
e" h.,e1
"le

n ii.(9J‘• ,

; g

Update Releasable

DOC - CR - BT-85-010
L

'

1")"

n.îtni•'f•!..K1
•,,•• •

y:

• 1

ckqe. -ç
kv,..t •

te
A.te

`1,.•-n4

b..%,

(. 4

eri , 1111

etJ

• t n ra 	. "!1»p' r)f.?$

\‘' 0 ';te 1

—

1 1

),

1 , 1,

A)? ?'n

' 1(1
1

ff • ;.

f Co'

4

•si

•
"'"(;•'

1'

,) MCS
MILLER COMMUNICATIONS

SYSTEMS LTD. - '‘ .!e,
iàltd

qrho

7;

Lew
,

t.

;Ç.

,
• :

Indusi n)
I i3 A n

SEP 1 4 1998

EIBLI 0 THE0U -
Industrie Canaciae

SOFTWARE 	UPDATE

Update Releasable

DOC-CR- BT-85-010

TK

7882

16

A74

1985

VALIDATION AND ENHANCEMENT

OF

TELETEXT SYSTEM SIMULATION

1

1

1

1

1

1

1

1

II

1

1

1

VERSION 0

1. Introduction
1.1 Scope. of Document
1.2 Array Processor Utilization
1.3 Summary of New Feattires
2. Chancres Made to Main Program
2.1 Initialization
'2.2 Sieal Generation and Analysis
2.3 Final Output

3. Changes Made to Subroutines
3.1 BTR
3.2 MULGEN
3.3 RECOVERSEQ
3.4 RDFILT
3.5 RECEIV
3.6 RECOVR
.3.7 SLICER
3.8 WORDSYNC
3.9 ZCROSS

4. New Subroutines
4.1 NORM
4.2 BTRINIT
4.3 CORBTR
4.4 SLFILT
4.5 REVERS

5. Support Programs
5.1 SUPERPLOT
5.2 CODING
5.3 COMPRESS
5.4 TAPEAREAD
5.5 SUPPLY
5.6 MC
5.7 EYETEL
5.8 MAKEYE
5.9 FILGEN

f.

1. Introduction

1.1 Scope of Document

This document describes changes made to the TELIDON simulation software
for Contract #8342, and is intended to serve as a supplement to Cl].
Only those portions of the original software which have undergone
modification are discussed; the user is strongly advised to consult
Cl] as a first resort in all cases.

Changes were made to allow full advantage to be taken of the FPS-5105
Array Processor (AP) and VAX/750 minicomputer acquired by MCS in 1984.
Using this combination, the speed of the simulation was increased by a
factor of fifty times, allowing many more simulations to be performed,
and many more scenarios and features of the simulation to be explored.
The deliverable software includes this AP version of the software, as
well as a functionally identical VAX-only implementation. In all
cases, code is written in accordance with FORTRAN-77 standards.

1.2 Array Processor Utilization

. The Array Processor areatly increases the speed of repetitive

computations performed upon large vectors of values. For example,
replacing the usual method of multiplying corresponding elements of
matrices through use of a DO-loop construct with a call to the VMUL
subroutine supplied in the AP math librdry typically cuts computation
time by an order of magnitude or more. The execution time
improvements associated with more complex operations, such as' Fast
Fourier Transforms, are even more dramatic.

The two disadvantages of the AP when compared to the VAX are (1) its
inability to do disk I/O directly, and (2) the somewhat more primitive
nature of the operations available on it. The first is a minor
consideration; values can be transferred to and from the VAX host for
output to disk, or for printing, with a minimum of difficulty. To
keep execution times to a minimum, however, minimizing the number of
such transfers performed is desirable. In aid of this, intermediate
values calculated during the execution of the program which need not
be output are left in the AP during program execution. This practice
makes debugging the AP version of the program somewhat more difficult,
but the increase in software development time was more than
compensated for by the improved execution times noted above-

The second point forced a slight change in programming style. Vector
values in the AP are referred to by the Advanced Math Library routines
supplied by FPS by their base address and increment values.
Throughout the AP version of the simulation these base addresses are
given symbolic names (i.e. LSIGNAL refers to the location in AP memory
of the base address of the SIGNAL vector). A brief summary of the
Advanced Math Library routines primarily used in this simulation is
provided in Table 1.

1.3 Summary of New Features

Three major functional changes, and several minor ones, have been made
to the simulation. The first, and most important, is the
implementation of the MK-V decoding scheme. A new bit-timing recovery
scheme, and a new slicing level determination scheme, are included in
this. The correlation method of bit-timing recovery has also been
implemented in the new simulation, as has adaptive slicing level
determination.

Among the less important alterations, a third filter file format has
been included. Setting the filter file format specifier to 2 causes
the filter values corresponding to each frequency to be read from the
file as complex notation (i.e. the three real numbers in each record
of the filter file are read as frequency in MHz and real and imaginary
components of the complex gain at that frequency). Also, a separation
of random number generation seeds in the main program body has been
effected, so that the data sequence generated for a given random seed
is unique, and unaffected bY the selection of bit-timing recovery
method. This change was made to allow direct comparison of simulation
runs performed with different bit-timing recovery schemes.

2. Changes Made to Main Program

Figure 1 shows an outline of the processing steps executed by the new
version of the main program TELSIM. TELSIM is composed of three main
sections, one performing
initialization, one generating and analyzing data, and a small third
section to perform error counts. Of these, the second, which

I t

I

1

1
I

I

'

I.

"

I

generates and analyzes data, has been largely vectorized.

2.1 Initialization

In the initialization stage, which has been modified only slightly
from the original program, simulation paraMeters are obtained from an
input file specified by the user in response to a program prompt. In
addition, the function QSAMP is called to initialize an array of
values used in the subsequent calculation of the Q-function. A single
call is made to the VAX random number generation program to supply a
real random number which can be used by the AP as a seed for its own
random number generator; this call is neCessitated by the difference
in the format of variables the two routines used as seeds. The input
parameters are then echoed to the output listing file.

The next stage of initialization is the creation of the filters
required by the main loop of the program. This generation is done in
the VAX, since there is often a requirement to read some or'all of
these filters from files. A new routine, NORM, is used in this stage
to normalize filter values, a step necessary to ensure the correctness
of signal to noise ratio calculations (see [2]). Another new subroutine,
BTRINIT, is also called at this stage. This routine generates the
frequency domain representation of a bandpass filter to be used in the
NK-V and Correlation approach to bit-timing recovery. The parameters
for the impulse invariant approximation to a second-order Butterworth
filter are also determined in this routine.

Calculation of gain and SNR parameters, as well as the creation of the
invariant synchronization portion of the Telidon waveform, is done
next. Once the gain and SNR values are known, the theoretical slicing
level for the simulation parameters supplied is calculated; changes
were made in this calculation to further generalize it.

After the error counter variables (KNTO - KNT8) have been set to zero,
constants required by calculations which are to be performed in the AP
are stored in the arrays REALS and INTGS. While it is _possible to
move data from the VAX host to the Array Processor a single variable
at a time, a considerable improvement in speed is obtained if a single
DMA request is made, so these constants are stored in arrays which can
then be moved in a single call. Data stored in arrays which are
transferred to the AP using the APPUT subroutine are stored in the
Array Processor sequentially in the same order as in the host. Thus,
although the particular ordering of values in REALS and INTGS is
unimportant, this order must correspond to the locations set in the
memory table (see below). The preamble bit sequence is set in this
section as well.

To improve the clarity of the program, memory locations in the AP are
referred to by symbolic mnemonic names. The values associated with
these mnemonics are set during this initialization stage, and are not
changed during subsequent program execution. As AP memory is divided
into pages, separate memory maps are required for each page (see the
internal documentation of the code). Care must be taken when changing
the size of any of the arrays, or the location or number of the
variables, used in the AP.

Once these memory maps have been created, the new suhroutine REVERS is
called to rearrange the values stored in the filter arrays in the
host. This is necessitated by the differing input formats expected by
the VAX and AP 1-1-T routines. Constants and filter values are moved
into the AP, and filters combined to minimize subsequent calculations.

2.2 Signal Generation and Analysis

The main loop of the program generates, filters, adds noise to, and
analyzes the Telidon signal. The number of times this loop is
executed is set by the user in the input parameter file; each loop
execution creates one burst of Telidon data. The Array Processor is
used to perform all operations in this sequence of calculations except
the generation of impulsive noise.

The first step is the generation of random data bits. This is
performed by generated a sequence of random numbers on C0.,1.3,
subtracting 0.5 (so that the numbers lie in [-0.5,0.5]), and then
applying a limiting function to create a sequence values which are
either +1.0 or -1.0. Parity bit generation is done by successively
multiplying the first, second, third, ..., seventh bits of each
simulated byte of the data sequence. Since vector operations in the
AP are done by specifying the initial address of the data to be
operated on, and the increment separating successive vector elements,
this parity generation is quite simply done by moving every seventh
'bit' (in actuality stored as a word in the AP) into the position
corresponding to the eighth 'bit', and then successively multiplying
the sixth, fifth, ..., first bits against this value to create the
parity values.

Once the bit sequence has been generated, it is sampled and scaled to
produce the Telidon line signal, then transformed into the frequency
domain. Pulse shape filtering is applied by multiplying the
frequency-domain pulse filter against the signal values, after which
synchronization and colour burst information is added. Transmission
filtering and multipath filtering are applied simultaneously, these
two filters having previously been compressed into one (see above).

If the type of noise selected was not GAUSSIAN, impulsive noise is
generated in the VAX host, and these values put in the Array
Processor. Since the generation of impulse noise is not amenable to
vectorization, it was felt that its generation would benefit only
marginally from being done in the AP.

Gaussian noise is then generated, using the Array Processor. To do
this, random numbers with a uniform distribution are first created,
and then transformed to produce values with a Gaussian random
distribution with specified mean and variance. These noise values are
added to the impulse noise values (if any were introduced), and the
result is added to the frequency-domain signal.

The signal is then passed through the receiver and receiver pulse
shaping filters (which have previously been combined into one). If
the bit-timing recovery type selected by the •user is CORREL or MK-V,
the operations involved in this bit-timing recovery are then
performed. The signal is then transformed to the time domain and
scaled, and the imaginary part of each signal sample is zeroed. These
results are then returned to the host for further processing.

The final part of the main loop is executed in the VAX. In it, data
estimation is performed, following which the data sequence is
extracted from the received signal, decoded, and pass'ed through a
parity checking routine. Finally, the error count for this burst is
obtained.

2.3 Final Output

I

1

I

1

1

1

1

1

I .

1 	

I 	

1

1

1

1

1

I.

Once the data generation and analysis loop has been executed the
number of times specified, the routine OUTRES is called to place
summary error counts in the output listing file. This routine has not
been changed.

3. Changes Made to Subroutines

The following subroutines have been altered in whole or in part from
their original form.

3.1 BTR

The bit-timing recovery routine has been modified to allow MK-V
decoder bit-timing recovery to be performed, while still allowing
MK-IV bit-timing recovery to be simulated. If the 'MK-V' option was
selected in the input parameter file, the 6th positive to negative
zero crossing in the data sequence is located and used to characterize
the position of the first bit.

3.2 MULGEN

The previous version of MULGEN performed calculations on values which
were out of the band of frequencies of interest. The upper and lower
bounds on the main loop of this routine have been altered so that only
those calculations having an effect upon program execution are
actually performed.

3.3 RECOVERSEQ

This routine takes the word/bit timing mark from the WORDSYNC routine
(described below) and uses it to recover the transmitted sequence.
This routine has been modified to perform adaptive slicing, if the
user has so requested.

3.4 RDFILT

The RDFILT routine, which reads filter files from disk and performs
interpolation to create a full-sized array of values representing that
frequency-domain filter. The previous version of the routine allowed
the user to specify as filter file formats either format 0, in which
filter values were given as gain magnitude and phase, or format 1, in
which filter values were given as gain magnitude and group delay. The
present version also permits format 2, in which filter values are
given as complex numbers.

3.5 RECEIV

The.RECEIV routine is an interface between the main program and the

bit-timing recovery routine RECOVR. In keeping with the changes made
to this latter (described below), the parameters passed into and out
of RECEIV have been altered.

3.6 RECOVR

RECOVR has been altered to permit the user to select Correlation-type
bit-timing recovery. In addition, the code to handle the case in
which correlation-type bit-timing recovery is not selected has been
altered to accommodate MK-V bit-timing recovery.

3.7 SLICER

This routine determines the slicing level for the received Telidon
signal. This can be determined in the routine either through a
calculation of the average signal level over a number of bits, or
through use of an approximation to the method implemented in real
terminals, which uses peak detection. This routine has been altered
to accommodate the 'ADAPTIVE' and 'MK-V' slicing options, as well as
the 'AVERAGING' and 'IDEAL' options available previously.

3.8 WORDSYNC

This routine determines the word synchronization. The bit-timing
recovery routine supplies a timing reference, which should be in the
center of the first bit in the preamble. If this is the case, the
simplified 'add offset' method would work, and this option is provided
for simplicity in testing. However, if the sequence has been shifted
in time, the word synchronization byte must be used. This routine
simulates the real decoder by comparing the word-sync sequence to the
original sequence to determine the most probable synchronization
point.

The new version of WORDSYNC also calculates the initial sample and
hold values for adaptive slicing.

3.9 ZCROSS

This routine determines the position of the zero crossings during the
preamble. These measurements are used by the BTR to determine the
sampling isntants. The crossing point is approximated by a linear
interpolation between points on opposite sides of the slicing level.
These crossing points are stored in the array CROSS, with the
direction of the crossing indicated by the sign of the timing mark.
This routine has been modified to allow processing in accordance with
MK-V decoder specifications.

4. New Subroutines

The following new subroutines have been created, and added to existing
software.

4.1 NORM

This routine takes as input a complex ar.ray of values and a scaling
factor by which each value is to be multiplied. This routine is used
to scale each filter array by the value of its center element (i.e.,
by its value at a frequency of 0 Hz), to facilitate calculation of
signal to noise ratios.

4.2 BTRINIT

This subroutine generates the frequency domain representation of a
bandpass filter used in the MK-V and Correlator approaches to
bit-timing recovery. The parameters for the impulse invariant
approximation to a second-order Butterworth filter are also determined
in this routine. These IIR parameters are determinable for 'ADAPTIVE'
and 'MK-V' slicing types.

4.3 CORBTR

This is a new bit-timing recovery routine which uses the correlation
method of bit-timing recovery. The first 14 bits of the preamble are
used to estimate clock'phase; the routine must choose between one of 5
possible clock phases. Because these first bits of the preamble are
alternating +1/-1, they will be correlated with a clock running at
twice the bit rate. This routine assumes that there are 11 samples
per bit, and that the possible clock phases are offsets of 0, 2, 4, 6,
or 8 samples.

As input, this routine requires the windowed and amplitude limited
portion of the synchronization signal that was passed through the
bandpass filter. As output, it supplies the estimated sampling point
of the first bit in the synchronization signal.

4.4 SLFILT

This function calculates the impulse invariant digital approximation
to a 2nd order Butterworthfilter, using the values passed in the
input arrays FSTATE and SFILPAR.

4.5 REVERS

This simple routine is required because of the different input formats
expected by the VAX FFT routine inherited from the previous software
and the AP FFT routine supplied by Floating Point Systems. REVERS
simply rearranges the frequency-domain terms of the array passed as
input, so that terms are strictly ordered by increasing frequency
value.

5. Support Programs

The following programs are external to the main simulation program,
and were written to aid in the analysis and display of results.

1

5.1 SUPERPLOT

5.1.1 Introduction

The SUPERPLOT routine is a utility allowing the user to
interace with an HP 4740. Parameter are set interactively for :

- Number of ticks/subticks on axes
- Length of axes
- Position of axes relative to the edge of the paper
- Lower and higher boundaries for each axis
- Linear or Log scales
- Presence of a grid on the graph
- Title for the graph

This routine assumes default values for each
option so that simple graphs can be created quickly.

Upon invoking the routine, the user is prompted for the name of a
master file containing the data to be plotted. Once this has been
obtained, the session is decomposed into two parts :

- selection of the first series of parameters :
axes lengths
axes position
type of axes
etc...

- 2 selection of the second series of parameters :
introduce title and position title
select sub-ticks numeration for LOG axes
etc...

One may optionally save the parameters chosen in a file, and use these
*parameters on a subsequent invocation of the plotting routine.

5.1.2 Using the Routine

Once the routine has been called, a screen appears and the routine prompts I
for the name of the data file. A new screen then appears on which ±6
shown the current values of the parameters. Shaded areas are comments
describing the purpose of each parameter, while white-on-black text
shows the values of the parameters.

To change a parameter, the user must enter the number designating that
parameter. This number appears in the shaded text associatecrwith
each parameter. Parameters relative to the X-axis are shown in all
cases on the left side of the display, and those relevant to the
Y-axis on the right side of the display.

Certain parameter values can only assume certain pre-selected values
(eg. axis type can be either LINEAR or LOGARITHMIC), so selecting one
of these parameters for alteration changes the parameter from its
present value to the other option. When a labelling option is
selected, a window is created, in which the user must enter the text
which is to serve as the label.

When new values are to be entered, the lower right part of the screen
may present some information regarding acceptable values, depending

I .

Ir

	

I. 		

	

I 	

	

1 	

I.

1

I

1

I.

	

I 	

1

upon which parameter is being changed. Help can be obtained while
working with the first screen by typing 99 as an option, and on the
second screen by typing 9. The screen can be refreshed by typing
Ctrl-Z at any time.

Once the first-screen parameter values are acceptable, the screen may
be exited by typing '0' (which brings the second screen up), or '-1',
which aborts the program. The second screen can be exited by typing
'E or 'B'.

5.1.3 General Options

Recovery of parameters (option 1)

If you type 1 as option you will be prompted for a name of a file.

This file is supposed to contain the values of plotting parameters from

a previous session (the method of saving parameters is described below).
To cancel this option after it has been entered, simply type <Return>
instead of a filename.

Add or Delete a set of data (Option 2)

This option allows the display of more than one set of data on the
same set of axes. The routine will prompt for the name of a file, and
will return an error message if the file named does not exist. Up to
7 sets of data may be drawn on a single set of axes, each in one of 7
different line types. To delete a set of data that has been added to
the list of data to be plotted enter /* 1 instead of the name of a
file; this will cancel the most recently entered data set.

Grid Lines (Option 3)

When active this option causes the program to draw a grid of lines on
the graph, corresponding to intermediate values between the maximum
and minimum values presented. The default is 'No Grid'.

Side and Top axes (Option 4)

When this option is 'ON' an enclOsing box is drawn around the graph.

If. 'OFF', only the left and bottom axes will be drawn. The default
option is 'ON'.

Position of the graph on the sheet (Option 5)

These values specify the starting location of the axes on the graph.
Modifying them will move the graph on the page. Values are expressed
in centimeters. The default starting position is (5.0,3.0).

Sizes of the axes (Option 6)

To modify the size of the axes, select option 6 and then modify the
length for each axis (length is expressed in centimeters). Default values
are 20 cm. for the X-axis and 12 cm. for the Y-axis.

Line type (Option 7)

Seven differnt line types are available with which to plot data. At

any time, the line type indicated is the one being used for the

present set of data. The default value is 7 (solid line).

Draw a symbol at each point (Option 8)

If this option is active a character symbol is used to mark each data
point on the graph. This option is only valid when the number of data
points is less than 50.

Pen (Option 9)

The HP plotter uses two pens, which can be of different colors. Using
this option allows the user to specify which pen, and thus which
color, is to be used for the graph. The default value is Pen #2.

Scaling the data (Option 50)

This option allows the user to specify a linear scaling and constant
offset to be applied tO the data (i.e., the points actually plotted
are a linear function of the data points read from the file). This
allows the user to plot data lying in the range 300.01 to 300.02 on
axes marked from 0. to 10., if this is desired.

5.1.4 Options Relevant to Axes

Label (X : Option 20 ; Y : Option 40)

These options allow the user to enter text beside the axes. A string
of up to 32 characters may be entered; this string is centered when
output. Default values :

X : X
Y : Y

Character size (X : Option 21 ; Y : Option 41)

The character size of each label may be defined independantly. Upon
entering this option, the user is prompted for a height and width.
Values entered are taken to be in centimeters. A recommended width is
0.7Aheigth). Default values :

Xwidth : 0.186 Xheigth : 0.280
Ywidth : 0.186 Yheigth : 0.280

Number of subticks (X : Option 22 ; Y : Option 42)

The number of marks on each axes can be set using these parameters.
This option applies only to axes which are linear; logarithmic axes
are marked automatically. Default values are :

X : 0
Y: 0

Ticks In / Out (X : Option 23 ; Y : Option 43)

This option determines whether ticks appear inside or outside the
enclosing box drawn around the graph. Default values are :

X : Ticks OUT
Y : Ticks OUT

Change type of the axis (X : Option 24 ; Y : Option 44)

Selecting this option changes the axes type from LINEAR to LOG, and
vice versa. If negative values exist in the data set and the user
attempts to set that axis to LOG, an error message appears.

Default values :
Changes X into LOG
Changes Y into LOG

,Clipping (X : Option 25 ; Y : Option 45)

$D or $d

$Tn or $tn

If the user wants just a part of the data to be drawn,
the boundaries can be restricted by choosing new values for the lowe

and higher bounds. As well, the domain can be made larger without
restriction. Default values are determined by the data.

Increment (X : Option 26 ; Y : Option 46),

This determines the spacing between values displayed on the
axes. If no value is selected, the program automatically , supplies a
value resulting in approximately ten equally-spaced ticks.

5.1.5 Final Options

Introduce a title (Option I)

This option allows the user to enter a four-line long title to
accompany the graph. While this is being done, the facilities
described below may be used.

Title Down / Up (Option T)

If a title is entered, selecting this option results in the first line
of the title being placed above the graph, and the final three (if
any) being placed below the graph. Selecting 'DOWN' results in all
'text being placed below the graph.

X - LOG subticks numbered (Option X)

If the X Axis is logarithmic the user may choose to number the
subticks from 1 to 9 on the graph. Default is no numeration

Y _ LOG subticks numbered (Option Y)

See above option X

S - Save the parameters

If you want to save the values defined during the first
screen, selecting this option will result in a prompt for a
file name into which the parameters will be placed.

5.1.6 Titling Options

While the title is being entered, the user may wish to put the name of
a file or the data on the graph, or to put the names of all the files
being plotted, along with the line types in which they are being
plotted, on the graph. To do so, type :

: This sequence will be replaced by the date

: This sequence will be replaced by the line type
of the set number n

$Fn or $fn 	: This sequence will be replaced by the name of the
file which contains the set number n

$S or $s 	: This sequence will be replaced by the equation
of the scaling.

$n 	: This sequence has for effect of storing the text
from the position n on the line (If there is any

$E or $e

Control Z

Return

text between position 1 and n this text is kept)

: This sequence erases the whole text of a line

: Marks the end of the introduction of text

: Marks there is no modification to be done on the
current line

5.2 CODING

This pro(jram is equivalent to the MCODING program created for the
previous contract; all input and output, as well as all operations
performed, are identical with the previous version.

5.2.1 ERRGEN

This program generates independent error sequences at a specified
input bit error rate. The input parameter file is by default FOR004;
a redefinition of this logical unit number is necessary if a different
input parameter file is to be used.

The input parameter file must contain the following four parameters :

(1) Name of the output file (extension .PAR is supplied by program)
(2) Desired probability of error
(3) Seed for random number generator (integer) .
(4) Number of packets to be generated

The file generated by this program can be analyzed directly by CODING.
ERRGEN was developed to aid in the verification of the simulation's
correctness. ERRGEN requires little execution time, and thus may be
reasonably oPerated at low error rates.

5.3 COMPRESS

This program takes error sequences generated by the TELSIM program and
places them in a compressed format for use with the CODING program.
When prompted, the user must supply the name of an error sequence file
to be processed. The program continues processing input files until
the user specifies a null file (does not enter a name). The program
prompts the user for the name of the output file into which the
compressed sequences are to be written.

5.4 TAPEAREAD

This program reads error sequence files on tape generated at CRC and
outputs the data stored in them in a cbmpressed format suitable for
use with the CODING program. AAAA

5.5 SUPPLY

AA***

1 f

	

I. 	 	

5.6 MC

This program separates -the effects of wcird synchronization loss on
the error rate expressed by a TELSIM error listing file. The program
also averages error results from different simulation runs performed
with the same data sequence to create 95% confidence intervals for
the actual error rates. The number of packets lost is also calculated
and output to the user.

The program first prompts the user for the portion of the data file
name which all the files to be processed have in common; this is
typically the first part of the prefix portion of the file name. The
user is then prompted for the TV signal to noise ratio; this value is
output to the output files created.

The program then reads all the files possessing the common portion of
the file name supplied by the user and processes them. Three output
files are generated : one containing the results of the interactive
session, a second (PLOT1.DAT) and third (PLOT2.DAT) containing the SNR
and error rate before separation as pairs (for use with the plotting
program), and the SNR and error rate after separation in the same
format, respectively.

The program repeats this cycle of processing until the user sPecifies
a null file name (does not enter a string before typing <RETURN>).

5.7 EYETEL

EYETEL is a modified version of the TELSIM program used to create eye
diagram data files. A single noiseless Telidon signal burst is
generated in accordance with user-specified parameters, and this burst
used to construct a file <runid>.SAV, where <runid> is the run
identifier specified in the input parameters. This .SAV is then used
by the MAKEYE program (below) to create a plottable eye diagram
Program.

The data from which the eye diagram is to be generated is taken from
the single noiseless burst generated by EYETEL. A series of samples
corresponding to two data bits is taken from a pre-selected point in
the data stream and converted to plottable form. The samples
corresponding to successive pairs of bits are taken and superimposed
upon this, and these values written to the output file.

EYETEL reads its input parameters from a file identical to those used
by the main program l'ELSIM, so that the user may use the same
parameter file with either program.

5.8 MAKEYE

MAKEYE reads the files created by the EYETEL program and uses the data
they contain to create output files which, when plotted, create an eye
diagram. When prompted by the program, the user must enter the name
of the data file to be used as input; this will be of the form
<runid>.SAV, where <runid> is the run identifier that was specified by
the user in the parameter file input to the EYETEL program. The
output file of MAKEYE will then be titled <runid>.EYE, and may be
submitted directly to the HP7470 plotter.

•

CFFTSC

CVADD

CVMUL

RECT

5.9 FILGEN

FILGEN is similar functionaly to the $FILE-GENERATOR routine supplied
for the previous contract. Written in DCL (Digital Command Langivage),
this routine aids the user in creating simulation parameter files for
series of simulations.

FILGEN is invoked by typing @FILGEN; optionally, a parameter name may

be specified on the same line, in which case jobs are submitted to the
batch queue named. FILGEN's user interface is identical with that of
the original parameter file generation routine; the only difference in
output is that digits particularizing the parameter files are not
separated by underscore characters ('_') as were the digits in the
filenames generated by the previous program, since the underscore
character is not recognized by the VMS operating system as a legal
character in a filename definition.

In conjunction with FILGEN's use, a second command file called
SYNC.COM must be present. This parameter file is used to control
synchronization of job execution, and is needed when multiple batch
queues and multiple jobs are being used. Table 2 contains an example
of such a command file.

TABLE 1 : FPS ADVANCED MATH LIBRARY SUBROUTINES USED

ROUTINE 	RESULT

APGET Gets a vector from the AP memory locations specified

APPSEL 	Selects which page in AP memory subsequency operations
will be performed on

APPUT 	Puts a vector into the AP memory locations specified

APWD/APWR/
APWAIT Timing routine required to ensure synchronization of

processing between host and AP

EVMOV 	Moves a vector from one page of memory to another

Performs forward or inverse 1.'t.'T on the cormlex vector
specified

VCLR

VFIX

VFLT

Performs scaling on a complex vector after FFT
operations

Adds the two complex vectors specified

Multiplies the two complex vectors specified

Converts the complex vector values specified to
rectangular form

Fills the vector specified with zero values

Converts the real vector specified to integer

Converts the integer array specified to real values

II 1 VLIM 	Clips a vector to specified upper and lower bounds

I -
VLN 	Performs the natural logarithm operation on the vectOr

specified

II 	

, VMOV 	, Moves a vector from one location within a page to
another location in the same page

VMUL 	Multiplies the two real vectors specified

VNEG 	Negates the vector specified
. 	.

VRAND 	Generates a vector of random numbers uniformly
- 	distributed on E0.,1.3

II
VREAL

	

	Extracts real parts of a complex vector

t VSMSA 	Multiplies vector elements by one scalar and adds a
second scalar to each value (linear transformation).

I 	::::
VSMUL 	Multiplies vector elements by a scalar

VSORT 	Performs the square root operation on the vector
specified

-.... 	VSUB 	Subtracts one real vector from another

II 	

_...

II -

.:•
TABLE 2 : Example of SYNC.COM

$! THIS JOB'IS DONE TO INITIALIZE THE SUBMITTING OF FILGEN
$ WAIT 0:02

I $ EOJ

ARMSTRONG, R.M.
--Validation and enhancement of

teletext system simulation

TK

7882

16

A74

1985
v.2

DATE DUE

II

ee.

.15

ria:Cliagtiagfiree

