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Abstract

This report discusses fast-frequency-hopped (FFH) noncoherent-frequency-shift-keyed
(NCFSK) communication systems with time diversity and diversity combining. A litera-
ture review of diversity-combining techniques is provided. An analytical method has been
developed for one of the techniques, linear coﬁlbining. The method combines circularly
symmetric function theory, Fourier-Bessel series, and Fourier series. With this method,
the bit-error probability for the demodulation of FFH NCFSK systems with time diversity
and linear diversity combining and the probability of detection and probability of false
alarm for uplink coarse-time synchronization of a FFH NCFSK satellite-communication
system with time diversity and linear diversity combining have been computed in broad-
band noise and multiple-tone jamming. Where possible, the results obtained with this
method were compared to other reported results, and the two results agreed well. A novel
analytical result was derived for computing the bit-error probability for the demodulation
of FFH NCFSK systems with time diversity and 4-2- or 2-1-moment-method diversity
combining in independent Rayleigh fading.

For demodulation, linear diversity combining is an excellent method in broad-band
noise. In severe multiple-tone jamming, linear diversity combining is good. In weak
multiple-tone jamming, linear diversity combining is not a good method because it is
susceptible to Houston-sense multiple-tone jamming with a small jamming fraction. In
independent Rayleigh fading, square-law combining is the best method for the particular
situation which was considered.

For uplink coarse-time synchronization, time diversity and linear diversity combining

could be used to improve performance.
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Chapter 1

Introduction

1.1 Objectives

Fast-frequency-hopped (FFH) noncoherent-frequency-shift-keyed (NCFSK) commu-
nication systems have inherent time diversity which can be used to improve anti-jam capa-
bilities for demodulation. Time diversity is introduced at the transmitter by fast hopping
and is removed at the receiver by an operation called diversity combining. There are many
methods of diversity combining. Considerable work has been done in obtaining measures
of performance for these methods in various interference and fading environments. How-
ever, because of the complexity of the problem, most work has involved special cases,
simplifications, or computer simulation, and many aspects of the problem have not been

considered.

Time diversity and diversity combining can also be used to improve the anti-jam
performance for uplink coarse-time synchronization and uplink fine-time synchronization
of a FFH NCFSK satellite-communication system. The diversity-combining methods are
similar to those used for demodulation. Little work has been done in obtaining measures of
performance for coarse-time or fine-time synchronization for any of the diversity-combining
methods.

Analytical techniques would provide insight into some aspects of the demodulation and
synchronization problems; however, such techniques are quite difficult to derive. In this
report, the objective is to develop analytical techniques for obtaining performance mea-
sures for FFH NCFSK systems. The analytical techniques can then be used to gain insight
into the demodulation performance of FFH NCFSK systems and into the uplink-coarse-

time-synchronization performance of a FFH NCFSK satellite-communication system.
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1.2 Scope

In this report, a novel analytical technique is developed which can provide the general
solution for one diversity-combining technique - linear diversity combining. Measures of
performance are obtained in broad-band noise, multiple-tone jamming, and Rayleigh fad-
ing for demodulation in FFH NCFSK systems. Measures of performance are also obtained
in broad-band noise, and multiple-tone jamming for uplink coarse-time synchronization in
a FFH NCFSK satellite-communication system.

Also, a novel analytical technique is developed for obtaining performance of a special
case of 4-2- or 2-1-moment-method diversity combining in Rayleigh fading for demodula-
tion of FFH NCFSK systems.

1.3 Outline

Chapter 2 presents a background in modulation and demodulation of FFH NCFSK
systems with time diversity and diversity combining and in uplink coarse-time synchroniza-
tion of a FFH NCFSK satellite-communication system. Chapter 3 presents the analysis
method for linear combining. Chapter 4 presents performance results for demodulation
in FFH NCFSK systems with time diversity and diversity combining. Chapter 5 presents
performance results for uplink coarse-time synchronization in a FFH NCFSK satellite-

communication system. Chapter 6 presents conclusions.



Chapter 2

Background

2.1 Introduction

This chapter presents a background in the modulation and demodulation of FFH
NCFSK communications systems with time diversity and diversity combining. Frequency-
hopped communication is achieved by varying the carrier frequency of the transmitted
signal pseudorandomly over a wide bandwidth. The receiver has knowledge of the hopping
sequence and knows in which frequency channel the transmitted signal is located at a given
time. The receiver can then demodulate the signal. Demodulation is performed assuming
perfect time synchronization and frequency synchronization between the transmitter and
the receiver. A coarse-time-synchronization algorithm is discussed towards the end of this

chapter for the uplink of a FFH NCFSK satellite-communication system.

2.2 Modulation and Demodulation for FFH NCFSK Sys-

tems

The transmitter considered in this report is shown in Fig. 2.1. Binary data is passed
through an error-correction encoder. The coded bits are then converted to M-ary symbols
with period, T,. The M-ary symbols are applied to a frequency synthesizer where the
output signal is a tone at frequency, fm, having one of M possible frequencies. For the ith
hop period, the symbols are mixed with a frequency tone, fii, generated by a frequency
synthesizer driven by a pseudonoise-code generator. The tone, f4;, has a hop duration,
Th = Tm/L. The hop rate for the system is fixed. The integer, L, is the number of
hops per symbol and is termed the diversity level. If L > 1, the system is called fast

3



frequency hopped; in this report, only fast-frequency-hopped systems are considered. The
transmitted waveform consists of a series of tones at frequency, fai + fm, of duration, T}.

As shown in Fig. 2.2, the received signal is mixed with the output of a local frequency
synthesizer driven by the same pseudorandom code used at the transmitter. The output
of the mixer is then a tone, fy,, of duration, T,. This tone is passed through a bank of M
matched filters with envelope detectors which is shown in Fig. 2.3. Each filter is matched
to one of the M tones, fm, and uses noncoherent detection. A matched filter with envelope
detector is shown in Fig. 2.4. The outputé are the samples, zn;, for m = 1,..., M, and
i =1,...,L. The subscript, m, denotes the frequency bin, and the subscript, i, denotes the
hop period. The diversity combiner forms the decision statistics, vm, based upon the L
samples, zm;, using one of many diversity-combining techniques. A decision is then made
- as to which symbol was sent based on these M statistics. The M-ary symbols are then
converted to binary and passed to the error-correction decoder. Finally, the binary data

is received from the decoder.

2.3 Optimum Receiver

The optimum receiver for a FFH NCFSK system can be found using Karhunen-
Loéve expansions and Bayes’ criterion [1]. For additive white Gaussian noise (AWGN),
this results in a receiver consisting of a bank of matched filters with envelope detectors
followed by a diversity combiner. The optimum method of diversity combining involves
calculating the a posteriori probability for each hypothesis {1). Therefore, the decision

statistic is
Am = Probability(tone m sent | zmi, i = 1,..., L, m = 1,..., M). (2.1)

The largest A indicates the most probable tone that was sent.
For M-ary communication in AWGN, the optimum statistic can be derived from (2.1)

and is given by
L
mi S
om = 3 In(Io(Z250)) (22)

i=1
where s; is the rms signal-tone amplitude on the ith hop period, 0% = Ny/2T},, No/2 is
the two-sided noise power-spectral density, and Io() is the zeroth-order modified- Bessel
function. The largest v,, indicates the transmitted tone. This result was first derived for
the binary case in [2]. The combining method of (2.2) is often called “optimum combining”

(2],(4], but it requires knowledge of s; and o. Since these are not known a priors, they
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must somehow be estimated, and therefore, it is not practical to use this method in an
actual system. It is desirable to have a decision statistic which does not require knowledge

of s; or o. Below, many other diversity-combining methods are presented.

2.4 Diversity-Combining Methods

2.4.1 Selection Diversity Combining

This combining technique, sometimes called switched diversity combining, picks the

largest zm; over the L hop periods as the decision statistic. Thus, (5]
UV = m‘a.x(zm;). (2.3)

The largest vy, indicates the transmitted tone.

2.4.2 Linear Diversity Combining

If 2misi/0% >> 1, the statistic of (2.2) can be approximated using Io(z) = exp(z)/v 27z
(3]. Taking the logarithm of both sides, In(lo(z)) & z — (0.5In(27z)). For z >> 1,
z >> 0.5In(27z). Now, the statistic is [2],(4],(6])-[9)]

Zln (227) E";‘:‘. (2.4)

i=1 =1

Assuming that s; and ¢ do not change from hop to hop, a decision statistic is
L
U = szi- (25)
=1 .
The largest vy, indicates the transmitted tone. This combining method is called “linear

combining” and should also have near-optimal performance in AWGN.

2.4.3 Square-Law Diversity Combining

If zmis;/0? << 1, the statistic of (2.2) can be approximated using Io(z) = 1 + (22/4)
and In(1 + z) & z [3]. This results in [2},{4],(5],[10]-[14]
L 2

zm,s, 22 ,s?
Zln(fo NEDIE - (2.6)

=1 i=1

Assuming that s; and ¢ do not change from hop to hop, the decision statistic can be

chosen as

Um =D 2 (2.7)



The largest vy, indicates the transmitted tone. This combining method is called “square-
law combining” and should have near-optimal performance in AWGN.
2.4.4 Hard-Decision-Majority-Vote Diversity Combining

Hard-decision-majority-vote (HDMV) diversity combining performs a hard decision
on each hop. This means that [9],(15],(16]

1, 2zmi 2 2z for all k
v i) = . 2.8
Fudmo(2mi) { 0, otherwise (28)
Then, the decision statistic is
L
Um = thdmu(zmi)- (2'9)

i=1

The largest vy, indicates the transmitted tone.

2.4.5 Ratio-Statistic-Envelope Diversity Combining

Ratio-statistic-envelope diversity combining normalizes samples on each hop by the
largest of the samples on that hop and then sums the normalized samples. Thus, the
decision statistic is [4],[13],[17)

L

b= Y —— (2.10)

i=1 ma'xm(zmi) .

The largest v,, indicates the transmitted tone.

2.4.6 Self-Normalized-Envelope Diversity Combining

Self-normalized-envelope (SNE) diversity combining, sometimes called normalized-
envelope detection (NED), normalizes samples on each hop by the sum of the samples

on that hop and then sums the normalized samples. Thus, the decision statistic is

[9],[13],[16],[18]-[21] L

Zmi
Uy =

.7 S 2.11)
i=1 Sm=1 Zmi (

The largest vy, indicates the transmitted tone.
2.4.7 Ratio-Statistic-Square-Law Diversity Combining

Ratio-statistic-square-law diversity combining normalizes the squares of the samples

on each hop by the square of the largest sample on that hop and then sums the normalized



samples. Thus, the decision statistic is [13]

e

)3 mum(z - (2.12)

The largest v, indicates the transmitted tone.

2.4.8 Self-Normalized-Square-Law Diversity Combining

Self-normalized-square-law diversity combining normalizes the squares of the samples
on each hop by the sum of the squares of the samples on that hop and then sums the

normalized samples. Thus, the decision statistic is [13] [22]

Um = Z : (2.13)

=1 m-l zmt

The largest v,, indicates the transmitted tone.

2.4.9 Clipped-Linear Diversity Combining

Clipped-linear diversity combining clips the samples at a prescribed level above the
desired-signal level and then sums the clipped samples. This means that [7]
C, forzm;2C
fe(zmi) = . (2.14)

Zmi, oOtherwise
Then,

L
Um = chl(zmi)' (2.15)
i=1
The largest vy, indicates the transmitted tone. It requires side information to set the

threshold, C.

2.4.10 Clipped-Square-Law Diversity Combining

Clipped-square-law diversity combining clips the squares of the samples at a pre-
scribed level above the desired-signal level and then sums the clipped samples. This
means that [13],[14]

folzmi) {C, for 22, > C (2.16)
csl\Zmi) = .
I z2,, otherwise
Then,
L
Um = chal(zmi)- (2.17)

1=1
The largest vy, indicates the transmitted tone. It requires side information to set the
threshold, C. ‘
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2.4.11 Ratio-Threshold-Square-Law Diversity Combining

The ratio-threshold technique orders the input data from smallest to largest. It then
takes the ratio of the two largest samples on each hop and assigns on each hop a quality
factor, g¢;, of 1 (good) if the ratio is greater than a threshold and assigns a factor of 0
(bad) if the ratio is less than the threshold. The threshold is chosen to be greater than 1.
The decision statistic is formed by [23]

Vm = Z Gz, (2.18)

The largest v, indicates the transmitted tone. If all ¢; = 0 fori =1,..., L, then a decision

is based on the zn,; with the largest sample ratio.

2.4.12 Ratio-Threshold-Majority-Logic Diversity Combining

The ratio-threshold-majority-logic method assigns the same quality factor to each

hop period as the ratio-threshold-square-law method. Then, a hard decision is performed

on each hop. This means that [23],[24]

front(ms) 1, 2Zmi 2 2z for all k (2.19)
T Zmi) = . :
tmilFm 0, otherwise
The decision statistic is formed by
L
Vm = I Gi frimi(Zmi)- (2.20)

i=1

The largest v,, indicates the transmitted tone. If all ¢; = 0 for ¢ = 1, ..., L, then a decision

is based on the zp,; with the largest sample ratio.

2.4.13 4-2-Moment-Method Diversity Combining

The 4-2-moment-method diversity combining forms a decision statistic, [9],(19]

L L L L
Vm = 2(f Zz,zm,)z - (fzzfm')- (2.21)

=1 1=1

The largest v,, indicates the transmitted tone. This method attempts to subtract the

interference power from the samples.
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2.4.14 2-1-Moment-Method Diversity Combining
The 2-1-moment-method diversity combining forms a decision statistic, [9],{19],[20]

v —2(liz -)2—(liz2~) (2.22)
m = L,-=l ms I ms/° .

=1
The largest vy, indicates the transmitted tone. This method also attempts to subtract the

interference power from the samples.

2.4.15 1-1/2-Moment-Method Diversity Combining

The 1-1/2-moment-method diversity combining forms a decision statistic, [9]

1 & 2 1
Vm =25 Y Vmi) — (52 7mi)- (2.23)
L i=1 L i=1
The largest vy, indicates the transmitted tone. This method also attempts to subtract the

interference power from the samples.

2.4.16 Order-Statistic Diversity Combining
The use of order statistics (OS) for diversity combining requires the sorting of the L
values in each bin so that

Zmiy £ Zmip £+ < Zmig_y £ Zmiy, M= ,2,--,\M (2'24)

where zp;, is the smallest OS of the mth bin, and z,, is the largest OS of the mth bin.

For a previously specified value of I, the decision statistic is chosen as [9],(25]-[27]
Um = Zmq;. (2.25)

The largest v,, indicates the transmitted tone.

2.4.17 Weighted-Order-Statistic Diversity Combining

Order-statistic processing is done first by (2.24) in order to rank zm;. Then, the

ranked values are summed by (8],{27]
L
Vm = Zwmﬁzmig . (2-26)
=1 .

where wy,, are weights. The largest vy, indicates the transmitted tone.
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2.4.18 Order-Statistic-Self-Normalized-Envelope Diversity Combining

The order-statistic and self-normalized-envelope methods can be combined to form
OSSNE combining. Order-statistic processing is done first by (2.24) in order to rank the

Zmi- Then, the ranked values are normalized to

o, = —t 2.27
z == .
™ Tt Zmi (%20

The decision statistic is formed by [26],[27)
L .
Um = ) Zmiy- (2.28)
=1
The largest vy, indicates the transmitted tone.

2.4.19 Order-Statistic-Hard-Decision-Majority-Vote Diversity Combin-
ing
The order-statistic and hard-decision-majority-vote methods can be combined to form

OSHDMYV combining. Order-statistic processing is done first by (2.24) in order to rank

Zmi. Then, on each hop period, a hard decision is made such that

1, Zmi, 2 2k, for all k
foahdmv(zmi;) = . (2.29)

0, otherwise
Then, the decision statistic is
L
Um = Z foohdmv(zmi;)- (2‘30)
i=1

The largest vy, indicates the transmitted tone.

2.4.20 Weighted-Order-Statistic-Self-Normalized-Envelope Diversity Com-

bining

This method forms a weighted sum of the modified values in the OSSNE method.
The decision statistic is [27]

L
Un = Zwm;,ﬁ}] (2.31)
=1

where wpm;, are the weights. The largest v,, is chosen as the transmitted symbol.
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2.4.21 Recursive-Excision Diversity Combining

The average of the L values in each bin is computed as [27]

1 L
Um = = ) Zmi. (2.32)
L i=1
The ratios,
gmi = Zmi/Vm, (2.33)

are calculated on each iteration. If any of the gn; exceed the threshold, C, the corre-
sponding 2zm; is deleted from the L-bin values, and L is decremented for that bin only.
The calculations (2.32) and (2.33) are iterated until gm; < C for all remaining bin values.
The decision statistics are then the final averages from (2.32). The largest vp, is chosen

as the transmitted symbol.

2.5 Literature Review

This section provides a literature review of previous work in obtaining performance
measures for the demodulation of FFH NCFSK systems with time diversity and diversity
combining. Previous work, which is summarized in Table 2.1 and Table 2.2, presents re-
sults from theoretical analysis, computer simulation, or experimental analysis of various
systems in different interference and fading environments. Prior to reviewing the literature,
some terminology pertaining to the types of interference and fading must be introduced. In
a broad-band-noise environment, the system is subjected to AWGN across its entire band-
width. In a partial-band-noise environment, the system is subjected to AWGN across part
of its bandwidth. In a tone-jamming environment, the system is subjected to multiple-
tone interference. In an independent-Rayleigh-fading environment, the fluctuating signal
amplitude has a Rayleigh probability distribution. In an independent-Rician-fading en-
vironment, the fluctuating signal amplitude has a Rician probability distribution. In a
correlated-fading environment, fluctuations in signal amplitude are correlated across hop
periods.

Optimum diversity combining is discussed in [2] and [4]. In [2], the probability of error
for a FFH binary NCFSK system in broad-band noise is presented. Results are generated
by computer simulation for levels of diversity ranging from L =1 to L = 10. In [4], the
probability of error for a FFH 8-ary NCFSK system is presented for two cases: partial-
band noise with broad-band noise, and tone jamming with broad-band noise. Results are

generated by computer simulation for L = 4.
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Combining Method Ref. | Analysis Interference
optimum (2] | simulation | broad-band noise
4] simulation tone jamming, partial-band noise
selection [5] | exact Rayleigh fading, broad-band noise
linear [2] | simulation | broad-band noise
(6] | bounds partial-band noise, tone jamming
(7] | exact partial-band noise
(8] | simulation | partial-band noise
[4] | simulation | tone jamming, Rayleigh fading,
partial-band noise
[9] | simulation | broad-band noise
square-law (5] | exact Rayleigh fading, broad-band noise
(10] [ exact Rayleigh fading, broad-band noise
[11] | exact Rician fading, broad-band noise
[12] [ exact Rician fading, broad-band noise
(2] | simulation | broad-band noise
(13]) | assumptions | partial-band noise
(14] | bounds partial-band noise
(4] | simulation | tone jamming, Rayleigh fading,
broad-band noise
hard-decision-majority-vote | [15] | exact partial-band noise, tone jamming
[16] | experiment | partial-band noise, tone jamming
[9] | simulation | broad-band noise, tone jamming
ratio-statistic-envelope (13] | simulation | partial-band noise
(17] | exact partial-band noise
[4] | simulation | partial-band noise, tone jamming,

Rayleigh fading

Table 2.1: Literature Review of Diversity-Combining Techniques
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Combining Method Ref. | Analysis Interference
self-normalized-envelope (13] | simulation | partial-band noise, tone jamming
[18] | assumptions | tone jamming
[16) | experiment | partial-band noise, tone jamming
(9] | simulation | broad-band noise, tone jamming
[19] | simulation | broad-band noise, tone jamming
[20] | simulation | broad-band noise, tone jamming
[21] | exact Rician fading, partial-band noise
ratio-statistic-square-law (13] | simulation | partial-band noise
self-normalized-square law [13] | simulation | partial-band noise, tone jamming
(22] | exact partial-band noise
clipped-linear (7] | exact partial-band noise, Rician fading
clipped-square-law [13] | simulation | partial-band noise
(14] | exact partial-band noise
ratio-threshold-square-law (23] | exact Rician fading, partial-band noise
ratio-threshold-majority-logic | [23] | exact Rician fading, partial-band noise
[24] | exact tone jamming
4-2-moment-method (9] | simulation | partial-band noise, tone jamming
2-1-moment-method [9] | simulation | partial-band noise, tone jamming
[19] | simulation | partial-band noise, tone jamming
[20] | simulation | partial-band noise, tone jamming
1-1/2-moment-method [9] | simulation | partial-band noise, tone jamming
order-statistic [25] | exact partial-band noise
9] | simulation | broad-band noise, tone jamming
[26] | simulation | broad-band noise, tone jamming
[27] | simulation | broad-band noise, tone jamming
weighted-order-statistic (8] | simulation | partial-band noise
[27] | simulation | broad-band noise, tone jamming
OSSNE [26] | simulation | broad-band noise, tone jamming
[27] | simulation | broad-band noise, tone jamming
WOSSNE [27] | simulation | broad-band noise, tone jamming
recursive-excision (27] | simulation | broad-band noise, tone jamming

Table 2.2: Literature Review of Diversity-Combining Techniques continued
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Selection diversity combining is discussed in [5]. The probability of error for a binary
NCFSK system in broad-band noise with independent Rayleigh fading is derived. Exact
analysis is used for arbitrary level of diversity. Results are shown for L = 2,...,10.

Linear diversity combining is discussed in [2], [4], and [6]-[9]. In [2], the probability
of error for a FFH binary NCFSK system in broad-band noise is presented. Results are
generated by computer simulation for L = 1,...,,10. In [6], the probability of error for a
FFH M-ary NCFSK system is presented for three cases: broad-band noise, partial-band
noise, and tone jamming. Each case is treated separately. The analysis makes simplifying
assumptions and uses bounds. Side information concerning the hops that are jammed
is assumed to be available. Results are presented for M = 16 and optimum level of
diversity. In [7], the probability of bit error is calculated for a FFH M-ary NCFSK system
in partial-band noise jamming using an analytical method based on repeated convolutions
which is only practical for small levels of diversity. Results are shown for L = 3. In (8], the
probability of error for a FFH M-ary NCFSK system is presented for partial-band noise
with broad-band noise. Results are generated by computer simulation for L = 1,3 and
M = 4,8,16. In [4], the probability of error for a FFH 8-ary NCFSK system is presented for
two cases: tone jamming with broad-band noise, and broad-band noise with independent
Rayleigh fading. Results are generated by computer simulation for tone jamming with
L = 2 and for Rayleigh fading with L = 8. In [9], the probability of error for a FFH
8-ary NCFSK system is presented for two cases: broad-band noise, and tone jamming
with broad-band noise. Results are generated by computer simulation for L = 1,...,32.

Square-law diversity combining is discussed in [2], [4], [5], and [10]-[14]. In [5], the
probability of error for a binary NCFSK system is presented for three cases: independent
Rayleigh fading with broad-band noise, correlated Rayleigh fading with broad-band noise
and independent Rayleigh fading with correlated noise. Exact analysis is used. Results
are presented for the above three cases with L = 1,..,20, L = 2, and L = 2,...,10,
respectively. In [10], the probability of error for a M-ary NCFSK system is presented for
independent Rayleigh fading with broad-band noise. Exact analysis is used. Results are
presented for M = 2 with L = 1,...,20, for M = 4 with L = 1,...,10, and for M = 8 with
L =1,...,5. In [11], the probability of error for a M-ary NCFSK system is presented for
independent Rayleigh and Rician fading with broad-band noise. Exact analysis is used
for arbitrary M and L. Results are presented for M = 2 with L = 1,...,19. In [12],
the probability of error for a binary NCFSK system is presented for correlated Rayleigh

and Rician fading with broad-band noise. Exact analysis is used. Results are presented
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for M = 2 with L = 1,...,15. In [2], the probability of error for a FFH binary NCFSK
system in broad-band noise is presented. Results are generated by computer simulation
for L = 1,...,10. In [13], the probability of error for a FFH M-ary NCFSK system is
presented for two cases: broad-band noise, and partial-band noise. For broad-band noise,
exact analysis is used for arbitrary M and L. Results are presented for M = 8 with
L =1,...,64. For partial-band noise, the analysis assumes no broad-band noise. Results
are presented for M = 8 with L = 1,...,8. In [14], the probability of error for a FFH
binary NCFSK system is presented for partial-band noise with broad-band noise. Exact
analysis is performed for arbitrary L. Results are presented for L = 1,...,6. Results from
exact analysis are compared to results calculated by using bounds. In [4], the 'probability
of error for a FFH 8-ary NCFSK system is presented for two cases: tone jamming with
broad-band noise, and broad-band noise with Rayleigh fading. Results are generated by
computer simulation for L = 2,4.

Hard-decision-majority-vote diversity combining is discussed in [9], [15], and [16]. In
[15], the probability of error for a FFH M-ary NCFSK system is presented for two cases:
tone jamming with broad-band noise, and partial-band noise with broad-band noise. Exact
analysis is presented for arbitrary M and L. Results are presented for M = 2,8 and
L=1,..,9. In [16], the probability of error for a FFH 8-ary NCFSK system is measured
for two cases: tone jamming with broad-band noise, and partial-band noise with broad-
band noise. Experimental data is presented for L = 1,...,,32. In [9], the probability of
error for a FFH 8-ary NCFSK system is presented for two cases: tone jamming with
broad-band noise, and broad-band noise. Results are generated by computer simulation
for L=1,...,32.

Ratio-statistic-envelope diversity combining is discussed in [4], [13], and [17]. In [13],
the probability of error for a FFH 8-ary NCFSK system is presented for two cases: broad-
band noise, and partial-band noise. Results are generated by computer simulation for
L =1,..,6. In [17], the probability of error for a FFH binary NCFSK system is presented
for partial-band noise with broad-band noise. Exact analysis is presented for arbitrary
L. Results are presented for L = 1,...,5. In [4], the probability of error for a FFH
8-ary NCFSK system is presented for three cases: partial-band noise with broad-band
noise, tone jamming with broad-band noise, and broad-band noise with Rayleigh fading.
Results are generated by computer simulation for L = 4.

Self-normalized-envelope diversity combining is discussed in (9], [13], [16], and [18]-[21].
In [13], the probability of error for a FFH 8-ary NCFSK system is presented for three
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cases: broad-band noise, partial-band noise, and tone jamming. Results are generated
by computer simulation for L = 1,...,6. In [18], the probability of error for a FFH
binary NCFSK system is presented for tone jamming. Approximate results are derived
for arbitrary L since broad-band noise is not considered. In [16], the probability of error
for a FFH 8-ary NCFSK system is measured for two cases: tone jamming with broad-band
noise, and partial-band noise with broad-band noise. Experimental data is presented for
L =1,...,32. In [19], the probability of error for a FFH 8-ary NCFSK system is presented
for two cases: tone jamming with broad-band noise, and broad-band noise. Results are
generated by computer simulation for L = 1,...,32. In [20], the probability of error
for a FFH 8-ary NCFSK system is presented for two cases: tone jamming with broad-
band noise, and broad-band noise. Results are generated by computer simulation for

L=1,..,28. In [9], the probability of error for a FFH 8-ary NCFSK system is presented
| for two cases: tone jamming with broad-band noise, and broad-band noise. Results are
generated by computer simulation for L = 1,...,28. In [21], the probability of error for
a FFH binary NCFSK system is presented for partial-band noise with broad-band noise
and independent Rician fading. Exact analysis is presented for arbitrary L. Results are
presented for L = 1,...,4.

Ratio-statistic-square-law diversity combining is discussed in [13]. The probability of
error for a FFH 8-ary NCFSK system is presented for two cases: broad-band noise, and
partial-band noise. Results are generated by computer simulation for L = 1,...,6.

Self-normalized-square-law diversity combining is discussed in [13] and [22]. In [13], the
probability of error for a FFH 8-ary NCFSK system is presented for three cases: broad-
band noise, partial-band noise, and tone jamming. Results are generated by computer
simulation for L = 1,...,6. In [22], the probability of error for a FFH binary NCFSK system
is presented for partial-band noise with broad-band noise. Exact analysis is presented for
arbitrary L. Results are presented for L = 1,...,4.

Clipped-linear diversity combining is discussed in (7). The probability of error for a
FFH M-ary NCFSK system is presented for partial-band noise with broad-band noise.
Exact analysis is presented for arbitrary L and M. Results are presented for M = 32 and
L=3,5.

Clipped-square-law diversity combining is discussed in [13] and [14]. In [13], the prob-
ability of error for a FFH 8-ary NCFSK system is presented for three cases: broad-band
noise, partial-band noise, and tone jamming. Results are generated by computer simula-
tion for L = 1,...,6. In [14], the probability of error for a FFH binary NCFSK system is
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presented for partial-band noise with broad-band noise. Exact analysis is presented for
arbitrary L. Results are presented for L = 1, 2.

Ratio-threshold-square-law diversity combining is discussed in [23]. The probability of
error for a FFH binary NCFSK system is presented for three cases: partial-band noise with
broad-band noise, independent Rayleigh fading with broad-band noise, and independent
Rician fading with broad-band noise. Exact analysis is presented for arbitrary L. Results
are presented for L = 1,...,5.

Ratio-threshold-majority-logic diversity combining is discussed in [23] and [24]. In
(23], the probability of error for a FFH binary NCFSK system is presented for three cases:
partial-band noise with broad-band noise, independent Rayleigh fading with broad-band
noise, and independent Rician fading with broad-band noise. Exact analysis is presented
for arbitrary L. Results are presented for L = 1,...,5. In [24], the probability of error for a
FFH binary NCFSK system is derived for partial-band noise with broad-band noise, and
and tone jamming with broad-band noise. Results are presented for L = 4 and M = 2,8.

The 4-2-moment-method diversity combining is discussed in [9] and [19]. In [19], the
probability of error for a FFH 8-ary NCFSK system is presented for two cases: partial-
band noise with broad-band noise, and tone jamming with broad-band noise. Results are
generated by computer simulation for L = 1,...,,32. In [9], the probability of error for
a FFH 8-ary NCFSK system is presented for two cases: partial-band noise with broad-
band noise, and tone jamming with broad-band noise. Results are generated by computer
simulation for L = 1,...,32.

The 2-1-moment-method diversity combining is discussed in [9], [19], and [20]. In [19],
the probability of error for a FFH 8-ary NCFSK system is presented for two cases: partial-
band noise with broad-band noise, and tone jamming with broad-band noise. Results are
generated by computer simulation for L = 1,...,,32. In [9], the probability of error for
a FFH 8-ary NCFSK system is presented for two cases: partial-band noise with broad-
band noise, and tone jamming with broad-band noise. Results are generated by computer
simulation for L = 1,...,32. In [20}, the probability of error for a FFH 8-ary NCFSK system
is presented for two cases: partial-band noise with broad-band noise, and tone jamming
with broad-band noise. Results are generated by computer simulation for L = 1, ...,28.

The 1-1/2-moment-method diversity combining is discussed in [9]. The probability of
error for a FFH 8-ary NCFSK system is presented for two cases: partial-band noise with
broad-band noise, and tone jamming with broad-band noise. Results are generated by

computer simulation for L = 1,...,32.
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Order-statistic diversity combining is discussed in [9], and [25]-[27]. In [25], the prob-
ability of error for a FFH binary NCFSK system is derived for partial-band noise with
broad-band noise. Results are presented for L = 1,...,8. In [9], the probability of error for
a FFH 8-ary NCFSK system is presented for two cases: broad-band noise, and multiple-
tone jamming with broad-band noise. Results are generated by computer simulation for
L =1,..,32. In [26], the probability of error for a FFH 8-ary NCFSK system is presented
for two cases: broad-band noise, and multiple-tone jamming. Results are generated by
computer simulation for L = 1,...,32. In [27], the probability of error for a FFH 8-ary
NCFSK system is presented for two cases: broad-band noise, and multiple-tone jamming
with broad-band noise. Results are generated by computer simulation for L = 1,...,32.

Weighted-order-statistic combining is discussed in [8] and {27]. In (8], the probability
of error for a FFH M-ary NCFSK system is presented for partial-band noise with broad-
band noise. Results are genera.tedv by computer simulation for M = 2,4,8,16and L = 1, 3.
In [27], the probability of error for a FFH 8-ary NCFSK system is presented for two
cases: broad-band noise, and multiple-tone jamming with broad-band noise. Results are
generated by computer simulation for L = 1, ..., 32.

OSSNE combining is discussed in [26] and in [27]. In both papers, the probability
of error for a FFH 8-ary NCFSK system is presented for two cases: broad-band noise,
and multiple-tone jamming with broad-band noise. Results are generated by computer
simulation for L = 1,...,32.

WOSSNE combining is discussed in [27]. The probability of error for a FFH 8-ary
NCFSK system is presented for two cases: broad-band noise, and multiple-tone jamming
with broad-band noise. Results are generated by computer simulation for L =1, ..., 32.

Recursive-excision combining is discussed in [27]. The probability of error for a FFH
8-ary NCFSK system is presented for two cases: broad-band noise, and multiple-tone
jamming with broad-band noise. Results are generated by computer simulation for L =
1,..,32.

Some observations pertaining to the use of the various diversity-combining methods in
the demodulation of FFH NCFSK systems are presented. Optimum diversity combining
is not a practical method because it involves estimation of signal and noise powers. Selec-
tion diversity combining is not a practical method because it is susceptible to partial-band
interference. Clipped-linear, clipped-square-law, ratio-threshold-square-law, and ratio-
threshold-majority-logic diversity combining are not practical methods because side infor-

mation is required to set a clipping level or a threshold. Hard-decision-majority-vote di-
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versity combining is not a good method because it does not utilize all the information from
the matched-filter output samples. 4-2-moment-method, 2-1-moment-method, and 1-1/2-
moment-method diversity combining perform poorly in fading. Linear diversity combining
is an excellent method in broad-band noise. Square-law diversity combining is an excel-
lent method in fading. Ratio-statistic-envelope, self-normalized-envelope, ratio-statistic-
square-law, self-normalized-square-law, order-statistic, weighted-order-statistic, OSSNE,
OSHDMV, WOSSNE, and recursive-excision diversity combining are excellent methods in
multiple-tone jamming. The methods based on order statistics are computationally inten-
sive. Linear, square-law, ratio-statistic-envelope, self-normalized-envelope, ratio-statistic-
square-law, self-normalized-square-law, order-statistic, weighted-order-statistic, OSSNE,
OSHDMYV, WOSSNE, and recursive-excision diversity combining are all possible methods
of choice.

2.6 Uplink Coarse-Time Synchronization for a FFH NCFSK

Satellite-Communication System

The overall uplink coarse-time synchronization system for a particular FFH NCFSK
satellite-communication systems is shown in Fig. 2.5. In this application, the transmitter
of Fig. 2.1 is used to send a series of synchronization-probe bursts in a serial-search pro-
cess. Onboard the satellite, the payload processor makes a decision as to whether a probe
burst has been received. Only the probe bursts falling within the onboard hop-pattern
window can be detected. An acknowledgement is sent back to the originating terminal
for use in adjusting the hop-pattern timing. Synchronization-search strategies are consid-
ered elsewhere [28],(31). Once coarse-time synchronization has been achieved, fine-time
synchronization aligns the two hop periods to within the required tolerance [28],[34],(35].

The synchronization probe, shown in Fig. 2.6, consists of a tone at a frequency, firi+fp,
for the ith hop period. The probe frequency, f,, is usually chosen as one of the M
frequencies of the M-ary NCFSK channel so that no additional hardware is required. In
Fig. 2.6, the probe arrives at the receiver with a timing error of AT relative to the onboard
hop pattern. The dehopping process gates and downconverts the probe so that only the
section of the probe falling within the onboard dehop period is seen at the output of the
dehopper. If |AT)| is greater than T}, there is no probe energy available,

Following the dehopper is a bank of E + 1 matched filters and envelope detectors of
the form shown in Fig. 2.3. One filter is matched to the probe frequency, f,, and E are
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Figure 2.5: Simplified coarse-time synchronization system.

matched to frequencies other than the probe frequency. The outputs are the sampled
values, zp; and 24, for ¢ = 1,...,L, and e = 1,..., E. The empty bins are used to obtain
noise and interference statistics. The diversity combiner forms decision statistics, v, and
ve for e = 1, ..., E, using one of the diversity-combining methods described previously. The
decision statistics are then used to make the decision as to whether a detection has been

made.

2.7 Summary

This chapter has provided the background in modulation and demodulation for FFH
NCFSK systems with_time diversity and diversity combining. A literature review of
the various diversity-combining methods has been presented. For demodulation in FFH
NCFSK systems, linear, square-law, ratio-statistic-envelope, self-normalized-envelope, ratio-
statistic-square-law, self-normalized-square-law, order-statistic, weighted-order-statistic,
OSSNE, OSHDMYV, WOSSNE, and recursive-excision diversity combining are all possible
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methods of choice.

This chapter has also provided the background in uplink coarse-time synchronization
for a FFH NCFSK satellite-communication system.

Since linear diversity combining is an excellent method for demodulation of FFH
NCFSK systems in broad-band noise, it merits further study. In the next chapter, a
novel analytical technique is derived which can be used to obtain performance results for
demodulation of FFH NCFSK systems with time diversity and linear diversity combining

and for the uplink coarse-time synchronization of a FFH NCFSK satellite-communication

system.



Chapter 3

Analysis Method for Linear

Combining

3.1 Introduction

A receiver often used in communications and radar is shown in Fig. 3.1. The input,
z(t), can be modelled as one or more tones plus AWGN. The tones, if present, can be
a desired signal or interference. The receiver is assumed not to have knowledge of the
phase of the desired signal. The desired signal has a basic period of duration, T. This
input is applied to a filter noncoherently matched to the desired-signal frequency and
then sampled at intervals of T to generate a complex sample, #;, in the ith interval.
Envelope detection is then performed to generate the envelope sample, 2. Finally, L
samples over the period LT are added together in an operation sometimes called “linear
diversity combining” or just “linear combining”, to obtain the decision statistic, v. The
term “linear” refers to the sample combining, and not to the envelope-detection process
which is actually nonlinear. This distinction is important since it is common practice to
replace the envelope detector with a square-law detector. Unfortunately, this second type
of combining is often misnamed “square-law combining” even though the actual combining
is linear.

In order to analyze the performance of such a system, it is required to derive the
probability density function (pdf) and cumulative distribution function (cdf) of the L-
sample sum. There has been considerable previous work in deriving the pdf and cdf
for the process where a square-law detector is used in place of the envelope detector.

Much less has been done for envelope detection. In this chapter, a method of analysis is

24
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Figure 3.1: Simplified block diagram of process to be analyzed.

described that provides the pdf and cdf for the output, v, of the envelope detector and

linear combiner of Fig. 3.1.

In previous work on envelope detection with linear combining, the pdf and cdf of the
sum have been derived for some special cases of the stochastic process, z(t). Brennan [36]
computed the cdf of the sum of independent Rayleigh random variables, which occur if
the input, z(t), consists of white Gaussian noise, by doing repeated convolutions using
numerical integration. Marcum [37) derived a method of evaluating the cdf of the sum
of independent Rayleigh random variables, and of the sum of independent Rician random
variables, which occur if the input, z(t), consists of a sine wave plus white Gaussian
noise, using Gram-Charlier series. Beaulieu [38] derived an efficient way of evaluating the
pdf and cdf of the sum of independent Rayleigh random variables using Fourier series.
Helstrom [39] derived a method of evaluating the pdf and cdf of the sum of independent
Rayleigh and the sum of independent Rician random variables using Laplace transforms
and saddlepoint integration. These methods either are not general enough to cover all
cases of interest or are very difficult and labourious to implement computationally.

In this chapter, the technique developed by Bird [40] to analyze the pdf for a single
sample using circularly symmetric function theory and Fourier-Bessel series is combined
with a method [38],[41] which uses Fourier series to analyze the pdf and cdf of the sum
of independent random variables in order to provide a method of analysis that is capa-
ble of calculating the pdf and cdf of the decision statistic, v. This method is not only
computationally efficient and accurate, but is applicable to more general problems.

Once the pdf and cdf have been found, a variety of performance values can be deter-
mined. In particular, it can be used for computing the probability of error in demodulation
problems, the probability of detection and false alarm in detection problems, and the mean

and variance of estimates in estimation problems.

This method can be used to obtain performance measures for FFH NCFSK systems.
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For demodulation of the dehopped signal in a general FFH NCFSK system [15],[19],[28],
there are M branches with M outputs, v,, for m = 1,..., M, as shown in Fig. 3.2.
The largest value is selected as corresponding to the symbol received. For coarse-time-
synchronization algorithms that require the detection of synchronization probes, thereis at
least one branch like that in Fig. 3.1 to detect the probes, and possibly others to sample the
interference background [28]-[33]. For fine-time-synchronization algorithms that employ
synchronization probes, two or more branches are used, and the outputs, v, are used to
calculate an estimate of the timing error (28],(34],(35]. In this report, the analysis method
is applied to diversity combining for the demodulation of FFH NCFSK systems and for

uplink coarse-time synchronization of a FFH NCFSK satellite-communication system.

3.2 Mathematical Approach

Consider the general block diagram shown in Fig. 3.2. Let the input consist of a
signal tone, plus one or more interfering tones, plus white Gaussian noise. In the ith
transmission interval of duration, T', a sample is taken in every branch. Then, L of these

are accumulated over the total symbol period LT. The output of the mth branch is

L
Vm = ) Zmi (3.1)

1=1
where zp; is the envelope sample for the mth branch during the ¢th interval. To find the
pdf and cdf of v, the pdf of 2y, is derived first.
Let the signal tone at the mth branch be

V/28.m;i CO8(2% frnt + Pmi) (3.2)

where $m; is the rms amplitude, f,, is the frequency, and @m; is a random phase angle.

The interference tone is

V28, CO8(27 frnt + Cm;) - (8.3)

where am; is the rms amplitude, f, is the frequency, and a,,; is a random phase angle.
The noise is a white Gaussian random process with zero mean and two-sided noise power-
spectral density, No/2. The sum of these three signals passes through the matched filter
and envelope detector of Fig. 2.4.

The output sample of the matched filter with envelope detector, zp,, is the Ihagnitude

of a two-dimensional vector. This vector can be written as a complex number, §n;, where
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Figure 3.2: A block diagram of the basic process with M branches.

the real part, Ymic, is the sampled output of the in-phase integrator, and the imaginary

part, Ymis, is the sampled output of the quadrature integrator. Then, ym is

Imi = Ymic + JYmis = Smi + Gmi + fimi (3.4)
so that
8mi = Smi €08(Pmi) + J8mi 8in(Ddms), (3.5)
Gmi = Qmi €08(Qmi) + Jam; 8in(ams), (3.6)
fimi = Nmic + JMmie- (3.7)

It can be shown that the noise components, nm;c and np,;,, are Gaussian random variables

with zero mean and variance,
a_No

g = ﬁ‘ (3-8)

The pdf of zmi = |mil is [40]

frmi(2mi) = /o°° 2mipJo(p2mi ) Bymi(P)dp (3.9)
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where &;,_,(p) is the two-dimensional characteristic function of §,.; given by [40]

Pmi

D50 (0)= [ Jo(2mi) o (2mi)dmis (3.10)

and Jo() is the zeroth-order Bessel function of the first kind. Since the random variable,
§mi, is the sum of independent components, the two-dimensional characteristic function
of §m; is the product of the characteristic functions of its corresponding components.
Therefore, the two-dimensional characteristic function of each component is required so
that (3.9) can be used to find the pdf of z,;.
For a constant signal tone of duration, T, the characteristic function is found from
(3.10) as [40]
®;,.:(p) = Jo(p8mi). (3.11)

For a constant interference tone of duration, T, the characteristic function is [40]

B4,..(p) = Jopams). (3.12)

The characteristic function for the noise is [40]

®30i(0) = exn(-ZE0). (3.13)

The characteristic function of §,,; is

Pimi (P) = i (P) P i (P) Biimi (P)- (3.14)

The pdf of z,; can be found by substituting (3.14) into (3.9). Unfortunately, the integral
in (3.9) cannot usually be solved analytically for most signal combinations of interest.
Previous work in evaluating the pdf and cdf of z,,; has followed three different approaches.
The first approach leads to series solutions in terms of Laguerre polynomials [42]-[44]. The
second involves numerical integration [45],(46]. These two approaches are complicated and
specialized to each individual problem. The third uses Fourier-Bessel series which leads

to an efficient numerical solution. It can be shown that [40]

®; . (A /R) . Az
flvm zmt = mtz 9"“ Tz/Ra) : m‘) (3.15)
q-’l
where ), are the zeroes of Jo() for ¢ = 1,2,...,,00 in ascending order, and R is a value
chosen such that for z,; > R, f;,.,(2m:) is sufficiently close to zero. The cdf of 2,,; can be

obtained by integrating (3.15) with respect to z,; term by term leading to [40]

Fop (2mi) —2zm.z; "“m(*]g/R’i)J( tEmi) (3.16)
Z
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Thus, both the cdf and pdf of z,,; can be efficiently evaluated using Fourier-Bessel series.
There are two types of truncation error involved with evaluating (3.15) or (3.16). It
is necessary to truncate the series after Q terms and to choose a value of R. For a signal

with tone interference and Gaussian noise, it is suggested in [40] that R be chosen to be
R=R; + 100 (3.17)

where Rp is the sum of the rms amplitudes of the signal and interfering tones. This
selection makes the truncation error due to the choice of R negligible [40]. Then, @ is
chosen so that the truncation error due to the finite series is sufficiently small. In order to
guarantee a sufficiently small truncation error, calculations of the pdf and cdf are repeated
with increasing numbers of terms in the series of (3.15) and (3.16) until the final results
do not change by more than the required accuracy.

The pdf of zp; is now used to determine the pdf and cdf of vy, given by (3.1). Note
that the zpm; for i = 1,..., L are independent random variables. Beaulieu [38] and Bird
[41] have provided similar means of determining the pdf and cdf of a sum of independent
random variables. The technique used below more closely follows the approach of Beaulieu
[38] with suitable modifications for the problem at hand.

In the derivation of (3.15), it is assumed that f,,;(2mi) = 0 for zm; > R and also for
Zmi < 0. Since vy, is the sum of the zn;;, it follows that the pdf of vm, fu(vm), is zero for
vm > LR and also for v, < 0. A typical £, (vm) is shown in Fig. 3.3. Now from [38], the
artifice is introduced of multiplying f,,,(vm) by a square wave, Sy (vm — Lém), also shown

in Fig. 3.3. Here, Lem is a constant offset. The square wave is defined by

Sv(v) = f’ ect(ﬂi-‘{'-’—"v-) 3.18
v - u=-°°r 7 ( . )
where

. 1, |v| £0.5, (3.10
ect(v) = Yo, |o|>05. 19)

The period of the square wave is chosen to be V = 2LR. The cdf of vy, is

lmL
F, (emL) = Som (v)dv, (3.20)
0
LR

= 1- L fvm(v)dv’ (3'21)

Since Sy(v — émL) = 1 for ¢nL < v < LR, and Sy (v — €mL) fun(v) = 0 for v < e L and
v > LR, (3.21) can be written as

Fu(emD) = 1-/"

¢m

I: Sv(v — €mL) fynm(v)dv. (3.22)
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1- /_ " Sv(v = emL) fo (v)dv. (3.23)
1 - E[Sv(vm — emL)] (3.24)

where E[ | denotes expectation over the random variable, vy,. Thus, the cdf of v, can be
expressed in terms of the expected value of the periodic square wave. Note that (3.24) is

true if f,, (vm) does not have an impulse at a discontinuity of Sv(vm — €m L) [38].

-— >
\4
] S, V-t L) B
i ()
- >
\4
2
0 e L LR

Figure 3.3: The pdf of vp,.

The Fourier series representation of Sv(b) is (38]

k=00 e Jhwv

Sy(v) == + - (3.25)
k—-z:kadd mkj
where w = 27/V. Combining (3.24) and (3.25) gives [38]
1 k=00 E[ejkw(um-emL)]
Fy(emL) = 3~ : : (3.26)

k==00,kodd

After considerable algebraic manipulation, the pdf and cdf of v, can be found from the

pdf of zm; by the Fourier series expansion and are given by [38]

1 2 & Anesiné
Fin(om)=5-2 3 Amtilimt (3.27)
T k=1, odd
4 o0
Som(vm) = v z: Ak 08 O, (3.28)

k=1,k odd
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where

Amir = \/(Elcos(kwzm)))? + (Efsin(kwzm)))?, | (3.29)

Efsin(kw(zmi — €m))]

Omir = ta’n—l(E[cos(lcw(zms' - €m))]

)s (3.30)

L
Ami = T] Amik, (3.31)
=1
L
omk = Eomik’ (3'32)
=1
v
L= m 3.33
en =7 (3.33)

Beaulieu (38] has shown that the series in (3.27) and (3.28) converge. The expected values,
Efcos(kwzm;)] and E[sin(kwzm;)], are calculated by

R
Efcos(kwzm)] = /0 cos( kw2mi) frmi (Zmi)dZmi (3.34)

and
. MR
Efsin(kznt)] = [ sin(km) o (2mi) (3.35)

using numerical integration where f; .(zm;) is given by (3.15). The coefficients, A and
Bmmi, can be found from (3.29)-(3.35). The choice of V = 2L R simplifies the computations
since the numerical integrations of (3.34) and (3.35) need only be evaluated once for each
value of k for any given pdf. The pdf and the cdf of vy, can then be found using (3.27) and
(3.28). The series in (3.27) and (3.28) are truncated after K terms. Note that (K —1)/2
terms are zero because the summation is only over odd terms. Thus, to calculate the
pdf and cdf of vy, only K + 1 single integrations are needed. In order to guarantee
a sufficiently small truncation error, calculations of the pdf and cdf are repeated with
increasing numbers of terms in the series of (3.27) and (3.28) until the final results do not

change by more than the required accuracy.

3.3 Comparison with Other Results

In this section, a comparison is made between the numerical results generated using

the above method and previously published results.
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3.3.1 Sum of Five Rayleigh Random Variables

Consider the problem of finding the cdf of the sum of five Rayleigh random variables,

Zmi, for i = 1,...,16, where each random variable has a pdf of

2
2% .

: > (3.36)

frmi(2mi) = Zmi exp(

Beaulieu [38] has shown that for the Rayleigh random variable of (3.36), the integrals of
(3.34) and (3.35) are

Bleos(kwzni)] = 1 Fi(1, 3, -5 (3.37)
T k3w?
Efsin(kwzp;)] = -2-kw exp(——é—) (3.38)

where 1 Fi(,,) is the confluent hypergeometric function. The cdf of the sum can then be
found from (3.27). Beaulieu [38] shows an efficient way of evaluating (3.37). The series
of (3.27) must be truncated after a certain number of terms. The cdf was computed
with various numbers of terms, and the results are shown in Table 3.1 along with the
previously published results of Helstrom [39]. Note that there is agreement to 6 decimal
places between the results with 30 terms and 40 terms; therefore, 30 terms are sufficient
for an accuracy of £1078. In addition, the results of [39] and those calculated in this

report agree.

vm | 20 terms 30 terms 40 terms Helstrom [39)
1.0 | -0.000046864425 0.000000087051 0.000000242536 | 0.000000246072
3.0 |0.006013209643 0.006040403871 0.006040461398 | 0.00604046

5.0 |0.198147788091 0.198135172457 0.198135073842 | 0.198135

6.0 | 0.446517392095 0.446545531179 0.446545628911 | 0.446546

7.0 | 0.702846895639 0.702811444082 0.702811389564 | 0.702811

9.0 |[0.961571441004 0.961548568638 0.961548621161 | 0.9615486

11.0 0.9982295945024 0.998237077575 0.998237134497 | 0.99823713
13.0 | 0.999946637776 0.999969488835 0.999969472545 | 0.9999694733

Table 3.1: The CDF of 5 Rayleigh Random Variables
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3.3.2 Sum of Sixteen Rician Random Variables

Consider the problem of finding the cdf of the sum, v, of sixteen Rician random

variables, zm;, for i = 1,..., 16, where each random variable has the pdf,

2 R
Zmi + 8

flmi(ZMi) = Zmi exp(_ D) )IO(zmismi),zmi 2 0. (339)

In this case, the integrals in (3.34) and (3.35) cannot be solved analytically. Numerical
integration was used employing the adaptive-Romberg algorithm {47]. The integration was-
stopped when the error was less than a fraction, § = 108, of the value of the integral. The
cdf was computed with various numbers of terins, and the results are shown in Table 3.2
along with the previously published results of Helstrom [39]. Note that there is agreement
to 8 decimal places between the results with 50 terms and 70 terms; therefore, 50 terms
are sufficient for an accuracy of £10~8, In addition, the results of [39] and those calculated

in this report agree.

30 terms

0.932001282965

Helstrom [39]
0.9320114

Smi 50 terms 70 terms

1.2604192

1.5867737
1.9976298
2.5148669

0.644568109834
0.134545925833

0.001217999774

0.932011262474
0.644600482984
0.134562469337
0.001246864269

0.932011262683
0.644600482906
0.134562469396
0.001246864363

0.644601
0.134563
0.00124687

Table 3.2: The CDF of 16 Rician Random Variables

3.4 Summary

A method for obtaining the pdf and the cdf of a sum of independent random variables
has been presented. The method is independent of the underlying pdf. An efficient way of
evaluating the pdf and the cdf of the sum has been provided. The cdf computed using this
method has been compared to the cdf computed using a previously known method, and
the results agree well. This novel analytical technique can be used to obtain performance
results for systems employing linear combining. The application is demonstrated in the

next two chapters.



Chapter 4

Application to Demodulation of

FFH NCFSK Systems

4.1 Introduction

Previous error-performance analyses for FFH M-ary NCFSK receivers with linear
diversity combining have primarily used computer simulation {2],[4],(8],[9] or approxima-
tions [6]. However, Keller 7] calculates the probability of bit error, P, in partial-band
noise using an analytical method based on repeated convolutions which is only practical
for small levels of diversity and cannot be used for multiple-tone interference. An analyt-
ical method is needed to compute P, for an arbitrary level of diversity for the following
situations: 1) partial-band-noise jamming plus system noise, 2) multiple-tone jamming
plus system noise, and 3) fading plus system noise. This chapter presents the application
of the analytical method presented in the last chapter to the demodulation problem in
FFH M-ary NCFSK systems with linear diversity combining.

Previous error-performance analyses for FFH M-ary NCFSK receivers with 2-1- and 4-
2-moment-method diversity combining have primarily used computer simulation [9],[19],{20].
This chapter presents an analytical method for the FFH binary NCFSK demodulation
problem with 2-1- and 4-2-moment-method diversity combining and L = 2 in independent
Rayleigh fading. |
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4.2 Broad-Band Noise

The probability of bit error was calculated for various levels of diversity in broad-band
AWGN. The noise can originate from both system noise and jamming. The signal-to-noise

ratio after dehopping is given by

En _ shi

where E}, is the energy per hop, No/2 is the two-sided noise power-spectral density, and
02 = No/2T,. This SNR is appropriate for a fixed-hop-rate system. Perfect time syn-
chronization and frequency synchronization are assumed. The probability of symbol error
is given by
o0
Po=1= [T R fin(o)do (42)

where F,,(v) is the cdf of the decision statistic with only broad-band noise present, and
fon(v) is the pdf of the decision statistic with broad-band noise and a signal tone present.

The probability of bit error is then

M
B = sy P (4.3)

Therefore, the calculation of P, requires only a single integration. The adaptive-Romberg
method was used for the numerical integration [47) with 6 = 107%. To calculate the
Fourier-Bessel series of (3.15) and (3.16), 150 terms were used. To calculate the Fourier
series of (3.27) and (3.28), 40 nonzero terms were used. With the above choices, the results
have an accuracy of £1078,

The probability of bit error was calculated for various levels of diversity in broad-
band AWGN for linear combining with the same parameters as in [19] where results are
generated by computer simulation; therefore, M = 8 and SNR = —0.2 dB. From (4.2)
and (4.3), the probability of bit error was calculated for various levels of diversity and is
plotted in Fig. 4.1. The results generated in this report agree with the results presented in
[19]. Note that the probability of bit error decreases as the level of diversity is increased.

Since linear and square-law combining are near-optimal diversity-combining schemes in
broad-band AWGN, a comparison between the two would be interesting. The probability

of bit error with M = 2 for square-law combining is given by [55)

1 LEy =2 LEx,
Py = 271 exp(——2N°)n§=:ocn( 2N0) . (4.4)
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Probability of Bit Error

100

10t

10-2

103

T T ¥ T T 107

T T rT7riT

T T T 117717

T

T

L A 1

-

5 10 15 20 25
L

Figure 4.1: P, with M = 8 and SNR = —0.20 dB in broad-band noise.
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where
L-1-n
1 2L -1 .
Cn = m ( k )' (43)
© k=0
Table 4.1 shows the performance of the two diversity-combining methods with SVR = -3

dB and SYR = 0 dB. The P, is almost the same for both methods. Thus, linear and
square-law combining have similar performance. Recall that linear combining has near-
optimal performance for large SN R in broad-band AWGN and that square-law combining
has near-optimal performance for small SV R in broad-band AWGN. Then, both combin-

ing methods have near-optimal performance independent of the signal-to-noise ratio.

SNRindB | L | P, for square law | P, for linear
0 8 0.069145 0.068921
0 12 0.034761 0.034492
0 16 0.018060 0.017842
0 20 0.009571 0.009414
0 24 0.005141 0.005035
0 28 0.002788 0.002719
0 32 0.001523 0.001479
-5 8 0.289804 0.293143
-3 12 0.248320 0.252187
5 16 0.216027 0.220198
-5 20 0.189728 0.194068
-5 24 0.167742 0.172158
-5 28 0.149040 0.153467
-5 32 0.132937 0.137328

Table 4.1: P, with M = 2 in Broad-band Noise

4.3 Multiple-Tone Jamming

The probability of bit error was calculated for binary NCFSK with L = 8 in multiple-
tone jamming plus broad-band AWGN for two types of jamming strategies. First, results
are presented for randomly distributed multiple-tone jamming. Then, these results are

compared to results for Houston-sense multiple-tone jamming.
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4.3.1 Randomly Distributed Multiple-Tone Jamming

For randomly distributed multiple-tone jamming, the jammer tones are randomly
located in a fraction, v, of the total number of bins. All jammer tones are of the same
amplitude, a,;. Each jamming tone is assumed to be at the centre of the frequency
bin. The signal-to-noise ratio is given by (4.1). The ratio of signal to tone jammer after

dehopping is given by

E}; _ 3,2.’"'
SIR=5t=25 (4.6)

where E}, is the energy per hop, and J, is the equivalent jammer power-spectral density.
For L hops, the bin with the desired signal will contain a signal tone plus noise every time,
but would contain a jammer tone [, times where [, is a random integer with 0 </, < L.
Similarly, for L hops, the empty bin would contain noise every time, but would contain a
‘jammer tone I, times where I, is a random integer with 0 < I < L. The probability of

each combination of tone jamming can be calculated from

Peomb(ls, le) = (f) (f) yletle(1 = y)PEhete, 4.7

The probability of a correct decision for each combination of tone jamming, Peorrect(le,!s),

is calculated using
o0
Parrectloshs) = [ Fu(0)fu(0)do (48)
0

where f,() is the pdf of the signal-bin decision statistic, and F,() is the cdf of the empty-bin

decision statistic. The overall probability of a correct decision is then

L L
Pcorrect = Z Z Pcomb(le’lu)Pcorrcct(leyla), (4-9)
l4,=01¢=0
and P, is
B=1- Pcorrect' (4'10)

From (4.7)-(4.10), Py was calculated for SN R = 10 dB and for various SJR, and is plotted
as a functions of 7 in Fig. 4.2. The adaptive-Romberg method was used for the numerical
integration [47] with § = 108, To calculate the Fourier-Bessel series of (3.15) and (3.16),
150 terms were used. To calculate the Fourier series of (3.27) and (3.28), 200 nonzero
terms were used. With the above choices, the results have an accuracy of +10-8.

For SNR = 10 dB and SJR = -5 dB, P, is at a maximum of 0.2910 for a jamming
fraction of ¥ = 1.0. As v approaches zero, P; drops considerably. Thus, jamming all the

bins is the most detrimental jamming strategy at this level of interference.
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Figure 4.2: P, for randomly distributed multiple-tone jamming, L=8, M =2,SNR =10
dB.
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For SNR =10 dB and S/JR = 0 dB, P, is at a maximum of 0.1127 for a jamming
fraction of ¥ = 0.019. As 5 approaches zero, P, drops considerably. Note that P, = 0.1123
for ¥ = 1.0. Thus, jamming all the bins is almost as detrimental as jamming the worst-case
fraction of bins at this level of interference. .

For SNR = 10 dB and SJR = 5 dB, P, is at a maximum of 0.0408 for a jamming
fraction of ¥ = 0.006. As v approaches zero, P, drops considerably. For v = 1.0, B, =
0.0016. Thus, jamming with ¥ = 0.006 is much worse than jamming with ¥ = 1.0.

For SJR = -5 dB, the highest P, occurs at full-band jamming. For SJR = 0 dB and
SJR =5 dB, the highest P, occurs at a relatively small jamming fraction (y = 0.019 and
v = 0.006 respectively). For small jamming fractions (y < 0.005), P; is almost the same
for all three values of SJR. Full-band jamming is very detrimental at SJR = 0 dB and
SJR = -5 dB, but is not the worst case for S/JR = 5 dB.

4.3.2 Houston-Sense Multiple-Tone Jamming

For Houston-sense multiple-tone jamming, a fraction, e, of the total number of M-
bin channels are jammed by placing a single jammer tone in the centre of one bin of that
channel. Two jammer tones are never located in the same channel. This strategy was
first discussed in [51] for situation without diversity. It is the worst-case jamming when
diversity is not employed. The fraction, v, of bins jammed is ¥ = a/M. All jammer
tones are of the same amplitude, a,,;. Each tone’s centre is at the centre of the frequency
bin. The signal-to-noise ratio is given by (4.1). The ratio of signal to tone jammer after
dehopping is given by (4.6).

Consider a FFH binary (M = 2) NCFSK system. For L hops, the bin with the desired
signal will contain a signal tone plus noise every time, but would contain a jammer tone
l, times where [, is a random integer with 0 </, < L. Similarly, for L hops, the empty
bin would contain noise every time, but would contain a jammer tone /. times where I,
is a random integer with 0 < I, < L —,. The probability of each combination of tone
jamming can be calculated from
The probability of a correct decision for each combination of tone jamming, Porrect(le, ls),
is calculated by (4.8) using (4.11). The overall probability of a correct decision is then
calculated using (4.9), and P is given by (4.10). From (4.8)-(4.11), P, was calculated for
SNR =10 dB and for SJR = —5 dB and SJR = 0 dB, and is plotted as a function of
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~ in Fig. 4.3. The adaptive-Romberg method was used for the numerical integration [47]
with § = 1078, To calculate the Fourier-Bessel series of (3.15) and (3.16), 150 terms were
used. To calculate the Fourier series of (3.27) and (3.28), 200 nonzero terms were used.
With the above choices, the results have an accuracy of £108.

For SNR = 10 dB and SJR = -5 dB, P, is at a maximum of 0.2834 for a jamming
fraction of ¥ = 0.5. As v approaches zero, P, drops considerably. Thus, jamming all the
channels is the most detrimental jamming strategy at this level of interference.

For SNR = 10 dB and SJR = 0 dB, B, is at a maximum of 0.1138 for a jamming
fraction of ¥ = 0.02. As 4 approaches zero, P, drops considerably. Note that P, = 0.0996
for ¥ = 0.5. Thus, jamming with 4 = 0.02 is much worse than jamming with ¥ = 0.5.

For SJR = -5 dB, the highest P, occurs at full-band jamming. For S/JR = 0 dB,
the highest P, occurs at a relatively small jamming fraction (y = 0.02). Houston-sense
jamming is worse than randomly distributed jamming at SJR = 0 dB; however, randomly
distributed jamming is worse than Houston-sense jamming at SJR = —5 dB. This second
point is very important. It is often stated in the literature [9],{26],[27] that Houston-sense
jamming is the worst case. However, for L = 8, M = 2, and §JR = -5 dB, this is not

true. Thus, Houston-sense jamming is not necessarily the worst-case jamming.

4.4 Rayleigh Fading

In this section, the performance of linear, square-law, 4-2-moment method, and 2-1-
moment-method diversity combining is considered in Rayleigh fading. Results are derived
for M =2and L =2.

4.4.1 The PDF for 2, in Independent Rayleigh Fading

The output sample of the matched filter with envelope detector, z,,, is the magnitude

of a complex number,
gmi = 8mi + 'hmh (4'12)
where

Smi = 8mic08(Dmi) + J8misin(Dmi), (4.13)

fimi = Nmic + jnmia (4.14)
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Figure 4.3: P; for Houston-sense multiple-tone jamming, L =8, M =2, SNR = 10 dB.



43

The noise components, Ny, and ny;,, are Gaussian random variables with zero mean and

variance,
=N
2Ty

where No/2 is the double-sided power spectral density of the noise, and T} is the hop

(4.15)

period. The signal amplitude, sy, is a random variable with pdf,
Smi St
Somi(8mi) = =5 exp(=524), smi 2 0. (4.16)
85 233 v

For smi < 0, f,,.;(8mi) = 0. The mean power of the signal is 2s3. From 3.10, the two-

dimensional characteristic function of the matched filter output sample is
22 4 g2
85, (o) = exp(~- 2Tt )y (a.17)
The pdf of the output sample with signal and noise present is

2
Zmi —Zmi
fm(zmi) = ;'%"exp(ﬁ)azmi 20, (418)

where 02 = 02 + 83. For zp; < 0, fon(2mi) = 0. The pdf of the output sample with only
noise present is
-z

, 2,
Fnlmi) = 5l exp(S38), 2mi 2 0. (419)
n n

For zmi < 0, fa(2mi) = 0.

4.4.2 The 2-1- and 4-2-Moment Method

In the 2-1-moment method, a decision statistic, v, is formed by (2.22). For L = 2,

the decision statistic is after simplification
Um = Z2m1Zm2. (4'20)

Define a variable ¢ = z,,3. The joint pdf of v, and g is found from the joint pdf of zm)
and zm3. Because of the independence of z,,; and zmg, the joint pdf of zm1 and zm2 is the
product of the individual pdf. Thus, the joint pdf is

Zm12m2 ‘z?nl = zrznz
fz,,u,zmz(zml’ zm2) = P exp( 202 )’ Zm1 Z 0, 2m2 2 0. (421)

The magnitude of the jacobian of the transformation from (2m1, zmz) to (vm,q) is

| (2m1, 2m2)| = . (4.22)
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The joint pdf of vy, and ¢ is [53]

flml \Zm3 (zm y Zmz)
IJ(Zml,Zrlnz)l (4.23)

fvm,q(vmsq) =
where zpn; = Ym/q and zmy = ¢. Thus, substituting (4.21) and (4.22) into (4.23),
-(=)? - ¢
Fomavmr0) = 2 exp(—L 20,00 2 0,420, (4.24)
The pdf of v,,, can be found by integrating (4.24) with respect to ¢. Thus,
o0 v !m.2 q2
fom(om) = [ 22 exp(—L ) dg, v 2 0 (42)
Simplifying [54], .
v, v
fvm(vm) = ;?KO(;";' ym 2 0, (426)

where Kg() is the zeroth-order modified-Bessel function. By integrating (4.26), the cdf of

v, can be found as
Um
Fop, (vm) = / fon (2)d2, v 2 0. (4.27)
0
Simplifying (3],
v. v
F,.(vm)=1- o—";Kl(;"zl yUm 2 0, (4.28)

where K'{() is the first-order modified-Bessel function.
The bit-error probability, Py, for binary NCFSK can be found by

P o= 1- /an(v)fm(v)dv (4.29)
- /°°° el 2)Kl( 2)du (4.30)
= (—~)‘zF1(2,1,3,1— bl (431)
- )‘Ig - (2 (432)
- (—1;(?(%)—4?(4111(%{-)4«(:—;)*-1) (43)

where F,() is the cdf of vy, with only noise present, fon() is the pdf of v,, with signal plus
noise present, and 3 Fy(,;;) is the Gauss hypergeometric function. The expression for P,
in (4.33) is a new result. The 4-2-moment method has identical performance to that of

the 2-1-moment method for L = 2 and M = 2 in independent Rayleigh fading.
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4.4.3 Linear Diversity Combining

For linear diversity combining, a decision statistic, vy, is formed by (2.9). For L = 2,

the cdf of vm can be computed as

[T Zn1 Zmg —231 = 23 |
Fyp(vm) =/0 /0 pr exp( 053 )dzm1dzm;. (4.34)
Simplifying,
—v? vmV2 -v3,
=]1- M) e — a-/rVm 2 .
Fy,.(vm) =1—exp( 202) 5 exp( yy )erf( ) vm 2 0, (4.35)
where
erf(z) = \/_ exp(—t®)dt, vm > 0. (4.36)
The pdf of v,, can be found by differentiating (4.35). Thus,
\/— Um .
Som(¥m) = xp( 202 ) =153 X (v + 202)exp( )erf(—) m 2 0. (4.37)

The probability of bit error for binary NCFSK must be found numerically by integrating
[+ <]
Pi=1- [ Fa(o)fum(v)de. (4.38)

4.4.4 Square-Law Diversity Combining

For square-law diversity combining, a decision statistic, v, is formed as (2.11). For

L = 2, the pdf and cdf are given by [55]

fom(vm) = g eXP(=505),tm 2 0, (4.39)
and
Fu(vm)=1-(1+ %)exp(—-zval?),vm >0, (4.40)
After considerable algebraic manipulation, the probability of bit error is given by

4+30 _ 4438
8+126+647+8° ~ (2+6)

where 3 = SNR = s3/02. This result agrees with [5].

P =

(4.41)

4.4.5 Results

The bit-error probability was computed for L = 2and M = 2 in independent Rayleigh
fading using (4.38), (3.27), and (3.28) for linear combining, using (4.33) for the 4-2- and
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2-1-moment-method combining, and using (4.41) for square-law combining. The results
are shown in Fig. 4.4. Square-law combining has the best performance. The 4-2- and
2-1-moment-method combining have the second best performance. Linear combining has
the worst performance. However, linear combining is only 1.9 dB worse than square-law
combining. Square-law combining can be shown to be the optimum combining method in

independent Rayleigh fading.

4.5 Summary

This chapter presented performance results for the demodulation of FFH NCFSK
systems with time diversity and linear diversity combining. These results were obtained
using a novel analytical technique described in the previous chapter.

In broad-band noise, for linear combining, the probability of bit error decreases as the
level of diversity is increased. Also in broad-band noise, linear and square-law combining
have similar performance. In multiple-tone jamming, Houston-sense jamming is not nec-
essarily the worst-case jamming. In Rayleigh fading with M = 2 and L = 2, square-law
combining performs better than the 4-2-moment-method, 2-1-moment-method and linear

combining,.
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Figure 4.4: P, with M =2 and L = 2 in independent Rayleigh fading.

Elme %

é ‘\"*-".'.';';‘;L;-:..‘;;.,'{1:;2’...-,‘,?.95.2-1-mornent method ;

i |

a

2 0 2 4 p : - !
SNR(dB)



Chapter 5

Application to Uplink

Coarse-Time Synchronization for
a FFH NCFSK

Satellite-Communication System

5.1 Introduction

The analysis method of Chapter 3 is applied to uplink coarse-time synchronization
of a FFH NCFSK satellite-communication system with time diversity and linear diversity
combining. The decision statistics, v, and v, for e = 1, ..., E, are formed from the matched-
filter output samples, z,; and z,; fori = 1,...,L,and e = 1, ..., E, by linear combining. The
probe-bin statistic, v,, is compared to a threshold, v;. There are numerous methods of
obtaining a value for the threshold, v;. For illustration, the “adaptive-threshold method”

is used. For comparison, the ideal value of v; based upon perfect knowledge of ¢ is used.

In the adaptive-threshold method, a new value of v; is obtained for every new vp and is
based upon the sum, v, obtained in a single empty bin (E = 1). The means of obtaining
the value of v, is based on the following observations and assumptions. Suppose that the

interference in the empty bin were only WGN of two-sided power-spectral density, No/2.

Then, [52]
E[v) = L\/;_ﬂ (5.1)
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where 02 = No/2T). Thus, an estimate of ¢ is

. Ve [2
0——L— 7l’. (52)

It can be shown that for a particular value of the probability of false alarm, the threshold
is vy = e;0 where ¢, is a constant that is independent of 0. The constant, ¢,, is computed
separately once. Then, each new threshold can be calculated from the estimate, &, given
via (5.2) by

cs /2
w= fa ;ve = by v, (53)

where b, = (¢q/L)y/2/7 is a constant. A similar method for setting the threshold is
described in [56]. Clearly, if the interference is not Gaussian, the threshold will be set
improperly, and the probability of false alarm will differ from its expected value.

For the ideal value of vy, the actual (not estimated) value of ¢ for WGN is used to
obtain E[v.] according to (5.1). The threshold is set to v¢ = by E{ve] where by is a constant
chosen to give the desired false-alarm probability.

The probability of synchronization-probe-burst detection was computed for two differ-
ent types of jamming: (1) broad-band noise, and (2) multiple-tone jamming plus broad-
band noise. It is assumed in the calculations that the synchronization-probe burst is either
perfectly aligned, i.e. AT =0, or else |AT| > T). This means that there is no spillover
from the probe bin to the empty bin. The analysis can be easily modified for |AT| # 0,
or |AT| < Th.

5.2 Broad-Band Noise

For the adaptive-threshold method, the probability of detection in broad-band noise
is given b
is given by LR
Py= [) (1 = Fi(bave)) fuu (ve)dve, (5.4)
and the probability of detection with an ideal threshold in broad-band noise is given by

Pp=1- F,,P(be[v,]) (5.5)

where the required cdf and pdf are calculated from (3.15),(3.16),(3.27), and (3.28) with
the subscript, m, replaced by p or e. The signal is a constant tone with rms amplitude,
3pi, and the noise is AWGN. The signal-to-noise ratio after dehopping is given by (4.1).
The constants are set so that Py, = 0.01. The probability of false alarm can be
computed using (5.4) and (5.5) with F, ve() substituted for F\, () and Py, substituted for P,.
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Various constants are tried until Py, = 0.01 The constants are set as follows: by = 2.4215
for L = 1 and an ideal threshold, b, = 1.8744 for L = 8, F = 1 and an adaptive threshold,
and by = 1.4584 for L = 8 and an ideal threshold. The adaptive-Romberg method was
used for the numerical integration [47] with § = 10~%. To calculate the Fourier-Bessel
series of (3.15) and (3.16), 150 terms were used. To calculate the Fourier series of (3.27)
and (3.28), 40 nonzero terms were used. With the above choices, the results have an
accuracy of £10-8,

Fig. 5.1 shows the performance in broad-band noise. Three curves are shown: L =1
and an ideal threshold, L = 8 and an ideal threshold, and L = 8, E = 1, and an adaptive
threshold. The performance with L = 8, E = 1 and an adaptive threshold is about
2.7 dB better than the performance without diversity and an ideal threshold. However,
the method with L = 8 requires eight times as many probes as the method without
any diversity. The performance with L = 8 and an ideal threshold is a further 3.2 dB
better than the performance with L = 8, E = 1 and an adaptive threshold. The ideal-
threshold method represents the performance with a perfect threshold-setting algorithm.
It is unattainable in practice, but provides a bound on achievable performance. If more
empty bins are used to set the threshold, this bound can be approached. For example, if
eight empty bins were used (E = 8), the performance of the adaptive threshold method
was calculated and found to be within a fraction of a dB of that with an ideal threshold.

5.3 Multiple-Tone Jamming

The probability of detection was computed in this section for multiple-tone jamming
plus broad-band noise. Jammer tones are randomly located in a fraction, v, of the total
number of bins and are assumed to have the same amplitude, a,; = a.;. Each tone’s center
is at the center of the corresponding frequency bin. Out of L hops, the probe bin would
contain a signal tone and noise every time, but would contain a jammer tone /, times
where I, is a random integer with 0 < I, < L. Similarly, out of L hops, the empty bin
would contain noise every time, but would contain a jammer tone /. times where I, is a
random integer with 0 < I, < L. The probability of each combination of tone jamming is
calculated from (4.7). The probability of detection for each combination of tone jamming,
Py(le,lp), is calculated using (5.4) with Py(l.,lp) substituted for P; where the required cdf
and pdf are calculated by (3.15) and (3.16) with the appropriate characteristic functions

used. The probability of false alarm for each combination of tone jamming, Py,(l,,l,), is
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Figure 5.1: The probability of detection in broad-band noise (P, = 0.01).
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calculated using (5.4) with Pys,(l,,l,) substituted for Py and F,,() substituted for Fy ()
where the required cdf and pdf are calculated by (3.15) and (3.16) with the appropriate
characteristic functions used. The probability of probe-burst detection is given by
L L
Pi=3Y"Y" Poms(leslp)Pa(le, Ip). (5.6)
le=0Ip=0
The probability of probe-burst false alarm is given by
L L
Py = E E Peomb(les Ip) Pta(les Ip)- (5.7)
le=01p=0
The signal-to-noise ratio is given by (4.1). The ratio of signal to tone jammer is given
by (4.6). The constant was set equal to b, = 1.8744 so that the Py, would be 0.01 in
broad-band noise. The adaptive-Romberg method was used for the numerical integration
{47) with § = 1076, To calculate the Fourier-Bessel series of (3.15) and (3.16), 150 terms
were used. To calculate the Fourier series of (3.27) and (3.28), 200 nonzero terms were
used. With the above choices, the results have an accuracy of £107%. Fig. 5.2 and Fig. 5.3
show the performance of with L = 8, E = 1, and an adaptive threshold in broad-band
noise and multiple-tone jamming.

In Fig. 5.2, SNR = 10 dB and SJ/R = 0 dB. The probability of detection is at a
maximum for a jamming fraction of ¥ = 0.0 and at a minimum for broad-band jamming
(v = 1.0). The probability of false alarm has a maximum at 4 & 0.08 and a minimum at
4 = 0.0 and 4 = 1.0. For broad-band noise jamming of the same total power (SNR =
—0.4 dB), the probability of detection is Py =~ 0.16, and the probability of false alarm is
Py, = 0.01.

In Fig. 5.3, SNR = 10 dB and SJR = 5 dB. The probability of detection is also at a
maximum for a jamming fraction of 4 = 0.0 and at a minimum for broad-band jamming
(¥ = 1.0). The probability of false alarm has a maximum at ¥ & 0.04 and a minimum at
4 = 0.0 and 4 = 1.0. The curve in Fig. 5.3 is not monotonically decreasing as is the one
in Fig. 5.2. For broad-band noise jamming of the same total power (SN R = 3.8 dB), the
probability of detection is Py = 0.57, and the probability of false alarm is Py, = 0.01.

Note that the lowest probability of detection is achieved with broad-band jamming
(¥ = 1.0). Thus, jamming only a fraction of the total number of bins is not effective
in reducing the probability of detection. However, the probability of false alarm has
a maximum at some intermediate value of jamming fraction (0.0 < ¥ < 1.0). Hence,
jamming only a fraction of the total number of bins can be used to increase the false-

alarm probability. Also, the probability of detection and probability of false alarm are



33

0.9

0.8

0.7

Probability of Detection
0.6+

0.5+

Probability

0.4

0.2+ /

T
~

0.1

S
~
~
~
-
e
.
.
.
-
e
e
.w
e
_____

Fraction of Bins Jammed

Figure 5.2: Noise and tone jamming performance for adaptive-threshold method, L = 8,
SNR=10dB, SJR =0dB.



34

0.9} 4

Probability of Detection
0.8 o

0.7+ -

Probability
=)
(9,
1

0.4} -

0.3+ .

0.2} -
,-~=-. Probability of False Alarm

/ -

0.1} -

......

Fraction of Bins Jammed

Figure 5.3: Noise and tone jamming performance for adaptive-threshold method, L = 8,
SNR=10dB, SJR = 5 dB.



55

both lower for broad-band tone jamming with broad-band noise jamming than for only

broad-band noise jamming.

5.4 Summary

This chapter presents the performance of an uplink-coarse-time-synchronization al-
gorithm for a FFH NCFSK satellite-communication system with time diversity and linear
diversity combining in noise jamming and multiple-tone jamming. Results show that time
diversity and linear diversity combining can be used to improve performance in broad-
band noise. Results also show that the adaptive-threshold method does not have a con-
stant false-alarm probability for multiple-tone jamming. With multiple-tone jamming, the
minimum probability of detection is achieved by jamming the entire band; however, the

maximum probability of false alarm is achieved by jamming only part of the entire band.



Chapter 6

Conclusions

6.1 Summary

This report has provided a literature review of diversity-combining techniques and
analysis methods as applied to these techniques. References have been provided for the
use of these techniques in demodulation, coarse-time synchronization and fine-time syn-
chronization.

An analytical method has been developed for one of the techniques, linear combining.
The method combines circularly symmetric function theory, Fourier-Bessel series, and
Fourier series. With this method, the bit-error probability for demodulation and the
probability of detection for coarse-time synchronization have been computed. Where
possible, the results obtained with this method were compared to other reported results,
and the two results agreed well. Also, several new results were also obtained.

Linear combining was shown to be a near-optimal scheme in broad-band noise. Its per-
formance is similar to that of square-law combining in broad-band noise. In multiple-tone
jamming, the worst-case jamming depends on signal-to-noise ratio for linear combining.
For high signal-to-noise ratios, the worst-case is Houston-sense jamming with a relatively
small jamming fraction. Randomly distributed jamming with a relatively small jamming
fraction is almost as bad. However, for low signal-to-noise ratios, the worst-case is jamming
every bin.

A novel analytical result was derived for the 4-2- and 2-1-moment methods in indepen-
dent Rayleigh fading. An expression is obtained for the probability of bit error with L = 2
and M = 2. For this situation, linear combining is a little bit worse than square-llaw com-

bining, 2-1-moment-method combining, and 4-2-moment-method combining. However,
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other situations should be examined before conclusions can be drawn.
Other diversity-combining methods are very difficult to analyze. The difficulty often
arises because the decision statistics are correlated. Perhaps, further research will find

ways around this problem.

6.2 Recommendations

Linear combining is an excellent method in broad-band noise. In severe multiple-tone
jamming, linear combining is good. In weak multiple-tone jamming, linear combining is
not a good method because it is susceptible to Houston-sense multiple-tone jamming with
a small jamming fraction. In independent Rayleigh fading, square-law combining is the

best method for the particular situation that was considered.

6.3 Future Work

Future work should include: accuracy considerations for the analytical method, ways
to improve accuracy of the analytical method, other diversity-combining techniques, exten-
sion of fading work, acquisition-time computation for coarse-time synchronization, analysis

of fine-time synchronization, and experimental verification of results.
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