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ABSTRACT 

An open queueing network model is used to derive the 

distribution of end-to-end delay in a message-switched network. 

It is shown that under fixed routing, the end-to-end delay of 

messages belonging to a particular source-destination node pair 

is given by a sum of independent and exponentially distributed 

random variables. The generalization of this basic result to 

random routing and to messages belonging to a group of source 

destination pairs is also considered. Numerical examples based 

on a hypothetical network are presented. 

Keywords: Message-Switched 	Networks, 	Queueing Model, Delay 

Distribution 
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A. Int_Qmlie,tism  

A message-switched network <1> is a collection of switching 

nodes connected together by a set of communication channels. It 

provides a message service to the users at the various nodes. 

Messages in this network are routed from one node to another in a 

store-and-forward manner until they reach their destinations. A 

key performance measure of this network is the end-to-end delay 

which is the elapsed time from the arrival of a message at its 

source to the successful delivery of this message at its 

destination. In 1964, Kleinrock <1> developed an open queueing 

network model for message-switched networks and derived an 

expression for the mean end-to-end delay. This expression has 

been used extensively for performance analysis <3> and network 

design <3>. 

Kleinrock's result is a mean delay taken over all the 

messages delivered by the network; no distinction is made on the 

basis of source or destination. In this paper, we treat messages 

with the same source-destination pair as belonging to a 

particular message class, and derive the distribution of end-to-

end delay for each class. Both fixed and random routing are 

considered. Our result is therefore a detailed characterization 

of end-to-end delay in a message-switched network. It allows us 

to determine statistics such as the mean, variance, and 

90-percentile of end-to-end delay for a particular source-

destination pair. 

Our derivation is based on Kleinrock's model <1> 	with 
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emphasis given to classes of messages. A description of this 

model is given in section 2. This model is also a special case 

of 	the 	general 	queueing 	network 	model 	studied 	by 

BaSkett, et.al. <4>. Baskett's result will therefore be used as 

the point of departure for our analysis. In section 3, our basic . 

result on the distribution of end-to-end delay for the case of 

fixed routing is derived. This basic  result is generalized to 

random routing in section 4 and to messages belonging to a group 

of source-destination pairs in section 5. Finally, sections 6 

and 7 are devoted to numerical examples and application of 

results. 

1. Alegi De_s_LLULqa 

We first assume, as in <1>, that the delay experienced by a 

message in a message-switched network is approximated by the 

queueing time and the data transfer time in the channels. The 

processing time at the switching nodes and the propagation delays 

are assumed to be negligible. Let M be the number of channels 

and C. be the capacity of channel i, i = 1,2,...,M. In our open 

queueing network model, each of the M channels is represented by 

an independent server. We assume that all channels are error-

free, and the queueing discipline at each channel is first-come, 

first-served (FCFS). 

Messages 	are classified according to source-destination 

pa i rs . In particular, a message is said to belong to class (s0d) 
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if its source node is s and its destination node is d. Let R be 

the total number of message classes. 	In a network with N 

switching nodes, R N(N-1)0 For convenience, we assume diet 

message classes are numbered from 1 to R, and we use r instead of 

(s,d) to denote a message class. The arrival process of class r 

messages from outside the network is assumed to be Poisson with 

mean rate y(r). Message lengths for all classes are assumed to 

have the same exponential distribution, and we use 1/p to denote 

the mean message length. It follows from this last assumption 

that the service time of all messages at channel i is exponential 

with mean I/PC.. For the mathematical analysis to be tractable, 

Kleinrock's independence assumption <1> is used. This assumption 

states that each time a message enters a switching node, a new 

length is chosen from the exponential message length 

distribution. 

The message routing algorithm can be fixed or random. 	In 

fixed routing, a unique path is defined for each message class, 

and we use a(r) to denote the path for class r 0  a(r) is 

essentially an ordered set of channels over which class r 

messages are routed. In random routing, we allow the possibility 

of alternate paths, and the routing algorithm selects one of 

these paths according to a probability distribution. We will use 

k r  to cienote the number of alternate paths for class  r,  a Ar) to 

represent the set of channels in the j-th path, and q.(r) the 

probability that the j-th path is selected, j  
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kle.ablelmefadr.tgrEMM,Ay. 

We first consider the case of fixed muting. 	Let , Air  

(i 1,2, 000 ,M; r 1,2, 000 ,R) be the mean arrival rate of 

class r Messages to channel i. With fixed routing, A. is given 

by: 

Let . 	be the utilization of channel i by class r messages, 
Pir 

p
i r 

= X
ir

/pC
i 

The total utilization of channel i (denoted by p i  ) can then 

written as: -  

P• = 	p. lr 
r=1 

We require that r) .i 	1 for i 	1,2, 000 ,M 0 	This is equivalent 	to 

the requirement that no channel is saturated,  the condition for a 

stable network. 

Let tr (x) be the probability density function (pdf) of the 

end-to-end delay of class r messages, and  T(s) be its Laplace 

Transform, i.e., 

 Tr
(s) = 	e -sx t

r
(x)dx (4) 
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The main result of this paper can be stated as follows: 

Deomm: 	For our model of a message-switched network with fixed 

routing, 

T
r (s) = n 

iEa(r) s 	11C -1 (1- Pi )  

A proof of this theorem is given in the Appendix. 

Let la(r)I be the number of channels in  a(r)0 Our theorem 

indicates that the end-to-end delay of class r messages is given 

by the sum of la(r)I 	independent random variables. The ? -th 

random variable in this 	sum 	is 	exponential 	with 	mean 

(pC i (1-P1))
-1

; it can be interpreted as the delay at the i-th 

channel in the path of class r. It is of interest to note that 

the mean of this i-th random variable is a function of Pi and not 

Pir# implying that all messages routed through a particular 

channel have the same delay distribution at this channel. 

T(s) can easily be inverted, by using partial 	fraction <2>, 

2 
to give t

r
(x). The mean ir  and variance ar  of class r delay can 

also be obtained from T r(s). They are given by: 

. E 	1  

iEa(r) e i (1-P i )  

and 

2 	\--• 1  
G = L.4  
r 	

iEa(r)
[PG

i
(1-p

i
)j2 

(5) 
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GgRasAlizAilml. IQ BAUSIM linatiag 

. 	With random routing, a class r message can pe routed through 

one of k
r 

alternate paths, and the j-th path is selected with 

probability q.(r)0 dur analysis in the last section is 

applicable if we treat each alternate path.as  a separate message 

class. We thus replace class r by kr 
artificial classes. Let 

these classes be r1 , r 2 , 	rk  , then . 

y(r.) = y(r)q(r) 

1 1( r .) j 	if channel i e a.(r) 
X. 	. 
1r. 	0 	otherwise 

and 

R 
k
r 

P. = y 	y x. /g. 
r=1 j=1 l '

, 
 à 

Applying our theorem in the last section, we get: 

pC. ( 1-p.) 
Tr (s) = 

I i 	iEa.(r) s 	PCM-Pi) 	
(11) 

T (s) can then be obtained by removing the artificial class from 
'r 

our model, i.e., 

k
r 

T
r
(s) 	q j (r)T (s) 

ri  
(12) 

Similar to the case of fixed routing, this Laplace Transform 

can also be inverted to give t r(x). As to the mean and variance 
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of class r delay, we have: 

k
r 

7 - y q(r) 	
1 

r 	j 
j-1 	lEa.(r) 	

1-pi 

and 

k y, 

CY
2 

= î q.(r)[ E   [ 	c 	) 	7 	(14) 
r r 	j 

ri=1 	 .( ) 	(1-p )]
2 	

•Ea (r) 11  ' 	°P ' 
Ka.] 

5 0  figne,m117,at_LQ.0,  :LLD ,Mgs_s_alre greipp,s, 

It is often useful to consider the end-to-end delay of 

messages belonging to a group of source-destination pairs. For 

example, we can study the delay characteristics of (a) messages 

sent among a subset of the nodes, (h) messages sent from a 

particular source node, or (c) messages sent to a particular 

destination. We thus define a group G to contain a number of 

message classes, and a message is said to belong to group G if 

its class membership is in G. 	It is easy to see that our result 

for random routing is directly applicable to message groups. 	We 

thus have the following result for T G(s), the Laplace Transform 

of the pdf or group G delay: 

x, Y(r) * 
T

G
(s) = 	T

r 
 (s) 

rEG 

where T G (s) is given by Eq0(5) or (12), and yG  = E  y(r). 
rEG 

(13) 

(15) 
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In the special case that all classeSof messages - belong to a 

single group, we have the Laplace Transform of the pdf. of the 

overall end-to-end delay: 

T (s) =• 	y(r) î 	T(s) 
r1. 1 	' 

where y = î y(r). 
r=1 

A. PmgrIcal LeAmRiftâ 

Our numerical examples are based on the hypothetical network 

shown in Figure 1. This network has 5 nodes and 10 channels. 

The external arrival rate of messages belonging to each  source 

destination pair is given by the traffic matrix in Figure 2. All 

channels are assumed to have the same capacity, and the  • mean 

message length is chosen such that the mean service time at each 

channel (i.e.,  1/PC) has a value of 0.1. 

We first consider the case of fixed routing and assume that 

the routing algorithm is based on the shortest path. In our 

example network, there is a unique shortest path between each 

pair of nodes. Suppose we are interested in the end-to-end delay 

from node 1 to node 2. Denoting this source-destination pair by 

class 1, we apply Eq.(5) and get: 

(16) 

T i (s ) = 	[s2+21 [s+441 
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This Laplace Transform can be inverted to give: 

t
1 
 (x) . -24 e

-3x 	
12 e

-2x 	
12 e

-4x 

A plot of t 1 (x) is shown in Figure 3. The mean, variance, and 

90-percent 1 le of class 1 delay are also shown. 

We next consider the case of random routing and assume that 

25% of class 1 messages are shifted to the path {1,3,8,9 }. This 

implies that the remaining 75% are sent over the shortest path 

{1,5,9 }. 	Applying Eq.(12), and inverting the resulting Ti (s), we 

get: 

t
1 
 (x) = -25.2 e-3x  4- 30 e-2.5x 	99 e-4 ' 5x  - 19.8 e -5 ° 5x  - 84 e-4x  

A plot of this pdf, together with its mean, variance, and 

90-percentile, are shown in Figure 4. A comparison between 

Figures 3 and 4 indicates that the mean class 1 delay under 

random routing is smaller. This is due to the fact that a 

fraction of traffic has been directed from a more heavily 

utilized channel (channel 5) to a couple of less heavily utilized 

channels (channels 3 and 8). 

As a third example, we consider the end-to-end delay of all 

messages originated from node 1 under fixed, shortest-path 

routing. Applying our results for message groups (Eq.(15)), we 

get the plot shown in Figure 5. 

Finally, in Figure 6, we show the pdf of the end-to-end delay 

over all messages under fixed, shortest-path routing. 
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7. Anallselon  of ftes,pits, 

The results of this paper provide a detailed characterization 

of end-to-end delay in a message-switched network. They are 

useful for performance analysis and network design. They also 

find application in the analysis or simulation of a user-resource 

network <3> (or a subscriber network <6>) where terminals 

communicate with remote computers via a message-switched network. 

The message-switched network can be treated as a "black-box" with 

delay distribution given by the inverted Laplace Transform of 

Eq0(5) or (12) depending on whether fixed or random routing is 

used. This would reduce (a) the complexity of analysis and (b) 

the cost of simulation. 

It should be noted that the derivation of our results is 

based on a rather general open queueing network model. These 

results have a wider scope of application than simply to message-

switched networks. 

Cenclusicta 

We have used Kleinrockls model <1> to derive the distribution 

of end-to-end, delay in a message-switched network. Both fixed 

and random routing have been considered. Our results find 

application in performance analysis of message-switched.networks, 

and in the analysis or simulation of user-resource networks <3>. 

12 
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ApeftneLx:  Proof of the Main Theorem 

We first prove two lemmas. 

Lemma 1: 

Let N r (z) be the generating function of the total number 

class r messages in the network at equilibrium, 

N
r
(z) = 	n 	 • 1  

iea(r)' 1-PePir (1-z)  

Proof: 

Let (S1 ,S2°00.,S  ) be the state of our network model where 

si.(n1° 
i2'°°°'1

.1111.R  )istilestateofchanneliar 	
i 

mi ll .
r 	is 	the 1  

number of class r messages (in queue or in transmission) at 

channel I. Since our model is a special case of the general 

queueing network model analysed by Baskett, et.al. <4>, we apply 

Baskett's result and get the following expression for the 

equilibrium state probabilities: 

P(S 1 ,S2'"" SM) 	P
1
(S 1 )P2 (S2)—PM (SM )  

where 

n 
i P 1 (S) = (1-p 1 ) [ 	n. 1! II 	

1 	r 
n. ! Pir 

r=1 	r=1 	ir .  

and pir  and p i  are defined in Eqs0(2) and (3) respectively. 

P.(S .) 	is also the marginal probability that channel i is  in  

(Al) 

state S
i

. Let N
ir

(z) be the generating function of the number of 
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class r messages at channel 1. N ir (z) can be written as: 

N
ir

(z) = P.(S.1znir  

all states S. 
1 

Using Eq0(A3) in Eq0(A4), and after simplification, we get: 

- 	 Nir(z) 	
1..p.-Fp. (1-z) 

1 	ir 

From Eqs0(A2) and (A5), 	it is easy to see that N r(z) has the 

product formh in Eq0(A1) because the equilibriUm state 

probabilities are the same as if the state variable of the M 

channels are mutually independent. • 

Lemma 2: 

Let  p(r) be'the equilibrium probability that the number of 

class r messages in the network is n, and 

d(r) the probability that a class r departure left behind n 

class r messages 0  

Then 

p(r) 	d(r) 	n  

Proof: 

A proof of this lemma for the single server queue is 

available in <2,5>. By treating the whole network as a single 

service facility, the same proof can be used for Our network 

model. 

1-pi  

(A6) 
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We now prove our main theorem. Let D r(z) .be the generating 

function of the number of class r messages left behind by a 

class r departure. Eq0(A6) implies that: 

Nr (z) = Dr(z) 	 (A7) 

Since we have assumed fixed routing and a FCFS discipline at each 

channel, the number of class r messages left behind by a class r 

departure must equal to the number of class r arrivals during the 

stay of the . departing message in the network. Since we have arso 

assumed a Poisson arrival process, D r (z) is given by <2>: 

D
r
(z) = T

r
(y(r) 	y(r)z) 	 (A8) 

Substituting s for  y(r)y(r)z, Eq0(A8) is reduced to: 

T(s) = D
r(1 - Sh(r)) 

Finally, using Eq.(A1) and (A7) in Eq0(A9), we get: 

(A9) 

11c 1 (1-p) 
T*  (S) = 

iEa(r) s 	ei(1 - Pi) 

QED 

(A10) 



17 

Figure 1. 	Hypothetical Network 
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Figure 2. 	Traffic Matrix 
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