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ABSTRACT 

Constant envelope modulation signals that are spectrally 

efficient and possess good error performance capability are 

desirable in communication systems. Previous experimental 

and simulation results have shown correlative encoded fre-

quency shift keying to be attractive from a spectral occu-

pancy point of view. In this report, a straightforward 

method of obtaining an explicit expression for the spectrum 

of correlative encoded FM signal is given, using Rowe and 

Prabhu's method. An exhaustive investigation of the spectrum 

for modulation by a second order polynomial and rectangular 

pulse shaping has been carried out and the values of the 

encoding coefficients, for which the spectrum is compact, are 

shown. Results are given also for raised-cosine pulse shaping. 

An investigation of the error performance for these modulations 

is carried out. The results indicate that the encoding poly- 

nomial (1+2D+D 2
)/4 with rectangular pulse shaping and modu- 

lation index, n, equal to 0.5 71  is spectrally 47% more efficient 

than MSK (Minimum Shift Keying) at an expense of 1.1 dB In SNH. 

Other correlative encodings are shown that are spectrally 

somewhat less efficient than the above polynomial but promise 

better error performance than MSK. 

ii  



The problem of designing the baseband pulse shapPs 

in MSK-type signals to minimize the fraction of out-of-band 

power is considered. The optimum pulse shapes and their 

spectral properties are presented for a range of channel 

bandwidths up to three times the bit rate. The optimization 

yields pulse shapes which attain a lower out-of-band power 

than the well-known MSK-type modulations, such as, MSK, 

OKQPSK (Offset Keyed Quadrature Phase Shift Keying) and SFSK 

(Sinusoidal Frequency Shift Keying). The improvement is not 

dramatic. However, the optima obtained in this report pro-

vide a bound on what is achievable and a useful basis for 

comparison. 

MSK-type signals are a subclass of angle modulated 

signals, for which the modulation index, ri,  is 0.5n. The 

more general problem of shaping the baseband pulse with an 

arbitrary modulation index is treated also. The spectrum of 

the angle modulated signal is approximated by the power 

spectrum of a time-limited waveform. The time-limited wave-

form is then expressed in terms of an infinite series or 

spheroidal wave functions and is shaped to minimize the 

fraction of out-of-band power. Finally, the baseband pulse 

corresponding to the optimized time-limited waveform is 

obtained. To demonstrate the technique, results are given 

for modulation indices n = 0.5Tr, 0.6n, 0.7n and 0.8n. 

iii 
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Chapter 1 

INTRODUCTION 

The increasing demand for communications has put the 

allocation of bandwidth in radio systems at a premium. The 

problem can be alleviated by the following techniques [],2]: 

i) New allocations at higher frequencies 

ii) Frequency reuse techniques 

iii) Data compression by source encoding 

iv) Spectrally efficient modulation. 

The last technique as applied to Oata transmission is studied 

in this report. 	The primary objective of spectrally 

efficient data transmission is to transmit data at a specified 

rate and error performance in as small a channel bandwidth as 

possible. The investigation is further restricted to constant 

envelope  signais. Constant envelope signals are desirable in 

communication systems due to their immunity to fading and non-

linear distortion. 

Constant envelope signals can be generated by modu-

lating the angle of a carrier. In particular, a digital fre-

quency modulated signal, x(t), can be written as 

t œ 

X(t) = COS(27f
e
t 	a

k h(u-kT)du)• k=-.0 
(1.1) 



(k+1)T 
h(t)dt 

kT 

n 7 max (1.2) 

2 

In the above equation, fc  is the carrier frequency and h(t) 

is the baseband pulse shape. The sequence of random variables 

ak are the symbols to be transmitted. They are drawn from a 

finite alphabet {a i } and one is transmitted every T seconds. 

The modulation index in digital FM is linearly proportional 

to the magnitude of the baseband pulse h(t). In conventional 

FSK (Frequency Shift Keying), the modulation index h is 

defined as h = 2f T, where fd is the peak instantaneous d 

frequency deviation. The baseband pulse in FSK is rectangular 

and therefore the instantaneous frequency is constant over the 

bit interval. With baseband pulse shaping the instantaneous 

frequency varies during the bit interval. In this investi-

gation, the modulation index, n, will be defined as the 

maximum phase accumulation during a bit interval and there-

fore is given by 

The maximum in the above equation is over the symbol alphabet 

{a }. In conventional binary FSK, h(t) is a rectangular 

pulse of height 2wfd  extending over one bit interval and the 

random variable ak can assume a value of + 1. For this special 

case, the modulation index n is the same as hr. 

• 	The signal x(t) can be written also as 

00 

x(t) = cos(2rf
c
t + 	a

kg(t-kT)) 
k=-03 

( 1.3) 



g(t) = 	h(u)du (1.4) 

P
in 

= 	 
œ 	• 

f 4.14 c 	x  

P (f)df 
f
c
-W 

(1. 5 ) 

where 

3 

The class of baseband pulses considered in this report include 

functions g(t) with step changes. A step change in g(t) cor-

responds to an unbounded instantaneous frequency which is not 

considered in conventional digital FM. Therefore, when g(t) 

is allowed step changes, the modulated signal, x(t), is 

referred to as angle modulated rather than frequency modulated. 

Channel bandwidth can be defined as the span of fre-

quencies which contains a specified fraction of the total mod-

ulated signal power. The fraction of power in the band 

[fa -W, fc +IC is given by 

P x (f)df 

and the fraction of out-of-band power is given by 

P 	= 1 - P
in out 

(1.6) 

where, P (f) is the power spectral density of x(t). A task in 

the design of a transmission system would be to choose a mod-

ulation index and shape the baseband pulses such that for n 

specified Pin , say  in = 0.99, the channel bandwidth is 

minimlzed and a specified error performance, Pe , is maintained. 
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Previous experimental and simulation results [6] have 

shown that the channel bandwidth, W, can bP reduced by cor-

rPlatively encoding the input data symbols ak . It will be 

seen that a correlatively encoded digital FM signal can 

always be represented by an FM signal in which the input data 

symbols are independent and the baseband pulse, h(t), extends 

over more than one bit interval. In this report, an analy-

tical method is developed to obtain the spectrum of correl-

ative encoded FM signals. The spectra of correlative encoded 

FM are investigated for various baseband encoding polynomials 

and pulse shapings. The encoding polynomials that yield small 

channel bandwidths are indicated. Also, an investigation of 

the error performance of these signals is carried out. Sig-

nals that yield a compact spectrum at a small penalty in SNR 

(Signal to Noise Ratio) are pointed out. When the baseband 

pulse, h(t), extends over only one bit interval and the input 

data symbols are independent, the optimum baseband pulse 

shaping to minimize the channel bandwidth is derived. 

1.1 	Correlative Encoded FM 

Correlative encoding or partial response techniques 

are used in data transmission systems employing linear modu-

lation to obtain a desirable signal spectrum [3-5]. As well, 

the spectrum Of the modulated signal in digital FM can be 

manipulated ipy correlatively encoding the modulating signal. 

However, since the modulation is nonlinear, a modulating sir-

nal with a compact 'spectrum does not necessarily lead to a 

modulated signal with desirable spectral properties. The 
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application of duobinary encoding to data transmission by FM 

was first introduced by Lender [3] in 1963. Recently Melvin 

and Middlestead [6] have investigated the power density 

spectrum of correlative encoded FSK, experimentally and by 

computer simulation. Their results show correlative encoded 

FSK modulation to be superior to conventional FSK in lerms of 

spectral conservation. Duobinary is the only correlative 

encoding for which the FSK spectrum has been obtained theor-

etically [7,8]. Garrison [9] has developed a computational • 

technique to obtain the power spectral density for correLative 

encoded FM. The modulating pulses are approximated by a stair-

case function and the resulting FM spectrum is computed. 

Experimental and computer simulation studies can be time con-

suming, and in an investigation of partial response encoded 

FM, a much larger class of encoding polynomials than in the 

case of a linear modulation must be considered, for there are 

no simple properties that eliminate all but a few polynomials 

from consideration. 

A method of obtaining a closed form expression for the 

spectrum of digital FM with partial response encoding is riven 

in Chapter 2. The spectra of the modulated  signais,  For 

severa] encoding polynomials and pulse shapings, are examined 

in Chapter 3. An exhaustive investigation of the spectrum for 

modulation by a second order polynomial has been carried out 

and the values of the encoding coefficients for which the 

spectrum is compact are shown. The channel bandwidths required 

to transmit 99% and 99.9% of the modulated signa] power are 

tabulated. 
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An upper bound on the performance of correlative 

encoded digital FM can be given in terms of the minimum 

Euclidean distance. An exhaustive investigation of the mini-

mum Euclidean distance is carried out, in Chapter 4, for 

modulation by a second order encoding polynomial. Cor-

relative encoded FM signals that are spectrally efficient at 

a small penalty in SNR are pointed out in Chapter 7. 

1.2 	Optimum Pulse Shaping in MSK-Type Signals  

MSK-type signals are . a subclass of angle modulated 

signals that have received considerable attention [10-26]. 

• When the baseband pulse, h(t), in an angle modulated signal 

extends over only one bit interval and the modulation index, 

n, is equal to 0.5u, the modulated signal is a MSK-type sig-

nal. Angle modulation involves a nonlinear transformation 

of the baseband signal. However, MSK-type signals can be 

represented by a linear quadrature carrier modulation [11,12] 

and can be viewed as a degenerate case. 

MSK (Minimum Shift Keying)was patented by Doelz and 

Heald [10] in 1961. MSK is known also as FFSK (Fast Frequency . 

Shift Keying) [12] and FM-PSK (Frequency Modulation Phase 

Shift Keying) [18]. These modulations have been commended for 

their desirable spectral properties. Amoroso [17] pointed out 

that the asymptotic behaviour of MSK can be improved even more 

by having continuous rate of change of the in-phase and the 

quadrature envelopes. He suggested a modulation known as 

SFSK (Sinusoidal Frequency Shift Keying). Gronmeyer and 

McBride [19] studied MSK and OKQPSK (Offset Keyed Quadrature 
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Phase Shift Keying) in detail and compared their performances 

over bandlimited channels. They concluded that OKQPSK out-

performs MSK only when the channel bandwidth is highly res-

tricted. 

A number of authors have considered the effect of 

pulse shaping on the spectra of MSK-type signals. Rabzel and 

Pasupathy [23] proposed a family of M
th 

order shaping functions 

which lead to a spectral rolloff as If!
-(4M+)1)

. For large 

values of M such signals have excellent rolloff characteris-

tics, but they cause severe adjacent channel interference 

when a small channel bandwidth is specified. Kalet and White 

[21,22] examined the interchannel interference for MSK-type 

modulation. Eaves and Wheatley [25] have proposed a family' 

of wave shapes and optimized the parameters by a computer 

search procedure to minimize the interchannel interference. 

The problem of baseband pulse Shaping fn minimize 

the fraction of  out-of-band power ' Pout' for a given channel 

bandwidth is treated in detail in Chapter 5. Rabow [13] has 

considered this problem  with  an assumption of symmetry in the 

baseband pulses and has given the optimum parameters for a 

particular value of the channel bandwidth. Boutin et al [24] 

have recently reconsidered this problem pointing out Rabow's 

work. Prabhù [18] has obtained a lower bound, that is not 

necessarily achievable, on p
out 

for a given channel bandwidth. 

In Chapter 5, baseband pulse shapes are derived that 

minimize the fraction of out-of-band power, Poüt. 
 Results are 

presented for a range of channel bandwidths of.practical 
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interest. The spectra of the MSK-type signals obtained 

through optimization are compared with the spectra of the 

well known schemes, such as MSK, OKQPSK and SFSK. 

1.3 	Optimum Pulse Shaping in Angle Modulated Signals  

As mentioned previously, MSK-type signals may be 

considered as a special linear case of digital FM. In 

Chapter 6, the more general problem of shaping the baseband 

pulse to minimize the fraction of out-of-band power for 

digital FM with an arbitrary modulation index is considered. 

The modulated signal is referred to as angle modulated 

because baseband pulses which cause unbounded instantaneous 

frequency are permitted. The baseband pulse, h(t), is 

allowed to extend over only one bit period and for simplicity 

only baseband pulses which produce symmetrical phase variation 

are considered. 

Methods of obtaining the spectra of digital FM sig-

nals and band occupancy of FSK signals were investigated by 

several authors [27-32] in the 1960's. More recently, Rowe 

and Prabhu [33] have presented a method for determining the 

power spectrum of digital FM signals. The result is in terms 

of products of matrices, which will prove most convenient for 

the purpose of this thesis. Using Rowe and Prabhufs method 

it is shown in Chapter 6, that the spectrum of an angle modu-

lated signal can be approximated by the power spectrum of a 

time-limited waveform. The time-limited waveform is then 

expressed in terms of an infinite series of spheroidal wave 

functions. The coefficients of the spheroidal wave functions 
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are optimized tO minimize the out-of-band power, P
out 

Finally the baseband pulse corresponding to the optimum time-

limited waveform is obtained. Optimum baseband pulse shapes 

are computed for several modulation indices and a range of 

channel bandwidths. The results are presented in Chapter 6. 

1.4 	Outline of the Report  

In conclusion, an outline of this study is as follows. 

A method to obtain the spectrum of correlative encoded digital 

FM signals is presented in Chapter 2. In Chapter 3, the 

spectra of correlative encoded digital FM signals are 

examined for a range of encoding polynomials and pulse shapes. 

An exhaustive investigation of the spectrum for modulation by 

a second order encoding polynomial is carried out. The error 

performance of correlative encoded FM is studied in Chapter 4. 

Baseband pulse shapes in MSK-type signals are derived, 

In Chapter 5, to minimize the fraction of out-of-band power. 

An achievable lower bound on the fraction of out-of-band 

power is obtained for a range of channel bandwidths of 

practical interest. The more general problem of shaping the 

baseband pulses in angle modulated signals with an arbitrary 

modulation index is considered in Chapter 6 

The bandwidth efficiencies of various modulations, 

investigated in Chapters 2, 3, 5 and 6, are summarized in 

Chapter 7. Correlative encoded FM signals that are spectrally 

efficient, and as well possess good error performance cap-

ability are pointed out. Finally, the contributions made in 

this study are summarized and the scope for further work is 

suggested. 



Chapter 2 

THE SPECTRUM OF CORRELATIVE ENCODED 

DIGITAL FM 

Previous experimental and simulation results have 

shown correlative encoded frequency shift keying (FSK) to be 

attractive from a spectral occupanCy point of view. With the 

exception of duobinary encoding, the spectrum of correlative 

encoded FM has not been given theoretically. A method of 

obtaining an explicit expression for the spectrum of a 

correlative encoded digital FM signal is presented in this 

chapter using the results of Rowe and Prabhu [33] on FM 

spectra. 

2.1 	A Correlative Encoded Digital FM Modulator  

A correlative encoded FM modUlation can be represented 

by the model shown in Figure 2.1. The block D corresponds to 

a delay of one bit period. Such a correlative scheme has a 

partial response system (PRS) polynomial [5] 

10 

k
1 
 D + k

2
D

2 
+ . . . k

m 

where C = 	Ik 2. I 
_ 

= 0 

)/C 	 (2.1) 

For convenience a normalization of the polynomial has been 



n-- 
D 

x(t) SIGNAL 
SHAPING 
FILTER 

e0(f) F. M. 
MODUL-
ATOR 

,T 

1 
Ik 01+ k I + 1k2 1 +... I k m 1 

'Figure 2.1 Correlative Fncoded Digital FM Modulator 



12 

carried out. In Figure 2.1, the In  are independent identi-

cally distributed random variables which can assume a finite 

number L, of discrete values. The correlated variables Jn  

are given by 

J
n 

= 	k/C (2,2) 

Each Jn can 
assume at most 

L(m+1) distinct values. It is 

assumed that the signal shaping filter in the modulator pro-

duces an arbitrary waveform s(t) of finite duration, such that 

s(t) = 0; t < 0 and t > qT 	 (2.3) 

where q is some integer. The modulating signal e 0 (t) can be 

written as 

00 

(2. )4
) e 0 (t) 

 = 
	J

n
s(t - nT) 

n=-0. 

and the frequency modulated signal x(t) is given by 

x(t) = cos[27rf
c
t + 	e

o
(T)dT] 

-co 

(2.5) 

The depth of modulation is taken into account by a scaling 

of s(t). The problem of finding the spectral properties of 

x(t) is approached using Rowe and Prabhu's method [33]. 

2.2 	Rowe and Prabhu's Method 

Rowe and Pràbhu [33] have proposed a matrix method 



= Re[v(t)exp(j2iff e t)] 

v(t) = exp(j 	e0(u)du) 
where 

1 3 

to find the spectrum of a carrier, frequency modulated 

by a random baseband pulse train in which the signalling 

pulse duration is finite and the signal pulses may overlap. 

The symbols transmitted must be statistically independent. 

A summary of the results required here, will be given using 

their notation. 

(2.6) Let 	x(t) = cos(2nf c t + 	eo(u)du) 

CO 

03 

e(t) = 	h 	(t - kT) O 
 

k=-oo s k 

In the above expressions v(t) is the phasor associated with x(t). 

The notational conventions used are explained in the footnote. 

In (2.6) s k  is a random variable which can take on M values, 

and h
sk

(t) is one of M possible modulating waveforms. The 

expression for e0 (t) can be written as the inner product of a 

random vector a 	times a vector of all the possible 

modulating waveforms  • h(t) 	Thus 

Footnote: The following notational conventions of Rowe and 
Prabhu [33] are adopted: 

(i) Row and column vectors are distinguished by 	and ], 
respectively. 

(ii) Matrix multipliéation is indicated by 	Kronecker 
matrix products by X. 

(iii) The transpose of a matrix is Indicated by ' . 
(iv) The Hermitian transpose of a matrix is indicated by t. 
(v) Multiple Kronecker products are indicated by 1IX and the 

Kronecker power is indicated by an integer exponent 
enclosed in square brackets. 

and 



ak (j) if s k = j 

Co  

e 0 (t) = 	î 	ak • h(t - kT)] 

1 4 

(2.7) 

where 

ak. = [ak
(1) 

ak
(2) 

. . . ak (M)  

= 0 	otherwise 

and 

h(t) = h(OPEDI 1 (t) h 2 (0 	. 	hm(0] 

Then the spectral density of the phasor v(t) associated 

with x(t) is given by 

1 
Py (f) = 	R(f) • (A + A

t
) • R (f)] 	(2.8) 

where 

1  A = 	[K]wd 

e-j2nnfT {q(U) • wco [n] x wd [K-h] 	w] [n] 

{e-2 'T w] • 
;-1
(U

K ). • wd } [K] 

(2.9) 
. 	1 - e i2TrfT w • q(U K )] 

1--J 

n=1 



w = [w
1 

w
2 

. . . w ] (2.11) 

h(t)] = 0] 	t < LK' 
t > U

K 
(2.1?) 

-(K - 1)T/2, 
LK = 

-KT/2 , 

K odd 

K even 

K odd 

K even 1 (K + 1)T/2, 
U
K 
 = 

and 
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R(f)] 
-j2nft 

= 	e 	r(t)]dt 
-œ  

(2.10) 

Here K denotes the number of bit periods over which the 

modulating pulse extends. A brief explanation of the tPrms 

appearing in the above expressions follows 

where 

w i = Prob k = i} 

and, w d  is an M x M diagonal matrix with diagonal terms 

. 
w l , w2 ,  w3 . . 	W.  

The signalling baseband pulses h i (t) extend over K 

bit periods, and the method requires a centering as follows 

The vector r(t)] in the expression (2.10) is given by 



and 

exp(j 	hi (u)du) 	exp(j I h2 (u)du) 

LK 

ci(t) 

(k-1)/2 
IT 	X q(t - iT)] , K odd 
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r(t)] 
(2.13) K/2 

H 	X q(t - iT)], K even 
I=-(k-2)/2  

• . . exp(j 	hm(u)du)] 

LK 

(2.14) 

L
K 

< t < U
K 

= 0 	elsewhere 

Equation (2.8) gives the spectral density when the 

following condition, a necessary condition for spectral lines 

to exist, is not satisfied. 

1 w 	• 	q(UK )]1 	= 1 	 (2.15) 

When the above condition is satisfied the expressions for the 

line component and the continuous component of the spectrum 

are given by [eq. 72, 33] and [eq. 73, 33] respectively 

2.3 	Correlative Encoded FM Spectrum  

The modulating signal for correlative encoding is given 



by 
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e 0 (t) = 
n=-0D 

s(t - nT) 	 (2.16) 

In this expression the Jn 
are not statistically inde-

pendent, but we can write  e0 (t) as 

7 	re e 0 (t) = 	L 	L k. I - .1  s(t - nT) 
n=-0D j=0 	n  

co 

= 	I b(t - nT) 
n= -00 

where 

1 r b(t) = 	L k
i 

s(t - iT) 
i=0 

( 2 .17 ) 

(2.18) 

The function b(t) extends over (m + q) bit intervals. Essen-

tially the memory in the correlative encoder has been taken 

into account by redefining a new equivalent baseband pulse. 

Thus it can be seen from (2.17) that a correlative encoded 

FM signal can be viewed as a digital FM modulation in which 

the baseband pulses extend over more than one bit interval 

and the input data symbols are independent. Rowe and Prabhu's 

method can be applied directly to find the spectrum of the 

modulated signal because the In  in (2.17) are statistically 

independent. If the L discrete levels that I n can assume are 

denoted by (t 	t 	. . tL 	e0 (t) can be written in the 
3 • 

matrix notation as 
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(2.19) e o (t) = 	ak  • h(t - kT)] 
k=-03 

where 

ak = [ak
(1) 

ak

(2) 
. . . ak

(L), 

1---1 

is the vector with  one element a
k
(i) = 1 and the remaining 

elements zero, as described above. The particular j corres- 

ponds to the waveform h (t) transmitted at time kT. The com-
i 

ponents of the vector 

h(t) 	= 	[hi (t) h 2 (t) . . . h ij (t)] 

are 

h 1 (t) = L b(t) 	for i = 1, 2, . . . L (2.20) 

The results of Section 2.2 can be applied directly to compute 

the spectrum of correlative encoded digital FM signal modu-

lated by the baseband signal e 0 (t) given by (2.19). 

2.4 	Definition of Modulation Index  

As mentioned in Chapter 1, modulation index is 

linearly proportional to the magnitude of the baseband modu-

lating signal. In conventional FSK, the modulation index h 

is defined as h = 2f
d
T, where fd is the peak instantaneous 

frequency deviation of the carrier. The baseband pulse shape 

is rectangular in conventional FSK and therefore the instant- 



(k
o 

+ kl
D + k D 2

)/C 2 (2.22) 
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aneous frequency is constant over the bit interval. With 

baseband pulse shaping the instantaneous frequency varies 

during the bit interval. In the current study the modulation 

index, n, is defined as the maximum phase accumulation during 

a bit interval. Thus for conventional FSK, the modulation 

index, n, is given by n = hn = 2nfdT. In this report the 

baseband pulses are scaled so that the modulation index is n. 

In terms of the equivalent baseband pulse, b(t), n is given by 

(k+1)T 
CO 

n = 	max1 9, 1. 1 	7, 	b(t)dt 
i=1,2...L 	k=-.0 kT 

(2.21) 

2.5 	Binary Correlative Encoded FM Spectrum for a  
Second Degree Polynomial  

The spectrum of a binary correlative encoded FM 

signal with rectangular pulse shaping and a second degree 

encoding polynomial is given in this section. In binary 

Correlative encoding the input random variable I n  assumes 

only two discrete values, and let these values be t 1 
= 1 

and R
2 
= -1. The shaping pulse s(t) is a rectangular pulse 

over one bit period, that is, q = 1, and the encoding poly-

nomial is of degree two. 

From the development of equation (2.19), the modulating sig- 

nal e 0 (t) can then be written  as• 



e0(t) = 
	

a 	• 	h(t - kT)] 
k=-co 1 (2.23) 

20 

where, a and h(t) are each of dimension 2. 	the assumed 
, 	L I  

rectangular s(t) of height 2nfd  is substituted in (2.18) and•

the resulting expression for b(t) is in turn substituted in 

(2.20) then, after the centering given by (2.12), 

2nfd  +1 
h1  (0 = b(t) -  
	

ki+l  p(t 	iT) 
i=-1 

(2.24) 

where 

p(t) = 1 	0 < t < T 

= 0 	elsewhere 

Also 	h2 (t) = -h (0 1 

From the expressions for 111 (0 and h 2 (t) it is seen 

that the maximum deviation in the instantaneous frequency 

from the carrier frequency is fd . The modulation index n 

defined in the last section is then given by n = 2uf dT. 

Traditionally for conventional FSK, the modulation index, h, 

is defined as h = 2f
d
T. When k1 

and k 2 in the PRS polynomial 

are zero, the modulated signal reduces to conventional FSK 

and n/n and h are identical. 

If the binary input symbols are assumed to be equi-

probable, 



wd 
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w = 	[0.5 	0.5] 	 (2 .25) 
L.4 

E0 . 5 	0 

and 

0. 5 

The necessary condition for the spectral lines to exist, given 

by equation (2.15), reduces to 

Icos{(ko + k 1 +
2
)n/C}I 	= 1 	(2.26) 

When the spectrum does not contain discrete spectral lines, the 

power spectrum is given by equation (2.8). Since ' h 1 (t) 

and h
2
(t) are known, R(f) and A can be obtained from (2.10) 

and (2.9) respectively. The iMaginary part of equation (2.8) 

vanishes and the real part gives the required mean power 

spectral density. The expression for the spectral density in 

terms of matrix products in the form of equation (2.8) is con-

venient to program on the computer to obtain numerical results. 

However, an explicit algebraic expression can be obtained by 

expanding the matrix products. The vector R(f) for a second 

degree polynomial is given in Appendix A. The . fact that the 

final expression is even with respect to both f and p is use-

ful in partly reducing the tediousness of the algebraic ex-

pansion of the matrix products. When k = 0, the expression 

reduces to 



X 3  = {f , + (-1)n/(k
1
+
1
)1/ 2 

 • 	
k. I 

= n)/:' 

ri  r = 2nf T = 	T 
d 

(2.27) Pv (f )/T = Y F
1 
 (f,q) + 	F (f,-n) 

1=1 1=1 	
1 

 

where 

F
1
(f

'
n) 	v 2 (x 1  )[1 + .cos(f - 	+ 

 
4 

F 2 (f,n) = v (x 2 
 ){1 + z /4z1,7/4 
 3 	" 

F 3 (f,n) = v(x
i )v(x 2 )[cos{ff k i n/(k 1 +1)} 

+ z 3 cos{k 1 n/(1+k 1 )}/2z0/4 

F 4 (f,n) = v(x l )v(x 3 )[cosffi-n/(k ] +1)} 

+ z 2 cos{n/(1+k 1 )}/2z41/4 

v(x 2 )v(x 3 )[cos Fr + Z 3  cost-1/4%10/2 

F6(f,h) = v(x 4 )v(x 4 )z.3  cos {(1-yn/(1+k 1 )1/87 4  

X1 
 = (fr - n)/2 	; 	x 2 	(fr- (k l 	1)n/(k 1 	])1/ 

and 

f = (fr;equency - f
c

) 	;  f  = rarrier frcqunncy 



cos 2fr - 2 cos n cos fr Z 3  = 

23 

2 cos(2f
r
-  2)  - 2 cos ncos(fr -  2)  

z 2 = 2 cos(2fr - n) — 2 cos n cos(fr - n) 

2 
z = 1 - 2 cos fr cos n + cos ri 
4 

and 

v(x) = sin(x)/x 

k
o 

= 1 is assumed in the above expression without any 

loss of generality 

If k
1 
 = 0 is substituted in the above expression, it 

reduces to equation (48) of Bennett and Rice [27]. When k 1 = 1, 

we have duobinary FSK and the expression agrees with equation 

(7) of Von Baeyer and Tjhung [7]. It agrees also with 

equation (5.10) of Roth [8] after correcting the typographical 

errors in his expression. 

2.6 	Summary  

A method  for  obtaining the spectrum of a correlative 

encoded digital FM signal mas presented in this chapter. This 

technique was applied to obtain the spectrum of a signal 

modulated by a second order PRS encoding polynomial with 

rectangular pulse shaping. The result is a generalization of 
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previous results for FSK spectra and agrees with the 

previously known results for the special cases of duobinary 

and _conventional FSK modulation. 



Chapter 3 

INVESTIGATION OF CORRELATIVE ENCODED 

FM SPECTRA 

A method of obtaining the spectrum of a correlative 

encoded digital FM signal was presented in Chapter 2. Spectra 

are computed for various correlative encoding polynomials and 

modulation indices, and the results are presented in this 

chapter. An exhaustive investigation of the spectrum for 

modulation by a second order polynomial has been carried out 

and the values of the encoding coefficients, for which the 

spectrum is compact, are shown. The spectrum of the modu-

lated signal is determined by the encoding polynomial as well 

as the pulse shape. In this chapter, results are given for 

rectangular and raised-cosine pulse shapings. 

3.1 	Equivalent PRS Polynomials  

In an investigation of partial response encoded FM, 

a much larger class of encoding polynomials Must be considered 

than for a linear modulation. There are no simple properties 

of the polynomial that determine the predominant spectral 

characteristics and eliminate all but a few polynomials from 

consideration. In an investigation of the spectra of partial 

response FM, the effort involved can be reduced by noting that 

1 r 
a partial response encoding polynomial d 	kiD

i 
and its 

i=0 . 

2 5 



26 

1 r 
reciprocal d  L km-iD

i yield identical spectra. The argu-

ment follows from the fact that a modulating waveform  e 0 (t) 

and its time : reversal  e( -t) lead to identical FM spectra. 

Thus if the shaping pulse s(t) is symmetrical, an encoding 

polynomial and its reciprocal yield identical spectra. The 

proof is given in Appendix B. 

3.2 	Binary Correlative Encoding with Rectangular Pulse  
Shaping  

The spectrum of a binary correlative encoded FM, with 

rectangular pulse shaping and a second order PRS polynomial 

was given in Section 2.5. The spectra for different values 

of the encoding coefficients k
1 

and k 2 are examined exhaust-

ively here, for a modulation index of 0.5n. Throughout the 

following investigation it is assumed that 1( 0  is unity with-

out any loss of generality. 

Let us consider first the spectrum of a signal 

modulated by a first order polynomial, that is k 2  = 0. 

Melvin and Middlestead [6] have obtained results experimentally 

and by computer simulation for the case k l  = 1. Even though 

their simulation and experimental results are in good agree-

ment, they note that their results do not agree with the 

analytical results obtained by Roth [8]. This is due to the 

omission of two terms in the printing of Roth's result. The 

results obtained here agree with the observations of Melvin 

and Middlestead. 

It was pointed out in Section 3.1 that the reciprocal 
m 	m 1 r 	1 r encoding polynomials - L k.D

i 
 and - L km-i D

I yield C 	1 	C  i=0 	1=0 
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identical spectra. Thus the spectra for k 1 
 = k and k

1 
= l/k 

are identical and hence, it is sufficient to examine the 

spectrum for k
1 
ranging from -1 to +1. When k

1 
= -1, the 

spectrum contains discrete spectral lines, and the spectrum 

contains sharp spikes for values of kl  close to -1. For 

positive values of k
l' 

the spectrum is most compact for k
1 
 = 1. 

Let us now consider the signal modulated by a second 

- order polynomial. From the result on equivalent encoding 

polynomials, it follows that for a second order polynomial 

the encoding coefficients (kk
2

) and (k1/k2'  1/k2
) yield 

identical spectra. Therefore, it is sufficient to examine 

the region -03 < k
1 

< oa and -1 < k
2 
 < 1. For large values of 

—  — 

k
1' 

the polynomial can be approximated by k
1 
 D/Ik

1' 
 I which 

asymptotically approaches the case of digital FM without 

correlative encoding. 

The spectrum was computed for various values of k 	k
2 

in the region - 5 < k l  < 5 and -1 < k 2  < 1, and the results 

were applied to the other values of kl , k2  using the reciprocal 

polynomial result. The results are shown in Figure 3.1. The 

points marked E are the values of k1 ,k2  for which  discrète  

spectral lines exist for all values of n. The spectrum con-

tains sharp spikes for the values  of k 	k
2 
marked D. The 

spectrum is most compact for the values of k
1 , k2 

 in the 

area marked A. The points marked B have less compact spectra 

but comparable to the spectrum of the polynomial (1 + D)/2. 

The spectra are least compact at the points marked C, but are  

comparable to MSK spectra. 4 
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tk i  

5.0- DDDDDDCCCCôCCBBBBAABB 
D DDDDDCCCCCCBBAAABBB 

4.0-©DDDDDDDCCCB 6 BBAAABBB 
DeDDDDDDCCàBBBAAAABBB 

3.0 -  DDODDDDDCCBBBAAAABBBB 
DDDCDDDDCCBBAAAABBBBB 

2.0- CDDDVDDDCBBBAAAABBB BB 

CCDDDODDDBBAAAABBBBCC 
1.0- CCCDDDODDBBAABBBBCCCC 

CCCCDDDeDBBBBCCCCCCCC 
0 —C-C-C-C-C-C-D-D-O-D-Ç-C-C-C-C-C-C-C-C-C-C 

CCCCCCCCDODCCCCCCCCCc k2  

-1.0- CCCCCBBBDIDODDDIDOCCCCC 
CCBBBBBBDID6ODDDCCDDCC 

-2.0- BBBBBBBBDD6DODDDDDDDD 
B BBBBBBBCC6DDeDDDDDDD 

-3.0- BBBBBBBBCCCDDDeDDDDDD 
BBBBBBBCCCèDDDDODDDDD 

-4.0- BBBBBBBCCCèDDDDDODDDD 
B BBBBBBCCCàCCDDDDODDD 
BBBBBBCCCCCCCDDDDDODD 

1. 	1 	1 	1 	1 	1 	i 	1 	1 	1  

-5.0 -4.0 -3.0 -2.0 -1.0 OE0 1.0 2.0 3.0 4.0 5.0 

A - GOOD SPECTRUMN(I + D + D 2 )/3 
B  -FAIR SPECTRUMN(1+ D)/2 
C - POOR SPECTRUMN(MSK) 
D - SHARP SPIKES 

E - SPECTRAL LINES 

Figure 3.1 Behaviour of Spectrum with Rectangular s(t), 

q=1 and PRS Polynomial (l+k 1
D+k

2 D2
)/C 
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The PRS polynomials 1, (1 + D)/2 and (1 + D + D2 )/3 

yield the most compact spectrum for the zeroth, first and 

second order polynomials respectively. As well they give 

the least number of output levels. The spectra for these 

polynomials for various modulation indices are given in 

Figures 3.3, 3.4 and 3.5. The equivalent baseband pulse 

shapes, b(t), for these signals, given by (2.18), are 

shown in Figures 3.2a, b, and c respectively. The spectra 

were computed by evaluating the expression (2.8). The 

vectors R(f) , appearing in (2.8), associated with the 

equivalent baseband waveforms in Figures 3.2a, b and c are 

given in Appendix A. 

Spectra for binary correlative encoded FM signals 

were also obtained experimentally. The experimental results 

were in good agreement with the theoretical results. Some 

illustrative spectra are shown in Figure 3.6. 

3.3 	Binary Correlative Encoding with Raised-Cosine  
Pulse Shaping  

The spectrum of a correlative encoded FM signal depends 

on the encoding polynomial and the shaping pulse s(t). In this 

section, the spectra of the modulated signal is investigated 

when s(t) is a raised-cosine pulse extending  over  one, two and 

three bit intervals. Raised-cosine pulse shaping can be usPd 

to model baseband pulses that have a smooth transition from on 

to off. Since the polynomials 1, (1+D)/2 and (1+D+D 2 )/3 pro-

vided the most compact spectra for rectangular s(t), we have 

studied the same polynomials for the raised-cosine  pulse  

shaping. 
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Let us first consider the signal when s(t) is a 

raised-cosine pulse extending over'one bit interval. 
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s(t) . 2  (1 - cos2nt/T) 0 < t < T 

(3.1) 

= 0 	 elsewhere 

The spectra for the polynomials 1, (1+D)/2 and (1+D+D)/3 

with the above s(t) are given in Figures 3.7, 3.8 and 3.9. 

The corresponding equivalent baseband pulses b(t), given by 

(2.18), are shown in Figures 3.2d, e and f. The vectors R(f) 

associated with these baseband pulses are given in Appendix A. 

We next consider shaping pulse, s(t), extending over 

two bit intervals, that is q = 2. When s(t) is a rectangular 

pulse with q = 2 and polynomial 1, it is identical to rectan-

gular s(t) with q = 1 and the polynomial (1+D)/2. In addition 

for rectangular s(t) with q = 2 and polynomial (1+D)/2, and 

q = 1 and polynomial (1+2D+D2 )/4 the spectra are identical. 

When s(t) is a raised-cosine pulse with q = 2, it is given by 

s(t) = 	(1 + cosnt/T) -T < t < T 

(3.2) 

= 0 	 elsewhere 

The spectra with the above s(t) and the polynomials 1 and 

(1+D)/2 are shown in Figures 3.10 and 3.11. The norrespondinr 

equivalent baseband pulse shapes, b(t), are shown in Fipurns 
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3.2g and h. The vectors R(f) associated with these 
L-----J 

baseband pulses are given in Appendix A. 

Finally we consider s(t) extending over three bit 

periods. When s(t) is a rectangular pulse with q = 3 and 

polynomial 1, the modulated signal is identica] to s(t) being 

rectangular with q = 1 and the polynomial (1+D+D
2
)/3. Spectra 

are given in Figure 3,12 for s(t) a raised-cosine pulse with 

'q = 3 and polynomial 1. The corresponding baseband pulse b(t) 

is shown in Figure 3.2i. The vector R(f) associated with 

this baseband pulse is piven in Appendix A also. 

3.4 	Discussion  

The behaviour of the spectra observed for correlative 

encoded FM with rectangular and raised-cosine pulse shapings 

and encoding polynomials 1, (1+D)/2 and (1+D+D
2
)/3 are 

summarized and discussed here. To compare the band occupancy 

of the signals modulated by the equivalent baseband pulse 

shapes shown in Figure 3.2, the bandwidths required to trans-

mit 99% and 99.9% of the modulated signal power are listed in 

Table 3.1. The waveforms in Figures 3.2a, b and c correspond 

to PRS polynomials 1, (1+D)/2 and (1+D+D
2
)/3 with rectanpular 

pulse shaping. The spectra for these waveforms become pro- 

gressively more compact for higher order polynomials. The wave-

forms in Figures 3.2d, e and f correspond to PRS polynomials 1, 

(1+D)/2 and (1+D+D 2
)/3 with raised-cosine pulse shaping. Com-

pared to rectangular shaping (Figures 3.2a, b and e), raised-

cosine shaped waveforms (Figures 3.2d, e and f) yield spectra 
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Baseband Bandwidth in units of 1/Bit Period 
pulse 
shape, 

	

b(t), 	as 	n = 	0.5n 	n 	= 	0.71T 	n 	= 	0.8n 	n 	= 	1.2u 

	

shown 	in 	  
Figure 	99% 	99.9% 	99% 	99.9%  

	

3.2a 	1.18 	2.80 	1.80 	3.14 	2.00 	3.80 	2.30 	4.40 

	

3.2d 	2.20 	2.92 	2.74 	3.40 	2.90 	3.80 	3.80 	5.10 

	

3.2b 	0.92 	1.80 	1.30 	2.20 	1.44 	2.30 	2.00 	3.00 

	

3.2e 	1.60 	2.74 	2.50 	3.05 	2.70 	3.25 	3.30 	4.6 0  

	

3.2g 	1.10 	1.65 	1.2 0 	2.00 	1.50 	2.08 	1.96 	2.60 

	

3.2c 	0.80 	1.35 	1.00 	1.80 	1.16 	2.00 	1.60 	2.54 

	

3.2f 	1.48 	2.60 	2.00 	2.90 	2.40 	3.00 	3.12 	3.80 

	

3.2h 	0.86 	1.40 	1.10 	1.6 0 	1.24 	1.74 	1.70 	2.24 

	

3.2i 	1.00 	1.20 	1.06 	1.50 	1.20 	1.60 	1.70 	2.04 

Table 3.1 Bandwidth Utilization for Various Encoding Schemes 



where 

P(t) = 1 for 0 < t < T 

=0  elsewhere 
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with better asymptotic behaviour, but require a wider band-

width to transmit 99% oF the modulated slimal power. The 

equivalent baséband pulses shown in Figures 3.2 c and i appear 

to have better spectral behaviour than the other pulse shapes 

in Figure 3.2. 

3.5 	Quaternary Correlative Encoding with Rectangular Pulse  
Shaping  

The method described in Chapter 2 can be applied 

directly to find the FM spectra for multilevel modulation 

signals and correlative encoding. As an example, we will 

consider quaternary modulation. Let the random variables I n  

assume four discrete levels, that is L = 4 and let the four 

levels be t i = 5-2
1 for i=1,2,3,4. Suppose the encoding poly-

nomial is (1+D)/2. This polynomial yieldnd good results 

for binary modulation. The modulating signal can be written 

as 

e(t) = 	Y 	a 	. 	h(t-kT)] 	(3.3) 
O   k=-03, k 

where a
k 
 and h(t) each now have four components,  and 

. 	. 

hi (t) = £ 1b(t) = t(2rfd
/6)

.{
P(t+T)+P(t)1 

for 1=1,2,3,4 (3.4) 



and 

wd 
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From the definitions of h(t), it can be seen that the 

maximum deviation of the instantaneous frequency has been set 

to fcr Then as before n = 2ufdT. The encoded baseband will 

have 7 levels, and the corresponding frequency deviations are 

{fd (1 - 1/3), 1=0,1,. . .61. If all the four input levels are 

equiprobable 

= 	[1/4 	1/4 	1/4 	1/4] 	(3.5) 
LJ  

= 1/4 [ID] 	 (3.6) 

where [ID] is a (4x4) identity matrix. 

The necessary condition for the spectral lines to 

exist, given by equation (2.15), reduces to 

lcosn/2 cosnl 	= 1 	 (3.7) 

Whenithere are no discrete spectral lines, the mean power 

spectral density is given by (2.8). A computer program was 

written to evaluate this expression and the results are given 

In Figure 3.13. The spectrum has favourable asymptotic 

behaviour. 

3.6 	Summary  

Spectra of correlative encoded digital FM-signalrl for 

a range of encoding polynomials have been presented ln this 
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chapter. It is evident from an examination of the spectra 

that correlative encoded FM is superior to conventional FSK 

in terms of spectral conservation. 

A thorough investigation of the spectrum of a second 

order polynomial has been presented, and the values of the 

encoding coefficients k l , k 2  for which the spectrum is com-

pact are shown. Spectra are given for various PRS encoding 

,polynomials and modulation indices, for raised-cosine as well 

as rectangular pulse shaping. The bandwidths required to 

transmit 99% and 99.9% of the modulated signal power are 

tabulated for all the schemes considered. 

The method is applicable to digital FM by multilevel 

modulating signals which have been correlatively encoded. 

As an example, results are given for a quaternary modulating 

signal with duobinary encoding. 



Chapter 4 

ERROR PERFORMANCE OF CORRELATIVE ENCODED 

DIGITAL FM 

The spectral occupancy of correlative encoded FM 

was investigated in Chapters 2 and 3. The other major con- 

sideration in the choice of modulation is the SNR required to 

attain the desired level of error performance. The error 

performance of correlative encoded FM signals is investigated 

In this chapter. In partial response signalling a degradation 

is observed when conventional detectors are used. As an 

example, the error performance degradation for partial response 

signalling and discriminator detection is Fiven in Section 4.1. 

Then we will turn to the performance with newer detectors such 

as the Viterbi decoder. In the analysis of communication sys-

tems, an upper bound on the performance of the optimum detector 

can be obtained in terms of the minimum Euclidean distance, 

using the union bound. The upper bound is evaluated for 

several correlative encoded FM signals in Section 4.2. 

4.1 	Discriminator Detection 

A correlative encoded FM system with discriminator 

detection can be modelled by the block dingram• shown in Figure  

4.1. The performance of a discriminator detector has been 

4 8 
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investigated by several authors [35-39] for conventional FSK. 

Even though the noise in the channel is additive gnussian, 

the noise at the output of the limiter discriminator has a 

complicated distribution, because of nonlinearity of the 

limiter discriminator. The distribution of the noise at 

the output of the discriminator was given by Rice [34] using 

the theory of "clicks". This theory was adopted by Mazo and 

Salz [35] to analyze the performance of a discriminator 

detector for FSK modulation. Tjhung and Wittke [38] included 

the effects of filtering on the signal and obtained the para-

meters of the pre-detection filter to optimize the performance 

for various modulation indices. Papantoni-Kazakos and Kaz 

[39] gave a theoretical analysis for the performance when 

the channel introduces an arbitrary distortion causing inter-

symbol interference. 

We next consider the degradation introduced in discrimi-

nator detection by correlatively encoding the baseband signal ln 

FSK. Swartz [40] has derived an upper limit on the error  rate 

for modified duobinary encoded FSK with binary data input. 

Lender [41] has given experimental results on the performnncc 

of modified duobinary encoded FSK with quaternary data input. 

We consider the performance of precoded duobinary FSK with 

discriminator detection. In the analysis, the noise, n(t), 

is assumed bandlimited but the signal, x(t), is assumed to be 

undistorted at the input to the detector. The modulated 

signal, x(t), is of amplitude A. The noise, n(t), has a flat 

power spectrum with two-sided power density of No  watts/Hz, 



_ 	Ti  
d 	2nT (4 .1) 

H O 	
r = n

o 
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and is bandlimited to B Hz. Thus, the S NH nt the input to 

the discriminator is p= A
2
/()4BN 0 ). Even though the error 

rates for FSK are well known, they are reproduced in Figure 

4.2 so that they can be used for comparison with duobinary 

FSK. 

The performance of duobinary FSK (PRS encoding poly-

nomial (1+D)/2 with rectangular baseband pulse Shaping) with 

precoding will now be considered. During any bit interval, 

the modulated signal, x(t), has an instantaneous frequency 

of either f
c
, (f

c
+f

d ) or (f c
-f

d
). Here f) c  is the carrier 

frequency. The frequency deviation fd , for a modulation index 

n, is given by 

Let the output of the synchronous sampler be r. In duobinary 

encoding 3 signal levels are possible. For details on precodrd 

duobinary transmission see Lucky, Salz and Weldon [42, Chapter 

4]. The detection can be treated as a ternary hypothesis 

problem. 

H
+ ' 	

r = fl + n+ 

(4.2) 
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Different symbols are used for the noise in the three cases 

due to the dependency of the noise on signal frequency. Given 

the observation r, a decision has to be made between the three 

hypotheses. Due to precoding, If +  and H_ correspond to a 

transmitted data symbol, 1, and Ho  corresponds to a data 

symbol, -1. The noises n +, n0 and n consist of two compo-

nents. The first component is a continuous random variable 

'which can take any value in the interval [-71,71]. The second 

component is a discrete random variable which assumes only 

discrete values of + 2wm, where m is the number of clicks 

during the bit interval. The probability density for these 

components can be calculated directly with the method used 

by Mazo and Salz [35]. The decision rule for the receiver is 

given by; 

i) Output is bit 1: if In > n/2 
(4 .3) 

ii) Output is bit -1: if In  l < n/2 

The probability of error with the above decision rule 

was calculated and the results are given in Figure 4.3. For 

n - 0.57, the curves show duobinary FSK to be about 4.5 dH 

inferior to FSK. However, in the calculation of the curves, 

the noise bandwidth, B, was assumed to be the same for both 

the schemes. Duobinary FSK has a 99% channel bandwidth of 

0.92/T, compared to 1.18/T for FSK. Thus the pre-detection 

filter for duobinary FSK would be narrower than for conven-

tional FSK. This gives duobinary FSK an advantage of 1.1 dB 

in pre-detection SNR. Thus duobinary FSK is approximately 

3.4 dB inferior to FSK. 
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It is well known that the continuous phase in digital 

FM imposes intersymbol interference. Correlative encoding of 

the baseband signal introduces an additional Intersymbol 

Influence. The discriminator detector makes decisions based 

on the observation during a single bit interval. Better per-

forMance can be obtained by observing over a longer period of 

time. Such detectors'are considered in the next section. 

4.2 	Optimum Detection  

The phase continuity in digital FM introduces inter-

symbol influence. Therefore, performance gain can be obtained 

by observing the signal over several bit intervals and making 

a decision after a delay. This was observed by several authors 

In the early 70's [12, 43-46]. It is known that at high SNR, 

a tight union bound can be obtained on the performance of a 

digital FM receiver [48, 49]. The behaviour of this bound 

is dominated by the minimum Euclidean distance [57]. Aulin, 

Rydbeck and Sundberg have computed the minimum Euclidean 

distance for various correlative encoded FM schemes. The 

results are given in a number of technical reports [52-56]. 

They have also carried out an exhaustive investigation of 

the minimum Euclidean distance for a first order encoding 

polynomial. 

In this section, the derivation of the upper bound 

on the error performance of a receiver, which makes decisions 

after a delay, is summarized [48]. The validity of the 

assumptions made in the derivation' are discusse. It is 
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pointed out that reciprocal encoding polynomials have 

Identical minimum Euclidean distance rind so the work in 

exhaustive studies can be reduced. In Chapter 3, an exhaus-

tive investigation of the band occupancy of correlative 

encoded digital FM encoded by a second order polynomial was 

carried out. An exhaustive investigation of the minimum 

Euclidean distance for the same signals is carried out here. 

The results on the band occupancy and the minimum Euclidean 

distance are combined in Chapter 7 to seek encoding poly-

nomials which are spectrally efficient with a small penalty 

in SNR. 

A correlative encoded digital FM signal can be 

written as 

x(t) = cos(2uf
c
t +

J

a
k
h(u-kT)du + (1)

L
) 

k=-00 

for t > LT 	( 14.4) 

In the above equation,(P L  is the phase of the modulated signal 

at t = LT. It is assumed that additive white gaussian noise 

is introduced in the transmission channel. Therefore, the 

signal at the input of the receiver is given by 

r(t) = x(t) + n(t) 	 (4. 5)  

where n(t) is white gaussian noise with two-sided spectral 

density of N
o 
 watts/Hz. We will consider the detector that  • 

observes r(t) over the interval LT < t < (L+N)T and makes 
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the decision on a to minimize the probability of error. The 

investigation is restricted to coherent detection, which assumes 

perfect knowledge of q) L . In non-coherent detectors, (P L  is 

treated as a random variable, usually with uniform distribution 

over the interval [-n,r]. Non-coherent detector's have been 

analyzed for conventional FSK schemes [44, 48,  14 9]. 

The signal x(t), over the interval LT < t < (L+N)T, 

'depends on the data sequence aL,aL+l.  . 	a (i)  and 

the Phase 1) L • If the baseband pulse, h(t), in equation (4.4) 

extends over m bit intervals, x(t) depends also on the (m-1) 

data symbols prior to t = LT, that is  aLl,  a1 _ 2 . . . 

a1,-(m-1). In the analysis perfect knowledge of (I)
L 

nnd the 
-  

data symbols  aLl,  aL_ 2 . . 	is assumed. The 

validity of this assumption is discussed later. The signal, 

x(t), can assume any one of 2 N possible waveforms depending 

on the data sequence in the interval LT < t < (L+N)T. Let 

each of these waveforms be denoted by s(t, a , k ), where A k  

represents a particular data sequence aL+1' 
a L+2 	• 

aL-F(N-1). The receiver observes s(t, aL' Ak ) in the Presence 

of noise and has to make a decision on the data symbol aL
. 

The problem posed in this format is treated in [47] as a 

composite hypothesis problem. The solution to the composite 

hypothesis problem is known to be a maximum likelihood 

receiver. Using the arguments of Osborne and Luntz [48], the 

likelihood ratio, t, can be reduced to 



1 

t < 1 
-1 

( )4 .7) 
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(L+N)T 

2 
exp(-- 	j r(t)s(t,l,A k 

 )dt ) 
k=1 

LT 
- 

(L+N)T 

	

exp( 2- 	r(t)s(t,-1,A k )dt) 
k=1 	No 

( 4.6) 

LT 

The decision rule for the detector, that yields a minimum 

probability of error, is given by 

4.2.1 Bound on the Performance with Optimum Detection 

The exact performance of the detector given by the 

decision rule ( )4 .7) is difficult to compute. However, tight 

performance bounds can be obtained. Osborne and Lunt7 [48] 

have obtained two bounds for conventional FSK modulation. 

One bound is tight for low SNR, whereas the other is tight 

for high SNR. Only the bound for high SNR is considered hern. 

Let 

(L+N)T 

= 	r(t)s(t,a
L'

A
k
)dt 	(4.8)  2 

LT 

Then, the likelihood ratio is given by 



and 

exp  =  
k=1 	1,k ) 	

exp(
-1,q

)  (4.11) 
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7 

exp( 1,k ) 
k=1  

- 

k=1 

For large SNR 

exp( 1,k ) = exP( 1,p ) 
k=1 

(4.9) 

(4.10) 

where 	
-1 1,p 

and 	are the largest  of 
l, 

and 	
k' ,q 	 -1,  

k=1,2,. . . n respectively. With the above approximation, the 

decision rule (4.7) reduces to 

1 
> 

max
1,k 	

< 	max
-1,k ] 

-1 	k 
( 1 1.12) 

For high SNR, a .  tight upper bound can be obtained on the 

probability of- error of the above receiver, using the union 

bound [48, 49 1 . 

1 
P < 	î 	y( prF, , 	 413) n 	1j < 	-1,k I a

14
=1

'
A) 	( 

j=1 k=1 

The variables F, 	. 	are gaussian random variables. Therefore, aL  ,k 



min dmin = j,k  [di  k 1  (4.18) 
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the Pr(1j < 	aL=1,A,I ) can be expressed in terms of 
, 	-1,k 

the Euclidean distance, dj,k between the signals s(t,l,A ) 

and s(t,-1,A k ). 

(L+N)T 

d 2 
k = 	{s(t,l,A.) 	s(t,-1 ' Ak )1

2 
dt 

j, 
LT 

and 

PrE
1,1 

<
-1,k 

1 a
L
=1

'
A )= Q riJ k l 

/Tr: 

where, Q is the error function given by 

(4.14) 

(4.15) 

Q(x) = ,/77  
• 1 	{  

u 2 

e du (4.16) 

Therefore, P p  in equation (4.13) can be written as 

d ' k I 
P e < j=1 k=1 

(4 .1 7 ) 

Let dmin be the 
smallest Euclidean distance of all 

dj,k' 
that 

i s 

For large SNR, the behaviour of the upper bound in equation 

(4.17) is dominated by the minimum Euclidean distance, dmin 

 [57]. 
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The weakness in the application or the above upper 

bound is the assumption that cb l,  and the data symbols  

. .,a 1,_ (m _ 1)  are known. This knowledge supposes that 

the data symbols prior to t = LT are detected correctly. 

Thus, Pe  is the probability of an initial error. An initial 

error could well result in a run of errors. In that case, 

P e would be the probability that a run of errors will occur. 

This phenomenon of error propagation is difficult to analyze 

analytically. Anderson and Taylor [51] have discussed this 

problem for a somewhat similar type of modulation scheme known 

as "Multi-h Codes". They have used a bound on P e based on the 

minimum Euclidean distance, and have simulated the detector 

Using the Viterbi algorithm. For error rates below 10 -5 , the 

performance of the implemented detector was within 0.2 dB of 

the error bound. A similar behaviour could be expected for 

a correlative encoded digital FM detector at high SNR. 

To summarize the above results, an estimate on the 

error performance of a correlative encoded digital FM scheme 

can be obtained in terms of the minimum Euclidean distance. 

4.2.2 	Computation of the Minimum Euclidean Distance 

The Euclidean distance dj,k is given by equation 

(4.14). If the carrier frequency, f c' is large compared to 

the bit rate, it can be shown that 

(L+N)T 

r 
d
2 

= NT  - cos( 
1 	

(b.-c )h(u-iT)dn)dt 	(4.19) =-oe 	•• 

LT 	LT 
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The data symbols b
i 

and c
i 

correspond to data sequences of 

s(t,l,A ) and s(t,-1,Ak
) respectively. From the above 

equation it is clear that the minimum Euclidean distance 

depends neither on the initial phase, (P L , nor the data 

symbols a
L-1' 

a
L-2' 	• 

.
' 

a
L-(m-1). 

Let a sequence of 

symbols e i  be defined as 

e i  = b i 	c 	
(4.20) 

i 

Since the data symbols b i  and c i  can take values of + 1, e i  

can be either + 2 or O. The Euclidean distance can be written 

as 

(L+N)T 	t 	_ 
2 	r 	' 

d
j,k 

= NT - 	cos ( j 	/ 	e.h(u-iT)du)dt' 	(4.21) 
LT 

1=-0D 1 

LT 

To compute the minimum Euclidean distance, d
min' 

set e = 

and find d
j,k 

for all possible sequences e
L+1 ,e

L+2" • 

and choose the smallest Euclidean distance. eL+(N-1) 

The Euclidean distance can be visualized with the nid 

of a phase tree. A phase tree consists of phase paths for all 

the possible data sequences. The phase tree for the polynomial 

(1+2D+D
2
)/4 with rectangular pulse shaping is shown in Figure 

4.4. Phase path merges in the phase tree provide an upper 

bound on the minimum Euclidean distance. The phase paths 

corresponding to the data sequences 1-1 1-1 and -111-1, 

shown in solid line in Figure 4.4, merge after 4 bit intervals. 
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Therefore, the Euclidean distance between the signals cor-

responding to the data sequences -111-1xxx. . . and 1-11-1xxx. . 

cannot be increased by observing the signal any longer than 4 

bit intervals. Thus the Euclidean distance between signals 

with merging phase paths provides an upper bound on the 

minimum Euclidean distance. 

2 
The square of the minimum Euclidean distance, dmin' 

is shown in Figure 4•5 for various values of N along with 

the upper bound based on the merge argument for encoding 

polynomial (1+2D+D
2
)/4 with rectangular pulse shaping. We 

next consider an exhaustive investigation of dmin  for a 

second order polynomial with rectangular pulse shaping and 

1 	v. 
= 0.5n. The phase tree for the polynomial 	L 10  k.D1 = 	l m  

1 r 
can be obtained by traversing the phase tree for 	L km_ i D 

i=0 

in the reverse direction. Therefore, the d_min  for the poly- 
m  

1 r 
nomial — L kJD

i 
and its reciprocal 	km-i D

i 
are identi- 

1 =0 	 i=0 
cal. The proof for this equivalence is given in Appendix B. 

It follows from this result that for a second degree poly-

nomial, the encoding coefficients (k 1 ,k 2 ) and (k 1/k 2 ,1/1c 2 ) 

yield identical d
m • n 	

Therefore, to exhaustively investigate 
. 

a second order polynomial it is sufficient to investigate 

the region -co < k l  < cc,  and -1 < k2  < 1. The minimum Euclidean 

distance, for N=7, was computed for various values of k 1 ,k 2  in 

the region -5 < k 1  < 5 and -1 < k 2  < 1 and the results were — — 	_  — 

applied to other values of k1 ,k 2  using the reciprocal poly-

nomial result. The results are presented in Figure 4.6. 
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4.2.3 	Complexity of the Receiver 

If the detector is implemented according to the de-

cision rule in equation (4.12), the receiver structure will 

be complicated. The use of Viterbi algorithm to simplify 

the receiver structure has been suggested by several authors 

[45,46,48-50]. To demonstrate the complexity of the receiver, 

duobinary FSK with rectangular pulse shaping and n = 0.5n 

be considered. When the modulation index, n, is such 

that, n/n is a rational number, the phase tree collapses into 

a phase trellis. The object of the receiver is to find the 

path through the trellis which most closely represents the 

received signal. The Viterbi algorithm is ideally suited 

for this task. Details can be obtained from [46]. 

The phase trellis for the duobinary FSK, with n= 0.5n, 

is shown in Figure 4.7. It has 4 nodes and 4x3 = 12 branches. 

The detector maintains 4 path histories and updates them every 

bit interval after finding the 12 branch metrics. Let the 

branch metrics be denoted by bmn , where m(m=0,+1,2) refers to a 

node and n(n=0,+1) refers to a branch emanating from the node. 

If r(t) is the received signal, the branch metric is given by 

bmn  = j r(t)cos(2nf t + an + nm  ) dt 
c 	2T 	2 

0 

(4.22) 

It would appear that 12 correlators are required to implement 

the detector. However, using trigonometric identities bmn  

can be written as 



o 2T 3T 

Figure 4.7 Phase Trellis for PRS Polynomial (1+D)/2 

with Rec -5angular s(t), q=1 and n = 0.57 
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. nm 
b 	= X cos 
mn 	n 	

n 
+ Y

n 
sin 7 

2 

where 

x = 	r(t)cos(2nf t + nut  )dt 
c 	2T 

0 

and 

Y
n 

= - 	r(t)sin(2nf t + 
mit 
 2T )dt 

0 

(4.23) 

(4.24) 

(4.25) 

Equation (4.23) shows that all the branch . metrics can be 

obtained with 6 correlators. Schonoff et. al. [50]  show that 

if f
c 

is an integral multiple of the bit rate, X
n 

and Y
n can 

be obtained by hetrodyning the output of a single correlator 

by cos 2nf
c
t and sin 2nf

c t. Thus, the detector for duobinary 

FSK requires 3 correlators and subsequent software. Based on 

similar arguments it can be shown that the polynomials 

(1+D+D
2
)/3 and (1+2D+D 2 )/4 would require 4 and 5 correlators 

respectively. 

4.3 	Summary  

A preliminary investigation of error performance of 

correlative .encoded digital FM schemes was carried out. Duo-

binary FSK appeared approximately 3.4 dB inferior ,  to conven-

tional FSK with discriminator detection. 

The optimum detector for correlative encoded digital 
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FM observes the signal over several bit intnr\als before 

making the decision. It is known that a boun0 on the error 

performance of such a detector can be obtained from the 

minimum Euclidean distance. An exhaustive investigation of 

the minimum Euclidean distance for a second order encoding 

polynomial was carried out for n = 0.5n. It was pointed out 

that any encoding polynomial and its recriprocal possess 

identical d
min

. 

A method of implementing the optimum detector using 

Viterbi algorithm was discussed briefly. The detectors for 

encoding polynomials 1, (1+D)/2, (1+D+D
2 )/3 and (1+2D+D

2
)/4 

require 2,3,4 and 5 correlators respectively. The complexity 

of the subsequent software depends on the total number of 

nodes and branches in the trellis. At low bit rates this 

will pose no problem. However, at high rates the implementa-

tion of these detectors may be unrealistic at this time. 



Chapter 5 

OPTIMUM PULSE SHAPING IN 

MSK-TYPE SIGNALS 

MSK-type signals can be defined as angle modulated 

signals, in which the baseband pulse h(t) extends over only 

one bit interval, and the modulation index, n, is equal to 

0.5u. Note that angle modulated signals are the same as 

frequency modulated signals which are allowed unbounded 

instantaneous frequencies. In general, angle modulated signals 

are difficult to analyze because they involve a nonlinear trans-

formation of the baseband signal. However, MSK-type signals 

- a special subclass of angle modulated signals - can be re-

presented by a linear quadrature carrier modulation as shown 

in Figure 5.1. The linearity makes it possible to analy7e 

and implement them with greater ease. 

In this chapter, the baseband pulses in MSK-type sig-

na i s are optimized to minimize the fraction of out-of-band 

power. Results are presented for a range of channel band-

widths of practical interest. The spectra of the MSK-type 

signals obtained through optimization are compared with  the 

spectra of well-known modulations, such as MSK, SFSK and 

OKQPSK. 
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p(t 

a 2k, CI 2k+2, 

a 2k+1,---}1 

q (t 

a 21H-1, 

sin wc t x i ( t) 

x( t ) 

I cos w c t X 2 (t) 

Figure 5.1 Quadrature Generation of MSK-type Signals 
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5.1 	Equivalent Quadrature Carrier  Modulation 

In general,  an. angle  modulated signal can be written 

in terms of in-phase and quadrature components. For n = 0.5u, 

the structure reduces to the linear form as shown in Figure 

5.1 [20]. These signals are termed MSK-type signals. The 

input binary data bits ak  are independent and can assume a 

value of +1. Alternate bits are modulated on I and Q channels 

as shown in Figure 5.1. The impulse response of the equivalent 

baseband shaping filters p(t) and q(t) are non-zero over two 

bit periods, 2T, and the baseband pulses in the I and Q 

channels are offset or staggered by one bit interval T. The 

modulated signal x(t) is given by 

x(t) = x 1 (t) + x 2 (t) 	 (5.1) 

where 

x 1 (t) = 	î a
2k 

p(t - 2kT) sin wc t 

CO 

x 2 (t) = 
k=...0, a 2k+1 cl(t 	

(2k+1)T) cos wt 

and 

p(t) = q(t) = 0 	for t > 2T 	and 	t < 0 

The envelope e(t) of the transmitted signal x(t) can be 

written as 



0 < t  <T  

T < t < 2T 

(5.4) 
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e(t) = /p 2 (t - 2kT) + q 2 (t - (2k - 1)T) 

2kT < t < (2k + 1)T 

(5.2) 

= 4 2 (t - 2kT) + q 2 (t - (2k + 1)T) 

(2k + 1)T < t < (2k + 2)T 

And the phase (P(t) of x(t) is 

- 
qb(t) = tan

1 
 Ea

2k
p(t - 2kT) / a2k-1 ci(t-(2k - 1)T)] 

2kT < t < (2k + 1)T 

( 5-' 

= tan
- a

2k P(t  
1r 	 - 2kT) / a 2k4.1  q(t-(2k + 1)T)]  -  

(2k + 1)T < t < (2k + 2)T 

For the modulated signal x(t) to be a constant-

envelope signal of amplitude A, p(t) and q(t) have to satisfy 

the following constraints 

P
2
(t) + q 2 (t + T) = A 2  

P
2
(0 	c1 2 (t - T) = A

2 

Under these constraints the modulated signal x(t) can be 

written in the form of an angle-modulated  signal as 
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x(t) = A cos(wc t - 	( t)) 	 (5.5) 

If x(t) is transmitted over an additive white gaussian 

channel, the performance does not depend on the pulse shapes 

p(t) and q(t) but only on their total energy. In the model, 

the odd bits are transmitted through the I channel and even 

bits are transmitted through the Q channel. Since it is 

.desirable to have the same error performance for all bits, 

the power would be divided equally between the I and Q 

signals in the model. Thus if 

2T 

J p
2
(t)dt = A 2T 

o  

then 

2T 

J q 2 (t)dt = A 2T 

o 

(5.6) 

( 1-3.7) 

The symbols in the input data stream ak  are assumed 

to be statistically independent. Therefore the power spectral 

density of x(t) can be expressed as 

P x 	x(f)  = P (f) 	Px (f)  
1 	2 

(5.8) 

In the above notation P x (f) denotes the power spectral density 

of x(t). Px (f) can be expressed also in terms of the power 



P
xb

(f) = P (f) + P (f) (5.10) 
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spectra of the baseband signals 

Px (f) = 1.(p (f-f ) + pp (f+f c ) + P ci (f-f c ) 
2 P 

+ p (f+f)} (5.9) 

If f
c 

is sufficiently large compared to the bit rate, P x (f) 

will be concentrated around +f and hence it is sufficient 
—c ' 

to investigate the baseband equivalent spectral density 

The baseband pulses p(t) and q(t) are time-limited and hence 

their spectra cannot be strictly bandlimited. Therefore, in 

the suggested modulation adjacent channel interference is 

inevitable. Let the channel bandwidth be 2W Hz. Then the 

fraction of in-band power of x(t) in the band  (f-W,  fc +W) is 

given by 

P. 	= 	P (f)df / (A
2
/2) 

in 	j 	x 
W 

And the fraction of out-of-band power is 

Pout = 1 - P. 
in 

(5.11) 

(5. 12 ) 

The fraction of out-of-band power, rout, 
 is a Food measure of 
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the adjacent channel interference. Therefore, designing an 

MSK-type signal involves shaping p(t) and q(t), which satisfy 

constraints (5.4) and (5.6), such that P
out 

is minimized or 

P 1 n 
is maximized for a given channel bandwidth. Rabow [13] 

has treated this optimization problem with the assumptions 

that p(t) = q(t) and p(T - t) = p(T + t), and has given the 

optimum parameters and wave shapes for one particular value 

.of the time-bandwidth product. Boutin et al. [2 11] have 

recently reconsidered this problem pointing out Rabow's work. 

Prabhu [18] has obtained a lower bound on P
out' 

that is not 

necessarily achievable. The optimization without Rabow's 

assumptions is considered next. 

Maximization of the fractional energy in a given 

bandwidth for time-limited signals has been studied by 

Slepian, Pollak and Landau [59,60] with the aid of prolate 

spheroidal wave functions. The relevant properties of the 

spheroidal wave functions are presented in Appendix C. 

5.2 	Optimum Baseband Pulse Shaping  

The problem posed in the last section can be sum-

marized as follows: 

find p(t) and q(t) to maximize P in  for a. given W, 

with the following constraints 

-T < t < 0 

p(t) = q(t) = 0 	Iti > T 

p
2
(t) + q - (t + T) = A

2 

( 5 . 1. 3 ) 

( 	 . 	 ) 



P(t) = 	î 	a lp (t) 
n=0 n n  

Itl < 	T 	(5.17) 

and 

cc  

q(t) = 	b  i (0 
n=0 n n  

Itl  <T  (5.18) 
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2
(t) + q

2 
 (t - T) = A - p 0 < t  <T  (5.15) 

and 

f 	, 
j P

2 
 lt)dt = 	q

2
(t)dt = A

2
T 

-T 	-T 
(5.16) 

The pulses p(t) and q(t) have been shifted to extend 

over the interval (-T,T) instead of (0, 2T) as in section 5.1 

for the sake of convenience. Since the spheroidal wave 

functions,tp.(t), are a complete set over the subspace of 

functions strictly time-limited to interval [-T,T], p(t) and 

ci(ocanbeexpressedinterusoflp.(t). Let 
CO 

The parameter c for the spheroidal wave functions is given 

by c = 2uWT. From the orthogonal properties of fir (t), it 

follows that 

cc 

2 	r 	2 
P (t)dt = A

2T = L a
n 

X
n 

-T 	
n=0 

(5.19) 
and 

cc 

q
, 2 	2 r 
t)dt = A - T = 	

b2 
n
X
n 

-T 	n=0 



a
n

A
n 

= 	p(t)ip n (t)dt 

-T 

(5.21) 
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•  The fraction of in-band power P in  can then be written as 

CO 

r 	2 2 	2 
P
in 

= { L (a
n 

A
n 

+ b
2
n 

A
n

)} /(2A
2
T) 

n=0 
(5.20) 

The coefficients a
n 

can be expressed in terms  of p(t) as 

The coefficients b
n 

can also be expressed in terms of p(t) as 

b n A n  = 	I q(t)Ip n (t)dt 

- T 

0 

= 	j q(t)Ipn (t)dt + 	q(t)tp n (t)dt 

- T 	 0 

0 

j p2 	
(x) 	11) 11 (x + T)dx 

-T 

+ I /A2  - p 2 (x) tp ri (x - T)dx 

0 

(5.22) 

The fraction of in-band power P in  can now be expressed as a 

functional of p(t) 
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CO 

P 	= 
in 

 
n=0 

p(t)lp n
(t)dt 

- P
2
(0IPn (t + T)dt 

nn•• 

2 
2 /, 

" 	P
2
(t) 1P n (t - T)dt 

0 

Let f(t) be a p(t) which maximizes P in . 	Then if 

p(t) = f(t) + 	A(t) 

(2A 2T) 

(5.23) 

in  lim 	 =0 DE E -4- 0 
V A(t) 	(5.24) 

aP. 
lim 	 _ De e±0 

CO 

-n n=0 	-T 

2a
n
X
n 	

A(t)1Pn(t)dt 

2bnn 
n=0 

0 

j
f(t)A(t4n (t + T)dt 

-T 	pr 	2 

— 
I T f(t)A(t)Ip n (t - T) 

dt 

0 	Fît) 

(2A 2 T) 

(r).21;) 



00 

î b A lp (t - T) n=0  n n n 
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Therefore 

f(t) ,  b  A 	(t + T) n=0  n n n a 
n Ann 

 ip (t) = /.2 n=0 	- f2
(0 

-T < t < 0 

(5.26) 

f(t)  

/ a A 	(t) = 	f2 (t)  
n=o  n n n 

0 < t  <T  

In the above equations the coefficients a
n 

and b
n 

are functions 

of f(t) and are given by (5.21, 5.22) with p(t) = f(t). Even 

though it is not possible to find a closed form expression for 

f(t) which satisfies equations (5.26), the solution can be 

obtained iteratively as follows. 

i) Assume.f(t) to be an arbitrary p(t) which satisfies 

the constraint (5.16). 

ii) Compute the coefficients a n  and bn  using (5.21) and 

(5.22). 



n = 0, 1, 2 . . (5.27) 
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ill) 	Using the values of a and b computed in step ii), 

obtain the f(t) which satisfies the equations (5.26). 

iv) 	Return to step ii). The final solution is obtained 

when a set of coefficients  a n ,  bn 
and a function f(t) 

1 

are found that satisfy equations (5.26). 

The optimum f(t) was computed iteratively for a range 

of c of practical interest from c = 1.0 to 10.0, which • 

corresponds to a range of time-bandwidth products of approxi-

mately 0.3 to 3.2. In all the cases considered it was found 

that p(t) = q(t) and also p(t) = p(-t), which Rabow [13] 

assumed. This implies 

a
7n 

= b
2n 

a 2n+1 
= b 2n+1 . 0  

Under these conditions the equations (5.26) reduce to 

co 
co 	f(t) 	V a

2n
À
2n

ip
2n 	

- t) 

0 < t < T/2 

a2n X 2n 11) 2n (t)  = /(7—
f  2 
	n=0 

n=0 	A - 	(t) 

(5. 28) 

and 

The above equation is identical to Rabow's [13] equation (8). 



j 2 (t)dt = X
i 

-T 

(5.29) 

5 
f(t) = 	a2n2n

(0 
n=0 

(5.30) 
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5.3 	Numerical Results  

The parameters of the optimum pulse shape for a range 

of time-bandwidth products are presented in this section. 

For a given c = 2nWT, the spheroidal wave functions were 

generated by solving the differential equation (C.9) of 

Appendix C. The values of xi  in equation (C.9) were obtained 

from [61]. This reference also contains the values of X
1

. 

The differential equation was solved numerically and the sol-

utions normalized such that 

For illustration, IP i (t) are shown in Figure 5.2, for i=0,2,4 

and c=8.0. 

As mentioned in the last section, for all the time-

bandwidth products considered, the optimum baseband pulse 

shapes satisfied the symmetry conditions (5.27.). Therefore, 

we present the results with the assumptions (5.27) without 

loss of generality. To solve equation (5.28), f(t) was 

approximated by a truncated series 

Equation (5,28) was solved iteratively and the optimum coeffi-

cients a 2n and f(t) were obtained. 
The mean square error due 

to truncation can be expressed as 
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Figure 5.2 Spheroidal 'iave Functions, ip(t), for c = 8.0 
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(f(t) - 	a
2n

tp
2n

(t)) 2dt 
n=0 

5 	2 = A
2
T(1 - 	a X 

2n2n
)  

n=0 
(5.31) 

Six terms were found sufficient, and the normalized mean 

square error (E/A
2
T) in all the cases was less than 2.5 x  l0. 

All the computations were carried out with the 

assumption that A
2
T = 1. The optimum parameters for various 

values of c are listed in Table 5.1. Some of the coefficients 

a
2n 

are very large in the table. This is due to the normal-

ization (5.29) of '2 (t). For example, for c = 1.0 

a
10 

= 4.8 x 10 9 , but then X
10 

= 1.03 x 10-25  and therefore 

the contribution of a10II)10(0  is still very small. In fact, 

-6 a
10

ip 10 (0 has a total energy of only  a 10 2 10 
 

), 	= 2.4 x  1O 6 . 

The minimum P
out computed for various time-bandwidth 

products is shown as the lower bound in Figure 5.3. This is 

an achievable lower bound. The lower bound obtained by 

Prabhu [18] is also shown in the same figure. Prabhu's 

lower bound is based on the following argument. Since p(t) 

is a time-limited waveform, the fraction of in-band power 

of p(t) is always less than or equal to the fraction of in- 

band power of the zeroth order spheroidal wave function 

Therefore, Pin  as a function of bandwidth is bounded above by 

the eigenvalue X 0  of ip 0 (t). For time-bandwidth products less 

than 1.0, 1p 0 (t) almost satisfies the constraints that p(t) has 



Time-band 	 Coefficients 	 Mean- 

c 	Width Product  	Square 
Error 

= 2uWT 	(2WT) = 
7 	

a 	a 	a 	a 	a 	a 	P. 
o 	2 	6 	8 	10 	E 	in 	

P
out 

X  10
-5 

	

1.0 	0.318 	1.32147 	-.05820 	45.555 	10300.0 	5.34x10
6 	

4.82x10
9 	

0.328 	.57250 	.42750 

	

2.0 	0.637 	1.06539 	-.00457 	4.2421 	282.0 	36900.0 	8.59x10
6 	

2.14 	.88010 	.11990 

	

3.0 	0.955 	1.01227 	.00378 	.23983 	7.2073 	592.0 	79000.0 	1.17 	.97570 	.02430 

	

4.0 	1.273 	1.00161 	-.02388 	-.1972 	-4.570 	-91.170 	-467.70 	0.217 	.99510 	.00490 

	

5.0 	1.592 	0.99565 	-.10015 	-.1208 	-1.4778 	-18.605 	-69.309 	0.212 	.99650 	.00350 

	

6.0 	1.910 	0.98442 	-.18077 	-.0322 	-.17497 	-1.2435 	.5911 	0.076 	.99783 	.00217 

	

7.0 	2.228 	0.97541 	0.22192 	-.0073 	-.01279 	-.12159 	-2.3097 	0.025 	.99927 	.00073 

	

8.0 	2.547 	0.96842 	-.24966 	-.0026 	-.00093 	-.04108 	-.8285 	0.052 	.99981 	.00019 

	

9.0 	2.865 	0.96162 	-.27443 	-.0028 	.000825 	-.00433 	.09705 	0.025 	.99995 	.00005 

	

10.0 	3.183 	0.95324 	-.30214 	.00590 	.003421 	.00844 	.2226 	0.188 	.99998 	.00002 

Table 5.1 Parameters of the Optimum Pulse Shape for Various 

Time-Bandwidth Products 
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to satisfy to be a baseband pulse of  an MSK-type signal. 

Therefore, Prabhu's bound is the saine as the achievable 

lower bound, for time-bandwidth products less than 1.0. 

There is no single pulse shape p(t) which can attain 

the lower bound at all time-bandwidth products. The variation 

of the fraction of out-of-band power is plotted in Figure 5.3 

for the pulse shapes p(t) optimized for c = 1.0, 6.0, 8.0 and 

10.0. As expected they achieve the lower bound at the values 

of the time-bandwidth product for which they are designed. 

The spectra of the modulated signal with the optimized p(t) 

are shown in Figure 5.4. As the pulse is designed for larger 

values of c, the main lobe in the spectrum becomes wider 

and the asymptotic behaviour improves. 

The optimum pulse shapes for various values of c are 

shown in Figure 5.5. As c÷0, p(t) approaches a rectangular 

pulse whereas for large values of c the transition is smooth. 

The phase trajectories (P(t) that occur with the optimum pulses 

are shown in Figure 5.6. As c±0, the phase makes an abrupt 

jump of r/4 radians. As c increases, the magnitude of the 

jump decreases and for large values of c, cp(t) has a smooth 

variation in time. 

5.4 	Discussion  

A number of modulations have been proposed in the past 

based on the pulse shape p(t). Well-known examples are 

Minimum Shift Keying (MSK), Offset-Keyed Quadrature Phase 

Shift Keying (OKQPSK) and Sinusoidal Frequency Shift Keying 

(SFSK). The variation of P
out 

as a function of bandwidth for 
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91 

$6 (t) 

cr. 1.0 

	 I 
0.5 

T 

Figure 5.6 Optimum Phase Trajectories at 

c = 1.0, 2.0, 4.0 and 10.0 

1.0 



92 

these modulations is shown in Figure 5.7 along with the lower 

bound. The pulse shape in OKQPSK is given by 

	

p(t) = 1 	ItI<T 

	

= 0 	elsewhere 	(5.32) 

This is the optimum pulse shape at c = O. Therefore, OKQPSK 

is close to the bound at low time-bandwidth products, and 

hence can be expected to perform better than other pulse 

shapes for highly restricted channel-bandwidths. This is 

consistent with the observation of Gronmeyer and McBride [19] 

that OKQPSK outperforms MSK for very narrow channel bandwidths. 

The fraction of out-of-band power Pout  for MSK follows 

the lower bound closely for bandwidths up to 1.2 times the bit 

rate. The 99% bandwidth for MSK is 1.18/T, whereas the mini-

mum attainable is 1.12/T. The closeness of MSK to optimality 

was pointed out by Prabhu [18]. SFSK spectrum has good 

asymptotic properties but its fraction of out-of-band power 

is not close to the minimum at any channel bandwidth. 

The variation of out-of-band power of the signal, 

modulated by the optimum pulse at c = 8.0, is also shown in 

Figure 5.7. It closely follows the lower bound up to the 

time-bandwidth product of 2.5 and is spectrally superior to 

both MSK and SFSK. 

5.5 	Summary  

A method of shaping the baseband pulses in constant- 
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Figure 5.7 Variation of Fraction of Out-of-Band  

Power for Various Modulation Schemes 
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envelope, quadrature carrier modulation to maximize the 

fractional power in a given bandwidth has been presented. It 

was found that the optimum pulse shapes were identical in 

both the in-phase and quadrature channels, and also they 

were symmetric and even. The least possible fraction of 

out-of-band power, P
out' 

was computed for a range of time-

bandwidth products of practical interest. The optimum pulse 

shapes and their associated properties were examined for a 

range of values of the parameter c (a quantity proportional 

to the time-bandwidth product). The variation of the out- 

of-band fraction of power for the optimum pulse shapes designed 

for various values of c was plotted. The power spectra of the 

signal modulated by these pulse shapes were also given. As c 

increases the main lobe of the spectra becomes wider and the 

asymptotic behaviour improves. The optimum pulse shape tends 

to a rectangular waveform as c tends to zero. For large values 

of c the pulse has a smooth transition. The phase trajectory 

for the optimum shaping has an abrupt phase jump of Tr/4 radians 

for very small values of c. As c increases the magnitude of 

the jump decreases and for large values of c, the phase changes 

gradually with time. 

A number of modulations have been proposed in the past 

based on the baseband pulse shapes in a quadrature carrier 

modulation. The out-of-band fraction of power for the well 

known modulations, such as MSK, SFSK and OKQPSK were compared 

with results from the optimization. The optimization yields 

pulse shapes which attain a lower out-of-band power. The 
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improvement is not dramatic. However, the lower bound 

obtained in this chapter provides a useful limit on what is 

achievable and a basis for comparison. 
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Chapter 6 

OPTIMUM PULSE SHAPING IN DIGITAL ANGLE 

MODULATED SIGNALS 

Angle modulated signals were defined in Chapter 1, 

and are given by equation (1.1) or equivalently (1.3). As 

mentioned previously, the difference between phase continuous 

conventional digital FM signals and what are called "digital 

angle modulated signals" here, is that, in angle modulation 

baseband pulses which cause phase jumps are permitted. In 

terms of equivalent FM signals, a phase jump would result in 

an unbounded instantaneous frequency. Phase jumps occur 

also in digital phase modulated signals, such as PSK, QPSK, 

etc. However, in angle modulated signals the phase of the 

'carrier can accumulate after every symbol transmitted and 

cause intersymbol influence. 

A technique for obtaining the baseband pulse shapes 

In angle modulated signals that minimize the fraction of out- 

of-band power is presented in this chapter. The consideration 

is restricted to angle modulation, when the baseband pulse, 

h(t), is symmetric and extends over only one bit interval. 

When the modulation index, n, is equal to 0.5u, a linear rep- 
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resentation for the modulation is possible. This special 

case was treated in detail in Chapter 5. Here, the more 

general problem of shaping the baseband pulse with an arbi-

trary modulation index, n, is treated. 

It is shown that the spectrum of an angle modulated 

signal can be approximated by the power spectrum of a time-

limited waveform. The time-limited waveform is then expressed 

as a series of spheroidal wave functions and the waveform is 

shaped to minimize the out-of-band power. The corresponaing 

baseband pulse is obtained from the time-limited waveform. 

Examples are calculated for a range of time-bandwidth products 

and several modulation indices. 

6.1 	The Spectrum of Digital Angle Modulated Signal  

The signal under consideration can be written as 

x(t) = cos(2uf
c t + 	eo (u)du) 

-CO 

= Re[v(t) exp(j2Trf c t)] 	(6.1) 

where the integral of  e 0 (t) may contain step changes, and the 

phasor v(t) is given by 

çt 

v(t) = exp(j 	e 0 (u)du) 	 (6.2) 

_00 

The spectrum of the modulated signal', x(t), can be obtained 

using Rowe and Prabhu's method [33], details of which wPre 
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discussed in Section 2.2. In their notation, the baseband 

signal, e o (t), is expressed as the inner product of a random 

vector ak . and a vector of modulating waveforms h(t) . Thus 

00 

e 0 (t) = 	ak  • 	h(t-kT)] 	(6.3) 

The vectors ak and h(t) are each of dimension two for binary 

modulation. The analysis will be restricted to modulations 

with antipodal baseband pulses. Therefore, 

= [a 	a k
(1) 	(2) 

a 	 ] k. 

and 

(6.4) 

h(t) 	= 	[h(t) 	-h(t)] 	 (6.5) 

The baseband pulse, h(t), is allowed to extend over only 

one bit interval. Hence 

h(t) = 0 for t < 0 and t > T 	(6.6) 

The modulated signal, x(t), can be expressed also as 

CO 

x(t) = cos(2nf
c
t + 	. ak • g(t-kT)]) 	(6.7) 

where 
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g(t) 	= [g(t) 	-g(t)] 

and 

g(t) 	= 	h(u)du 

—co 

For a modulation index, n, the phasor v(t) goes through a 

total phase shift of + n radians over each bit interval. Thus 

g(t) = 0 

= 11  

for t < 0 

for t > T 
(6.8) 

The function g(t) will be allowed step changes. Using Rowe 

and Prabhu's method, the spectral density of the phasor, v(t), 

can be written as 

V t.)  = 
1 

, R(f) ,  • 	(A+A
t

) .  R
*
(f)] (6.9) 

where 

1 = 2- wd 
+ 

exp(-j2nfT) w] ' q( 14) • wA 
u 

1 - exp(j2ufT) 	q(UK )] 

and 

R(f)] = I exp(-j2nft) r(t)]dt 

...- CO 

The functions appearing in (6.9) were defined in Section 2.2. 

If we assume the binary input symbols to be independent 

and equiprobable 



and 
.,n•nn 

(6.11) 
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LLJ 
w = [1/2 1/2 1 	 (6.10) 

1/2 	 0 

0 	1/2 

Since the baseband pulse extends over only one bit period, 

K  =1  

L
K 

= 0 

(6.12) 

and 

U
K 
= T ) 

The vector q(t) is given by 

q(t) = [exp(jg(t)) 	exp(-jg(t))] 

W
d 
 = 

0 < t  <T  

= 0 	 elsewhere 

Thus 

(6.13) 

q(U ) = q(T) = [ein  
. 	K. 

e]  ( 6.14) 

The The matrix A in equation (6.9) can now be written as 



0 

A+At  = 1  
2 0 	1 

1 

2z14 

e - i n z z
1 	2 

ez 
2 	

z
3 

( 6. 16) 
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0 

Loi  e-j2ufT 

4(1-e-  j 2ufTcos n) 

re i n 

e n 	e-in 
(6.15) 

and hence 

where 

z
1 
= cos(2nfT-n)-cos

2
n 

z 2 = cos(2ufT)-cos n 

cos(2nfT+n)-cos 2 n 

= 1 — 2cos(2ufT) • COS fl + cos 2 fl 

, 

The vector R(f) in equation (6.9) is given by 

R(f) = [R(f) 	R(-C)] 	 (6.17) 

where 

Z14  

R(f) e
jg(t) 

e
-j2nft 

dt 
0 

(6.18) 

because 

r(t) = . q(t) . 	 0,.19) 



Pv(f) 	
7"17' 

{R(f)P
* (f)(1+zi/z4) (6.20) 
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Substituting the above expressions for R(f) and (A+A ) in 

equation (6.9), Pv
(f) reduces to 

+ R(-f)R(-f) (1+z 3 /z4) 

)(e - i nR(f)R(-f)+e in R * (f)R * (-f))} 

To simplify the analysis, only the angle modulated signals 

with symmetric phase variation are considered. That is 

(6.21) h(7 + 	= h(7 - 

or equivalently 

g (I + 	-= 	_v(T - 2 	2 	2 	2 
(6. 2 2) 

With the above assumption, R(f) in equation (6.18) can be 

written as 

R(f) = e-j(nfT - 11) [R 	Ro(f)] (6.23) 

where 
T/2 

J. 
 -T/2 

Re (f) = cos z(t) e -j2uft dt  
(6.24) 
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(6.25) 

T/2 

Ro
(f) 	j 	j sin z(t) e -j2uft  .dt 

-T/2 

and 

z(t) = g(t + 	- 	 (6.26) 

The functions R e (f) and R o (f) are even and odd in f respec-

-tively. If the expression (6.23) for R(f) is substituted in 

expression (6.20) for Pv (f), P(f) reduces to 

Pv (f) = 	(Re (f)Xe (f) + R0 (f)X0 (f)) 2 	(6.27) 

where 

Xe (f) =. 2 sin  •  

and 

(6.28) 

X0 (f) = 2 cos T2.-1  sin(nfT)/ 	(6.29) 

6.2 	The Spectrum of Equivalent Time-Limited Waveform 

The power spectral density of an angle modulated sig-

nal, given by equation (6.27), can be approximated by the power 

spectrum of a time-limited waveform. The functions X e (f) and 

X(f) appearing in equation (6.27) are shown in Figures 6.1 nnd 

6.2 for various modulation indices. The functions  Xe(f)  and 

X(f) are even and odd functions in f respectively. They are 
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p(t) = 1 if  
— 2 

0 elsewhere 

also periodic with a period 2/T. Therefore, they can be 

expressed in terms of cosine and sine series as 
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X e (f) = 	ï A2n-1 
cos{ufT(2n-1)} 

n=1 

and 

( 6.30) 

CO 

X0 (f) = 	B
2n-1 

sin {ufT(2n-1)} 	(6.31) 
n=1 

Thus, the power spectral density, Pv (f), can be written as 

1 
P y (f) = 	î A

2n-1
c0s(wfT(2n-1))R e (f) 

n=1 

CO co 

00 
+ 	B

2n-1
sin(ufT(2n-1))R o (f)} 

n=1 
(6.32) 

It can be seen from (6.24) that R e (f) in the above expression 

is the Fourier transform of cos z(t), strictly time-limitpd 

T T 1  to the interval L- 

R e (f) . =  F {cos z(t) • p(01 

where 
( 6. '3 3) 

and 



6(t _T(2n-1) 
2 

(6.34) 

1 
cos{nfT(2n-1)} = F 2 
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In the above equations, Ffx(01 denotes the Fourier transform 

of x(t) and CO is the Dirac delta function. Convolving the 

time-domain waveforms in (6.33) and (6.34), we get 

Re (f) • cosfrfT(2n-1)1 

1 T(2n-1) 	TU)n-1)N,  = 	[cos z(t + 	) • p(t + 	- 2  	jj 
2  

q  
+ cos z(t-T(2n-1) ) 	

T(2n-l)  
• P(t 	(6.35) 

	

2 	2 	
'} 

 

Similarly 

R
o
(f) • sin{nfT(2n-1) } 

l r 	 T(2n-1) 
= F 	z(t + T(2n-1)  ) • p(t + 

2 	 2 

- sin z(t 	T(2n-1) ) • p(t 	T(2n-1)  )7} 	(6.36) 2 	2 

Substituting the expressions (6.35) and (6.36) in (6.32), 

Pv (f) can be written in terms of the Fourier transform of a 

waveform c(t). Thus 



P(f) = 	[F{c(t)}] 2  
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(6.37) 

} 	 (6.39) 

= 0 	elsewhere 

dN (t) = c(t) 
if Itl < NT 

where 

c(t) - 	î 	
T(2n-1)  

{A 2n-1
cos z(t + 	) 

- 2 

	

	 2 
n=1 

+ 
B2n-1

sin  z(t + 
T(2n-1))1 

 p(t + 
T(2n-1) 

  ) 2 	2 

T(2n-1)
) + 	{A2n-1

cos z(t 	2 
n=1 

T(2n-l)m.  p(t 	T(2n-1) ) 	(6 . 38) - B2n-1
sin z(t 	2 	' 	2 

Note that c(t) convolved with itself gives the envelope of the 

autocorrelation function of the modulated signal x(t). We now 

introduce a function dN 	' 
(t) strictly time-limited to the 

interval [-NT,NT], given by 

00 w 

The coefficients A 2n-1 
and B2n-1 in (6.38) decrease 

with n as shown in Table 6.1. For 0.5u < n < 0.8n, A2n-1 _ _ 

and B 2n-1 
are essentially zero for n > N, where N can be seen 

from Table 6.1. Therefore, c(t) can be approximated by dN(t). 



A
2n-1 

coefficients 	 - 	 B
2n-1 

coefficients 

n 

B 	B 	 B 	B A
1 
	A 3 	A 5 

	
A

9 	
B

1 	3 	5 	 7 	9 

	

0.5n 	2.0 	0.0 	0.0 	0.0 	0.0 	. 2.0 	0.0 	0.0 	0.0 	0.0 

	

0.6 71 	1.979 	-0.282 	0.0634 	-0.0161 	0.00431 	1.971 	-0.329 	0.0781 	-0.0204 	0.0055'4 

	

0.7 71 	1.929 	-0.477 	0.196 	-0.0926 	0.0465 	1.864 	-0.638 	0.295 	-0.148 	0.077 4  

	

0.8 71 	1.870 	-0.576 	0.310 	-0.194 	0.131 	1.633 	-0.838 	0.550 	-0.386 	0.280 

Table 6.1 Coefficients 
A2n-1 

and 
 B2n-1 

for n = 0.5 71 ,0.6 71 ,0.7 71  and 0.8n 
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In other words, the spectrum of an angle modulated signal 

can be approximated by the spectrum of a strictly time-

limited waveform d
N
(t). 

6.3 	Optimum Baseband Pulse Shaping  

The properties of spheroidal wave functions used in 

the following optimization are summarized in Appendix C. Let 

the bandwidth, within which the fraction of power of the 

modulated signal is to be maximized, be W Hz. Since the 

spheroidal wave functions, with the parameter c = 2nWNT, 

form a complete set in the class of square integrable 

functions strictly time-limited to the interval [-NT,NT], 

d
N
(0 can be written as 

oo 

d
N
(t) = î a

2m  2m
(0 

 m=0 
for 	Iti < NT 	(6.40) 

Spheroidal wave functions of only even order are included in 

the above summation because d
N
(0 is an even function. From 

the orthogonal properties of the spheroidal wave functions, it 

follows that 

NT 

a 2m A
2m 

= 2 j d
N
(t)tp

2m
(t)dt 

0 

nT 

= 	(A 
2n- 

icos 
z(y - T(2n-1)  

) 
n=1 (n-1)T 

T(2n-1)  
- 

B2n-1 
sin z(y - 2 	)11P2m(Y)dY 



111 
T/2 

1\ 	j {A
2n-1

cos z(x) 
n=1 

-T/2 

T(2n-1)  - B 2n- 1 sin z(x)}tp 2m (x + 	2 	)dx 

T/2 

J 
	{cos z(x) 	î A2n-111)2m (x + 	2 	) n=1 -T/2 

- sin z(x) 	B(x + T(2n-1) )}dx 
2n-1 2m 	2 n=1 - 

(6. 41) 

The function, z(x), is an odd function of x. Therefore 

T/2 

a
2m

X 2m 
= 	{cos z(x)1i)

2m
(x) + sin z(x)17) 2m (x)} dx 0 

(6.42) 

where 

2m 	n / 1  A2n-142m (-x 	
T(2n-1) 

 ) 2 = 

T(2n-1)  j) 	(x 	2 	)] (6.43) 

and 



can n' 

00 

P' = in m=0 

;2m(x) 
	B21 
	y 	T(2n-1)  

2n-1 2m -- ' 	2 	' n=1 
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1P2m(x + T(2_1)  
2 	

)] 

The total energy of dm (t) is normalized such that 

co 

J 
 dN

2
( t)dt = mî 0 

a
2m

2
2m = 1 = 

—œ 

Let P' be the fraction of power in a bandwidth of W Hz in 

(6.4 )4 ) 

(6.45) 

of the waveform
. dN (t), and let Pout 

out-of-band power. 

Then 

P' = 	2 	2 î 2 	X in m=0  2m 2m 

be the fraction of 

(6.46) 

and the fraction of out-of-band power is 

P' 	- P' out 	in (6.47) 

The fraction of power within the channel bandwidth, 

now be written as a functional of z(t) 

{ T/2 

J 	(cosz(x)i) 2m (x) + sinz(x)li 2m (x))dx 

(6.48) 

Let z(x) be the function that maximizes F in . Then lf 

z(x) = z(x) + EA(x) 

0 0 
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(6.49) 
DP ' lim 	in  

c-4-0 	De 	- 
A(x) 

lim DP' 	oo 
e.4-0 	in 	r L 2a 2m À 2m De m=0  

T/2 

J [sin z(x) • 1-p 2m (x) 

0 

- cos 7Z- (x )• ti) 2m (x) ]A(x)d x} (6. 50) 

Therefore, the optimum -7_7(0 is given by 

00 

tan z(t) • î a2mX2mIT)2m(t  ) 
m=0 

= 	a X 	( t ) 
2m 2m 2m 

m=0 
0 < t < T/2 

(6.51) 

The coefficients a
2m 

in the above equation are functions of 

z(t), given by equation (6.42) with z(t) replaced by z(t). As 

before it is not possible to find a closed form expression for 

Z- (t), but equation (6.51) can be solved iteratively. 

When the modulation index, 11, is equal to 0.5n, the 

modulated signal x(t) is an MSK-type signal and equation 

(6.51) reduces to equation (5.28) of Chapter 5. 



11 4 

6.4 	Numerical Results  

The optimum pulse shapes are obtained by iteratively 

solving (6.51). The spheroidal wave functions required for 

computation were generated and normalized as explained in 

Section 5.3 of Chapter 5. To obtain numerical solutions, 

the infinite series in (6.51) has to be truncated. An 

estimate on the truncation error can be obtained as follows. 

The waveform d
N 	

is normalized in equation (6.45) 

to have unit energy. Therefore 

2 	2 
1 	a2m2m = (1 - î a 2m X 2m )  

m=(M+1) 	m=0 
(6.52) 

The eigenvalues, À 2m , are real positive numbers and are 

ordered in magnitude, that is, À o  > À 2  > X 4 	. . . There- 

fore 

a 23 x 2 < X 	(1 - 	a
,) 

À î 
m=(M+1) -m em 	2(M+1) M=0 2m 2m

) 
 (6.53 ) 

Let the quantity to be maximized, P n , given by equation (6.46), 

be truncated by 

P'  = 	a2 	
x2 

in 	2m 	2m mm0 
(6.54) 

Then, the error due to truncation can be written as 

Error = 	
a2 	M 2  

m=(M+1) 2m 2m — 2(M+1)(1 
	Î a - 	) 

m=0 2m 2m 
(6.55) 



or more simply 

Error 2(M+1) (6.56) 

' Co 

 

Co 

2 
dN (t)dt 

NT 

c
2
(t)dt 

(6. 5 7) 

1 15 

The eigenvalue, X 2m , is the fraction of energy of p 2m (t) 

within a bandwidth of W Hz. It is pointed out by Slepian and 

Pollak [59, p.45] that once 2m exceeds (2c/'n), A 2m  fall cff to 

•zero rapidly. In the computation 6 terms were included. The 

value of A 12 is listed for a range of values of c in Table 

6.2. The eigenvalue,À
12 , 

is a pessimistic bound on the 

truncation error, whereas a more accurate bound is given by 

(6.55). Table 6.2 shows that as the value of the parameter, 

c, increases more terms have to be included in the trunca-

tion (6.54) to maintain a small error. 

Another approximation involved in the analysis is 

approximating c(t) by d N (t). A measure of goodness of this 

approximation can be obtained from the fractional energy of 

c(t) in the interval [-NT,NT]. 

For n = 0.5n, 0.6n, 0.7n and 0.8n, NT was 
 greater than the 

P   

value shown in Table 6.3 for all the values of c from 1.0 to 

20.0. 

When n = 0.5n, c(t) is strictly time-limited to the 

interval [-T,T] and therefore identical results were obtained 



c 	1 	5 	10 	12 	14 	16 	18 	20 

5.8x10
-1 

1.5x10
-1 

1.8x10 	7.3x10 	1.5x10
-2 

2.1x10
-7 

6.9x10
-15 

X
12 	

2.3x10
-32 

Table 6.2 	X
12 

for a Range of Values of the Parameter c 



P 	> NT — 
n 

N = 1 	N=2 	N = 3 	N = 4 

	

0.5n 	1.000 	1.000 	1.000 	1.000 

	

0.6n 	0.977 	0.997 	0.998 	0.998 

	

0.7u 	0.920 	0.982 	0.995 	0.997 

	

0.8u 	0.850 	0.930 	0.963 	0.979 

Table 6.3 P
UT 

for n = 0.5n,0.6u,0.7n and 0.8u, 

and N = 1,2,3 and 4 



C 	= — eq N 
(6.58) 
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for N = 1, 2, 3 and 4. The final results obtained were iden-

tical with the results for MSK-type signals in Chapter 5, 

Figure 5.3. 

The optimum Pt 
ut 
 was computed for ri = 0.6u, 0.7u and o 

0.8u, and the results are shown in Figures 6.3, 6.4 and 6.5 

respectively. Computations were carried out for N = 1, 2, 3 

and 4 •  As n increases, the waveform c(t) spreads out over a 

larger interval and it becomes necessary to consider d
N (t) for 

larger values of N. 

The optimum pulse shape i(t) can be computed for 

a given value of c, N and n. Let us define a parameter c eq 

A baseband pulse optimized for a given value of c and N, 

maximizes the fractional energy of the modulated signal 

in a bandwidth of 2W = c eq
/(uT)• The out-of-band power 

variation for the signals modulated by the baseband pulse 

optimized for N=2 and 11=0.7u are shown in Figure 6.5a for 

various values of c. The modulated signal optimized for 

a particular value of c, attains the least possible Pout  

for a channel bandwidth of 2W = c/(uNT). Therefore, a 

lower bound on Pout 
can be obtained by joining the out-of-

band powers of the signals at the time-bandwidth products 

for which they were optimized. 

One of the approximations made in the optimization 

is approximating c(t) by d N (t). Therefore, an improved 
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Figure 6.4 Variation of Optimum Pout  for 

n = 0.7n 
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achievable lower bound on Pout can be expected as the 

baseband pulse is optimized for higher values of N. The 

lower bounds on 'out  for N = 1,2,3, and 4 are shown in 

Figure 6.5b for n = 0.7u. It can be seen from this figure 

that N = 2 provides a sufficiently accurate bound for 

time-bandwidth products up to 2.5. 

The lower bounds on P' 	and Pout  for n = 0.6r, out 

0.7n and 0.8u are shown in Figures 6.6, 6.7 and 6.8 for 

N = 4. For n  = 0.6n, P 4T 

(6.53)) is almost unity and therefore, the signals 

modulated by optimum pulse shapes attain the optimum P' out 

at the time-bandwidth products for which they are optimized. 

For n = 0.7u and 0.8u, the actual fraction of out-of-band 

power, Pout' of the signals modulated by 
the optimum pulses 

is different from the optimized PI  ut'  This discrepancy o 

is due to the approximation made in the optimization. If 

N is taken large enough such that dN (t) closely approxi-

mates c(t), the discrepancy can be resolved. 

The lower bounds obtained on Pout for n = 0.5n, 

0.6n, 0.7n and 0.8n are compared in Figure 6.8a. As n 

approaches n, a sharp drop in Pout  can be expected at a 

time-bandwidth product of unity due to the discrete line 

in the spectrum that occurs at 2WT = 1. 

(P  NT 
is defined in equation 
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The Optimum phase trajectories, g(t), were examined 

for several modulation indices. The results are shown in 

Figure 6.9 for n = 0.7u. When the parameter, c, tends to•

zero, the phase makes an abrupt jump of n/2 radians. As c 

increases the magnitude of the jump decreases and the phase 

changes gradually. 

6.5 	Summary  

A technique for optimizing the baseband pulse shapes 

in angle modulated signals to minimize the fraction of out-of-

band  power  was presented. The results obtained for angle 

modulated signals agree with the results for MSK-type signals, 

when n = 0.5n. The optimum pulse shapes and the fraction of 

out-of-band power were computed for modulation indices 

n = 0.6n, 0.7n and 0.8n and the results are given for a range 

of time-bandwidth products. The phase trajectory for optimum 

pulse shaping is given for n = 0.7 71 . When c tends to zero, the 

phase makes an abrupt jump of n/2 radians. As c increases the 

magnitude of the jump decreases and the phase has a gradual 

variation. 

The method of approximating the power spectrum of the 

modulated signal by the power spectrum of a time-limited wave-

form, and then optimizing the time-limited waveform to 

minimize the fraction of out-of-band power appears to be a 

useful technique. This method may prove useful in the optimi-

zation of other modulations. 
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Chapter 7 

CONCLUSIONS 

In this report band occupancy of angle modulated sig-

nals has been investigated for a range of baseband pulse 

shapes. The error performance of these modulations has been 

examined as well. The results on the band occupancy and the 

error performance are summarized and combined in Section 7.1. 

Modulation schemes which are spectrally efficient with only 

a small penalty in SNR are indicated. The new developments 

in this report are listed in Section 7.2. Finally, the scope 

for further work is pointed out in Section 7.3. 

7.1 	Performance of Several Angle  Modulated  Signals  

The bandwidth efficiencies computed for several types 

of modulations are summarized in Table 7.1. The correlative 

encoded FM signals are listed according to their equivalent 

baseband pulse shapes b(t), given by (2.18). The bandwidth 

efficiency is defined as the ratio of data rate to channP1 

bandwidth in units of bits/sec/Hz. In this definition, the 

channel bandwidth is the span of frequencies which contains 

a specified fraction, P 	of the signal power. The band- 

width efficiencies for P in = 0.99 and P in = 0.999 are given 

in Table 7.1, 
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Bandwidth Efficiency bits/sec/Hz 	 Error Performance 

	

Based on 	Based on 	Based on 	 Minimum 	 ,2 

	

the first 	99% of 	 99.9% of 	 Euclidean 

	

Type of Modulation 	 null in 	Signal 	 Signal 	 Distance 	
10 log 

ci!jilK) 
the 	 Power 	 Power 

	

Spectrum 	
dfnin  

1 	PSK 	 0.50 	0.05 	 0.005 	 2.0 	 0.0 

2 	QPSK 	 1.00 	0.10 	 0.01 	 2.0 	 0.0 

01(QPSK 	 1.00 	0.10 	 0.01 	 2.0 	 0.0 

4 	MSK 	(same as Fig.3.2a 	n - 0.5e) 	 0.67 	0.85 	 0.36 	 2.0 	 0.0 

5 	SFSK (same as Fig. 	3.2c,n = 0.5e) 	 0.56 	0.45 	 0.34 	 2.0 	 0.0 

6 	Optimum MSK-type SiFnal 	 -- 	0.89 	 0.47 	 2.0 	 0.0 

7 	FSK (same as F1g.3.2a)n . 0.7e 	-- 	0.56 	 0.32 	 2.4 	 0.79 

8 	Optimum possible, 	n = 0.7e 	-- 	0.60 	 -- 	-- 	-- 

Correlative Encoded Digital FM 

9 	Figure 3.2b, 	n . 0.5e 	-- 	1.09 	 0.56 	 1.73 	 -0.63 

10 	 " 	n =  0.7e 	 -- 	0.77 	 0.45 	 2.00 	 0.0 

11 	Figure 3.2e, 	n . 0.5e 	-- 	1.25 	 0.74 	 1.19 	 - 2.25 

12 	. 	" 	n = 0.7= 	 -- 	1.00 	 0.56 	 2.16 	 0.33 

13 	Figure 3.2e, 	n = 0.5= 	 -- 	0.63 	 0.36 	 -- 	 -- 

14 	 " 	n = 0.7e 	 -- 	0.40 	 0.33 	 -- 	-- 

15 	Figure 3.2f, 	n = 0.5= 	 -- 	0.68 	 0.38 	 -- 	-- 

16 	n 	" 	n = 0.7. 	 __ 	0.50 	 0.34 	 -- 	-- 

17 	Figure 3.2g, 	n =  0.5e 	-- 	0.91 	 3.61 	 -- 	-- 

18 	 " 	n =  0.7e 	 -- 	0.83 	 0.50 	 -- 	-- 

19 	Figure 3.26 , 	n  . 0.5. 	 -- 	1.16 	 0.71 	 -- 	-- 

20 	. 	" 	n = 0.7e 	 -- 	0.91 	 0.63 	 -- 	-- 

21 	Figure 3.21, 	n  . 0.5, 	 1.00 	 0.83 	 1.76 	-0.56 

22 	. 	" 	n . 0.7e 	 -- 	0.94 	 0.67 	 2.73 	 1.35 

23 	FRS.(1+2D+D 2 )/4, n =0.5n 	 -- 	1.25 	 0.79 	 1.55 	-1.11 
with Rectangular Shaping 

Table 7.1 Performance of Several Digital Angle Modulated 
Signals 
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For P 	0.99, the bandwidth efficiency of con- 

ventional MSK is only 5% less than the optimum possible 

with MSK-type signals. This was pointed out by Prabhu [18]. 

In general, correlative encoded digital FM are spectrally 

more efficient than MSK. For n = 0.5u and in  = 0.99, 

the baseband pulse shape in Figure  3.2e,  which corres-

ponds to PRS polynomial (1+D+D 2 )/3 with rectangular pulse 

shaping, is spectrally 47% more efficient than MSK. 

The bandwidth efficiencies of PSK and QPSK are also 

given in Table 7.1 for the sake of comparison. PSK, QPSK 

and OKQPSK have power spectra of the form {sin(af)/(af)} 2 . 

-2 Since the spectra falls off only as f 2 ,  their bandwidth 

efficiencies for P in = 0.99 and Pin  = 0.999 are very small. 

Very often in the literature, the channel bandwidth is 

taken as the bandwidth required to transmit the main lobe 

of the spectra. The bandwidth efficiencies based on the 

first null in the spectra are given in Table 7.1 for PSK, 

QPSK, OKQPSK, MSK and SFSK. 

For high SNR a tight upper bound on the error per-

formance of correlative encoded FM can be obtained from 

the minimum Euclidean distance [57]. The minimum Euclidean 

distance, dmin , is listed in Table 7.1 for the modulations 

that are spectrally efficient. The penalty in SNR compared 

{d 2 /42 
to MSK, 10 log 	(MSK)} is also given. The min min 

following observations can be made from Table 7.1. In the 

following comments, the channel bandwidth refers to the 

bandwidth required to transmit 99% of the signal power. 



130 

i) 	The bandwidth efficiency of MSK is 0.85 bits/sec/Hz 

and is almost optimum for MSK-  type  sirTals. 

il) 	Correlative encoded FM with the PRS encoding poly- 

nomial (1+D)/2 and rectangular pulse shaping (duobinary 

FSK, Figure 3.2h) with n= 0 ; 5Tris spectrally 28% more 

efficient than MSK at the expense of 0.6 dB in SNR. 

iii) Correlative encoded digital FM with the polynomial 

(1+D+D
2
)/3 and rectangular pulse shaping (Figure 3.2c) 

with n= 0.5uis spectrally 47% more efficient than MSK 

with a penalty in SNR of 2.3 dB. 

iv) Correlative encoded digital FM with the polynomial 

(1+2D+D
2
)/4 and rectangular pulse shaping with n = 0.57 

is spectrally 47% more efficient than MSK at an expense 

of 1.1 dB in SNR. 

v) Digital FM with raised-cosine pulse shaping extending 

over 3 bit intervals (Figure 3.2i) with n= 0.7Tr is spect-

rally 10% more efficient than MSK with an advantage of 

1.4 dB in SNR. 

The choice of modulation for a particular application 

can be a compromise between the spectral efficiency and 

the SNR required to attain desirable error performance. 

Also complexity of the receiver may be a consideration. it 

was pointed out in Chapter 4 that Viterbi algorithm can be 

used to implement a detector for correlative encoded 

digital FM. The detectors for the encoding polynomials 1, 

(1+D)/2, (1+D+D
2
)/3 and (1+2D+D

2
)/4 require 2, 3, 4 and 5 

correlators respectively, and attendant software. At low 
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bit rates implementation would seem to pose no problem. 

However, at high bit rates the receiver complexity would 

be a limiting factor. 

7.2 	Summary of New Results Presented  

This study was directed towards seeking spectrally 

efficient constant envelope modulation schemes. The con-

tributions made can be summarized as follows: 

i) An analytical method of obtaining the spectrum of 

a correlative encoded digital FM signal was developed. 

This technique was applied to obtain the spectra for various 

encoding polynomials with rectangular and raised-cosine 

pulse shaping. The 99% and 99.9% bandwidths were tabulated. 

The method is applicable also to digital FM by multilevel 

modulating signals. As an example, results are given for 

a quaternary modulating signal with duobinary encoding. 

ii) It was shown that reciprocal encoding polynomials 

yield identical spectra. 

iii) An exhaustive investigation of the spectrum for 

a second order encoding polynomial with rectangular pulse 

shaping and modulation index n. 0.5nwas carried out. The 

encoding coefficients for which the spectrum is compact 

were given. 

iv) Optimum baseband pulse shapes were obtained for 

MSK-type signals to minimize the fraction of out-of-band 

power for a given bandwidth. Results are presented for a 

range of channel bandwidths of practical interest. The 

optimization yields pulse shapes which attain a lower 
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fraction of out-of-band power than the previously proposed 

schemes, such as MSK, OKQPSK and SFSK. The improvement is 

not dramatic. However, the lower bound presented provides 

a useful indication of what is achievable. 

v) A technique for designing the baseband pulse shapes 

in angle modulated signals that minimize the fraction of 

out-of-band power was presented. Results are given for 

modulation indices n = 0.5n, 0.6u, 0.7u and 0.8n. 

vi) It is known that an upper bound on the error per- 

formance of correlative encoded digital FM cari  be obtained 

from the minimum Euclidean distance. It was demonstrated 

that reciprocal encoding polynomials have identical 

minimum Euclidean distance. 

vii) An exhaustive investigation of the minimum Euclidean 

distance for a second order encoding polynomial with 

rectangular pulse shaping and n = 0.51T was carried out. 

viii) The results indicate that second order encoding 

polynomials can provide up to 47% more spectral efficiency 

than MSK at an expense of 1.1 dB in SNR. Correlative 

encoding FM modulations exist which are spectrally more 

efficient and also possess better error performance capability 

than MSK. 

7.3 	Suggestions for Further Investigation  

It is evident from this study that correlative 

encoded digital FM is superior to conventional FSK in 

terms of spectral conservation. A correlative encoded FM 



is completely specified by its equivalent baseband pulse, 

b(t), given by equation (2.18). When the baseband pulse 

extends over only one bit interval, pulse shapes were 

derived that minimize the fraction of out-of-band power. 

It may be possible to extend this technique to design the 

baseband pulse shapes that extend over more than one bit 

period. If this optimization is carried out it will 

provide an useful indication of the maximum achievable 

spectral efficiency by correlative encoding. 

It is known that an upper bound on the error per-

formance of correlative encoded digital FM can be obtained 

from the minimum Euclidean distance. It was pointed out 

in Chapter 4 that an initial error in the detector may 

well result in a run of errors. In that case, the bound 

obtained would be a bound on the probability of run of 

errors. However, the probability of run of errors is a 

good estimate of the probability of bit error if the aver-

age length of run of errors is small. An investigation of 

the nature of error propagation should be carried out to 

verify the bounds obtained. This could be done by 

simulation. 

This study shows that spectral efficiency can be 

increased considerably at a small penalty in SNR, by 

correlatively encoding the baseband signal in digital FM. 

Also correlative encoded digital FM modulations exist that 

are spectrally more efficient than MSK and have a better 

error performance. However, this error performance can 
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be realized only if good detectors for these modulations can 

be implemented economically. It was pointed out that 

detectors for correlative encoded digital FM can be 

implemented using Viterbi algorithm. Further investigation 

is warranted. The possibility of implementing receivers 

which are economical and which give performance hopefully 

close to the optimum should be investigated. The problem 

of carrier synchronization and bit timing recovery should 

also be considered. 
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APPENDIX A 

EXPRESSIONS FOR THE VECTORS R(f) 

The power spectral density for a correlative encoded 

digital FM signal, given by equation (2.8) of Chapter 2, is 

in the form 

	

P
v
(f) = 1 	R(f) 	(A + At ) • R * (f)] 

	

T 	 (A.1) 

The vector R(f) in the above equation is determined by 

b(t) the equivalent baseband pulse shape after correlative 

encoding. The expressions for R(f) for the waveforms of 

Chapter 3 are given in this appendix. If the waveform 

extends over K bit intervals, the vector R(f) is of 

dimension D = 2 K • 
 The elements of the vector _R(f). can 

be written as 

R(f) 	= [R
1
(f) 	R

2
(f) 	. . . . R

D
(f)] (A.2) 

The expression for R(f) is given by equation (2.10) of 

Chapter 2. Since h
2
(0 = -h 1  (0, it follows that 

R
1
(f) = R

D+1-1
(-f) (A.3) 



1 R
1 
 (f) = 

R 2 (f) = 

x))exp(j(n - x/2)) 

- x)) 

(A.  5)  

2 (x/2)exp 

(A.6) 

Therefore, for each waveform In Figure 3.2 only R I M, 

= 1,2,3. . .( 2  - 1) are listed. The following notation 
2 

is used in the expressions. 

v(y) = sin(Y)/Y 

x = 2nfT 

Jn (y) = Bessel function of the first kind of order n 

1. Figure 3.2a  

R (f) = v( 1 (n 	x))exp( i(n - x)) 2 	2 

2. Figure 3.2b  

1112 

(A. 4) 

3. 	Figure 3.2c 

R i (f) = v( - (1-1 - x))exp((3n - x)) 

R 2 (f) = v(-1à--( Ti - x))exp(j2-( 7i1  - x)) 

1 n R
3
(f) = 	- x))exp( 1-(n - x)) 2 

R (f) = v( 1 ( 11 x))exn( 1 ( 11  - x)) 
- 2 3 
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4. 	Figure 3.2d  
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5. 	Figure 3.2e  

	

R1 (f)  = exp(j(n - x/2))[- J (-21 )v( 1(n 
o 2T 	
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6. 	Figure 3.2f 
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Figure 3.2g  
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8. 	Figure 3.2h 

R (f) = 	- x))exP(7(3n - x)) 1 

R 2 (f) = exp(4 5-n - x)) 2 2  J (-21 )v( 1(n - x)) 0 2n 	2 2 

+ 	J, ( 2--)(-1) n {v(Z + rn - 	+  
n=1 ' n  

jj2n-1 ( er 
n=1 	

)(-1)n{v0- 	
(2-1)  TT_ )2._c_)  

 4 

n  + v 	- (2n-1)  2 	n - .?à(-)} 

R
3
(f) = v(x/2)exp( 11-(n - x)) 2 

00 



00 

+ 	J (2--)(-1) n{v(il - un + 
2n 2n 	4  

n=1 
+ v(f11- + un + 

2un  
3 

1 47 

r- 	ri 	1 ri 

	

R
4 (f) = exp(/(n - x)) o )v( ic, 	x)) 2 2 

J
2n-1

(
er7

)(-1)n{v(n + 
4 

n=1 

(2n-1)  Tr  

(2n-1)  
u 

2 	2 

(A.11) 

9. 	Figure 3.2 1  
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10. 	Second Order Encoding Polynomial with Rectangular 
Pulse Shaping  

The expressions for the elements of the vector R(f) 

1 	1 	1\ for an encoding PRS polynomial (l+k 1 D+k 2D
2 
 )/( 1 +1k 1 1 4- 1k21) 

with rectangular pulse shaping are given in this section. 

They are referred to in Section 2.5 of Chapter 2. 

(f) 	(lf 	
4 5+3k1
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APPENDIX B 

EQUIVALENT ENCODING PRS POLYNOMIALS 

It is shown in this appendix that reciprocal encoding 

11 	\- polynomials - 	k. D
i 

and 	k
m-i 

D i  yield identical 
C i=0  i=0 

spectra and minimum Euclidean distances when the shaping pulse, 

s(t), in Figure 2.1 is symmetrical. As mentioned in Chapter 2, 

a correlative encoding is completely specified by its equiva-

lent baseband pulse, b(t), given by (2.18). Let the modu-

lated signal, x(t), and the equivalent baseband pulse, b(t), 

1 m  
be denoted by x i (t) and  b 1 (t) for the polynomial 	ki Di 

i=0 
and by x 2 (t) and b 2 (t) for the reciprocal polynomial 

1 km-i Di . Then i=0 

00 

X (t) = cos {27rf 	+ a
k
b l

(u-kT)du} 
c
t 

1 	• k=-oe 
-00 

(B.1) 

where 

1 b
1 	

= 	ki s(t-iT) i=0 

where 
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1 
b 2 (0 = 	L k

m-i 
s(t-iT) 

i=0 

The shaping pulse, s(t), in the above equations extends over 

the interval [0,qT] and is assumed to be symmetrical. 

s(t) = s(-t + qT) 	 (B.3) 

Thus, b 2 (t) is a time reversal of  b 1 (t) but for a time shift 

b 2 (0 = b 1 (-t + (m+q)T) 	 (B.4) 

Therefore, x 2 (t) can be written as 

t oo  

x 2 (t) = cosf2nf c t + 	a
k
b
l
(-u + kT + (m+q)T)du) 

k=œ  

(B.5) 

If the carrier frequency, f c
, is large compared to the 

bit rate, the autocorrelation function for x i (t) can be written 

as [31] 

R
xl

(T) = <x 1 	x1 (t+T)> 

t+T 

7  < cos{27rf c
T + a

k
b
l (u-kT)du}› (B.6) 

1 

where the angle brackets denote the time average. If we assume 

the modulating signal to be ergodic we can replace the time 



average by an ensemble average. Then 

t+T 
co 

1 
R
x 

(T) = 	E[cos(2uf T 
2 

ti k)00 1 

15 2 

u-kT)dul] 	(B.7) 

where EC ] denotes the ensemble average. Similarly 

t+ T 

1 
R

x2

(T) = 7-7 E[cosf2uf T 	a
k
b
l
(-u+kT+(m+q)T)duli 

2 
t k=-co 

(B.8) 

After a change of variable in (B.8),  R 	can be written as 
2 

t+T co 
1 

R
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(T) = 	ECcosf2Trf
c 

+ 	a
-2,-(m+q)

b
1
(-u-SUP)du}) 
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b
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(u-kT)duli 2 

t
k=-00 

' 

(B.9) 

The random variables a
k 

are independent, identically distri-

buted binary random variables. Therefore, the statistical 

properties of R
x2

(T) remain unchanged if the a
-k-(m+q) are 

replaced by a k . The modulated signals  x 1 (t) and x 2 (t) are 
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cyclostationary processes. If the usual procedure or time- 

averaging over one bit period is carried out, R (T) is x ?  
independent  of t' in (B.9) and R (T) is independent of x_ 1 
t in (B.7) [62]. Thus, R

xl
( r) and R

x2
(T) are identical. This 

proves the claimed result on equivalent spectra. 

e 1b(u-iT)du = 2nn 	for t > MT 
o 	i=-.03 
f 
t 

(B.11) 

We next show that reciprocal encoding polynomials yield 

identical minimum Euclidean distances when the signal is 

observed over a long duration before the decision is made. 

The Euclidean distance, d
j,k 

between the signals s(t,l,A ) 

and s(t,-1,Ak ) was given by equation (4.21) 

(L+N)T t 
.2 	r 	; 

eb(u-iT)du}dt 	(B.10) 
i=_00 

The relationship between the data sequences of the signals 

s(t,l,A j ) and s(t,-1,Ak ) and the sequence Ek  = . . .0,0,e 0 , 

e 1 	. . is given by (4.20). Since, the distance does not 

depend on LT in (B.10), we will set LT to zero for convenience. 

Let the sequence Ek  = . . .0,0,e 0 ,e 1 ,. . . be such that 

LT 	LT 

where M and n are integers. If the above condition is satis-

fied the Euclidean distance, 
dj,k' 

in (B.10) does not increase 

for values of N greater than M. When the sequence Ek  satisfies 

(B.11), the phase paths of s(t,l,A ) and s(t,-1,Ak ) merge nt 

t = MT and the distance between them provides an upper bound 

on the minimum Euclidean distance, 
dmin. 

 From (B.11) it 



= 	e.B 
1 

i=0 
( B.1 3) 

= 	b(u)du 

_00 

(B.14) 

follows that 

15)4 

eb(u-iT) = 0 
i= —co 

for u > MT (B.12) 

The baseband pulse, b(t), extends over (m+q) bit intervals. 

Therefore, all the elements of the sequence Ek  = . . .0,0,e 0 ,e 

ee 	. . 	for i >  J  = {M-(111 4- q)} should be zero to 

satisfy (B.12). Therefore 

MT j  

2nn = 	e
i 
b(u-iT)du 

i=0 

MT 

= 	ei 	
b(u-iT)du 

i=0 	0 

0 

where 

B=  

(mi- c1)T 

b(u)du 

0 

Oa 

The equation (B.13) gives the condition for a phase merge. 



co 

b
1
(t)dt = 	b (t)dt = B 

2 
(B.15) 
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For example, the sequence E k  = . . .0,0,2,-2,0,0,. . . 

leads to a phase merge at t = (m+q+1)T with a corresponding 

finite Euclidean distance. Thus, dmin  is always finite, 

even if the observation interval is infinite. 

The argument for the claimed result is as follows. 

The phase paths of the two signals which decide dmin  must 

merge, otherwise the distance between the signals can be 

increased by extending the observation interval. Thus, when 

the observation interval is allowed to be arbitrarily long, 

the dmin is the smallest distance between all signals that 

have merging paths. It is shown that for every merging phase 

1 	11  path for the polynomial .d L k 4 D, there is a corresponding 
J  1 r phase merge for the reciprocal polynomial — L k 	D

i 
with 

C 	m-i 1=0 
identical distance. Therefore, reciprocal polynomials yield 

the same d
min' 

The equivalent baseband pulses for the reciprocal 

polynomials are given by b
1
(t) and b

2
(t). From (B.4) it can 

be seen that 

Let a sequence E
1 
be given by 

E 	. . .0,0 	e 	e 0 0 
1 = 
	e o e l e. • • j e 	9* • • ( B. 1 6) 

where 

B = 2nn 	 ( 6 .17) 
1=0 
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The sequence E
1 
 corresponds to a phase merge and the distance 

for the polynomial - L k D i 
is given by 1 r 

C 
i=0 

MT 2 	= MT - f 	cos{ j 	e.b (u-iT)du}dt 

0 	0 
1 

i=0 
(B. 18) 

where, M and J are related by 

J = M - (m+q) 	 (B.19) 

Now, consider another sequence E
2 
 given by 

(B.20) E 2 = . . .ej ,e,. .  

This sequence also satisfies (B.17) and hence corresponds to 

a phase merge. The Euclidean distance for this phase merge 

1 r 
for the reciprocal polynomial -d 	km-i Di is given by 

i=0 

MT 
d 2 k  = MT -J 	cos{ f 	eJ-i2 (u-iT)du}dt 	(B.21) 
j, 0 	0 	i=0 

After changes in variables i and t in the above expression, it 

can be written as 

MT 	MT-t 
2 	= MT - f cos { 1 	eb (u-JT+iT)du}dt 

0 	i=0 
0 	

. 
2 

(B.22) 

And also 



MT-t 

i i 0  e i b 2 (u-JT+iT)du 

0 
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MT 

= 2nn - f 	e b 2
(u-JT+iT)du 

J=0 MT-t 

(B.23) 

Therefore 

2 	
MT 	MT 

dj,k = MT - f cos eb2 (u-JT+iT)du}dt 	(B.24) 

0 	MT-t i=0  

Substituting b 2 (u) in terms of b / (u) as given by (B.4) and 

from (B.19), we get 

MT 	MT J 
d
2 	

= MT - f cos { f i e
i
b
1 (-u+MT-1T)du}dt j,k 

i=0 0 	MT-t 

MT 
= MT - f cos e i b l (u-iT)du}dt Of i=0 0 

(B.25) 

The above expression is identical to (8.18). This proves that 

1 for every phase merge E l  for the polynomial  
i=0 

there is a corresponding merge E 2  for the reciprocal  poly-

nomial 	L k 4  Di
, with identical Euclidean distance. 

i=0 



+00 

f f 2 (t)dt < co ( c. 1) 

APPENDIX C 

PROLATE SPHEROIDAL WAVE FUNCTIONS 

Slepian, Pollak and Landau [59,60] have made an 

extensive study of prolate spheroidal wave functions and their 

application to signal theory. Following is a summary of the 

properties of these functions relevant to this study, using 

their notation. 

Let L
2 he the class of real functions which are square 

integrable on the interval (-oe,œ) 

15 8 

Therefore, all the functions f(t) in L
2 
possess a Fourier 

transform whose inverse is the original function. 

+co 
dt  

F(t) = f f(t)e
-i2nft 

 (C.2) 

1- co 

f(t) = 	
F(f)e32uft df  

(C.3) 

..... CO 

Let B be the subclass of L
2 
consisting of those f(t), 

which are strictly bandlimited to W Hz. That is 
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F(f) = 0 	if 	Ifi> W 	(C.4) 

Let D be the subclass of L 2 consisting of those 
CO 

functions f(t), which are strictly time-limited to the 

T' interval 	T' 	], that is 

f(t) = 0 	if 	iti 	
T'

(C.5) 

For any T' > 0 and any W > 0, an infinite set of real 

functions 11) 0 (0, q) 1 (t), . . . and a set of real positive 

numbers
0 
 > A

l 
> X

2 
> . . . can be found with the following 

properties 

i) 	The Ip(t) are bandlimited to W Hz, are orthonormal 

over the interval (-c0,03) and are complete in B. 

i 	j 
III) (t)(t)dt = 	{ 1  

= 
(c.6) 

j = 0,1,2... 

T' 	T Y  
ii) 	In the interval 	7 ],  the 11).(t) are orthogonal 

and complete in D. 

T'/2 
0 	ioi 

f i (olp j (odt = 
{ 

-T'/2 	A
i 	

i = j 
(c.7) 

j = 0,1,2... 
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iii) 	The  i 1 (t) are known as spheroidal wave functions, and 

can be expressed as the solution to the integral 

equation 

T'/2 
1 	sin 2uld(t - s)  X 1 (t)= 	W (s)ds 

u(t - s) 	i 

-T'/2 

(C.8) 

i = 0,1,2 ... 

can also be expressed as the solution to the differential 

equation 

2 
2 d  	dW 

(1 - t ) 	2t 	 + (Xi 	c
2 
t
2 

dt 2 	dt 	
)i 1 (t)  = 0 

(c.9) 

with the initial conditions 

(t ) 

dW i (t) 

dt 

w i ( t) 

=0  

= constant 

= constant 
t=0 

=0 =0 

t=0 t=0 

if i is odd 

if i is even 

diyi (t) 

dt =0  
t=0 



that 

z(t) = tp i (t) I t (  < Tf 
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The parameters i 
 and X 1 in the above equations are functions 

of a parameter c, which is proportional to the time-bandwidth 

product c = nWT'. The spheroidal wave function, tj)(t), is an 

odd function of t if i is odd and even for i even. 

If we chose z(t), a member of the subspace D, such 

(C.10) 

= 0 	 elsewhere 

The fraction of energy of z(t) in a bandwidth of W Hz is X i . 

Since  À 0  > À
1 

> À
2 
> . • • it follows that within the subspace 

D, 11) 0 (0 has the largest fraction of energy in a bandwidth of 

W Hz. 
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