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ABSTRACT 

The use of Butterworth and Chebychev low pass filters 

as the receive filters in suboptimum in-phase (I) and 

quadrature-phase (Q) receivers is considered for several 

bandwidth-efficient modulations. These modulations are: 

Minimum Shift Keying (MSK), Tamed Frequency Modulation with 

Rectangular Pulse Shaping (TFMREC), and MSK with duobinary 

encoding of the source bits (DMSK). The sensitivity of the 

modulations with their I and Q receivers to a noisy phase 

reference and to timing errors is also investigated. It 

is found that the standard low pass filter receive filters 

perform quite well when compared to other much more 

complicated filters. The use of standard filters should 

thus be considered in any system design. The modulations, 

with their simple receivers, can be ranked according to 

sensitivity to a noisy phase reference and timing errors 

as follows: MSK, DMSK, TFMREC; MSK has the least sensitivity. 

This ordering is the inverse of the one for the best 

bandwidth efficiency. 
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SUMMARY OF NOTATION 

Symbols: 

a 	- the transformation of (3; 13 k  E{0,1}, 

ak {-1,1} 

A 	- the amplitude of the CPM signal 

- the sequence at the output of the correlator 

- the two-sided 3 dB filter bandwidth 

D 	- the delay operator 

dB 	- decibel 

dmin 	
- the normalized Euclidean distance 

E(.) 	- the expectation operator 

F-1 (.) 	- the inverse Fourier transform operator 

F(D) 	- the partial response polynomial 

g(t) 	- the frequency pulse of the modulator 

h 	- the modulation index 

h(t) 	- the impulse response of the receive filter 

H(f) 	- the Fourier transform of h(t) 

- max n-k : 	tk > nT 

- the duration of the pulse response in 

bit intervals 



n(t) 

- the number of possible states 

- the number of T length basic pulses 

- additive Gaussian bandpass noise 

n1(t),n2(t) 	- additive baseband Gaussian noise 

n'1(t),n'2(t) - the baseband noise after the receive filter 

- the number of possible waveforms 

pi(t) 	- one of the T length basic pulses 

Pi(f) 	- the Fourier transform of pi(t) 
- 

We) 	- the pdf of 6 

Pe 	- the probability of a bit error 

q(t) 	- the phase pulse of the modulator 

ri(t) 	- the output of the receive filter in the 

I channel 

rQ(t) 	- the output of the receive filter in the 

Q channel 

R 	
1  (T), n  

R
n

,
2
(T) 

- the autocorrelation function for 

n'1(t) and n'2(t) 

s(t) 	- the CPM signal 

Sn (f) 	- the power spectrum of n(t) 

Sn  (f),Sn  (f) - the power spectrum of ni(t) and n2(t) 
2 

S 	(f), 
n 1 	 - the power spectrum of n'i(t) and n'2(t) 

S
n2

(f) 

tk - the sampling point for the kth bit 

- the bit interval [seconds/bit] 



a 

11 

xi 

ui (t) 	- the input to the receive filter for the 

ith waveform 

w(t) 	- additive white Gaussian noise 

- half the bandwidth of the IF filter 

x(t) 	- the input to the receiver 

the source bit sequence 

- the estimate of the source bit sequence 

- the sequence after the differential encoder 

6(t) 	- the Dirac delta function 

an
2 	- the variance of n(t) 

2 	2 	
- the variance of ni(t) and n2(t) cri 1  'an2 

Y 	I 

a 2 , 	- the variance of ni(t) and n2(t) 
n 

Y 	- the sampling offset 

- the phase offset of x(t) 

- the phase of the carrier reference 

6 	- 

A 	- the timing offset 

- the phase reference signal to noise ratio 

- the convolution operator 

ED 	- the exclusive OR operator 

Abbreviations: 

AM/AM 	- amplitude modulation to amplitude modulation 



xii 

AM/PM 	- amplitude modulation to phase modulation 

BPSK 	- binary phase shift keying 

CPM 	- continuous phase modulation 

DMSK 	- duo-binary MSK 

FFT 	- fast Fourier transform 

- in phase 

ISI 	- intersymbol interference 

MSK 	- minimum shift keying 

pdf 	- probability density function 

- quadrature phase 

QPSK 	- quaturnary phase shift keying 

OQPSK 	- offset QPSK 

SNR 	- signal-to-noise ratio 

TFM 	- tamed frequency modulation 

TFMREC 	- TFM with rectangular pulse shaping 

Receiver 1 	- the deBuda receiver 

Receiver 2 	- the receiver on p.39 
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CHAPTER 1 

INTRODUCTION 

The purpose of this study is to investigate some simple 

receivers for certain bandwidth-efficient modulations that 

have a constant envelope. Bandwidth-efficient modulations 

are important due to the increasing demand for communication 

services and the fact that the available bandwidth is 

limited. For reasons of efficiency the power amplifier in 

radio communications equipment is usually operated near 

power saturation resulting in a non-linear amplification. 

Any amplitude variations in the input to this amplifier 

will thus result in AM/AM and AM/PM distortion as well as 

spectral spreading. It is thus desirable for the input to 

the amplifier to have a constant envelope. At present, the 

area of bandwidth-efficient modulations with a constant 

envelope is the subject of much research. 

Continuous phase modulation (CPM) with partial response 

encoding of the source bits is a modulation technique that 

has both bandwidth efficiency and a constant envelope. The 
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correlation of the bits introduced by the partial response 

encoding introduces controlled intersymbol interference (ISI) 

and smooths the phase of the signal. The amount of smoothing 

is a determining factor in the spectral efficiency of the 

modulation [1]. In this scheme coding and modulation 

techniques are used in tandem. 

Optimal decoding of the general CPM scheme requires 

maximum likelihood decoding. The Viterbi algorithm performs 

maximum likelihood detection and its use in decoding CPM 

signals has been described by Aulin [2]. With the Viterbi 

algorithm the number of possible states in the decoder can 

become quite large, making the implementation of the receiver 

very complicated. It is thus desirable to find simpler, 

and hence suboptimal, detectors for CPM. 

If the modulation index of the CPM scheme equals one-

half, it is possible to decode the signal using a receiver 

with an in phase (I) and quadrature phase (Q) arm 

detector [3]. If the two arms of the detector are uncoupled 

then the receiver is inherently suboptimal in CPM schemes 

where the I and Q channel waveforms are not independent. 

The arm filters of the receiver must be chosen to yield 

the best possible suboptimal performance; there are several 

strategies for doing this. If the filters are constrained 



to be linear, then, under this constraint, it is possible to 

choose them optimally [17]. The baseband I and Q 

waveforms can be broken up into a set of characteristic 

pulse shapes, each with the duration of the sampling 

interval. The arm filters can then be chosen to be the 

filters matched to the pulse shape of least energy. 

Alternatively, the arm filters can be matched to the average 

waveform [4], giving optimal results as the signal to noise 

ratio (SNR) vanishes, or to an approximation of the eye 

pattern [5]. 

Easily realizable filters such as Butterworth and 

Chebychev low pass filters can also be used as the arm 

filters in the suboptimal receiver. These filters degrade 

the performance from that obtained with more complicated 

filters; however, in many cases this degradation may not be 

too significant. Also, the more complicated filters that 

are matched to certain waveshapes tend to be more sensitive 

to channel distortion than an initially mismatched filter 

[6]; they are also often much more difficult to realize. 

This study investigates the effects of using standard 

low pass filters as the arm filters of I and Q receivers 

for certain CPM modulations. The sensitivity of these 

systems to a noisy phase reference and timing errors is 



also examined. All of the CPM schemes investigated have 

modulation indices equal to one-half; they are: Minimum 

Shift Keying (MSK), Tamed Frequency Modulation (TFM) with 

rectangular pulse shaping (TFMREC), and MSK with Lender's 

[7] duo-binary encoding of the source bits (DMSK). MSK 

is a standard modulation and it is used as a benchmark 

to compare the others. The type of I and Q receiver 

used for each of the modulations is the deBuda type 

receiver [8]. However, an alternative receiver is also 

presented for DMSK that can resolve a 90°  phase ambiguity 

in its carrier reference at the cost of increased sensitivity 

to noise and distortion; the deBuda receiver can resolve a 

180 0  phase ambiguity. The filter types used in the study 

are: second order Butterworth filters, fourth order 

Chebychev filters with 0.1 dB ripple, and sixth order 

Butterworth filters. The optimum filter type •and the 

corresponding best bandwidth is found for each modulation 

scheme. 

1.1 The System Model 

A block diagram of the communications system studied 

in this report is shown in Fig. 1.1. The output of the 

source is an infinitely long binary sequence a = (..., a-1, 



ak  E 

x(t)s(t)+n(t)  IF  
FILTER 
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Figure 1.1 : The System Model 



or 1 1011 ao, a l ,...); each symbol takes on the value 

with equal probability. The source bits are then 

differentially encoded; this must be done for the receivers 

in this thesis to work properly. The output of the 

differential encoder is the sequence 	= (..., e.-1, (30,  

with ek e {OM. The sequence e is then mapped into 

another sequence a such that if ek  =  0 then ak = -1, and if 

(3 1( = I then ak = 1. After the mapping the elements 

of a are correlated with each other in a partial response 

encoder [9]. The correlated sequence is b = (..., b-1, bo, 

131, ...), and 

E 	bk 
S(k - kT), 

k=_œ 

where Ct) is the Dirac delta function, is applied to the 

continuous phase modulator. White Gaussian noise with 

double sided power spectral density N0/2 is added to the 

modulator output. The combined signal then passes through 

an IF filter with centre frequency fc, the carrier frequency, 

and bandwidth 2W. The filter bandwidth is wide enough not 

to distort the signal; however, the noise process is 

filtered into bandpass noise. The signal is then received, 

and estimates made of the source bits Œk.  The estimate 

sequence is 61 = (..., a-1, ao, al,...). 
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The bandpass noise can be written as [10] 

n(t) = n i (t) cos(2nfet)- n2(t) sin(2ufe t) 	(1) 

where ni(t) and n2(t) are independent baseband Gaussian 

noise process with 

S(f) =  Sn(  f) = 	)No 	If' 	W 

0 	elsewhere . 

S (f) and S
n2

(f) are the power spectra of ni(t) and n2(t) 
n1 

respectively. The variance of the noise processes will be 

2 	2 a 	= a 	= 	2 
n2  

1.2

= 2 N o  W . 
n1 

1.2 The General CPM Scheme 

It is possible to write a general expression for the 

constant envelope CPM signals s(t). The expression is 

s(t) = A cos[2nf ct + (1)(t)] 	(2) 

where A = 	El)  is the energy transmitted per bit, 

is the reciprocal of the bit rate, and cp(t) is the 

information-carrying phase. The phase term can be broken 



down as follows: 

Co  

q(t) = 2nh E bk 
q(t - kT) 

k=-03 

where h is the modulation index, and q(t) is the phase 

response (phase pulse) of the modulator. The output of the 

correlator, b , is determined by the partial response 

polynomial F(D), where D is the delay operator defined 

by 

= an D
k 
 . a

n+k 

F(D) is defined by 

E f Dn 

n=0 
F(D) -  	(3) 

E f 
n=0 n  

where fn  is a real number. The division in (3) is necessary 

for normalization so that schemes which are identical 

except for different partial response polynomials will have 

the same maximum phase excursion per bit interval. The 

output of the correlator will be 

-8- 

bk 
= a

k 
F(D) . 



The phase response can in tura be defined by the 

frequency response (frequency pulse) g(t); ie: 

q(t) = f 	g(T) 

-œ 

In practical modulations g(t) must be time limited; using 

this and the fact that the system must be causal 

g(t) = 0 t 	, 	tL 

where L is a finite number. Also, for normalization 

purposes 

f g(t) dt = 1  2 	• 
0 

The above implies that 

t 	0 

q(t) = 

t L 

The nature of g(t) and F(D) determine the smoothness 

of the phase of s(t) and thus are also significant in 

determining the spectral properties of the modulation. In 
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general, the smoother the phase of the modulation the more 

rapidly the power spectrum falls off. Baker [1] has shown 

that the power spectrum decreas'es as 

I f i-(2y + 2) 

where y is the number of continuous derivatives of g(t). 

1.3 Literature Review 

The class of bandwidth-efficient constant envelope 

modulations has been an area of much recent research. These 

signals can all be written in the form s(t) = A cos[w e t + 

cp(t)] where (p(t) follows a coded pattern in response to the 

data. Anderson et al. [11] have shown that modulation codes 

of this class can approximate any power-bandwidth combination 

consistent with Shannon's Gaussian channel capacity. However, 

Anderson cautions that efficient signals have an exact 

synchronization requirement resulting in a trade-off between 

performance and receiver complexity. The class of CPM 

schemes is a sub-class of the above general class of schemes. 

CPM 	schemes with and without partial response 

encoding of the bits has been studied by Aulin et al [12] 

[13]; maximum likelihood detection of the received signal 
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is used in both investigations. A good explanation of 

general partial response techniques is given by Kabal and 

Pasupathay [9]. In [12] Aulin gives the performance and 

the power spectra of full response CPM schemes with different 

modulation indices. Aulin [13] then includes partial 

response encoding of the source data in order to improve 

the spectral performance; receiver and transmitter 

implementations are also discussed and it is found that an almost 

rational h is necessary for the modulation to be easily 

implemented. 

A numerical method for finding the spectral properties 

of partial response CPM signals has been given by Deshpande 

and Wittke [14]; the power spectrum is computed for several 

examples. Aulin et al. [15]  have examined the effect of 

changing the frequency response pulse, g(t), in CPM signals. 

Pulses of length 2T with different numbers of continuous 

derivatives are studied and the trade-off between spectrum 

and performance examined. Deshpande and Wittke [16] have 

developed a technique to find the T - length frequency pulse 

that results in the smallest out of band power for the 

binary full response case. Lower bounds on the maximum 

band efficiency obtainable by choosing different T length 

frequency pulses were found for the h = 1/2 scheme. 

Galko and Pasupathay [23] have developed a method for 
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finding the optimal linear receiver for digital signals. 

Their linear receiver divides the signal space up into M 

regions separated by linear boundaries, where M is the 

number of hypotheses. Galko and Pasupathay [17] have applied 

this theory to find linear receive filters for I and Q 

receivers used to demodulate binary CPM schemes with 

h = 1/2; they observe the I and Q channel waveforms 

over L bit intervals and take each possible waveform as 

a point in the signal space. The signal space is divided 

up into two decision regions: one for the signals with a 

positive value at the sampling point, and another for 

signals with a negative value. The optimum linear receiver 

is then found to make the decision. The performance of 

this receiver is found to be quite close, within a fraction 

of a decibel, to the performance of the maximum likelihood 

receiver. Aulin et al [3] have examined the performance 

of I and Q receivers for the above modulations using 

different types of arm filters; two used are: a filter 

based on the average waveform, and a filter matched to the 

minimum energy baseband pulse shape. 

MSK is a CPM modulation with h = 1/2 that has received 

quite a bit of attention for its use with bandlimited 

channels [18]. MSK is a linear modulation, even though it 
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is generated in a non-linear manner, and has been shown to 

be a special case of Offset Quadrature Phase Shift Keying 

(OQPSK) with sinusoidal symbol weighting [19]. deBuda [8] 

has devised an optimal coherent I and Q receiver for 

MSK that is easy to build. The receiver is only optimal 

if arm filters matched to the MSK baseband pulse are used; 

however, other filters may achieve a performance level that 

is close to the optimum. Since MSK is linear, Prabhu [20] 

has been able to find an analytical method to determine 

the degradation in performance suffered by MSK when it is 

bandlimited. Prabhu found that for severe bandlimiting MSK 

is inferior to OQPSK, while for slight bandlimiting MSK is 

a little bit better than OQPSK. 

TFM is a CPM scheme with h = 1/2 developed for use in 

digital mobile radio [5]. TFM uses a correlator that 

correlates threesourcebits together and a non-rectangular 

frequency pulse to obtain spectral economy. DeJager and 

Dekker [5] describe the operation of TFM and present the 

results of a test implementation. A deBuda-type receiver 

is used in this implementation. 

Rhodes [21] has developed a spectrally efficient 

constant envelope modulation called Frequency Shift Offset 

Quadrature Modulation (FSOQ). FSOQ is spectrally equivalent 



to DMSK, but is generated as a form of OQPSK. Rhodes has 

simulated FSOQ in a channel with the characteristics of 

INTELSAT IV. It is concluded that FSOQ requires twenty 

percent less bandwidth than MSK for good performance. *  

Jones [6] has considered the replacement of matched 

filters in an I and Q receiver for QPSK by standard 

two pole Butterworth low pass filters. The performance 

degradation with the change was quite small. Jones's best 

Butterworth filter .had  a BT product of 0.5, where B is 

the two sided 3 dB filter bandwidth. McCreath and McLane 

[22] have laid out an optimization procedure to find the 

best bandwidth and sampling time for Butterworth and 

Chebychev receive and transmit filters for a Binary Phase 

Shift Keying (BPSK) system; both linear and non-linear 

channels were considered. 

Rhodes [30] has calculated the effects of a noisy 

phase reference on BPSK, OQPSK, and QPSK schemes. Matyas 

[29] has extended this work to include MSK. The schemes 

can be written in order of decreasing sensitivity to a 

noisy phase reference as: BPSK, MSK, OQPSK, QPSK. 

DMSK has the same performance as FSOQ for an additive 

white Gaussian Noise Channel. 
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1.4 Presentation Outline 

The system model and the general expression for 

continuous phase modulated signals has been presented in 

Chapter 1. The specific modulations used in this report 

and their I and Q receivers are discussed in Chapter 2. 

In Chapter 3 the use of Butterworth and Chebychev low 

pass filters as the receiver filters is considered. The 

optimum low pass filter is found for each of the modulations 

and the results compared to those obtained when other 

types of receive filters are used. The effects of a noisy 

phase reference on the performance of the modulations is 

considered in Chapter 4 and that of timing errors in 

Chapter 5. Finally, conclusions and suggestions for further 

work are given in Chapter 6. 
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CHAPTER 2 

A DESCRIPTION OF THE MODULATION SCHEMES 

The results in this report are given for three specific 

modulation schemes: MSK, DMSK and TFMREC. The power 

spectra for these modulation schemes, and that for QPSK, 

are plotted in Fig. 2.1. The bandwidth efficiency, 

minimum Euclidean distance, and performance loss between 

the modulations when maximum likelihood decoding is used 

are given in Table 2.1 [14]. A description of the three 

modulation schemes of interest and receivers for them 

follows. 

d 2  min 
Type of 	Efficiency bits/sec/Hz 	Normalized 	10 log -T---- d 	min (MSK) 

Modulation 	 Minimum 

	

99% power 99.9% power 	Euclidean 
Dist. 
drain . 

	 , 

QPSK 	0.1 	0.01 	/77 	0.0 
MSK 	0.85 	0.36 	J2.0 	0.0 
DMSK 	1.09 	0.56 	1/177-3. 	-0.63 
TFMREC 	1.25 	0.79 	/1.45 	-1.30 

, 

Table 2.1: A Comparison of the Modulations 
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2.1 A Description of MSK 

A frequency shift keyed (FSK) signal with modulation 

index h= 1/2 has a continuous phase; this special case 

of FSK is termed MSK. Due to its continuous phase MSK is 

also a CPM scheme and can be written in the form of (2). 

MSK has no partial response encoding making F(D) = 1, and 

bk = ak. Therefore, 

u 
(1)(t) = n j 
	

E 	ak g(t - kT)dt 
-œ k._03 

Also, for MSK 

( 14) 

2T 
1 

0  <t <T 

g(t ) = 

0 	elsewhere 

Therefore, 

n-1 
enT)= Z ak 

k=-co 

where n is an integer. 

If et) is considered modulo 2n then it can take on 

only four possible values at the ends of the bit intervals; 

(5) 
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these values are: 0, r/2, u, and 3r/2 radians. By observing 

(5) it is seen that the phase increases by r/2 radians 

during the kth bit interval if ak = 1, and decreases by 

u/2 radians if ai  = -1. By examining (4) it is seen that 

this phase change occurs linearly. The phase behaviour of 

' all possible MSK signals is thus easily described by a phase 

tree. The tree with (KO) = 0 radians is shown in 

Fig. 2.2. 

One of the most important properties of MSK is  that  

if (KO) is initially 0 or u radians then 

( 2k) 	{OM mod 2n 

cp(2k+1) e {r/2, -7/21 mod 2u 

where k is a positive integer. This property is easily 

seen to be true when Fig. 2.2 is examined. The phase of 

MSK thus exhibits what shall be termed the half plane 

property: at even bit times the decision regions for q(t) 

in the phase plane are the two half planes separated by 

the imaginary axis while at odd bit times the decision 

réglons are separated by the real axis. This half plane 

property will also appear in the subsequent modulations. 

A receiver that utilizes the half plane property of 

MSK has been presented by deBuda [8]. At even bit times, 
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Figure 2.2 : The Phase Tree for MSK 



deBuda's receiver determines whether the phase is 0 or n 

radians with an I channel decision. If the I channel 

output is positive then the decision is that the phase is in 

the right half plane; if it is negative, then the decision 

is that the phase is in the left half plane. Similarly, 

the Q channel is used to determine whether the phase is 

r/2 or -r/2 radians at odd bit times by making a decision 

on the top or bottom plane. A phase error results when 

the I  , or Q , channel output causes the decision to be 

made on the wrong half plane. A block diagram of deBuda's 

receiver is given in Fig. 2.3. Techniques for implementing 

the carrier and timing recovery circuits are given in [8]. 

A receiver such as deBuda's gives out transition 

information about the data bit sequence a ; that this is 

so can be seen by considering the phase difference 

ekT) - [ (k + 2)T] . 

This difference has only two possible values: 0 , and n 

radians. If the difference is r radians then ak+1 must 

be equal to ak, while if it is 0 radians then ak and ak+1 

must be opposite. Thus, at t=(2k+2)T the output of the 

I channel exclusive OR gate in Fig. 2.3 will be high if 
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a
2k 

= a2k+1' 
and low if a

2k 	
a2kii . The results are 

similar for the Q channel at odd bit times. 

The source bits can be obtained at the receiver output 

if they are differentially encoded prior to the mapping to 

the a sequence. This encoding operation is shown in 

Fig. 1.1 and can be written mathematically as 

k+1 = k G k 

where ED denotes exclusive OR, and the bar denotes the 

complement operation. Thus , 13 1(4.1 	i3k , and hence 

ak+1 	
a
k

, implies that u_ = n 
k 	"; "k+1 = 13k  implies that 

= 1. 
a l( 

The interleaver in Fig. 2.3 recreates an estimate of 

the source stream from the output of the I and Q channels. 

It should be noted that due to the memory involved in the 

differential encoding, an error in detecting a transition, 

a phase error, will result in a double error in the source 

stream estimate. Thus, ignoring the small probability of 

multiple phase errors in a row, the probability of error is 

effectively doubled. 

2.2 A Description of TFMREC 

TFM is a CPM scheme with h = 1/2 that has very good 

spectral efficiency. This spectral efficiency is obtained 



1 
2T 0 	t 	T 

elsewhere, 

g(t) = 

-24- 

correlating the bits before modulation and then using a 

non-rectangular g(t) that provides extra smoothing of the 

phase. For TFM [3] 

••n•nn 	 n1101, 

s ( t ) : 1 
2T 

sin(n) 	2 sin(n) -----c 2nt os (II)_(71I)2 sin (n) 
T 	n 2 	TT 	TT 	T 

nt 	24 	
(n) 3  

--IF 	T .... 

and 

1 + 2D + D 2  
F( D) - 

4 

b k = (a
k 

+ 
2ak-1 

+ 

If g(t) is now made into a rectangular pulse, 

but the same modulation index and F(D) are kept, then a 

different CPM scheme is obtained. This modulation is termed 

TFMREC. The spectral efficiency of TFMREC is less than that 

of TFM, but it is still quite good and the resulting 



modulation much simpler. 

The correlation of the source bits causes the phase 

changes to be smoothed; however, the number of points in 

the signal constellation increases to eight increasing the 

sensitivity to noise. It should be noted that the signal 

constellations of TFM and TFMREC are identical; only the 

form of the transitions between points in the constellation 

changes. 

In both TFM and TFMREC there are certain phases that 

are allowed at the end of even, and odd, bit intervals 

while others are not possible. The state of the modulation 

at the start of the kth bit interval is defined as 

[cp(kT),  Œk2,  Œk-1 ] 	• 

The allowed and forbidden states are the same for both TFM 

and TFMREC. The allowed states when k is even and odd are 

shown in Figures 2.4(a) and 2.4Cb) respectively. In these 

figures it is assumed that the initial state of the 

modulation was in one of the "allowed" states. In Fig. 

2.5(a) and Fig. 2.5(b) the phase transitions resulting from 

the bits ak  and Œk+1 are shown; all possible initial states 

are considered. It can be seen from Figures 2.5(a) and 

2.5(b) that the modulation is always in one of the allowed 
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states at t = kT no matter what the value of k . 

From Figures 2.5(a) and 2.5(h) it can be seen that 

TFMREC, and TFM, has the same half plane property discussed 

earlier for MSK. It is also evident that  Œk = etk-1 

that cp(kT) and ([(k+2)T] are in opposite half planes, and 

that (1)(kT) and [(k+2)T] in the same half plane implies 

that  Œk 	ak_i. Thus, it is possible to demodulate TFMREC, 

and TFM, using a deBuda type receiver; however, the optimum 

receiver arm filters will be different in the MSK, TFM, and 

TFMREC receivers. As in MSK the source bits must be 

differentially encoded for estimates of them to come out of 

the receiver. Also, a phase error results in a double error 

in the source bit estimate. 

Another property of TFMREC, and TFM, is that energy is 

transmitted at the carrier frequency; this does not happen 

in MSK. The pure carrier is transmitted when bk = 0 which, 

for independent data, occurs one quarter of the time. Thus, 

better carrier recovery schemes should exist for TFMREC 

than for MSK. 

2.3 A Description of DMSK 

DMSK uses duobinary encoding [7] of the source bits 

before they are applied to a MSK modulator. Duobinary 

encoding gives a better bandwidth efficiency than any other 

implies 
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partial response scheme that correlates two bits [14]. 

For DMSK: 

F(D) = (1 + D)/2 

(ak  + ak_1 )/2 , 

h = 1/2 , 

t 

q(t) = n  1 	E 	b
k 
g(t - kT)dt , 

From the definition of bk it can be seen that a phase shift 

of ± n/2 radians occurs in a given bit interval if ak = ak-13 

while the phase is constant if ak  # ak_l. 

Due to the partial response encoding of the bits in 

DMSK it is necessary to define the state of the modulation 

at the start of each bit interval. The state at t = kT is 
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given by the pair 

[CkT), ak_i ] . 

The interaction between the various states can be described 

quite easily using a phasor state diagram. Such a diagram 

is shown in Fig. 2.6. 

Following the technique presented by Galko and 

Pasupathay [24] it is possible to consider DMSK as MSK with 

intersymbol interference. The first thing to notice is that 

in DMSK the phase change due to any ak is always ± n/2 

radians; ± n/4 radians in the bk term and ± r/4 radians in 

the b k+1 term. Assuming, without loss of generality, that 

cl)( 0 ) = 

k-1 
(p(kT) = 	E a. - 2 i=0 	ak-1 + Z- a-1 • 

The ak-1 
term is subtracted because it has been implicitly 

included in the summation. The a-1 term is added as it 

affects the phase in the zeroth interval. The term 

k -1 
E a 2 1 . 0  i 
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Figure 2.6 : The State Transition Diagram for DMSK 



(6)  

(7)  

can be recognized as (5), the phase term for MSK. Thus, 

the term 

- ak_ i  

can be viewed as intersymbol interference and the term 

7r 71- al  

as a constant phase offset. If the initial phase is set 

such that 

(1)( 0 ) = - 1.  a 4 -1 3 

then 

k-1 
(kT)

n  

2 i=0
a1 - 	. 

Assuming that the data sequences are identical, and 

that the initial DMSK phase is as specified, (7) implies 

that the MSK and DMSK phases will always be within n/4 

radians of each other at t = kT. More importantly, the DMSK 

phase will always be in the same half plane as the MSK phase 

giving DMSK the half plane property. Thus, DMSK can be 



demodulated using a deBuda type receiver as long as the 

initial phase is chosen as in (6). Again, as in MSK and 

TFMREC, the source bits must be differentially encoded and 

a phase error results in a double error in the source bit 

estimate. 

The state of DMSK is restricted to certain values 

depending upon whether the phase is at the start of an even 

or odd bit interval. The allowed states are shown in 

Fig. 2.7 while the phase transitions due to ak  and ak+ 1 

are shown in Fig. 2.8. 

The I and Q channel waveforms for DMSK should not 

be sampled at the same time as in MSK. Consider the four 

possibilities for the DMSK phase at the end of an even bit 

interval with the initial phase as in (6): if the state is 

[n//4 , 1] then 

cp[(2k+1)T] = cpmsK[(2k+1)T] - 	; 

if the state is [Tr/4, 0] then 

[(2k+1)T] =(PMSK[(2k+1)T] 

if the state is [-37r//4, 1] then 

	

e(2k+1)T] = (PmsK[(2k+1)T] - 71 	• 

	

4 	' 



(1) 

• 

(0) 
• 

(1) 

• 
(1) 

1m 

(1) 

• 
(0) 	 (0) 

• • 

• 
(0) 

t=2kT 	 t=(2k+1)T 

Figure 2.7 : The Allowed States for DMSK with the 
Half Plane Property of MSK 



(b) INITIAL STATE: (-37r/4 1 0) 
Im 	- 

j( .(219)(010) 
(0) 

Re 
(00) 

( 000) •‘,‘ \Cool) 
rn- à, 	I 

1(111) 
t)' — 

Im Im 

.010 

•••0. 

)(lio) 
II )  

-36- 

OEM MN> MID 

( Œ k-I, ak, a k+1) 

Im 	 Im 

FIRST BIT 
SECOND BIT 

.de 
(I ll).  

(100)%,,,, 

••••n 

..—/(110) 

'1 (11) 
	 Re 

f -.' 

(001) n -• 

(0 0)/4  
• (000) 

Re 

• 
de (o il) (,0) ,(,„,) 	(0,0),  

, 

(o) INITIAL STATE: (-7r/4,I) 
Im 

(c ) INITIAL STATE: (37r/4,1) 	(d )INITIAL STATE:(7r/4,0) 

(000) . 	• (011) 	 (100) • 
f 	

•t‘ 
/ 

I 	1 	 1  

	

, 	 Re 
1 	 i 	 I 
..\.. 	/.. 

	

(0).., 	 \ (I) 

(e) INITIAL STATE: (-7r/4,0) 

(000( ;'%--------egolo)  

-- 	en ‘t_d 

,,.-•,„4 	1m 

	

.-. 	 --. 

	

ool) 	clio)( i4I-Fi 
.....e 

?(o) 	\ 	
.7. 

1 	 1 	 1 Re 

OW\ 

(g) INITIAL STATE: (37714,0) 	(h) INITIAL STATE : (7r/4,1) 

Figure 2.8 : The .Phase Transitions for DMSK 
Over Two Bit Intervals 

( f ) INITIAL STATE: (-37r/4,I) 

1 

(0 1 I)
%

gb 	
•,(000) 

Im 

(1)\-1̀  

I 	Re 
1 

• (Ho) 



. if the state is [-I./4, 0] then 

cp[(2k+1)T] = Ism[(2k+1)T] + 	. 

For MSK the sample in the Q channel takes place at 

t = (2k+1)T and, assuming no distortion from the receiver 

filter, 

[(2k+1)T] = A sin[(2n+1)I] = ± A 
2 

where rQ(t) is the signal component in the Q channel after 

the receive filter and is shown in Fig. 2.3. If the Q 

channel waveform for DMSK is sampled at the same time then 

r[(2k+1)T] = A sin[(2n+1) 71] = + 
4 	- 

From the above it can be seen that the Q channel waveform 

should always be sampled at t = (2k+1 + 1/2)T. The extra 

T/2 seconds causes the amplitude of the DMSK sample to equal 

the amplitude of the MSK sample half of the time. The other 

half of the time the phase is constant in the (2k+i)th bit  

interval and the delay will not cause a change in the sample 

amplitude. A similar argument can be made for sampling the 
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I channel waveform at time t = (2k+1/2)T. 

DMSK has the property that the phase stays constant in 

a given bit interval half of the time; this assumes that 

the source bits are independent. Thus, the pure carrier is 

transmitted 50% of the time at four different phases. 

Fourth power carrier recovery techniques can thus be used to 

extract the carrier reference; however, a 90 0  ambiguity 

will result in the phase and the deBuda receiver can only 

resolve a 180 °  ambiguity. Using the pure carrier should 

provide better carrier recovery than that for the deBuda 

receiver [8] which was designed for MSK. A receiver has 

been developed for DMSK that resolves a 90 °  phase ambiguity 

at the expense of increased sensitivity to noise. This 

receiver is described below; it is referred to as receiver 

2 for DMSK while the deBuda receiver will be referred to as 

receiver 1. 

Receiver 2 for DMSK is shown in Fig. 2.9. For this 

receiver to work DMSK must be generated with 4)(0) = nr/4, 

where n is an odd integer; this means that 

n 	e 3n 	3n (kT) e '{, - 	- -7/  • 

The receiver detects whether or not the phase has changed 

during a bit interval. The detection is made by observing 
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both the I and Q channels together. If either channel 

output changes, ignoring noise and distortion, there must 

have been a phase transition; if neither changes then there 

was no phase transition. Mathematically, 

cos[4(kT)] = coS{e(k+1)TD 

and 

sin[qkT)] = sin {e(k+1)Til 

implies that there was no phase transition in the kth bit 

interval. It is impossible for the samples of both channels 

to change during one bit interval. Thus, the output of the 

receiver will be high if a phase transition occurs and low 

if no phase transition occurs. A phase transition implies 

that ak = 

ak 	ak_i. Therefore, it is necessary to use differential 

encoding of the source bits to get estimates of the source 

bits at the receiver output. The exclusive OR gates detect 

transitions in the channels. Due to its memory, this 

receiver also has the property than an error in detecting 

a phase transition results in a double error in the estimate 

ak_i while no phase transition implies that 



of the source bit stream. 

It is possible to detect errors in DMSK by observing 

patterns of phase changes; the process is similar to that 

done with patterns of bit changes in ordinary duobinary 

transmission [7]. In DMSK the polarities of the u/2 radian 

phase changes on either side of a consecutive string of no 

phase changes must be opposite if the number of intervals 

with no phase change is odd; the polarities must be the 

same if this number is even. If the above condition is not 

satisfied than an error must have occurred and retransmission 

can be requested. Error detection cannot be done in this 

way with MSK as MSK has no memory. It should be possible 

to detect errors in TFMREC but the rules are expected to 

be quite complicated. 

An implementation technique for the above error 

detection technique has been designed for use with receiver 

2 for DMSK. This implementation can be adapted for use 

with receiver 1 by including parts of receiver 2 in receiver 

1. The error events can be detected by observing the I 

and Q channel outputs, after their respective exclusive 

OR gates, on either side of a string of no phase changes. 

A no phase change occurs when the output of the receiver 

is zero. A flip flop can thus be set or cleared depending 

upon whether the number of no phase changes is even or odd. 



I or Q Channel 	I or Q Channel 

{1, 1,1} 

{0,0,0} 

. {1,0,1} 

. {0,1,0} 

{1,1, 0 } 

{1,0,0} 

{0 ,0, 1} 

{0,1,1} 

(a) An Even Number 	(h) An Odd Number 
of No Phase 	of No Phase 
Changes 	Changes 
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Memory elements are used to store the I and Q channel 

outputs. The set {a,b,c} has the following meaning: a is 

the channel output two bit intervals before the start of 

the no phase change string, b is the channel output one 

bit interval before, and c is the output after the string. 

It should be noted that the channel output will be b through-

out the string of no phase changes. The error events for 

either channel are shown below as {a,b,c} in Table 2.2. 

Table 2.2: Error Eventà in the Channels 



CHAPTER 3 

STANDARD LOW PASS FILTERS AS 
RECEIVER ARM FILTERS 

The receivers in Figures 2.3 and 2.9 are not complete 

unless the receive filters are specified. For MSK, as in 

QPSK, the I and Q channel waveforms are made up of one 

basic pulse shape that is repeated again and again. The 

optimum arm filter is the one matched to the respective 

pulse shape. These pulsesare: for MSK 

cos 41) -Tt  

p ( t 

elsewhere , 

and for QPSK 

T 

P t >*= 

0 	elsewhere . 
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The matched filter error performance in a receiver, without 

differential encoding, on a white Gaussian noise channel 

will be [25] 

Pe  = Q( -77) , 

where the Q function is defined as 

00 

Q(x)  _ 1 f e  -v 2 /2 
dv . 

The performance with a maximum likelihood receiver can be 

upper bounded by [25] 

d2min 

N o  

Thus, from Table 2.1, it is seen that the matched filter 

receiver and the maximum likelihood receiver perform 

identically for MSK and QPSK. For most CPM modulations, 

including DMSK and TFMREC, there is more than one basic pulse 

shape. This multiplicity of pulse shapes means that there 

is no matched filter and an alternative must be found for 

the arm filters. Some strategies to find these filters have 

been discussed in section 1.3. Many of the filters found 
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with these strategies are quite complicated and require 

correlations over many bit intervals. The correlations are 

usually implemented using weighted integrate and dump 

circuits; these need the generation of a complex signal, a 

multiplier, and precise timing of the dump operation. Also, 

in channels with distortion the best suboptimal filter may 

have much greater distortion loss than a simpler filter. 

It is of interest to consider the use of standard low 

pass filters as the receive filters. I and Q receivers 

using these standard filters have a probability of error 

that is close to the smallest obtainable. Also, the 

standard filters are much cheaper and easier to implement 

than the best suboptimal filters. 

The same filters are used in both the I and Q 

channels as the channel waveforms are stochastically 

identical. Also, the analysis need only be done for one of 

the two channels. 

The performance of the modulations with their receivers 

is first dealt with assuming no filter distortion. The 

effects of various standard low pass filters as the receive 

filters is then considered and the best standard low 

pass filter found for each modulation. 
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3.1 The Performance of the Modulations Assuming No 
Filter Distortion 

Assuming without loss of generality that q)(0) = 0 it 

is found that for MSK 

' n 	t = 2kT 

(1)(t) = 

' 	t = (2k+1)T . 

Therefore, for the receiver in Fig. 2.3 

r1 (2kT) =  A cos[4)(2kT)] = ± A 

The expression for the probability of error for MSK can 

thus be written as 

P
e 

= 2{1  P Er (2kT) + n1(2kT) < 0 	(1)(2kT) = 0] 2 r I 

1 + — P [r (2kT) + n1(2kT) 	0 I cp(2kT) = 2 r I 

A = 2Q( 	, a 

where ni(t) is the noise at the receiver filter output, and 

a 2  ' iS its variance. The factor of two in the above n 

(8) 



expression is due to the error run of length two in the 

deBuda receiver. 

The probability of error of TFMREC in the in phase 

channel at t = 2kT is the same no matter what the state of 

the modulation at t = (2k-2)T. The reason for this invariance 

is that cos[(2kT)] always equals one of the set {1, -1, 

1//7, -le} each with equal probability. For example, 

assume that at t = (2k-2)T the TFMREC state is given by 

[0,1,1]. Then, at t = 2kT the possible phases are: 0, 

n/ 14, 3n/4, n. Similar reasoning can be made for the 

quadrature channel. The probability of error can be found 

by finding it for any one of the eight possible states at 

t = (2k-2)T. Assuming the state to be [0,1,1] it is found 

that 

pe  = 2{t Pr [ri (2kT) + n1(2kT) < 0 I (1)(2kT) = 0] 

1 
•

V PrErI (2kT) + ni(2kT) < 0 1 ,4)(2kT) = n/4] 

1 V PrErI( 2kT) + nt(2kT) > 0 I (p(2kT) = 3n/4] 

1 
+ V Pr 

(2kT) + ni(2kT) > 0  J(I)(2kT) = n]). 

= Q(  A ) 	Q(  A  ) 

en' 	170 
(9) 

n' 
The factor of two in front of the brackets 
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is due to the receiver's double error property. 

Recall that in DMSK with the deBuda type receiver the 

I channel waveform is sampled at t = ( 2k4)T and the Q 

channel waveform at t = ( 2k+14)T. Using the I channel 

and examining Figures 2.6 and 2.7 it can be seen that no 

matter what the state at t = 2(k-1)T the term cos{[(2k+i)T]} 

will always be from the set {1, -1, 1/V-2, -1/V2}; each of 

the elements occurring with equal probability. For example, 

if the state at t = 2(k-1)T is [n/4, 0] then 

e(2k4)T] e'{3e, u, Zei.  0 u  3 p 

with 0 and u having twice the probability of the others. 

Thus, cos{[(1)(2k4)T} is from the same set as cos[q5(2kT)] 

in TFMREC and the performance of DMSK with receiver 1 will 

be the same as that of TFMREC. 

When using receiver 2 for DMSK both of the channels 

must be considered together as an error in either channel 

will result in a decision error. The probability of error 

at t = kT is independent of the state at t = (k-1)T. The 

probability of error in each channel is also assumed to 

be independent of the probability of error in the other 

channel. Also, the probability of getting an error in 
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both channels at once is very small and can be ignored. 

Assume that the state at t = (k-1)T is En/4, 1], then 

Pe  = 	Pr[ri (kT) + ni(kT) 	I ekT) = 

,l rr  
L I,LrQ (kT) + n2(kT) < 0 I cldkT` 

1 i P
r ErI (kT) + ni(kT) < 0 1 	CkT) = n ] 

+ 1  P [r (kT) + h2(kT) <0 I CkT) 2 r Q 	- V 

4 Q(  A 	) . 
o . 

Again, the factor of 2 is due to the error run property 

of the receiver. 

The probability of error expressions in (8), (9), 

and (10) are plotted against A 2 /a,21 , in Fig. 3.1. It is 

seen that the performance of MSK is 3 dB better than that 

of DMSK with receiver 2. The performance of TFMREC and 

DMSK with receiver 1 tend to that of DMSK with receiver 2 

as A 2 /0. 121 , gets large. 

(10 ) 
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3.2 The Method for Calculating the Performance 

Due to the correlative encoding and the non-linearity 

of the modulation it is difficult to calculate the effects 

of the receive filter on  r1 (t) and r(t) analytically. 

Also, the non-linearity makes it impossible to use a 

bound for the amount of intersymbol interference such as 

that developed by Glave [26]. 

It is possible to find the probability of error 

numerically if the intersymbol interference is assumed to 

extend over a finite amount of time. Mathematically, 

p(t) * h(t) = 0 LT < t < 0 

where p i (t) is the ith basic pulse shape for the modulation, 

h(t) is the impulse response of the receiver arm filter, 

* denotes convolution, and L is an integer. The receive 

filter is assumed to be causal. 

It is of interest to consider the noise component 

after the receive filters. The noise will still be 

Gaussian as the filters are linear [25]; however, the power 

spectrum will no longer be flat. The autocorrelation 

function , Rht(T) and Rn i(T), of the noise after 
2 
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the filters is given by [25] 

CO 

R t (T) = R
n

12 (T) = 
ni S f (f)e

-1271-fT 
 df ni 

CO 

where S 	(f) is the power spectrum of the noise at the ni 

filter output. If S ni (f) is the power spectrum of the 

noise before the filter then 

S f(f) = IH(f)I 2  S
ni

(f) ni 

where H(f) is the Fourier transform of h(t). As S nl(f) = N
o 

for all frequencies where the magnitude of 1H(f)1 2  is 

significant 

CO 

Rri fi ( T ) = R11 ;(T) = No 	12eJ2nfTdf f 	IH(f) 	(11) 
CO 

This autocorrelation function is plotted in Fig. 3.2 

for some of the receive filters that were used in this 

thesis. The sampling points are spaced 2T seconds apart 

for the deBuda receiver and T seconds apart for receiver 

2 for DMSK. From Fig. 3.2 it is seen that the autocorrelation 

function for T = 2T is quite small, and for T = 2kT, 

k = 2,4,..., it is very close to zero. The correlation 

of the noise is significant at T = T for the 
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filters with the smaller BT products. However, the filters 

with the larger BT products, around BT = 0.8, are the ones 

that are used with receiver 2 for DMSK. Thus, it is 

reasonable to assume that the noise samples are uncorrelated. 

This assumption makes it much easier to calculate the 

probability that an entire block of bits are correct. 

In order to find the expected value of the probability 

of error in the kth bit interval, all possible waveforms 

that can exist in the block of bit intervals that affect 

the sample must be considered. Assuming that the ISI 

is smaller than the sample at t = tk  minus the ISI, the 

probability of error for the ith waveform can be written as 

P
ei 

= 2P
r
[1r(t

k 
+ Y)I + ni(t k 

+ Y) < 0] 

&ma 

= 2Q 
ir i (t k  + 1)1 

at 

nMI• 

where r(t) is the output of the receive filter for the 

ith waveform, t k  is the sampling point for this waveform 

in the kth bit interval, assuming no filter delay or 

distortion,  and Y is a sampling offset due to delay and 

distortion in the receive filter. It should be noted 

that if the delay is such that Y + tk  > nT, where 

n is a positive integer greater than k , then 



the input to the filter for the n - k bit intervals 

following the kth bit interval will also affect ri(tk + Y). 

Thus, it would seem that each waveform should consist 

of L + £ bit intervals where 

£ = max n - k : Y + t
k 
> nT . 

However, only the L - 1 - £ bits prior to the kth bit 

will affect the sample. From symmetry considerations, 

it can be seen that both r(t) and -r
i
(t) must be members 

of the set of possible waveforms. As all waveforms are 

equiprobable, and as the waveforms ri (t) and -ri (t) will 

have the same error probability, the one whose sample, 

before the filter, at t = t k  is negative can be dropped 

from the set of waveforms of interest. The number of 

waveforms of interest is thus 

N = m 2
L-1 

where m is the number of possible states at time 

t = (k - L + 1 + £)T. The expected value of the 

probability of error can be found by taking the average 

over the error probabilities of all of the waveforms of interest. 
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E [ Pel 
1 = 	E 2Q [

(tk 
	1)  

1=1 	
a 
nt 

where E( • ) denotes the expectation operation. From [25] 

it is known that 

a 2 = R(0) 

Thus, from (I1) 

Co  

a 2  = N 	1H(f)1 2 df 	. 
n' 	o 

Also, for CPM modulations 

A 2 T E - --- b 2 

Thus, 

2 E[Pe ] = 	E Q 
i=1 

r(tk + Y 

.1W 

2E
b  
co 

A 2T No 	IH(f)1 2 df  

. 	(1 2) 

In order to calculate the sample values the waveforms 



(13) 

for the in phase channel are considered, 

cos[(1).(t)] * h(t) 	(k-L+1+2,)T < t < (k+2,1-1)T 

elsewhere 

= 	u(t) * h(t) 

where çb i (t) is the phase for the ith waveform. It is 

possible to divide each of the N different waveforms, 

u(t), up into L constituent parts each of length T 

seconds. Thus, the value of the sample for the kth bit 

can be calculated as below. 

CO 

ri (t) = f 	ui(T) h(t - T(dT) 

(k-L+2+9,)T 	(k-L+3+9,)T 

u(T) h(t - T)dT41 	u1 (T) h(t - T)dT 

(k-L+1+2,)T 	(k-L+2+0T 

(k+i+1)T .  

+ 	+ 	u (T) h(t - T)dT 

(k+SOT 

For any of the CPM modulations each ui (t) is composed of 

a finite number, M , of T length pulses. These pulses 

r
i
(t) = 

1 
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are: pl(t), P2(t), P3(t),..., p m (t); also, 

p (t) =0 	T<t.“, 	j= 1,2,...,M. 

The actual number and shape of the pulses is determined 

by the modulation scheme. Thus, (13) can be rewritten 

as 

r (t) = f 	pl[t - (k - L + 1 + t)T] h(t - T)dT 

-œ 

CO 

+ f 	P 2 [t - (k - L + 2 + t)T] h(t - T)dT 

.».00 

Lo  + 	+ f 	p.[t - (k + £)T] h(t - T)dT 

-œ 

where 

Y 	r P i  E 1P1(t), P2(t),..., P m (t)} . 

Using the time shift property of the Fourier transform [10], 



ri (t) = F-l[ ej(k-L+1+t)Tpl( f s( f ) 	ej(k-L+2+ 9, )Tp2(fs(f) 
n 	 n 

+ 	+ e
)T L 
P.(f)H(f)] 

where F-I  denotes the inverse Fourier transform, and P(f) 

is the Fourier transform of pY (t). 

Using(14)itisseenthattocalculater.(t) it is 

necessary only to calculate the response of the filter to 

each of the M possible pulses. These responses are then 

shifted in time by the amount shown in the appropriate 

exponential in (14), and then added together to form the 

composite waveform, r i (t). The expected value of the 

probability of error in (12) can then be calculated. 

Due to their different frequency contents, the receive 

filter distorts each of the possible pulse shapes differently; 

there is distortion because the phase responses of the 

receiver filters are, in general, non-linear. This 

differing distortion makes it difficult to determine Y , 

the optimum sampling offset, analytically. At large signal 

to noise ratios the expected value of the probability of 

error will be dominated by the worst case r i (t k  + Y); this 

is due to the exponential decrease of Q(x) as x increases. 

(1 14) 
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Thus, a good estimate of the optimum sampling point can be 

obtained by finding the y which maximizes the smallest 

r.(tk  + 1). Mathematically,the metric J is evaluated and 

t4e appropriate y chosen where 

J = max min r(t
k 

+ Y). 
i 

Thetruly optimum Y will be a function or the signal to 

noise ratio (SNR) as the importance of each term in (12) 

changes with the SNR. 

3.2 Results Using the Standard Low Pass Filters 

The receivers for MSK, QPSK, TFMREC, and MSK were 

studied using standard low pass filters as the receive 

filters. A standard I and Q receiver [6] with 

differential encoding of the source bits was used for QPSK. 

Second order Butterworth filters for QPSK receivers have 

been studied previously [6]; QPSK is used here for 

comparison purposes. The standard low pass filters used 

were: second order Butterworth filters, fourth order 

Butterworth filters, fourth order Chebychev filters with 

0.1 dB ripple, and sixth order Butterworth filters. The 

transfer functions for these filters can be found in 



Johnson [27]. 

The pulse shapes, pi(t), must be found for each of the 

modulations. The pulse shapes for MSK and QPSK were given 

earlier in this chapter; however, these pulses are of 

length 2T. All of the possible waveforms,  u(t),  over a 

2T second interval are shown in Figures 3.3 and 3.4 

respectively. From these figures it is possible to identify 

fourteen different characteristic pulse shapes for TFMREC, 

while six are possible for DMSK. However, half of these 

pulses are redundant if the sign of the pulse is ignored. 

The number of pulse shapes for TFMREC and DMSK for which 

the filter output must be calculated is thus reduced by a 

factor of two. 

The Fast Fourier Transform (FFT) algorithm [28] was 

used to compute the discrete Fourier transforms of the 

pulses; these were then multiplied by the discrete Fourier 

transform of the appropriate filter to obtain the terms in 

(14). The inverse discrete Fourier transform was then 

computed, also using the FFT algorithm, to find the time 

domain representation of the filtered pulses. The parameters 

used for the FFT were: 4096 samples, At = T/64 seconds/ 

sample, Aw = r/32T radians/second. 

It was found that the filter response to each pulse 
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was negligible after 11T seconds, and thus the value 11 

was assigned to L . It was also found that for all 

of the filters used 2, < 4. Smaller values can be used 

for L and 2, with the larger bandwidth filters; the 

time response dies out faster and there is less delay 

than with the smaller bandwidth filters. 

The optimum standard filter type, and its corresponding 

best 3 dB bandwidth, B , was found for each of the 

modulations. This bandwidth was found to increase slightly 

with the SNR. The probability of error for Eb /No  = 12 dB 

has been plotted against the BT product of the receive 

filter for each filter type in Figures 3.5 to 3.8. The 

best bandwidth at E
b
/N

o 
= 12 dB is a reasonable bandwidth 

to use at all signal to noise ratios. The curves are seen 

to get more complicated as the frequency cut-off of the 

filter type becomes sharper; this is due to the phase 

response of the filters which is more non-linear for the 

filters with sharper cut-off. Some of the minor aberrations 

in the curves are due to the suboptimal choice of Y ; 

these disappear at large signal to noise ratios. The 

results found for QPSK with a second order Butterworth 

filter were found to be very close to those found by Jones 

[6] with the sanie  filter type. 

Each point on the curves requires about 8 minutes of 
computation on the VAX-750. 
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= 12 dB. 

Figure 3.6 : The Receive Filter as a 4thE  

Order Butterworth Filter - 
N

o 
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Figure 3.7 : The Receive Filter as a 4th 

Order Chebychev Filter with 
E 

s = 0.1 dB - —ID- = 12 dB 
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Order Butterworth Filter - 	= 12 dB No 

.2 



-69- 

In a rough sense the best standard low pass filter for 

each modulation is an approximation to the optimum filter 

for that modulation; however, due to non-linearities this 

relationship is not a simple one. In fact, for the general 

CPM modulation the optimum filter may vary with the signal 

to noise ratio. 

A correspondence between the best standard low pass 

filter and the optimum filter can be used to explain some 

of the results. The Butterworth filter is superior to the 

Chebychev filter because its phase is closer to being linear 

and its magnitude is maximally flat in the passband. These 

properties should allow the Butterworth filter to more 

closely resemble the optimum filter. In modulations with 

only one basic pulse shape the receive filter is matched to 

that pulse shape, which lasts for a duration equal to the 

time between samples. The performance of these modulations 

thus depends on the energy in the waveform between sample 

times; this relationship should also exist for modulations 

with more than one basic pulse shape. Thus, since receiver 

2 for DMSK takes samples twice as often as receiver 1 for 

DMSK, giving it half the energy between samples, it is 

expected that DMSK will perform approximately 3 dB worse 

with receiver 1 than with receiver 2. DMSK with receiver 1 
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is expected to perform better than TFMREC as both waveforms 

are sampled at 2T second intervals but DMSK has a larger 

normalized Euclidean distance. The probability of error is 

plotted against the SNR for each modulation in Figures 3.9 

to 3.11. The best standard low pass filter is used for 

each modulation. 

When examining Figures 3.9 to 3.11 it should be 

remembered that differential encoding of the source bits 

has been taken into account when calculating the probability 

of error for the receivers in this thesis; this results in 

an additional factor of two in the probability of error 

expression. The results in these figures from other papers 

have not had differential encoding taken into account. 

Both the MSK receiver and DMSK with receiver 1 came quite 

close to the optimal performance with their best standard 

low pass filters; QPSK and TFMREC both had performances 

slightly farther from the optimum. The optimum filter for 

MSK and QPSK is the matched filter, while for DMSK and 

TFMREC optimal performance is obtained only with a maximum 

likelihood receiver. The performance of MSK was about 

0.5 dB worse than the matched filter bound for the signal 

to noise ratios in Fig. 3.9; however, the asymptotic 

performance, obtained with the minimum sample amplitude 



P
R

O
B

A
B

IL
IT

Y
  
O

F
 E

R
R

O
R

  

-71- 

1 	1 	 1 	1 	1 - 

I0 '  

QPSK 
2nd ORDER 
BUTTERWORTH 
BT = 0.5 

MSK 
_2nd ORDER 

BUTTER  WORTH  
BT = 0.55 

QPSK/MSK 
MATCHED FILTER 
BOUND 

ViEb 

No 

1 	1 	\ 	\I 	\ 	I -e 
10 

Iamb 

-3 
I 0 

I•mb 

«MO 

emiel 

«MI 

.m0111 

Mall/ Wm. 

-4 
10 

-5 
10 

eml 

on« 

nn 

4•1•1 F 
1•••• 

aimed 

•••11 
.1011 

-2 
I 0 

Imo 

12 13 7 6 	7 	8 	9 	10 

Eb 
— dB 
No 

Figure 3.9 : The Performance of MSK and QPSK 

11  



TFMREC 
GALKO I S 
OPT. LINEAR 
FILTER 

TFMREC 
4th ORDER 
BUTTERWORTH 
BT= 0.6 

MATCHED 
FILTER BOUND 
QPSK/MSK 

•111.n 

TFMREC MAXIMUM 
LIKELIHOOD DETECT I N 
UPPER BOUND 

«WI 

MI« 

mall« 

I 	I 	I 

Wane 

-72- 

P
R

O
B

A
B

IL
IT

Y
  
O

F
 E

R
R

O
R

  

6 	7 	8 	9 	10 	II  
EID 
—de 
No 

Figure 3.10 : The Performance of TFMREC 

12 13 



.•n• 
- 

I 03  

1•n••• 

-4 
I 0 

h-DMSK 
MAXIMUM 
LIKELIHOOD 

E-DETECTION 
=UPPER BOUND 

DMSK RECEIVER I 7: 
4th ORDER 	:- 

BUTTERWORTH 
BT::0.55 

«WM 
.1BM 

.Mn 

OMSK RECEIVER 2 7 

4th ORDER 
BUTTER WORTH  
BT: 0.8 

am« 

QPSK / MS K 
MATCH ED Fl LT ER 
BOUND 

am. 

-73- 

d 

OMSK GALKO I S 
OPTIMUM LINEAR 
FILTER 

ma« 

I 	I  
8 	9 	10 

Eb 
No ""j  

1 
12 	13 7 

L" 	I 
11 

IC5 
6 

Figure 3.11 : The Performance of DMSK 

P
R

O
B

A
B

IL
IT

Y
  
O

F
 E

R
R

O
R

  



-74- 

and ignoring the differential encoding doubling of the error 

rate, was 0.262 dB worse. When compared with Galko's 

optimal linear filters [17] it is seen that DMSK, with 

receiver 1 and standard filters, gives results 0.7 dB worse 

at P
e 

= 10-5 ; TFMREC gives results 1.6 dB worse at the same 

P
e
. These differences can be shaded if differential 

encoding is used in Galko's scheme. However, it should be 

pointed out that the standard low pass filter receiver 

results seem to diverge from Galko's results as the SNR 

gets larger; this is because Galko calculates a new filter 

for each SNR. DMSK with receiver 1 and standard filters 

was also found to outperform DMSK with an MSK type filter 

as suggested by Aulin et al. [3]. 

The standard filters will be easier to implement than 

Galko's optimal linear filters, and will be much easier 

to implement than a maximum likelihood receiver. The use 

of standard low pass receivers as the receive filters in 

and I and Q receiver should thus be considered in the 

implementation of any of these modulation schemes. 
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CHAPTER 4 

THE EFFECTS OF A NOISY PHASE 
REFERENCE ON THE PERFORMANCE 

The effects of a noisy phase reference on the 

probability of error were studied for MSK, TFMREC, and DMSK 

with both receivers. Results are given when the probability 

density function (pdf) of the phase error is that given 

when a first order phase locked loop (PLL) is used to 

recover the carrier reference. 

4.1 The Model with a Noisy Phase Reference 

The input to the receiver can be written as 

x(t) = A cos[wc t + cp(t) + 6(t)] + n(t) 

where 6(t) is .a time varying phase offset. However, in 

practice 6(t) varies at a much slower speed than the bit 

rate. The phase offset can thus be treated as a constant 
eN 

6. The phase term in the carrier reference, 6 , is a 
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random variable whose properties depend on the method used 

for recovering the carrier. Let 8 = 6 - O. If the expression 

for the probability of error can be found in terms of 6 

then the effect of the noisy phase reference can be found 
•.• 

by averaging over all possible 8 . The averaging is done 

as follows: 

TF 

Pe = I 	Pe (è) p - (è) 

-Tr 

where p(8- ) is the pdf of -61'  . 

If the pdf of 6 is given by that which occurs when 

a first order phase locked loop is used for carrier recovery 

then 

(15) 

exp(p cos 6)  
2u I o (p) 

-n < 6 < n 

elsewhere 	(16) 

pè(é) 

where p is the phase reference signal to noise ratio, and 

10  is the modified Bessel function of order zero. Matyas 

[29] and Rhodes [30] have both used this pdf in their 

studies on the effects of noisy phase references. This 
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pdf is plotted for several values of p in Fig. 4.1. 

It is possible to write down the I and Q channel 

waveforms after the receive filter in terms of 6 . The 

expressions are the same for both of the receivers; the 

receivers are shown in Figures 2.3 and 2.9. The expressions 

. are: 

r (t) = A cosDP(t) + è] * h(t) 

(17) 

= A{cos  O  cosDP(t).] - sin è sin[(t)]l * h(t) , 

rQ (t) = A sin[cP(t) + è] * h(t) 

= A{sin è cos[cp(t)] + cos è sin[(t)]} * h(t). 

. 	 (18) 

4.2 The Performance of the Modulations 

The effects of the noisy phase reference can be found 

by evaluating (12) using (17), or (18), to calculate 

r.(tk 
 + Y) for each of the possible waveforms. The result 

is then substituted into (15) and the integration performed 

numerically. Simpson's rule was used for the integration .  

in this study. Since the deBuda receiver can resolve a 

180 0  phase ambiguity,the pdf of the phase error should be 
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recalculated as 

exp(p cos -0- ) 	exp[p cos(n - -6)] 	n 
2n I o (P) 	2n Io(p) 	1 	7 

1D -e (i))= 

elsewhere . 

However, as p - (0) in (16) is almost zero for 1 -01 > n/4 this 
0 

need not be done. 

The effects of the noisy phase reference on the 

probability of error for the modulations is plotted in 

Figures 4.2 to 4.5; the I and Q receivers with the 

best standard low pass filter are used for each modulation. 

It can be seen from the figures that MSK is much less 

sensitive to a noisy phase reference than the other 

modulations. In fact, the sensitivity of MSK with the 

standard low pass filter is almost the same as that found 

by Matyas [29] when a matched filter was used as the 

receive filter. The performance losses for the modulations 

at p = 18 dB and Pe  = 10-4  are: 0.6 dB for MSK, 4.8 dB for 

TFMREC, 2.6 dB for DMSK with receiver 1, and 4.3 dB for 
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DMSK with receiver 2. The amount of loss that is acceptable 

depends on the design constraints. 

The relative sensitivities of the modulations to a 

noisy phase reference can be explained by considering the 

sin è sin[cp(t)] term in (17); this is interference in the 

I channel from the Q channel. In MSK this term is always 

zero at t = 2kT as  4(2kT) E . {0,7r}. The term sin ê sin[q(t)] * 

h(t) will thus still be much smaller than cos ê cos[cP(t)] * 

h(t) at t = 2kT + Y for any of the è where pè(è) is 

significant. For the other modulations sin[0(2kT)] is often 

equal to cos[cp(2kT)] making the term sin 6 sin[cp(t)] * h(t) 

at t = 2kT + Y large enough to have an important effect on 

the sample r(2kT + y). This increased interference causes 

the increased sensitivity to a noisy phase reference for 

TFMREC and DMSK. 

Receiver 2 for DMSK can resolve a 900  phase ambiguity, 

and thus better carrier recovery techniques should be 

available for this receiver. Better recovery will result 

In a higher phase reference signal to noise ratio than in 

the other modulations. 
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CHAPTER 5 

THE EFFECTS OF TIMING ERRORS 
ON THE PERFORMANCE 

The effects of timing errors on the performance are 

first found for the case where the receive filter is assumed 

not to distort the channel waveforms. These results 

give an intuitive feel for the effects of the timing 

errors. Numerical results are then given when the 

distortion of the standard low pass receive filters are 

included. The effects of timing offsets will be the same 

in both the I and the Q channels. 

5.1 The Performance of MSK Assuming No Filter Distortion 

In MSK the phase transitions are always linear with 

slope ± u/2T. Thus, as seen before, the I and Q 

channel waveforms are composed of half sine pulses of 

length 2T. By examining the phase tree 	for MSK, 

Fig. 2.2, it is seen that 

(2k- 1)T, 	t 	(2k+ 1)T r 1 (t) = A[a 2k-1  cos(t)]+ ni(t) 
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rQ 	= A[a2k sin(
2-0] + n(t) 	2kT 	t 	(2k+2)T . 2T 

Therefore, using only the in phase channel sampled at 

time t = 2kT + A and assuming 1A1 	T 

Pe (A) = 	PrEA cos(k, A) + n(t) < 0 1 a2kl = 1] 

1 	r  + 
7r

LA cos(iL A) + n2 	0 1 a2k-1 = - 1]} 2T 

= 2 Pr [ni(t) 	A cos(  

= 2 Q[-Lek - cos( -4--T 	. a
n' 

The factor of two is due to the error run property of the 

deBuda receiver. The probability of error in (19) is 

plotted against A 2,/a 2 n,in Fig. 5.1 for various values 

of A . 

5.2 The Performance of TFMREC Assuming No Filter Distortion 

The possible I and Q channel waveforms over two 

bit intervals for all possible initial states are shown 

(1 9 ) 
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in Fig. 3.3 for TFMREC. Each of the four sub-figures 

contain the waveforms for the four possible combinations 

of bits, each of which is equiprobable. Due to the 

symmetry of the waveforms it is necessary to consider only 

cases 3.3(h) and 3.3(c) in the computation of the error 

probability; the other two cases will yield duplicate 

results. 

The effect of the timing errors is independent of the 

sign of A . Therefore,considering only negative A and 

làl 	Te 

1 
Pe (A) = 2{17 P 

r 
 {A sinE2L(T + à) + ni(t)] z  0} 2T 

+ 	P{A sin[ff(T - 1A1) + ni(t) 	0} 

1 + 	Pr{A sin[e7(T - IA1) + Z-] + ni(t) 	0} 

1 	A 	' + 	pr{-- + ni(t) 	0 } 
/7 

1 
= - 	+ 	Q{1L-- sin[ff(T + A)]} 

2  luesnt 	
2 	an' 

. 1 ,{A_  sin[ -(T  - 1A1)7,1 + 	sin[ -(T  
n' 

Al) + 

(20) 
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The additional factor of two is due to the error run property 

of the receiver. 

The probability of error in (20) is plotted against 

A 2,/a 2 , in Fig. 5.2 for various values of A . It is seen 

that TFMREC is more sensitive to timing errors than is MSK. 

This greater sensitivity is due to the 

A sinref(T - IAI)] 

term in (20). With zero timing offset this term has a phase 

of Tr/4 radians. The slope of sin(x) at this phase is 

considerably greater than the slope when the phase is r/2 

radians; the phase of the sinusoid in (19) is n/2 radians 

with zero timing offset. The increased slope causes the 

degradation in performance due to timing errors to increase 

as the minimum possible sample amplitude decreases faster. 

5.3 The Performance of DMSK Assuming No Filter Distortion 

The effects of timing errors in DMSK are found in the 

same way as in the MSK and TFMREC cases. However, in DMSK 

both of the receivers must be considered separately. The 

in phase channel waveforms over two bit intervals are shown 

in Fig. 3.4 for DMSK; they are shown for each of the eight 
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initial states. 

When using receiver 1 only Figures 3.4(h) and 3.4(c) 

are applicable; the other two sub-figures have states that 

are not allowed for this receiver. The sampling time for 

the in phase channel is at t = (2k+1/2)T. If the offset 

due to timing errors is restricted such that IAI 	T/2 

then, 

1 Pe (A) = 2{. P
r [A  cos() + ni(t) 	0] 2T 

1 
 + 7 P 
A 

r 	+ ni(t) e2 

= Q( A ) + Qp- 
, cos( 2--à) 

n 

The factor of two is due to the error run property of the 

receiver. 

When using receiver 2, symmetry allows us to consider 

only Figures 3.4(a) and 3.4(b). With receiver 2 a factor 

of four is found in front of the expression for the 

probability of error; a factor of 2 for the error run 

property, and a factor of 2 because an error in either 

channel will cause a phase error. The errors in the two 

(21) 
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channels are assumed to be independent. The error probability 

is the same for both positive and negative 	. Thus, 

assuming that A is negative, IAI 	T/2, and that the 

sampling time without an offset is 2kT, 

P e (A) = 	+ n(t) 	0] 

+ Pr fA sin[k(T - IA1) + Z.] + n(t) 	0} 

+ PIH:A cos[fy(T - IA1) + Z-] + n(t) 

A 
= 2Q( 

A 
 ) + 	sinD2---(T - A) + 

an' 	
an 	2T 

+ Q{jL  I cos[ff(T -  II)  Q{» 
 

The expressions for the probability of error in (21) 

and (23) are plotted against A 2,/a:11  in Fig. 5.3 for various 

values of i  . It is seen that DMSK with receiver 2 has 

the greatest, and DMSK with receiver 1 the least sensitivity 

to timing errors when compared with MSK and TFMREC. DMSK 

with receiver 1 has the least sensitivity as half of the 

(22) 
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time 	the timing offset has no effect on the sample magnitude, 

while the rest of the time the effect is the same as with 

MSK. Also, in (21) the dominant term in the expression 

is the one that is independent of the timing offsets. 

DMSK with receiver 2 is worse than TFMREC as the critical 

terms in (22) are sinusoids that have a phase of n/4 radians 

when sampled with no timing offset but have twice the 

frequency of the critical term in (20). The higher frequency 

causes the slope to increase,resulting in the increased 

sensitivity. 

In summary, assuming no filter distortion the modulations 

can be ranked in order of increasing sensitivity to timing 

errors as follows: DMSK with receiver 1, MSK, TFMREC, DMSK 

with receiver 2. 

5.4 The Performance of the Modulations Including 
Filter Distortion 

The performance of the modulations with timing offsets 

was found by replacing Y by Y + A in (12). The 

calculations were made using the I and Q receivers with 

the best standard low pass filters as the receiver filters. 

The probability of èrror is plotted against the signal to 

noise ratio for various values of A in Figures 5•4 to 
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5.6 for MSK, TFMREC and DMSK respectively. The sampling 

offset, Y , constant in this analysis, and is the same 

as the offset calculated in Chapter 3. The timing offset 

A is used to perburb this value. The same analysis technique 

is used as in Chapter 3. 

In general the sensitivity to timing errors is found 

to be slightly larger for each of the modulations when 

filter distortion is included; the exception is MSK where 

it is slightly less. Also, when distortion effects are 

included MSK becomes the modulation with the least 

sensitivity the new ranking for timing error sensitivity 

becomes: MSK, DMSK with receiver 1, TFMREC, DMSK with 

receiver 2. 
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Figure 5.4 : The Sensitivity of MSK to Timing Errors 
The Filter is a 2nd Order Butterworth 
With BT = 0.55 
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CHAPTER 6 

CONCLUSION 

6.1 Summary 

The use of bandwidth-efficient modulations in digital 

data communications is an important area of research. In 

this report the use of standard low pass filters as the 

receive filters in suboptimal, I and Q , receivers for 

MSK, TFMREC, and DMSK is considered. Each of these 

modulations is from the class of continuous phase modulations 

with modulation index h = 1/2. 

The system model and the general expression for 

continuous phase modulations is discussed in Chapter 1. 

The specific modulations and the receivers for each are 

presented in Chapter 2. 

A numerical method for calculating the performance 

of each of the modulations with arbitrary filters as the 

arm filters for the receivers is given in Chapter 2. The 

method assumes that: the additive noise is white Gaussian 

noise, there is no signal distortion over the channel, and 
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that the samples of the noise component at the receive 

filter output are uncorrelated from sample to sample. The 

use of Butterworth and Chebychev low pass filters as the 

receive filters is then considered. The filter from this 

class that gives the lowest probability of error is then 

found for each modulation. This probability of error is 

then compared to the error probabilities obtained with 

other, more complicated, receive filters. 

The effecteon the performance of a noisy phase 

reference and timing errors are examined in Chapters 4 and 

5. In these investigations the I and Q receiver uses 

the best filter of Chapter 3 as the receive filter for 

each modulation. 

6.2 Conclusions 

A receiver has been developed for DMSK that can 

resolve a 900  phase ambiguity in the phase reference. 

However, this receiver performs more than 3 dB worse than 

DMSK with a deBuda type receiver, and is more sensitive to 

a noisy phase reference and timing errors. Thus, this 

receiver should not be used unless the property of being 

able to resolve the 900  ambiguity is of overriding concern. 
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It was found that standard lo ,4 pass filters can be 

used quite effectively as the receive filters of the sub-

optimal, I and Q , receivers used in this thesis. The 

best low pass filters for the modulations were: a second 

order Butterworth filter with  ET = 0.55 for MSK; fourth 

order'Butterworth filters for TFMREC, DMSK with receiver 

1, and DMSK with receiver 2 where  ET = 0.6, 0.55, and 0.8 

respectively. For MSK, the best low pass filter resulted 

in a receiver whose performance was only 0.5 dB away from 

that of the matched filter receiver. For TFMREC and DMSK, 

the performance was only 1.6 dB and 0.7 dB worse than 

the performance of Galko's receivers [17] with his optimal 

linear filters. Differential encoding was used in the 

schemes in this thesis, while it is not used in the matched 

filter receiver, or Galko's receivers. The standard low 

pass filters are much simpler than the matched filters and 

Galko's filters, and will be a better design choice in many 

design situations. 

MSK was found to have both the best probability of 

error, and the least sensitivity to a noisy phase reference 

and timing errors. However, MSK has fairly poor bandwidth 

efficiency and is thus unsuitable in some situations. 

DMSK was found to have better probability of error than 
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TFMREC, as it also does when maximum likelihood receivers 

are used. DMSK also has significantly less sensitivity to 

a noisy phase reference and slightly less sensitivity to 

timing errors than does TFMREC. Thus, in a system using 

simple receivers which requires only the out-of-band 

rejection of DMSK, and not that of TFMREC, DMSK should be 

used in preference to TFMREC. 

6.3 Suggestions for Further Work 

A few possible extensions to the work in this report 

are given below. 

1. The performance of suboptimal, .1 and Q 

receivers with standard low pass filters as the 

receive filters should be studied for more 

modulations, such as TFM, where g(t) is not 

rectangular. 

2. The receivers discussed in this thesis should be 

built and experimental results compared to 

theoretical ones. 

3. The possibility of using analytical techniques 

to find the best standard low pass filter should 

be considered; the method of Galko and 
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Pasupathay [23] for the design of optimal linear 

filters could provide a starting point. 

4. 	Special carrier recovery techniques should be 

examined for the different CPM schemes. 

The performance degradation when non-linear and 

bandlimited channels are used should be compared 

between the receivers in this report and other 

more complicated ones. Also, does the best 

standard low pass filter change with the channel 

type? Some channels of interest are those which 

are bandlimited to a high enough degree to cause 

a significant amount of intersymbol interference. 
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