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CHAPTER I 

INTRODUCTION 

The world of telecommunications is developing at a breathtaking rate. 

In the space of a century, telecommunications networks have become one of our 

most complex creations, with ramifications that extend worldwide. Up until 

the 1960s, over 90 per cent of telecommunications systems operated on the old 

principles of analogue communication; in particular, microwave systems are 

often of the FDM/FM type. Since then, of course, the new digital technology 

has become increasingly prevalent. 

The predominance of digital systems is the result of a combination of 

factors, the most important among them doubtless being low manufacturing 

costs and good performance against interference. By the 1990s, according to 

BNR projections, 90 per cent of telecommunications networks will be digital 

systems. 

With this dazzling development, the amount of data traffic on these 

systems is increasing by leaps and bounds. In order to meet the demand, very 

high output systems must be built; since the majority of frequency bands are 

relatively congested, digital systems having a high spectral efficiency will 

have to be introduced. The necessity for this, has led companies in the com-

munications industry to propose systems that are able to operate almost in 

the same frequency bands as the old analogue systems. The newest in this 

field is the RD-4A system from Northern Telecom Limited, which has been avai-

lable on the international market since 1984. This system utilizes a 64- 

level quadrature modulation, operating at a rate of 20 Mbauds per second. 
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Given the very high speed of these new systems, their performance will 

becOme relatively sensitive to systems-related and inherent defects. To en-

sure proper operation, precautions will have to be taken in several respects: 

care in the design of electronic components, making transmitting and recei-

ving antennas highly directional, and suitable separation  of carrier frequen-

cies. The latter aspect comes under the authority of the Department of Com-

munications. At the request of the Systems Technology task force, headed at 

the time by Mr. G. De Couvreur and subsequently by.Mr. M. Gaudreau, the De-

partment has begun to examine the influence of FM systems on the performance 

of Quadrature Amplitude Modulation (QAM) systems. This influence depends na-

turally on the.separation between the two carriers, their relative power, and 

their bandwidth. 

In this report, the fundamental points of our problem are presented in 

Chapter II: modeling of QAM systems, passage of very broad bandwidth FM sig-

nals through a QAM receiver, method of calculating probability of error by 

moments, analysis of accuracy; numerical results are presented in Chapter 

III; and the report concludes with Chapter IV, in which a discussion of the 

work carried out is presented. 



; 
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CHAPTÈR II 

PASSAGE OF AN FM SIGNAL THROUGH A QAM SYSTEM 

11.1 Introduction 	 • 

In this chapter is presented the methodology used to solve the problem 

of interference caused by passage of an FM signal through a QAM receiver. In 

this methodology, we require an accurate model to describe the operation of a 

receiver in which behaviour towarcl FM interference will be examined. As this 

interfering signal is of very broad bandwidth, we will be able to justify use 

of the wide-sense stationary assumption to simplify analysis. 

11.2 Quadrature Amplitude Modulation 

Quadrature amplitude modulation is achieved by combining two carriers 

in quadrature, each amplitude-modulated. Let m and n be the number of levels 

on each carrier; we then obtainM=mxnpossible states for the resulting 

two-dimensional signal. We will limit this report to the case where m=n=4, 

which is the case of 16-state modulation. Levels on each carrier are•equi-

distant, giving Fig. 2.1. 

The sixteen points of the constellation correspOnd to 16 four-bit 

words. These are formed by means of 4 binary trains grouped in twos. Let 

these trains be Al, B1, A2 and B2. Initially we have the formation of two-

bit words A1131 and A2B2, which will serve to modulate the two carriers by 

matching each value of the word with a signal level, with the following cor-

respondence: 
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Fig. 2.1 - QAM-16 Constellation 
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Ai Bi 	Signal Level 

11 	3 

01 	1 

0 0 	-1 

1 0 	-3 

Matching is done in such a way that words  AB  i follow a Gray code, 

i.e., a code such that two adjacent words differ by only one bit. Addition 

of the two carriers thus determines 16 states for the words AlBi, A2B9. In 

practice, this type of modulation was selected for two reasons: first, per-

formance is quite acceptable compared to the optimum (loss of 0.2 dB for a 

constraint on mean power); second, its implementation is simplified at the 

outset because it does not require any special technology. 

11.3 Structure of QAM Modulator 

The first component of the modulator is a coder that transforms the 

four binary trains into two quaternary trains and associates with each a sig-

nal with four amplitude levels. These signals attack the IF modulator fol-

lowing broadband filtering that serves to limit the spectrum. The two modu-

lated carriers are then added to yield a 16-state signal. It will be noted 

that the two carriers in quadrature are obtained from a single oscillator, so 

as to retain phase coherence between the two channels. These operations are 

shown in Fig. 2.2 

At the coder output, we find signals on channels x and y with four amp-

litude states determined by combinations AiBi  (i = 1, 2). Matching is effec-

ted following a Gray code shown in Fig. 2.3. Decision areas are limited by 

the abscissas and ordinates -2,0 and 0,2. Because of coding, crossing a 

threshold results in only a single error. 
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Fig 2.2 — Structure of QAM Modulator 
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11.4 Statement of Problem 

11.4.1 Diagram.of Transmission Chain 

Fig. 2.4 shows the overall appearance of component elements in the 

transmission system and the various defects encountered. The 16-state signal 

at the modulator output attacks a microwave oscillator that will transpose 

the signal into VHF. The need to place several channels side by side leads 

to filtering in order to limit their individual spectrums and fix their posi-

tion in the transmission frequency band. This operation is achieved by  FUN,  

Frequency Division Multiplex. Following passage of the VHF signal through 

the propagation medium, in this case free space, it is filtered to senarate 

the channels, then transposed to IF for demodulation. The demodulator fol-

lowed by the decoder yields an estimate of the original binary trains and 

serves to obtain phase references of the carrier and clock necessary for co-

herent demodulation and for operation of the decision circuits. Ideally, all 

of these operations will enable us to reconstitute the transmitted informa-

tion signal correctly. Unfortunately, this is not the case in practice, as 

the IF signal undergoes a number of destructive effects on reception: 

a) thermal noise (hence Gaussian white noise); 

b) interference from adjacent channel signals in the multiplexer 

(hence, interfering FM signal); 

c) intersymbol interference caused by filtering; 

d) propagation defects (slow or rapid fading). 

The study presented in this report considers only the simultaneous pre-

sence of thermal noise, FM interference and filters. 

11.4.2 Modeling 

Taking into account the preceding assumptions, the transmission chain, 

defined as the succession of various components encountered by the signal, 

may be represented by Fig. 2.4. All modeling is carried out by means of the 

equivalent low-pass filter concept [10]. 



RECEIVER 

FILTER 

DECISION TRANSMISSION 

FILTER 

c 0  (f) 

COMPLEX 

SOURCE 

{ckJ 

immummilM111n1•Mi 

He, 

x(t) = (1) 

s e (t) 	. Y 	(ak  + jbk )x(t-kT) 
K 	K ---  

k=—co 	 (4) 
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Adjacent Channel 

Interference j  

Thermal 

Noise n(t) 

Fig. 2.4 - Equivalent Low-Pass System - 

Complex Source: 

Let lakl and Ibk 1 be the quaternary messages at the modulator input. 

These are binary trains at the coder output. Let x(t)and s(t) be respec-

tively the low-pass envelope and the modulator output signal. Generally 

speaking, we have: 

1 for 0 < t < T 

0 otherwise 

where T is the duration of a baud. 

s(t) 	A 1 	lakx(t-kT)coswo t + bk x(t-kT)sinwo tl k.-. 

Equation (2) can be,  put into a much more compact complex form: 

jw t 
s(t) 	Rels

e 

where 

(2) 

(3) 

s e (t) is called the complex envelope of s(t). We are then led to define an 

equivalent source of domplex 16-state messages: 

Ck = ak + jbk 
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Filters: 

The transmission filter Ho (f) brings together the VHF filters, video 

filters, and transmission medium. The video filter, of very broad bandwidth 

compared to the others, can be ignored, as its presence is unnecessary from a 

theoretical point of view. The receiving filter, placed at the demodulator 

input, has a transfer function Go (f). Its essential function is to limit 

reception interference and noise. It acts in the IF range, after a receiving 

preamplifier. 

The signal thus sees an overall complex gain filter Ho (f)G o (f) . Let 

P(t) + jQ(t) be the response of this filter to the x(t) signal. In the ab-

sence of any interference or additive noise, the demodulator input signal may 

be written in the following complex form: 

OD 

x(t) = A 1 	(ak  + jb k )[P(t-kT) + J0(t-kT)] 
k=-03 

To simplify writing the formula, let: 

Pk(t) = P(t -kT) and Qk(t) = Q(t -kT) 

It follows that: 

CO 

x(t) = 	(ak  + jbk )[Pk (t) + jOk (t)] 
k=-(= 

CO 

x(t) = 	[akPk(t) - bkQk (t)] + j[akQk (t) + bkPk (t) .] 
k=-0D 	 (6) 

If the overall filter HoG o  possesses parity of fading and group propagation 

time, i.e., its transfer function Ho (f)Go (f) represents a Hermitian symmetry 

around 0, let: 

* 	* 
Ho (f)Go (f) = H0 (-f)G0(-0 

( 5 ) 
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The term Qk(t) will then be identically zero. In this case, crosstalk be-

comes zero, and the demodulator input signal is simplified as: 

00 

x(t) = 	(ak 	ibk)Pk (t) 
k=- (= 

Thermal Noise: 

Thermal noise appears in the receiving preamplifier. It is additive, 

centred and flat-spectrum in a broad frequency band before the receiver band. 

We will call the DSB power spectral density of the noise N0 /2. The 

noise power a2  affecting the probability of error is given by: 

= ,2 
a2  = N

o
T f IG 0 (01 df 

—co 

where Go(f) is the transfer function of the receiving IF filter. It is thus 

clear that an appropriate choice of Go (f) can limit additive noise power in 

the receiver. 

Carrier-to-Noise Ratio: 

This ratio, also referred to as signal-to-noise ratio, is the parameter 

that most affects the probability of error in reception, and is defined as 

the ratio of energy of a baud  over power spectral density of the noise.  Gi-

ven the hypotheses of the problem stated by scientific delegates G. De Couv-

reur and M. Gaudreau, we may immediately adopt: 

Ho(f) = 1 

The modulated signal is then: 

s(t) = A î 	(akcoswo t + bk sinwot)x(t-kT) 
k=-03 

(7) 

(8) 
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where A is the separation between two adjacent amplitudes on the same 

channel. The mean energy per baud (or per transmitted word) is then: 

2 4 a2  + b 2  

	

E  . A ( y 	k 	k ) 
m 	16 	L  k=1 	2  

with 

ak = ±1, ±3 	and 	bk = ±1, ±3 

where 

Em  = 5 A2  

If we are interested in peak energy, we may adopt the definition: 

Ete + 
E
c 
= A2  Max 1 	K  1 = 9 A2  2 k=1,4 

Based on these values, we may define the ratios: 

Em 	Ec  
— and 
No 	No  

which lead back to terms to power with the help of duration of a baud T: 

Em  Em/T 	Ec  E /T c. —= 	 and 	
= 

 
N o 	No/T 	No  No/T 

/ 

These are then ratios of signal power (average or peak) over  noise power in 

the Nyquist band. Further in the report, resultà will be expressed as a 
Em/T 

function of the signal-to-noise ratio given by 	, which locates S/N on the 
No /T 

abscissas of the probability of error curves. 

Automatic Gain Control 

The purpose of automatic gain control (AGC) is to compensate for signal 

strength losses due to random fading the signal may Suffer as it passes along 
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the transmission chain. Practically speaking, this amounts to adjusting the 

gain to a constant level at the demodulator input. In analytical calcula-

tions, this operation enables the channel response to be normalized with re-

spect to the maximum level sample. This normalization is aimed at obtaining 

results in a universal form. 

11.4.3 Passage of FM Signal Through QAM Receiver 

In the model shown in Fig. 2.4, interference results from the presence 

of one or more FM signals of very broad bandwidth. This interfering signal 

passes through the receiving filter G o (f) before being sampled at the same 

instant t o  as the digital QAM signal. It is clear that its effect on the de-

cision device input is of the additive type, as is the effect of thermal noi-

se. For the case where the interfering signal has a high modulation coeffi-

cient, the wide-sense stationary assumption may be used [6] to study the ef-

fect of filtering. It is known that in such conditions [5, 7], over a very 

short time interval, the signal behaves as a sinusoidal signal with a fre-

quency that matches the instantaneous frequency of the FM signal. If the 

baseband signal is a Gaussian process, the spectrum of the very broad band-

width FM signal takes Gaussian forms. This result is known as the Woodward 

Theorem [4]. According to these arguments, the distribution p
B
(f) of the in- 

stantaneous frequency of the FM signal admits the statistical form of the mo-

dulation signal. Thus: 

1 	‘' 'B' 	1 ipp(f)   exp  [_ 

( 9 ) 

where 	is the effective deviation (i.e., RMS value) of the instantaneous 

frequency from the FM carrier. Under the wide-sense stationary assumption, 

the filter output is thus a sinusoidal signal the amplitude of which is 

amplified by the gain IG0 (01 and the signal may be any phase, without refe-

rence to the instant of sampling. In this way, the component due to the FM 

interference source at the decision device input is finally of the form: 

1 = B cos 0 	 (10) 

f_f 

Af B 	2Lf2  
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where B is the FM signal amplitude, amplified by the gain G(f), and 8 a ran-

dom variable uniformly distributed between 0 and 2r. As has just been obser-

ved, the wide-sense stationary assumption enables the problem to be simpli-

fied considerably. 

In addition to taking account of this simplification, we also consider 

another, slightly  more  complex assumption: for a very broad bandwidth inter-

ference, its influence is equivalent to another interference of the same po-

wer spectral density. At first glance, this assumption would seem to have a 

noticeable weakness: the correlation effect between spectrum component phases 

is overlooked. However, it will be realized that, physically speaking, these 

phases could never be very coherent, as their total power is imposed by over-

all power spectral density. Taking into account this constraint on total po-

wer, the equivalence thus represents a noticeable avenue: an ensemble of har-

monic signals could be constructed, situated at any frequencies whatsoever, 

as shown in Fig. 2.5. 

QAM 

Fig. 2.5 - Spectrum Considerations of FM Signal 

With Respect . to  QAM System 

The ensemble of sinusoidal signals has amplitudes determined by the power 

spectral density of the FM signal, with the restriction that total power is 

equal to the partial power of the interference signal passing through the 

filter Go (f). The results obtained by the two approaches, "wide-sense sta-

tionary" and "power equivalence", apparently represent the two possible li- 
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mits to overall performance of the probability of error. Because of the 

central limit theorem, the power equivalence assumption will sometimes be 

referred to as the Gaussian assumption. 

11.5 Calculation of Probability of Error 

11.5.1 General Form 

We will now place ourselves in the last part of the transmission chain, 

at the output of filter Go (f); the observed signal is written as: 

03 

x(t) = 	lakPk (t) - bkQk(01 + jIbkPk (t) + 	Qk(t)1 
k=-03 	. 

+ B(t)  + jB
Y 	

+ U(t) + jV(t) 

The demodulator followed by the sampler examines the real and imaginary 

portions of x(t) at instants tk = t + kT. At instant 1', we have: 

Re t x(01 = 	8P(t) - b kO k(T) + Ix(i) + U(T) 

ImIx(T)1 	IlbkP k(T) + a kQ k(T)1 + I(T) + V(T) 

We may also separate m(t) into five terms: 

x(T) = (ao  + jb o )P 0(T) - (b o  - ja 0)Q 0(T) 

l ajk(T) 	bOk(T)1 	i l a0k(I) 	bkPk(T)1  
k*0 

+ B (T) + jB (T) + U(T) + jV(T) 
Y 

(12) 

These different terms represent respectively: 

- usable signal 

- crosstalk signal, which translates coupling between the two channels 

x and y 

(11) 
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- intersymbol interference 11(T) 

- interference B(T) 

- additive noise. 

The sum of II(T) and B(T) may be put into the form: 

I(T) = II(T) + B(T) = X(T) + e(T) 

X and Y are random variables centred by the same law of symmetrical distribu-

tion F(I) around o. Pk (T) and Ok(T) are determinist terms, and ak and bk in-

dependent random variables taking four equally probable states. 

To each point (1), representing one of 16 states, is associated a deci-

sion area Di, in the sense of a maximum likelihood criterion. The probabili-

ty of error on the states is written: 

16 
Pe  = 	P iP{reDli be transmitted }  

1-1 

where Pi is the a priori probability of state (1), and r the observation 

(signal at receiver output). As the 16 states are assumed to be equally pro-

bable, we have Pi = 1/16, and P e  is simplified as: 

p 	L PlrED li be transmitted; 
e 	16 	i 

In the presence of interference I, P e  becomes: 

f 	PiPlreD i li be transmitted and I = bldF(b) 

where II is the ensemble of all possible values 1(T) may take. The problem 

thus consists of evaluating the conditional probability of error on transmis-

sion of (i) and for a given value of I = X + jY. We will in fact directly 

evaluate the probability of error for each binary train and not for the over-

all signal. These are measurements of estimated trains, which are realized 
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in practice. We will see, nonetheless, how to link the error probabilities 

on elementary trains to overall probability. Let us first normalize the re-

ceived signal with respect to 

ri o (T)  X+e 	U+e  
x N(T) 	(ao 	ibo)  - n o - Ja o )  Po (T) 	Po(T) 	Po(T) 

In order not to burden the notation, we will reutilize x(T)in place of 

which amounts to setting P o (T)= 1. Let: 

x(T) = (a0  + jb o ) - (b o  - ja0 )Q 0 (T) + (X + jY) + (U + jV) 

Let us set a = - b Q (T) + X and 	e - a Q(t) + Y. 

A 
Let us call  Pl  (respectively P el) the probability of error on Train Al 

(respectively B1). We may demonstrate (see Appendix 1) that: 

pA 1  . 	î 	I f erfcele )dF(x) 
e 	4 	2 

ay/2 

B  
P e l = 7 P

1  A
e l 

As has been discussed previously, intersymbol interference and cross-

talk are not important components in our work; we may then choose the optimum 

case for our analysis, i.e., the case of Hermitian-symmetry filters. It fol-
'\ 

lows that: 

Q(t) E 0 

and then: 

A 	AX pe l = 1 	erfcf--+-)dF(x) 

B 	1 A
l  P

e
1 = —

2 
P
e 

 

-co 	-at/2- (13) 
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In the absence of any form of interference, the results are simplified 

to yield: 

A 	1 	A 
P 103 erfcu----=-J e 	

off 

B1 A 
P
e
1 = P

e
1 

This amounts to assuming that the channel is an ideal (Nyquist) chan-

nel. The latter expressions of probability then serve to calculate perfor-

mance in the presence of additive Gaussian noise only. For this ideal chan-

nel, however, which completely eliminates intersymbol interference, the prob-

lem of calculating the interfering signal clearly becomes more complex; for 

this reason we will henceforth take into account intersymbol interference 

caused by a Butterworth filter with linearly equalized phase. 

11.5.2 Calculation of Integral by Ho and Yeh Method . 

In expression (12), we have to calculate the integral: 

J = f erfc(Af-)dF(X) 

—cc 	ci›)i 

The Ho and Yeh method consists of developing the erfc function in Tay-

lor series in the vicinity of point A/cli: 

	

( A 1 	( x )k 1 r  

	

erfc('ItI) = ericv--- ) 	c-7)
•

kt  —k  
a/I 	ch/Î 	ka1 012 	• 

with 

d
k
erfc(x)  

D
k 

= k 
dx 

 

(14) 

Hence: 

1 n  ( A 1.31, f 	y r r...:1—) kdF(x) f eric - )ur\X/ ' L k! —k 	. 
—œ 	al2 	kal 	•.•co 	alî 
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This expression may be simplified by noting• thatf dF(x) . = land setting 

f XkdF(X): 

oe  
A 	1  J = erfc (----) + 	1-1- D M. k K ali 	k=1 

Note immediately that  Dl(  is linked to the Hermite Polynomials  i-1 0 (x)  [ 8 ] 

d
k 

erfc(x) = (-1) k
k_1 (x)exp(-x 2 ) 

dx 	rn 

Finally: 

A \ 	2 	A2 	' 

	

J = erfc(----) + — exp( ----) ï 	1 	( A lm 
r- aif 	n 	202  k=1 k!(01, 2) k  

Parameters Mk in (16) are called the k order moments of the random 

variable X. 

Calculation of moments Mk 

Let X and F(x) be respectively a random variable and its probability 

distribution function. By definition, its k order moment is given by: 

m.k 
= f

oe 
 x

k
dF(x) 

n CO 

These moments may be obtained from its characteristic function  

which is the Fourier transform of its probability density: 

œ 4  

Eleje l = f eJucdF(x) 

(16) 
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Deriving t[( 1 ) successively, we obtain: 

yw) = 1 + jci4 1  + 	+ (jw)k là+ 

Thus, if we arrive at calculation of the characteristic function  

of the random variable X, the sum of all interference present on channel X, 

i.e.: 

X = 	akP(T—kT) + Bx (T) 
k*0 

(17) 

Since Bx(T) and all variables ak are statistically independent, the 

characteristic function is quite simply the product of all characteristic 

functions corresponding to each term of equation (17). In their research, Ho 

and Yeh proposed a recursive method to calculate successive moments. Unfor-

tunately, this recursivity is very sensitive to accumulated rounding errors; 

thus it very often leads to even-order negative moments, which contradicts 

the mathematical definition [9]. This phenomenon requires that moments be 

calculated by the direct method; as this is an exhaustive method, it clearly 

takes up more computer time. Before presenting this calculation method, let 

us observe that the random variables present in (17) are all statistically 

independent; it is then known that the moments of their sum are combinations 

of their moments. We need only consider X as the sum of 'two statistically 

independent random variables X1 and X2 having even probability densities: it 

follows immediately that: 

X = X1 X2 

ElXk l = Él(X 1  + X 2 )
kl 

 

= 	Ck  EIX £ IEIXk—L I 1 	2 
2.=0 
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As X1 and X2 are distributed symmetrically, we have: 

EIX I 2L+1 1 = E1X 2
2X+11 

= 0 

r which immediately implies that uneven-order moments EiX2L+11  are identically 
r 	1 zero. Only the even-order moments Mn  = FIX21( l exist and are given by: 

2k 
2k 1 	2 M

2k 
= 	C

2p 
M
2p 

M
2k-2p p=0 

1 	2 
where M

2p 
and 

2k-2p 
are respectively 2p order moments and 2k-2p order mo- 

ments of random variables X1 and X2. Equation (18) is thus the key to the 

direct method of calculating moments of a sum of independent random 

variables. 

Thus, in order to apply the direct method to study of the influence of 

a very broad bandwidth FM signal, we need only calculate moments of intersym-

bol interference and moments of the FM signal separately. The latter are 

calculated very simply by means of the model proposed by equation (10). Mo-

ments of intersymbol interference are dealt with in the following section. 

11.5.3 Direct Method of Calculating Moments [2]: 

Let U be the number of samples of channel response at an interval x(t), 

the low-pass envelope of a baud, as  described by (1). There are thus U - 1 

terms of intersymbol interference; as the transmitted signal may take one of. 

the four values (±1, ±3), the number N of possible configurations is: 

N = 4
U-1 

The intersymbol interference random variable X is written: 

= 	a
kPk 

k*0 

(18) 
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where: 

P
k P(r+kT) 

Moments M2p of X become: 

U2p L.  P[Xk  a  XjX2P 
a
k 

M 	( 
2p N 	a  p )2p 

ak  ko k k  

As the calculation of M2 p  in this case is independent for each component, 

accuracy may be chosen arbitrarily. 

It now remains to prove convergence of the method and to deduce  the 

 criteria enabling this to be verified. Through the use of computers, we are 

led to make truncations at various levels in calculating numerical series. 

Taking into account parity of dF(x), the integral J is written: 

• 
H
2k- 1 ("±)  co 

	

r A 	2 	A2 ) ç 
m
2k  

	

J = erfcu---) + -- exP( ---) L 	x 	ar2 
r— 2k 

2a2  k=1 (2k)! 	(are) 

Let Uk be the general term for the series. It follows that: 

H , 
U
k+1 r- 

	

M2k+ 	
2k+1

2 	ar2 	1 	1  = 	 x 	 x 	 x 
Uk 	M2k 2 	(2k+1)(2k+2) 	(19) r A ) A

2k-1 	(a/T) alT 

For very large values of k, we have [8]: 

1 	2
k 	x2 

1H2k-1
(x)1 <— (2k-3)!! !/2k-1 exp(--) 2 

where: 

(2k-3)!! = (2k-3)(2k -1)... 3.1 



and then: 
2 

< 	î ip(T-vri) 
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Thus equation (19) is simplified to yield: 

I
u 	m 

2k+2 (2k-1)!! 	1 	1  riFT. 
U
k 	

M
2k 

(2k-3)!! (avî) 2 (2k+1)(2k+2) 	2K-1 	(20) 

Also, we have: 

M
2k 

= f X
2k
dF(x) < f [Sup(x)] 2k

dF(x) 
-m 	-m 

where: 
/ aP(T-kT) 

£*0 

hence: 

Sup(x) = 3 	IF(T-ZT)I 
L*0 

2k 	2,*0 

Equation (20) becomes: 

3 	1P(T-£T)1 U
k+11  4  (  £*0 	1 2  fil,FT 1 

I
k 	 2k+1 k+1 a/I 

The Alembert criterion ensures convergence for: 

3 	1P(T-£T)1 < 
2.*0 

This condition is realized only if the channel displays relatively low 

distortion. Practically speaking, this convergence is linked to accuracy of 

the method, which is represented by error R
N 

due to truncation of the series 

beginning at the Nth term: 
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H
2k-1

g_ )  
03 m A2 . v 	2k 

RN 	
alI  2 exp r_ 1L__) 

L  771777  (0/1) 2k i; 2 2  k=N 

To study the behaViour of R
N

, we will utilize the :increases of M2k and 

H2k-1( x) as previously, replacing the factorial for the Sterling approxima-
tion: 

k! 	k
k
e
-k  

It follows that: 

. 	3 î IP(I-kT)1 

RN 4 1/q-  exp(=É27) 	( 	
)2k ______ 2k 	1 x 	

1 
f--- 

4a-  kuql 	,/17 	k
k 
e
-k 
Y2rk 	(21) 

Since: 

/77171 ‹ /Fri 

equation (21) may be rewritten as: 	 . 

• . )21( x 	1 	1  
RN  < iT expF) î (  e.*11  

4a2  k=N 	0/57 	e
-k fTW:Y (277,77 

23. 

(22) 

By setting k = p + N, the series of (22) becomes: 

3 î 1P(T-£T)1 3  m 
1 (  £*0 	)2N 1 [(  £*0 	

)

2 1 ip  

e
-N 

Iff cif 	p=0 	it-77 cif 
(22') 

The form of (22') is a geometric series in which the result is well known: 

thus, the upper limit of RN  defined by (22) is obtained as: 

-A2 

	

exp(----, ) 	MN  
402 	 

N 
R < 

N! /5.775-. (al
•
)
2N 
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where: 

(3 1 lp( r_e)i) 2N 
240 	 • 

3 î IP(y-21. ) 1 
‘ 2 

AÎ ali 	 (23) 

This increase in truncation error produced on the computer, at the same 

time as calculation of the truncated moments, will thus serve a practical 

purpose as a criterion for stopping in the calculation of intersymbol inter-

ference. Thus, the series is stopped when the relative error reaches 10-5  in 

our program. 

11.6 Conclusion 

We have presented quite fully in this chapter the methodology enabling 

performance of a QAM receiver in the presence of an FM interference signal to 

be analyzed. The method consists of considering this interference to be-sim-

ply an additive component at the decision device input. Thus, the method 

proposed by Ho and Yeh to study BPSK systems may be adapted to resolving our 

problem. However, the recursivity of their method is very sensitive to trun-

cation error, leading us to calculate moments of overall interference direct-

ly. This interference, the sum of a number Of independent random variables, 

may be analyzed systematically. It is of interest to note that the accuracy 

of this direct method is controllable by use of a previously defined quanti-

tative criterion. 

In spite of a fairly high calculation time, the flexibility of the me-

thod allows interference of all kinds to be taken into account, a noticeable 

advantage over other known methods in the literature. Operation of this me-

thod and programming are dealt with in the following chapte.r. 
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CHAPTER III 

PRESENTATION OF RESULTS AND DISCUSSION 

111.1  Method of Moments 

111.1.1 Introduction 

The beginnings of our research were directed to development of a PASCAL 

program to calculate the probability of error in a QAM receiver by the Ho and 

Yeh method [1]. 

This Method, which will be called the method of moments, was developed 

by its authors to calculate the probability of error  in the presence of 

ISI. It has been emphasized, however, [2] that the method is .sufficiently 

flexible to permit calculation of P e  in the presence of one or even more than 

one kind of interference. In the latter case, on the assumption that the 

different kinds of interference are independent of each other, we need only 

calculate moments for each kind of interference separately, then combine them 

using an appropriate formula. 

To check proper operation of the programs developed, we calculated P e  

in the presence of ISI, then with sinusoidal interferenee, and compared our 

results with published results [3]. Once this stage was completed, we next 

undertook to calculate P e  in the presence of FM interference, as we had pro-

posed to do in the preliminary phase. 
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111.1.2 Calculation of Moments of ISI 

111.1.2.1 Method of Calculation 

Intersymbol interference (ISI) appears in reception with transmission 

of several consecutive symbols, and results from the fact that channel res-

ponse is not completely zero at multiples of the sampling period. It is a 

random variable in the form: 

X(t0 ) 	a.P(t o  -iT) 
1*0 	 (path in phase) 

where p(t) is the real portion of the low-pass channel response>at an inter-

val (or any other form of pulse), and ai is the symbol transmitted at instant 

to  - iT, for which possible values depend on the number of QAM new .and are 

equally probable. We wish to calculate the 2k order moments of X. „Hence: 

t 2k1 
tx I m E[ 	a 

P(t _iT)j2k 

i*0 
i 	o 

We did this calculation by the direct method, which consists of avera-

ging all possible values of X, even though there are other methods avail-

able. In practice, infinite summation is truncated at U terms, so as to mi-

nimize the number of calculations. However, we must be certain that conver-

gence of moments is reached. The calculation is made without too much diffi-

culty if the 'different channel response samples decrease rapidly. If this is 

not the case, the huge number of .calculations may render the task impossi-

ble. If we take a fifth-order Butterworth filter and a rectangular . pulse, 17 

samples are sufficient to permit convergence of moments. In spite of this, 

the number of calculations is still considerable. For example, if we take 

the QAM-64, we have 8 16  = 2.8 x 10 14  values of X to average. This number is 

still too high for results to be produced in a reasonable length of time. 

Fortunately, it is possible to reduce calculation tiMe by taking into account 

the fact that the different symbols transmitted are independent. If we sepa-

rate the variable X into two independent variables X1 and X2, each having 
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U-1/2 terms, each of which can be separated in turn into two other variables, 

we have for the calculation of moments: 

r 21(1 	2k, 	r 	2j 	r...2j v2k-2j 1  EiX / n EI(X 1  + X2 ) 	n L C
2k 

E t x
1 ^2 

jn0 

and 

1 2j,C-2.11 	E/ x i E l x pc+2,11 EIX 

as Xi and X2 are independent. We may then use this formula to combine the 

moments of Xi and X2 or to combine the moments of  any kinds of interference 

whatsoever, provided they are independent. For example, using this formula, 

we may without difficulty combine ISI with aNsinusoidal interference, as we 

shall see in the following section. 

111.1.2.2 .Description of QAM 

Calculation of ISI by the direct method and of Pe  by the method of mo-

ments has been achieved by the QAM program. A simplified flow chart for the 
program is shown in Fig. 3.1. Results of these Initial trials were compared 

with those given in [3] for the QAM-4, 16, 36 and 64, with a fifth-order But-

terworth filter and a rectangular pulse. Convergence of moments was checked 

for the specific case discussed. However, if one wished to  change the  filter 

rate or the pulse, it would have to be checked each time that convergence had 

been reached. If it is not, the number of channel response samples will have 

to be increased, and consequently calculation time would increase proportio-

nally. However, procedures for calculating ISI moments will have to be modi-

fied each time. The QAM program program prints out two values of P. Pri  is 

the probability of error in the presence of Gaussian noise only, and PE2  'the 

probability of error with Gaussian noise and  ISI. These results depend on 

threeparameters: BT, N and SNR. BT  is the filter bandwidth normalized to 

1/T. N is the parameter that selects the type of QAM utilized, mhere M = 

(2N) 2  and M is the number of states. Finally, SNR is the ratio of mean power 

of the QAM signal to the noise power in dB. 
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Fig. 3.1 — QAM Flow Chart 
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where Pm = 
A2 ((2N)2-1) 

T 	3 

Pm  SR  = 10 log10 
N0/2T 
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Calculating moments of ISI for modulation types QAM-4,  16,36 and 64 is 

done by procedures MOM4, M01 16, M0M36 and M0M64, using the direct method as 

described. Calculation of channel response is done numerically by the Rom-

berg integration method, by functions REP, ROM and FREQ. These functions re-

sult in the following integral: 

s(kT) = 2 f (
8inITS2

)( 	
1  / cos27Tkn an 

0 	In 	(1+(2n/BT) 10 )d 

where L is chosen so as 'to limit - errors and calculation time. Accuracy of 

the results is fixed in ROM -) at 10-12 or by the number of iterations (15). 

This acuracy may be modified if a saving in calculation time is desired. In 

addition, the channel response rate may be modified by altering the function 

to be integrated, which is in FREQ. In this function, the integration varia-

ble is normalized to 1/T and B = 2f c . As concerns calculation of P& with ISI 

(calculation of series), this is realized in HERMITE. This function requires 

that moments of ISI up to a certain 2K order be calculated beforehand. Thus, 

the FIN (END) parameter must be chosen, determining a sufficiently large num-

ber of moments to be calculated so as to permit convergence of the series, 

for which accuracy has been fixed at 10-5  . The HERMITE function yields the 

following calculation: 

e-x
2 N 

y = 	E M 
A7 ion  k 2k 

where 

x 2k [(1 	4k-5, 	(k-2)  
)Ek-1 Ek = (2k)! 	2x2 	

(k-1) 
 

with 
,4 

El . x3 	and 	E2 = 	(8x3  - 12x) 
24 



where 
_ A2  ((2N) 2-1) 

Pm - 
3 

Pm  SNR = 10 logio 
N0 /2T 
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The argument x is given by: 

Apo  
x  

a 

A is calculated from SNR, and a2  is the noise power at the decision de-

vice input. Po  is the channel response value at the instant of sampling. 

Thus, by combining the following equations: 

and 

02 	(BT)(kT) 
2 

we obtain: 

r  3 x 10 SNR/10 
x -  P

o 	( 	
] 1/2 

2(2N) 2-1)BT.kT 

BT is the normalized bandwidth, and kT is the channel filter noise band. For 

a Butterworth filter, we have for kT: 

kT = 
2nsin(n/2n) 

if n = 5, kT = 1.0166. 

Note in passing that there is an optimal BT where Pe is minimal. In 

the case of a fifth-order Butterworth filter and a rectangular pulse, we find 

BT = 1.05. This value will recur often in our results. We would also add 

that this value of BT is optimal only for this type of filter and pulse. For 

example, with an ideal filter, we obtain BT = 1.0. It is possible as well to 

change the value of the order of the filter, which is set at 5 by the parame-

ter z. Be sure in each case to remember to alter the value of kT according-

ly. It should also be ensured that convergence of moments is reached in each 

11 
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case. The trials we ran revealed that a Butterworth filter higher than 50th 

order was necessary to be equivalent to an ideal filter as concerns IS1. 

111.1.3 Calculation of Moments of Sinusoidal Interference 

111.1.3.1 Method of Calculation 

With the programs developed up to now, in order to calculate the proba-

bility of error in the presence of sinusoidal interference, we needed only to 

know the moments of this interference. 

Let us assume this interference at the decision device input is in the 

for in: 

I = Bcose, 	where 	e  is equally distributed. 

The 2k order moments of I may be easily calculated by: 

f 2k 	k 1 	r
r 	

- M
2k 

= FtT1 	
2 

cos '01 = •1 
	B2k 

cos
2k 

 6 cle 

—r 

2k  = B2k(2k)! 
2k+2 	B2  (2k+1)  2k 

M - I 2 2
2k

(K!)
2 	and 	•T 	(k+1) 1  

This calculation is done in the MOMBS procedure, and calculation of P e  in the 

presence of ISI and this interferenCe is done in the QAMBS program. 

111.1.3.2 Description of QAMBS 

The QAMBS program, as may be seen.by examining the listings in the Ap-

pendix and the flow chart.(Fig. 3.2), is essentially the QAM program to which 

the MOMBS procedure has been added. This procedure, as is known, calculates 

moments of sinusoidal interference. The calculation is followed by the com-

bination of ISI moments and sinusoidal moments in the =ON procedure. After 

this point, calculatiOn continues as in QAM. 
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Fig. 3.2 — QAMBS Flow Chart 



x( t) h(t) y(t) 

DOC/1441478/sj1 	 33. 

In the MOMBS procedure, calculation of moments necessitates knowing 

B 2 . This value is determined from the SIR, signal to interference ratio in 

where 

dB. 

SIR = 10 logiO 	 
BP2/2T '  

A2  ((2N) 2- 1) 
Pm = 

3 

Hence: 

B2 = 
2((2N)2_1)*10-SIR/10 

3 

111.2 Moments of FM Interference 

111.2.1 Introduction 

With the programs developed up to the present time as a tool, we dwel-

led at some length on the problem of calculating moments of an FM interfe-

rence. Before describing the first method we used in our research, we would 

like to emphasize the difficulty involved in calculating FM moments in an 

exact way. The difficulty arises from the fact that in order to calculate 

the response of a linear system to a non-Gaussian random proceàs, a thorough 

knowledge of statistics of all orders is generally necessary. Let us assume 

the following linear system: 

If we calculate the nth order statistic of output y(t), we obtain [4]: 

Efy(t1)y(t2)...y(t n )] = Eix(t1)x(t2)...x(t n )l*h(t1)... *h(4) 

where * is the convolution operator. This expression represents a considera-

ble amount of calculating, putting any explicit solution out of reach of the 

majority of computers. When x(t) is Gaussian, knowing Efx(t1)x(t2)1 is suf-

ficient for thé calculation of statistics of any order of y(t). In addition, 
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the properties of a Gaussian type function permits predicting the result of 

the calculation without doing any calculating. The convolution of a Gaussian 

function with any function whaFsoever will yield another Gaussian function 

for which the only parameters to be determined are the mean and the vari-

ance. Of course the properties of an FM signal do not enable us to arrive at 

such a simplification, even if in theory it is possible to calculate moments 

of any order of an FM signal by non-linear transformation. 

It would thus appear necessary to resort to simplifying assumptions 

that will enable asymptotically valid solutions to be obtained or which 

represent an error limit of some kind. 

The first assumption we studied was the wide-sense stationary assump-

tion. This assumption is valid asymptotically when the modulating FM signal 

varies very slowly compared to the receiver's sampling period. Thus, seen 

from the receiver, FM interference appears as a sinuSoidal interference in 

which frequency and amplitude are constant over one or more sampling periods, 

but vary slowly with the statistics of the modulating signal. 

The second assumption on which we worked was the Gaussian assumption. 

This assumption represents the limit case, or, as we shall see, the upper li-

mit of a very large sum of different independent interferences. If the power 

spectral density of our FM signal is broken down into à very large number of 

narrow bands, the result is a sum of sinusoidal interferences whose ampli-

tudes will be weighted by the value of the power spectral density at the fre-' 

quency of each little band. Now, if the phase of each of these bands is in-

dependent of the others, the result,at the limit is a_Gaussian interference. 

111.2.2 Wide-Sense Stationary Assumption 

III.2.2.1Method of Calculation 

This assumption has:been used by Morinaga and Namekawa [5] for the case 

of multiple FM interference in a PSK receiver. However, no discussion of the 

validity of such an assumption was presented. 
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Thus, if we start with the wide-sense stationary assumption, we will 

have a signal at the decision device input in the form: 

s(kT) = KG(f1)cos8 

where G(f) represents the frequency response of the receiver and 8 is equally 

distributed. The random variable fi represents the instantaneous low-fre-

quency response of the FM signal, for which the statistics depend on the mo-

dulating signal. We chose a Gaussian distribution for fi. This remains a 

realistic choice, and enables calculations to be simplified. In addition, 

G(f) may be chosen to simplify calculations even more. The simplest case is 

the one where G(f) is an ideal filter. In this case, the random variable 

G(fi) becomes a binary variable, taking the value 1 or 0 depending on whether 

fi is inside the receiver's pass band or not. The procedure that follows is 

very simple: 

1) calculate Pe  with no interference (P1); 

2) calculate Pe  with sinusoidal interference I = Kcos8:(P2); 

3) take the weighted average of the two values. 

If Pk 	r (ifil( B 1 2), then we have: 

Pe = PkP 2 	(1-13k ) P1 = P 1 	Pk ( P2-P1 ) 	1'2 	P 1 
Pk is calculated by: 

1. (r+B/2  
P 	[erfc  	erfc(2=1/1)] 
. k 	2 Af

) _ 

	trf Af 

where 1' : frequency separation between FM and QAM carriers, 

: RMS frequency deviation of FM signal. 

For purposes of calculation, f and àf are normalized to B 1 2, and 



H(BT/2) = 0.64 

H(BT/2) - 0.50 

rectangular pulse 

cosine-squared pulse with 

recovery over two intervals. 

DOC/1441478/sj1 	 36. 

111.2.2.2 Numerical Difficulties 

As can be seen, the resulting calculation is very simple. By contrast, 

the use of an ideal filter, while facilitating calculation of FM interfe-

rence, complicates calculation of ISI. It will be necessary to check that 

convergence of moments of ISI has in fact been reached for this new type of 

filter. The decrease of channel response samples is very slow, and conver-

gence is possible in practice, with a not too large number of samples, only 

for BT = 1.0. In addition, for this type of filter and a rectangular pulse,, 

a relatively high level of ISI interference is obtained as compared to a real 

situation (see Fig. 3.3). We were able to verify, by calculating P e  for dif-

ferent orders of Butterworth filter, that as the order of the filter tends 

toward infinity, ISI increases in a constant manner and reaches its maximum 

value for an ideal filter (see Fig. 3.4). 

Our subsequent efforts were directed toward reducing this level of ISI, 

while still covering our ideal filter. Our tests bore mainly on the type of 

pulse at transmission. We expected a priori that use of a cosine-squared 

pulse would sdiminish ISI as compared to a rectangular pulse. In fact, re-

sults demonstrated the contrary, as ISI was higher in the case of the co- , 

sine-squared pulse. The result could have been foreseen by examining the 

spectral rate of each of these pulses. 

In both cases, we have a spectrum similar in form (see Fig. 3.5). We 

expect ISI to be lower if H(BT/2) is nearly unity. If 11( 1 ) is constant in 

the BT band, ISI will be zero. It can be verified that: 

Thus, ISI will be higher for a cosine-squared pulse than for a rectangular 

Pulse. This result obviously applies only for an ideal filter. 



DOC/1441478/sj1 37. 

DAM-16 

-3 

Los (Pe) 

-4 

-5 

-7 

-8 

18 	19 	20 	21 ' 	22 	23 	24 

SNR [dB] 
FIGURE  3.3  

25 



DOC/1441478/sj1 

-2 

Log (Pe) 

-3 

-4 

38  

QAM-16 - NTH ORDER BUTTERWORTH FILTER - BT = 1.05 

20 	21 	22 	23 	24 	25 

-7 

--B 

19 25 

SNR EdB] 
FIGURE  3.4  

50 



DOC/1441478/Sj1 

111.2.2.3 Theoretical Difficulties 

The use of an ideal filter renders the wide-sense stationary assumption 

even more unlikely, as will be seen in studying the Weiner limit [6]. 

Let y(t) be an FM signal at the output of a real linear filter for 

which frequency response is rational. 

y(t) = v(t) + vc (t) 

where v(t) is the wide-sense stationary term, and  v(t) an error term we wish 

to be as low as possible. Weiner, in his article, gives the follOwing limit: 

	

n 	1K I 

	

ive (t)r< àwlft(T)I max Î 	 = Awir(T)I max K(n) 
y=1 (ay ) 3  

As H(p) is rational, then n(p)  

y=1 - y 
P " 
Y 	Y 	Y 

K(n) may be calculated for a Butterworth filter. The result is presen-

ted in Table 3.1. As can be observed, R(n) increases with n, and tends to-

ward infinity for an ideal filter. It thus becomes impossible to find 

reasonable values for Awif'(T)I 	that will render ivc (t)1 as small as 
max - 

desired. 

111.2.2.4 Results 

To overcome the difficulties encountered, both numerical and theoreti-

cal, we preferred to present the results with a fifth-order Butterworth fil-

ter. With this  type, of  filter, calculation of FM moments is no longer as 

simple, as it is necessary to calculate G(f) moments by a non-linear trans-

formation. We feel, however, that these complications can be avoided by con-

sidering the problem in another way. Let us assume the band of our Butter-

worth filter is divided into three disconnected zones (see Fig. 3.6). Zones 

1 and 3 represent the preceding case of ideal filtering, as the value of the 

response is 1 or 0; in the transition zone (zone 2), the response May take 
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K(n) 

	

1 	 1 

	

2 	 4 

	

3 	 10.24 

	

4 	 20.91 

	

5 	 37.40 

	

10 	 311.20 

	

15 	 2,324.32 

	

20 	 26,397.98 

	

25 	 385,365.80 

	

30 	 6,143,691.96 

Table 3.1 
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Fig. 3.5 - Comparison of two different pulse forms 

Fig. 3.6 - Filtering model for purposes of calculating FM interference 
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a continuous value between 0 and 1. We may assign the value 1/2 to this zone 

and take an average of the three corresponding values of Pe . However, since 

the probability of the instantaneous frequency being in this zone is low, as 

this zone is generally narrow, we can simply overlook this zone and do the 

calculation as in the ideal case, without committing any major errors. 

Thus, the results presented in Appendix A are valid for a fifth-order 

Butterworth filter with BT = 1.05 and for the QAM-l6. On these curves, the Y 

parameter corresponds to the RMS frequency deviation normalized to B/2, and 

the FM position corresponds to the X parameter, which is the separation be-

tween the FM and QAM carriers normalized to B/2. The SIR parameter has been 

previously defined. 

The first type of curve presents Log(P e ) as a function of X for diffe-

rent values of SIR and Y. The second type of curve presents the DSNR (in-

crease in SNR to keep P e  constant) as a function of SIR for P e  = 10-5  with 

and without ISI for two values of Y. These curves are far from forming a 

full ensemble, but do give an adequate idea of the appearance of the results. 

These results were realized with the QAMFM program. It is essentially 

similar to QAMBS, with the calculation of Pk added. The QAMFM flow chart is 

presented  in Fig. 3.7. In addition to the value of different parameters, the 

program prints six different values of probability error. These correspond 

to the following situations: 

p 
 El 	

p e  with Gaussian noise only 

P
E2 

: P e  with Gaussian noise and constant sinusoidal interference 

P
E3 

: as in P
E2' 

with ISI added 

P
E4 

: as in P
El' 

with ISI • 

P
E5 

: P e  with - FM interference, with ISI 

P
E6 

: P e  with FM interference, without ISI 

The values traced on the curves correspond to P
E5 • 
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Fig. 3.7 — QAMFM Flow Chart 
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111.2.3 Gaussian Assumption 

111.2.3.1 Introduction 

Let G(f) be the power spectral density of our FM interference. We wish 

to divide the band of this power spectral density into n disconnected bands. 

At the limit, when n is  targe,  each of these little bands could be seen as a 

sinusoidal interference in the form: 

= Bicosei 

where the index i represents the band i situated at frequency fi, Bi = «i/G(f i ) 

and 6 is equally distributed. Thus, our FM interference will be made up of 

the sum of n sinusoidal interferences which, if we assume the values of Si to 

be independent, will have a Gaussian distribution when n tends toward infini-

ty. Thus, the Gaussian assumption represents the limit case of an infinite 

sum of different independent interferences. 

111.2.3.2 Method of Calculation 

We concerned ourselves initially with the case of a finite number of 

sinusoidal interferences for white G(f) and G(f) in Gaussian form. To do 

this, the method of moments proved very useful. However, calculation time 

becomes very high when the number of bands increases substantially. This is 

due to the fact that moments for each interference must be combined, requi-

ring a fairly long calculation time. Nonetheless, it enabled us to observe 

the behaviour of P e  when n increases. Examining Fig. 3.8, we see that P e  in-

creases in a monotonous manner with n. Thus, the Gaussian assumption, which 

is the limit case when n is infinite, represents an upper limit  for a sum of 

independent interferences. The same behaviour is observed regardless of the 

form of G(f). Thus, in order to calculate the moments of our Gaussian inter-

ference, we need only calculate the variance, which in fact represents the 

power of our interference in the receiver band. Next, we may proceed to cal-

culate P e  by the method of moments. Actually, calculation by the method of 

moments is no longer necessary, since the interference can be assimilated in-

to the Gaussian noise. In the end, then, the calculation can be reduced to a 

few simple operations: 
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1) Calculate interference power at the decision device input, incorpo-

rating the power spectral density in the receiver band. In our results; this 

was realized with a power spectral density in Gaussian form, which simplifies 

calculation somewhat. 

2) A new SIR is calculated, called SIRC: 

Pm  
SIR = 10 logio -- 

PI 

whe're Pm  = mean power of QAM signal, and 

P I  = mean power of interference at receiver input 

,2 
If we have P = f G(f)111(01 df - 	% of interference power 

entering receiver. 

where H(f) is the receiver response [H(f) is ideal in our results] and G(f) 

is normalized, we will have: 

SIRC = 10 logio  1m = SIR - 10 logloP 
P'PI 

3) A new SNR is calculated, called SNIR, signal to noise plus interfe-

rence ratio: 

S  
SNIR 	10 log 10 	= 10 

10g10[10-SNR/10  + 10-SIRC/10]-1 = 
	
n+

I 

4) Pe  is calculated by: 

P e  = 	(2-1/N)erfc(S) 

where 

3x10
SNIR/10  

9 	)1/2  
S re

(  

2((2N)--1 

CO 

••••• CO 
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The entire calculation can be done on a small calculator, the only nu-

merical difficulty being calculation of a numerical integral for calculation 

of erfc(x) and P. This was realized in the OFMRG program (see Fig. 3.9). 

Clearly, all this is very simple, as ISI is overlooked. To include ISI, it 

would simply be necessary to return to the method of moments, which should 

not pose any problem. 

111.2.3.3 Description of QFMRG 

This program provides, for purposes of comparison, the two values of Pe 
corresponding to the situation with or without interference. The prosram al-

lows any G(f) to be used. One need only modify the FT function in the BAND 

function.  • The two parameters relating to FM interference are DF and FC: 

these are normalized to B/2 as previously. 

FC has the same significance as in the wide-sense stationary assump-

tion: it is the deviation between the FM and QAM carriers, normalized to 

B/2. DF, on the other hand, has a different significance: here, it repre- 

sents the standard deviation of G(f) normalized to B/2, whereas before, the Y 

parameter represented the RMS frequency deviation of the FM signal, which is 

in fact the standard deviation of the modulating signal normalized to B/2. 

Results are Shown in Appendix B for the QAM-4, QAM-16 and QA2.1-64. In 

each case, a series of P e  curves is provided as a function of SNR for diffe-

rent values of DF, FC and SIR. An additional curve is presented for the case 

of a centered interference of narrow bandwidth (FC = 0 and DF = 0.1) for dif-

ferent values of SIR. All these results apply to an ideal filter, with no 

'SI.  

111.3.  Discussion 

111.3.1 General Presentation 

Let us begin by taking the results presented in Appendix 2 concerning 

the wide-sense stationary assumption. It will be noted first that these re-

sults are very partial and apply only to the QAM-16. This is in contrast to 

the results shown in Appendix B for the Gaussian assumption. In these, a 

fairly complete ensemble of curves is given for the QAM-4, QAM-16 and 
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Fig. 3.9 — QFMRG Flow Chart 

DOC/1441478/sj1 	 48. 



DOC/1441478/sj1 	 49. 

QAM-64. First, we feel the results in Appendix 3 are more realistic, and in 

addition are easier to obtain, as the calculations can be done on a small 

computer. 

Other differences in presentation may be noted, for example the hori-

zontal scale of the curves. In the first case,  log(P) is presented as a 

function of the FM position (X parameter) for different values of SNR. In , 

the other case,  log(P) is presented as a function of SNR for different va-

lues of FC. We feel that the first presentation is preferable to the second, 

as it immediately permits the variation of Pe  to be more easily,seen as a 

functiàn of a parameter of FI  interference. In the second case, on the other 

hand, the SNR parameter has been kept on the horizontal scale in anticipation 

of calculating an uppe'r limit. In fact, this upper limit enables us to de-

termine the SNR range in which the Gaussian assumption would be an absolute 

upper limit. 

There is another point to be noted in Appendix 2 with regard to the 

curves: these are presented taking ISI into account, while those in Appendix 

3 do not take it into account.  It  is certain that if we wish to compare the 

curves with each other, we would have to know a priori the value of P e  to 

subtract due to ISI alone. Examining the curves, whichever assumption is 

used, similar behaviour is observed. P e  is inversely proportional to SNR and 

SIR, which is not surprising. It will also be noted that P e  decreases in a 

monotonous manner as the deviation between QAM and FM carriers inCreases, for 

a given FM spectral dispersion. This.result is also self-eVident. In addi-

tion, it is noted that for a fixed deviation between carrier-S, pe  may vary in 

one direction or the other as a function of FM spectral dispersion (broad or 

narrow spectrum). If the deviation is small, a narrow FM spectrum will cause 

more degradation in QAM than will a broad spectrum. By contrast, if the  de-

viation is large, the reverse procesa is observed.. For example, let us take 

the curves in Figs. A.2.1 and A.2.2 for SNR = 30 dB. For X,between 0 and , 

1.5, the value of P e  obtained for Y = 1 is higher that the value obtained for 

Y = 2. On the other hand, for X = 1.5 to X = 5, the reverse occurs. This 

behaviour is general, and is found in the results in Appendix 3 as well. 

1 
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This may be understood if we know that in both cases P e  is a function solely 

of total power of the interference entering the QAM receiver.  This  implies 

that for a centred interference, in which all the power passes into the re-

ceiver, P e  is independent of the power spectral density of the interference. 

The latter observation hints at a degree of inaccuracy in the two assumptions 

used. We feel that in reality broadband interference causes more degradation 

of Pe  than narrowband interference for the same total power entering the re-

ceiv.er, but our two approaches do not permit this phenomenon to be taken into 

account. 

111.3.2 Comparisons 

In order to better compare the resultS obtained with the two assump-

tions, in Fig. 3.10 we traced P e  for the QAM-16 without ISI, with SIR = 20 

dB, as a function of SNR for the case where all the interference power enters . 

the receiver. Referring to this case, we see three curves numbered 1, 2 and 

3. Curve #1 is simply Pe obtained with Gaussian channel noise only. Curve 

#2 represents P e  obtained with constant sinusoidal interference. All curves 

obtained with the wide-sense stationary assumption for different values of X 

and Y will be located somewhere between curves 1 and 2. Curve #3 presents Pe 

 obtained with the Gaussian assumption, and all curves obtained in this way 

for different values of FC and DF will be located between curves 1 and 3. 

We thus see clearly the considerable deviation that exists between cur-

ves 2 and 3, and hence between the two assumptions, the wide-sense stationary 

assumption clearly being more conservative. It is for this reason as well 

that, after obtaining our initial results with the wide-sense stationary as-

sumption, we sought another method that would yield more realistic results. 

Under the Gaussian assumption, we felt we would be in an intermediate case, 

between the worst case and the wide-sense stationary assumption. The Gaus-

sian assumption assumes independence of the phases between different spectral 

bands. This condition is certainly not the worst case, nor the best. The 

worst case would be one in which all the different interference components 
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were always in phase, not a very realistic case. Thus, we feel the Gaussian 

assumption might yield valid results if we compare the results with those for 

the wide-sense stationary assumption, which are clearly overconservative, and 

for the worst case, which would be totally unrealistic. 

There is another point to be noted with regard to Fig. 3.10. It will 

be observed that curve #2 always seems to overlap curve #1, whatever the SNR, 

while . curve #3 seems to tend toward a limit value of Pe  as SNR tends toward 

infinity. The latter behaviour is easily explained: when the SNR is small, 

it is channel noise that predominates, while when SNR is large, interference 

predominates. At the limit, for SIR = 20 dB, when SNR tends toward infinity, 

P e  should tend toward the value that would be obtained on curve #1 with SNR = 

20 dB. As concerns curve  1/ 2, the same behaviour is not observed at. all, pro-

bably because equivalence in terms of Pe  between sinusoidal interference and 

Gaussian noise occurs at a very high SNR level or at a very low P e  for an SIR 

= 20 dB. 

111.3.3 Upper Limit 

We have noted previously that the Gaussian assumption was more realis-

tic than the wide-sense stationary assumption, without being able to state 

the extent to which it is close to reality. To remedy this shortcoming, we 

thought of calculating an upper limit for P e  that would enable us to see whe-

ther the Gaussian assumption in a certain SNR range could be considered as an 

absolute upper limit for the case of any non-Gaussian interference. There 

are several methods described in the literature, and the calculation should 

theoretically pose no major problems. However, time constraints prevented us 

from carrying it out. We thus deferred this operation to the framework of 

future work. 
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CHAPTER IV 

CONCLUSION 

We have presented in this paper a flexible methodology for studying the 

performance of QAM receivers in the presence of interference of any kind, in-

cluding FM signals from adjacent channels. 

This methodology was based on a simple concept proposed by Ho and Yeh. 

This was simply to express the probability of error as a function of moments 

of the variable representing the sum of all interference present at the re-

ceiver input. As these forms of interference are independent, we needed only 

calculate the moments of each separately, and subsequently combine them ac-

cording to precise rules. 

The interference component of greatest interest to us was a very broad 

bandwidth FM signal. Based on the wide-sense stationary assumption, tts be-

haviour over short time intervals was equivalent to a sinusoidal signal whose 

frequency .corresponded to the instantaneous frequency-of the FM signal. This 

simplifying assumption enabled us to deal in a simple manner with interfe-

rence from an FM signal. 

We also proposed an assumption based on the concept of "power equiva-

lence". This assumption was justified physically by the constraint imposed 

on total power in the QAM pass band. However, it was expected that this as-

sumption would lead to more pessimistic results than those obtained by the 

wide-sense stationary assumption. 

Because of our choice of mathematical formulation, a Butterworth filter 

was selected as a model of the transmission channel instead of a Nyquist 

1 

1 
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channel. This choice automatically introduced intersymbol interference at 

the receiver output. This factor was minimized by a judicious choice of pa-

rameters involved, such as: instant of sampling, bandwidth and order of fil-

ter for which phase was linearly equalized. 

Results obtained were finally presented in the form of a family 9f nor-

malized curves. They are thus usable for any situation. It is interesting 

to note that these results appear incomplete in our view. We obtained re-

sults for interference caused by an FM signal. To obtain them numerically, 

however, we were required to utilize both assumptions: one of them very opti-

mistic, the other very pessimistic. It remains to be seen whether these re-

sults fall within general optimistic and pessimistic limits. Calculation of 

these limits will be carried out under the next contract, in which we propose 

to analyze narrow band FM interference. 

Last but not least is the complexity of the method used. On the one 

hand, the method consumes a great deal of calculation time, although this no 

longer represents a real drawback, with the advent of mini- and microcompu-

ters. On the other hand, this complexity has necessitated a very serious ef-

fort (one engineer-year) to successfully implement the method. The program, 

written in PASCAL, is modular and flexible, enabling users to vary all the 

parameters they wish, while ensuring relatively reasonable operation. This 

development cost would seem at first glance to be fairly high. However, the 

program is now available on a semi-public basis. It should not be overlooked 

that before the contract giving rise to this report was awarded, programs of 

this nature were the jealously guarded private property of companies like 

BNR, AT&T, Ericsson, etc. Thus a giant step forward has been takene can 

only hope for similar fruitful cooperation between academic researchers and 

public agencies. 
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