derived first. 

Let the signal tone at the mth branch be 

Vismi cos(2/rfm t Omi) 	 (3.2) 

where 3mi is the rms amplitude, fm  is the frequency, and Omi is a random phase angle. 

The interference tone is 

cos(2/rfm t am i) 	 (3.3) 

where am i is the rms amplitude, f, is the frequency, and ami is a random phase angle. 

The noise is a white Gaussian random process with zero mean and two-sided noise power-

spectral density, No/2. The sum of these three signals passes through the matched filter 

and envelope detector of Fig. 2.4. 

The output sample of the matched filter with envelope detector, z mi, is the magnitude 

of a two-dimensional vector. This vector can be written as a complex number, emi,  where 

(3.1) 
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Figure 3.2: A block diagram of the basic process with M branches. 

the real part, Ymic, is the sampled output of the in-phase integrator, and the imaginary 

part, yrni, , is the sampled output of the quadrature integrator. Then, eyni is 

9mi  = Ymic iYmis = 	ami 	 (3.4) 

so that 

mj = 3mi C08(mi) .i3  ,ni 	 (3.5) 

am; =  ami  cos(ami) ja,„; sin(ami), 	 (3.6) 

mi  = nmic in,nig• 	 (3.7) 

It can be shown that the noise components, nmic  and nmi,, are Gaussian random variables 

with zero mean and variance, 

(3.8) 
e 	271.  

The pdf of zmi = remil is [40] 

mi(zmi) = fe°  o  b 	zmi/Vo(Pzmi)Oihni(P)dP 	 (3.9) 
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where 4 i,(p) is the two-dimensional characteristic function of gmi  given by [40] 

cc  trns(P) = J
( 

JO(P.emi).fsms(Zmi)dZmi, 	 (3.10) 
0 

and Jo() is the zeroth-order Bessel function of the first kind. Since the random variable, 

is the sum of independent components, the two-dimensional characteristic function 

of "jmi  is the product of the characteristic functions of its corresponding components. 

Therefore, the two-dimensional characteristic function of each component is required so 

that (3.9) can be used to find the pdf of zmi. 

For a constant signal tone of duration,  T,  the characteristic function is found from 

(3.10) as [40] 

(3.11) (P) = Jo(P3mi). 

For a constant interference tone of duration,  T,  the characteristic function is [40] 

eam(P) = Jo(Pami). 

The characteristic function for the noise is [40] 

"2 ,2 

„H(P) =  

The characteristic function of 9„,i  is 

..(P) = i,n,(P) 4  am,(P) 4  ft.»). 

(3.12) 

(3.13) 

(3.14) 

The pdf of zmi can be found by substituting (3.14) into (3.9). Unfortunately, the integral 

in (3.9) cannot usually be solved analytically for most signal combinations of interest. 

Previous work in evaluating the pdf and cdf of z mi has followed three different approaches. 

The first approach leads to series solutions in terms of Laguerre polynomials [42]444]. The 

second involves numerical integration [45],[46]. These two approaches are complicated and 

specialized to each individual problem. The third uses Fourier-Bessel series which leads 

to an efficient numerical solution. It can be shown that [40] 

b,„(zmi) 2zrni 
q1 

 th-s(vR)J.(Àqzmi) 

	

vi(4)12R2 	R 	
(3.15) 

= 

where A ti  are the zeroes of Jo() for q = 1, 2, ..., oc in ascending order, and R is a value 

chosen such that for zmi > R, fz ,(z,,,i) is sufficiently close to zero. The cdf of zrni can be 

obtained by integrating (3.15) with respect to zmi term by term leading to [40] 

	

oo 4 - (41 R) 	À q z,n; 
Fz„„(z,,,i) = 2zmi E  14- 	J1(-). 	 (3.16) 

(Aq)] 21eq q=a 
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Thus, both the cdf and pdf of zmi can be efficiently evaluated using Fourier-Bessel series. 

There are two types of truncation error involved with evaluating (3.15) or (3.16). It 

is necessary to truncate the series after Q terms and to choose a value of R. For a signal 

with tone interference and Gaussian noise, it is suggested in [40] that R be chosen to be 

R = Rj + 10a 	 (3.17) 

where R1 is the sum of the rms amplitudes of the signal and interfering tones. This 

selection makes the truncation error due to the choice of R negligible [40]. Then, Q is 

chosen so that the truncation error due to the finite series is sufficiently small. In order to 

guarantee a sufficiently small truncation error, calculations of the pdf and cdf are repeated 

with increasing numbers of terms in the series of (3.15) and (3.16) until the final results 

do not change by more than the required accuracy. 

The pdf of z„,i is now used to determine the pdf and cdf of vm  given by (3.1). Note 

that the zmi for i = 1, L are independent random variables. Beaulieu [38] and Bird 

[41] have provided sirailar means of determining the pdf and cdf of a sum of independent 

random variables. The technique used below more closely follows the approach of Beaulieu 

[38] with suitable modifications for the problem at hand. 

In the derivation of (3.15), it is assumed that f,(z mi) = 0 for zmi > R and also for 

zmi <0.  Since v„, is the sum of the zmi, it follows that the pdf of vm , f„,„( v„,), is zero for 

Vin  > LR and also for vm  <0. A typical ft,„,(v„,) is shown in Fig. 3.3. Now from [38], the 

artifice is introduced of multiplying f(v) by a square wave, Sv(v m  — Lem ), also shown 

in Fig. 3.3. Here, Len, is a constant offset. The square wave is defined by 

v 
sv(v). E rect( 	 

V 
14=-00 

(3.18) 

where 

rect(v) = { 
	5 1, Iv' 	0.5, 

0, lvi > 0.5. 	
(3.19) 

The period of the square wave is chosen to be V = 2LR. The cdf of v„, is 

Cyrai 

Fv„,(en,L) = 
0 	

fn„,(v)dv, 	 (3.20) 

LR 
= 1 — 	f(v)dv, 	 (3.21) 

em L 

Since Sv(v — en,L) = 1 for en,L < v < LR, and Sv(v — emL)fvm(v) = 0 for v < €,„L and 

v>  LR, (3.21) can be written as 

LR 
Fv,„(Em L) = 1 — j . Sv(V — em L)f,,(v)dv. 	 (3.22) 

emL 
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V 

(3.27) 

(3.28) 
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= 1— f Sv(v — EmL)fv,,,(v)dv. 	 (3.23) 

= 1 — E[Sv(v,,, — €,,L)] 	 (3.24) 

where E[] denotes expectation over the random variable, v„,. Thus, the cdf of v,,, can be 

expressed in terms of the expected value of the periodic square wave. Note that (3.24) is 

true if fi„„(vm ) does not have an impulse at a discontinuity of Sv(v m  — Em L) [38]. 

S, (vm — E 

fv. ( v.) 

V 
1-  

emL LR vm  

Figure 3.3: The pdf of vm . 

o 

The Fourier series representation of Sv(v) is [38] 

1 	k=oo 	jkcav 

k=—oo,kodd 

where c,) = 27r/V. Combining (3.24) and (3.25) gives [38] 

1 	k=oo 	Erejkw(vm  -.ern LI 

	

Fvm  ( En% L) = i — E 	L 	. 
k=—oo,kodd 	

irkj 
 

(3.25) 

(3.26) 

After considerable algebraic manipulation, the pdf and cdf of v„, can be found from the 

pdf of zmi by the Fourier series expansion and are given by [38] 

1 
Fv„,(vm ) = i  

fvm(vm) = 

2 	'."-..° 	Am k sin O ra k 

k 
	, 

k=1,k odd 

4 	0°  
V
-- E Ara k cos Ornk 

k=1,k odd 



and 

R  E[sin(kwz„,i)] = f sin(kt z„,i) f ,m ,(z,ni)dzm i 
Jo  

(3.35) 
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where 

Amo, = Ni(E[co8(kwz mi)]) 2  (E[sin(kwzmaz, 	 (3.29) 

E[sin(kw(z mi - en,))] 
 ) m ik = tan-1( 

E [cos(kw(z„,i - em))], 	
(3.30) 

Amk = flAm ik, 	 (3.31) 
1=1 

()nth = Eomik, 	 (3.32) 
i=1 

V m 
e m = 	 (3.33) 

Beaulieu [38] ha,s shown that the series in (3.27) and (3.28) converge. The expected values, 

E[cos(L.,  zm i)] and E[sin(kw z m i)], are calculated by 

(3.34) E[cos(kwz,„i)] = 
0

cos( kc zmi) f z„, ; (z„,i)dz m i 

using numerical integration where f,„„(z) is given by (3.15). The coefficients, Am k and 

m k , can be found from (3.29)-(3.35). The choice of V = 2 L R simplifies the computations 

since the numerical integrations of (3.34) and (3.35) need only be evaluated once for each 

value of k for any g,iven pdf. The pdf and the cdf of v,„ can then be found using (3.27) and 

(3.28). The series in (3.27) and (3.28) are truncated after K terms. Note that (K - 1)/2 

terms are zero because the summation is only over odd terms. Thus, to cakulate the 

pdf and cdf of v f„, only K 1 single integrations are needed. In order to guarantee 

a sufficiently small truncation error, calculations of the pdf and cdf are repeated with 

increasing numbers of terms in the series of (3.27) and (3.28) until the final results do not 

change by more than the required accuracy. 

3.3 Comparison with Other Results 

In this section, a comparison is made between the numerical results generated using 

the above method and previously published results. 
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3.3.1 Sum of Five Rayleigh Random Variables 

Consider the problem of finding the cdf of the sum of five Rayleigh random variables, 

zmi, for i = 1,...,16, where each random variable has a pdf of 

,2 

fz„„(z„,i ) = zmi  eXP( 1.-';?Lli ), Zmi O. (3.36) 

Beaulieu [38] has shown that for the Rayleigh random variable of (3.36), the integrals of 

(3.34) and (3.35) are 

1 k2w 2  E[cos(kwzmi)] = 

k2w 2 , 
E[sin(kwzmi)] = 	exla( 

(3.37) 

(3.38) 

where 1F1(, , ) is the confluent hypergeometric function. The cdf of the sum can then be 

found from (3.27). Beaulieu [38] shows an efficient way of evaluating (3.37). The series 

of (3.27) must be truncated after a certain number of terms. The cdf was computed 

with various numbers of terms, and the results are shown in Table 3.1 along with the 

previously published results of Helstrom [39]. Note that there is agreement to 6 decimal 

places between the results with 30 terms and 40 terms; therefore, 30 terms are sufficient 

for an accuracy of ±10 -6 . In addition, the results of [39] and those calculated in this 

report agree. 

v„., 	20 terms 	30 terms 	40 terms 	Helstrom [39] 

1.0 	-0.000046864425 	0.000000087051 	0.000000242536 	0.000000246072 

3.0 	0.006013209643 	0.006040403871 	0.006040461398 	0.00604046 

5.0 	0.198147788091 	0.198135172457 	0.198135073842 	0.198135 

6.0 	0.446517392095 	0.446545531179 	0.446545628911 	0.446546 

7.0 	0.702846895639 	0.702811444082 	0.702811389564 	0.702811 

9.0 	0.961571441004 	0.961548568638 	0.961548621161 	0.9615486 

11.0 	0.998229594502 	0.998237077575 	0.998237134497 	0.99823713 

13.0 	0.999946637776 	0.999969488835 	0.999969472545 	0.9999694733 

Table 3.1: The CDF of 5 Rayleigh Random Variables 
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3.3.2 Sum of Sixteen Rician Random Variables 

Consider the problem of finding the cdf of the sum, v m , of sixteen Rician random 

variables, zyn i , for ti = 1, ..., 16, where each random variable has the pdf, 

—Z,n2 	Smi  go(zmi 3mi), Zmi 0• hmi (Zmi) = Zmi exPl 	2 
(3.39) 

In this case, the integrals in (3.34) and (3.35) cannot be solved analytically. Numerical 

integration was used employing the adaptive-Romberg algorithm [47]. The integration was 

stopped when the error was less than a fraction, 5  = 10-8 , of the value of the integral. The 

cdf was computed with various numbers of terms, and the results are shown in Table 3.2 

along with the previously published results of Helstrom [39]. Note that there is agreement 

to 8 decimal places between the results with 50 terms and 70 terms; therefore, 50 terms 

are sufficient for an accuracy of ±10 -8 . In addition, the results of [39] and those calculated 

in this report agree. 

smi 	30 terms 	50 terms 	70 terms 	Helstrom [39] 

1.2604192 	0.932001282965 	0.932011262474 	0.932011262683 	0.9320114 

1.5867737 	0.644568109834 	0.644600482984 	0.644600482906 	0.644601 

1.9976298 	0.134545925833 	0.134562469337 	0.134562469396 	0.134563 

2.5148669 	0.001217999774 	0.001246864269 	0.001246864363 	0.00124687 

Table 3.2: The CDF of 16 Rician Random Variables 

3.4 Summary 

A method for obtaining the pdf and the cdf of a sum of independent random variables 

has been presented. The method is independent of the underlying pdf. An efficient way of 

evaluating the pdf and the cdf of the sum has been provided. The cdf computed using this 

method ha,s been compared to the cdf computed using a previously known method, and 

the results agree well. This novel analytical technique can be used to obtain performance 

results for systems employing linear combining. The application is demonstrated in the 

next two chapters. 



Chapter 4 

Application to Demodulation of 

FFH NCFSK Systems 

4.1 Introduction 

Previous error-performance analyses for FFH M-ary NCFSK receivers with linear 

diversity combining have primarily used computer simulation [2],[4],[8],[9] or approxima-

tions [6]. However, Keller [7] calculates the probability of bit error, Pb,  in partial-band 

noise using an analytical method based on repeated convolutions which is only practical 

for small levels of diversity and cannot be used for multiple-tone interference. An analyt-

ical method is needed to compute Pb for an arbitrary level of diversity for the following 

situations: 1) partial-band-noise jamming plus system noise, 2) multiple-tone jamming 

plus system noise, and 3) fading plus system noise. This chapter presents the application 

of the analytical method presented in the last chapter to the demodulation problem in 

FFH M-ary NCFSK systems with linear diversity combining. 

Previous error-performance analyses for FFH M-ary NCFSK receivers with 2-1- and 4- 

2-moment-method diversity combining have primarily used computer simulation [9],[19],[20]. 

This chapter presents an analytical method for the FFH binary NCFSK demodulation 

problem with 2-1- and 4-2-moment-method diversity combining and L = 2 in independent 

Rayleigh fading. 

34 
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4.2 Broad-Band Noise 

The probability of bit error was calculated for various levels of diversity in broad - band 

AWGN. The noise can originate from both system noise and jamming. The signal-to-noise 

ratio after dehopping is given by 

Eh 	8 2  - 
S N R = — = -2"—r" 

No  22  

where Eh is the energy per hop, N0/2 is the two-sided noise power-spectral density, and 

cr 2  = N0/2Th. This S N R is appropriate for a fixed-hop-rate system. Perfect time syn-

chronization and frequency synchronization are assumed. The probability of symbol error 

is given by 

P, = 1 - f [Fn(ve f  f,n (v)dv 	 (4.2) 

where F(v) is the cdf of the decision statistic with only broad-band noise present, and 

f(v) is the pdf of the decision statistic with broad-band noise and a signal tone present. 

The probability of bit error is then 

Pb = 	 ,P 	 (4.3) 
2(M - 1) 

Therefore, the calculation of Pb requires only a single integration. The adaptive-Romberg 

method was used for the numerical integration [47] with  6  = 10 -8 . To calculate the 

Fourier-Bessel series of (3.15) and (3.16), 150 terms were used. To calculate the Fourier 

series of (3.27) and (3.28), 40 nonzero terms were used. With the above choices, the results 

have an accuracy of ±10 -8 . 

The probability of bit error was calculated for various levels of diversity in broad-

band AWGN for linear combining with the same parameters as in [19] where results are 

generated by computer simulation; therefore, M = 8 and S N R = -0.2 dB. From (4.2) 

and (4.3), the probability of bit error was calculated for various levels of diversity and is 

plotted in Fig. 4.1. The results generated in this report agree with the results presented in 

[19]. Note that the probability of bit error decreases as the level of diversity is increased. 

Since linear and square-law combining are near-optimal diversity-combining schemes in 

broad-band AWGN, a comparison between the two would be interesting. The probability 

of bit error with M = 2 for square-law combining is given by [55] 

1 	LEh, 	f  LEth, 

0 Pb = - exK —) cn - )n  22L-1 	2N 	2N0  
n=0 

( 4 . 1) 

(4.4) 
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L 

Figure 4.1: Pb with M = 8 and SNR= —0.20 dB in broad-band noise. 
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(4.5) 

where 
1  L - 1 - n (2L - 1 
n. 

k=0 

Table 4.1 shows the performance of the two diversity-combining methods with SY R = -5 

dB and SNR = 0 dB. The Pb is almost the same for both methods. Thus, linear and 

square-law combining have similar performance. Recall that linear combining has near-

optimal performance for large SNR in broad-band AWGN and that square-law combining 

has near-optimal performance for small SNR in broad-band AWGN. Then, both combin-

ing methods have near-optimal performance independent of the signal-to-noise ratio. 

SNR in dB 	L 	Pb for square law 	Pb for linear 

0 	8 	0.069145 	0.068921 

0 	12 	0.034761 	0.034492 

0 	16 	0.018060 	0.017842 

0 	20 	0.009571 	0.009414 

0 	24 	0.005141 	0.005035 

0 	28 	0.002788 	0.002719 

0 	32 	0.001523 	0.001479 

-5 	8 	0.289804 	0.293143 

-5 	12 	0.248320 	0.252187 

-5 	16 	0.216027 	0.220198 

-5 	20 	0.189728 	0.194068 

-5 	24 	0.167742 	0.172158 

-5 	28 	0.149040 	0.153467 

-5 	32 	0.132937 	0.137328 

Table 4.1: Pb With M = 2 in Broad-band Noise 

4.3 Multiple-Tone Jamming 

The probability of bit error was calculated for binary NCFSK with L = 8 in multiple-

tone jamming plus broad-band AWGN for two types of jamming strategies. First, results 

are presented for randomly distributed multiple-tone jamming. Then, these results are 

compared to results for Houston-sense multiple-tone jamming. 
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4.3.1 Randomly Distributed Multiple -Tone Jamming 

Eh 	3 2  
SJR= — = 	 (4.6) 

Jo  yam& 

where Eh is the energy per hop, and Jo  is the equivalent jammer power-spectral density. 

For L hops, the bin with the desired signal will contain a signal tone plus noise every time, 

but would contain a jammer tone 1, times where 1, is a ra,ndom integer with 0 < 1, < L. 

Similarly, for L hops, the empty bin would contain noise every time, but would contain a 

jammer tone l e  times where l e  is a random integer with 0 < le  < L. The probability of 

each combination of tone jamming can be calculated from 

L \ 	)(L
le

),„v 1.+1.(1  _ 7 )2L-14-1•1 
Pcomb( 1  se le) = 1.  (  

The probability of a correct decision for each combination of tone jamming, P correct (le ela), 

is calculated using 

Pco„ect (1,,1,) = 	Fe (v)h(v)dv 

where f,() is the pdf of the signal-bin decision statistic, and Fe () is the cdf of the empty-bin 

decision statistic. The overall  probability of a correct decision is then 

L L 

Peorrect = E E Pcomb( 1  el I s)Pcorrect(le, 1,), 
1 8 =0 11 =0 

and Pb iS 

Pb  re 1 — Peorr ect • 	 (4.10) 

From (4.7) - (4.10), Pb was calculated for SNR= 10 dB and for various SJR, and is plotted 

as a functions of in Fig. 4.2. The adaptive-Romberg method was used for the numerical 

integration [47] with 6 = 10-8 . To calculate the Fourier-Bessel series of (3.15) and (3.16), 

150 terms were used. To calculate the Fourier series of (3.27) and (3.28), 200 nonzero 

terms were used. With the above choices, the results have an accuracy of ±10-8 . 

For SNR= 10 dB and SJR = -5 dB, Pb is at a maximum of 0.2910 for a jamming 

fraction of 7 = 1.0. As -y approaches zero, Pb drops considerably. Thus, jamming all the 

bins is the most detrimental jamming strategy at this level of interference. 

For randomly distributed multiple-tone jamming, the jammer tones are randomly 

located in a fraction, 7, of the total number of bins. All jammer tones are of the same 

amplitude, a,ni. Each jamming tone is assumed to be at the centre of the frequency 

bin. The signal-to-noise ratio is given by (4.1). The ratio of signal to tone jammer after 

dehopping is given by 

(4.7) 

(4.8) 

(4.9) 
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Figure 4.2: Pb for randomly distributed multiple-tone jamming, L = 8, M = 2, SNR = 10 

dB. 
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For SNR = 10 dB and SJR = 0 dB, Pb is at a maximum of 0.1127 for a jamming 

fraction of 7 = 0.019. As 7 approaches zero, Pb drops considerably. Note that Pb = 0.1123 

for -y = 1.0. Thus, jamming all the bins is almost as detrimental as jamraing the worst-case 

fraction of bins at this level of interference. 

For SNR = 10 dB and SJR = 5 dB, Pb is at a maximum of 0.0408 for a jamming 

fraction of -y = 0.006. As -y approaches zero, Pb drops considerably. For y = 1.0, Pb = 

0.0016. Thus, jamming with 7 = 0.006 is much worse than jamming with -y = 1.0. 

For SJR= —5 dB, the highest Pb occurs at full-band jamming. For SJR= 0 dB and 

SJR= 5 dB, the highest Pb occurs at a relatively small jamnaing fraction (7 = 0.019 and 

-y = 0.006 respectively). For small jamming fractions (7 < 0.005), Pb is almost the same 

for all three values of SJR. Full-band jamming is very detrimental at SJR = 0 dB and 

SJR= —5 dB, but is not the worst case for SJR= 5 dB. 

4.3.2 Houston - Sense Multiple -Tone Jamming 

For Houston-sense multiple-tone jamraing, a fraction, a, of the total number of M-

bin channels are jammed by placing a single jammer tone in the centre of one bin of that 

channel. Two jammer tones are never located in the same channel. This strategy was 

first discussed in [51] for situation without diversity. It is the worst-case jamming when 

diversity is not employed. The fraction, -y , of bins jammed is  7 = alM. All jammer 

tones are of the same amplitude, ami. Each tone's centre is at the centre of the frequency 

bin. The signal-to-noise ratio is given by (4.1). The ratio of signal to tone jammer after 

dehopping is given by (4.6). 

Consider a FFH binary (M = 2) NCFSK system. For L hops, the bin with the desired 

signal will contain a signal tone plus noise every time, but would contain a jammer tone 

1, times where 1, is a random integer with 0 < 1, < L. Similarly, for L hops, the empty 

bin would contain noise every time, but would contain a jammer tone 1, times where 1, 

is a random integer with 0 < 1, < L — 1,. The probability of each combination of tone 

jamming can be calculated from 

Pcomb( 1 8, 1 ) = 
(I, + le) 	L )1 +1 1+1 

e 	 • a 	6 (1 — a) L-1 6 -1. • 	(4.11) 
1, 	1, +1, 2 

The probability of a correct decision for each combination of tone jamming, le d (11,), 

is calculated by (4.8) using (4.11). The overall probability of a correct decision is then 

calculated using (4.9), and Pb is given by (4.10). From (4.8)-(4.11), Pb was calculated for 

SNR= 10 dB and for SJR = —5 dB and SJR = 0 dB, and is plotted as a function of 
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y in Fig. 4.3. The adaptive-Romberg method wa,s used for the numerical integration [47] 

with 6.  = 10 -8 . To calculate the Fourier-Bessel series of (3.15) and (3.16), 150 terms were 

used. To calculate the Fourier series of (3.27) and (3.28), 200 nonzero terms were used. 

With the above choices, the results have an accuracy of ±10-8 . 

For SNR = 10 dB and  SJR = —5 dB, Pb is at a maximum of 0.2834 for a jamming 

fraction of y = 0.5. As y approaches zero, Pb drops considerably. Thus, jamming all the 

channels is the most detrimental jamming strategy at this level of interference. 

For SNR = 10 dB and SJR = 0 dB, Pb is at a maximum of 0.1138 for a jamming 

fraction of y = 0.02. As 7 approaches zero, Pb drops considerably. Note that Pb = 0.0996 

for y = 0.5. Thus, jamming with y = 0.02 is much worse than jamming with y = 0.5. 

For SJR = —5 dB, the highest Pb occurs at full-band jamming. For SJR = 0 dB, 

the highest Pb occurs at a relatively small jamming fraction (7 = 0.02). Houston-sense 

jamming is worse than randomly distributed jamrning at SJR = 0 dB; however, randomly 

distributed jamming is worse than Houston-sense jamraing at SJR = —5 dB. This second 

point is very important. It is often stated in the literature [9],[26],[27] that Houston-sense 

jamming is the worst case. However, for L = 8, M = 2, and SJR = —5 dB, this is not 

true. Thus, Houston-sense jamming is not necessarily the worst-case jamming. 

4.4 Rayleigh Fading 

In this section, the performance of linear, square-law, 4-2-moment method, and 2-1- 

moment-method diversity combining is considered in Rayleigh fading. Results are derived 

for M = 2 and L = 2. 

4.4.1 The PDF for zm , in Independent Rayleigh Fading 

The output sample of the matched filter with envelope detector, zmi, is the magnitude 

of a complex number, 

ern; = 3mi  + flmi, 	 (4.12) 

where 

smicos(Omi)+ismisin(q5mi), 	 (4. 13 ) 

m ; = nmic   (4.14) 
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Vm = ZmlZm2. (4.20) 
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The noise components, rtmic  and nmig , are Gaussian random variables with zero mean and 

variance, 
2  No 

(4.15) 
n  2Th 

where N0 /2 is the double-sided power spectral density of the noise, and Th is the hop 

period. The signal amplitude, smi, is a random variable with pdf, 

2 
3mi 

f.„„ ( 3mi ) = --r  exp (— 	3Ini  
• 0 	230 

For s mi < 0, h in,(smi ) = 0. The mean power of the signal is 24. From 3.10, the two-

dimensional characteristic function of the matched filter output sample is 

P2 (ern2  + 4)  \ 
(P) = exP 	 l• 	 (4.17) 

2 

The pdf of the output sample with signal and noise present is 

Zmi 	Zmi \ z  > 0,  fan  ( 	= 	«Pk -7,-7" Tr" c T 	4CrT 

(4.18) 

where 4 =  o  + 4. For z„,i  <O,  f an (zmi) = O. The pdf of the output sample with only 

noise present is 
Zmi 	Zm 

fn(ZMi) =
2 	

z„,i k 0. 
a2  

For zmi < 0, ft,(zmi) = 0. 

(4.19) 

4.4.2 The 2- 1 - and 4- 2-Moment Method 

In the 2-1-moment method, a dedsion statistic, v„„ is formed by (2.22). For L = 2, 

the decision statistic is after simplification 

Define a variable q = zrn2. The joint pdf of vm  and q is found from the joint pdf of zmi 

and zm2. Because of the independence of zmi and zm2, the joint pdf of zml and zm2 is the 

product of the individual pdf. Thus, the joint pdf is 

2 Zrni Zra,2 	— Zmi  

2a2 	
), 	> 0, Z7n2 > 0. 	(4.21) ,z,,,2( zm zmz) = 	exPt 	 

The magnitude of the jacobian of the transformation from (zmi , zm2) to (v„„ q) is 

zm2) I = (4.22) 
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The joint pdf of yin  and q is [53] 

fam i ,z,n2 (Zml, Zm 2 )  
fvm,4 (vm q) — I  J(zm1,  zma 

(4.23) 

where zmi  = vm /q and Zm2 = q. Thus, substituting (4.21) and (4.22) into (4.23), 

Vm 	
_(ur )2 q2 

fv , q (v,, q) = —qa4  exp( 	2a2 
	

),vm  k 0, q 0. 

The pdf of v m  can be found by integrating (4.24) with respect to q. Thus, 

Letn.2 	2 

	

Vm 	q 	q 
fvm(vm) = 	4  exp( 	)dq, Vrn  O. 

	

o ger 	22 

Simplifying [54], 

( Vm = .21V rde / V771 \ 

04 l'Ot a2  vm  

(4.24) 

(4.25) 

(4.26) 

where K0() is the zeroth-order modified-Bessel function. By integrating (4.26), the cdf of 

vm  can be found as 

Simplifying [3], 

vm  
F„„,(vm ) =  f 	f„,n (z)dx, vm  O. 	 (4.27) 

Fyn., vrn  = 1  vo.,n2 
Ki( ), vm 

 > 0,  
(4.28) 

where Ki () is the first-order modified-Bessel function. 

The bit-error probability, Pb, for binary NCFSK can be found by 

* = 1 - j F„(v)fm (v)dv 
o 

v2  
= 100 

 =
K0(4)Ki(--1)dv 

 erneT 	crT 
crn  4 

= 	2F1(2 , 1; 3; 1- (-Lie  )4) 

01. 	 GrT 
, on  ,4 %I: 1 „ ‘ 4 ‘ k 

= --) L 	 I 
CrT  k=0 k  + 2 	47T 

Pb (4.29) 

(4.30) 

(4.31) 

(4.32) 

\ 4 

' 	 (4111(n ) ( -ler  )4  - 1) 	 (4.33) (1 (.0e)4)2 	 OT 

where Fn () is the cdf of vm  with only noise present, fan() is the pdf of vm  with signal plus 

noise present, and 2F1(, ; ; ) is the Gauss hypergeometric function. The expression for Pb 

in (4.33) is a new result. The 4-2-moment method has identical performance to that of 

the 2-1-moment method for L = 2 and M = 2 in independent Rayleigh fading. 



,2 
 Zm i Zm2 	
,2 

	exp( 	 
20.2 	

)azrn i dzm 2 (4.34) 

Pb = 1 — 	 Fn (v) f,(v)dv. (4.38) 
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4.4.3 Linear Diversity Combining 

For linear diversity combining, a decision statistic, vm , is formed by (2.9). For L = 2, 

the cdf of v„, can be computed as 

vm vm-zmi 
1",„,(vm ) = 

f 

o 

f Vm 

JO JO 

Simplifying, 

Fvm  (vm ) = 1 - exp( î 	
vm 

jr ) 	exp(-4-ar )erf(i-j), v m  0, 

where 

erf(z) = 7_772 0z 
exp(-t2 )dt, vm  > O. 

The pdf of v m  can be found by differentiating (4.35). Thus, 

	

2 	 —V2 

	

—V 	 2 

	

m 	NAF , 
h 

Vm 

	

m (v m ) = —
2
; exp( 2

, 	
+ 2a2 ) exp( —2-1)erf( —), 	O. 

	

2a 	4a 	 4cr 2 	2cr 

(4.35) 

(4.36) 

(4.37) 

The probability of bit error for binary NCFSK must be found numerically by integrating 

4.4.4 Square -Law Diversity Combining 

For square-law diversity combining, a decision statistic, vm , is formed as (2.11). For 

L = 2, the pdf and cdf are given by [55] 

vm 	vm  
fvm(vm) = 	exP( - 	vm 0, 	 (4.39) 

and 

17„„.(v m ) =  1-  (1 + en2v  ) exp(- 	), v„, 0, 

After considerable algebraic manipulation, the probability of bit error is given by 

4 + 30 	4 + 30  
Pb = 8 + 120 + 602  + 03  (2 + 0)3  

where 0 = S N R = 88/o. This result agrees with [5]. 

(4.40) 

(4.41) 

4.4.5 Results 

The bit-error probability wa,s computed for L = 2 and M = 2 in independent Rayleigh 

fading using (4.38), (3.27), and (3.28) for linear combining, using (4.33) for the 4-2- and 
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2-1-moment-method combining, and using (4.41) for square-law combining. The results 

are shown in Fig. 4.4. Square-law combining has the best performance. The 4-2- and 

2-1-moment-method combining have the second best performance. Linear combining has 

the worst performance. However, linear combining is only 1.9 dB worse than square-law 

combining. Square-law combining can be shown to be the optimum combining method in 

independent Rayleigh fading. 

4.5 Summary 

This chapter presented performance results for the demodulation of FFH NCFSK 

systems with time diversity and linear diversity combining. These results were obtained 

using a novel analytical technique described in the previous chapter. 

In broad-band noise, for linear combining, the probability of bit error decreases as the 

level of diversity is increased. Also in broad-band noise, linear and square-law combining 

have similar performance. In multiple-tone jamming, Houston-sense jamming is not nec-

essarily the worst-case jamming. In Rayleigh fading with M = 2 and L = 2, square-law 

combining performs better than the 4-2-moment-method, 2-1-moment-method and linear 

combining. 
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Chapter 5 

Application to Uplink 

Coarse-Time Synchronization for 

a FFH NCFSK 

Satellite-Communication System 

5.1 Introduction 

The analysis method of Chapter 3 is applied to uplink coarse-time synchronization 

of a FFH NCFSK satellite-communication system with time diversity and linear diversity 

combining. The decision statistics, vp  and ve  for e = 1, E, are formed from the matched-

filter output samples, zpi and zei for j  = 1, L, and e = 1, ...,E, by linear combining. The 

probe-bin statistic, vp , is compared to a threshold, vt . There are numerous methods of 

obtaining a value for the threshold, vt . For illustration, the "adaptive-threshold method" 

is used. For comparison, the ideal value of vt  based upon perfect knowledge of a is used. 

In the adaptive-threshold method, a new value of vt  is obtained for every new vp  and is 

based upon the sum, ye , obtained in a single empty bin (E = 1). The means of obtaining 

the value of vt  is based on the following observations and assumptions. Suppose that the 

interference in the empty bin were only WGN of two-sided power-spectral density, No/2. 

Then, [52] 

E[V] = L4a 	 (5.1) 
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(5.2) 

where o 2  = N0/2Th. Thus, an estimate of a is 

. ve e  
a.._ 

L 

It can be shown that for a particular value of the probability of false alarm, the threshold 

is vt  = ca cr where  C a  is a constant that is independent of a. The constant, c., is computed 

separately once. Then, each new threshold can be calculated from the estimate, â, given 

via (5.2) by 

ca, 
vt. 

f  
_ —V e  = b a ye 	 (5.3) 
L 

where b. = (c./L)V2hr is a constant. A similar method for setting the threshold is 

described in [56]. Clearly, if the interference is not Gaussian, the threshold will be set 

improperly, and the probability of false alarm will differ from its expected value. 

For the ideal value of vt, the actual (not estimated) value of a. for WGN is used to 

obtain E[v e) according to (5.1). The threshold is set to vt  = bf.E[v e] where  b 1  is a constant 

chosen to give the desired false-alarm probability. 

The probability of synchronization-probe-burst detection was computed for two differ-

ent types of jamnaing: (1) broad-band noise, and (2) multiple-tone jamming plus broad-

band noise. It is assumed in the calculations that the synchronization-probe burst is either 

perfectly aligned, i.e. AT = 0, or else IATI > Th. This means that there is no spillover 

from the probe bin to the empty bin. The analysis can be easily modified for IATI 0 0, 

or IATI < Th. 

5.2 Broad-Band Noise 

For the adaptive-threshold method, the probability of detection in broad-band noise 

is given by 

(5.4) 

and the probability of detection with an ideal threshold in broad-band noise is given by 

Pd = 1— Ft,p (biE[v.]) 	 (5.5) 

where the required cdf and pdf are calculated from (3.15),(3.16),(3.27), and (3.28) with 

the subscript, m, replaced by p or e. The signal is a constant tone with rms amplitude, 

si,, , and the noise is AWGN. The signal-to-noise ratio after dehopping is given by (4.1). 

The constants are set so that Pia = 0.01. The probability of false alarm can be 

computed using (5.4) and (5.5) with Fv.() substituted for Fvp () and P1 a substituted for Pd. 

LR 
Pd = 	(1 — F.,(b.v.))f..(v.)dv e , 

Jo  
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Various constants are tried until Pfa = 0.01 The constants are set as follows: bf = 2.4215 

for L = 1 and an ideal threshold, ba  = 1.8744 for L = 8, E =1 and an adaptive threshold, 

and b f  = 1.4584 for L = 8 and an ideal threshold. The adaptive-Romberg method was 

used for the numerical integration [47] with 6 = 10 -8 . To calculate the Fourier-Bessel 

series of (3.15) and (3.16), 150 terms were used. To calculate the Fourier series of (3.27) 

and (3.28), 40 nonzero terms were used. With the above choices, the results have an 

accuracy of ±10-8 . 

Fig. 5.1 shows the performance in broad-band noise. Three curves are shown: L = 1 

and an ideal threshold, L = 8 and an ideal threshold, and L = 8, E = 1, and an adaptive 

threshold. The performance with L = 8, E = 1 and an adaptive threshold is about 

2.7 dB better than the performance without diversity and an ideal threshold. However, 

the method with L = 8 requires eight times as many probes as the method without 

any diversity. The performance with L = 8 and an ideal threshold is a further 3.2 dB 

better than the performance with L = 8, E = 1 and an adaptive threshold. The ideal-

threshold method represents the performance with a perfect threshold-setting algorithm. 

It is unattainable in practice, but provides a bound on achievable performance. If more 

empty bins are used to set the threshold, this bound can be approached. For example, if 

eight empty bins were used (E = 8), the performance of the adaptive threshold method 

was calculated and found to be within a fraction of a dB of that with an ideal threshold. 

5.3 Multiple-Tone Jamming 

The probability of detection was computed in this section for multiple-tone jamming 

plus broad-band noise. Jammer tones are randomly located in a fraction, 7, of the total 

number of bins and are assumed to have the same amplitude, api  = aei . Each tone's center 

is at the center of the corresponding frequency bin. Out of L hops, the probe bin would 

contain a signal tone and noise every time, but would contain a jammer tone lp  times 

where  1,  is a random integer with 0 < lp  < L. Similarly, out of L hops, the empty bin 

would contain noise every time, but would contain a jammer tone le  times where l e  is a 

random integer with 0 < l e  < L.  The probability of each combination of tone jamming is 

calculated from (4.7). The probability of detection for each combination of tone jamming, 

Pd(le , lp ), is calculated using (5.4) with Pd(le ,lp) substituted for Pd where the required cdf 

and pdf are calculated by (3.15) and (3.16) with the appropriate characteristic functions 

used. The probability of false alarm for each combination of tone jamming, Pie(1,,lp), is 
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Figure 5.1: The probability of detection in broad-band noise (Pf. = 0.01). 



(5.6) 

(5.7) 
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calculated using (5.4) with Pfa (le ,lp ) substituted for Pd and Fu.()  substituted for Fv,() 

where the required cdf and pdf are calculated by (3.15) and (3.16) with the appropriate 

characteristic functions used. The probability of probe-burst detection is given by 

L L 

Pd = E E Pcomb(i.,ip)Pd(1.,1p). 
1e0 1p0  

The probability of probe-burst false alarm is given by 
L L 

Pfa =  E E Pcomb(1,,lp)Pf,(1,,lp). 
4=0 4.0 

The signal-to-noise ratio is given by (4.1). The ratio of signal to tone jammer is given 

by (4.6). The constant was set equal to b a  = 1.8744 so that the Pfa  would be 0.01 in 

broad-band noise. The adaptive-Romberg method was used for the numerical integration 

[47] with  5  = 10-6 . To calculate the Fc Irier-Bessel series of (3.15) and (3.16), 150 terms 

were used. To calculate the Fourier series of (3.27) and (3.28), 200 nonzero terms were 

used. With the above choices, the results have an accuracy of ±10 -8 . Fig. 5.2 and Fig. 5.3 

show the performance of with L = 8, E =1, and an adaptive threshold in broad-band 

noise and multiple-tone jamming. 

In Fig. 5.2, SNR = 10 dB and SJR = 0 dB. The probability of detection is at a 

maximum for a jamming fraction of -y = 0.0 and at a minimum for broad-band jamming 

= 1.0). The probability of false alarm has a maximum at 7 ge 0.08 and a minimum at 

-y = 0.0 and 7 = 1.0. For broad-band noise jamming of the same total power (SNR = 

-0.4 dB), the probability of detection is Pd 2s., 0.16, and the probability of false alarm is 

Pfa = 0.01. 

In Fig. 5.3, SNR= 10 dB and SJR= 5 dB. The probability of detection is also at a 

maximum for a jamming fraction of 7 = 0.0 and at a minimum for broad-band jamming 

= 1.0). The probability of false alarm has a maximum at 7 0.04 and a minimum at 

= 0.0 and -y = 1.0. The curve in Fig. 5.3 is not monotonically decreasing as is the one 

in Fig. 5.2. For broad-band noise jamming of the same total power (SNR = 3.8 dB), the 

probability of detection is Pd re. 0.57, and the probability of false alarm is P1.= 0.01. 

Note that the lowest probability of detection is achieved with broad-band jamming 

= 1.0). Thus, jamining only a fraction of the total number of bins is not effective 

in reducing the probability of detection. However, the probability of false alarm has 

a maximum at some intermediate value of jamming fraction (0.0 < < 1.0). Hence, 

jamming only a fraction of the total number of bins can be used to increase the false-

alarm probability. Also, the probability of detection and probability of false alarm are 
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both lower for broad-band tone jamming with broad-band noise jamming than for only 

broad-band noise jamming. 

5.4 Summary 

This chapter presents the performance of an uplink-coarse-time-synchronization al-

gorithm for a FFH NCFSK satellite-communication system with time diversity and linear 

diversity combining in noise jamming and multiple-tone jamming. Results show that time 

diversity and linear diversity combining can be used to improve performance in broad-

band noise. Results also show that the adaptive-threshold method does not have a con-

stant false-alarm probability for multiple-tone jamming. With multiple-tone jamming, the 

minimum probability of detection is achieved by jamming the entire band; however, the 

maximum probability of false alarm is achieved by jamming only part of the entire band. 



Chapter 6 

Conclusions 

6.1 Summary 

This report has provided a literature review of diversity-combining techniques and 

analysis methods as applied to these techniques. References have been provided for the 

use of these techniques in demodulation, coarse-time synchronization and fine-time syn-

chronization. 

An analytical method has been developed for one of the techniques, linear combining. 

The method combines circularly symmetric function theory, Fourier-Bessel series, and 

Fourier series. With this method, the bit-error probability for demodulation and the 

probability of detection for coarse-time synchronization have been computed. Where 

possible, the results obtained with this method were compared to other reported results, 

and the two results agreed well. Also, several new results were also obtained. 

Linear combining was shown to be a near-optimal  scheme in broad-band noise. Its per-

formance is similar to that of square-law combining in broad-band noise. In multiple-tone 

jamming, the worst-case jamming depends on signal-to-noise ratio for linear combining. 

For high signal-to-noise ratios, the worst-case is Houston-sense jamming with a relatively 

small jamming fraction. Randomly distributed jamming with a relatively small jamming 

fraction is almost as bad. However, for low signal-to-noise ratios, the worst-case is jamming 

every bin. 

A novel analytical result was derived for the 4-2- and 2-1-moment methods in indepen-

dent Rayleigh fading. An expression is obtained for the probability of bit error with L = 2 

and M = 2. For this situation, linear combining is a little bit worse than square-law com-

bining, 2-1-moment-method combining, and 4-2-moment-method combining. However, 
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other situations shouM be examined before conclusions can be drawn. 

Other diversity-combining methods are very difficult to analyze. The difficulty often 

arises because the decision statistics are correlated. Perhaps, further research will find 

ways around this problem. 

6.2 Recommendations 

Linear combining is an excellent method in broa,d-band noise. In severe multiple-tone 

jamming, linear combining is good. In weak multiple-tone jamming, linear combining is 

not a good method because it is susceptible to Houston-sense multiple-tone jamming with 

a small jamming fraction. In independent Rayleigh fading, square-law combining is the 

best method for the particular situation that was considered. 

6.3 Future Work 

Future work should indude: accuracy considerations for the analytical method, ways 

to improve accuracy of the analytical method, other diversity-combining techniques, exten-

sion of fading work, acquisition-time computation for coarse-time synchronization, analysis 

of fine-time synchronization, and experimental verification of results. 
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