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ABSTRACT

The‘use of Butterworth and Chebychev low pass filters

as the receive filters 1n suboptimum ln-phase (I) and

. . quadrature-phase (Q) recelvers 1s conslidered for several

bandwldth-efflcient modulations. These modulations are:
Minimum Shift Keying (MSK), Tamed Frequency Modulation with
Rectangular Pulse Shaplng (TFMREC), and MSK with duobinary
encoding of the source bits (DMSK). The sensitivity of the
modulations with thelr I and Q receivers to a noilsy phase
reference and to timing errors is also investigated. It

1s found that the standard low pass fllter recelve fllters
perform quitevwell when compared to other much more
complicated filters. The use of standard fillters should

thus be consldered in any system design. The modulations,
with thelr simple receilvers, can be ranked according to
sensltlvity to a noilsy phase reference and timing errors

as follows: MSK, DMSK, TFMREC; MSK has the least sensitivity.
This ordefing ls the 1lnverse of the one for the best

bandwidth efficlency.
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SUMMARY OF NOTATION

Symbols:
a - the transformation of 8; 8, €{0,1},
a, e{~1,1}
A - the amplitude of the CPM signal
b - the sequence at the output of the correlator
B - the two-sided 3 dB filter bandwidth
D - the delay operator
dB - decibel
dmin - the normalized Euclidean distance
E(-) - the expectation operator
F=1(.) - the inverse Fouriler transform operator
F(D) - the partial response polynomial
g(t) - the frequency pulse of the modulator
h - the modulation index
h{t) - the impulse response of the receive filter
H(f) -~ the Fourier transform of h(t)
L ~ max n-k Y + tk > nT
L - the duration of the pulse response in

bit intervals
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xi

ui(t) - the input to the receive filter for the

itn waveform

w(t) - additive white Gaussian noise

W - half the bandwidth of the IF filter
x(t) - the input to the receiver

o - the source bit sequence

3 - the estimate of the source bit sequence
B - the sequence after the differential encoder
§(t) - the Dirac delta function

op? - the variance of n(t)

°n12’°n22 - the variance of n;(t) and n,(t)

Oév | - the variance of nj(t) and n,(t)

Y -~ the sampling offset

0 - the phase offset of x(%t)

8 - the phase of the carrier reference

8 - 6 -8

A - the timing offset

u - the phase reference signal to noise ratio
¥ - the convolution operator

O] - the exclusive OR operator

Abbreviations:

AM/AM - amplitude modulation to amplitude modulation
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CHAPTER 1
INTRODUCTION

The purpose of this study is to investigate some simple
reéeivers for certain bandwidth-efficient modulations that
have a constant envelopé. Bandwidth-efficient modulations
are important due to the increasing demand for communication
services and the fact that the available bandwidth is
iimited. For reasons of efficiency the power amplifier in
radio communications equipment is usually operated near
power saturation resulting in a non-linear amplification.
Any amplitude variations in the input to this amplifier
will thus result in AM/AM and AM/PM distortion as well as
spectral spreading. It is thus desirable for the input to
the amplifier to have a constant envelope. At present, the
area of bandwidth-efficient modulations with a constant
envelope is the subject of much research.

Continuous phase modulation (CPM) with partial response
encoding of the source bits is a modulation technique that

has both bandwidth efficiency and a constant envelope. The




correlation of the bits introduced by the partial response
encoding introduces controlled intersymbol interference (ISI)
and smooths the phase of the signal. The amount of smoothing
is a determining factor in the spectral efficiency of the
modulation [1]. In this scheme coding and modulation
techniques ére used in tandem.

Optimal decoding of the general CPM scheme requires
maximum likelihood decoding. The Viterbi algorithm performs
maximum likelihood detection and its use in decoding CPM
signals has been described by Aulin [2]. With the Viterbi
algorithm the number of possible states in the decoder can
become quite large, making the implementation of the receiver
very complicated. It is thus desirable to‘find simpler,
and hence suboptimal, detectors for CPM.

If the modulation index of the CPM scheme equals one-
half, it is possible to decode the signal using a receiver
with an in phase (I) and quadrature phase (Q) arm
detector [3]. If the two arms of the detector are uncoupled
then the receiver is inherently suboptimal in CPM schemes
where the I and @Q channel waveforms are not independent,
The arm filtefs of the receiver must be chosen to yield
the best possible suboptimal performance; there are several

strategies for doing this. If the filters are constrained



to be linear, then, under this constraint, it is poséible to
choose them optimally [17]. The baseband I and Q
waveforms can be broken up into a set of characteristic
pulse shapes, each with the duration of the sampling
interval. The arm filters can then be chosen to be the
filters matched to the pulse shape of least energy.
Alternatively, the arm filﬁers can be matched to the average
wa&eform [4], giving optimal results as the signal to noise
ratio (SNR) vanishes, or to an approximaéion of the eye
pattern [5].

Easily realizable filters such as Butterworth and
Chebychev low pass filters can also be used as the arm

filters in the suboptimal receiver. These filters degrade

the performance from that obtained with more complicated
filters; however, in many cases this degradatibn may not be
too significant. Also, the more complicated filters that
are matched to certain waveshapes tend to be more sensitive
to channel distortion than an initially mismatched filter
[6]; they are also often much more difficult to realize.

This study investigates the effects of using standard
low pass filters as the arm filters of I and Q ©receivers
for certain CPM modulations. The sensitivity of these

systems to a noisy phase reference and timing errors is




also examined. All of the CPM schemes investigated have
modulation indices equal to one-half; they are: Minimum
Shift Keying (MSK), Tamed Frequency Modulation (TFM) with
rectangular pulse shaping (TFMREC), and MSK with Lender's
[7] duo-binary encoding of the source bits (DMSK). MSK

is é standard modulation and it is used as a benchmark

to compare the others. The type of I and Q receiver
used for each of the modulations is the deBuda type
receiver [8]. However, an alternative receiver is also
presented for DMSK that can resolve a 90O phase ambiguity
in its carrier reference at the cost of increased sensitivity
to ndise and distortion; the deBuda receiver can resolve a

180°

phase ambigulty.: The filter types used in the study
are: second order Butterworth filters, fourth order
Chebychev filters with 0.1 dB ripple, and sixth order
Butterworth filters. The optimum filter type and the
corresponding best bandwidth is found for each modulation

scheme.

1.1 The System Model
A block diagram of the communications system studied
in this report is shown in Fig. 1.1. The output of the

source is an infinitely long binary sequence a = (..., O-1,



SOURCE g'a'f{o'i} oFrERenTIAL |8 Bi€ 101 TRANSFOR- 9'°kj{""} CORRELATOR|®
\ ENCODER MATION F(D) "‘l
3(t) \
| %8 "'
' b(t)=Z b, S(t-kT)
& _[SUBOPTIMAL Lyit)=strntt)| 1F e [
RECEIVER FILTER @ I mobuLATOR [ @ “19
» w(t) ) 21rh
L fe |

l
THE CONTINUOUS
PHASE MODULATOR

Figure 1.1 : The System Model




%o, Oi1,...)3 €ach symbol takes on the value "0O" or "1"
with equal probability. The source bits are then
differentially encoded; this must be done for the receilvers
in this thesis to work properly. The output of the
differential encoder is the sequence B = (..., B-1, Bo, B1,...
with Bk € {0,1}. The sequence B 1s then mapped into
another sequence a such that 1f By = 0 then ay = -1, and if
Bk = i then ay = 1. After the mapplng the elements

of a are correlated with each other in a partial response
encoder [9]. The correlated sequence is b = (..., b-1, o,
b1, ...), and

o

z b, §(k - kT),

K=o
where 8(t) is the Dirac delta function, 1s applied to the
continuous phaée modulator. White Gausslan noise with
double sided power spectral density No/2 1s added to the
modulator output. The comblined signal then passes through
an IF filter with centre frequency fc, the carrier frequency,
and bandwidth 2W. The fllter bandwidth 1s wide enough not
to distort the signal; however, the nolse process 1is
filtered into bandpass nolse. The signal 1is then received,
and estimates made of the source bits ay. The estimate

sequence is & = (..., 8-1, G0, 81,...).



The bandpass noise can be written as [10]
n(t) = n,;(t) cos(2wfct)- n,(t) sin(2ﬁfct) (D

where n;(t) and n;(t) are independent baseband Gaussian

noise process with

Snl(f) = Snz(f) = No [f] < W

0 elsewhere .

Snl(f) and Snz(f) are the power spectra of n;(t) and n,(t)

respectively. The variance of the noise processes will be
c % =g =g =2 Nog W .
1.2 The General CPM Scheme
It is possible to write a general expression for the
constant envelope CPM signals s(t). The expression 1s
s(t) = A cos[2nf t + ¢(t)] (2)
where A = V/2Ep/T, Ep 1s the energy transmitted per.bit, T

is the reciprocal of the bit rate, and ¢(t) 1s the

information-carrying phase. The phase term can be broken




down as follows:
“¢(t) = 2mh I b, a(t - kT)

where h 1s the modulation index, and q(t) 1is the phase
response (phase pulse) of the modulator. The output of the
correlator, b , 1s determined by the partial response
polynomial F(D), where D is the delay‘operator defined

by

_ k
an+k =a_ D .
F(D) 1s defined by
m
Lt p"
n=0
F(D) = ———— (3)
m
r f
n=0 n

where fy 1s a real number. The division in (3) is necessary
for normalization so that schemes which are identical

except for different partial response polynomials will have
the same maximum phase excursion per blf interval. The

output of the correlator will be

bk =a, F(D) .



The phase response can in tura be defined by the

frequency response (frequency pulse) g(t); ie:

t
q(t) = f g(t) dz

-0

In practical modulations g(t) must be time limited; using

this and the fact that the system must be causal

g(t) =0 tgo , ¢t

WV
-

where L 1is a finlte number. Also, for normalization

purposes

L

1
J g(t) dt = 5
0

The above implies that

q(t) =

=

The nature of g(t) and F(D) determine the smoothness
of the phase of s(t) and thus are also significant in

determining the spectral properties of the modulation. In
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general, the smoother the phase of the modulation the more
rapidly the power spectrum falls off. Baker [1] has shown
that the power spectrum decreases as

where y 1is the number of continuous derivatives of g(t).

1.3 Literature Review

The class of bandwidth-efficient constant envelope
modulations has been an area of much recent research. These
signals can all be written in the form s(t) = A coslwet +
¢(t)] where ¢(t) follows a coded pattern in response to the
data. Anderson et al.[1ll] have shown that modulation codes
of this class can approximate any power-bandwidth combination
consistent with Shannon's Gaussian channel capacity. However,
Anderson cautions that efficient signals have an exact
synchronization requirement resulting in a trade-off between
performance and receiver complexity. The class of CPM
schemes 1is a sub-class of the above general class of schemes.

CPM schemes: with and without partial response
encoding of the bits has been studied by Aulin et al [12]

[13]; maximum likelihood detection of the received signal
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is used in both investigations. A good explanation of

general partial response techniques is given by Kabal and
Pasupathay [9]. In [12] Aulin gives the performance and

the power spectra of full response CPM schemes with different
modulation indices. Aulin [13] then includes partial

response encoding of the source data in order to improve

the spectral performance; receiver and transmitter
implementations are also discussed and it is found that an almost
rational h 1s necessary for the modulation to be easily
implemented.

A numerical method for finding the spectral properties
of partial response CPM signals has been given by Deshpande
and Wittke [14]; the power spectrum is computed for several
examples. Aulin et al, [15] have examined the effect of
changing the frequency response pulse, g(t), in CPM signals.
Pulses of length 2T with different numbers of continuous
derivatives are studied and the trade-off between spectrum
and performance examined. Deshpande and Wittke [16] have
developed a technique to find the T - length frequency pulse
that results in the smallest out of band power for the
binary full response case. Lower bounds on the maximum
band efficiency obtainable by choosing different T length
frequency pulses were found for the h = 1/2 scheme.

Galko and Pasupathay [23] have developed a method for
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finding the bptimal linear receiver for digital signals.
Their linear receiver divides the signal space up into M
regions separated by llnear boundaries, where M 1s the
number of hypotheses. Galko and Pasupathay [17] have applied
this theory to find linear recelve fillters for I and Q
receivers used to demodulate binary CPM schemes with
h = 1/2; they observe the I and Q channel waveforms
over L Dbit intervals and take each possible waveform as
a point in the signal space. The signal space 1s dlvided
up into two decision reglons; one for the signals with a
positive value at the sampling point, and another for
signéls with a negative value. The optimum linear recelver
is then found to make the decision. The performance of
this recelilver 1s found to be quite close, within a fraction
of a decibel, to the performance of the maximum likelihood
recelver. Aulin et al [3] have examined the performance
of I and Q recelvers for the above modulations using
different types of arm fllters; two used are: a filter
based on the average waveform, and a fllter matched to the
minimum energy baseband pulse shape.

MSK is a CPM modulation with h = 1/2 that has received
quite a bit of attentlion for its use wlth bandlimited

channels [18]. MSK is a linear modulatlion, even though it
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is generated in a non-linear manner, and has been shown to
be a special case of Offset Quadrature Phase Shift Keying
(0QPSK) with sinusoidal symbol weighting [19]. deBuda [8]
has devised an optimal coherent I and Q receiver for

MSK that is easy to build. The receiver 1s only optimal

“+ if arm filters matched to the MSK baseband pulse are used;

however, other filters may achieve a performance level that
is close to the optimum. Since MSK is linear, Prabhu [20]
has been able to find an analytical method to determine

the degradation in performance suffered by MSK when it is
bandlimited. Prabhu found that for severe bandlimiting MSK
is inferior to OQPSK, while for slight bandlimiting MSK is
a little bit better than 0QPSK.

TFM is a CPM scheme with h = 1/2 developed for use in
digital mobile radio [5]. TFM uses a correlator that
correlates three source bits together and a non-rectangular
frequency pulse to obtain spectral economy. Dedager and
Dekker [5] describe the operation of TFM and present the
results of a test implementation. A deBuda-type receiver
is used in this implementation,

Rhodes [21] has developed a spectrally efficient
constant envelope modulation called Frequency Shift Offset

Quadrature Modulation (FS0Q). FS0Q is spectrally equivalent
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to DMSK, but 1s generated as a form of OQPSK. Rhodes has
simulated FSOQ 1n a channel with the characteristics of
INTELSAT IV. It is concluded that FSOQ requires twenty
percent less bandwidth than MSK for good performance.*

| Jones [6] has considered the replacement of matched
filters in an I and Q recelver for QPSK by standard
two pole Butterworth‘low pass fllters. The performance
degradation wlth the change was qulte small. Jones's best_
Butterworth fllter had a BT product of 0.5, where B 1s
the two sided 3 dB fllter bandwidth. McCreath and McLane
[22] have laid out an optimizatlon procedure to find the
best bandwldth and sampling time for Butterworth and
Chebychev recelve and transmit flliters for a Blnary Phase
Shift Keylng (BPSK) system; both linear and non-linear
channels were considered.

Rhodes [30] has calculated the effects of a noisy
phase reference on BPSK, OQPSK, and QPSK schemes. Matyas
[29] has extended thls work to include MSK. The schemes
can be written in order of decreasing sensltivity to a

nolsy phase reference as: BPSK, MSK, OQPSK, QPSK.

*
DMSK has the same performance as FSO0Q for an additive

white Gausslan Noise Channel.
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1.4 Presentation Outline

The system model and the general expression for
continuous phase ﬁodulated signals has been presented in
Chapter 1. The specific modulations used in this report

and their I and Q receivers are discussed in Chapter 2.

"~ In Chapter 3 the use of Butterworth and Chebychev low

pass filters as the receiver filters is considered. The
optimum low pass filter is found for each of the modulations
and the results compared to those obtained whenvother

types of receive filters are used. The effects of a noisy
phase reference on the performance of the modulations is
considered in Chapter 4 and that of timing errors in

Chapter 5. Finally, conclusions and suggeétibns for further

work are given in Chapter 6.
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CHAPTER 2

A DESCRIPTION OF THE MODULATION SCHEMES /

The results in this report are given for three specific L
modulation schemes: MSK, DMSK and TFMREC. The power [
spectra for these modulation schemes, and that for QPSK,

are plotted in Fig. 2.1. The bandwidth efficiency, ]
minimum Euclidean distance, and performance loss between fﬁ‘
the modulations when maximum likelihood decoding 1s used \
are given in Table 2.1 [14]. A description of the three

modulation schemes of interest and receivers for them {

follows.

d? min
Type of Efficiency bits/sec/Hz | Normalized | 10 log sz—=— ‘
Modulation M1nimum a7 min (MSK)
99% power|9%.9% powsr | Euclidean
Dist.
dmin -
QPSK 0.1 0.01 V2.0 0.0
MSK 0.85 0.36 V2.0 0.0
DMSK 1.09 0.56 v1.73 -0.63
TFMREC 1.25 0.79 v1.05 -1.30

Table 2.1: A Comparison of the Modulations : f
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Figure 2.1 : The Power Spectra of the Modulations
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2.1 A Description of MSK

A frequency shift keyed (FSK) signal with modulation

index h = 1/2 has a continuous phase; thils special case

of FSK 1is termed MSK. Due to its continuous phase MSK is

also a CPM scheme and can be written in the form of (2).

MSK has no partial response encoding making F(D) = 1, and

bk = ak. Therefore,

t o
o(t) =7 J I g g(t - kT)dt

-00 w00

Also, for MSK

1
5 0 <t < T
g(t) =
0 elsewhere
Therefore,
T n-1
¢(nT) = 5 z ag

k= oo

where n 1is an integer.

If ¢(t) is considered modulo 27 then it can take on

(%)

(5)

only four possible values at the ends of the bit intervals;
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these values are: 0, w/2, 7, and 37/2 radians. By observing
(5) it is seen that the phase increases by /2 radians
during the kth bit interval if ay = 1, and decreases by

m/2 radians if ax = -1. By examining (4) it is seen that

this phase change occurs linearly. The phase behaviour of

"~ all possible MSK signals is thus easily described by a phase

tree. The tree with ¢(0) = 0 radians is shown in
Fig. 2.2.
One of the most important properties of MSK is that ,

if ¢(0) is initially O or = radians then

¢(2k) € {0,m} mod 27

o(2k+1) € {n/2, -n/2} mod 27

where k 1s a positive integer. This property is easily
seen to be true when Fig. 2.2 is examined. The phase of
MSK thus exhibits what shall be termed the half plane
property: at even bit times the decision regions for ¢(t)
in the phase plane are the two half planes separated by
the imaginary axis while at odd bit times the decision
regions are separated by the real axis. This half plane
property will also appear in the subsequent modulations.
A receiver that utilizes the half plane property of

MSK has been presented by deBuda [8]. At even bit times,
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Figure 2.2 :

The Phase Tree for MSK
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deBuda's receiver deterﬁines whether the phase is 0 or =
radians with an I bchannel decision. If the I channel
output is positive then the decision is that the phase is in
the right half plane; if it is negative, then the decision

is that the phase is 1n the left half plane. Similarly,

"~ the Q channel is used to determine whether the phase 1is

ﬂ/é or -m/2 radians at odd bit times by making a decision
on the top or bottom plane. A phase error results when

the I , or Q , channel output causes the decision to be
made on the wrong half plane. A block diagram of deBuda'é
receiver is gilven in Fig. 2.3. Techniques for implementing
the carrier and timing recovery circuits are given in (8].

A receiver such as deBuda's gives out transition

information about the data bit sequence a that.thié is

so can be seen by considering the phase difference
¢o(kT) - ¢l(k + 2)T] .

This difference has only two possible values: 0 , and =
radians. If the difference 1s 1 radians then ap;; must
be equal to ay, while if it i1s 0 radians then ay and ayg4]
must be opposite. Thus, at t=(2k+2)T the output of the

I channel exclusive OR gate in Fig. 2.3 will be high if
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85, = Bopy1o and low if 8oy # 85,41 The results are
similar for the Q channel at odd bit times.

The source bits can be obtained at thé receiver output
if they are differentially encoded prior to the mapping to

the a sequence. This encoding operation is shown in

Fig. 1.1 and can be written mathematically as
Bree1 = 9 @ By

where @ denotes exclusive OR, and the bar denotes the
complement operation. Thus, Bk+l # Bk’ and hence
+1 # ays implies that o

= 03 implies that

ay K Bre1 = By

o = 1.

The interleaver in Fig. 2.3 recreates an estimate of
the source stream from the output of the I and @ channels.
It should be noted that due to the meméry involved in the
differential encoding, an error in detecting a transition,
a phase error, will result in a double error in the source
stream estimate. Thus, ignoring the small probébility of

multiple phase errors in a row, the probability of error is

effectively doubled.

2.2 A Description of TFMREC
TFM is a CPM scheme with h = 1/2 that has very good

spectral efficlency. This spectral efficiency is obtained
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correlating the bits before modulation and then using a
non-rectangular g(t) that provides extra smoothing of the

phase. For TFM [3]

sin(TE 2 sin(TLy 2005 (TEy(TLy 2540 (ML
(5) 2 1 T L2 T T T T
g - | e————— aw — 0
2T| 5y 24 (Tt 3 ?

T T |

and
1+ 2D + D?
F(D) = '
bk = (ak + 2ak_l + ak_2)/4

If g(t) is now made into a rectangular pulse,
1
POl 0 &t T

g(t) =

0 elsewhere ,

but the same modulation index and F(D) are kept, then a
different CPM scheme is obtalned. This modulation 1s termed
TFMREC. The spectral efficiency of TFMREC 1s less than that

of TFM, but it is still quite good and the resulting
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modulation much simpler.

The correlation of The source bits causes the phase
changes to be smoothed; however, the number of points in
the signal constellation increases to elght increasing the
sensitivity to noilse. It should be noted that the signal
constellations of TFM and TFMREC are identical; only the
fdrm of the transitions between points in the constellation
changes.

In both TFM and TFMREC there are certain phases that
are allowed at the end of even, and odd, bit intervals
while others are not possible. The state of the modulation

at the start of the kgnh bilt interval is defined as

The allowed and forbidden states are the same for both TFM
and TFMREC. The allowed states when k is even and odd are
shown in Figures 2.4(a) and 2.4(b) respectively. In these
figures 1t 1s assumed that the initial state of the
modulation was in one of the "allowed" states. 1In Fig.
2.5(a) and Fig. 2.5(b) the phase transitions resulting from
the bits ap and ap,q are shown; all possible initial states
are considered. It can be seen from Figures 2.5(a) and

2.5(b) that the modulation is always 1n one of the allowed
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Figure 2.5(b)

: The Phase Transitions for TFMREC

Starting at an 0dd Bit Time
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states at t = kT no matter what the value of k

From Figures 2.5(a) and 2.5(b) it can be seen that
TFMREC, and TFM, has the same half plane property discussed
earlier for MSK. It is also evident that oy = Or.1 implies

that ¢(kT) and ¢[(k+2)T] are in opposite half planes, and

‘- that ¢(kT) and ¢[(k+2)T] in the same half plane implies

that ayx # ay_1- Thus, it 1s possible to demodulate TFMREC,
and TFM, using a deBuda type receiver; however, the optimum
recelver arm filters will be different in the MSK, TFM, and
TFMREC receivers. As in MSK the source bits must be
differentially encoded for estimates of them to come out of
the recelver. Also, a phase error results in a double error
in the source blt estimate.

Another property of TFMREC, and TFM, 1s that energy is
transmitted at the carriler frequency; this does not happen
in MSK. The pure carrier 1s transmitted when by = 0 which,
for independent data, occurs one quarter of the time. Thus,

better carrier recovery schemes should exist for TFMREC

than for MSK.

2.3 A Description of DMSK
DMSK uses duobinary encoding [7] of the source bits
before they are applled to a MSK modulator. Duobinary

encoding gives a better bandwidth effilclency than any other
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partial response scheme that correlates two bits [14].

For DMSK: ;
]
F(D) = (1 + D)/2 , ;
_bk = (a, + a8, )72 , |
h=1/2 |,
T «
o(t) = f X bk g(t - kT)dat ,
-0 k=ao

and

-2% 0 £t &T
g(t) =

0 elsewhere .

From the definition of by it can be seen that a phase shift .
of * w/2 radians occurs in a given bit interval i1f akx = ax_3,
while the phase i1s constant if ap # ap_;.

Due to the partial response encoding of the bits in
DMSK it 1s necessary to define the state of the modulation

at the start of each bit iInterval. The state at t = KT is.
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given by the pair

[o(kT), a, ;]

The interaction between the various states can be described

.. quite easily using a phasor state diagram. Such a diagram

is shown in Fig. 2.6.

Following the technique presented by Galko and
Pasupathay [24] it is possible to consider DMSK as MSK with
intersymbol interference. The first thing to notice is that
in DMSK the phase changé due to any ayi is always * 7/2
radians; * /U radians in the by term and * w/4 radians in

the by4y term. Assuming, without loss of generality, that
$(0) = 0
k

o (KT) = s
24

o™

1
0

The a,_, term is subtracted because it has been implicitly
included in the summation. The a_q term 1s added as it

affects the phase in the zeroth interval. The term

k-1

ST
e
[V
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can be recognized as (5), the phase term for MSK. Thus,

the term

can be viewed as intersymbol interference and the term

=3

as a constant phase offset. If the initial phase is set

such that
$(0) = - pa_ (6)
then
ﬂ k-1 i
¢ (kT) = > iEO ay + T - (7

Assuming that the data sequences are identical, and
that the initial DMSK phase is as specified, (7) implies
that the MSK and DMSK phases will always be within n/4
radians of each other at t = kT. More importantly, the DMSK
phase will always be in the same half plane as the MSK phase

giving DMSK the half plane property. Thus, DMSK can be
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demodulated using a deBuda type receiver as long as the
initial phase 1is chosen as in (6). Again, as in MSK and
TFMREC, the source bits must be differentially encoded and
a phase error results in a double error in the source bit
estimate.

The state of DMSK is restricted to certain values
depending upon whether the phase 1s at the start of an even
or odd bit interval. The allowed states are shown in
Fig. 2.7 while the phase transitions due to 0y and ap4q
“are shown in Fig. 2.8.

.The I and Q channel waveforms for DMSK should not
be sampled at the same time as in MSK. Consider the four
possibilities for the DMSK phase at the end of an even bit
interval with the initial phase as in (6): if the state is
[w/4 , 1] then

¢L(2k+1)T] = ¢ysgl(2k+1)T] - T 5
if the state is [w/4, 0] then
0L(2k+1)T] = ¢yggl(2k+1)T] + % ;

if the state is [-3n/4, 1] then

¢[(2k+1)T] = ¢uggl(2k+1)T] - g ;
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_if the state is [-w/4, 0] then

o[ (2k+1)T] = opggl(2k+1)T] + T

+=|

For MSK the sample 1In the Q channel takes place at

't = (2k+1)T and, assuming no distortion from the receiver

filter,
rol(2k+1)T] = A sin[(2n+1)%] =+4A

where rQ(t) is the signal component in the @ channel after
the receive filter and is shown in Fig. 2.3. If the @
channel waveform for DMSK is sampled at the same time then

rol(2k+1)T] = A sin[(2n+1)%] =+ B

V2
From the above 1t can be seen that the Q channel waveform
should always be sampled at t = (2k+l + 1/2)T. The extra
T/2 seconds causes the amplitude of the DMSK sample to equal
the amplitude of the MSK sample half of the time. The other
half of the time the phase is constant in the (2k+1)%'R pig
interval and the delay will not cause a change in the sample

amplitude. A similar argument can be made for sampling the
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I channel waveform at time t = (2k+1/2)T.
- DMSK has the property that the phase stays constant in

a given bit interval half of the time; this assumes that
the source bits are independent. Thus, the pure carrier is
transmitted 50% of the time at four different phases.
Fourth power carriervrecoyery technlques can thus be used to
extract the carrier reference; however, a 90° ambigulty
will result 1n the phase‘and the deBuda recelver can only
resolve a 180° ambiguity. Using the pure carrier should
provide better carrier recovery than that for the deBuda
receiver [8] which was designed for MSK. A receilver has

- been developed for DMSK that resolves a 90o phase ambiguilty
at the expense of 1ncreased sensitivity to nolse. Thils
receiver is described below; 1t 1s referred to as recelver
2 for DMSK while the deBuda recelver will be referred to as
receliver 1.

Receiver 2 for DMSK is shown in Fig. 2.9. For thils

recelver to work DMSK must be generated with ¢(0) = nn/4,

where n 1s an odd integer; this means that
’ |
¢(kT) 31{]1}3 - g‘: 3&113 - %TL} . J

The receiver detects whether or not the phase has changed

during a bit interval. The detectlion 1s made by observing
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both the I and Q channels together. If elther channel
output changes, ignoring noise and distortion, there must
have been a phase transitlon; 1f neither changes then there

was no phase transition. Mathematilically,

cos[¢(kT)] = cos {p[(k+1)T]}

and

sin[¢(kT)] = sin {¢$[(k+1)T]}

implies that there was no phase transition 1in the ktp bit
inferval. It 1s impossible for the samples of both channels
to change during one bit interval. Thus, the output of the
receliver will be high 1f a phase transition occurs and low
i1f no phase transition occurs. A phase transitlion Impliles
that ay = ay_7 while no phase transitlion implles that

ax # ay-1. Therefore, it 1s necessary to use differential
encoding of the source blits to get estimates of the source
bits at the receiver output. The exclusive OR gates detect
transitions in the channels. Due to its memory, this
recelver also has the property than an error in detecting

a phase transition results in a double error in the estimate
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of the source bit stream.

It is possible to detect errors in DMSK by observing
patterns of phase changes; the process is similar to that
done with patterns of bit changes in ordinary duobinary
transmission [7]. In DMSK the polarities of the 7/2 radian
phase changes on either side of a consecutive string of no
phase changes must be opposite if the number of intervals
with no phase change 1s odd; the polarities must be the
same if this number is even. If the above condition is not
satisfied than an error must have occurred and retransmission
can be requested. Error detection cénnot be done in this
way with MSK as MSK has no memory. It should be possible
to detect errors in TFMREC but the rules are expected to
be quite complicated.

An implementation technique for the above error
detection technique has been designed for use with receiver
2 for DMSK. This implementation can be adapted fof use
with receiver 1 by including parts of receiver 2 in receiver
1. The error events can be detected by observing the I
and Q channel outputs, after their respective exclusive
OR gates, on either side of a string of no phase changes.

A no phase change occurs when the output of the receiver
is zero. A flip flop can thus be set or cleared depending

upon whether the number of no phase changes is even or odd.
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Memory elements are used to store the I and Q channel
outputs. The set {a,b,c} has the following meaning: a 1is

the channel output two bit intervals before the start of

the no phase change string, b 1s the channel output one

bit interval before, and ¢ 1is the output after the string.

It should be noted that the channel output will be b through-
out the string of no phase changes. The error events for

either channel are shown below as {a,b,c} in Table 2.2.

I or Q Channel I or @Q Channel
{1,1,1} {1,1,0}
{0,0,0} “{1,0,0}
"{1,0,1} {0,0,1}
"{0,1,0} {0,1,1}

(a) An Even Number (b) An 0dd Number

of No Phase of No Phase
Changes Changes

Table 2.2: Error Events in the Channels
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CHAPTER 3

STANDARD LOW PASS FILTERS AS
RECEIVER ARM FILTERS

The receivers in Figures 2.3 and 2.9 are not complete
unless the recelve filters are specified. For MSK, as in
QPSK, the I and @ channel waveforms are made up of one
basic pulse shape that 1s repeated again and again. The
optimum arm filter is the one matched to the respective

pulse shape. These pulsesare: for MSK

mt
A cos (§T) -TgEt g T
p(t)=
0 elsewhere ,
and for QPSK
A/V2 -~ T gt <T
p(t)»F

0 elsewhere
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The matched filter error performance in a receiver, without

differential encoding, on a white Gaussian noise channel

will be [25]

2 E
_ b
Pe - Q( NO s

where the @Q function is defined as

2
J e vi/e dv .

X

Q(x) =

1

The performance with a maximum likelihood receiver can be
upper bounded by [25]
2
b d min

No

Thus, from Table 2.1, it 1s seen that the matched filter
receiver and the maximum likelihood receiver perform '
identically for MSK and QPSK. For most CPM modulations,
including DMSK and TFMREC, there 1s more than one basic pulse
shape. This multiplicity of pulse shapes means that there

is no matched filter and an alternative must be found for

the arm filters. Some strategies to find these filters have

been discussed in section 1.3. Many of the fllters found
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with these strategies are quite complicated and require
correlations over many bit intervals. The correlations are
usually implemented using weighted integrate and dump
circuits; these need the generation of a complex signal, a
multiplier, and precise timing of the dump operation. Also,
in channels with distortlon the best suboptimal filter may
have much greater distortion loss than a simpler filter.

It is of interest to consider the use of standard low
pass filters as the receive filters. I and Q receivers
using these standard fllters have a probability of'error
that 1s close to the smallest obtainable. Also, the
standard filters are much cheaper and easier to implement
than the best suboptimal filters.

The same filters are used in both the I and Q
channels as the channel waveforms are stochastically
identical. Also, the analysis need only be donevfor one of
the two channels.

The performance of the modulations with their receivers
is first dealt with assuming no filter distortion. The
effects of various standard low pass filters as the receive
filters 1s then considered and the best standard low

pass filter found for each modulation.
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3.1 The Performance of the Modulations Assuming No
Filter Distortion

Assuming without loss of generality that ¢(0) = 0 it

is found that for MSK

o , 7 t = 2kT

o(t) =
, %} t = (2k+1)T

| =

Therefore, for the receiver in Fig. 2.3

rI(2kT) = A cos[4(2kT)] = £ A

The expression for the probability of error for MSK can

thus be written as

P = 2% P,lr(2KkT) + ny (2kT) < 0 | ¢(2kT) = 0]
+ 2 P _[r (2kT) + n1(2KT) 3 0 | ¢(2kT) = 71}
- &), (8)

n

!
where n;(t) is the noise at the receiver filter output, and

o;, is its variance. The factor of two in the above
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expression is due to the error run of length two in the
deBuda receiver.

The probability of error of TFMREC in the in phase
channel at t = 2kT 1s the same no matter what the state of
the modulation at t = (2k-2)T. The reason for this invariance
~is that cos[¢(2kT)] always equals one of the set {1, -1,
1/V3, -¥/2} each with equal probability. For example,
assume that att = (2k-2)T the TFMREC state is given by
[0,1,1]. Then, at t = 2KkT the possiblé phases are: 0,
n/4, 3n/4, m. Similar reasoning can be made for the
quadrature channel. The probability of error can be found
by finding 1t for any one of the eight possible statés at

t = (2k-2)T. Assuming the state to be [0,1,1] it is found

that

0]

p_ = 2(F P_[r(2kT) + n, (2kT) < 0 | ¢(2kT) =
+ 3B [rp(2kT) + ny(2kT) <0 | ¢(2kT) = /4]
+ %T Pr[rI(ZkT) + n;(2k’l’) > 0 | ¢(2kT) = 3m/4]
+ % Pr[rl(ZkT) + n;(ZkT) >0 | ¢(2kT) = 7m]}
= (=2 + (=2
N ys (9)

nl
The factor of two in front of the brackets
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is due to the receivers double error property.

Recall that in DMSK with the deBuda type receiver the
I channel waveform is sampled at t = (2k+%)T and the Q
channel waveform at t = (2k+1+%)T. Using the I channel
and examining Figures 2.6 and 2.7 it can be seen that no
matter what the state at t = 2(k-1)T the term cos{[(2k+%)T]}
will always be from the set {1, -1, 1/V/2, -1//2}; each of
the elements occurring with equal probability. For example,

if the state at t = 2(k-1)T is [n/4, 0] then
1 c 3 =37 T =T
¢[(2k+‘2-)T3 € {T: T Ts Os Hs "]_T'}

with 0 and having twice the probability of the others.
Thus, cos{[¢(2k+%)T} is from the same set as cos[¢(2kT)]

in TFMREC and the performance of DMSK with receiver 1 will
be the same as that 6f TFMREC.

When using receiver 2 for DMSK both of the channels
must be considered together as an error in either channel
will result in a decision error. The probability of error
at t = kT i1s independent of the state at t = (k-1)T. The
probability of error in each channel is also assumed to
be independent of the probability of error in the other

channel. Also, the probability of getting an error in




~4g-

both channels at once is very small and can be ignored.

Assume that the state at ¢ = (k-1)T is [n/4, 1], then

Po = 20 P Irp(KT) + mi(kT) » 0 | ¢um) = 373
+ 5 P Irg(kD) + na(kT) <0 | ¢(kr) = 3T)
+ % P [ri(kT) + ni(km % 0 | ¢(kT) = ]
+ % PrtrQ(kT) + n;(kT) <0 | ¢(kxT) = %]}
-4 Q(/EA%')_. (10)

Again, the factor of 2 1s due to the error run property
of the recelver.

The probability of error expressions in (8), (9),
and (10) are plotted against Az/o;, in Fig. 3.1. It is
seen that the performance of MSK is 3 dB better than that
of DMSK with receiver 2. The performance of TFMREC aﬁd
DMSK with receiver 1 tend to that of DMSK with receiver 2

as A%/o2, gets large.
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3.2 The Method for Calculating the Performance

Due to the correlative encoding and the non-linearity
of the modulation it is difficult to calculate the effects
of the receive filter on rI(t) and rQ(t) analytically.
Also, the non-linearity makes it impossible to use a
bound for the amount of intersymbol interference such as
that developed by Glave [26]. V

It is possible to find the probability of error
numerically if the intersymbol interference is assumed to

extend over a finite amount of time. Mathematically,

pi(t) ¥ h(t) =0 LT <t <0

where pi(t) is the ith basic pulse shape for the modulation,
h(t) is the impulse response of the receiver arm filter,
* denotes convolution, and L 1s an integer. The receive
filter is assumed to be causal.

It is of interest to consider the noise component
after the receive filters. The noise will still be
Gaussién as the filters are linear [25]; however, the power
spectrum will no 1oﬁger be flat. The autocorrelation

function , Rn'(71) and Rn;(T), of the noise after
1
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the filters is given by [25]

Ro!(T) = Ry (1) = J sn;(f)eﬁ“ﬁdf

- 00

where Sn; (f) 1s the power spectrum of the noise at the
filter output. If Snx(f) is the power spectrum of the

noise before the filter then

Sn;(f) = |H(f)|? Snl(f)

where H(f) is the Fourier transform of h(t). As Snl(f> = N

o)
for all frequencies where the magnitude of |H(f)|? is
significant

' - ' - 2. janf1t
Rnl(T) an(r) N, J |H(f) ]| %e ar . (11)

- OO

This autocorrelation function is plotted in Fig. 3.2

for some of the receive filters that were used in this

thesis. The sampling points are spaced 2T seconds apart

for the deBuda receiver and T seconds apart for receiver

2 for DMSK. Frbm Fig. 3.2 it 1is seen that the autocorrelation
function for t = 2T is quite small, and for 1 = 2kT,

k = 2,4,..., it is very close to zero. The correlation

of the noilse is significant at t = T for the
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filters with the smaller BT products. However, the filters
with the larger BT products, around BT = 0.8, are the ones
that are used with receiver 2 for DMSK. Thus, it 1s
reasonable to assume that the noise samples are uncorrelated.
This assumption makes it much easier to calculate the
probability that an entire block of bits are correct.

In order to find the expected value of the probability
of error 1n the kfh bit interval, all possible waveforms
that can exist in the block of bit intervals that affect
the sample must be considered. Assuming that the ISI
is smaller than the sample at t = t, minus the ISI, the

probability of error for the ith waveform can be written as

1
Pei = 2Pr{|ri(tk + )| + ma(t, +Y) <0]
. 2 |ri(tk + Y)|
o! ?
n

where ri(t) is the output of the receive filter for the

itp waveform, t, 1s the sampling point for this waveform

k
in the kth bit interval, assuming no fllter delay or
distortion, and Y 1s a sampling offset due to delay and
distortion in the receive filter. It should be noted
that 1f the delay 1s such that Y + tk > nT, where

n is a positive integer greater than k , then
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the input to the filter for the n - k bit intervals
following the kth bit interval will also affect ry(tyx + Y).
Thus, 1t would seem that each waveform should consist

of L + £ bit intervals where

£ =max n -k : Y + t, >nT

However, only the L - 1 - & bits prior to the kgtp bit
will affect the sample. From symmetry considerations,

it can be seen that both ri(t) and —ri(t) must be members
of the set of possible waveforms. As all wavéforms are
equiprobable, and as the waveforms ri(t) and -ri(t) will
have the same error probability, the one whose sample,
before the filter, at t = tk is negative can be dropped
from the set of waveforms of interest. The number of

waveforms of interest is thus

where m 1s the number of possible states at time
t = (k -L+1+ &2)T. The expected value of the
probability of error can be found by taking the average

over the error probabilities of all of the waveforms of interest.
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r.(t, +7Y)
2q |-+ §

E[P ] =
€ 1 “nt

=2 |
n ™M=

i

where E(.) denotes the expectation operation. From [25]

it is known that

Thus, from (I1)

=<3

o2, = N, J |H(£)|2af .

-0

Also, for CPM modulations

_ A%T
By =72
Thus,
5, N 2E,
E[P ] = 5 1§1Q ri(tk + Y) = . (12)
| AT N I |H(f)|2af

-0

'In order to calculate the sample values the waveforms
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for the in phase channel are considered,

A cos[cbi(t)] ¥ h(t) (k=L+1+2)T < t < (k+2+1)T

.ri(t)

0 elsewhere

ui(t) ¥ h(t)

where ¢i(t) is the phase for the itp waveform. It 1is

possible to divide each of the N different waveforms,
ui(t), up into L constituent parts each of length T
seconds. Thus, the value of the sample for the kth bit

can be calculated as below.

oo

ri(t) = I ui(T) h(t - t(dT1)
(k=L+2+42)T (k=-L+3+2)T
= ui(T) h(t - 1)dT+ ui(T) h(t - t)drt
(k-L+1+2)T (k-L+2+2)T
(k+2+41)T-
+ .. + ui(T) h(t - 1)dT . (13)
(k+2)T '

For any of the CPM modulations each ui(t) is composed of

a finite number, M , of T length pulses. These pulses

S e e an o
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are: p1(t), p2(t), ps(t)se.., pM(t); also,
pj(t)=0 T <t g0 J=1,2,..., M

The actual number and shape of the pulses 1s determined

by the modulation scheme. Thus, (13) can be rewritten :

as

-]

_ri(t) = J p}[t - (k-L+1+ 2)T] h(t - 1)drT
+ I p;[t - (k-L + 2+ 2)T] h(t - 1)dT

+...+I p?[t-(k+l)T] h(t - T)drt \

- 00

where

pg e {p1(t), pa(t)s.evs Py(t)} |

Using the time shift property of the Fourier transform [10],
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_ F_ltej(k—L+1+z)T ej(k—L+2+JL)T

ri(t) PJ%(f)H(f) + PJ?(f)H(ﬂ

+ L) + ej(k+2‘)T

PL(DH(D)] (14)
where F~! denotes the inverse Fourier transform, and Py(f)
" is the Fourier transform of pg(t).

| Using (14) it is seen that to calculate ri(t) it is
necessary only to calculate the response of the filter to
each of the M possible pulses. These responses are then
shifted in time by the amount shown in the appropriate
exponential in (14), and then added together to form the
composite waveform, ri(t). The expected value of the
probability of error in (12) can then be calculated.

Due to their different frequency contents, the receive
filter distorts each of the possible pulse shapes differently;
there is distortion because the phase responses of the
receiver filters are, in general, non-linear. This
differing distortion makes it difficult to determine Y ,
the optimum sampling offset, analytically. At large signal
to noise ratios the expected value of the probability of
error will be dominated by the worst case ri(tk + Y); this

is due to the exponential decrease of Q(x) as x increases.
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Thus, a good estimate of the optimum sampling point can be
obtained by finding the vy which maximizes the smallest
ry(t, + Y). Mathematically, the metric J 1is evaluated and
the appropriate Yy chosen where

i

J = max min r,(t. + Y).

y 1 1

k

The truly optimum Y will be a function of the signal to
noise ratio (SNR) as the importance of each term in (12)
changes with the SNR.

3.2 Results Using the Standard Low Pass Fillters

The receivers for MSK, QPSK, TFMREC, and MSK were
studied using standard low pass filters as the receive
filters. A standard I and Q receiver [6] with
differential encoding of the source bits was used for QPSK.
Second order Butterworth filters for QPSK receivers have
been studied previously [6]; QPSK 1s used here for
comparison purposes. The standard low pass filters used
were: second order Butterworth filters, fourth order
Butterworth filters, fourth order Chebychev filters with
0.1 dB ripple, and sixth order Butterworth filters. The

transfer functions for these filters can be found in
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Johnson [27].

The pulse shapes, p3(t), must be found for each of the
modulations. The pulse shapes for MSK and QPSK were given
earlier in this chapter; howevér, these pulses are of
length 2T. All of the possible waveforms, ui(t), over a
2T second interval are shown in Figures 3.3 and 3.4
respectively. From these figures it is possible to identify
fourteen different characteristic pulse shapes for TFMREC,
while six are possible for DMSK. However, half of these
pulses are redundant if the sign of the pulse is ignored.
The number of pulse shapes for TFMREC and DMSK fof which
the filter output must be calculated is thus reduced by a
factor of two.

The Fast Fourier Transform (FFT) algorithm [28] was
used to compute the discrete Fourier transforms of the
pulses; these were then multiplied by the discrete Fourier
transform of the appropriate filter to obtain the terms in
(14). The inverse discrete Fourier transform was then
computed, also using the FFT algorithm, to find the time
domain representation of the filtered pulses. The parameters

used for the FFT were: 4096 samples, At = T/64 seconds/

sample, Aw = /32T radians/second.

It was found that the filter response to each pulse
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was negligible after 11T seconds, and thus the value 11
was assigned to L . It was also found that for all

of the filters used & < 4. Smaller values can be used
for L and 2 with the larger bandwldth filters; the
time response dies out faster and there 1s less delay
than with the smaller bandwidth filters.

The optimum standard filter type, and 1ts corresponding
best 3 dB bandwidth, B , was found for each of the
modulations. This bandwidth was found to increase slightly
with the SNR. The probability of error for Eb/NO = 12 4B
has been plotted against the BT product of the receive
filter for each filter type in Figures 3.5 to 3.8? The
best bandwidth at Eb/NO = 12 dB 1s a reasonable bandwidth
to use at all signai to noise ratios. The curves are seen
to get more complicated as the frequency cut-off of the
filter type becomes sharper; this is due to the phase
response of the filters which is more non-linear for the
filters with sharper cut-off. Some of the minor aberrations
in the curves are due to thelsuboptimal cholce of Y
these disappear at large signal to noise ratios. The
results found for QPSK with a second order Butterworth
fllter were found to be very close to those found by Jones

[6] with the same filter type.

*
Each point on the curves requires about 8 minutes of
computation on the VAX-750.
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In a rough sense the'best standard low pass fillter for
each modulation is an approximation to the optimum filter
for that modulation; however, due to non-linearities this
relationship is not a simple one. In fact, for the general
CPM modulation the optimum filter may vary with the signal
to noise ratio.

A correspondence between the best standard low pass
filter and the optimum filter can be used to explain some
of theé results. The Butterworth filter is superiorlto the
Chebychev filter because 1its phase 1s closer to being linear
and its magnitude 1s maximally flat in the passband. These
properties should allow the Butterworth filter to more
closely resemble the optimum filter. In modulations with
only one basic pulse shape the receive fllter is matched to
that pulse shape, which lasts for a duration equal to the
time between samples. The performance of these modulations
thus depends on the energy in the waveform between sample
times; this relationship should also exist for modulations
with more than one basic pulse shape. Thus, since receiver
2 for DMSK takes samples twice as often as receiver 1 for
DMSK, giving it half the energy between samples, it is
expected that DMSK will perform approximately 3 dB worse

with receiver 1 than with receiver 2. DMSK with receiver 1
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i1s expected to perform better than TFMREC as both waveforms
are sampled at 2T second intervals but DMSK has a larger

| normalized Euclidean distance. The probability of error is
plotted against the SNR for each modulation in Figures 3.9
to 3.11. The best standard low pass fillter is used for
each modulation.

When examining Figures 3.9 to 3.11 it should be
remembered that differential encéding of the source bits
has been taken into account when calculating the probability
of error for the receivers 1in this thesis; thils results in
an additional factor of two in the probability of error
expression. The results in these figures from other papers
have not had differential encoding taken Into account.

Both the MSK receiver and DMSK with recelver 1 came quite
close to the optimal performance with their best standard
low pass filters; QPSK and TFMREC both had performances
slightly farther from the optimum. The optimum filter for
MSK and QPSK is the matched filter, while for DMSK and
TFMREC optimal performance is obtained only with a maximum
likelihood receiver. The performance of MSK was about

0.5 dB worse than the matched filter bound for the signal
to noise ratios in Fig. 3.9; however, the asymptotic

performance, obtained with the minimum sample amplitude
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and ignoring the differential encoding doubling of the error
rate, was 0.262 dB worse. When compared with Galko's
optimal linear filters [17] it 1s seen that DMSK, with
receiver 1 and standard filters, gives results 0.7 dB worse
at Pe = 10~%; TFMREC gives results 1.6 dB worse at the same
Pe' These differences can be shaded if differential
encoding is used in Galko's scheme. However, 1t should be
pointed out that the standard low pass filter receiver
results seem to diverge from Galko's results as the SNR
gets larger; this is because Galko calculates a new fillter
for each SNR. DMSK with recelver 1 and standard filters
was also found to outperform DMSK with an MSK type filter
as suggested by Aulin et al. [3].

The standard filters wlll be easler to implement than
Galko's optimal linear fillters, and willl be much easier
to implement than a maximum lilkelihood receiver. The use
of standard low pass receivers as the receive filters in
and I and Q recelver should thus be considered in the

implementation of any of these modulation schemes.
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CHAPTER 4

THE EFFECTS OF A NOISY PHASE
REFERENCE ON THE PERFORMANCE

The effects of a noisy phase reference on the
probability of error were studied for MSK, TFMREC, and DMSK
with both receivers. Results are given when the probability
density function (pdf) of the phase error is that given
when a first»order phase locked loop (PLL) is used to

recover the carrier reference.

4,1 The Model with a Noisy Phase Reference

The input to the receiver can be written as
x(t) = A cos[w, t + ¢(t) + 8(t)] + n(t)

where 6(t) 1s a time varying phase offset. However, in
practice 6(t) varies at a much slower speed than the bit
rate. The phase offset can thus be treated as a constant

6. The phase term in the carrier reference, 6 , is a
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random variable whose properties depend on the method used

for recovering the carrier. Let 6 = 6 - §, If the expression

~

for the probabllity of error can be found in terms of 6
then the effect of the nolsy phase reference can be found
by averaging over all possible 6 . The averaging 1s done

as follows:

™

P = | P (8) py(E) ad (15)
-7

where pg(é) is the pdf of B .

If the pdf of 5 i1s given by that which occurs when
a first order phase locked loop is used for carrier recovery

then

¢ exp(u cos 6)

- <~
o Io(u) |l 6 <7

p(8) =<

LO elsewhere : (16)

where u 1s the phase reference signal to noise ratio, and
Io is the modified Bessel functlon of order zero. Matyas
[29] and Rhodes [30] have both used this pdf in their

studies on the effects of nolsy phase references. This
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pdf is plotted for several values of u in Fig. 4.1.

It is possible to write down the I and Q channel
waveforms after the receive filter in terms of 8 . The
expressions are the same for both of the recelvers; the

receivers are shown in Figures 2.3 and 2.9. The expressions

. are:
ro(t) = & cos[¢(t) + 8] * h(t)
(17)
= A{cos 0 cos[¢(t)] - sin E sin(¢(t)]} ¥ h(t) ,
ro(t) = A sinle(t) + 8] * h(t)
; (18)

A{sin 6 cos[¢(t)] + cos & sin[¢(t)]} * h(t),

4.2 The Performance of the Modulations

The effects of the noisy phase reference can be found
by evaluating (12) using (17), or (18), to calculate
ri(tk + Y) for each of the possible waveforms. The result
is then substituted into (15) and the integration performed
numerically. Simpson's rule was used for the integration
in this study. &Since the deBuda receiver can resolve a

180° phase ambiguity,the pdf of the phase error should be
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recalculated as

explu cos(m = 6)]
2m Io(u)

(exp(u cos 8)

+
2m I(u)

8] <

o =3

p5(6>=<

LO » elsewhere

However, as pé(é) in (16) is almost zero for |5| > n/4 this
need not be done,

The effects of the noisy phase reference on the
probability of error for the modulations is plotted in
Figures 4.2.to 4,5, the I and @Q receivers with the
best standard low pass filter are used for each modulation.
It can be seen from the figures that MSK is much less
sensitlve to a noisy phase reference than the other
modulations. In fact, the sensitivity of MSK with the
standard low pass filter is almost the same as that found
by Matyas [29] when a matched filter was used as the
receive filter. The performance losses for the modulations
at u = 18 dB and Peg = iO‘“ are: 0.6 dB for MSK, 4.8 dB for

TFMREC, 2.6 dB for DMSK with receiver 1, and 4.3 dB for.
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DMSK with receiver 2. The amount of loss that i1s acceptable
depends on the design constraints.
>The relative sensitivities of the modulations to a

noisy phase feference can be explained by considering the
sin 8 sin[¢(t)] term in (17); this is interference in the
I channel from the Q channel. In MSK this term is always
zero at t = 2kT as ¢(2kT) ¢ {0,m}. The term sin 9 sin[¢(t)] *
h(t) will thus still be much smaller than cos 6 cos[¢(t)] *
h(t) at t = 2kT + Y for any of the & where pé(é) is
éignificant. For the other modulations sin[¢(2kT)] is often
equal to cos[¢(2kT)] making the term sin 8 sin[¢(t)] * h(t)
at t = 2kT + Y large enough to have an important effect on
the sample ri(ZkT + Y). This increased interference causes
the increased sensitivity to a noilsy phase reference for
TFMREC and DMSK.

Receiver 2 for DMSK can resolve a 90° phase ambiguity,

and thus better carrier recovery techniques should be

available for this receiver. Better recovery will result

in a higher phase reference signal to noise ratio than in

the other modulatlons.
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CHAPTER 5

THE EFFECTS‘OF TIMING ERRORS
ON THE PERFORMANCE

The effects of timing errors on the performance are
first found for the case where the receive fiiter is assumed
not to distort the channel waveforms. These results
give an intuitive feel for the effects of the timing
errors. Numerical results are then given when the
distortion of the standard low pass recelve filters are
included. The effects of timing offsets will be the same

in both the I and the & channels.

5.1 The Performance of MSK Assuming No Filter Distortion

In MSK the phase transitions are always linear with
slope = m/2T. Thus, as seen before, the I and Q
channel waveforms are composed of half sine pulses of
length 2T. By examining the phase tree for MSK,

Fig. 2.2, 1t 1s seen that

r(t) = Ala cos(zmt) ] + n, (t) (2k-1)T €t < (2k+1)T

2k=-1
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ro(t) = Alay, sin(Fpt)] + Ny (%) OKT < t < (2k+2)T

Therefore, using only the in phase channel sampled at

time t = 2kT + A and assuming |A| < T

9

P_(8) = 2 P [A cos(gk &) + m(t) <0 | ay . = 1]
+5 P [Acos(J5A) +np 30| ay | = - 11}
= 2 P [ni(t) 2 A cos(zz 4)]
= 2 Ql:aér:'COS(le- A):, . (19)

The factor of two ls due to the error run property of the
deBuda receiver., The probability of error in (19) is
plotted against Az/ozn, in Filg. 5.1 for various values

of A

5.2 The Performance of TFMREC Assuming No Filter Distortion

The possible I and Q channel waveforms over two

bit intervals for all possible 1nltial states are shown
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in Fig. 3.3 for TFMREC. Each of the four sub-figures
contain the waveforms for the four possible combinations
of bits, each of which is equiprobable. Due to the
symmetry of the waveforms 1t 1s necessary to consider only
cases 3.3(b) and 3.3(c¢c) in the computation of the error
probability; the other two cases will yield duplicate
results.

The effect of the timing errors is independent of the
sign of A . Therefore,considering only negative A and

ol <,

Pe(A) = 2{% Pr{A sin[g%(T + A) + n;(t)] < 0}

+ F P {0 sin[f=(T - [A]) + ni(t) <0}

|a]) + 31 + ni(t) <0}

+ % P_{A sin[g=(T

+ % Pr{f; + 0 (t) <0}

A
o]

A T
(- sinlgm(T + )1}

+
) )
n

Q(

Q

|
PO
PO

n'

|
=

G- ST = 811} + 3 Q7 stnlf(T - [a]) + 1)
n' n'
(20)
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The additional factor of two is dne to the error run property
of the receiver.

The probability of error in (20) is plotted against
,Aﬁ/oé. in Fig. 5.2 for various values of A . It is seen

that TFMREC is more sensitive to timing errors than is MSK.

. .This greater sensitivity is due to the

A sin[gm(T - |a])]

term in (20). With zero timing offset this term has a phase
of m/4 radians. The slope of sin(x) at this phase is
consliderably greater than the slope when the phase is w/2
radians; the phase of the sinusoid in (19) is m/2 radians
with zZero timing offset. The increased slope causes the
degradation in performance due to timing errors to increase

as the minimum possible sample amplitude decreases faster.

5.3 The Performance of DMSK Assuming No Filter Distortion

The effects of timing errors in DMSK are found in the
same way as in the MSK and TFMREC cases. However, in DMSK
both of the receivers must be considered separately. The
in phase channel waveforms over two bit intervals are shown

in Fig. 3.4 for DMSK; they are shown for each of the eight
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initial states.

When using receiver 1 only Figures 3.4(b) and 3.4(0)
are applicable; the other two sub-figures have states that
are not allowed for this receiver. The sampling time for

the in phase channel is at t = (2k+1/2)T. 1If the offset

. .due to timing errors is restricted such that [A] < T/2

then,

P_(4) 2{%— P.[A cos(gmA) + ny (t) <07

1 A !
+ 5 Pr[—/-_2: + nl(t) \< O]}
A A | m
= Q = ) + Q\:EE'COS(ETA)‘J . (21)‘
n'

The factor of two is due to the error run property of the
receiver.

When using receiver 2, symmetry allows us to consider
only Figures 3.4(a) and 3.4(b). With receiver 2 a factor
of four is found in front of the expression for the
probability of error; a factor of 2 for the error run
property, and a factor of 2 because an error in either

channel will cause a phase error. The errors in the two
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'

channels are assumed to be 1lndependent. The error probability
is the same for both positive and negative A . Thus,
assuming that A 1s negative, |A| < T/2, and that the

sampling time wilthout an offset i1s 2kT,
= u{iprh ;!
Pe(A) = 4{2 Pr[/§ + n;(t) < 0]
A T Ty, !
+ 5 PL{A sin[zm(T - [2]) + 5] + mi(t) <O}

+ % P, 1A cos[g%(T - |a]) + %] + n;(t) > 0}

.
V2 o

= 2q( ) + Q{gL;sin[g%(T - 8) + T
n

n'

+ Q{2 | cos[o(T - [a]) + 711 1 . (22)
nl

The expresslons for the probabllity of error in (21)
and (23) are plotted against A{/c;; in Flg. 5.3 for various
values of A . It 1s seen that DMSK wlth receilver 2 has
the greatest, and DMSK with receiver 1 the lgast sensitivity
to timlng errors when compared with MSK and TFMREC. DMSK

wlth recelver 1 has the least sensitivity as half of the
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time the timing offset has no effect on the sample magnitude,
while the rest of the time the effect is the same as with
MSK. Also, in (21) the dominant term in the expression
is the one that is independent of the timing offsets.
DMSK with receiver 2 1s worse than TFMREC as the critical
terms in (22) are sinusoids that have a phase of w/4 radians
~when sampled with no timing offset but have twice the
frequency of the critical term in (20). The higher frequency
causes the slope to increase,resulting in the increased
sensitivity.

In summary, assuming no filter distortion the modulations
can be ranked in order of increasing sensitivity to timing
errors as follows: DMSK with receiver 1, MSK, TFMREC, DMSK

with receiver 2.

5.4 The Performance of the Modulations Including
Filter Distortion

The performance of the modulations with timing offsets
was found by replacing Y by Y + A in (12). The
calculaﬁions were made using the I and Q receivers with
the best standard low pass filters as the receiver filters.
The probability of error is plotted against the signal to

noise ratio for various values of A 1in Figures 5.4 to
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5.6 for MSK, TFMREC and DMSK respectively. The éampling
offset, Y , constant in this analysis, and is the same
as the offset calculated in Chapter 3. The timing offset
A 1s used to perburb this value. The same analysis technique
is used as in Chapter 3.

In general the sensitivity'to timing errors 1is found
to be slightly larger for each of the modulations when
filter distortion is included; the exception is MSK where
it is slightly less. Also, when distortion effects are
included MSK becomes the modulation with the least
sensitivity the new ranking for timing error sensitivity
becomes: MSK, DMSK with receiver 1, TFMREC, DMSK with

receiver 2.
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CHAPTER 6
CONCLUSION

6.1 Summary

The use of bandwidth-efficient modulations in digital
data communications 1s an important area of research. In
this report the use of standard low pass filters as the
receive filters in subobtimal, I and Q , recelvers for
MSK, TFMREC, and DMSK 1s considered. Each of these
modulations is from the class of continuous phase modulations
with modulation index h =1/2. |

The system model and the.general expression for
continuous phase modulations i1s discussed In Chapter 1.
The specific modulations and the receivers for each are
presented_in Chapter 2.

A numerical method for calculating the performance
of each of the modulatlons with arbitrary filters as the
arm fllters for the recelvers is gilven in Chapter 2. The
method assumes that: the additive noise is white Gaussian

nolise, there 1is no signal distortidn over the channel, and
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that the samples of the noise component at the receive
filter output are uncorrelated from sample to sample. The
use of Butterworth and Chebychev low pass fillters as the
receive filters 1s then considered. The filter from this
class that gives the lowest probabllity of error is then
found for each modulation. This probabllity of error is
then compared to the error probabililities obtained with
other, more complicated, receive filters.

The effects on the performance of a nolsy phase
reference and timing errors are examined in Chapters 4 and
5. In these investigations the I and Q receiver uses
the best filter of Chapter 3 as the receilve filter for

each modulation.

6.2 Conclusions

A receiver has been developed for DMSK that can
resolve a 90° phase ambiguity in the phase reference.
However, this recelver performs more than 3 dB worse than
DMSK with a deBuda type recelver, and 1s more sensitive to
a noisy phase.reference and timing errors. Thus, this
recelver should not be used unless the property of being

able to resolve the 90O ambigulty is of overriding concern.
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It was found that standard low pass filters can bé
used quite effectively as the receive filters of the sub-
optimal, I and Q , receivers used in this thesis. The
best low pass filters for the modulations were: a second
order Butterworth filter with BT = 0.55 for_MSK; fourth
order’ Butterworth filters for TFMREC, DMSK with receiver
1, and DMSK with receiver 2 where BT = 0.6, 0.55, and 0.8
respectively. For MSK, the best low pass filter resulted
in a receiver whose performance was only 0.5 dB away from
that of the matched fillter receilver. For TFMREC and DMSK,
the performance was only 1.6 dB and 0.7 dB worse than
the performance of Galko's receivers [17] with his optimal
linear filters. Differential encoding was used in the
schemes in this thesis, while it is not used in the matched
filter receilver, or Galko's recelivers. The standard low
pass fillters are much simpler than the matched filters and
Galko's filters, and will be a better design choice in many
design situations.

MSK was found to have both the best probability of
error, and the least sensitivity to a noisy phase reference
and timing errors. However, MSK has fairly poor bandwidth
efficiency and is thus unsuitable in some situations.

DMSK was found to have better probability of error than
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TFMREC, as it also does when maximum likelihood receilvers
are used. DMSK also has significantly less sensitivity to
a nolsy phase reference and slightly less sensitivity to
timing errors than does TFMREC. Thus, in a system using
simple recelvers which requires only the out-of-band
rejection of DMSK, and not that of TFMREC, DMSK should be

used in preference to TFMREC.

6.3 Suggestions for Further Work

A few possible extensions to the work 1in this report

are gilven below.

1. The performance of suboptimal, ‘I and Q ,
recelvers with standard low pass filters as the
receive filters should be studied for more
modulations, such as TFM, where g(t) is not

rectangular.

2. The receivers discussed in this thesis should be
built and experimental results compared to

theoretical ones.

3. The possibility of using analytical techniques
to find the best standard low pass fillter should

‘be considered; the method of Galko and
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Pasupathay [23] for the design of optimal linear

filters could provide a starting point.

Special carrier recovery technigues should be

examined for the different CPM schemes.

The performance degradation when non-linear and
bandlimited channels are used should be compared
between the receivers in this report and other
more complicated ones. Also, does the best
standard low pass‘filter change with the channel
type? Some channels of interest are those which
are bandlimited to a high enough degree to cause

a significant amount of intersymbol interference.
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