
1
1

1 •

. Approved by:

SUBMITTED BY:

MILLER COMMUNICATIONS

SYSTEMS LTD.

300 Linnet Drive,

Kanata, Ontario,

Canada K2K 1Y5 MCS

1
I
1 I

TK
7882
16
A74

1985
v.3

S. Crozier

RELEASABLE

DOC - CR-BT-85-010

VALIDATION AND ENHANCEMENT

OF

TELETEXT SYSTEM SIMULATION

SOFTWARE USERS GUIDE

MCS File No: 8526

DSS File No: 12ST.36001-4-3095

DSS Contract No: 0ST84-00458

Date: March 18, 1985

1
Prepared by: 	

R. M. Armstrong, G. Wilson

1

VALIDATION AND ENHANCEMENT

OF

TELETEXT SYSTEM SIMULATION

SOFTWARE USERS GUIDE

e

11811Arri ,

. •

Industn/ Canada
L I E3 Any

SEP 1 4 1998

BIBLIOTHÈQUE
Industrie: Canada

SUBMITTED BY:

MILLER COMMUNICATIONS

SYSTEMS LTD.

300 Legge Drive,

Kanata, Ontario,

Canada K2K 1Y5 MCS

.Approved by:

; DOC-CR-BT-85-010

irtneyeirefiri

RELEASABLE

MCS File No: 8526

DSS File No: 12ST.36001-4-3095

DSS Contract No: 0ST84-00458

Date: March 18, 1985

ÀIL „fil //R. M.' Armstron74' G. Wilson

Prepared by:)eW
/

,

,5

• 	 • 	 I

1

/ 1 \

7 c((ig

LT)

(rf

TABLE OF CONTENTS

1.0 INTRODUCTION

	

1.1 	Scope of Document

	

1.2 	Array Processor Utilization

	

1.3 	Summary of New Features

2.0 CHANGES MADE TO MAIN PROGRAM

	

2.1 	Initialization

	

2.2 	Signal Generation and Analysis

	

2.3 	Final Output

3.0 CHANGES MADE TO SUBROUTINES

	

3.1 	BTR

	

3.2 	MULGEN

	

3.3 	RECOVERSEQ

	

3.4 	RDFILT

	

3.5 	RECEIV

	

3.6 	RECOVR

	

3.7 	SLICER

TK
7882
16
A74
1985
v.3

	

3.8 	WORDSYNC

	

3.9 	ZCROSS

4.0 NEW SUBROUTINES

	

4.1 	NORM

	

4.2 	BTRINIT

	

4.3 	CORBTR

	

4.4 	SLFILT

	

4.5 	REVERS

5.0 SUPPORT PROGRAMS

	

5.1 	CODING

	

5.2 	COMPRESS

	

5.3 	TAPEAREAD

	

5.4 	MC

	

5.5 	SUPPLY

	

5.6 	MAKEYE

	

5.7 	FILGEN

	

5.8 	FACTOR

	

5.9 	IMPTEL

	

5.10 	FILTER

1.0 	INTRODUCTION

1.1 	Scope of Document

This document describes changes made to the TELIDON

simulation software for the Contract DSS21ST.36100-2-4380

(MCS File No. 8342), and is intended to serve as a

supplement to [1]. Only those portions of the original

software which have undergone modification are discussed;

the user is strongly advised to consult [1] as a first

resort in all cases.

Changes were made to allow full advantage to be taken of

the FPS-5105 Array Processor (AP) and VAX/750 minicomputer

acquired by MCS in 1984. Using this combination, the speed

of the simulation was increased by a factor of fifty times,

allowing many more simulations to be performed, and many

more scenarios and features of the simulation to be

explored. The deliverable software includes this AP

version of the software, as well as a functionally

identical VAX-only implementation. In all cases, code is

written in accordance with FORTRAN-77 standards.

1.2 	Array Processor Utilization

The Array Processor greatly increases the speed of

repetitive computations performed upon large vectors of

values. For example, replacing the usual method of

multiplying corresponding elements of matrices through use

Of a DO-loop construct with a call to the VMUL subroutine

supplied in the AP math library typically cuts computation

time by an order of magnitude or more. The execution time

improvements associated with more complex operations, such

as Fast Fourier Transforms, are even more dramatic.

The two disadvantages of the AP when compared to the VAX

are (1) its inability to do disk I/O directly, and (2) the

somewhat more primitive nature of the operations available

on it. The first is a minor consideration; values can be

transferred to and from the VAX host for output to disk, or

for printing, with a minimum of difficulty. To keep

execution times to a minimum, however, minimizing the

number of such transfers performed is desirable. In aid of

this, intermediate values calculated during the execution

of the program which need not be output are left in the AP

during program execution. This practice makes debugging

the Al' version of the program somewhat more difficult, but

the increase in software development time was more than

compensated for by the improved execution times noted

above.

The second point forced a slight change in programming

style. Vector values in the AP are referred to by the

Advanced Math Library routines supplied by FPS by their

base address and increment values. Throughout the AP

version of the simulation these base addresses are given

symbolic names (i.e. LSIGNAL refers to the location in AP

memory of the base address of the SIGNAL vector). A brief

summary of the Advanced Math Library routines primarily

used in this simulation is provided in Table 1.

1.3 	Summary of New Features

Three major functional changes, and several minor ones,

have been made to the simulation. The first, and most

important, is the implementation of the MK-V•decoding

scheme. A new bit-timing recovery sdheme, and a new

slicing level determination scheme, are included in this.

The correlation method of bit-timing recovery has also been

implemented in the new simulation, as has adaptive slicing

level determination.

• 1

I .

TABLE 1: FPS ADVANCED MATH LIBRARY SUBROUTINES USED

Routine

APGET

APP SEL

Result

Gets a vector from the AI' memory locations specified

Selects which page in AP memory subsequently operations

will be performed on

APPUT 	Puts a vector into the AP memory locations specified

APWD/APWR/ Timing routine required to ensure synchronization of

APWAIT 	processing between host and AI'

EVMOV 	Moves a vector from one page of memory to another

CFFT 	 Performs forward or inverse FFT on the complex vector

specified

CFFTSC 	performs scaling on a complex vector after FFT

ope rations

CVADD 	Adds the two complex vectors specified

CVMUL 	Multiplies the two complex vectors specified

RECT Converts the complex vector values specified to

rectangular form

VCLR 	Fills the vector specified with zero values

VFIX 	 Converts the real vector specivied to integer

VFLT 	 Converts the integer array specified to real values

Extracts real parts of a complex vector

Multiplies vector elements by one scalar and adds a

second scalar to each value (linear transformation)

Multiplies vector elements by a scalar

Performs the square root operation on the vecotr

specified

TABLE 1: FPS ADVANCED MATH LIBRARY SUBROUTINES USED (CONTINUED)

Routine

VLIM

VLN

Result

Clips a vector to specified upper and lower bounds

Performs the natural logarithm operation on the vector

specified

1

VMOV 	Noves a vector from one location within a page to

another location in the same page

Multiplies the two real vectors specified

negates the vector specified

Generates a vector of random numbers uniformly

distributed on [O., 1.]

VMUL

VNEG

VRAND

VREAL

.VSMSA

VSMUL

VSQRT

VSUB 	Subtracts one real vector from another

Among the less important alterations, a third filter file

format has been included. Setting the filter file format

specifier to 2 causes the filter values corresponding to

each frequency to be read from the file in complex notation

(i.e. the three real numbers in each record of the filter

file are read as the frequency in MHz and the real and

imaginary components of the complex gain at that

frequency). Also, a separation of random number generation

seeds in the main program body has been effected, so that

the data sequence generated for a given random seed is

unique, and unaffected by the selection of bit-timing

recovery method. This change was made to allow direct

comparison of simulation runs performed with different

bit-timing recovery schemes.

2.0 	CHANGES MADE TO MAIN PROGRAM

TELSIM is composed of three main sections, one performing

initialization, one generating and analyzing data, and a

small third section to perform error counts. Of these, the

second, which generates and analyzes data, has been largely

vectorized.

2.1 	Initialization

In the initialization stage, which has been modified only

slightly from the original program, simulation parameters

are obtained from an input file specified by the user in

response to a program prompt. In addition, the function

QSAMP is called to initialize an array of values used in

the subsequent calculation of the Q-function. A single

call is made to the VAX random number generation program to

supply a real random number which can be used by the Al' as

a seed for its own random number generator; this call is

necessitated by the difference in the format of variables

the two routines used as seeds. A separate seed is also

generated using the original seed for use in bit-timing

recovery. The input parameters are then echoed to the

output listing file.

The next stage of initialization is the creation of the

filters required by the main loop of the program. This

generation is done in the VAX, since there is often a

requirement to read some or all of these filters from

files. A new routine, NORM, is used in this stage to

normalize filter values, a step necessary to ensure the

correctness of the video signal to noise ratio calculations

(see [2]). Another new subroutine, BTRINIT, is also called

at this stage. This routine generates the frequency domain

representation of a bandpass filter to be used in the MK-V

and Correlation approach to bit-timing recovery. The

parameters for the impulse invariant approximation to a

second-order Butterworth filter are also determined in this

routine.

Calculation of gain and SNR parameters, as well as the

creation of the invariant synchronization portion of the

Telidon waveform, is done next. Once the gain and SNR

values are known, the theoretical slicing level for the

simulation parameters supplied is calculated; changes were

made in this calculation to further generalize it.

After the error counter variables (KNTO - KNT8) have been

set to zero, constants required by calculations which are

to be performed in the Al' are stored in the arrays REALS

and INTGS. While it is possible to move data from the VAX

host to the Array Processor a single variable at a time, a

considerable improvement in speed is obtained if a single

DMA request is made, so these constants are stored in

arrays which can then be moved in ,a single call. Data

stored in arrays which are transferred to the Al' using the

APPUT subroutine are stored in the Array Processor

sequentially in the same order as in the host. Thus,

although the particular ordering of values in REALS and

INTGS is unimportant, this order must correspond to the

locations set in the memory table (see below). The

preamble bit sequence is set in this section as well.

To improve the clarity of the program, memory locations in

the AP are referred to by symbolic mnemonic names. The

values associated with these mnemonics are set during this

initialization stage, and are not changed during subsequent

program execution. As AI' memory is divided into pages,

separate memory maps are required for each page (see the

internal documentation of the code). Care must be taken

when changing the size of any of the arrays, or the

location or number of the variables, used in the AI'.

Once these memory maps have been created, the new

subroutine REVERS is called to rearrange the values stored

in the filter arrays in the host. This is necessitated by

the differing input formats expected by the VAX and AP FFT

routines. Constants and filter values are moved into the

AP, and filters combined to minimize subsequent

calculations.

2.2 	Signal Generation and Analysis

The main loop of the program generates, then filters, adds

noise to, and analyzes the Telidon signal. tHe number of

times this loop is executed is set by the user in the input

parameter file; each loop execution creates one burst of

Telidon data. The Array Processor is used to perform all

operations in this sequence of calculations except the

generation of impulsive noise.

The first step is the generation of random data bits. This

is performed by generating a sequence of random numbers on

[O., 1.], subtracting 0.5 (so that the numbers lie in

[-0.5, 0.5]), and then applying a limiting function to

create a sequence values which are either +1.0 or -1.0.

Parity bit generation is done by successively multiplying

the first, second, third, ..., seventh bits of each

simulated bytes of the data sequence. Since vector

operations in the Al' are done by specifying the initial

address of the data to be operated on, and the increment

separating successive vector elements, this parity

generation is quite simply done by moving every seventh

'bit' (in actuality stored as a word in the AP) into the

position corresponding to the eighth 'bit', and then

successively multiplying the sixth, fifth, ..., first bits

against this value to create the parity values.

• Once the bit sequence has been generated, it is sampled and

scaled to produce the Telidon line signal, then transformed

into the frequency domain. Pulse shape filtering is

applied by multiplying the frequency-domain pulse filter

against the signal values, after which synchronization and

colour burst information is-added. Transmission filtering

and multipath filtering are applied simultaneously, these

•two filters having previously been compressed into one pré-

noise filter (see above).

If the type of noise selected was not GAUSSIAN, impulsive

noise is generated in the VAX host, and these values put in

the Array Processor. Since the generation of impulse noise

is not amenable to vectorization, it was felt that its

generation would benefit only marginally from being done in

the AP.

Gaussian noise is then generated, using the Array

Processor. To do this, random numbers with a uniform

distribution are first created, and. then transformed to

produce values with a Gaussian random distribution with

specified mean and variance. These noise values are added

to the impulse noise values (if any were introduced), and

the result is added to the frequency-domain.signal.

The signal is then passed through the receiver and receiver

pulse shaping filters (which have previously been combined

into one post-noise filter). If the bit-timing recovery

type selected by the user is CORREL or MK-V, the operations

involved in this bit-timing recovery are then performed.

The signal is then transformed to the time domain and

scaled, and the imaginary part of each signal sample is

zeroed. These results are then returned to the host for

further processing.

The final part of the main loop is executed in the VAX. In

it, data estimation is performed, following which the data

sequence is extracted from the received signal, decoded,

and passed through a parity dhecking routine. Finally, the

error count for this burst is obtained.

2.3 	Final Output

Once the data generation and analysis loop has been

executed the number of times specified, the routine OUTRES

is called to place summary error counts in the output

listing file. This routine has not been changed.

3.0 	CHANGES MADE TO SUBROUTINES

The following subroutines have been altered in whole or in

part from their original form.

3.1 	BTR

The bit-timing recovery routine has been modified to allow

MK-V decoder bit-timing recovery to be performed, while

still allowing MK-IV bit-timing recovery to be simulated.

If the 'MK-V' option was selected in the input parameter

file, the 6th positive to negative zero crossing in the

data sequence is located and used to Characterize the

position of the first bit.

3.2 	MULGEN

The previous version of MULGEN performed calculations on

values which were out of the band of frequencies of

interest. The upper and lower bounds on the main loop of

this routine have been altered so that only those

calculations having an effect upon program execution are

actually performed.

3.3 	RECOVERSEQ

This routine takes the word/bit timing mark from the

WORDSYNC routine (described below) and uses it to recover

the transmitted sequence. This routine has been modified

to perform adaptive slicing, if the user has so requested.

3.4 	RDFILT

The RDFILT routine, which reads filter files from disk and

performs interpolation to create a full-sized array of

values representing that frequency-domain filter. The

previous version of the routine allowed the user to specify

as filter file formats either format 0, in which filter

values were given as gain magnitude and phase, or format 1,

in which filter values were given as gain magnitude and

group delay. The present version also permits format 2, in

which filter values are given as complex numbers.

3.5 	RECEIV

The RECEIV routine is an interface between the main program

and the bit-timing recovery routine RECOVR. In keeping

with the changes made to the latter (described below), the

parameters passed into and out of RECEIV have been

altered.

3.6 	RECOVR

RECOVR has been altered to permit the user to select

Correlation-type bit-timing recovery. In addition, the

code to handle the case in whidh correlation-type bit-

timing recovery is not selected has been altered to

accommodate MK-V bit-timing recovery.

3.7 	SLICER

This routine determines the slicing level for the received

Telidon signal. This can be determined in the routine

either through a calculation of the average signal level

over a number of bits, or through use of an approximation

to the method implemented in real terminals, which uses

peak detection. This routine has been altered to

accommodate the 'ADAPTIVE' and 'MK-V' slicing options, as

well as the 'AVERAGING' and 'IDEAL' options available

previously.

Ii
3.8 WORDSYNC

Ii

•

This routine determines the word synchronization. The bit-

timing recovery routine supplies a timing reference, which

should be in the center of the first bit in the preamble.

If this is the case, the simplified 'add offset' method

would work, and this option is provided for simplicity in

testing. However, if the sequence has been shifted in

time, the word synchronization byte must be used. This

routine simulates the real decoder by comparing the word-

sync sequence to the original sequence to determine the

most probable syndhronization point.

The new version of WORDSYNC also calculates the initial

sample and hold values for adaptive slicing.

3.9 	ZCROSS

This routine determines the position of the zero crossings

during the preamble. These measurements are used by the

BTR to determine the sampling instants. The crossing point

is approximated by a linear interpolation between points on

opposite sides of the slicing level. These crossing points

are stored in the array CROSS, with the direction of the

crossing indicated by the sign of the timing mark. This

routine has been modified to allow processing in accordance

with MK-V decoder specifications.

4.0 	NEW SUBROUTINES

The following new subroutines have been created, and added

• to existing software.

4.1 	NORM

This routine takes as input a complex array of values and a

scaling factor by which each value is to be multiplied.

This routine is used to scale each filter array by the

value of its center element (i.e., by its value at a

frequency of 0 Hz), to facilitate calculation of signal to

noise ratios.

4.2 	BTRINIT

This subroutine generates the frequency domain

representation of a bandpass filter used in the MK-V and

Correlator approaches to bit-timing recovery. The

parameters for the impulse invariant approximation to a

second-order Butterworth filter are also determined in this

routine. These IIR parameters are determinable for

'ADAPTIVE' and 'MK-V' slicing types.

4.3 	CORBTR

This is a new bit-timing recovery routine which uses the

correlation method of bit-timing recovery. The 14 bits of

the preamble are used to estimate clock phase; the routine

must choose between one of 5 possible clock phases.

'Because these first bits of the preamble are alternating

+1/-1, they will be correlated with a clock runing at twice

the bit rate. This routine assumes that there are 11

samples per bit, and that the possible clock phases are

offsets of 0, 2, 4, 6, or 8 samples.

As input, this routine requires the windowed and amplitude

limited portion of the synchronization signal that was

passed through the bandpass filter. As output, it supplies

the estimated sampling point of the first bit in the

synchronization signal.

4.4 	SLFILT

This function calculates the impulse invariant digital

filter approximation to a 2nd order Butterworth filter,

using the values passed in the input arrays ESTATE and

SFILPAR.

4.5 	REVERS

This simple routine is required because of the different

input formats expected by the VAX FFT routine inherited

from the previous software and the AP FF T routine supplied

by Floating Point Systems. REVERS simply rearranges the

frequency-domain terms of the array passed as input, so

that terms are strictly ordered by increasing frequency

value.

11

5.0 	SUPPORT PROGRAMS

11

The following programs are external to the main simulaiton

program, and were written to aid in the analysis and

11 	
display of results.

5.1 	CODING

il
This program is equivalent to the MCODING program created

11 	for the previous contract; all input and output, as well as

all operations performed, are identical with the previous

1/ 	

version.

11 	
5.1.1 	ERRGEN

This program generates independent error sequences at a

11 	specified input bit error rate. The input parameter file
is by default FOR004; a redefinition of this logical unit

It number is necessary if a different input parameter file is

to be used.

11 	The input parameter file must contain the following four

11 	
parameters:

I 	

(1) 	Name of the output file (extension -PAR is supplied

by program).

I/ 	
(2) 	Desired probability of error.

(3) 	Seed for random number generator (integer).

11 	
(4) 	Number of packets to be generated.

The file generated by this program can be analyzed directly

by CODING. ERRGEN was developed to aid in the verification

of the simulation's correctness. ERRGEN requires little

execution time, and thus may be reasonably operated at low

error rates.

5.2 	COMPRESS

This program takes error sequences generated by the TELSIM

program and places them in a compressed format for use with

the CODING program. When prompted, the user must supply

the name of an error sequence file to be processed. the

program continues processing input files until the user

specifies a null file (does not enter a naine). The program

prompts the user for the name of the output file into which

the compressed sequences are to written.

5.3 	TAPEAREAD

This program reads error sequence files generated at CRC

from tape and outputs the data stored in them in a

compressed format suitable for use with the CODING

program.

5.4 	MC

This program separates the effects of word synchronization

loss on the error rate expressed by a TELSIM error listing

file. The program also averages error results from

different simulation run performed with the same data

sequence to create 95% confidence intervals for the actual

error rates. The number of packets lost is also calculated

and output to the user.

The program first prompts the user for the portion of the

data file name which all the files to be processed have in

common; this is typically the first part of the prefix

portion of the file name. The user is then prompted for

the TV signal to noise ratio; this value is output to the •

output files created.

The program then reads all the files possessing the common

portion of the file name supplied by the user and proces .ses

them. Three output files are generated: one containing

the results of the interactive session, a second

(PL0T1.DAT) and third (PLOT2.DAT) containing the SNR and

error rate before separation as pairs (for use with the

plotting program), and the SNR and error rate after

separation in the same format, respectively.

The program repeats this cycle of processing until the user

specifies a null file name (does not enter a string before

typing 4RETURN›).

5.5 	SUPPLY

SUPPLY converts sampled end-to-end time-domain impulse

response values to frequency-domain filter values, and then

factors out the pulse shape. Given the name of a file

containing the complex impulse response value to be used,

the program reads in these values, performs an FFT, and

queries the user for the names of three pulse shape

specification filters to be factored out. These filters

may be specified in a manner identical to the specification

of filters in TELSIM.

During its execution, the program produces several

auxiliary output files containing amplitude and group délay

responses of the filter generated, both before and after

factorization. For more details on these files, see the

internal documentation of the program.

Hi 	5 6

II

I.

MAKEYE

MAKEYE reads the eye diagram data files created by the

TELSIM program and uses the data they contain to create

output files which, when plotted, create an eye diagram.

When prompted by the program, the user must enter the name

of the data file to be used as input; this will be of the

form 4runid>.SAV, where 4runid> is the run identifier that

was specified by the user in the parameter file input to

the EYETEL program. The output file of MAKEYE will then be

titled <runid).EYE, and may be submitted directly to a

HP7470 plotter.

FILGEN is similar functionally to the $FILE-GENERATOR

routine supplied for the previous contract. Written in DCL

(Digital Command Language), this routine aids the user in

creating simulation parameter files for series of

simulations.

FILGEN is invoked by typing @FILGEN; optionally, a

parameter name may be specified on the same line, in which

case jobs are submitted to the batch queue named. FILGEN's

user interface is identical with that of the original

parameter file generation routine; the only difference in

output is that digits particularizing the parameter files

are not separated by underscore characters (s _ s) as they

were in the filenames generated by the previous program,

since the underscore character is not recognized by the VMS

operating system as a legal Character in a filename

definition.

In conjunction with FILGEN's use, a second command file

called SYNC.COM must be present. This parameter file is

5.7 	FILGEN

used to control synchronization of job execution, and is

needed when multiple batdh queues and multiple jobs are

being used. Table 2 contains an example of such a command

file.

5 . 8 	FACTOR

FACTOR allows the examination of the effects of various

perturbations of a sampled impulse response profile on the

resulting frequency response. The program first queries

the user to supply the name of a file containing complex

impulse response values. The user must also supply a value

for the DC offset to be added to the real parts of these

values; if no DC offset is desired, the user must enter

The impulse response values are then read, and the DC

Offset (if any) added.

The user may then elect to incorporate either Gaussian

noise effects or the effects of data autocorrelation (non-

white data sequence values). In both cases, the user must

respond to program prompts.

The perturbed impulse response values are finally converted

• to the frequency domain using an FFT, and these values

output to file for plotting or inspection.

5.9 	IMPTEL

IMPTEL produces the end-to-end sampled impulse response of

a given TELSIM configuration. Requiring an input parameter

-file identical to those used by TELSIM, IMPTEL constructs

the various filters specified, concatenates them, and

determines their time-domain impulse response profile.

These values are then written to a file suitable for use in

FACTOR.

TABLE 2: EXAMPLE OF SYNC.COM

$ 1 THIS JOB IS DONE TO INITIALIZE THE SUBMITTING OF FILGEN

$ WAIT 0:02

$ EOJ

5.10 	FILTER

FILTER is a simple utility program which reads in several

filter files specified by the user, concatenates them, and

writes to file their overall amplitude response

characteristic. The program operates interactively,

querying the user for the name(s) of the filter file(s) to

be included.

113t1 1
ARMSTRONG, R.M.
--Validation and enhancement
of teletext system simulation.

TK

7882

16

A74

1985

v.3

DATE DUE

II

