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ABSTRACT

Constant envelope modulation signals that are spectrally
efficient and possess good error performance capability are
desirable 1n communication systems. Previous experimental
and simulation results have shown correlative encoded fre-
quéncy shift keying to be attractive from a spectral occu-
pancy point of view. 1In this report, a straightforward
method of obtaining an explicit expression for the spectrum
of correlative encoded FM signal is given, using Rowe and
Prabhu's method. An exhaustive investigation of the specﬁrum
for modulation by a second order polynomlial and rectangular
pulse shaping has been carried out and the values of the
encoding coefficients, for which the spectrum is compact, are
shown. Results are given also for raised-cosine pulse shaping.
An investigation of the error performance for these modulations
is carried out. The results indicate that the encoding poly-
nomial (l+2D+D2)/M with rectangular pulse shaping and modu-
lation index, n, equal to 0.57 is spectrally U7% more efficient
than MSK (Minimum Shift Keying) at an expense of 1.1 dB in SNR.
Other correlatilve ehcodings are shown that are spectrally
somewhat less efficient than the above polynomial but promise

better error performance than MSK.
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The problem of designing the baseband pulse shapes
in MSK-type signals to minimize the fraction of out-of-band
power is considered. The optimum pulse shapes and their
spectral propérties are presented for a range of channel
bandwidths up to three times the bit rate. The optimization
yields pulse shapes which attain a lower out-of-band power
than the well-known MSK-type modulations, sudh.as, MSK,
OKQPSK (Offset Keyed Quadrature Phase Shift Keying) and SFSK
(Sinusoidal Frequency Shift Keying). The improvement is not
dramatic. However, the optima obtained in this report pro-
vide a bound on what is achievable and a useful basis for
‘comparison.

MSK-type signals are a subclass of angle modulated
signals, for which the modulation index, n, is 0.5w. The
more general problem of shaping the baseband puise with an
arbitrary modulation index 1is treated also. The spectrum of
the éngle modulated signal is approximated by the power
spectrum of a time-limited waveform. The time-limited wave-
form is then expressed in terms of an infinite series of
spheroidal wave functions and is shaped to minimize the
fraction of out-of—band power. Finally, the baseband pulse
corresponding‘to the optimized time-limited waveform is
obtained. To demonstrate the technique, results are given

for modulation indices n = 0.5w, 0.67, 0.7™w énd 0.87.
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Chapter 1
INTRODUCTION

The increasing demand for communications has put the
allocation of bandwidth in radio systems at a premium. The

problem can be alleviated by the following techniques [1,2]:

i) New allocations at higher frequencies
ii) Frequency reuse techniques
i11) Data compression by source encoding
iv) Spectrally efficient modulation. |

The last technique as applied to data transmission is studied
in this report. The primary objective of spectrally
efficient data transmission 1is to transmit data at a'specified
rate and error performance in as small a channel bandwidth as
possible. The investigation is further restficted to constant.
envelope signals. Constant envelope signals are desirable in
communication systems due to their immunity to fading and non-
linear distortion. |

» | Constant envelope signals can be generated by modu-
‘lating the angle of a carrier. In particular, a digital fre-
quency modulated signél, x(t), can be written_as.

t o

x(t) = cos(2nf t + f I a h(u—kT)au) (1.

= 00
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In the above equation, fc is the carrier frequency and h(t)

is the baseband pulse shape. The sequence of random variables
a, are the symbols to be transmitted. They are drawn from a
finite alphabet {ai} and one is transmitted every T seconds.
The modulaticn index in digital FM is linearly proportional

to the magnitude of the baseband pulse h(t). In conventional
FSK (Frequency Shift Keying), the modulation index h is
defined as h = Ede, where fd is the peak instantaneous
frequency deviation. The baseband pulse in FSK 1is rectangular
and therefore the instantaneous frequency 1is constant over the
bit interval. With baseband pulse shaping the instantaneous
frequency vanies during the bit interval. In this investi-
gation, the modulation index, n, will be defined as the

maximum phase accumulation during a bit interval and there-

fore is given by

oo (k+1)T _
n = max lnil ) f h(t)dt (1.2)
i k==0o _
kT

The maximum in the above equation is oVer the symbol alphabet
{ai}. In conventional binary FSK, h(t) is a rectangular
pulse of height 2wfd extending over one bitlinterval and the
random variable a;, can assume a Qalue of i'l. For this special
case, the modulation index n is the same as hm.

The signal x(t) can be written alSo as

x(t)‘= cos(Zﬁf t + ) avg(t—kT)) (1.3)
S k



where
t .
g(t) = J h(u)du (1.4)

The class of baseband pulses considered in this report include
functions g(t) with step changes. A step change in g(t) cor-
responds to an unbounded instantaneous frequency which 1s not
considered in conventional digital FM. Therefore, whenbﬂ(t)
is allowed step changes, the modulated signal, x(t), is
referred to as angle modulated rather than frequency modulated.

Channel bandwidth can be defined as the span of fre-
quencies which contains a specified fraction.of the total mod-
ulated signal power. The fraction of power in the bahd
[fc—w, fC+W] is given by |

fc+w

Px(f)df

f -w
c

in = w
JPX(f)df
o

(1.5)

and the fraction of out-of-band power is given by

it
et
1
el

Pout' in (1.6)
where, P,(f) is the power spectral density of x(t). A task in
the design of a transmission system would be to chnose a mod-
ulation index and shape the baseband pulses such that for a
in’ say Py, = 0.99, the channel bandwidth is

minimized and a specified error performance, Pé,

specified P

is maintained.
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Previous experimental and simulation results [6] have
shown that the channel bandwidth, W, can be reduced by cor-
relatively encoding the input data symbo]s ap - It will be
seen that a corrélatively encoded digital FM signal can
always be repfesented by an FM signal in which.the input data
symbols are independent and the baseband pulse, h(t), extends
over more than one bit interval. In this report, an analy-
tical method is developed to obtaln the spectrﬁm of correl-
ative encoded FM signals. The spectra bf correlative encoded
FM are investigated for various baseband encoding polynomials -
.and pulse shapings. The encoding polynomials that yield small
channel bandwidths are indicated. Also, an iﬁvestigation of
the error performance of these signals is carried out. Sig~-
nals that yield a compact spectrum at a small penalty in SNR
(Signal to Noise Ratio) are pointed out. When the baseband
pulse, h(t), exténds over only one bit interval and the input
data symbols are 1ndépendent, the optimum baseband pulse

shaping to minimize the channel bandwidth is derived.

1.1 Correlative Encoded FM

Correlative encoding or partial response techniques
are used in data transmission systems employing linear modu-
lation to obtain a desirable signal spectrum [3-5]. As well,
the spectrum of the modulated signal in digital FM can be
marilpulated by correlatively encoding the modulating signal.
However, since the modulation is nonlinear, a modglating sip-
nal with a compact'spéctrum does notvnecessmrily lead to a

modulated signal with desirable spectral properties. The



application of duobinary encoding to data transmission by FM
was first introduced by Lender [3] in 1963. Recently Melvin
and Middlestead [6] have investigated the power density
spectrum of correlative encoded FSK, experimentally and by
computer simulation. Their results show correlative encoded
FSK modulation to be superior to conventional FSK in terms of
spectral conservation. Duobinary 1s the only correlative
encoding for which the FSK spectrum has been obtained theor-

» ~etically [7,8]. Garrison [9] has developed a computational
technique to obtain the power spectral density for correlative
encoded FM. The modulating pulses are approximated by a staif-
case function and the resulting FM spectrum is computed.
Experimental ahd computer simulation studies can be'time'con-
.suming, and in an.investigation of partial response encoded
FM, a mudh lérger class of encoding polynomials than in the
case 6f a linear modulation must be considered, for there arc
no simple properties that eliminate all but a féw polynomials
from cohsidération.

A method of obtaining a closed form expfession for the
spectrum of digital M with partial response'encoding is piven
in Chapter 2. The spectra of the modulated signals, for
several encoding pblynomials'and pulse shaplngs, are examined
in Chapter 3. An exhaustive investigation of the spectrum for
modulation by a second order polynomial has been carried out
and the values of the encoding coefficients for which the
spectrum is compact are shown. The channel bandwidths required
to transmit 99% and 99.9% of the modulated signal power are

tabulated.




An upper bound on the performanée of correlative
encoded digital FM can be given in terms of thevminimum
Euclidean digténce. An exhaustive investigation of the mini-
mum Euclidean distance is carried out, in Chapter U4, for
modulation by a second order encoding polynomial. Cor-
relative encoded FM signals that are spectrallyAefficient at

a small penalty in SNR are pointed out in Chapter 7.

1.2 Optimum Pulse Shaping in MSK-Type Signals

MSK-type signals are a subclass of angle modulated
signals thaﬁ have received consideréble_attentioh [10-26].
' Whén the basebénd pulse, h(t), in an angle modulated signal
exXxtends over only one bit interval and the modulation index,
n, is equal to 0.5m, the modulated signal is a MSK-type sig-
nal. Angle modulation involves avnonlinear transformation
of the baseband signal. quever, MSKftype signals can be
represented by a linear quadrature carrier modulation [11,12]
and can be viewed as a degenerate case.

MSK (Minimum Shift Keying)was pafented by.Doelz and
Heald [10] in 1961. MSK is known also as FFSK (Fast Frequency.
Shift Keying) [12] and FM-PSK (Frequency Modulation Phase
Shift Kéying) [18]. These modulations have béen commended for
their desirable spectral properties. Amoroso [17] pointed out
that the asymptotic behaviour of'MSK can be improved even more
by having continuous rate of change of the in-phase and the
quadrature envelopes. He suggested a_modulation.known as
SFSK (Sinusoidal Frequency Shift Keying). Gronmeyer and

McBride [19] studied MSK and OKQPSK (Offset Keyed Quadrature



. which lead to a spectral rolloff as [f|

Phase Shift Keying) in detall and compared thelr performances
over bandlimited channels. They concluded that OKQPSK out-
performs MSK only when the channel bandwidth is highly res-
tricted. |

A number of authors have considered the effect of
pulse shaping on the spectra of MSK-type signals. Rabzel and
Pasupathy [23] proposed a family of Mth order shaping functions
-(MM+U). For large
‘values of M such signals have excellent rolloff characteris-
tics, but they dause severe adjacent channel interference
when a small channel bandwidth 1s specified. Kalet and White
[21,22] examined thé interchannel interference for MSK-type
modulation. Eaves and Wheatley [25] have proposed a family:
oflwave shapes and optimized the parameters by a computer
search’procedure to minimize the interchannel ihterference.

The problem of baseband pulse Shaping to minimize

the fraction of out-of-band power, P for a given channel

out?
bandwidth is treated in detail in Chapter 5. Rabow [13] has
considered this problem with an assﬁmptién of symmetry in the
baseband pulses and has given the optimum parameters for a
_particular value of the channel bandwidth. Boutin et al [2U4]
have recently reconsidered this problem pointing out Rabow's
work. Prabhu [18] has obtained a lower bound, that is not
necessarily achievable, on Pout for a given channel bandwidth.
In Chapter 5, baseband pulse shapes are derived that
minimize,the fraction of out-of-band power, Pout' Results are

presented for a range of channel bandwidths of .practical




interest. The spectra of the MSK-type signals obtained
through optimization are compared with the spectra of the

well known sdhemes, such as MSK, OKQPSK and SFSK.

1.3 Optimum Pulse Shaping in Angle Modulated Signals

As mentioned previously, MSK-type signals may be
considered as.a special linear case of digital FM. In
Chapter 6, the more general problem‘of shaping the baseband
pulse to mihimize the fraction of out-of-band power for
digital FM with an arbitrary mddulation index is considered.
The modulated signal is referred to as angle modulated
because baseband pulses which cause unbounded instantaneous
frequency are permitted. The baseband pulse, h(t), is
allowed to extend over oniy one bit period and fér simplicity
only baseband pulses which produce symmetrical phase variation
are considered. 

Methods of obtaining the spectra of digital FM sig-
nals and band occupancy of FSK signals were investigated by
several aﬁthoré [27-32] in the 1960's. More recently, Rowe
and Prabhu [33] have presented a method for determining the
'power spectrum of digital FM signals; ~The result is in terms
of products of matrices, which will prove most convenient for
the purpose 6f this thesis. Using Rowe and Prabhu's method
1t 18 shown in Chapter 6, that the spectrum of an angle modu-
lated signal caﬁ be approximated by the power'spectrum of a
time-limited waveformi The time-limited waveform is then
expressed in terms of an infinité series of sphefoidal wave

functions. The coefficients of the spheroidal wave functions




are optimized to minimize the out-of-band power, Pout'
Finally the baseband pulse corresponding to the optimum time-
limited waveform is obtained. Optimum baseband pulse shapes

are computed for several modulation indices and a range of

channel bandwidths. The results are presented in Chapter 6.

1.4 OQutline of the Report

In conciusion, an outline of this study is as follows.
A method to obtain the spectrum of correlative encoded digital
FM'signals i1s presented in Chapter 2. 1In Chapfer 3, the
spectra of correlative encoded digital FM signals are
examined for a range of encoding polynomials and pulse shapes.
An exhaustiVe investigation of the spectrum for modulation by
a second order encoding polynomial 1is carried out. The error
performance of correlative encoded FM is studied in Chapter 4.

Baseband pulse shapes in MSK-type signals are derlved,
in Chapter 5, to minimize the fraction of out-of-band power.
An achievable lower bound on the fraction of out-of-band
power 1s obtained for a range of channel bandwidths of
practical intefest. The more general problem of shaping the
baseband pulses in angle modulated signals with‘an arbitrary
modulation index 1is considered in Chapter_6;

The bandwidth efficiencies of various modulations,
investigated in Chapfers 2, 3, 5 and 6, are summarized in
Chapter 7. Correlative encoded FM signals that are spectrally
efficient, and as well possess good error performance cap-
ability are pointed out. Finally, the contributions made in
this study are summarized and the scope for ferther work 1s

suggested.

5
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Chapter 2

THE SPECTRUM OF CORRELATIVE ENCODED

DIGITAL, FM , -

Previous experimental and simulation resuits have
shown correlative encoded frequehcy shift keyingl(FSK) to be
attractive from a spectral occupancy point of view. With the
exception of cduobinary encoding, thevspectrum of correlative
encoded FM has not been given theoretically. A method of
obtaining an explicit expression for the spectfum of a
correlative encoded digital FM signal is presented in this
chapter using the results of Rowe and‘Prabhu [33] on FM

spectra.

2.1 A Correlative Encoded Digital FM Modulator

A correlative encoded FM modulation can be represented
by'the model shown in Figure 2.1. The block D corresponds to
a deiay of one bit period. Such a correlative scheme has a
partial response system (PRS) polynomial [5]

(ky + kD + k2D2 oo kmDm)/C - (2.1)

m
where C = § |k

For convenience a normalization of the polynomial has been



Jn | SIGNAL | et | FM. | x(t)

*—‘% — SHAPING MODUL-
FILTER ‘| ATOR

Ik gl+ Tyl + Tkol +... Tkl

igure 2.1 Correlative Encoded Digital FM Mocdulator

T
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carried out. In PFigure 2.1, the In are independent identi-
cally distributed random variables which can assume a finite
number L, of discrete values. The correlated variables Jn

are given by

m :

Each Jn can assume at most L(m+1>

distinct values. It is
assumed that the signal shaping filter in the modulator pro-

duces an arbitrary waveform s(t) of finite duration, such that
s(t) = 0; t < 0 and t > qT ' _ ' (2.3)

where q is some integer. The modulating signal eo(t) can be

written as

[o ]

e (t) = ) J, s(t - nT) - (2.h)

n:._co

and the frequency modulated signal x(t) is given by

t
x(t) = cos[2ms t + f e (1)dr] | (2.5)

The depth of modulation is taken into account by a scaling
of s(t). The problem of finding the spectral properties of

x(t) is approached using Rowe and Prabhu's method [33].

2.2 Rowe and Prabhu's Method

Rowe and Prabhu [33] have proposed a matrix method




The symbols transmitted must be statistically independent.

13
to find the spectrum of a carrier, frequency modulated
by a random baseband pulse train in which the signalling

pulse duration is finite and the signal pulses may overlap.

A summary of the results required here, will be given using

their notation.

t
Let x(t) = cos(ZHfCt + j eo(u)du) _ (2.6)
=‘Re[v(t)eXP(J2ﬂfct)]
where t

v(t) = exp(J I e, (u)du)

- Q0
@«

e (t) = kjim hsk (t - kT)

and

In the above expressions v{(t) is the phasor associated with x(t).
The notationai conventions used are explained in the footnote.

In (2.6) s, is a random variable which can take on M values,

k

and hs (t) is one of M possible modulating waveforms. The
k
expression for eo(t) can be written as the inner product of a

random vector a,,

times a vector of all the possible
et B

- modulating waveforms h(t) Thus -
| ————]

Footnote: The fpllowing notational conventions of Rowe and
‘Prabhu [33] are adopted:

(i) Row and column vectors are distinguished by «u and ],
respectively. .

(11) Matrix multiplication is indicated by -, Kronecker
matrix products by X.
(ii1) The transpose of a matrix is indicated by '
(iv) The Hermitian transpose of a matrix is indicated by +.
(v) Multiple Kronecker products are indicated by nX and the
Kronecker power is indicated by an integer exponent
enclosed in square brackets.
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0

e, (t) = JQWLEE_I h(t - kT)] (2.7) |
where %
ufk; = [ak(l) ak(2) .. ak(M)] %
ak(J) =1 ifs = |
= 0 otherwise
and
D(6) = h(£)]'=lhy (6) hy(t) . . . hy(t)]

Then the spectral density of the phasor v(t) associated

with x(t) is given by

P (£) = 2 R(£) - (a+A") - R(D)] (2.8)
where
_ 1 _[K]
A=75
k-1 —jomnfT '[n]. [K-n] [n]
+ 7 e " {a(uy) N e G X w]
n=1 ' ———
{e=d2mIT 7 q(U,) - w }[K]
¥ ToRET i (2.9)
1 - e o qﬁJK)]
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and

oo

R(f)] = fe'jz“ft r(t)ldt (2.10)

- 00

Here K denotes the number of bit periods over which the
modulating pulse extends. A brief explanation of the terms
appearing in the above expressions follows

wo= [w, w (2.11)

u 1 2 . w

M]
where

W, = Prob {sk = 1}

and, w3 is an M x M diagonal matrix with diagonal terms

Wis Woy Wy oo . Wy
The signalling baseband pulses hi(t) extend over K

bit periods, and the method requires a centering as follows

h(t)] = 0] t < Lg, t> Uy ' (2.12)
-(K - 1)T/2, K odd

Ly = |
-KT/2 , K even
(K + 1)1/2, K odd

Ug = ‘

KT/2 , K even

The vector r(t)] in the expression (2.10) is piven by




1
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(k-1)/2
Il X g(t - 4iT)] , K odd
i=-(K-1)/2
r(t)] =
K/2 | (2.13)
it X q(t - iT)], K even
i=-(k-2)/2
and
t t
q(t) = [:exp(j J hl(u)du) exp(J J h2(u)du)
e {
Ly | Ly -
t
exp (j J hM(u)du):} (2.14)
LK . ?
LK < t < UK
= 0 elsewhere

Equation (2.8) gives the spectral density when the
following condition, a necessary condition for spectral lines

to exist, 18 not satisfied.

R lq(UK)]l -1 | (2.15)

When the abdvé condition is satisfied the expressions for the
line component and the continuous component of the spectrum

are given by [eq. 72, 33] and [eq. 73, 33] respectively

2.3 Correlative Encoded FM Spectrum

The modulating signal for correlative encoding is given

L
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by

eo(t) = ) J s(t - nT) (2.16)

= 00

In this expression the Jn are not statistically inde-~

pendent, but we can write eo(t) as

1 v ¥

eo(t) =5 nigm jZO kj In—j s(t - nT)

= ] I_b(t-nT (2.17)
n:—OO
where

T | |

p(t) = 7 ) ky s(t - 1iT) (2.18)

1=0 _

The function b(t)vextends over (m'+ g) bit intervals. ‘Essen—
fially the memory in the correlative encoder has‘beeh taken
into account by redefining a new equivalent baéeband pulse.
Thus 1t can be seen from (2.17) that a correlative encoded

FM signal can be viewed as a digital FM modulation in which
the baseband pulses extend over more than one bit interval

and the.input data symbols are independent. Rowe and Prabhu's
method can be applied directly to find the spectrﬁm of the
mbdulated signal because the I in (2.17) are statistically
independent. If the L-discrete levels that In can assume are
denoted by (% L L

[ eo(t) can be‘written in the

15 2) L)‘s

matrix notation as

3
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e (t) = ] a, * h(t - kT)] (2.19)

where
a), = [ak(l) ak(z) Foe . ak(L)]
"y
is the vector with one element ak(j) = 1 and the remaining

elements zero, as described above. The particular j corres-
ponds to the waveform hj(t) transmitted at time kT. The com-

ponents of the vector

h(t) = [hl(t) h2(t) .. hL(t)J
are
hi(t)'= zib(t) for 1 =1, 2, . . . L (2.20)

The results of Section 2.2 can be applied directly to compute
the spectrum of correlative encoded digital FM signal modu-

lated by the baseband signal eo(t) given by (2.19).

2.4 Definition of Modulation Index

As mentioned in Chapter 1, modulation index 1is
linearly proportional to the magnitude of the baseband modu-
lating signal. In conventional FSK, the modulation index h
is defined as h = 2de, where fd is the peak instantaneous
frequency deviation of the carrier.k'The baseband pqlse shape

is rectangular in conventional FSK and therefore the instant-

o TSR e e w5
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aneous frequency 1s constant over the blt interval. With
baseband pulse shaping the instantaneous frequency varies
during the bit interval. In the current study the modulation
index, n, is defined as the maximum phase accumulation during

a bit interval. Thus for conventional FSK, the modulation

index, n, is given by n = hn = 2ﬂde. In this report the
baseband pulses are scaled so that the modulation index is n.

In terms of the equivalent baseband pulse, b(t), n is given by

(k+1)T
n = max [zi| Y ‘ [ b(t)dt‘ (2.21)
i=1,2...L k=~ KT
2.5 Binary Correlative Encoded FM Spectrum for a

Second Degree Polynomial

The spectrum of a binary correlative encoded FM
signal wlith rectangular pulse shaping and a second degree
encoding polynomial 1s given in this sectlon. In binary
correlative encoding the input random varieble In assumes
only two discrete values, and let these values be 2, =1

1
and 2, = -1. The shaping pulse s(t) 1s a rectangular pulse

2
over one bit period, that is, q = 1, and the encoding poly-
nomial 1s of degree two. |

(ko + k.D + k2D2)/C , : (2.22)

1

From the development of equation (2.19), the modulating sig-

nal eo(t) can then be written as



is defined as h = 2f_.T. When .k

20

e (t) = ] a, *+ h(t - kD] (2.23)
k=woo L

where, a, and h(t) are each of dimension 2. If the assumed
L /] e J

K
rectangular s(t) of height 2nf

4 is substituted in (2.18) and

the resulting expression for b(t) is in turn substituted in

(2.20) then, after the centering giVen by (2.12),

' 2ﬂfd +1
hl(t) = b(t) = G Z K41 p(t - 1T) (2.24)
i=-1
where
p(t) =1 0 <t <T
=0 elsewhere

Also hz(t) = -hl(t)

From the expressions for hl(t) and hg(t) it is seen
that the maximum deviation in the instantaneous frequency
from the carrier frequendy is fd' The modulation index n
defined in the last section is then given by n = 2nde.
Traditionally for conventional FSK, the modulation index, h,

4 1 and Kk, in the PRS polynomial

are zero, the modulated signal reduces to conventional FSK

and n/m and h are identical.
If the binary input symbols are assumed to be equi-

probable,
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x, = [0.5 0.5] | (2.25)

and

" The necessary éondition for the spectral lines to exist, given
by equation (2.15), reduces to

lcos{(k_ + k, + k2)n/C}l =1 (2.26)

1

When the spectrum does not contain discrete spectral lines, the
power spectrum is given by equation (2.8). Since, hl(t)

and hg(t) are known, LELEL and A can be obtained from (2.10)
and (2.9) respectivély. The imaginary part of equation (2.8)
vanishes and the real part gives the required méan poWer
speétral density. The expression for the spectfal density in
terms of matrix products in the form of equation (2.8) is con-
venient to program on the computer to obtain numerlcal results.
However, an explicit algebraic expression can be obtained by
expanding the matrix'products. The vector infll for a second
degree polynomial is given 1n Appendix A. The fact that the
final expression is even with resbect to both f and n is use-
ful in partly reducing the tediousﬁess of the algebraic ex-
pansion of the matrix prroducts. When k2 = 0, the expression
reduces to




where

and

6 4
P (f)/T = ) F,(f,n) + | F (f,-n) (2.27)
Y cod L i
i=1 i=1
Fo(f,n) = vg(xl)[l + cos(f_- n) + =z /Uz),1/!
Po(fm) = v ()L + 5 liny 1/
F3(f,n) = v(xl)v(x2)[cos{g;k]n/(k1+l)}
+ z3cos{k1n/(l+k1)}/2zu]/u
Fy(fym) = v(xl)v(x3)[cos{§rn/(kl+l)}
+ z,cos{n/(1+ky)}/22,1/H
FS(f,n) = v(xp)v(x3)[cos G+ 73 cosn/uz“]/Q
FG(f,h) = \)(xl)\)(xu)z3 Ccos {(1—k1)n/(1+kl)}/8z“
Xy = (frm ny/2 s X, = {f - (kqy - .l)n/(k1 + 1) 1/2
x3 = AL+ (ky=1)n/(k +1) /2 s Xy = (O, m)/?
f = (frequency - fc) ; fo = carrier frequency
f‘r= 2nf T H n = f"nf"d'l1
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z; = 2
22 = 2
= 2

%3
z =1

it

and

v(x) =
ko = ]

23

cos(2fr— 2n) - 2 cos ncos(fr— 2n)
cos(2fr- n) - 2 cos n cos(fr-‘n)
cos 2f - 2 cos n cos f, ' -

- 2 cos frcos n + cos2 n

sin(x)/x

is assumed in the above expression without any

loss of generality

If kl =

reduces to equation (48) of Bennett and Rice [27]. When k

0 is substituted in the above expression, it

17 L

we have duobinary FSK and the expression agrees with equation

(7) of Von Baeyer and Tjhung [7]. It agrees also with

equation (5.10)

of Roth [8] after correcting the typographical

errors in his expression.

2.6 Summary

A method for obtaining the spectrum of a correlative

encoded digital

FM signal was presented in this chapter. This

technique was applied to obtain the spectrum of a signal

modulated by a second order PRS encoding polynomial with

rectangular pulse shaping. The result is a generalization of
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previous results for FSK spectra and agrees with the

previously khown results for the special cases of duobinary

and conventional FSK modulation.
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Chapter 3

INVESTIGATION OF CORRELATIVE ENCODED

FM SPECTRA

A method of obtaining the spectrum of a correlative
encoded digital FM signal was presented in Chapter 2. GSpectra
are computed for various correlative encoding poiynomials and
modulation indices, and the results are presented in this
chapter. An exhaustive investigation of the spectrum for
modulation'by a second order polynomial has been carried out
and the values of the encoding coefficients, for which the
spectrum is compact, are shown. The spectrum of the modu-
lated signal is determined by the encoding polynomial as well
as the pulse shape. 'In this’chapter, results are given for

rectangular and raised-cosine pulse shapings.

3.1 Eguivalent PRS Polynomials

In an investigation of partial response encoded FM,
a much larger class of encoding polynomials must be considered
than for a linear modulation. Therg are no simple broperties
of the polynomial that determine the predominant spectral
characteristics and eliminate all but a few pdlynomials from
consideration. In an investigation of the spectra of partial
responsé_FM, the effért involved can be reduced by noting that

m )

2 partial response encoding polynomial % Z kiDi and its
' " i=0 . °
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m

reciprocal % ) Ky, iDi yield identical spectra. The argu-
i=0 77 -

ment follows from the fact that a modulating waveform eo(t)

and its time reversal eo(—t) lead to identical FM spectira.
Thus if the shaping pulse s(t) is symmetrical, an encoding
polynomial and its reciprocal yield identical spectra. The

proof is given in Appendix B.

3.2 Binary Correlative Encoding with Rectangular Pulse
Shaping

The spectrum of a binary correlative encoded FM, with

rectangular pulse shaping and a second order PRS polynomial
was gilven in Section 2.5. The spectra for different values
of the encoding coefficients kl and k2 are examined exhaust-
ively heré, for a modulation index of 0.57. Throughout the
following investigation it is assumed that ko is unity with-
out any loss of generality.

Let us consider first the spectrum of a signal
modulated by a first order polynomial, that 1s k2 = 0.
Melvin and Middlestead [6] have obtained results experimentally
and by computer simulation for the case kl = 1. Even thourh
their simulation and experimental results are in good agrec-
ment, they note that their results do not agreé with the
analytical results obtained by Roth [8]. This is due to the
omission of two terms in the printing of Roth's result. The
results obtained here agree with the observations of Melvin
and Middlestead. |

It was pointed out in Section 3.1 that the reciprocal

v i1 1

: 1
encoding polynomials g iZO k;D” and 3 k, 4D yield

fHe-13

i=0
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identical spectra. Thus the spectra for kl = k and kl = 1/k
are identical and hence, it is sufficlent to examine the

spectrum for k, ranging from -1 to +1. When k, = -1, the

1 1
spectrum contains discrete spectral lines, and the spectrum

contains sharp splkes for values of kl close to ~1. For

positive valués of kl’ the spectrum 1s most compact for kl = 1.
Let us now consider the signal modulated by a second

- order polynomial. From the result on equivalent encoding

polynomials, it follows that for a second order polynomial

the encoding coefficients (kl’k2) and (kl/k2’ 1/k2) yield

identical spectra. Therefore, it 1s sufficlent to examine

the reglon -« < k1 < «~and -1 < k, < 1. For large values of

k the polynomial can be approximated by le/lkll, which

l’
asymptotically approaches the case of digital FM without

correlative encoding.
‘The spectrum was computed for various values of kl’ k?

in the region -5 < k, < 5 and -1 < k, < 1, and the results

1 2

were applied to the other values of k k., using the reciprocal

12 72
polynomial result. The results are shown in Figure 3.1. The

points marked E are the values of kl,k2 for which discrete ‘

spectrai lines exist for all values of n. The spectrum con-

1 k2 marked D. The

spectrum 1s most compact for the values of kl, k2 in the

tains sharp spilkes for the values of Kk

area marked A. The points marked B have less compact spectra
but comparable to the spectrum of the polynomial (1 + D)/2.
The spectra are least compact at the polnts marked C, but are

comparable to MSK spectra.




28
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The PRS polynomials 1, (1 + D)/2 and (1 + D + D2)/3
yield the most compact spectrum for the zeroth, first and
second order polynomials respectively. As well they give
the least number of output levels. The spectra for these
polynomials for various modulation indices are given in
Figures 3.3, 3.4 and 3.5. The equivalent baseband pulse
shapes, b(t), for these sigrals, given by (2.18), are
shown in Figures 3.2a, b, and c¢ respectively. The spectra
were computed by evaluating the expression (2.8). The
vectors Eifl , appearing in (2.8), associated with the
equivalent baseband waveforms in Flgures 3.2a, b and c are
given in Appendix A.

Spectra for binary correlative encoded FM signels
were also obtained experimentally. The experimental results
were in good agreement with the theoretical results. Some

illustrative spectra are shown in Figure 3.6.

3.3 Binary Correlative Encoding with Raised-Cosine
Pulse Shaping

The spectrum of a correlative encoded FM signal depends
on the encoding polynomial and the shaping pulse s(t). 1In this
'section, the spectra of the modulated signal is investigated
when s(t) is a raised-cosine pulse extending over one, two and
three bit intervals. Raised—eosine pulse shaping can be used
to model baseband pulses that have a smooth transition from on
to off. Since the polynomials 1, (1+D)/2 and (1+D+D?)/3 pro-
vided the most compact spectra for rectangular s(t), we have
studied the same polynemials for the raised-cosine pulse

" shaping.
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Let us first consider the signal when s(t) is a

raised-cosine pulse extending over 'one bit interval.

s(t) % (1 - cos2mt/T) 0 <t <T

(3.1)

]
(@]

elsewhere

The spectra for the polynomials 1, (1+D)/2 and (1+D+D“)/3

with the above s(t) are given in Figures 3.7, 3.8 and 3.9.

The corresponding equivalent baseband pulses b(t), gilven by

(2.18), are shown in Figures 3,2d, e and f. The vectors Eﬁi&

assoclated with these baseband pulses are given in Appendix A.
We next consider shaping pulse, s(t), extending over

two bit intervals, that is q = 2. When s(t) 1s a rectangular

pulse with g = 2 and polynomial 1, 1t 1s identical to rectan-

gular s(t) with q = 1 and the polynomial (14D)/2. 1In addition

for rectangular s(t) with q = 2 and polynomial (1+D)/2, and

g = 1 and polynomial (1+2D+D2)/U the spectra are identical.

When s(t) 1s a raised-cosine pulse with q = 2, it is given by

s(t)

55 (1 + cosmt/T) T <t < T
(3.2)

L]
o

elsewhere

The spectra with the above s(t) and the polynomials 1 and
(1+D)/2 are shown in Figures 3.10 and 3.11. The corresponding

equivalent baseband pulse shapes,‘b(t), are shown in Figures



MEAN POWER (DB)

-90

| H
20 30 4.0 5.0
FREQUENCY (IN {/T)

13



MEAN POWER (DB)

(0

1.0

Figure 3.6 S

2.0 3.0
FREQUENCY (IN 1/T)

pectrum with Raised-Cosine s(t), g=1

1id FRS Folynomial (1+D)/2

LE



-10

MEAN POWER (DB)
Yoo
O O O O

| |
© @
o O

| 1 \/NAA\

1
1.O 2.0 3.0 4.0 5.0
FREQUENCY (IN 1/T)

. - . e . ‘
Figure 3.9 Cpectrum with Raised-Cosine s(t), a=1

and PR3 Polynomial (1+D+D)/3

gt



MEAN POWER (DB)

1.0 2.0 3.0

FREQUENCY (IN 1/T)

"

6¢



MEAN POWER (DB)

-30

-40

-50

-60

-70

I
O 1.0 2.0 3.0 4.0
FREQUENCY (IN I/T)

Tisure 3.11 Spectrum with Raised-Cosine s(t), g=2

and PRS Polyncmial (I+D)/2 .

5.0

Ot




41

3.2¢ and h, The vectors R(f) associated with these
——J
baseband pulses are given in Appendix A.

Finally we consider s(t) extending over three bit
periods. When s(t) is a rectangular pulse with g = 3 and
polynomial 1, the modulated signal is identical to s(t) being
rectangular with q = 1 and the polynomial (1+D+D2)/3. Spectra

are given 1in Figure 3,12 for s(t) a raised-cosine pulse with

‘@ = 3 and polynomial 1. The corresponding baseband pulse b(t)

1s shown in Figure 3.2i. The vector R(f) assoclated with
) :

this baseband pulse is given in Appendix A also.

3.4 Discussion

The behaviour of the spectra observed for correlative
encoded FM wiﬁh rectangular and raised—cosine»pulse shapings
and encoding polynomials 1, (1+D)/2 and (1+D+D°)/3 are
éummarized and discussed here. To compare the band occupancy
of the signals‘modulated by the equivalent baseband pulse
shapes shown in Figure 3.2, the bandwidths required to trans-
mit 99% and 99.9% of the modulated signal power are listed in
Table 3.1. The waveforms in Figures 3.2a, b and ¢ correspond
to PRS polynomials 1, (1+D)/2 and (1+D+D2)/3 with rectangular
pulse shaping. The spectra for these waveforms_become pro-
gressively more compact for higher order polynomials. The wave-
forms in Figures 3.2d, e and [ correspond to PRS polynomials 1,
(1+D)/2 and (1+D+D2)/3 with raised-cosine pulse shaping. Com-
pared to rectangular shaping (Figures 3.2a, b and ¢), raised-

cosine shaped waveforms (Figures 3.2d, e and f) yield spectra
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Baseband . . R . L

pulse Bandwidth in units of 1/Bit Period

shape

b(t%,’as n = 0.57m n=20.7w n = 0.8 n=1.2m
shown in

Figure 997% 99.9% 99% 99.9% 99% 99.9% 99% 99.
3.2a 1.1 2.80 1.80 3.14 2.00 3.80 2.30 4
3.2d 2.20 2.92 2.74 3.40 2.90 3.80 3.80 5.
3.2b 0.92 1.50 1.30 2.20 1.44 2.30 2.00 3.
3.2e 1.60 2.74 2.50 3.05 2.70 3.25 3.30 4,
3.2g 1.10 1.565 1.20 2.00 1.50 2.08 1.656 2.
3.2¢ 0.80 1.35 1.00 1.80 1.16 2.00 1.60 2.
3.2fF 1.48 2.60 2.00 2.90 2.40 3.00 3.12 3.
3.2h 0.86 1.40 1.10 1.60 1.24 1.74 1.70 2.
3.21 1.00 1.20 1.06 i.50 1.20C 1.60 1.70 2.

Table 3.1 Bandwldtn Jtilization for Variocus Encoding Schemes

]
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with better asymptotic behaviour, but require a wider band-
width to transmit 99% ol the modulated sipgnal power. The
equivalent baseband pulses shown in Figures 3.2 c and i appear
to have better spectral behaviour than fhe other pulse shapes

in Figure 3.2.

3.5 Quaternary Correlative Encoding with Recfangular Pulse

Shaping
The method described in Chapter 2 can be applied

directly to find the FM spectra for multilevel modulation
signals and correlative encoding. As an example, we will
consider quaternary modulation. Let the random variables In
assume four discrete levels, that is L = Il and let the four
levels be &, = 5-21 for 1=1,2,3,4. Suppose the encoding poly-
nomial is (1+4D)/2. This polynomial yielded good results

for binary modulation. The modulating signal can be written

as

e (t) = ¥ a . h(t-kT)] (3.3)

| SS——
where a, and h(t) each now have four components, and
— —
hy () = 2,b(t) = ILi(ZNFd/6){P(t+T)+P(‘C)}
for i=1,2,3,4 (3.4)

where

Pit) for 0 < t < T

1]
=

=0 elsewhere




From the definitions of hi(t)’ it can be seen that the
maximum deviation of the instantaneous [requency has been set
to fd. Then as before n = 2wde. The encoded baseband will
have 7 levels, and the corresponding frequency deviations are

{fd(l - i/3), 1=0,1,. . .6}. If all the four input levels are

equiprobable
w = [1/4 1/4 1/4 1/4] (3.5)
d

and
wq = ~1/4 [1ID] (3.6)

where [ID] is a (4xH4) identity matrix.
The necessary condition for the spectral lines to

exist, given by equation (2.15), reduces to
|cosn/2 cosn| =1 (3.7)

When there are no discrete spectral lines, the mean power
spectral density 1s given by (2.8). A computer program was
written to evaluate this expression and the results are given
in Figure 3.13. The spectrum has favourable asymptotic

behaviour.

3.6 Summary
Spectra of correlative encoded digital FM signals for

a range of encoding polynomials have been presented in this
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chapter. It 1is evident from an examination of the spectra
that correlative encoded FM 1s superior to conventional FSK
in terms of spectral conservation. |

A thorough investigation of the spectrum of a second
order polynomial has been presented, and the values of the

encoding coefficients k k2 for which the spectrum is ccm-

1.9
pact are shown. Spectra are given for various PRS encoding

.polynomials and modulation indices, for raised-cosine as well

as rectangular pulse shaping. The bandwidths required to
transmit 99% and 99.9% of the modulated signal power are
tabulated for all the schemes COnsidered.

The method is applicable to digital FM by multilevel
modulating signals which have been correlatively encoded.
As an example, results are given for a quatefnary modulating

signal with duobinary encodinr.
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Chapter U

ERROR PERFORMANCE OF CORRELATIVE ENCODED

DIGITAL FM

The spectral occupancy of correlative encoded FM
was investigated in Chapters 2 and 3. The other major con-
sideration in the choice of modulation is the SNR required to
attain the desired level of error performance. The error
performance of correlative encoded FM signals is investipgated
in this chapter. In partial response signalling a degradation
is observed when conventlonal detectors are used. As an
example, the error performance degradation for partial response
signalling and discriminator detection is given in Section U.1.
Then we will turn to the performance with newer detectors such
as the Viterbi decoder. In the analysis of communication sys-
tems, an upper bound on the performance of the optimum detector
can be obtained in terms of the minimum Euclidean distance,
using the union bound. The upper bound 1is evaluated for

several correlative encoded FM signals in Section U.2.

b,1 Discriminator Detection

A correlative encoded FM system with discriminator
detection can be modelled by the block diagram shown in Fipure

4. 1. The performance of a discriminator detector has been

i
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investigated by several authors [35-39] for conventional FSK.
Even though thé noise in the channel is additive gaussian,
the noise at the output of the limiter discriminator has a
complicated distribution, because of nonlinearity of the
limiter discriminator. The distribution of ﬁhe noise at
the output of the discriminator was given by Rice [34] using
the theory of "clicks". This theory was adoptéd by Mazo and
Salz [35] to analyze the performance of a discriminator
detector for FSK modulation. Tjhung and Wittke [38] included
the effects of filtering on the signal and obtained the para-
meters of the pre-detection filter to optimize the performance
for various modulation indices. Papantoni-Kazakos and Kaz
[39] gave a theoretical analysis for the performance when
the channel introduces an arbitrary distortion causing inter-

symbol interference.

We next consider the degradation introduced in discrimi-

nator detection by correlatively encoding the baseband sipnal in

FSK. Swartz [40] has derived an upper limit on the error rate
for modified duobinary encoded FSK with binary data input.
Lender [41] has given experimental results on the performance
of modified duobinary encoded FSK with quaternary data input.
We consider the performaﬁce of precoded duobinary FSK with
discriminator detection. In the analysis, the noise, n(t),

is assumed bandlimited but the signal, x(t), is assumed to be
undistorted at the input to the detector. The modulated
signal, x(t), is of amplitude A. The noise, n(t), has a flat

power spectrum with two-sided power density of NO watts/liz,
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and is bandlimited to B Hz. Thus, the ONR at the input to

tthe discriminator is p = A2/(MBNO). iven thouph the error

rates for FSK are well known, they are reproduced in Figure
b, 2 so that they can be used for comparison with duobinary

FSK.

The performance of duobinary FSK (PRS encoding poly-
nomial (1+D)/2 with rectangular baseband pulse shaping) with
precoding will now be‘considered. During any bit interval,
the modulated signal, x(t), has an instantaneous frequency
of either fc,‘(fc+fd) or (fc-fd). Here, fc is the carrier
frequency; The frequency deviation fd, for a modulation index
n, is given by

4 = za7 (4.1)

Let the output of the synchronous sampler be r. In duobinary
encoding 3 signal levels are possible. For details on precoded
duobinary transmission see Lucky, Salz and Weldon [42, Chapter
4]. The detection can be treated as a ternary hypothesis

problem.

Hy 5 r = n R SIS
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Different symbols are used for the noilse in the three cases
due to the dependency of the noise on signal frequency. Given
the observation r, a decision has to be made between the three

hypotheses. Due to precoding, H, and H_ correspond to a

+

transmitted data symbol, 1, and Ho corresponds to a data

symbol, -1. The noises n n, and n_ consist of two compo-

+’

nents. The first component is a continuous random variable

'which can take any value in the interval [-7,7]. The second

component 1s a discrete random variable which aésumes only
discrete values of + 2mm, where m is the number of clicks
during the bit interval. The probability density for these
components can be calculated directly with the method used

by Mazo and Salz [35]. The decision rule for the receiver is

given by;
i) Output is bit 1: if [r| > n/2
(4.3)
i1) Output is bit -1: if |r| < n/2

The probability of error with the above decision rule
was calculated and the results are given in Figure 4.3. For
n = 0.5m, the curves show duobinary FSK to be about 4.5 dB
inferior to FSK. However, in the calculation of the curvos;
the noise bandwidth, B, was assumed to be the same for both
the schemes. Duobinary FSK has a 99% channel bandwidth of
0.92/T, compéred to 1.18/T for FSK. Thus the pre-detection
filter for duobinary FSK would be narrower than for conven-
tional FSK. This gives duobinary FSK an advantage of 1.1 dB
in pre-deftection SNR. Thus duobinary FSK 1s approximately

3.4 dB inferior to FSK.
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It is well known that the continuous phase in digital
FM imposes intersymbol interference. Correlative encoding of
the baseband signal introduces an additional intersymbol
influence. The discriminator detector makes decisions based
on the observation during a single bit interval. Better per-
formance can be obtained by observing over a longer period of

time. Such detectors‘are considered in the next section.

h.2 - Optimum Detection

The phase continuity in digital FM introduces inter-
symbol influence. Therefore, performance gain can be obtained
by observing the signal over several bit intervals and making
a decision after a delay. This was observed by several authors
in the early 70's [12, U43-467]. It is known that at high SNR,
a tight union bound can be obtained on the performance of a
digital FM receiver [48, 49]. The behaviour of this bound
is dominated by the minimum Euclidean distance [57]. Aulin,
Rydbeck and Sundberg have computed the minimum Euclidean
distance for various correlative encoded FM schemes. The
results are given in a number of technical reports [52-56].
They have also carried out an exhaustive investigation of
the minimum Euclidean distance for a first order encoding
polynomial.

In this section, the derivation of the upper bound
on the error performance of a receiver, which makes decisions
after a delay, is summarized [48]. The validity of the

assumptions made in the derivation'are discussed. It is




pointed out that reciprocal encoding polynomials have

fdentical minimum Euclidean distance and o the work in

exhaustive studies can be reduced. In Chapter 3, an exhaus-
tive investigation of the band occupancy of correlative
encoded digital FM encoded by a second order polynomial was
carried out. An exhaustive investigation of the minimum
Euclidean distance for the same signals is carried out here.
The results on the band occupancy and the minimum Euclidean
distance are combined in Chapter 7 to seek encoding poly-
nomials which are spectrally efficient with a small penalty
in SNR.

A correlative encoded digital FM signal can be

written as

t

x(t) = cos(2ﬂfct + [ 2 akh(u—kT)du + ¢L)
’ pr K5 |

for t > LT (u.u)

In the above equation,d)I is the phase of the modulated signal
at ¢t = LT. It is assumed that additive white gaussian noise
is introduced in the transmission channel. Therefore, the

signal at the input of the recelver 1is given by
r(t) = x(t) + n(t) (4.5)

where n(t) is white gaussian noise with two-sided spectral
density of N_ watts/Hz. We will consider the detector that

observes r(t) over the interval LT < t < (L+N)T and makes
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the decision on‘a to minimize the probability of error. The

L
investigation is restricted to coherent detection, which assumes

perfect knowledge of ¢L. In non-ccherent detectors, ¢L is
treated as a fandom variable, usually with uniform distribution
over the interval [-w,m]. Non-coherent detectors have been
analyzed for conventional FSK schemes [44, 48, 49].

The signal x(t), over the interval LT < t < (L+N)T,

depends on the data sequence 8rs 849 ¢ ¢ o aL+(N—1) and

the phase ¢L. If the baseband pulse, h(t), 1in equation (4.4)
extends over m bit intervals, x(t) depends aiso on the (m-1)
data symbols prior to t = LT, that is ap_1s 8;_o* e
aL—(m—l)' In the analysis perfect knbwledge of ¢L and the
data symbols ar_qs 8_o° - .,.aL_(m_l) is assumed. ‘The
validity of this assumption is discussed later. The signal,
x(t), can assume any one of 2N possible waveforms depending
on the data sequence in the interval LT < t < (L+N)T. Let
each of these waveforms be denoted by s(t, ars Ak), Qhere Ak
represents a partilcular data sequence ar 410 aL+2 N
aL+(N—1)" The receiver observes s(t, ar s Ak) in the presence
of noise and has to make a decislon on the data symbol a -
The problem pbsed in this format is treated in [47] as a
composite hypothesils problem. The solution to the composite
hypothesis problem is known to be a maximum likelihood

receiver. Using the arguments of Osborne and Luntz [U487], the

likelihood ratio, 2, can be reduced to r?
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(L+N)T
8 2
) exp(ﬁ— r(t)s(k,l,Ak)dt )
k=1 1)
. LT
(T4+N)T (4.6)
n 5 _
! exp(5- r(t)s(t,-1,A )dt)
k=1 o
LT

The decision rule for the detector, that yilelds a minimum

probabllity of error, is given by

1 (4.7)

4.2.1 Bound on the Performance with Optimum Detection

The exact performance of the detector given by the
decision rule (4.7) is difficult to compute. However, tight
performance bounds can be obtained. Osborne and Luntz [U48]
have obtained two bounds for conventional FSK modulation.

One bound 1is tight for low SNR, whereas the other is tight

for high SNR. Only the bound for high SNR is considered here.

Let
(L+N)T

£ = £ r(t)s(t,aL,Ak)dt (h.8)

LT

Then, the likelihood ratio 1is given by
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n
kzl exp(£y 1) |
L = (4.9)
I exp(e_, )
exp(g
k=1 -1,k
For large SNR
n |
ex ) = ex ) {h.10 i
kzl p(Ey | p(Ey | ) 3
i
|
and %
ex ) = ex ) ’ {h.11) “
kzl P(E_1 p(E_1 4 |
1
where El,p and E—l,q are the largest of El,k and E-l,k’ |
k=1,2,. . . n respectively. With the above approximation, the
decision rule (4.7) reduces to
1
- >
max [&, . ] < max [E& ] (h.12)
K 1,k -1 K -1,k
For high SNR, a tight upper bound can be obtained on the
probability of error of the above recelver, using the union
bound [48, 49].
1 n n
Po<n I 1 Prle, , <k a =1,A.) (1.13)
e n 551 k=1 1,1 -1,k L 27
The variables Ea x are gaussian random variables. Therefore,
Il,
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the Pr(El’j < E-l,k | ar

the Euclidean distance, d,.

=1’Ai) can be expressed in terms of

between the signals s(t,l,Aj)

J,k’
and s(t,-l,Ak).
(L+N)T
2 _ 2
dj’k = {s(t,l,Aj) - s(t,-1,A)}" dt (4,1h)
LT
and
d,
Prig, ;< €y, l ag=l,A) = @ »—LL—N (4.15)
o]

where, Q 1s the error function given by
1 i 22
o —— 2
Q(X) = ’/2," [ e

X

du : (4.16)

Therefore, P_ in equation (4.13) can be written as

n n d,
P <1 7 7 q ——h—k—] (4.17)
€ I 521 k=1 /ﬁ;'

Let d be the smallest Euclidean distance of all d, , that
min J,sk
is
min '
= d .18
doin ik [ J,k] ( )

For large SNR, the behaviour of the upper bound 1n equation

(4L.17) is dominated by the minimum Euclidean distance, dmin

[571.
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The weakness in the application of the above upper
bound 1is the éssumption that ¢L and the data s&mbols aL_},
aL—2" . "aL-(m-l) are known. This knowledge supposes that
the data symbols prior to t = LT are detected correctly.
Thus, Pe is the probability of an initial error. An initial
error could well result in a run of errors. In that case,
Pe would be the probability that a run of errors will occur.
This phenomenon of error propagation is difficult to analyze
analytically. ‘Anderson and Taylor [51] have discussed this
problem for a somewhat similar type of modulation scheme known
as "Multi-h Codes". They have used a bound on Pe based on the
minimum Euclideah distance, and have simulated the detector
using the Viterbi algorithm. For error rates below 10—5, the
performance of the implemented detector was within 0.2 dB of
the error bound. A similar behaviour could be expected for
a correlative encoded digital FM detector at high SNR.

To summarize the above results, an estimate on the

error performance of a correlative encoded digital FM schewe

can be obtained 1n terms of the minimum TFuclidean distance.

by, 2.2 Computation of the Minimum Euclidean Distance

The Euclidean distance dj K is given by eqguation
’
(4.14). If the carrier frequency, fc, is large compared to

the bit rate, it can be shown that
(L+N)T t

{ o

>
djsk = NT - J cos( jglm(bi-ci)h(u-iT)du)dt (.19)

LT LT

e A U
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The data symbols bi and c, correspond to data sequences of

i
s(t,l,Aj) and s(t,—l,Ak) respectively. From the above

equation it is clear that the minimum Euclidean distance
depends neither on the initial phase, ¢[, nor the data

symbols a Let a sequence of

L-1° 2p-2° ' * 2 %1 _(m-1)"

symbols ey be defined as

= b, - c, (4.20)

Since the data symbols by and c, can take values of + 1, e

i i
can be either + 2 or 0. The Euclidean disfance can be written

as
(L+N)T t
2 rg
d, , = NT - cos ( J Z e.h(u-1T)du)dt" (4.21)
Jsk == 73
LT
LT

xe]

set e, =

To compute the minimum Euclidean distance, d [

min’
and find dj,k for all possible sequences e 4128400 ¢ v

€L+ (N-1) and choose the smallest Euclidean distance.

The Euclidean distance can be visualized with the aid
of a phase tree. A phase tree consists of phase paths for all
the possible data sequences. The phase tree for the polynomial
(1+2D+D2)/u with rectangular pulse shaping is shown in Figpure
4.4, Phase path merges in the phase free provide an upper
bound on the minimum Euclidean distance. The phase paths

corresponding to the data sequences 1-1 1-1 and -111-1,

shown in solid line in Figure U.4, merge after 4 bit intervals.

A
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Therefore, the Euclidean distance between the signals cor-
responding to the data sequences -11l-1xxx. . . and 1-11-1xxX.
cannot be increésed by observing the signal any longer than 4
bit intervals. - Thus the Euclidean distance between signals
with merging phase paths provides an upper bqund on the
minimum Euclidean distance.

The square of the minimum Euclidean distance, dﬁin’
is shown in Figure 4.5 for various values of N along with
the upper bound based on the merge argument for encoding
polynomial (1+2D+D2)/4 with rectangular pulse shaping. We
next consider an exhaustive investigation of dmin for a

second order polynomial with rectangular pulse shaping and

m
n = 0.5T. The phase tree for the polynomial % Y iji
i=0 m
can be obtained by traversing the phase tree for % Z km iDi
i=0

in the reverse direction. Therefore, the dmin for the poly-
nomial % 120 kiDi and its reciprocal % igokm_iDi are identi-
cal. The proof for this equivalence 1s given in Appendix B.
It follows from this result that for a second degree poly-
nomial, the encoding coefficients (klgkg) and (kl/kz,l/k2)
yleld identical dmin' Therefore, to exhaustively investigate
a second order polynomial it is sufficient to investigate

the region -« < kl < @and -1 <k, < 1. The minimum Fuclidean
distance, for N=7, was computed for various values of kl,k2 in
the region -5 < k < 5 and -1 < k < 1 and the results were

applled to other values of_kl,k2 using the reciprocal poly-

nomial result. The results are presented in Figure U4.6.
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4.2.3 Complexity of the Receiver

If the detector is implemented accordihg to the de-
cision rule in equation (4.12), the receiver structure will
be complicated; The use of Viterbi algorithm to simplify
the receiver sfructure has teen suggested by several authors
[45,46,48-50]. To demonstrate the complexity of the receiver,

duobinary FSK with rectangular pulse shaping and n = 0.57u

.will be consldered. When the modulation index, n, 1s such

that, n/m is a rational number, the phase tree collapses into
a phase trellilis. The object of the receilver is to find the
path through the trellis which most closely represents the
received signal. The Viterbi algorithm is ideally suited

for this task. Details can be obtained from [46].

The phase trellis for the duobinary FSK, withn= 0.5m,
is shown in Figure 4.7. It has 4 nodes and 4x3 = 12 branches.
The detector maintains 4 path histories and updates them every
bit interval after finding the 12 branch metrics. Let the
branch metrics'be denoted by bmn’ where m(m=0,+1,2) refers to a
node and n(n=0,il) refers to a branch emanating from the node.

If r(t) 1s the received signal, the branch metric is given by
. _

nmt mm
= ) e . —_— - y b,
bmn r(f)oos(2nfct + I 5 ) dt (4.22)

It would appear that 12 correlators are required to implement

the detector, However, using trigonometric identities bmn

can be written as

o T Ak« o o gt

!
|
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- mm s MM
bmn = Xn cos= + Yn sin = (4.23)
where
T
= nmt _
X, = Jr’(t)cos(2ﬂfct + S )dt .(_u.zu)
0
. and
T
= - ; nmt .
Yn J r(t)81n(2nfct + S5 )dt (4.25)
0

Equation (4.23) shows that all the branch metrics can be
obtained with 6 correlators. Schonoff et. al.[50] show that
if fc is an integral multiple of the bit rate, Xn and'Yn can
be obtained by hetrodyning the output of a singlebcorrelator
by cos 2nfct and sin 2nfct. Thus, the detector for duobinary
FSK requires 3 correlators and subsequent software. Based on
similar arguments it can be shown that the polynomiélsv
(1+D+D2)/3 and (1+2D+D2)/u would require 4 and 5 correlators

respectively.

4.3 Summary

A preliminary investigation of error performance of
corrélative encoded digital FM schemes was carried out. Duo-
binary FSK appeared approximately 3.4 4R inferior to conven-
tional FSK with discriminator detection.

The optimum detector for cdrrelative encoded digital

VG 8 - 5 e g0 P - - KW e £ - oy gt
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FM observes the signal over several bit intervals before
making the decision. It is known that a bound on the error
performance‘of such a detector can be obtained from the
minimum Euclidean distance. An exhaustive investigation of
the minimum Euclidean distance for a second order encoding
polynomial was carried out for n = 0.5m. It was polnted out
that any encoding polynomial and its recripfocal possess
identical dmin‘
A method of implementing the optimum detector using
Viterbi algorithm was discgssed briefly. The detectors for
encoding polynomials 1, (1+D)/2, (1+D+D2)/3 and (1+2D+D2)/M
require 2,3,4 and 5 correlators respectively;‘ The complexity
of the subsequent software depends on.the total number of
nodes and branches in the trellis. At low bit rates this

will pose no problem. However, at high rates the implementa-

tion of these detectors may be unrealistic at this time.
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Chapter 5

OPTIMUM PULSE SHAPING IN

MSK-TYPE SIGNALS

MSK-type signals can be defined as angle modulated
signals, in which the baseband pulse h(t) extends over only
one bit interval, and the modulation index, n, 1is equal to
0.5m. Note that angle modulated signals are the same as
frequency modulated signals which are allowed unbounded
instantaneous frequencies. In general, angle ﬁodulated signals
-are difficult to analyze because they involve a nonlinear trans-
formation of the baseband signal. However, MSK-type signals
- a speclal subclass of angle modulated signals - can be re-
presented by a linear quadrature carrier modulation as shown
in Figure 5.1. The linearity makes it possible to analyze
and implement them with greater ease. |

In this chapter, the baseband pulses in MSK-type sig-
nals are optimized to minimize the fraction of out-of-band
power. Results are presented for a range of channel band-
widths of practical interest. The spectra of the MSK-type
signals obtained through optimization are compared with the
spectra of well-known modulations, such as MSK, SFSK and

OKQPSK.
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Figure 5.1 Quadrature Generation of MSK-type Signals
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5.1 quivalent Quadrature Carricr Modulation

In general, an angle modulated signal can be written
in terms of in-phase and quadrature components. For n = 0.5mw,
the structure reduces to the linear form as shown in TFigure
5.1 [20]. These signals are termed MSK-type signals. The
input binary data bits a, are independent aﬁd can assume a
value of +1. -“Alternate bits are modulated on I and Q channels
as shown 1in Figure 5.1. The impulse response of the equivalent
baseband shaping filters p(t) and q(t) are non-zero ovér two
bit periods, 2T, and the baseband pulses in the I and Q
channels are offset or staggered by one bit interval T. The

modulated signal x(t) is given by

x(t) = xq(£) + x,(¢) (5.1)
where

Xy (t) = kjiw a, p(t - 2kT) sin w,t

xp(t) = kjim 85,1 A(t - (2k+1)T) cos w b
and

p(t) = q(t) = 0 for t > 2T  and t <0

The envelope e(t) of the transmitted signal x(t) can be

written as
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e(t) = /12t - okT) + g°(t - (2k - 1)T)

2KT < t < (2k + 1)T

r (5.2)

/bz(t - 2kT) + qg(t - (2k + 1)T)

(2k + 1)T t < (2k + 2)T

I'A

And the phase ¢(t) of x(t) is

o(t) tan_l[azkp(t - 2kT) / a,,_ 1 a(t=(2k - 1)T)]
2kT < t < (2k + 1)T

= tan_l[a2k p(t - 2kT) / a5y 41 Q(t—(zk + 1)T)]

(2k + 1)T < t < (2k + 2)T

For the modulated signal x(t) to be a constant-
envelope signal of amplitude A, p(t) and q(t) have to satisfy

the following constraints

1}
=
o
| A
o+
A
—

pg(t) + q2(t + T)
(5.4)

1}
=
=

A

p2(t) + q°(t - T) <t <ot

Under these constraints the modulated signal x(t) can be

written in the form of an angle-modulated sipnal as




x(t) = A cos(wct - ¢(t)) - (5.5)

If x(t) is transmitted over an additive white gaussian
channel, the performance does not depend on the pulse shapes
p(t) and q(t) but only on their total energy. In the model,
the odd bits are transmitted through the I channel and even
bits are transmitted through the Q channel. Since it is

.desirable to have the same error perfofmance for all bits,
the power would be divided equally between the I and @

signals in the model. Thus if

2T
J p2(t)dt = A°T (5.6) ‘;
] : 0
then
2T
[ a°(t)dt = AT (5.7) ?
J !

The symbols in the input data stream ak are assumed g

to be statistically independent. Therefore the power spectral

density of x(t) can be expressed as

P (£) = P, (£) 4+ P, (D) o (5.8)

In the above notation Px(f) denotes the power spectral density

of x(t). Px(f) can be expressed also in terms of the power
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spectra of the baseband sigrals

- 1
Px(f) = ~§{Pp(f—fc) + Pp(f+fc) + Pq(f-fc)

+ Pq(fffc)} (5.9)

If fc is sufficiently large compared to the bit rate, PX(f)
will be concentrated around ifc, and hence it is sufficient

to investigate the baseband equivalent spectral density

be(f) = Pp(f) + Pq(f) (5.10)

The baseband pulses p(t) and q(t) are time-limited and hence
their spectra cannot be strictly bandlimited. Therefore, in
the suggested modulation adjacent channel interference 1is
inevitable. Let the channel bandwidth be 2W Hz. Then the
fraction of in-band power of x(t) in the band (fc—w, fc+w) is

given by

P, = [ P (f)df / (A°/2) | (5.11)
*p

P =1 - P, (5.12)

The fraction of out-of-band power, P is a good measure of

out?




T

the adjacent channel interference. Therefore, designing an
MSK-type signal involves shaping p(t) and q(t), which satisfy
constraints (5.4) and (5.6), such that Pout is minimized or

P is maximized for a given channel bandwidth. Rabow [13]

in
has treated this optimization problem with the aésumptions
that p(t) = q(t) and p(T - t) = p(T + t), and has given the
optimum parameters and wave shapes for one parficular value
.of the time-bandwidth product. Boutin et al. [24] have
recently reconsidered this problem pointing out Rabow's work.

Prabhu [18] has obtained a lower bound on P that is not

out’
necessarily achievable. The optimization without Rabow's
assumptions is considered next.

Maximization of the fractional energy in a given
bandwidth for time-limited signals has been studied by
Slepian, Pollak and Landau [59,60] with the aid of prolate

spheroidal wave functions. The relevant properties of the

spheroidal wave functions are presented in Appendix C.

5.2 Optimum Baseband Pulse Shaping

The problem posed in the last section can be sum-

marized as follows:

find p(t) and q(t) to maximize P n for a given W,

i
with the following constraints

p(t) = q(t) =0 l{—l > T (5.13)

p7(E) + g7t +T) =A% T <t <0 (517
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p2(t) + q°(t - T) = A° 0<t<T (5.15)
and
7 T
j pg(t)dt = J qz(t)dt = A°T (5.16)
-7 : -T '

The pulses p(t) and q(t) have been shifted to extend
over the interval (-T,T) instead of (0, 2T) as in section 5.1

for the sake cf convenience. Since the sphercidal wave

functions, wi(t), are a complete set over the subspace of
functions strictly time-limited to interval [-T,T], p(t) and

q(t) can be expressed in terms of wi(t). Let

p(t) = ] ay (t) el < T (5.17)

n=0

and

a(t) = [ by (t) [tl <1 (5.18)

n=0

The parameter c¢ for the spheroidal wave functions is given
by ¢ = 2nWT. From the orthogonal properties of wi(t), it

follows that

T w )
: 2
I pg(t)dt = A°T = a_ A
=T n=0
s (5.19)
and
T w
)
J q°(t)dt = A°T = Y opoA
n
: n=0
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The fraction of in-band power P can then be written as

in

. > 2, 2 2 2 -
P, = {ngo(an Ayt b A} /(2A°T) (5.20)

The coefficiehts a, can be expressed in terms of p(t) as

T

©
]

M ' f p(t)y (t)dt (5.21)
-7 _\

The coefficients brl can also be expressed in terms of p(t) as

T
b A = [ a(t)w, (t)ds | !
-
0 | T
= [ q(t)wn(t)dt + J q(t)wn(t)dt‘ ;j
- 0
0 » |
- A2 0%(x) v (x + max
n
-T |
T
+ J /’Az - p2(x) wn(x - T)dx (5.22)
0

The fraction of in-band power P n can now be expressed as a

i
functional of p(t)
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T 2
Pin = 1 J (t)¥ (f)(it}
n n=0 |[_ _n b n
O Y
P P
+ [ /i - p7(t) v (¢ + T)at
-T
T p)
+ [ /A% - pf(e) (- Tt (2A°T)
0
(5.23)
Let f(t) be a p(t) which maximizes Py Then if
p(t) = £(t) + e A(E)
ob.,
1im - ¥ A(t) (5.24)
o€
e>0
T
3P, o
1im 31“= Y 2a_A [ A(t)y (t)dt
ex0  °%  |n=0 " " 4
o .0
-] e [ F(E)a(t)y (f + T)dt
n= O o e e e e
-T M2 P2 ()
T
f(t)a(e)y (¢ - T 2
* J 'n )— ar (2A°T) o

0 /h° - (1)

(5.2%5)
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Therefore
o £(t) °§ |
- b Ay (t + T)
nZO 2 ¥ (8) /2 _ f2(5) N0 nonn
ST <t <0
’ (5.26)
- £(t) T b
p (£ - T)
- et nnan
nZO anxnwn(t> - /ﬁg - fz(t) n=0
0<t<T

In the above equations the coefficients a, and bn are functions
of f(t) and are given by (5.21, 5.22) with p(t) = f(t). Even
though it 1s not possible to find a closed form expression for
f(t) which satisfies equations (5.26), the solution can be

obtained iteratively as follows.

1) Assume f(t) to be an arbitrary p(t) which satisfies
the constraint (5.16).
i1) Compute the coefficients a_ and b_ using (5.21) and

(5.22).
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1i1) Using the values of a, and b“ computed in step 1),
obtain the f(t) which satisfies the equations (5.20).

iv) Return to step 1i). The final solution is obtained
when a set of coefficients a.s bn and a function f(t)

are found that satisfy equations (5.26).

The optimum f(t) was computed iteratively for a range
of ¢ of practical interest from ¢ = 1.0 to 10.0, which |
corresponds fo a range of time-bandwidth products of approxi-
mately 0.3 to 3.2. 1In all the cases consldered it was found
that p(t) = q(t) and also p(t) = p(-t), which Rabow [13]

assumed. This implies

and L n=20, 1, 2 . . . (5.27)

8on+1 - Pops1 = 0

Under these conditions the equations (5.26) reduce to

£(t) f .

_ (T - t)
aonton¥on(t) = /2 25y o0 :

2nx2nw2n

&~ 8

n=0

0 <t <T/2 (5.28)

The above equation is identical to Rabow's [13] equation (8).

A&
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5.3 Numerical Results

The parameters of the optimum pulse shape for a range
of time-bandwidth products are presented in this section.
For a given ¢ = 27WT, the spheroidal wave functions were
generated by solving the differential equatioh (C.9) of
Appendix C. The values of X in equation (C.9) were obtained
from [61]. This reference also contains the values of Aj.
. The differential equation was solved numerically and the sol-

utions normalized such that

T

J wi(t)dt = Ai (5.29)
-7

For 1llustration, wi(t) are shown in Figure 5.2, for i=0,2,4
and ¢=8.0.

As mentioned in the last section, for all the time-
bandwidth products considered, the optimum baseband pulse
shapes satisfied the symmetry conditions (5.27). Therefore,
we present the results with the assumptions (5.27) without
loss of generality. To solve equation (5.28), f(t) was

approximated by a truncated series

£(t) =

Il o~

a2nw2n(t) | (5.30)
n=0

Equation (5,28) was solved iteratively and the optimum coeffi-

cilents a and f(t) were obtalned. The mean square error due

2n
to truncation can be expressed as
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Figure 5.2 Spheroidal Wave Functions, wi(t), for ¢ = 8.0
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T 5 ,
E = (f(t) - ) a, b, (£))7at
- n=0
2 2 |
= A°T(1 - ] a5 A,) (5.31)
n=0

Six terms were found sufficient, and the normalized mean

.o -l
square error (E/AZT) in all the cases was less than 2.5 x 10 °.

All the computations were carried out with the
assumption that A2T = 1. The optimum parameters for various
values of ¢ are listed in Table 5.1. Some of the coefficlients

a are very large in the table. This is due to the normal-

2n
ization (5.29) of w2n(t). For example, for ¢ = 1.0

a,. = 4.8 x 109,.but then A;, = 1.03 x 10722 and therefore

10
the contribution of a

10
(t) is still very small. 1In fact,

2 “ -6 |
10 00 = 24 x 1077 |

The minimum Pout computed for various time-bandwidth E
t

10¥10
(t) has a total energy of only a

210%10
products is shown as the lower bound in Figure 5.3. This is
an achievable lower bound. The lower bound obtained by
Prabhu [18] is also shown in the same figure. Prabhu's |
lower bound is based on the following argument. Since p(t) |
i1s a time-limited waveform, the fraction of in-band power

of p(t) is always less than or equal to the fraction of in-
band power of the zeroth order spheroidal wave function wo(t).
Therefore, P as a function of bandwidth 1s bounded above by

in
the eigenvalue A

0 of wo(t). For time-bandwldth products less

than l.O,’wO(t) almost satisfies the constraints that p(t) has




Time~band Coefficients Mean-
c wWidth Product Square
= 2TWT (2WT) = % ao a2 a4 a6 a8 alO Er;or Pin Pout

X 10_5
1.0 0.318 1.32147 -.05820 45.555 10300.0 5.34x106 4.82x109 0.328 .57250 | .42750
2.0 0.637 1.06539 -.00457 4.2421 282.0 36900.0 8.59x106 2.14 .88010 { .11990
3.0 0.955 1.01227 .00378 .23983 7.2073 592.0 79000.0 1.17 .97570 | .02430
4.0 1.273 1.0016l -.02388 -.1972 -4.570 -91.170 -467.70 0.217 .99510 | .00490
5.0 1.592 0.99565 -.10015 -.1208 -1.4778 -18.605 -69.309 0.212 .99650 | . 00350
6.0 1.910 0.98442 -.18077 -.0322 -.17497 -1.2435 .5911 0.076 .99783 | .00217
7.0 2.228 0.97541 0.22192 -.0073 -.01279 -.12159 -2.3097 0.025 .99927 | .00073
8.0 2.547 0.96842 -.24966 ~-.0026 -.00093 ~.04108 -.8285 0.052 .99981 {.00019
9.0 2.865 0.96162 ~-.27443 f-0028 .000825 ~.00433 .09705 0.025 .99995 | .00005
10.0 3.183 0.95324 -.30214 .00590 .003421 .00844 .2226 0.188 .99998 | .00002

Table 5.1 Parameters of the Optimum Pulse Shape for Various

Time-Bandwidth Products
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to satisfy fo be a baseband pulse of an MEK-type signal.
Therefore, Prabhu's bound is the same as the achilevable
lower bound, for time-bandwidth products less than 1.0.

There 1s no single pulse shape p(t) which can attain
the lower bound at all time-bandwidth products. The variation
of the fraction of othOf—band power is plotted in Figure 5.3
for the pulse shapes p(t) optimized for ¢ = 1.0, 6.0, 8.C and
10.0. As expected they achieve the lower bound at the values
of the time-bandwidth product for which they are designed.

The spectra of the modulated signal with the optimized p(t)
are shown 1n Figure 5.4, As the pulse 1s designed for larger
values of ¢, the main lobe in the spectrum becomes wider

and the asymptotic behaviour improves.

The optimum pulse shapes for various values of ¢ are
shown in Figure 5.5. As'c+0, p(t) approaches a rectangular
pulse whereas for large values of ¢ the transition is smooth.
The phase trajectories ¢(t) that occur with the optimum pulses
are shown in Figure 5.6. As c¢»0, the phase makes an abrupt
Jump of w/lU radians. As ¢ increases, the magnitude of the
jump decreases and for large values of ¢, ¢(t) has a smooth

variation in time.

5.4 Discussion

A number of modulatilons have been proposed in the past
based on the pulse shape p(t). Weli—known examples are
Minimum Shift Keying (MSK), Offset-Keyed Quadrature Phase
Shift Keying (OKQPSK) and Sinusoidal Frequency Shift Keying

(SFSK). The variation of PO as a function of bandwidth for

ut
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these modulations is shown in TFigure 5.7 along with the lower

bound, The pulse shape in OKQPSK 1is given by

]
-

p(t) ft] < T

= 0 elsewhere _ (5.32)

This is the optimum pulse shape at ¢ = 0. Therefore, OKQPSK
is close to the bound at low time-bandwidth products, and
hence can be expected to perform better than other pulse
shapes for highly restricted channel-bandwidths. This is
consistent with the observation of Gronmeyer and McBride [19]
that OKQPSK outperforms MSK for very narrow channel bandwidths.

The fraction of out-of-band power POut for MSK follows
the lower bound closely for bandwidths up to 1.2 times the bit
rate. The 99% bandwidth for MSK is 1.18/T, whereas the mini-
mum attainable is 1.12/T. The closeness of MSK to optimality
was pointed out by Prabhu [18]. SFSK spectrum has good
asymptotic properties but 1its fraction of out-of-band power
is not close to the minimum at any channel bandwidth.

The variation of out-of-band power of the signal,
modulated by the optimum pulse at ¢ = 8.0, is also shown in
Figure 5.7. It closely follows the lower bound up to the
time-bandwidth product of 2.5 and is spectrally superior to

both MSK and SFSK.

5.5 Summary

A method of shaping the baseband pulses in constant-
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envelope, quadrature carrier modulation to maximize the
fractional power in a given bandwidth has been presented. It
was found that the optimum pulse shapes were identical in
both the in-phase and quadrature channels, and also they

were symmetric and even. The least possilble fraction of

out-of-band power, P was computed for a range of time-

out’
bandwidth products of practical 1nterest. The‘optimum pulse
shapes and their associated properties were examined for a
range of values of the parameter c¢ (a quantity proportional

to the time-bandwidth product). The variation of the out-
of-band fraction of power for the optimum pulse shapes designed
for various values of ¢ was plotted. The power spectra of the
signal modulated by these pulse shapes were also given. As c
increases the main lobe of the spectra becomes wider and the
asymptotic behaviour improves. The optimum pulse shape tends
to a rectangular waveform as ¢ tends to zero. For large values
of ¢ the pulselhas a smooth transition. The phase trajectory
for the optimum shaping has an abrupt phase jump of n/l radians
for very small values of c¢c. As ¢ increases the magnitude of
the jump decreases and for large values of c¢, the phase changes
gradually with time.

A number of modulations have been proposed in the past
based on the baseband pulse shapes in a quadrature carrier
modulaticn. The out-of-band fraction of power for the well
known modulations, such as MSK, SFSK and OKQPSK were compared
with results from the optimization. The optimization yields

pulse shapes which attain a lower out-of-band bower. The
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improvement 1is not dramatic. However, the lower bound
obtained in this chapter provides a useful 1limit on what is

achievable and a basis for comparison.
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Chapter 6

OPTIMUM PULSE SHAPING IN DIGITAL ANGLE

MODULATED SIGNALS

Angle modulated signals were defined in Chapter 1,
and are given by equation (1.1) or equivalently (1.3). As
mentioned previously, the difference between phase continuous
conventional digital FM signals and what are called "digital
angle modulated signals" here, is that, in angle modulation
baseband pulses which cause phase jumps are permitted. 1In
terms of .equivalent FM signals, a phase jump would result in
an unbounded instantaneous frequency. Phase jumps occur
also in digital phase modulated signals, such as PSK, QPSK,
etc. However, in angle modulated signals the phase of the
carrier can accumulate after every symbol transmitted and

cause intersymbol influence.

A technique for obtaining the baseband pulse shapes
in angle modulated signals that minimize the fraction of out-
Qf—band power 1s presented in this chapter. The consideration
1s restrictet to angle modulation, when the baseband pulse,
h(t), is symmetric and extends over only one bit interval.

When the modulation index, n, 1s equal to 0.5w, a linear rep-
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resentation for the modulation is possible. This special
case was treated in detail in Chapter 5. Here, the more
general problem of shaping the baseband pulse with an arbi-
trary modulation index, n, 1is treated.

It is shown that the spectrum of an angle modulated
signal can be approximated by the power spectrum of a time-

limited waveform. The time-limited waveform is then expressed

as a seriles of spheroidal wave functions and the waveform is

shaped to minimize the out-of-band power. The corresponding
baseband pulse is obtained from the time-limited waveform.
Examples are calculated for a range of time-bandwidth products

and several modulation indices.

6.1 The Spectrum of Digital Angle Modulated Signal

The signal under consideration can be written as

t
x(t) cos(2nfct + j eo(u)du)

- 00

Rel[v(t) exp(j2nfct)] (6.1)

where the integral of eo(t) may contain step changes, and the

phasor v(t) is given by

t
v(t) = exp(J J eo(u)du) (6.2)

- 00

The spectrum of the modulated signal, x(t), can be obtained

using Rowe and Prabhu's method [33], details of which were
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discussed in Section 2.2. In their notation, the basebard

signal, eo(t), is expressed as the inner product of a random

vector a and a vector of modulating waveforms h(t) . Thus
k (I
—
e (t) = ) a_ -+ h(t-kT)] (6.3)
0 k
k=0 b .

The vectors a, and h(t) are each of dimension two for binary
L____Jl—-—-—'

modulation. The analysis will be restricted to modulations

with antipodal baseband pulses. Therefore,

(1) (2)
= [ 6.4
a, a, ay, ] v | ( )
and
h(t) = [h(t) -h(t)] (6.5)
—_—

The baseband pulse, h(t), is allowed to extend over only

one bit interval. Hence
h(t) = 0 for t < 0 and t > T (A.6)

The modulated signal, x(t), can be expressed also as

00

x(t) = cos(2nfct + ) a, - g(t=kT)]) (6.7)
= e 00 b}

where
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g(t) = [g(t) -g(t)]
e
and
t
g(t) = I h(u)du

- 00

For a modulation index, n, the phasor v(t) goes through a
total phase shift of + n radians over each bit interval. Thus
g(t) =0 for t < 0
(6.8)

=n for t > T

The function g(t) will be allowed step changes. Using Rowe
and Prabhu's method, the spectral density of the phasor, v(t),

can be written as

() =k m(n) - anh) RT(e)] (6.9)
—l

where

1 exp(=j2nfT) w] - q(UK) C oWy
A='—2-W+ — »

1 - exp(janfT) W, ° q(UK)]

and

o0
R(f)] = J exp(-j2nft) r(t)ldt
- 00
The functions appearing in (6.9) were defined in Section 2.2.
If we assume the binary input symbols to be independent

and equiprobable
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w o= [1/2 1/2] (6.10)

—

and
Ya T (6.11)

0 1/2

Since the baseband pulse extends over only one bit period,

N\

K =1
Ly =0 |
(6.12)
and
Ug =T
The vector q(t) 1s given by
———
a(t) = [exp(Jg(t)) exp(-jg(t))] )
I
0zt <T * (6.13)
= 0 elsewhere J
Thus
a(u) = q(m =" e (6.14)
[ J [ ]

The matrix A in equation (6.9) can now be written as
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1 0 ~Jn QI
A = % o 1l ¢ o~d2rfT | (6.15)
&(1—e_32Wchos n fe’" il
and hence
-Jjn
1 0 2 ¢ 7,
+ 1 ' 1
A+AT = 3 + = n (6.16)
2 0 1 2214 e 42 23
where
z, = COS(ZﬂfT—n)—COS2n
Z, = cos(ZNfT)-cos n
_ 2
zZ3 = cos(2nfT+n)-cosn
zy =1 - 2cos(2mfT) * cos n + cosgn

-

The vector R(f) in equation (6.9) is given by
—

R(f) = [R(f) R¥(-f)] (6.17)
——
where
T
R(£) = [ JB(E) -damft 5, (6.18)
0
because

r(t) = q(t) ((.19)
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Substituting the above expressions for R(f) and (A+A+) in
—

equation (6.9), Pv(f) reduces to

1 *
P (f) = o {R(f)R (f)(1+zl/ZU) (6.20)

+ R(-OIR(~£) " (142,/2))

3

b (2p/2) (eI MREOR(-0)+e! R (R (=) }

To simplify the analysis, only the angle modulated signals

with symmetric phase variation are consldered. That is

T N |
h(z +t) = h(z - t) (6.21)
or equivalently
BE o) -2=0_egd -0 | (6.22)

With the above assumption, R(f) in equation (6.18) can be

written as
s N
R(r) = e~ (MT = 2) [r_(£) + R (£)] (6.23)

where
T/2

R (f) = [ cos z(t) eT12MY g¢ (6.24)

-T/2




103

T/2
R (f) = J sin z(t) e_Jgnf}dt (6.25)
-T/2
and
- T n '
z(t) = g(t + ﬁ') -5 (6.26)

The functions Re(f) and Ro(f) are even and odd in f respec-
-tively. If the expression (6.23) for R(f) is substituted in

expression (6.20) for P,(£), P (f) reduces to

PL(E) = 3 (R(DIX(F) + R (D)X (£))° (6.27)
where

X (f) = 2 sin g COS(WfT)//E; (6.28)
and

Xo(f)b = 2 cos —g- sin(nfT)/ vz (6.29)
6.2 The Spectrum of Equivalent Time-Limited Waveform

The power spectral density of an angle modulated sig-

nal, given by equation (6.27), can be approximated by the power

spectrum of a time-limited waveform. The functions Xe(f) and
Xo(f) appearing in equation (6.27) are shown in Figures 6.1 and
6.2 for various modulation indices. The functions Xe(f) and

Xo(f) are even and odd functions in f respectively. They are
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also periodic with a period 2/T. Therefore, they can be

expressed in terms of cosine and sine series as

X (£) = nzl A,y cos {rfT(2n-1)) - (6.30)

and

Xo(f) = nzl an_l sin {nfT(2n-1)1} (6.31)

Thus, the power spectral density, Pv(f), can be written as

!

1 [e0]
Pv(f) = = { nzlAQH—lCOS(ﬂfT(Zn-l))Re(f)

2

B _lsin(ﬂfT(En—l))Ro(f)}' (6.32)

1

+
He~—18

n 2n

It can be seen from (6.24) that R (f) In the above expression

is the Fourier transform of cos z(t), strictly time-1limited

to the interval [- g, g

Re(f)'= F {cos =(t) -« p(t)}
where
g (6.33)
p(t) =1 1|t < 3
=0 elsewhere
and
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cos{nfT(2n-1)} = F {% [5(t+213%:ll)

v (62020210 53} (6.34)

In the above equations, F{x(t)} denotes the Fourier transform
of x(t) and §(t) is the Dirac delta function. Convolving the !

time-domain waveforms in (6.33) and (6.34), we get
Re(f) * cos{mfT(2n-1)}
- F{% [cos z(t + Z20=L)y ey 4 Tl20=d)y;

T(2n—l))

+ cos z(t- 5 - p(t - Iig%:ll)]} (6.35)

Similarly

R (£) + sin{nfT(2n-1)}

1]

n-1)
Faa

= F {%[sin z(t + ELg—g%—'—ll—)-) . p(t + (

- stn a(p - T@OmL)) g - 220ldyg) (6o 36)

Substituting the expressions (6.35) and (6.36) in (6.32),

Pv(f) can be written in terms of the Fourier transform of a

waveform c(t). Thus
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P,(f) = T [Fle(£)}]° (6.37)
where
c(t) = % ¥ {A2n_lcos z(t + Eig%:ll)
n=1

T(21’1-l))} p(t + T(2n—l))

+ B2n—1Sin z(t + 5 5
+ Z {A, _qcos z(t - Iigg:ll).
n=1
T(2n-1) _ T(2n-1)
- B2n_1sin z(t - 5 )} p(t ———5——~) (6.38)

Note that c(t) convolved with 1tself gives the envelope of the
autocorrelation function of the modulated signal x(t). We now
introduce a function dN(t), strictly time~limited to the

interval [-NT,NT], given by

dy(t) = c(t) if |t| < NT
(6.39)
=0 elsewhere
The coefficients A, _, and B, . in (6.38) decrease

with n as shown in Table 6.1. For 0.5m < n < 0.8n, A, .

and B are essentlally zero for n > N, where N can be seen

2n-1
from Table 6.1. Therefore, c(t) can be approximated by dN(t).



A2n—l coefficients - B2n—l coefficients
n
A A A A A B B B B B
1 3 5 7 9 1 3 5 7 9
0.5m 2.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0

0.6m | 1.979 |-0.282 [0.0634]-0.0161| 0.00431| 1.971 |-0.329 | 0.0781 | -0.0204 | 0.0055%4

O.7m 1.929 |-0.477 [0.196 {-0.0926( 0.0465 1.864 -0.638_ 0.295 -0.148 0.0774
0.8w 1.870 {-0.576 |0.310 |{-0.194 0.131 1.633 [~0.838 0.550 -0.386 0.280
Table 6.1 Coefficients A2n—l and Bopo1 for n = 0.571,0.6w,0.77 and 0.8m

601
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In other words, the spectrum of an angle modulated signal
can be approkimated by the spectrum of a strictly time-

limited waveform dN(t).

6.3 Optimum Baseband Pulse Shaping

The prdperties of spheroidal wave functions used in
the following optimization are summarized in Appendix C. Let
the bandwidth, Within which the fraction of power of the
modulated signal is to be maximized, be W Hz. Since the
spheroidal wave functions, with the parameter c¢ = 27WNT,
form a complete set in the class of square integrable
functions strictly time-limited to the interval [-NT,NT],
dN(t) can be written as

dN(t) = E a wzm(t) for |t| < NT (6.40)
Spheroidal wave functions of only even order are included in
the above summation because dy(t) 1s an even function. From

the orthogonal properties of the spheroidal wave functions, it

follows that

NT
ayhy = 2 J 4, (80, (8D
0
N nT
n=l(n-—l)T
- By sin a(y - HEEL N, (ay
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T/2
N
= ) {a, _jc08 z(x)
n=1
-T/2
- B,,_15in z(x)}wzm(x + 2(—gr?_l—l))dx
T/2
N
- o8 T(2n-1)
= {cos z(x) ZlA2n—lw2m (x + 5 )
-T/2 n=
N T(2n-1)
- sin z(x) ] By ¥, (x + —=—")}dx
n=1 - ‘ -
(6.41)
The function, z(x), is an odd function of x. Therefore
T/2
aEmAZm = . {cos z(x)@zm(x) +sin,z(x)@2m(x)} dx
(6.42)
where
N
Vo) = 1 Ay Dy (-x T(22—1))
n=1
T(2n-1)
b, (x =) ] | (6.43)
and

T
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N
d - T(2n-1)

T(2n-1) (6.41)

(x + 5

- Vo

The total energy of dN(t) is normalized such that

oo

2y =1 (6.45)

2 oo
d,“(t)dt = ] a
J N m=0 2m " 2m

- OO0

Let Pin be the fraction of power in a bandwidth of W Hz
of the waveform dy(t), and let P;ut be the fraction of

out-of-band power.

Then

v 2
in = L 2op ) ° (6.16)

P 2m “2m

and the fraction of out-of-band power is

P’ 1 - P, | (6.47)

out in

The fraction of power within the channel bandwidth, Pin, can

now be written as a functional of z(t) .
T/2

J (cosz(x)@Zm(X) + sinz(x)$2m(x))dx
m=0 0

(6.48)

- 3 3 ' ’ .
Let z(x) be the functlon that maximizes Pjn. Then, if

z(x) = z(x) + eA(x)



113

9P
1im in _
50 5e- = O ¥ A(x) (6.49)
1im BPin o0 T/2 _ N
€+0 3e mzo 2a2mx2m ’ [sin z(x) - w2m<x)
0
- cos z(x) - $2m(x)]A(x)dx} (6.50)

Therefore, the optimum z(t) is given by

[+4]

~

tan z(t) 520 oA o Vo ()

(6.51)

The coefficients a in the above equation are functions of

2m
z(t), given by equation (6.42) with z(t) replaced by z(t). As
before 1t 1s not possible to find a closed form expression for
z(t), but equation (6.51) can be solved iteratively.

When the modulation index, n, is equal to 0.5m, the
modulated signal x(t) is an MSK-type signal and equation

(6.51) reduces to aquation (5.28) of Chapter 5.
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The optimum pulse shapes are obtained by iteratively

solving (6.51). The spheroidal wave functions required for

computation were generated and normalized as explained in

Section 5.3 of Chapter 5.

To obtain numerical solutions,

the infinite series in (6.51) has to be truncated. An

estimate on the truncation error can be obtained as follows.

The waveform dN(t) is normalized in equation (6.45)

to have unit energy.

o

a2 A
m=(M+1) 2m ~2m

Therefore

A, ) (6.52)

The eigenvalues, A2m, are real positive numbers and are

ordered in magnitude, that is,

fore

oo

2 2

a A < A

m=(M¥1) 2m "2m  —

Let the quantity to be maximized, P/

be truncated by

M
2 2
P/ = ] a A
in m=0 2m 2m

A

2(M+l)(1 -

in

5 Ay ? There-
M b)
D oas A, ) (6.53)
m=Q °m "2m "

» given by equation (6.46),

(6.54)

Then, the error due to truncation can be written as

Error = ! a
m=(M+1)

2

2m A2m —

Aome1) (2

Moo
- Ya, A,)
m=0 2m - 2m

(6.55)
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or more simply

Error < Asuy1) o (6.56)

The eigenvalue, A2m’ is the fraction of energy of wzm(t)

within a bandwidth of W Hz. It is pointed out by Slepian and

Pollak [59, p.45] that once 2m exceeds (2c/7m), A fall cff to

2m

zero rapidly. In the computation 6 terms were included. The

value of A12 1s listed for a range of values of c¢c in Table

6.2. The eigenvalue, A is a pessimistic bound on the

12
truncation error, whereas a more accurate bound is given by
(6.55). Table 6.2 shows that as the value of the parameter,
¢, Increases more terms have to be included in the trunca-

tion (6.54) to maintain a small error.
Another approximation involved in the analysis is
approximating c(t) by dN(t). A measure of goodness of this

approximation can be obtained from the fractional energy of

c(t) in the interval [-NT,NT].

oo

J d; (t)dt
PNr T =2 | (6.57)
J c2(t)dt

- 00

For n = 0.5m, 0.6w, O0.7w7 and 0.8w, P was greater than the

NT
value shown in Table 6.3 for all the values of ¢ from 1.0 to

20.0.

When n = 0.5m, c(t) 1s strictly time-limited to the

interval [-T,T] and therefore identical results were obtained



c 1 5 10 12 14 16 18 20
A, 2.3x1032 | 6.0x10° 1% | 2.1x1077 | 1.8x107° | 7.3x10"% | 1.5x10” 1.5x10 5.8x10 *
Table 6.2 )\12 for a Range of Values of the Parameter c

91t



Pyr 2
n
N =1 N = 2 N = 3 N = 4
0.5m 1.000 1.000 1.000 1.000
0.6m 0.977 0.997 0.998 0.998
0.77 0.520 0.982 0.995 0.997
0.8 0.850 0.930 0.963 0.979

Table 6.3 PVT for n = 0.57,0.6w,0.7% and 0.8,
and N = 1,2,3 and 4

LT
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for N =1, 2, 3 and 4. The final results obtained were iden-
tical with the results for MSK-type signals in Chapter 5,
Figure 5.3.

The optimum Péu was computed for n = 0.6m, 0.77 and

t
0.8m, and the results are shown in Figures 6.3, 6.4 and 6.5
respectively. Computations were carried out for N = 1, 2, 3

and 4. As n increases, the waveform c(t) spreads out over a

larger interval and it becomes necessary to consider dN(t) for

larger values of N.

The optimum pulse shape z(t) can be computed for

a given value of ¢, N and n. Let us define a parameter Ceq

(6.58)

ceq =

=10

A baseband'pulse optimized for a given value of c¢ and N,
maximizes the fractional energy of the modulated signal
"in a bandwidth of 2W = ceq/(nT). The out-of-band power
variation for the signals modulated by the baseband pulse
optimized for N=2 and n=0.7m are shown in Figure 6.5a for
various values of c¢. The modulated signal optimized for
a particular value of c, attains the least possible Pout
for a channel bandwidth of 2W = c¢/(wNT). Therefore, a

lower bound on PO can be obtained by joining the out-of-

ut
band powers of the signals at the time-bandwidth products
for which they were optimized.

One of the approximations made in the optimization

is approximating c(t) by dN(t). Therefore, an improved
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achievable lower bound on PO can be expected as the

ut
baseband pulse is optimized for higher values of N. The
lower bounds on P _ . for N = 1,2,3, and 4 are shown in
Figure 6.5b for n = 0.7n. It can be seen from this figure
that N = 2 provides a sufficiently accurate bound for
time-bandwidth products up to 2.5.

The lower bounds on Péut and P_ . for n = 0.6m,
0.7m and 0.87 are shown in Figures 6.6, 6.7 and 6.8 for
N =14, Forn= 0.6, Py (PNT is defined in equation
(6.53)) is almost unity and therefore, the signals
modulated by optimum pulse shapes attain the optimum Péut
at the time-bandwidth products for which they are optimized.
For n = 0.77 and 0.8n, the actual fraction of out-of-band

power, P of the signals modulated by the optimum pulses

out’?
is different from the optimized Péut' This discrepancy
is due to the approximation made in the optimization. If
N is taken large enough such that dN(t) closely approxi-
mates c(t), the discrepancy can be resolved.

The lower bounds obtained on POut for n = 0.5,
0.6m, 0.7m and 0.8n are compared in Figure 6.8a. As n
approaches m, a sharp drop in POut can be expected at a

time-bandwidth product of unity due to the discrete line

in the spectrum that occurs at 2WT = 1.



O
o

~OF-BAND POWER 10 LOG (P, )=
A
o

\-
NZ4 Ceqzz
LOWER BOUND
-20 1~ ON Py, T T ~Leg3
Y
|—-
D
®)
:g [ \
N\
z N et
- -
H-30 - - Ceq=d
<
¢ ot
L.
| | ] | | ]
0 1.0 2.0 3.0

TIME BANDWIDTH PRODUCT (2WT) —

Figure 6.6 Variation of Fraction of Out-of-Band
Power for Optimum Pulse Shapes at
Ceq=l,2,3,ﬂ,5 and n=0.6w

4



FRACTIONAL OUT-OF-BAND POWER IOLOG (Py,¢+)—

o
o

|
O

I
N
O

I
W
@

123

© N:=4 AN
LOWER BOUND \\\

— ~ ON P, ~. Ceq’
out \\\\ ~— o

Ceq =5
| 1 | 1 | ]

0] 1.0 2.0 3.0

TIME BANDWIDTH PRODUCT (2WT) —=—

Figure 6.7 - Variation of Fraction of Out-of-Band
Power for Optimum Pulse Shapes at

ceq=l,2,3,ﬂ,5 and n=0.7mw



-BAND POWER I0LOG (pouf)—"'
1 o
o o)

]
N
(@)

-30

FRACTIONAL OUT-OF

124

LOWER B'OUND \\\\\\~ Ceq=4
ON  Pqyut SSSS==z=
Ceq:5

| l I l ! 1
1.0 2.0 3.0

TIME BANDWIDTH PRODUCT (2WT) —

Figure 6.8 Variation of Fraction of Out-of-Band

Power for Optimum Pulse Shapes at

ceq=1,2,3,4,5 and n=0.87



—_—
O
O

=10

=20

-OF -BAND POWER 10 LOG (P, )

-30

FRACTIONAL OUT

Figure 6.8a  Lower Bound on P

— LOWER BOUND ON Py
=087
n= 0.7
- M= 06T
=057
R S SU— l |
0 | 1.0 2.0 3.0

TIME -BANDWIDTH PRODUCT (2WT) —

1245

ut for n = 0.57, 0.6w, 0.7m and 0.8mw



nr .
M=0.7m
g(t) B
n
2 !
—
0.0 | { 1 | . | | | | ] J
0.0 , I T
2

f———

T

Figure 6.9 Optimum Phase Variation g(t) for n=0.7w,N=4 and ceq=1,2,3,ll and 5



126

The optimum phase trajectories, g(t), were examined
for several modulation indices. The results are shown in
Figure 6.9 for n = 0.7m. When the parameter, ¢, tends to
zero, the phase makes an abrupt jump of n/2 radians. As ¢
increases the magnitude of the jump decreases and the phase

changes gradually.

6.5 Summary

A technique for optimizing the baseband pulse shapes
in angle modulated signals to minimize the fraction of out-of-
band power was presented. The results obtained for angle
modulated signals agree with the results for MSK-type signals,
when n = 0.5m. The optimum pulse shapes and the fraction of
out-of-band power were computed for modulation indices
n=0.6m, 0.77 and 0.87" and the results are given for a range
of time-bandwidth products. The phase trajectory for optimum
pulse shaping is given for n = 0.7m. When ¢ tends to zero, the
phase makes an abrupt jump of n/2 radians. As c¢ increases the
magnitude of the.jump decreases and the phase has a gradual
variation.

The method of approximating the power spectrum of the
modulated signal by the power spectrum of a time-limited wave-
form, and then optimizing the time-limited waveform to
minimize the fraction of out-of-band power appears to be a
useful technique. This method may prove useful in the optimi-

zation of other modulations.
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Chapter 7
CONCLUSIONS

In this report band occﬁpancy of angle modulated sig-
nals has been investigated for a range of baseband pulse
sﬁdpes. The error performance of these modulations has been
examinéd as well. The results on the band occupancy and the
error performance are summarized and combined 1n Section T7.1.
Modulation schemes which are spectrally efficient with only
a small penalty in SNR are indicated. The new developments
in this report are listed in Section 7.2. Finally, the scope

for further work is pointed out in Section 7.3.

7.1 Performance of Several Angle Modulated Signals

The bandwidth efficiencies computed for several types
of modulations are summarized in Table 7.1. The correlative
encoded FM signals are listed according to their equivalent
baseband pulse shapes b(t), given by (2.18). The bandwidth
efficiency is defined as the ratio of data rate to channel V
bandwidth in units of bits/sec/Hz. In this defiﬁitidn, the
channel bandwidth 1is the span of frequencies which contains
a specified fraction, Pin’ of the signal power. The band-
width efficiencies for Pin = 0.99 and P = 0.999 are given

in
in Table 7.1.



Bandwidth Efficliency bits/sec/Hz Error Performance
Based on Based on Based on Minimum 2
the first 99% of 99.9% of Euclidean 10 log min
# Type of Modulation 2:;1 in ggsgil 325221 Déstance diﬂ"‘SK)
Spectrum dmin
1 PSK 0.50 0.05 0.005 2.0 0.0
2 QPSK 1.00 0.10 0.01 2.0 0.0
3 OKQPSK 1.00 0.10 0.01 2.0 0.0
4 | MSK (same as Fig.3.2a, n = 0.57) 0.67 0.85 0.36 2.0 0.0
5 SFSK (same as Fig. 3.2¢,n = 0.5m) 0.56 0.45 0.34 2.0 0.0
6 Optimum MSK-type Signal - 0.89 0.47 2.0 0.0
7 FSK (same as Fig.3.2a)n = C.7n - 0.56 0.32 2.4 0.79
8 Optimum possible, n = O.7w - 0.60 - _— -
Correlative Encoded Digital FM
9 | Figure 3.2b, n = 0.57 - 1.09 0.56 1.75 -0.63
10 " " n=0.7n - 0.77 0.45 2.00 0.0
11 Figure 3.2c, n = 0.57 - 1.25 .74 1.19 -2.25
12 " " n=0.77 - 1.00 0.56 2.16 0.33
13 | Figure 3.2e, n = 0.57 - 0.63 0.36 - -_—
14 " " n=0.7Tn - 0.40 0.33 . —_
15 | Flgure 3.2f, n = 0.57 - 0.68 0.38 - -
16 " " n o= 0.7m - 0.50 0.34 - -
17 Pigure 3.2g, n = 0.57% -~ 0.91 J.61 - -
18 " n n=o0.7n - 0.83 0.50 - -
19 Figure 3.2h, n = 0.5 -— 1.16 .71 - _
20 " " n=0.7m - 0.91 0.63 — -
] 21 Figure 3.21, p = 0.5n - 1.00 0.83 1.76 ~0.56
22 n " n=0.7n - 0.94 0.67 2.73 1.35
23 PHS!(1+2D+D2)/U, n=0.5n - 1.25 0.79 1.55 ~1.11
with Rectangular Shaping
Table 7.1 Performance of Several Digital Angle Modulated
Signals

gct
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For Pin = 0.99, the bandwidth efficiency of con-
ventional MSK is only 5% less than the optimum possible
with MSK-type signals. This was pointed out by Prabhu [18].
In general, correlative encoded digital FM are spectrally
more efficlent than MSK. For n = 0.5m and P, = 0.99,
the baseband pulse shape in Figure 3.2c, which corres-
ponds to PRS polynomial (1+D+D2)/3 with.rectangular pulse
shaping, 1s spectrally U47% more efficient than MSK. o

The bandwldth efficiencies of PSK and QPSK are also
given ih Table 7.1 for the sake of comparison. PSK, QPSK
and OKQPSK have power spectra of the form {sin(af)/(af)}°.
Since the spectra falls off only as £ °, their bandwidth
efficiencies for Pin = 0.99 and Pin = 0.999 are very small.
Very often in the literature, the channel bandwidth is
taken as the bandwldth required to transmit the main lobe
of the spectra. The bandwidth efficiencies based on the
first null in the spectra are given in Table 7.1 for PSK,
QPSK, OKQPSK, MSK and SFSK.

For high SNR a tight upper bound on the error per-
formance of correlative encoded FM can be obtained from
the minimum Euclidean distance [57]. The minimum Euclidean

distance, d is listed in Table 7.1 for the modulations

min?

that are spectrally efficient. The penalty in SNR compared
2 2

to MSK, 10 log {dmin4/%min (MSK)} is also given. The

following observations can be made from Table 7.1. In the

following comments, the channel bandwidth refers to the

bandwidth required to transmit 99% of the signal power.
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i) The bandwidth efficiency of MSK is 0.85 bits/sec/Hz
and 1s almost optimum for MSK- type signals.
ii) Correlative encoded FM with the PR3 encoding poly-
nomial (1+D)/2 and rectangular pulse shaping (duobinary
FSK, Figure 3.2b) with n= 0,57 is spectrally 28% more
efficient than MSK at the expense of 0.6 dB in SNR.
iii) Correlative encoded digital FM with thé polynomial
(l+D+D2)/3 and rectangular pulse shaping (Fipgure 3.2¢)
with n = 0.5mis spectrally 47% more efficient than MSK
with a penalty in SNR of 2.3 dB.
iv) Correlative encoded digital FM with the polynomial
(l+2D+D2)/M and rectangular pulse shaping with n = 0.57
is spectrally 47% more efficient than MSK at an expense
of 1.1 dB in SNR.
v) Digital FM with raised-cosine pulse shaping extending
over 3 bit intervals (Figure 3.2i) with n=0.77is spect-
rally 10% more efficlent than MSK with an advantage of
1.4 dB in SNR. “

The choice of modulation for a particular application
can be a compromise between the spectral efficiency and
the SNR required to attain desirable error perfbrmance.
Also complexity of the receiver may be a consideration. It
was pointed out in Chapter 4 that Viterbi algorithm can be
used to implement a detector for correlative encoded
digital FM. The detectors for the encoding polynomials 1,
(14D)/2, (1+D+D2)/3 and (1+2D+D2)/M require 2; 3, 4 and 5

correlators respectively, and attendant software. At low
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bit rates implementation would seem to pose no pfoblem.
However, at high bit rates the receiver complexity would

be a limiting factor.

7.2 Summary of New Results Presented

This study was directed towards seeking spectrally
efficient constant envelope modulation schemes. The con-
tributions made can be summarized as follows:

i)J An analytical method of obtalning the spectrum of

a correlative encoded digital FM signal was developed.

This technique was applied to obtain the spectra for various
encoding polynomials with rectangular and raiséd—cosine
pulse shaping. The 99% and 99.9% bandwidths were tabulated.
The method 1s applicable also to digital FM by multilevél
modulating signals. As an example, results are given for

a quaternary modulating signal with duobinary encoding.

ii) It was shown that reciprocal encodiny; polynomials
yield 1dentical spectra.

1i1) An exhaustilve investigation of the spectrum for

a second order encoding polynomial with rectangular pulse
shaping and modulation index n = 0.5nwas carried out. The
encoding coefficients for which the spectrum is compact

were given.

iv) Optimum'baseband pulse shapes were obﬁained for
MSK-type signals to minimize the fraction of out-of-band
power for a given bandwidth. Results are presented for a
range of channel bandwidths of practical interest. The

optimization yields pulse shapes which attain a lower
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fraction of out-of-band power than the previously proposed
schemes, such as MSK, OKQPSK and SFSK. The improvement is
not dramatic. However, the lower bound presented provides
a useful indication of what is achlevable.

v) A technique for designing the baseband pﬁlse shapes
in angle modulated signals that minimize the fraction of
out~of-band power was presented. Results are given for
modulation indices n - 0.5m, 0.6m, 0.7m and 0.8w.

vi) It i% known that an upper bound on the error per-
formance of correlative encoded digital FM can be obtained
from the minimum Euclidean distance. It was demonstrated
that recivrocal encoding polynomials have identical
minimum Euclidean distance.

vii) An exhaustive investigation of the mirimum Euclidean
distance for a second order encoding polynomial with
rectangular pulse shaping and n = 0.57 was carried out.
viii) The results indicate that second order encoding
polynomials can provide up to 47% more spectral efficiency
than MSK at an expense of 1.1 dB in SNR. Correlative
encoding FM modulations exist which are spectrally more

efficient and also possess better error performance capability

than MSK.

7.3 Suggestions for Further Investigation

It is evident from this study that correlative
encoded digital FM is superior to conventional FSK in

terms of spectral conservation. A correlative encoded FM
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is completely specified by its equivalent baseband pulse,
b(t), given by equation (2.18). When the baseband pulse
extends over'only one bit interval, pulse shapes were
derived that minimize the fraction of out-of-band power.
It may be possible to extend this techniqgue to design the
baseband pulse shapes that extend over more than one bit
period. If this optimization is carried out it will
provide an useful indication of the maximum achievable
spéétral efficiency by correlative encoding.'.

.It 1s known that an upper bound on thé error per-
formance of correlative encoded digital FM can be obtained
from the minimum Euclidean distance. It was pointed out
in Chapter 4 that an initial error in the detector may
well result in a run of errors. In that case, the bound
obtained would be a bound on the probability of run of
errors. However, the probability of run of errors is a
good estimate of the‘probability of bit error if the aver-
age length of run of errors is small. An investigation of
the nature of error propagation should be carried out to
verify the bounds obtained. This could be done by
simulation.

- This study shows that spectral efficiency can be
increased considerably at a small penalty in SNR, by
correlatively encoding the baseband signal in digital FM.
Also correlative encoded digital FM mddulations exist that
are spectrally more efficient than MSK and have a better

error performance. However, this error performance can
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" be realized only if good detectors for these modulations can
be implemented economically. It was pointed out that
detectors for correlative encoded digital FM can be
implemented using Viterbi algorithm. Further investigation
is warranted. The possibility of implementing receivers
which are economical and which give performance hopefully
close to the optimum should be investigated. The problem

of carrier synchronization and bilt timing recovery should

also be considered.
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APPENDIX A
EX?RESSIONS FOR THE VECTORS  R(f)

The power spectral density for a correlative encoded
digital FM signal, given by equation (2.8) of Chapter 2, is

in the form

P(f) =z R(D), - (A+AT) « R*(£)] (A.1)

The vector R(f) 1in the above equation is determined by

b(t% the equivalent baseband pulse shape after correlative

encoding. The expressions for R(f) for the waveforms of

Chapter 3 are given in this appendix. If the waveform

extends over K bit intervals, the vector R(f) is of

dimension D = 2K} The elements of the vector R(f) can
: ( ]
be written as
R(f) = [Rl(f) Ré(f) e e e RD(f)] (A.2)

The expression for R(f) 1is given by equation (2.10) of

w )
Chapter 2. Since h2(t) = _hl(t)’ it follows that
£) = R |
Ri( ) = RD+1—i(_f) | (A.3)
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Therefore, for each waveform In Flpure 3.2 only Ri(f),

1 =

1,2,3. . .(g - 1) are listed. The following notation

is used in the expressions.

1.

v(y)

]

sin(y)/y

x = 2nfT

Jn(y) = Bessel function of the first kind of order n

Figure 3.2a

Ry (£) = v(3(n - x))exp(Hn = x)) (A1)
Figure 3.2b
R (£) = v(3(n - x))exp(J(n - x/2))

(A.5)

R,(f) = v(x/2)exp($(n - x))

Figure 3.2c

v(%(n - X))exp(%(3n - %))

Ry ()

R2(f) v(%(% - x))exp(%(;? - x))

(A.6)

Ry(£) = (32 = x0))exp(S(n - )

Ry(£) = v(5(3 + x)exp(5(§ - %)
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b, Figure 3.2d

R (0 = exp(n = x0) (3, (Fv(dn - x)

v LA _x
vl 3G {v(z tem - 3)
n=1

+v(-;l-21m-§)}

oo n N %
* 1 a0 @+ 2n - D - B

- v(g—— (2n - )mw - %)}:} (A.7)

5. Figure 3.2e

Rl(f) = exp(j(n - x/2))[:JO(§%)V(%(n - X))

+
te~18

A n - X
1J2n(2ﬂ){v(2 + 2t - 3)

[ n X
+ Z J2n-1(§%){v(§ tn- D=3 L (als)

- v - (2n - )7 - g)}:]

Ry(f) = v(x/2)exp(32-(n - x))
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Figure 3.2f

Rp(D) = exp(3n - 1) [7, (NG = 1)

v n [ X
+ nzl J2n(§?){v(2 + 2mn - 2)
+ v(% - 2mn - 5)}

v n n - - X
+ nzlJzn-1(2n){V(§ + (en-1)m - 3)

- v(% - (2n-1)m - %)}:]
Ry(1) = exp(S(5 - x)) {7 (w5 - x))

n n - X
J2n(?F){V(6 + 21n 2)

+
i~ 8

n=1

+ v(% - 2mn - %)}

n n - .
(EF){v(6 + (2n=-1)7 2)

- v(% - (2n-1)m - %)}:]
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Ry(r) = exp($(n - ) |3, (Fv (5 - 0

+ Z J (—6%){\)(% + 2mn - %)

n=1 en
+ \)(—g— - 2mn - 32(-)}
+ nZlJzn_l(%){v(% + (2n-1)m - g—)

- v(% - (2n-1)7m - %)}]

Ru(f) = exp(%(% - X))EO(E%T‘)\)(%(% + x)

+ Z J (—6%){\)(% + 2mn +

X
§>}

n n X
Jony GV @+ en-bn + D)

TS

+ v(%— 2Tn +

+ )
n=1

- \)(% - (2n=-1)7w + %)}] (A.9)
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Figure 3.2g

Ry ()

v(3(n = x))exp(j(n - x/2))

. e
Ry(£) = exp(5(n - x))|I (VD)
+ ] <-1>“J2n<2){v<%<x +2m)) + v(H(x - 2Wn))}
n=1 ) °
v n n 1
- anl(_l) J2n—1(F){V(§(X + (2n-1)m)
+ v(%(x - (2n—1)ﬂ))}:] (A.10)
Figure 3.2h
R (£) = v(3(n = x))exp($(3n - x))
R, () = exp(L(2D - x)) |7 (v - x))

R3(f)

+
n

il 0~1 8

1J n( Y(-1) {v(% + mTn - %) + v(% - mn - %)}

v n (2n-1)
$ 1 oy GO+ B3 g

+

V('[r‘l _ (2n51) M= 25_)}-]

v(x/2)exp(%(n - %))
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Ry(0) = exn (3§ - ) [3,(RIvEE + x)
+ nzngn(%)(-l)n{V(% - mn + 32(,—) +’ 'v(ﬁ- + mn + g)}
—Jn§1J2n_l(§%)(—l)n{v(% + i3%511115 %)
p v - 2ol _g)}] (A.11)
Flgure 3.21
R)(F) = v(z(n - x))exp($(3n - 1))
Ry(f) = exp($(5) - ) |7 (Bv(E - x)

(”){exp<i%§ﬂ)v(g + 210 X

n-m

s n j(2n-1)m n (2n-1)w X
+ 1 Tpp (D {erp 25700 2y @ocdin )
- exp(ﬂgl:_lﬂ)\,(% - .(_érL'?;_l_)_“ - _’22 }]
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R3(f’) = exp(%(n - X)) JO(—E)\)(%—(—% - X))

T ny[y(D 4 2™ _ X no_2m _x
; n£1J2n(F){\)(g PED LX) L@ 2 5
v n n (2n-1)1 _ x
- nzngn 1(5){"(6 + 3 - 3)

i exp(_.(2n§l)2n)v(% + (2n§1)w + §)}_]

N
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10. Second Order Encoding Polynomial with Rectangular
Pulse Shaping

The expressions for the elements of the‘veotor R(f)
for an encoding PRS polynomial (1+le+k2D2)/(l+|k1|+|k2|)
with rectangular pulse shaping are given in this section.

They are referred to in Section 2.5 of Chapter 2.

5+3k. +k \
- 1 1 72
R (D) = v(3(n - x>>exp<%<wn - x))
~-1+k. +k 3+3k. +k ..
- 1 1 1 72
Rg(f) = v(g(jji—¢ﬁ——n - x))exp(%(j;§f¢g—-n - x))
1 2 1 72
t(A.13)
1-k_. +k .
- 1 1 2 _ d(n -
R3(f) = v(2(1+k1+k2r1 x))exp(g(n X))
-1-k_.+k . —1l+k_+k
= u(x 1 _ (1 2
Ru(f) v(2(7fﬁ;fﬁ;;r1 x))exp(g( 1+k1+k2 ﬁ - X))
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APPENDIX B
EQUIVALENT ENCODING PRS POLYNOMIALS

It is shown in this appendix that reciprocal encoding

m . m .
polynomials = ] k, D" and & ] k__, D' yield identical
1=0 1t C 120 m-3i

spectra and minimum Euclidean distances when the shaping pulse,
s(t), in Figure 2.1 is symmetrical. As mentioned in Chapter 2,
a correlative encoding is completely specified by its equiva-
lent baseband pulse, b(t), given by (2.18). Let the modu-
lated signal, x(t), and the equivalent baseband pulse, b(t),

be denoted by xl(t) and bl(t) for the polynomial % ? ky Dt

i=0
and by x,(t) and b2(t) for the reciprocal polynomial

m
1 Z i
= k D™. Then
C = m-1i
t 0o
= -kT
xl(t) cos {2ﬂfct + f k=§w akbl(u kT)du} (B.1)
where
L]
b, (t) = =% k, s(t-iT)
1 C 120 i
And ¢ i}
x,(t) = cos {2nf t + f ) akbz(u—kT)du} (B.2)

= e 00
o= 00

where
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iH~5

1
b.(t) = = k s(t-4iT)
2 C 120 m-1

The shaping pulse, s(t), in the above equations extends over

the interval [0,qT] and is assumed to be symmetrical.

s(t) = s(-t + qT) (B.3)

Thus, bz(t) is a time reversal of bl(t) but for a time shift
bz(t) = bl(—t + (m+q)T) (B.b)

Therefore, xz(t) can be written as

t o0
x,(t) = cos{anf t + J )

k==

akbl(-u + KT + (m+g)T)du}

(B.5)

If the carrier frequency, fc, is large compared to the

bit rate, the autocorrelation function for xl(t) can be written

as [31]

j=s]
—~
~ -
Nt
i

<xl(t) xl(t+r)>

t+t

% < cos{2wf 1 + j ] a
c
t k=_oo

P (u-kT)du}> (B.6)

where the angle brackets denote the time average. If we assume

the modulating signal to be ergodic we can replace the time
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average by an ensemble average. Then

t+T

Rxl(r) =.% E[cos{2ﬂfcr + tj k=§m akbl(u-kT)du}] (B.7)

where E[ ] denotes the ensemble average. Similarly

t+t
- 1 -
RX2(T) =5 E[cos{2ﬂfcr +tj k=§m akbl( utkT+(m+q)T)dul}]

(B.8)

After a change of variable in (B.8), R, (1) can be written as
2

t+t
E[cos{2nf 1 + I )
g

==

R (1)

t
NOf =

& _y— (mbq)Pq (~u-2T)du}]

-t .

E[cos{2nf 1 + I )
¢ =

N

a_z_(m+q)bl(u—lT)du}]

-t-1

th+T
[o0)

E[cos{2nfCT + I )

b. (u-kT)du}l]
],{:...oo 1
ICV

a-—l{-—(m+q)

N[

(B.9)

The random variables ak are independent, identically distri-

buted binary random variables. Therefore, the statistical

properties of Rx (1) remain unchanged if the a
2

replaced by ap. The modulated signals xl(t) and x2(t) are

-k=-(m+q) are
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cyclostationary processes. If the usual procedure of time-

averaging over one bit period is carried out, RX (1) 1is

2
independent of t' in (B.9) and RX (1) is independent of
| 1
t in (B.7) [62]. Thus, RX (1) and Rx (t) are identical. This
1 2

proves the claimed result on equivalent spectra.

We next show that reciprocal encoding polynomials yield
identical minimum Euclidean distances when the signal is
observed over a long duration before the decision is made.

The Euclidean distance, d ) between the signals s(t,l,Aj)
b

J
and s(t,—l,Ak) was given by equation (4.21)
(L+N)T . |
d? K = NT - J cos { f ) eib(u-iT)du}dt (B.10)
J 3 = 00
LT LT

The relationship between the data sequences of the signals
s(t,l,Aj) and s(t,—l,A\) and the sequence E, = - - .0,0,eo,
eyse -+ - is given by (4.20). Since, the distance does not
depend on LT in (B.10), we will set LT to zero for convenlence.

Let the sequence E, = . . .0,0,e

k

02€17" be such that

t

{ ) e;b(u-iT)du = 2mn  for t > MT (B.11)
0 i=-w

where M and n are integers. If the above condition is satis-

fied the Euclidean distance, d in (B.10) does not increase

J,k’

for values of N greater than M. When the sequence Ek satisfies

(B.11), the phase paths of s(t,l,Aj) and s(t,-1,A,) merge at
t = MT and the distance between them provides an upper bound

on the minimum Euclidean distance, d From (B.11) it

min
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follows that

I eyb(u-iT) = 0 for u > MT . (B.12)

{ =~

The baseband pulse, b(t), extends over (m+q) bit intervals.
Therefore, all the elements of the sequence Ek_= .. .0,0,eo,e],.
€ 5€4470" for 1 > J = {M=-(m+q)} should be zero to
satisfy (B.12). Therefore

MT
ey b(u=1iT)du

N

=

3

il
—
}_I-
i o~

J
= ) eB (B.13)
i=0
where
(m+qg)T
B = b(u)du
0
= J b(u)du (B.14)

The equation (B.13) gives the condition for a phase merge.
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For example, the sequence Ek = . . .0,0,2,-2,0,0,.
leads to a phase merge at t = (m+q+1)T with a corresponding

finite Euclidean distance. Thus, d is always finite,

min
even 1f the observation interval is infinite.

The argument for the claimed result is as follows.
The phase paths of the two signals which decide dmin must
merge, otherwise the distance between the signals can be
iqcreased by extending the observation interval. Thus, when
the observation interval 1s allowed to be arbitrarily long,
the dmin is the smallest distance between all signals that
have merging paths. It 1s shown that for every merging phase
1 i

m
5 )) kD", there is a corresponding
i=0

m
phase merge for the reciprocal polynomial % ) ko4 ot with
i=0 7

path for the polynomial

identical distance. Therefore, reciprocal polynomials yield

the same dmin'

The equivalent baseband pulses for the reciprocal
polynomials are given by bl(t) and bg(t). From (B.4) it can

be seen that

[ ) oo

J bl(t)dt = J bg(t)dt = B (B.15)

- 00 - 0O

Let a sequence E, be glven by

1

E, = . . .0,0,eo,el,. .eJ,O,O,. . . (B.16)

where

B = 2mn (B.17)
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The sequence El corresponds to a phase merge and the distance
m

for the polynomial L } k D' is given by
C 120 i
5 MT t g ‘
d = MT - J cos{ J Y e,b.(u-iT)duldt (B.18)
,k i=0 i1
0 0
where, M and J are related by
J =M - (m+q) (B.19)

Now, consider another sequence E2 given by

E,= .. .0,0,e .el,eO,O,O, (B.20)

J°%5-1°"

This sequence also satisfies (B.17) and hence corresponds to
a phase merge. The Euclidean distance for this phase merge

. m .
for the reciprocal polynomial % Z km—i D" 1s given by
i=0

fl G4

. eJ_ib2(u—iT)du}dt (B.21)

After changes in variables 1 and t in the above expression, it

can be written as

eib2(u—JT+iT)du}dt (B.22)

And also
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MT-t J
J Y e.b (u-JT+iT)du
. i 2
0 i=0 .
MT J
= 27n - f 7 e,b, (u~JT+iT)du (B.23)
j=0 1°
MT-t
Therefore
MT MT J
a = MT - cos { )} e,b, (u=JT+iT)duldt (B.2UL)
Jsk 489 172
0 MT-t

Substituting bz(u) in terms of bl(u) as given by (B.4) and
from (B.19), we get

Q.
|
=
=]
|
e}
o]
()]
—_—
[ e

-Uu+MT - -
eibl( u+MT-1T)duldt

eibl(u-iT)du}dt (B.25)

i
=
=]
|
Sy
=
=
(¢}
o]
o0
P
Q
—_—
e
o~ 0y

The above expression is identical to (B.18). This proves that
m

for every phase merge E; for the polynomial % ) kiDi,
i=0
there is a corresponding merge E2 for the reciprocal poly-
m
nomial % Z k Di, with identical Euclidean distance.

o m-i
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APPENDIX C
PROLATE SPHEROIDAL WAVE FUNCTIONS

Slepian, Pollak and Landau [59,60] have made an
extensive study of prolate spheroidal wave functions and their
application to signal theory. Following is a summary of the
properties of these functions relevant to this study, using
their notation.

Let Li be the class of real functions which are square

integrable on the interval (-« )

+co
I £2(6)dt < o (C.1)

- 00

Therefore, all the functions f(t) in Li possess a Fourier

transform whose inverse 1s the original function.

4o

F(t) = J Fle)e d2TEE gy (Cc.2)
+ o0

£(t) = J r(r)ed 2Tt gr (c.3)

- 00

Let B be the subclass of Li consisting of those f(t),

which are strictly bandlimited to W Hz. That is
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F(f) = 0 if le] > w (C.4)

Let D be the subclass of Li consisting of those
functions f(t), which are strictly time-limited to the

T T
interval [-§ s 5 ], that is

!

£(t) =0 if lt] > % (C.5)

For any T' > 0 and any W > 0, an infinite set of real

funcﬁions wo(t), wl(t), . . . and a set of real positive
numbers AO > Al > A2 >, . . can be found with the following
properties

i) The wi(t) are bandlimited to W Hz, are orthonormal

over the interval (-«,o) and are complete in B.

(o]

Jwi(t)wj(t)dt = (C.6)

-0

]
ii) In the interval [-g', % J, the wi(t) are orthogonal

and complete in D.

T'/2

wi(t)wj(t)dt = (Cc.7)
-T'/2 i
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ii1) The wi(t) are known as spheroidal wave functions, and

can be expressed as the solution to the integral

equation
T'/2
_ sin 21W(t - s)
Ay () =  Co—— v, (s)ds (c.8)
~Tv/2
1 =0,1,2 ...

wi(t) can also be expressed as the solution to the differential

equation
2
o A%y, (%) dy, (t) > o
(1 - t°) — -2t ——— + (x, - ct )Y, (t) =0
2 dt i i
dt
(C.9)
with the initial conditions
\
v, (t) =0
1 s=0
b if 1 is odd
dwi(t)
4t = constant
t=0
J
v, (t) -
i £=0 constant
if 1 1is even
dwi(t) .
dt £=0
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The parameters A, and X3 in the above equations are functions

i
of a parameter c, which is proportional to the time-bandwidth
product ¢ = 7TWT'. The spheroidal wave function, wi(t), is an
odd function of t if i is odd and even for i even.

If we chose z(t), a member of the subspaée D, such

that

2(6) =y, (¢) It 5%'

(C.10)

=0 elsewhere

The fraction of energy of z(t) in a bandwidth of W Hz is Ay
Since AO > Al > Az > . . ., it follows that within the subspace
D, wo(t) has the largest fraction of energy in a bandwidth of

W Hz.
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