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ABSTRACT

An open queueing network model . is wused to derive the

distribution of end-to-end delay in a message-switched network,

It is shown that under fixed routing, the end=to-end de1éy of

messages belonging to a particular source-destination node pair

is gliven by a sum of independent and exponentially distributed
random variables. The generalization of this basic result to
random routing and to messages belongiﬁg to a group of source-=
destination pairs is also‘consideredo Numerical examples based

on a hypothetical network are presented,

Keywords: MessageuSwitched Networks, Queueing Model, Delay

Distribution
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A message-switched network <1> is a collectjon of switching
nodes connecﬁed together by a set of communication channels. It
provides a hessage service to the users at the various nodes,
Messages in this network are routed from one node to another in a
store-and-forward manner untll they réach théfr destinations, A
key performance measure of this network is the end-to-end delay
which is the elapsed time from the arrival of a message at Its
source to the successful delivery of this message at its
destination, In 1964, Kleinrock <1> developed an open queueing
network model- for message=-switched networks and derived an
expression for the mean end-to-end delay. This expressfon has
been used extensively for performance analysis <3> and network
design 35,

Kleinrock's result s a mean delay taken over all thé
messages delivered by the network; no distinction is made on the
basis of source or destination. In this paper, we treat messages
with the same ‘sourcemdestination palr as belonging - to a
parficular message class, and derive the distflbution of end-to-
end delay for each class. Both fixed and random vrouting are
considered, Gur result is therefore a detailed characterization
of endnto=end~delay in a message=-switched network. It allows us
to determine‘ statistics such as the mean, variance, and
90-percentile 'oF end-to-end delay for a particular source-
destination pailr.

Our derivation 1s based on Kleinrock's model <1> wi th
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emphasis given to classes of messages. A description of this
model is given in section 2, This model is also a special case
of the general' queueing network mode 1 studied by
Baskett, etoal. <b>, Baskett's result will therefore be used as
the point of departure for our analysis. In section 3, our basic
result on the distribution o% end-to-end delay for the case of
fixed vrouting 1s derived, This basic result Is generalized to
réﬁdom routing in section & and to messages beionging to a group
of source-destination pairs 1in section 5,  Finally, éectfons 6
and 7 are devoted to numerical examples and application of

results,

2. Model Descrintion

We first assume, as in <1>, that the delay experienced by a
message in a message-switched network 1is approximated by the
queueing time and the data transfer time in the channels. The
processing time at the switching nodes and the propagation delays
are assumed to be negligible. Let M be the number of channeis
and Ci be the capacity of channel {, i = 1,2,...,M. In our open
queueing network model, each of the M channels is represenfed by
an independent server, !le assume that all channels :are error=
free, and thevqueueing discipline at each channel is first=come,
first-served (FCFS), |

Messages are classified according to source=destination

pairs. In particular, a message is said to belong to class (s,d)
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if its source node is s and its destination node Ts‘dQ Let R be
the total number of message classes., In a network with N
switching nodes, R = N(N=1), For convenienée, we assume that
message classes are numbered from 1 to R, and we use r instead of

(s,d) to denote a message class. The arrival process of class r

messages from outside the network is assumed to be Polisson with

mean rate Y(r). Message lengths for all classes are assumed to

have the same exponential distribution, and.we use 1/u to denote

" the mean message length., It follows from this last assumption

that the service time of all messages at channel | Is exponential

with mean 1/uC;. For the mathematical analysis to be tractable,

Kleinrock's independence assumption <1> i{s used. This aséumption

states that each time a message enters a switching node, a new -

length 1is chosen from the exponentia] message length
distribution. |

The message routing algorithm can be fixed. or random. In
fixed routing, a uriique path is defined for each message class,
and we use a(r) to denote the path for class r. alr) s
essentially an ordered set of channels Vover which class r
messages are routed, In random routing, WQ allow the possibility
of alternate .paths, and the vrouting algorithm selecﬁs one of
these paths according to a probability distribution. We will use
kr to denote the number of alternate paths.for class r, aj(r) to

represent the set of channels in the j-th path, and qj(r) the

probability that the j=th path is selected, j = 1,2,°.e,kr.
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3. Distribution of End-to-End Delay

We first consider the case of fixed vrouting, Let A,

ir
(i = 1,2,000,M3 ¥ = 1,2,,00,R) be the mean arvival rate of
class v messages to channel 1. With fixed routing, Air is gfven
by: _
y(r) if channel | ¢ a(r) S
Air N | (1)
0 otherwise

Let Oip be the utilization of channel | by class r messages,

Pip T Xir/“Ci (2)

The total utilization of channel i (denoted bypi ) can then be

written as:-

§ (
P: = ) Py | 3)
Ve I '

We require that o; L1 fori=1,2,...,M This is equivalent to

the requirement that no channel is saturated, the condition-FQr a
stabie network, |

Let t.(x) be the probability density function (pdf) of the
end-to-end delay of class r messages, and Tj(s) be its Laplace

Transform, i.e.,

T.(s) = J eﬁsxtr(x)dx . | | | (4)
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The main result of this paper can be stated as follows:

Theorem: For our model of a messagemswitched network with fixed

routing, .
% ' ]JC-(]—Q.)
Tls)= I <3 1c (11 ) | (5)
jea(r) HbgA =04

A proof of this theorem is given in the Appendix,

Let Jlal(r)l be the number of channels in a(r). Our theorem
Indicates that the end-to-end delay of class r messages is given
by the sum of Ja(r)] 1independent random variables. The i=th
random variable in this sum is exponential with mean
(uC1(1=p1))—]; it can be interpreted as the delay at the i-th
channel in the path of class r. .It is of interest to note that
the mean of this I-th random variable is a function of P; and not
Pip * impiving thét all meséages routed\ through a particular
channel have the same delay distribution at this channel.

Ti(s) can easily be inverted, by using partial fraction <2>,

to glve tr(X)° The mean T} and variance 0& of class r delay can

Yo
also be obtained from Tr(s)° They are given by:

- R
Te " 1e§%r) HC; (T-p;) | o (6)

and

1
oZ = 2

r 1'6&:1(\")[11(:1'(]'pi)]2
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L. Generallzation to Random Routing

With random routing, a class r message canlbe routed through
one of kr alternate paths, and the jwfh path is selected with
probability qj(r)n Our analysis in the 1last section s

applicable 1f we treat each alternate path. as a separate message

"class, We thus replace class r by kr artificial classes. Let

these classes be Fle Too eses Ty then .

r
Y(rj) = Y(r)qj(r) | | - (8)
v(r.) if channel | ¢ a;(r) :
= J J .
A, = (9)
1y 0 otherwise
and
Py
p: = ;. /uC, ;
LS I =S LU | (10)

Applying our theorem in the last section, we get:

* uC, (1-p.)
T = i i
rj(S) , ieaj(r) s+ uC; (T-p5) ‘ . (1)

T:(s) can then be obtained by removing the artificial class from

“our model, f.e,,

k
r

T:(S) = 1 q: ()T (s) | (12)
=T | | L

Similar to the case of fixed routing, this Laplace Transform

can also be inverted to give tr(x). As to the mean and variahCe
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oF c1ass.r deiay, we have:

k, ST o
T " 521 %(r) ieé?%r) 56;1%25;7- - | j E | (13y;l
énd | .
K, ~ .
o qj“"[m;z;(r) AT +‘[i€a§r‘).'m.] ] o

5. Generalizatlon to Message Groups

It is often useful to consider the end-to-end delay of
ﬁessages belénging to a group of source=destination pairs. For
example, we dan study the delay characteristics of (a)- messages
sent among a subset of the nodes, (b5 messages sent from a
particular source node, or (c) messagesv sent to & particular
destination.,. We thus define a group G fo contain a number of
message classes, and a message Is said to belong to group G |if
its class membershipvis in G, It Is easy to see that our result
for random routing is directly applicable t0‘mes§aﬁe groups. We

W%

thus have the following result for Ty(s), the Laplace Transform

of the pdf of group G delay:

* 'Y(r) * . :
T = Z——-«—— T (]5)
g(s) ~ r.(s) _

% . . al
where TG(S) is given by Eq.(5) or (12), and Yg © > v{r)
, ' reG
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In the special case that all classes of messages belong to a
single group, we have the Laplace Transforh of the pdf. of the

overall end-to-end detlay:
R
Z 1) ¢ (s) | - (16)

where y = ) y(r),
: r=1

5. Numerical Examples

Our numerical examples are based on the hypothetical network -
shown in Figure 1, This network has 5 nodes and 10 channels,
The external arrival rate of messages belonging to . each source=
destination paif is given by the traffic matrix in Figure 2, Al
channels are assumed to have the same capacity, and thé_ mean
message length is chosen such that the mean service time at each
channel (i.e., 1/UC;) has a value o'F.O,l°

We first consider the case of fixed routing and assume that
the routing algorithm is based on the shortest path, In our
example netwofk, there s \a unique shortest path between each
palr of nodes. Suppose we are interested in the end=to-end delay
from node 1 fo node 2,. Denoting this source=desﬁination pair by

class 1, we apply Eq.(5) and get:

T?(S) ) [533] [352] [si4]
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This Laplace Transform can be inverted to give:

3 2

t,(x) = 24 ¥ 4 12 72X 4 g2

A plot of t](x) is shown in Figure 3. The mean, variance, and
90=percehtile of class 1 delay are also shown,

We next consider the case of random routfﬁg and assume tﬁat
25% of class 1 messages are shlfted to the path {1,3,8,9}. This
implies that the remaining 75% are sent over the shortest path
{1,5,9}. Applying Eq.(12), and inverting the resu1tihg TT(S), we

get:

3 2.5x% -4.5 5.5x

t)(x) = -25.2 &™ + 30 & + 99 ™%X _ 19,8 ¢ - 84 "X

A plot of this pdf, together with 1{ts mean, variance, and
90-percentile, are shown in . Figure &, A  comparison between
Figures 3 and &4 indicates that the meén class 1 deiay under
random routing is smaller. This 1is due to the fact fhat a
fraction of traffic has been directed from a more heavily
utilized channel (channel 5) to a couple of less heavily utilized
channels {channels 3 and 8),

| As a third example, we cénsider the end=to-end delay of all
messages oriéinated from node 1 under fixed, shortest-path

routing. Applying our results for message groups (Eq.(15)), we

" get the plot shown in Figure 5.

Finally, in Figure 6, we show the pdf of the end-to-end delay

over all messages under fixed, shortestvpafh routing.
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1. Applleation of Resulis -
| The results of this paper provide a detalled characterizatibn
of -end-to-end delay in a messagémswitched network, :They are
useful for perfofmance analysis and network design. They also
find application ih thé analysis or simulation of a user=resource
network <3> (or a subscriber network <6>) where terminals
communicate with remote computers via. a méssagewswitched network,
The message-switched network can be treated as a "black-box" with
delay distribution given by the inverted Laplace Transform of
Eq.(5) or (12) depending on whether fixed or random vrouting 1is
used, This would reduce (a) the complexity of analysis and (b)
the cost of simulation.,

It should be noted that the derivation of our results is
based on a rather general open queueing network model, These
resulits have a wider scope of application than simply to message-

swi tched networks,

8. Conclusion

We have used Kleinrock's model <1> to derive the distribution
of end-to-end delay 1Iin a message=-switched netwofkov Both fixed
and random routing have been considgred° Our results Fiﬁd
application in performance analysis of message-switched networks,

and in the analysis or simulation of user=resource networks <3>,
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Appendix: Proof of the Main Theorem

We first prove two lemmas.

Lemma 1:

Let N.(z) be the generating function of the total number of

"class r messages in the network at equilibrium,

' 1-p.
- 1
Nr(z)- 8

(A1)
jea(r) ]"pi+pir(]_z) ‘

Proof: »

Let (S],SZ,Q,Q,SM) be the state of our network model where -
S, = (ni],niz,oca,niR) is the stateyof channel 1 and Nip is the
number of class r messages (in queue of in transmission) at
channel 1. Since our model is a special case of the general
queueing network model analysed by Baskett, et.al. <>, we apply
Baskett's result and get the following expressioh for the

equilibrium state probabflities:

P(Sy5Sps--+sSy) = P1(S1IP,(S,). . Py(Sy) - (A2)
where
R R n.
_ 1 ir ‘
p.i (S.i) - (]"p.i) [rz1l]ir]! Y‘E'-I] niY‘! pir‘ (As)

and Psyp and pi‘are defined in Eqgs.(2) and (3) respectively.

Pi(si) is also the marginal probability that channel 1| is in

state Sia Let Nir(Z) be the generating function of the number of
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class r messages at channel 1. N;.(z) can be written as:

. .
N. (z) = Z P.(S.)z V' -
w all states S; L (A4)

Using Eq.(A3) in Eq.(Ab), and after simplification, we get:

: .l—p.
- i
Nip(2) = T ) ()

AN

From Eqs.(A2) and (A5), it 1is easy to see that N (z) has the
product form. in Eq. (AL) because the equiiibridm state
probabilities are the same as |if the state variable of the M

channels are mutually independent,

Lemma 22
Let pn(r) be the equilibrium probability that the number of
class r messages in the network is n, and
dn(r) the probability that a class r departure left behind n
class r messages.,
Then

pn(r) = dn(r) .. n = 0,152,000 : (A6)

Proof:

A proof of this lemma for the single server. duéue is
available in <K2,5>, By treating the whole network as a single
service facility, the same proof can be used for our network

model .



WONG . ’ 16

~We now prove our main theorem, Let Dr(z)_be the generating

function of the number of class r messages' left behind by a

class r departure. Eq.(A6) implies thats
N.(z) =D (z) (A7)

Since we have assumed fixed routing and a FCFS discipline at each
channel, the number of class r messages left behind by a class r
departure must equal to the number of class r arrivals during the

stay of the departing message in the network. Since we have also

~assumed a Poisson arrival process, Dr(z) is given by <2>:

* R .
D.(z) = T (v(r) - v(r)z) " (A8)
Substituting s for y(r)=y(r)z, Eq.(A8) is reduced to:
* : .
= - A9
Ts) = D(1 - S/y(r)) | (A9)
Finally, using Eq.(Al) and (A7) in Eq.(A9), we get:

% _ UC1(1”91) ‘
Tr(s) - ieg{r) s+ uC, (T-p;) ‘ (A10)

QED -
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