
I riciustry banada
LIBRARY

1 . e

CL' 0 6 1990

jegjge j je

•."

E

LEARY /BIPUTHEOUE
DSS Contract No .. OSU81-0-0095 	(s, 	-

Final Report

February, 1982

9-
.nrSTUDY OF THE USE OF,ERROR-CORRECTING

• CODES IN BROADCAST . TELIDON riAee

-1 DR. /ARIAN MORTIER /

NSERC RESEARCH FELLOW

Scientific Authority:

Dr. Mike Sablatash ,

Communications Research Centre,

Department of Communications,

)Ottawa.

Principal Investigator:

Dr. Brian Mortimer

NSERC Research Fellow,

Department of Mathematics and Statistics,

Carleton University, Ottawa

Research Associates:

Dr. Mike Moore

Brian Leroux

Lee Oattes

Tom Ritchford

Department of Mathematics and Statistics,

Carleton Un.;_versity,Ottawa

1.

iv.
vi.

Chapter
3.1
3.2
3.3

3. Example of' a
Introduction: 'â
Performance
Decoding

of CARLETON code'
Encoder for CARLETON Code
Decoder for CARLETON code.
of the Channels
of the Codes

Half-page Code
Reed-Solomon code

16.
16.
17.
18.
22.
23.
34.
40.
41.
43.
51.
56.

-TABLE OF CONTENTS

• Abstract 	 •
Statement of Work from the Contract Proposal
Outline . of Main Conclusions
Acknowledgments

. 	•
,

1. Summary of Results 	 .
. 	.

Introduction 	 .
The Prefix 	• 	• 	'
Coding the Data Block 	,, 	.

,
Codes on a Page and Putting the SYstem Together

Chapter 2. One-byte Data Block Codes
2.1 Introduction ,
2.2 The Codes Defined 	-

2.2.1 PRODUCT code
2.2-2 CARLETON code

2.3 Performance
. 	2.4 A New Burst Channel Model •
• 2.5 Decoding

Appendix 2.A Definition
. 2.B A Software

• 2.0 A Software
2.D ParameterS

-2.E Parameters

Chapter
•1.1
1.2
1.3
1.4

1.
4.
7.

14.

57. ,
 58.

61.

Chapter 4. The System as a Whole 	 62.

References 	 66.

(ii).

V.1,7

information gives a rather detailed picture of how the codes

would perform in a variety of error environments.

The problem of decoding was also examined very

carefully. Software decoders were implemented in MC6809

machine code for the three codes. Moreover hardware decoders

for PRODUCT and CARLETON code were sketched in some detail.

Decoding of CARLETON code was shown to be possible well ,

within the engineering constraints.

.Further studies were made of the possibility of using

long block codes to correct a half-page at a time. The

performance of such a . code was analyzed both by itself and

in conjunction with the prefix • Hamming code and the data

block code. :A preliminary study of decoding was made. It \aas

found that the code choosen (a Reed-Solomon code) gave •

extremely good performance to the extent of overpowering the

rest of the error control scheme.

Future work is needed on the 2
)
and 3 byte suffices for

the data blocks and on a weaker half-page or page code with

a quick decoder all of which harmonizes with the rest of the

error-:correction scheme.

Stâtement,of Work from the Proposal for the Contract. -

DESCRIPTION

The research to be carried out under this contract will con-
,

sist of a thorough examination of the use of Error-correcting

codes in broadcast Tendon. To-date severarcodes have been 	•

identified as being especially suitable. Theoretical calculations

have shown their ability to improve performance. The additional

constraints to be considered are the amount of time necessary for

decoding, the increase cost of a Telidon terminal which uses the

code, and the amount of redundancy introduced into the data by the

code. All must be minimized. This research will use both theo-

retical calculations and simulations to measure these parameters.

These simulations will use a micropràcessor •of the same type as is

used by Telidon. Field data of channel •rror statistics will be

used if ànd when it is available. In their absence a variety of

theoretical channel models will be used to exercise the codes.

PURPOSE OR OBJECT

The purpose of . this project is to select and analyze a range of

ECC for use in improving the performance and extending the range

of broadcast Telidon. A careful choice of error7correcting codes

and a detailed analysis of their impact on the Telidon system will

allow the simultaneous satisfaction of the many c'onstraints; economic,

engineering and acceptability for international standards. At the

same time,thorough and thoughtful exploration of coding options at

this time will allow for a quick response as the Telidon requirements

change in the future. o

(iii)

2

.1,

Ti

-71

•

•

OUTLINE OF MAIN CONCLUSIONS

1)-9ne-byte suffix codes: • •

u) The CARLETON code gives performance superior to the PRODUCT

code specified in the provisional BS-14 on all but one of'

the model channels considered. When there is a background of

white gaussian noise the only situation in which the PRODUCT

1

	

	code makes fewer decoding errors is when there are numerous

bursts of length 5-10.

b) It has been shown that CARLETON code can be decoded in 0.97 msec

with a 6809 microprocessor at a clock speed of 1.29 MHz using

512 bytes of look-up table. Longer decoding times with less

look-up table are also possible. Efficient hardware decoding

is possible.

c) The CARLETON code has been shown to be essentially optimal on

the white gaussian channel as a one byte data block code which

has overall known parity (for better error detection) and few

codewords which are short bursts. (for better performance on

bursty'channels).

d) The SAB code recommended by Seguin, Allard and Bhargava was

 originally defined for 25 byte data blocks and it is not clear

whether a 28 byte version is possible. In any case a code of

the SAB type gives near optimal performance on the white gaussian

channel but has a serious probability of decoding. error when

there are short bursts. An effective software decoder for SAB

code was developed.

r

(iv)

3

2),Codes for a Half-Page:

a) A 14 byte-error correcting Reed-Solomon code defined on a

set of 9 data blocks would virtually eliminate decoding

-3 errors at bit,error rates < 10 	. 	•

b) Decoding of the Reed-Solomon code would require more time

than the 4 millisecond interval between packets from the

same packet so a whole page would have to_be captured first

then be decoded.'

3) The - System as•a Whole:

a) When using the Prefix code and one-byte data block code

together the latter is limiting ih terms of delays caused

by detected.uncorrectable errors.

b) When the Prefix code and Reed-Solomon code are used together

(with or without the data-block code) it is the Prefix code

which is limiting. To this must be added the decoding delay

for the Reed-Solomon code. The conclusion is that the ReedL

Solomon code is inappropriate and should be replaced by a

less powerful code with a quicker decoder.

(v)

n

ACKNOWLEDGEMENTS

I am happy to take this opportunity to âcknowledge the

contributions to this report made by my four co-workers on

the project: Brian Leroux, Mike Moore, Lee Oattes and Tom

Ritchford. They all worked hard on the research presented in

'the Preliminary Report [2] and their influence on this Final

Report can easily be seen. In particular Brian Leroux gave

invaluable assistance in the calculation of many of the

numbers presented here. It is also with pleasure that I

express my appreciation to André Vincent, John Storrey and

• especially to Mikle Sablatash of the Communications Research

Centre . for their interest, enthusiasm and assistance

throughout this research. project. Finally the skill and

efficiency of Susan Jameson and Jo-Ann Haynes has greatly

eased the production , - ,and improved the quality of • these:

•reports and is gratefully .acknowledged.

(vi)

•1

Chapter 1. Summary of Results.

:3

1.1 Introduction

The object of the research project • reported here (and

covered by DSS Contract No. OSU81-00095) was to select and

analyze as thoroughly as possible error-correcting codes

which are appropriate for the Canadian Broadcast Telidon

system. The lion's share of the work done was reported in

the preliminary report "A Study of the Use of

Error-correcting Codes in the Canadian Broadcast Telidon

System",August,1981 [2].This final report should be viewed

as • being supplementary and complimentary to that earlier

• report.

In analyzing the performance of the codes we identify

certain possible outcomes of the decoding process. We then

calculate the probabilities of these various events occuring

under appropriate assumptions. The possible outcomes of the

décoding process are the following.

Correct Decoding:' thé'errOr pattern (if any) that 'occured
was one which the code dealà mith

• ' 	correctly passing on the actual codeword
- that was sent.

- 2 -

Decoding Fault: the other case, i.e. an uncorrectable error
is corrùpting the codeword. ,The faults
are then sub-divided as follows.

Decoding Failure: the error pattern was recognized as an
error but the code cannot correct it.
The decoder warns the system that the
data is falaceous.

Decoding Error:the error pattern occured was mistaken by the
decoder for a correctable pattern when it •

• was not.. The decoder introduces at least
one more bit error and passes the

• , codeword on as if it was correct.

The probability of a correct decoding depends only on

the coding strategy (e.g. single error correction, double

error correction etc.) used and not on the details .of •the

code. The same applies to decoding faults so these

parameters are easiest to calculate. At a fixed bit error

rate if the (channel is bursty then the errors will corrupt

fewer codewords and hence, generally speaking, show an

increase in the frequency of correct decoding. Thus the
•

assumption that errors are independent (i.e. white gaussian

'channel) is reasonable for assessing performance as regards •

correct decoding and decoding faults.

Whèn we move to .thé more refined (and 'interesting)

level of analysis which consider three possible outcomes

(correct decoding, decc:ling failure and decoding error)

several complications arise. At this level it is the way in

which the code is defined which determines how it will

perform. Thus detailed (and hard to get) Information about

the code is required. Moreover the performance of a given

code, is much more difficult to predict when the channel is

bursty if we are interested in the frequency of decoding

errors. 	In general though, decoding errors are a small

fraction of the decoding faults. 	This must be traded-off

against the fact that in the context of a videotex system

decoding failures result in delays in delivery of a • page to

a user while a decoding error results in rubbish on the

screen which may be • either_ gross or quite subtle and

undetectable by the user as a false page. More will be said

below (Sectin 1.3) on the relative frequency of decoding

errors and failures.

As a reference point when comparing the, performance of

a code on a number of channels we assume that the overall

bit error rate is constant for all channels. This

corresponds to the fact that overall bit error rate tends to

be the first (and often only) parameter relevant to error

patterns, which is measured on a communications channel. An

alternate assumption would be , that a burst noise phenomenon

is added onto a background of random errors. The background

bit error rate would then be held constant. We tried this

second approach with the new. channel model of.Chapter 2,

)

b 8
b 7
bG

b
5
4

IT" 2
b
1

0
0

-,:x

-4- •

Section 3. The results obtained didn't show a significant

change over the previous assumption.

The unit of the broadcast videotex system (as specified•

in the provisional version of BS-14 [1)) which is of

interest for coding purposes is the data packet. Each

packet consists of 33 bytes. There are 5 prefix bytes then

a series of (28-S) data bytes and finally S 	suffix bytes.

Here 	S 	may be 0,1,2, or 3 and is specified by two of the

bits in the prefix. We deal with the various parts of this

packet one at a time.

1.2 The Prefix.

The five prefix bytes are each encoded with an

odd-parity variant of the (8,4) Hamming code as specified in

• Appendix • B of BS-14. Thus if one of these bytes is 	(b8•

b
7 	b6 	b i b4 'b 	b2 	b1) 	then 	the 	bits 	b 8' 5 	3

b
6'

b 4' b 2 	carry information while 	the 	other 	four

bits 	are 	check 	bits. 	The code is defined so that

(arithmetic mod 2):

1 1 1 0 1 0 0 0
0 0 1 1 1 0 1 0
1 0 0 0 1 1 1 0
1 0 1 0 0 0 . 1

-5-

Here «-E- is the complement of b2' • that is 	b2 = 2

1-b
2' 	

Complementing this bit results in an odd parity

byte. (For purposes of error-correction performance

calculations we leave the bytes with even parity since this

gives us a linear code).

Assuming 	that errors 	arise 	independently 	with

probability 	p, the probability of .a correction (reception

for one such byte is q8 where q = 1-p. • The probability

of a single error in a byte is 8pq7 . Thus the overall

probability of a prefix being correctly decoded is 	(q
8

+

8pq7)
5. e

The 	probability 	of 	decoding fault is then

1-(q8 + 8pq7) 5 . 	Again 	assuming 	independent 	errors,

the probability of 	decoding error can be estimated.

Strictly in terms of the Hamming code this is,

= - 4A4 p
3 q5+A4 p

4q 4 +4A
4 p

5 q 3+.8A
8 p

7 q + A
8

- p s
. 	. 	. 	•

•
• = 56p

3
q
5

+ 14p4 q
4
 .+ 56p5 q 3 ' + 8p 7 q + p 8

for a single byte and 	1-(1-PDE
) 5 	for 5 bytes. ' On the

,

other hand the videotex decoder will not accept all decoding

errors.in the prefix as valid.messages. The five bytes are

'Interpreted as indicated in Figure 1.1. 	,

-;„

*
1

Packet Address Bytes

(up to 2 12 different

addresses)

11%
Continuity

Index byte:

counts 0 to

15 incrément

once for each

packet in a

given channel

Packet structure:

b2= std./sync.

b 4= full/not full

b6 nmber of

b 8 suffix bytes

Figure 1.1 The Packet Prefix

The first three bytes specify a channel. number then the fourth

byte is a continuity index count on the data packets of that

channel as they are broadcast. .A decoding error in the first four

bytes must change the continuity index by the exact quantity

required to make it the next packet from the new channel (i.e. the

channel specified after the errors are introduced). Moreover , .

either the next packet actually transmitted on the new channel

mut be lost or all subsequent packets must have their continuity

index incremented by one by a further decoding error. 	The

probability of such an event is negligible 	(say, < 10 -17 at

-3 BER = 10 	assuming 1000 different channels in use).

Thus the only decod!.ng errors that might occur are

those affecting only the packet structure byte. Again many

1

of these decoding erro‘s will be caught by the decoder

because of other ambiguities in the subsequent processing of

the pecket. Thus we can take as a yery rough upper bound on

the probability of a decoding error coming from the prefix

the estimate 56p3q7 . Careful • implementation of the

videotex decoder would reduce this much further.

1.3 Coding the Data Block

The provisional version of BS-14 [1] specifies that

0,1,2 or 3 	suffix bytes may be appended to the data block

of a data packet to be used for error correction. 	We have

not yet looked seriously at the cases of 2 or 3 suffix bytes

and in fact BS-14 leaves specification of • these bytes to

the future.

If no suffix bytes are used then error correction

within the data block is impossible. If an odd number of

errors corrupt one of the bytes then these errors will be

detected. In an environment of random errors with bit error.

rate p (and q .=.1-p), the probability of correct decoding

. 	. 	224 q is Dust 	while the probability of a decoding error is

approximately .

]
A
q
 220

. 28(
8
)p

2
q222 4. [28(2

Explicitly this is 784p2
q
222 892584Pq220

-ej

- 8 -

SS

The case o one-byte suf f ix has been intensively

studied by a numer of research groups

The provisional version of ES-14 specifies a simple but

effective PRODUCT code for this purpose [1], [4]. Allard

Bhargava and Seguin [3] suggested another code which they

called SAB. This code was defined for data packets of 30

bytes and it is not clear that it can be extended to 33

bytes in a reasbnable way. The SAB code is very good for a

channel with random errors but has a high probability of

Making a decoding error on a short burst. A third code was

suggested in [2], [5] by our group. Giving it the

(temporary) name CARLETON code the preliminary report [2]

presented an exhaustive comparison of this code with SAB

code and PRODUCT code. The assumed number of bytes in data

block plus suffix in [2] was 25. Since BS-14 speCifies 28

the results of that preliminary report have had to be

updated here. They are presented in Chapter 2. Since the

SAB . code cannot be immediately extended to these longer data

blocks it was dropped from the discussion. PRODUCT code and

CARLETON code have essentially the same probability • of

« -9-

decoding failure'on• any channel (and hence would produce

delays with the same frequency). When we look at decoding

errors we find that the expected number of pages (defined as

units of 18 packets) before a decoding error occurs is five

times larger for CARLETON code than for PRODUCT code on the

white gaussian channel. Looking at bursty channels with a

'background of white gatissian noise we found that this

superiority persists. 	The best tool to use for seeing this

is the new channel model of • Chapter 2, Section 3. 	There we

observe that, unless the channel is systematically

introducing pathologies, the white gaussian performance

characteristics of th codes persist as the channel becomes

more bursty until the peformance quite abruptly degenerates

to a common (poor) value for both codes (Figure 2.4.2).

We have also shown that Carleton code be decoded • by

Motorolla 6809 microprocessor using 1254 machinecycles

which represents 0.97 milliseconds at a 1.29 MHz clock speed

using a look-up table of 512 bytes. In fact the PRODUCT

code can be decoded in.a similar way using approximately the

same amount of time and look-up storage.'

Chapter 2 is devoted entirely to the case of a one

byte suffix. We copclude the discussion here with a few

remarks on "optimality". By optimality we mean minimal

P •
T

-10-

•
probability of decoding error. It can be asked: what is the

optimal choice for a code using a one byte suffix? The

answer is that "optimal" can only be applied ,to a code

working on a particular channel. The historical approach

seems to have been that a code is chOosen'to work well on a
. 	•

white . gaussian channel and other channels are . either ignored

or treated incidentally. Optimizing a code on the white

gaussian channel translates simply to the minimization of

the number of low weight codewords. For any channel, ln .

general, to obtain an optimal code with respect to decoding.

errors.selecta'cociewiciamillinialrimber of codewords

which occur among , the most common class of error patterns on

the Channel. So really you have to have a 'specific 'channel

before.you Can talk about optiMizàtion.

1

"- •

CCnsider now the special case of . a, white gaussian

channel. Thus the:erors in the channel arise as independent

I • event.s- Let . .stand for the number of codewods of weight Ai

i in some one-byte data block code. Certainly we would take

a single' error correcting code so A =A2 =O. In order to
1

detect all double errors we take A3. =O. Can we have A4=0?

No. This means •that double error correction ià' not possible

' 	with onlY one .byte' in the suffix. How small can we make

A
4'
9 Chapter 4 of the preMminary report [2] was devoted to

JAIL 	this question. We will up-date those results here Sto the

-11-

case of data packets*of 33 bytes .(data blocks Cf 27 bytes

plus 1 suffix byte) as follows:

(i)•or an 	arbitrary 	one • byte 	suffix 	code:
A>285 4-

(ii)if the code has only codewords of known parity:
A

4?-.
676

(iii)if the code has no weight 4 codewords with all
ones confined to a single byte: 	A4-?--853 	•

(iv)if the 	code 	satisfies 	(ii) 	and

, 	A4- >2028

The first case, (1), gives a bound on how good a code

we • can expect t find for the white gaussian channel. The

other cases deal with added conditions which would give th

eITTIT'OrnnVY

—

-, e- 	also satisfies (iv) and has A4 = 10,584. So sticking to
,..._.

. 	
codes with the properties (iv) we can't improve much (for

.7r .
‘,11i 	the white gaussian channel) on CARLETON code. In order to

-i, 	get a better code for, the white gaussian channel we must
I
1

weaken its ability to detect bursts by either allowing

arbitrary overall parity (not (ii)) or allowing burst-like

weight 4 codewords (not (iii)).

It is also essential to realize that there is a

trade-off 	between 	decoding 	failures and errors. 	The

1
r 	 probabilities of correct decoding

PCD g

11, 	

, decoding failure

P
DF

and 	of 	decoding 	errors PDE satisfy the • simple

;

CARLETON •

PRODUCT 0

-12-

+ P
DF

+ P
DE = 1

BER = 10-4

relation

10
3

10
2

111110,of
riiesùhtil
oding

ailure -

1 60 1 • 	•." I

10 6
I 	1 II 	 1 	 I 	 n

	

. 	(111)
(I1) (0 (1v)

	

el 	H 	1,

100 	 101 	 W
2

10 3- 	1(34 	
M

5

• 	Expected Number of Pages until Decoding,Error

FIGURE 1.2 Expected Number of Pages until Decoding Failure/Error for,Singl

Error C2rrecting Codes on the White Gaussian Channel at Bit Error Rate 10

and 10- .

f

• !,

n •

•

-13-

since they represent all the possible outcomes of the

decoding process. 	Now P CD depends only on the frequency

with which error free blocks and correctable error patterns

P 	arise in the channel. 	So P 	is CD 	the same on
any given

channel for, say, all single 	eror 	correcting 	codes.

Consider the case of the white gaussian channel and single

error ' correcting codes of length n. • Then

P
CD

= qn + npqn1 where 	p • is the bit error rate and •

-

q = 1-p. 	Therefore 	P + P
DF 	DE 	is a constant for all

such 	codes. 	Now 	we 	take 	B =1/(18 PDF) 	and

BE
= 1/(18 P) DE • which 	are • respectivey 	the 	expected

number of pages (= 18 data packets) until decoding failure

and until a decoding error. We see that (l/BF + (l/BE)

is a constant so the graph of the points (BE' BF) is a

hyperbola. Thus we cannot increase B
E without

decreasing B
F

. 	Moreover no code has simultaneously good

performance as regards both decoding failures and errors.

Figure 1.2 is a plot of BF 	against BE for bit error,

-3
rates 	BER = 10 	• and 10

-4
for 	the white 	gaussian

channel. 	The points representing several codes are marked.

Also included are the points for imaginary codes which

satisy the bounds (i), (ii), (iii), and (iv) above. While

keeping BE acceptably large we may be forced to make

BF unacceptably small. The only remedy is to do more

-14 -

>;•

• n

4. correction. This has the effect of reducing the size of the
r

constant C in the formula

1:, 1 m- 	C
F BE

which leads us back to the old problem. 	Which error

patterns are the most common? These are the ones which

should be corrected first. But these patterns will depend

on the channel. 	Unless we have explicit information about

the actual broadcast videotex channels we are more likely, to

be led astray' by further correction than directly to better

performance. These remarks apply of course to the choice' of

2 and 3 suffix byte codes as well.

1 . .4 Codes on a Page and Putting the System Together.

We have discussed the prefix and data block codes and

now turn to larger units containing a number of data

packets. The strategy is to use a powerful code of greater

length to cover a set of say 8 data blocks by adding a

cmplete data packet of redundancy.) Decoding would be too

complex to be done in software •in the statutory 4

milliseconds allowed for "on-line" processing of incoming

data packets. The whole • videotex page would be extracted

from the channel first and it could then be decoded "off

•

,
line". 	The idea is to use a code which corrects so many

-15-

errors that only extremely rarely will it be necessary to

re-extract a data block from the channel.. Thus an extra,

say, 2 seconds would be required to deliver the picture to

the screen but that picture could be virtually guaranteed to

'be error free. The fact that such a code was in use could

be specified by a Rècord Type specification in the Record

Header.

We have examined one such code, a Reed-Solomon code

oVer the field. 	GF(256). 	This , code can.correct up to 14.

.byte errors in a set of 9 data blocks . .Thesè .could. be 14

random bit error's. or a continuous run of 98 bit errors.

Decoding was not 'exhaustively examined but càn be

• accomplished in a matter of a second or two by a software•

decoder.

Putting all this together we will show • in Chaptr 4

that this Reed-Solomon code overpowers the prefix code in

the sense that it provides very much better performance than

the prefix can deliyer. We conclude that a different code

would be more effective and such a code should be sought out

and analyzed.

-Mapter 2. One-byte Data Block Codes

• 2.1 Introduction

The p.rovisional issue of BS-14 "Television Broadcast Videotex" . •

[1] stipulates that a suffix of 0, 1, 2 or 3 bytes is added to

each data block to be used for error correction and detection, (the

number of such bytes being specified by the bits B6 and B8 of the

Packet Structure Byte). Together they form what we will call a data

block code. This chapter is devoted to a discussion of codes ap-

propriate to the case of a one-byte suffix. Since the Preliminary

Report [2] submitted in August 1981, consists of a thorough analysis

of this problem we will present here information which is supplementary

to that Report. In particular we move the discussion to the case

of longer data blocks of 27 bytes plus a suffix byte as specified by

ES-14. Also we present hardware versions of our decoders, a soft- 	'

ware encoder and a ne w burst channel model.

-16-

2.2 The Codes Defined. ,

Two particular codes are the main object of discussion in this

Section, namely\ PRODUCT and CARLETON codes. The first is a simple

combinatorially defined code which is specified in BS-14 -(paagraph 3.3)

as the code used to define a single suffix byte. 	CARLETON code is

1
1

•

-17-

an algebraically defined code whose definition (first given in [2]

and [5]) contains the pseudo-random element inherent in using a finite

field to give the code better behavior. Both these codes are single

error correcting and use the fact that the data bytes have odd

parity. The sb-called SAB code which was defined in [3] as.a pos-

sible code for Telidon and was compared with PRODUCT and CARLETON

codes in [2] is not discussed in this report. This is principally

because it is far• from transparent whether the SAB code can be ex-

tended to 28 bytes in a sensible way.

2.2.1 PRODUCT Code

The pRODUCT code is the simplest species of the genus of product

codes. It . uses an (odd) parity check on bytes and a longditudinal

(odd) parity check.across the bytes to correct single errors. Write

the data blocks as B. =
i8'

b
i7' 	

b) for i = 1,...,27
1

and let B
28

represent the suffix byte. Then with additions taken

mod 2 (exclusive -or) we define the eighth bit of each block by

b
i8

= 1 + b
i7

+ b
i.6

+ 	+ b.
1.1

for , .i = 1,...,27 and define the suffix byte by

b
28j 7

- 1 + b • + 	+ b
27j lj

-18-

for j = 1,...,8. Since there are an odd number of data bytes of

odd parity the check byte also has odd parity automatically. '

The use of odd parity is a nuisance to the coding theorist

since it is a non-linear condition and removes the equivalence of

minimum weight and minimum distance. Thus we will always consider

the even parity version of the PRODUCT code (so the ones are re-

moved from the equations above). This even-parity code has the

same distance structure as the odd parity version (and hence performs

in the same way) but is a linear code and hence its analysis is

easier to describe.

For additional information and discussion of this code consult

[4] and the literature cited there.

2.2.2 CARLETON Code

The CARLETON code is an algebraically defined code which is

allied to a shortened Hamming code but makes use of the odd parity

of the data bytes B. . 	(It was first defined in March, 1981 during

an attempt to show that the PRODUCT code is optimal as a data block

code on the white Gaussian channe; which it ish't in faCt.)

We first give a terse if somewhat mysterious and unmotivated

definition then present an algebraic definition.

a
4

= a
l
+ a

4
a
5
+ a

8

= a
5
+ a

7
+ a

8

= a
2
+ a

7

-19-

The suffix byte. B
28 '43

f CARLETON code is obtained by suc-

cessively adding each of the.27 data bytes to an accumulator

(a
8'

a
7' "'

a
1
), which starts off set to zeroes. After each

addition the bits of the accumulator are transformed according to

1
the following rules .(sums are mod 2): 	•

a
1
= a

l
+ a

2
+ a

6
+ a

8

a
2

= a
l
+ a

3
 +• a6

• a'=a +a +a +a
3 	2 	3 	4 	7

a
7
' = a

1
 + a

3
 + a

4
 +

•

a
8

= a
l
+ a

5
+ a

6
+ a

7
+ a

8 •

After the '27th byte has been processed the accumulator contains the

suffix byte
B28 "

The transformation of the accumulator involves each bit an odd .

, number of times. Therefore it preserves the parity of the accumulator.

Theaccumulator starts with even parity and the effect of the-

additions and transformations is to chanu_ this parity 27 time's. Thu::,.

B28
has odd parity automatically.

-

-20-

the non-zero field elements with period 127. If a codeword of

CARLETON code is written as a, bit string . 'as (B
1

, 	B28) =
 .

then the cOde'is so defined that' .
n

(C 	C
223' , .222' .. "-C1' CO
•)

223 	i
E C a
i=0

gle .
. . 	. 	. 	

-, . 	. 	.
•

.. 	‘ 	Where did the transformation rules cOme fromi Let GÉ(128)

f '
, 	V

. denote the field of 2
7
= 128 elements,. The non-zero elements of

-7: 	 .
1 • this field form a cyclié group which can be generated by a where
.à-
1

Thus a
7

= a
3
+ 1 in GF(128) and the powers cy

i
run through all

a is a root of X
7
+ X

3
+ 1 over the field GF(2) of two elements.

If the ith byte is written B. = (b. b 	b) this is
1 	17' i6' 	i0

28 	7
E 	E' 134

224-8i+j
=0

i=1 j=0 	•

More explicitly this is

223 	216 	• 	, 	7. 	0 •

(b re) 	(b28,e 1?28,0ce) =

We write this equation in the form

7 	6 	0, 8.27
(b

1,7
a + b

1,6
a +• + b

1 	
) a

0
7 	• 0 	8.26

+ 	
27

 a + 	 +b
20 a) a

' 4". 	V0041

7 	 0 	8.0
+ (h 	a + 	, 	 +

b28,0a
) a 	= 0 .

28,1

Given the'first. 27 bytes we wish to select the bits of the 28th byte

so that this equation is valid with the parity of B
28
 odd.

• Each byte
.
B
i

represents an element of the field GF(128),

'
 n

• i0
0

We then see that the check (suffix) byte is determined by the above

equation,

827 	826 	81

.
B
28

B
1
(a) 	+ B

2
(a) 	+ 	+ B

27
 (a)

= 1 	+ B2
)a8 + 	+ B

27
)a,8 •. (')

In fact each field element x has two representations as

7 	6 	1 	 7 	3 	0
X = u

7
a + u

6
a + 	+ u

l
a +u

0
 since 0 = ce + a + ce . One

representation has an odd number of ones (non-zero coefficients)

and the other has an even number of ones. Therefore B
28

can be

represented by,an odd parity byte and we have fourid the suffix byte.

The "Horner's method" definition of B
28

((*) above) is the

expression used in the first definition of Carleton code. The

transformation specified in that definition is just "multiplication

8
by a "• As an 8x8 binary matrix the "multiply by a

8
" trans-

15 	14 	8

	

formation has rows equal to a , a , 	. Using odd parity

- 2 1-7

representations for these field elements the matrix.is

-22-

•
14

a
(mult. by ce

8
) =.

Q'

.9

15

8

1 1 0 1 0 0 1 . 1
1 0 1 0 0 1 0 0

0. 1 1 0 0 0 1 0
0 0 1 1 0 0 1 0
0001 1001

•1 1 0 0 0 0 0 1

1 0 1 0 1 1 0 1
1 0 0 1 1 0 1 1

•

This matrix then determines the linear relations in our first

definition.

As with the PRODUCT code we actually work with even parity

bytes in CARLETON code when carrying out performance calculations.

2.3 PERFORMANCE

The main thrust of our progress report [2] was the analysis

of the relative performance of PRODUCT, CARLETON and SAB codes.

We have repeated the calculations for the first two codes extended

to a length of 28 bytes and will report our results here. For de-

tails on methods of calculations etc. the reader is referred to the

earlier report [2].

One measure used to assess the codes is the probability that

a burst of length b results in decoding error. Here a burst is a

continuous string of b bits each of which is in error with

probability .1/2. For PRODUCT and CARLETON codes these probabilities

1 ,

tJ

0

fah

111111.

'es

1

-23-

are 1.ndependent of the length of a code so no new calculations are

necessary. Thus Figure 2:1Iis repeated from the Progress Report '

unchanged: The actual numbers are given in Table 2.3.1 and are used

in the channel model of Section 2.4 below.

The probability of a decoding error (or decoding failure) on

. a variety of model channels was the other performance measure used.

This requires (in the absence of field data) that quite arbitrary

assumptions be made about the nature of the error patterns in the

channel so that the calculations •can actually be carried out.

Hence a range of channels mas used. The channels are described

briefly below (and in more detail in Appendix 2D). 	The results

appear in Table 2.3.2. Note that the Burst Channel #2 of the

Progress Report has been removed from those considered. Each channel

depends.on a choice of parameters and this choice mas always made

-3 	-4
so that the overall bit error rate would be one of 10 , 10 ,

10
-5

or 10
-6

'

	

, White Gaussian Channel. 	. 	• 	. .

The errors occur as independent events with a fixed probabil-

-4 	-5

	

ity of 10
-3

, 10 ., 10 	or 10
-6

.

Burst Channel 1.

This channel is of the type introduced by Gilbert in Refetence[6]..

The channel has two states; "good" and. "bad". 	In the ,%ood"

i'ee-›>4i2s,S J. •

..10

• 10 	l5 	,20 	25 	30

'Burst Length (in bits) 	". • 	. .

.25

.20

Probability

of

Decoding
Error

.15 -

0 PRODUCT code

G •• CARLETON code 	 •

SAB code

FIGURE,2.3,1 The Probability. that a Burst Causes a Decoding Error

TABLE 2.3.1 The Probability that a Burst of Lengt103.Causes Decoding Error'

CARLETàN code PRODUCT code

(

••n•n••n

0 	' 	0

	

4 	, 	0 	 0,

	

5 , 	0 	;00781

	

.6 	0 	.00781' s

	

7 	. 	0 	.00586 .

	

8 	0 	• .00122

	

9 	.0137 	,0237

	

.10 	. 	.02,13 	
.0340 9'

	

11 	 .0251

	

12 	, 	 .025 7 	- •

13 . 	 ' 	.0271 	•

	

14 	 .0268

15 , 	 .0261

	

16 	' 	 - '.0257

	

17 	. 	 .0243

	

18 	 .6'233

19 • 	 .0223

	

20 	' 	! 	• .0213'

	

25 	 .0161

	

30 	 .0123

35 . 	 . .0090 	— 	.

	

40 	. 	 .0066

	

45 	. 	• 	.0047

.0033

•

Bit Error

Rate

10
-3

10
-4

10 -5

-6
10

Code

PRODUCT

CARLETON

- PRODUCT

CARLETON

PRODUCT

- CARLETON

PRODUCT

CARLETON

Expected No.

of Pages until

Decoding

Error

1.61x10
3

8.04x10
3

1.4
x

10
6

7.0x10
6

1.3x10
9

6.4x10
9

1.3x10 12

 6.4x10
12

Burst

Channel

#5

1.74x10
3

-
 8.57x10
3

J.46x10
6

7.18x10
6

1.15x
1

0
10

5.64x10
10

1.19x10
13

6.25x10
13

CS)

10
-3

10
-4

10
-5

10
-6

Channels:

White Gaussian 	Burst 	Burst 	Burst 	-Burst

Channel 	Channel 	Channel . Channel

. 	#1- 	#2 	 #3 ' 	 #4

154 	90 	 337 	 43

755 	451 	1660 	254

1.28x10
4 	

7.81x10
3

1.12x10
5

3.81x10
3

6.30x10
4 	

3.94x10
4

5.49x10
5

2.26x10
4

	

1.27x10
6 	

7.70x10
5

4.32x10
7

3.77x10
5

6

	

6.22x10
6 	

3.89x10
6

2.12x10 8 2.23x10

'

	

1.27x10
8 	

7.69x10
7 	

1.68x10
10

3.76x10
7

	

6.21x108 	3.88x10 8 	8.22x10 1° 	2.23x108

2.

16

165

1653

1.4

9 	-

84

Expected No. -

 of Pages until

Decoding
•

Failure •

The same for 2.6

both codes
226

4
2.2x10

2.2x10
6

2.4

. 30

308

3100

3.4

197

1.28x10
4

6.83x10
5

838

3.7

284

1.12x10
5

4.03x10
6

TABLE 2.3.2 Performance Pàrameters on a Variety of Model Channels

-27-

state errors occur as in White Gaussian channel. In the "bad"

state every bit is in error. The result is a channel with numerous

short bursts (lengths 2 and 3 being the most popular).

Burst Channel 2.

This channel is a Markov chain with a one bit memory. Again

it is characterized by. short bursts (lengths 3 and 4 dominating.)

Burst Channel' 3.

This channel is based on a Pareto distributions (see Reference 7).

Its most frequent burst lengths are 5,6 and 7.

Burst Channel 4.

This channel is a White Gaussian channel in which some phenomenon

converts half the isolated single errors into consecutive double

errors. It has a curious distribution of burst lengths with even

length bursts favoured over odd.

Burst Channel 5.

This channel has occasional long bursts (of about 10 bits) and

is approximately White Gaussian the rest of the time. The col-

lection of the errors into these longer bursts at a fixed bit error

rate effectively cleans up . large stretches between the bursts. The

result is a channel on which codes behave largely as they unuld on

a White Gaussian channel with a bit error rate much less than the

observed bit error rate.

PRODUCT

CÀRLETON

-7

The 1ow-weight distributions of the codes is given in Table

2.3.3. There A4 is the number of codewords of weight i.

A*4 	A
5 	

A
6 	

A
7

	

10,584 	0 • 1,100,736 	0

	

2,154 	0 	622,733 	0

Table 2.3.3 Low Weight Distribution of the Codes .

2.4 A New Burst Channel Model

One of the problems with our earliev burst-error model chan-

nels is that the bit error rate within a burst is too high

(generally it is 1 or close to 1). This drawback is overcome by

the channel model we now describe. We assume that each data block

(i.e. codeword) is received in either good or bad condition. In

the good state the errors are independent events while in the bad

state a burst error of some length b ocèurs (and all other bits

-
are correct). The necessary parameters of.the channel model and code

are the following:

P
G
 = probability that a good block is received, •

P
B

= 1 -P
G

= probability that a bad block is received,

a = bit error rate in a good block,

p(b) = probability that a bad block contains a burst of length b,

BER = P
G

+ P
B 	

p(b) •
b 2n

+ na (1.-a) n-l) + 	E 1.2±1.
CD 	G 	 B b 2b

-29--

E
B
(b)' -= probability that the code - being used turns a burst

of length b into a decoding error,'

E
G

(D.) = probability of decoding error for the code being used

on a white gaussian channel with bit error rate a .

. We assume that there is no correlation betWeen the states of

successive blocks. We also assume that the bits of a gbod block

outside the burst are correct and that inside the burst the bit

•
error rate' is 1/2 with all 2

b
burst error .patterns equally likely

to arise. Writing n for the length of the code the overall bit

error rate is

The probabilities of decoding error and of correct decoding

p = p
 DE 	G
E
 G

 (a) + p
B '
 E p(b) E

B
(b) .

b

are..

The parameters E (0) are in fact numbers calculated earlier.

They appear in Table 2.3.1 and Figure 2.3.1. The parameters E
G
(a)

is easily calculated from the xâeight distribution of the code. Yet

to be determined are a, P
G

and the values p(b) for b

The value of cy is determined from the others by fixing the over-

-3 07

the bit errOr rate equation for a . Since 0 < < 1 not all

Figure 2.4.2 where the iilean number à (18 data block) pages until

-6
all bit error rate (at say 10

-3
, 10

-4
, 10

-5
or 1O) and solving

choices for P
G

are feasible.

Knowing the distribution E
B
(b).in advance means that se can

produce almost any result by choosing the distribution p(b)'ap-

propriately. In comparing,•CARLETON and PRODUCT Codes the 'question

is: does the better performance of CARIETO1Ccode on the good blocks

compensate for its relative weakness on the bad blocks with bursts

n

of lengths 4 to 10? Or more to the point, what happens to the per-

formance as the channel becomes more bursty i.e. as P
B

increases?

Three distributions , p(b) have been used to demonstrate this

model. We call them Channels A, B and C, and they are plotted in

-3
Figure 2.4.1. This channels have B.E.R. = 10 . As we move from

Channel A to Channel C there is an increasing 'trend. to longer bursts.

Note that Channel A has bursts onlY in the range (b = 5,6,7,8) In .

which CARLETON code produces decoding errors and PRODUCT , code does

not. Hence, this channel produces a rather remarkable curve in

decoding error is plotted against the probability P
B

that a block

contains,a burst error. Once we move the preponderance of bursts-

. to longer lengths as in Channels B and .0 we see .a consistent shape

. n i,„4";1 . 	 '

0.4 	-1

0.3

PROBABILIT'Z

0.2 	-I

•

0.1

1 	2 	3 	4 	5 	6 	7 	8 	9 10 11 12 13 14 15 .16 17

BURST LENGTH , b

18 	19 	20 21 	22 	23 	24 25 	26 	27 	28 29 	30 	31 32 	33 ,

• .1. 	
.

-".

Figure 2 .4 .1 New Channel Model :
D

Channel

BA --______
Distribution of p(b)

Channel C 	 { •
•

Distribution of E
B (b) { PRODUCT code C)

CARLETON code I

Figure 2.4.2

New Channel Model : mean numr of pages
to Decoding Error at BER=10 - as a function
of probability of a bursty block

9000

Ile •••• 	••111. 1n••

CARLETON code

Channel A

Channel B

Channel c
8000

• 000

6000

Mean Number of
Pages until
Decoding Error •

50po

4000 -I

• 3000 'H

2000 H
PRODUCT. code

Probability That a Block Contains a Burst Error•

1000

• .

I 	1 	II

• 10-4
10

-5
1 	1 1 IlI .

• -3 - 	10
1 	

11
10-2

1 0 -6

for the curves. Thus as P
B

increases. the mean number of pages,

until decoding error declines from the white gauspian values (for

-5
say P

B
< 10) to a matter of a few hundred when P

B
is 10

-3
to 10

-2
.

The behavior of the codes is easy to explain. When P
B

is

small the channel approximates white gaussian closely. When P

is large more errors occur in bursts and fewer as independent events.

Thus the superiority of CARLETON code is lost in the roughly equi-

valent abilities of the two codes with bursts. In the case of

Channel A we have a curious anomally. 	Thig channel never has

a burst of errors which outwits PRODUCT code. Hence as P
B

in-

creases PRODUCT code makes fewer decoding errors on this Channel.

This discussion is made simply to indicate the flexibility of

the model and the intimate interdependence of performance with error

pattern frequencies. This channel was developed to give a more ac-

curate model of burst channel performance but has the additional

virtue that it would be straight forward to fit this model to field

data. It is ready and waiting if any such data every appear.

2.5 Decoding

The software decoding of both PRODUCT and'CARLETON codes was .

discussed in [2]. As the algorithms given there , were implemeàted .

for the shorter 25 byte data blocks we have included here in an ap

pendix implementations of the software decoding algOrithm for the

(•
 CARL-el-11W code- .

length 28 bytes caseA . Again these are written in 6809 assembler.

The time to decode a single data block with this algorithm is at

most •12.5> 1- machine Cycles (msec. at 1.29 M/hz), for CARLETON.

Again this algorithm uses 511 bytes of look-up table storage. The

.decoding time for CARLEIIIVCode by the algorithm given here is • 9'insec.

Hardware decoding of both PRODUCT and CARLETON code is straight-

forward. We describe below hardware decoders for these codes to a

reasonably detailed level. Of course the actual form of decoding

uses in any particular videotex terminal will depend very much on

the overall architecture of the terminal. Hence there isn't much

Point in refining the design completely.. The hardware decoder is

developed only for enough to, show:that . its.complexity is notextreme'

and implementation can be handled in various ways.

-35-

2.57.1 A Hardware Decoder for Carleton Code

This decoder will correct a single error or declares a decoding
•

failure in 448 clock cycles. These cycles are divided into an in-
, 	,

put phase of 224 cycles and an equal output phase. The dècoder is -

working in a bit-serial mode with the suffix byte last.

During input the incoming bits are counted off into bytes and

the parity of each byte is checked. The bytes are counted from 0

to 27 and when a parity failure in a byte is detected we record the

byte number in the set of 5 flip-flops. Simultaneously we count

the number of byte failureé by passing a 1 down a 2 stage shift-

register. This allows us to identify whether there were 0,1 or more

-
than 1 byte parity . failures.' At the same time a feedback shift

register is calculating the algebraic syndrome °by-multiplying by

a rock cy of X
7
± X

3 	
1).

After 224 clock cycles the entire received string has been 	,

clocked into the data buffer. We now clock it out for 224 cycles.

First the swtich A is opened to preserve the number of the last byte

to show a parity failure. The five adders then compare this byte

number with the number of the byte now leaving the data buffer.

The NOR gate identifies a match.

The algebraic syndrome register continues to cycle during the

output phase. Two logic circuits decide whether the contents Of

this register is non-zero and whether it is the representation

223
of a 	= (0,0,0,1,1,1,1). This last condition means that a

single error in the bit now leaving the circuit would have given

the same syndrome. • Then if the byte number niatches the last one

with a parity failure and there was only one byte with a parity

failure then we correct the bit.

Decoding failure is declared if any of the following occur,

1. at least two bytes have a parity failure;

2. the algebraic syndrome is zero and at least one byte has

a parity failure;

3. the algebraic syndrome is'non-zero and there were no cor-

rections attempted. 	'

.This last condition is unknown ntil the last bit is out so decoding

failure is decided only at the end of the 224 cycles.

After the 224 bits are closekd out of the circuit the switch A

is closed and all the registers are reset appropriately. (The 5

flip-flops must be reset to a string which is not a byte number.)

The details of clocking and reset are not 'worked out.

(For the flip-flops a dot . marks the clock input.)

DECLARE A DÉCODING FÂILle

1.

COUNT OFF THE

224 BITS INTO

28 BYTES

?DOES CURRENT

BYTE NUMBER MATCH

NUMBER OF THE

LAST BYTE WITH

A ,PARITY FAILURE?

STO'RE

UMBER'

f: ANY'

YTE:

WItH A

PARITY'

FAIL-UR

CALCULATE

PARITY OF THE
INCOMING BYTE

11.nnn•n•

CANGE THIS
_

BIT IF IT IS
'213YIE 'RAS

efitty:
.1£0te.

OF BYTE

PARITY 	kl

FAILURES >1

?NO COR-

RECTIO I

AtTEMPtEC

'SYNDROME

2 .23

'SYNDROME

FEEDBACK SHIFT REGISTÉR j-0 CALCULATE TifE

ALGEBRAIC SYNDROME ,. sMtjÉtIPLIÈS 8Y à
• 	- A ROOT OF X7+ X3

V

1.1

nrrnrimr, FP r! i!RF flATA OtIT

224 _BIT SHIFT REGISTER

1 to 8
COUNTER

ir:etniea làl te

(...)

• 1 to 28

COUNTER

-38-

'2..2 A Hardware Decoder for P.roduct Code

This decoder ià similar to the one for Carleton code. The

layover highlights he differences. The algebraic syndrome is re-

placed by a feedback shift register which calculates the column

• checks. A 2 stage shift register counts the number of failures

(i.e. O's) in this set of 8 column checks.

Decoding failure is declared if, 	;)

1. there are at least 2 column failures;

2..there are at least 2 row (i.e. byte failures).

kmee.16.1.4 0
DATA IN

224' - BIT - SHIFT REISTER

1 1 to 8

COUNTER

1 to 28

COUNTER

DECODING FAILURE 	DATA OUT

Appendix 2.A Definition of Carleton Code.

In addition to the odd-parity checks on the 27 data bytes a

single suffix byte is added as follows. Each successive byte is

added mod 2 (eXclusive-or) to an accumulator (a
I
 ... a

8
). After

.

each addition the accumulator is transformed according to the

rules (mod 2):

= a1 + a
2
+ a

6
+ a

7
+ a

8

=+ a + a
1 	3 	6

a =a
2
 +a

3
 +a+ a

3 	4 	7

a' =a+a+a+ a
4 	1 	4 	5 	8

5
+ a

7
+ a

8 	.

a' = a
6

a' = a +7 a + a + a
7 	1 	3 	4 	8

a' = a
l
+ a

5
+ a

6
+ a

7
 + a

8

.After 27 bytes have been processed the accumulator contains the

check byte.

X points to the first message

byte. A is set to zero.

• LDX 	BYTE1

CLRA

TÈ

APpendix 2.B A Software Encoder for Carleton Code.

This encoder implementà the method of page' 	. It. is

written in 6809 Assembler code.

-41 -

Each successive byte is exclusive-or'd BYTELOJP EORA 	,X

with the A register.

The A register is them multiplied 	LDB 	#1

by a eight times. The iterations

are counted by shifting a one across

the B register. The contents of A 	XALPHA. ASLA

are shifted once to the left.' • If a

.one appears in the carry bit C then

A contained (1,...,) a number using .

7
a in its representation. . Thus if, 	. BCC 	SKIP

C = 1 after the shift we add a
8

. onto. 	.EORA 	#155 •

•
.A 	

8
where ce =

7
 a. 	

4
HH

3
a + cy+1 - .- (10011011). SKIP ' ASLB 	.

In deçiMal this byte represents 155. - 	' 	BCC 	XALPHA

• •

After 27 bytes have been processed

we leave the loop

A which now Contains the check byte

LEAK 	,X+

CMPX 	BYTE1 + 28 -

BNE 	BYTELOOP

STA 	,X

is stored in. the next byte•below

' the data bytes in memory.

Return 	 • 	RTS

-43-

APPENDIk 2.0 IMPLEMENTATION OF THE DECODER FOR CARLETON CODE

(LENGTH = 28 BYTES)

MEMORY ALLOCATION
-

This routine uses 3 bytes of RAM :

PERROR 	Is two consecutive bytes that will store the location of
the first faulty byte that we find. We use two bytes, as
we must store the index register 'Y' here, but since 'Y'
only takes on values between 1 and 28, the first byte will
always be zero. So, to see if anything has been stored in
'PERRÔR', we will always look at the contents of PERROR+1.

ERFLAG 	Is the decoding failure flag. It is set to zero at the start»
of the routine and will remain zero if we decode correctly.
However, if we have a decoding failure then ERFLAG receives
a non-zero, value. This is unnecessary if a bit in the con-
dition code register is used ad an error flag.

This -routine also uses 51Lbytes of tables in ROM:

QSYND 	Is a table of length 256- which has the quasi-syndrome for
any given message byte. The table is stored in the fol-
lowing format:

For an entry in the table corresponding eto a given byte. The
first bit of the entry is the

4
 p ri y o the corresponding

message byte while the last seven bits are the actual quasi-
syndrome of the byte. This allows us to do the Syndrome
calculations and the parity checking of a message byte
simultaneously.

MUL8 	Is a table of length 128 which is used to multiply a given
partial syndrome by u8 . An entry in this table corresRonding
to a given byte is just . the product of this byte and (y ee , in
the finite field. We only need a table of length 128, as the
partial syndromes are all 7 bits long, which gives us a
maximum.of 128 different partial syndromes and 128 different
locations in the table.

LOG

•

Finally, the array 'message' is the received message, which is

assumed to be 28 bytes long and to have the following format:
An information byte in message looks like

XX 	..., X 	X.
i+6 , 	i+1 	-

with the leftmost bit being the most significant bit of the byte.

Thus the first byte of message will go-from X
223

to
X216'

while the

last byte comprises X
7
 through X„ .

Assembler Program

TOPBYTE EQU -#28

LEY #TOPBYTE
CLRA

• CLR PERROR
• • CLR PERROR + 1

CLR ERFLAG

TOPBYTE 	Is the number of bytes in the received message.. Currently,
we assume a message length of 28 bytes.

PERROR

-44-

Is a table of logarithms in the given field. For a given
byte B the corresponding entry in the table is the

number U such that a 	B. We use this table to find
the drror position in our received message from a given
syndrome.

A

Is the internal index register of the 6809 microprocessor
that points to the byte of the received message that we

are currently examining. Since we are working from the last
byte of our message down to the first, Y will initially have
the value TOPBYTE.

Is . the internal register.of the 6809 that contains, the
partial syndrome during this main loop. It has an initial

value of zero, as we initially have no syndrome.

. 	g
Is the first of two memory locations that will be used to '
store the locations of any bytes that have odd parity and

thus'an odd number of errors. Initially, , PERROR is also -
zero, as we have , not yet encountered, any parity failues.

.''OLOOP 	LDX

' 	2 	LDA

#MUL8

A,X

-45-

•

1- 	•

The following loop, from the statement

-labelled 'OLOOP' to the statement .
labelled 'GOON', is . repeateci once for
each byte In the received,message,
starting with the last byte and going

downwards to the first.

We start by multiplying our curent
value of the partial syndrome by a .

This is done by looking up the product in

the table 'MUL8'.

Remember that 'A', the partial syndrome,

is initially zero, and thus this multi-

plication has no effect on the first

iteration of the loop.

Now, we add the quasi-syndrome from
our current byte of message to the current
partial syndrome that is stored in 'A'.
Since we are working mod 2, we do this ad-
dition using the 'Exclusive-0r' Instruction é
of the microprocessor. Also, to find the
quasi-syndrome corresponding to our current
byte of received message, we look .up the
value in the table named 'GSYND'.

No, the entries in the table 'QSYND'
are structured as follows: . The first

(most significant) bit of an entry in

'QSYND' corresponding to a given byte, is

the parity of that byte, while the last
seven digits of the table entry are the
actual quasi-syndrome. Thus, we .can calculate
the parity of the current byte'as well As

the up-to-date partial syndrome in one
operation.

So, in order to look at the parity of

our current byte, we have to look at the

leftmost bit of register 'A', which is our

current partial syndrome. If the leftmbst
bit is set, then the current byte is of odd

parity, and there is an odd number of errors

in this byte.

LDB •;ME.SSAGE-1,X
LDX. ePSYND

EORA . B,X
BITÀ. #$80
-BEQ GOON

If we reach this section, then 	TST 	PERROR+ 1
the parity of the current byte was even 	'BNE 	FAIL
so we had an odd number of errors.

So we would like to store the location 	STY 	PERROR
of this current byte, presently held 	ANDA 	#$7F

in register 'Y', at PERU«.

However, if PERROR is currently

non-zero, then this is the second
byte containing a parity error.' Thus

there are at least two errors in the

received message, and we have no hope

of performing a correction. In this

case we branch to the location 'FAIL',
which indicates a decoding failure.

OtherWise, this is our first-parity . 	,

failure, and we could still correct

our error, and finish correctly. So
we store the location of the current
byte, y, in location 'PERROR'.

•

Now we decrement register 'Y' by 1. 	GOON 	LEAY 	-1,Y

If 'Y' is not • zero, it will point to 	BNE 	OLOOP
the next byte to be processed. In this

case we branch back to the beginning of
the loop. Otherwise, if Y is zero, we
have finishedthe parity checking and

syndrome calculation section of the

program, and we can now go on to attempt
an error correction.

Now we have generated the syndrome, 	TSTA

and we have the location of any one byte 	BEQ 	NOSYND
that had a parity failure stored. We • 	TST 	PERROR+1
would obviously like to know if we could 	BEQ
correct any errors that have crept in to

the received message. To answer this, we

need to consider four main cases:

-46-

•

-47-:

Case 1: PERROR=0 and A=0
We assume that we received the

message correctly, and pass
to the end of the program.

Case 2: PERRORM and A=0
In this case there are at

least two errors in the

received message, and we

cannot possibly decode cor-

rectly. So, we immediately

report a decoding failure by

branching to the label 'FAIL'.

Case 3: PpYND=0 and Ae
Again, we have at least two

errors, and we report a

decoding failure.

Case 4: PSYNDe and Ae0
Here we have .at least a chance
of correcting the error. There

are two possible positions in

the received message where an
error would cause a syndrome .

identical to 'A'. If either of

these' positions lies within the

byte numbered 'PERROR' then we :
. assume that we only had_a single

error at ..that position, and we cor-
rect it. However, if neither of

these two positions is in the byte
at location 'PERROR', we,again. fail.

This is case 4.* 	. 	.
. 	 .

We would like to try to.corrept our one . . 	LDX 	#LOG-1
èrror, if there is only One. Our first 	LDB . - A,X 	,•
step is to find the two possible error . , 	TFR 	B',A 	-
positions.corresPonding to our calCulated. LSRA'
syndrome. The first of thebe erroi - . 	.. • LSRA
positions is the number. I.F, such that O. 	' 	LSRA• ,
=A (the calculated syndrome.) We may'find 	INCA. :'
:sucha H by looking it up in a logarithm . 	CMPA 	PERRORA4
table for the given field. The other pos- 	BE:Ok 	•CORERR

sible error position is simply U+127,

since our primitive element, cy,has

order 127.

' 	/
We.can calculate U very simply, by

looking up the value of U appropriate to

the syndrome in a "LOG" Table for the

finite - field. We then proceed to store

this, the first possible error position

in both registers 'Al . and 'B'. Now we
would like -to see if this error position .

 fall's within the byte pointed to.by

'PERROR'. To do this; we simply divide

register 'A' by eight, which Will give Us

a byte position between.0 and 24, then

add one. Since the 6809 has no diVidé

Instruction, we Shift register 'A' three
bits to the right, which has the same ef-

fect as dividing by eight. Once we.have

computed this result, we Compare it to

'PERROR', and if the two are the same, we

proceed to the label 'CORERR' to attempt ,

 to Correct the error at byte 'PERROR'. .

If we reach the following section of code, 	TFR 	B,A

it means that our first error position did 	ADDA 	#$87

not fall within the byte pointed to by 	LSRA

'PERROR'. However, there is still our 	LSRA

second possible error position to try. 	LSRA

This position is 127 bits later than the 	CMPA , PERROR+1
first. Our value for the first error 	BNE 	FAIL
position is stored in register 'B': We. 	DECB
move the contents of this register into

register 'A', add 135, and divide by eight,

using three'right shifts as above. Adding

135 has a dual purpose:. We wish to add 127

to get the next possible error position, and

eight more to avoid having to increment 'A',

as was necessary in the last section.

-49-

We should now have the byte position

of this, our second possible error position.

We compare this with 'PERROR'. If the two

are equal, then this second error position

is assumed to be the right one and we con-

tinue on to corerr where we correct the assumed

error. Otherwise, neither of the potential
error positions fell within the byte with odd

parity. In this case, there are at lest two

. errors in the received message, and again we

must report a decoding failure.

Here, we have decided that there is exactly 	CORERR 	COMB
one*error in the received message, at the 	ANDB #7
position giVen by the contents of register 	IMCB.

'B', in the byte of the received message 	LDX PERROR
numbered 'PERROR': We would now like to cor-. 	LIDA #128
reet this error. Since We know which byte
the error. falls in, to correct it we need

only'create a byte which is all zero except 	•

for a one in the position correspônding to

• the faulty' position in the incorrect byte
and 'EXCLUSIVE-OR' this byte with the faulty
byte. The zeros in this correction byte

will not affect the correct digits in the

faulty byte while the one will change the

faulty bit. This position within the faulty

byte is given by the last three digits of
• register 'B' which ara, in effect, the re-

mainder when 'B' is divided by eight. So, nur

correctiàn byte.is created by placing a '1'
inéo the leftmost bit of register 'A' and '

• shifting it.to the right the number of times 	 •

given by Sevénless the last three - digits of-

'B'. • Then, 'EOR5 this byte*with our faulty

byte corrects the error.

:•t

This next section is the loop 'that actually CORLOOP . DECB'

creates the correction byte. Register 'A' 	BEQ ECRIOOP

starts out with a one in the leftmost . 	LSRA •

position (Most significant bit) and is 	BRA CORIOOP

shifted' to the right the number of times'

given by register B less one. Note that
• the test In this loop is at the beginning, .

to take into.account the case where the

faulty bit occup ies the leftmost position'

• . 	• • in the faulty byte, and no shift is - required..

ThuS we have created ntir correction byte in ECRIOOP 	BORA 'MESSAGE-1,X

.register. 'A'. We now Use it to correct the 	. 	STA MESSAGE-1,X

error. Since register''X' now has the 	BRA OK 	,

location of the faulty byte, we use 	as

an index tnexclusive-or -the faculty. byte
, with ,the correction byte, then to store it

back again.

The following are cases 1 and 2 from above. NOSYND, 	TST PERROR+1

If we get to here, then register 'Al,the 	BNE FAIL

syndrome is zero. Hence, if we did not

observe any bytes with cdd parity in the re-

ceived message then we assume correct reception;

and terminate. Otherwise, we did find a faulty

byte and to produce a zero syndrome there must

have been at least three errors and we have no

hope of correcting. So we announce a decoding

failure by branching to the label 'FAIL'.
'

If we reach this label, then we have had what 	OK 	RTS

we assume is a successful decoding, and we

return to the calling program. -

If we arrive at this section, then we have a FAIL 	COM ERFLAG

decoding failure. We have this if we are sure 	RTS

that we have two or more errors in the received

message. Since a zero value 'ERFLAG', the de-

coding.failure flag, indicates a correct de-

Coding, we set 'ERFLAG' to be a non-zero number,

before returning to the calling program.

.5

.5

.5

.5

Appendix 2.D Parameters of the Channels

The burst error channels used in the performancè analysis of

the codes were described briefly in Section 2.3. These are the

channels used in the earlier study [2]. This Appendix gives more

details. The new burst channel model of Section 2.4 is not dis-

cussed any further here.

Burst Channel #1 is a Gilbert type of model channel. This

channel model has often been used, for example by WeldonN.The

channel is assumed to be in either a good state or a bad state.

In the good.state errors occur independently with frequency a ;

in the bad state every bit is in error. (This latter assumption

makes the calculation feasible though a bad error rate of ½ would

be more reasonable.) Transitions between the good and bad state

occur at each bit transmission with the probabilities shown in

Table 2.0.I.The "good" error probability is then determined to give

the desired overall bit error rate. 	The distribution

good -; bad 	bad ->,good

-3-4
10 	2.5 x 10

-4
10 	3.0 x 10

-5

-5
10 	3.0 x 10

-6

-6 	-7
10 	3.0 x 10

Table 2.D..1 State Transition Probabilities .for Burst'Channél #1.

-51.-

f

BER = 1.7 1/(E m

-0

into types of the weight four codewords as given in Appendix 2.E

is the information required to calculate the probability of de-

.
coding error.

The four remaining burst channels are defined as special cases

of a general model. We assume that the lengths of the gaps between

correctly received bits are independent and identically distributed.

If X is the.number of bits from one correctly received bit to the

next then we set 'f = Ilr(X=m) for m > 1. These channels only

have memory of strings of consecutive errors. Once a bit is re-

ceived correctly the disposition of further bits is governed solely

by the distribution of X. .

An alternate way of specifying such a channel is to define • p.
1

the probability that a bit is in error given that the previous i-1

bits are erroneous. The parameters p. are related to the pare-

meters f
n.

by the formulas,

m-1
f= (1 -p) -n- pi

i=1

f
L
 = 1 -

m >1

We assume that E f = 1 and hence that the bit error rate (BER)

is given by

BER P
c

-53-

For Burst Channel #2 we set p
l =

P
c

and p. = P if i > 2.
E 	—

Then BER = P /(1-IFP -P).• The result is a channel in which errors
C E

arise as a bitwise Markov chain. A bit is in error with probability

P if the previous bit was in error and with probability P if
C 	. 	 E 	-

it was erroneous. Table 2.D.2 presents the values used in the

calculations. We take always P
c

= 100 P
E

-3 • 	-3
10 	.9099 x 10

-4 	-
10 	.9902 x 10

4

-5
10

-5 	
.9990 x 10

10
-6 	

.9999 x 10
-6

Table 2.D.2 Parameter values for Burst Channel #2.

The gap lengths between correct bits on Burst Channel #3 have

a Pareto distribution. For some a > 1 and for m > 1 we have

co

	

- 	-

	

f
m

= m 	E k a').
k=.1 	•

The values of a are chosen so that the channel has à preset bit

error rate; see Table 2.D.3. The formula for bit error rate in

this case Is

-54-

co

(E
k=1 	k=1

BER=

BER

BER

-3
10 	10.01656

10
-4

13.30094

10
-5

16.61307

10
-6

19.93246

Table 2.D.3 Parameter Values for Burst Channel #3.

Burst Channel #4 was designed to produce many consecutive

double errors. Over a background of white Gaussian noise with an

error rate p an additional process causing errors is superimposed.

This second process causes isolated single errors to be followed

by a second error with probability M. This corresponds to setting

p. = p for i 	2 and .p
2

= pq-(1-p)M in our general model.

Table 2.D.4 gives the values selected for the parameters.

10
-3

.667 x 10
-3 	

.5

10 	.6667x 10 	. 5

-5
10

-5
.666 7x 10 	.5

10 -6 .6667x 10
-6

.5 	'

Table 2.D.4 Parameter Values for Burst . Channel #4

10
-3

2 x 16 -3

10
-4

2 x 10
-4

•

-5 10 	10
-5

6
10

-
 . 	10

-6

-55- ;

Burst Channel #5 was designed to have longer runs of erroneous

bits than the other channels.. At a fixed bit error rate the effect

of a longer burst is merely that there are many fewer random errors

between the bursts. The codes tend to behave on such a,channel as

if it were a white Gaussian channel with smaller overall bit error

p
rate. We take f

m
p
m
 /m!(e -1) for m > 1. This gives

BER = 1 -e(e -1)/pe . The values determined for the parameter are•

given in Table 2.D.5. 	•

BER

Table 2.D.5 Parameter-Values for Burst Channel #5 .

-56-

Appendix 2.E Parameters of the Codes

The analysis of the performance of the codes on bursty channels

re4uires a detailed cataloging of the weight into types according to

the degree of separation of their ones by zeroes. We use the

integer 1 to denote a single one and use 2 to stand for two ones in

a row. The single hyphen "-" represents a single intervening zero

while a double hyphen "--" denotes at least two and perhaps more

consecutive zeroes. Thus the vector (---00011010000100--) has

type 2-1--1.

Type 	PRODUCT 	' • 	,CARLETON

2--2 	2646 	72

2--1-1 	0 	257

2--1--1 	27 	683

1-1-1--1 	2268 	. 	60

1-1--1--1 	. 	54 	. 571

1--1--1--1 	f5589 	511

-57-

Chapter 3..EXample of a Half -page Code

3.1 Introduction: A Reed-Solomon code.

information bytes

of the Reed7Solomon

*Code ' (8 x 28)

71«

1
1

In addition to the use of error correction on individual

data lines coding can be introduced into the Broadcast Telidon

system at other levels on a discretionary basis. This chapter

explores one such possibility. We consider a Reed-Solombn

code which groups 8 data blocks together then adds a ninth

line of check bytes (figure 3,1). Thus this code has 8 x 28

"information" bytes and 28 "check" bytes. (The prefix bytes

are ignored.) The symbols of this code are bytes rather than

bits. In fact any pattern of 14 byte-errors can be corrected.

These byte errors can come from 14 independent bit errors

scattered in 14 separate bytes 'or from a series of 98

consecutive bit errors. This code gives extremely good

performance at the cost of an increase in decoding overhead

and in decoding time. •

.27 Data Bytes 	, Suffix Byte

line #1 '
li'ne .#2

line # 3

•
•
.•

line
Reed-SOlomOn'check bYtes

' FIGURE 3..1 A Codeword of the Reed-Solomon Code • 	•

- 58 -

3.2 Performance.

We have used as a performance measure the expected

length of a run of trouble free pages. We therefore make no

distinction between decoding failure and decoding error.

Any outcome of a decoding other . . than correct decoding we

will call a dedoding fault. We calculate the probability of

decoding fault. From.this the mean number of pages until

a decoding fault occurs is calculated. The results are

plotted in Figure 3.2.

. The data 'block code might or might not have been used

prior to a Reed-Solomon decoding. Since the bytes of the

data blocks all have known parity the data ,block code will

never corrupt a good byte in .an attempt to correct errors in

that data block. Thus the data 'block code cannot make the

job of the Aeed-Solomon code any more difficult and it may

make it easier.. •

Not making any distinction between decoding failures

and decoding errors has two simplifying consequences.

.First, since we are only interested in the number of corrupt

bytes in a .9 block unit a channel with independent errors

will tend to be the worst. A bursty dhanneL will have

•errors occuring in clusters. Thus at a fixed' bit error

rate, a burSty channel will •have more clean pages and fewer

corrupt bytes.' The second simplification is that if we are

1

1 	•
[• 	l o

0

12
10

14

-10
10

A.

1

4

•

1

1

-59-

Figure 3.1:

Mean Nimber of Pages until Decbding

Fault for a 14 byte-error Correcting

Code of' Length 252 bytes.

• page= 2 codewords= 504 bytes)

(decoding fault=decoding err .or or failur)

•
' (* for Comparison-18 line s .

encodèd with a single error

correcting code.)

.14

10
8

MEAN NUMBER
OF PAGES
UNTIL 	'
DECODING
.FAULT

'
10 6

4
10

2
J.0

10
-4

10
73

• . BIT ERROR RATE

• -2
10

•

P =
CD

252 i 252-i
)b_b i ' -e-c

14

i=0

-60 -
1 	.

going to calculated 'the probability of a decoding fault we

are . edSentially - calculating thé PrObability of correct

decoding. Thus the 'Reed-Solomon Code can be replaced by an

arbitrary 14 byte-error correcting code. 	The precise

structure of the code is not required (and would be very

difficult to calculated in any case).

Assume that errors occur independently in the .channel

with probabilfty p. 	Then the probability that a byte is

received correctly is 	bc= q
8 where 	q = 1-p. 	The

probability that the byte contains an error is then

b
e
= 1-q8 . Ignoring any effect due to corrections made at

the data block level the probability , of correct-decoding for

the Reed-Solomon code is

i • 	 Then the probability of decoding fault is P F= 1 CD
-P 	and

the mean number of pages (= 2 codewords) until adecoding

fault can be taken as 1/(2P F).

.We have included in Figure 3.2 the corresponding

expected numbers of pages until decoding fault for a data

block code used without a Reed-Solomon code (that is with

single bit-error corrections. line bY line). Of course ,in

our earlier studies we used scarcity I:5f decoding errors as

the, prime indicator of good performance. These represent

-61-

ë;

only a small fraction of the decdoing faults. To calculate

the probability of decoding error for the Reed-Solomon code

would be difficult and not very illuminating (since decoding

faults in general are so rare). An attempt at reconciling

the two assessment measures is made in Table 3.1.

Bit Error 	Mean Number of Pages Until

Rate Decoding Fault: 	Decoding Error:

Data Block Code Carleton Code

Decoding Fault

Reed-solomon Code

-3 	 8 10 	2.8 	8.0 x 10 3 	1.7x 10•
-4 10 	I 	226 	7.O . x 10 6 2.0 x 10 13

TABLE 3.1 Comparison of Performance

3.3 Decoding.

Only a preliminary study was made concerning the'

decoding of the,Reed-Solomon code. Much has been written on

this subject. See for example [3] and the references cited

there. 'A decoding algorithm of the Massey type was .

implemented in ndcroprocessor software (6502). • Decoding

required on the order of one second and used 1/2 K of the

look-up tables for finite field arithmetic.

• 	 • -62- . 	

— -

Chapter 4. The System.as a. Whole 	.

.The final stage •in our analysis of error-correction

coding for the Telidon system was an analysis of the

performance of the overall system under various assumptiàns.

Coding .has been proposed or approved for the - five byte

prefix, the data blocks and for gràups of data blocks. How

do these codes inter-relate as regards performance?

We consider two arrangements for coding a séquence , of

nine data packets. 	The first Option

Reed-Solomon code while the second does.

A does not use a

Option A:

Option B:

-each prefiX byte . encoded with Hamming (8.4) . ..
-each data block completed with a one-byte.
suffix to correct single errors.
.'-each prefix byte encoded with Hamming (8,4).

-coding on the data blocks optional

-the 9 data blOcks as a whole form a codeword
for a 14 byte-error correcting code
(Reed-Solomon for example).

We assume . that . errors arise independently.. We use as a

measure of performance the expected number - of - , (18 data

paCket) pages until decoding fault. In 'other words the

number calculated .is the expected number (:)f pages in a

problem7free run. Faults include both decoding errors and

decoding failures with the former being a very small

fraction• on the channel used. The advantage of using the

•

-63-

probability of a decoding fault over using decodingerror is

that independent errors are the worse case for the former

and generally the best • case for the latter. A bursty

channel has its errors packed into fewer bytes so there are

longer runs of correct bytes. Moreover it woilld be very

difficult to calculate the probability of decoding error for

the 14-byte error correcting (Reed-Solomon) code even in the

simplest case of independent errors.

Table 4.1 presents the expected number of pages until a

decoding fault for Options A and B at various bit error

rates. We include for comparison the same parameter

calculatèd with the prefix code assumed to work perfectly

(i.e. no faults).

ERROR 	 • OPTION A 	OPTION B 	DATA BLOCK ,REED_SOLOMON

RATE 	Prefix & Block Prefix & Reed alone 	alone

codes • 	Solomon Codes

	

.01 	.50 	.56 	.5 	.6

	

.003 	.66 	• 	41 	.66 	• 420

	

.001 • 	 2.8 	399 	2.8 	1.7 x 10
8

	

.0003 	26 	4414 	26 	> 1013

	

.0001 	225 	39692 	225 	> 1013•

TABLE 4.1 Expected Number of Pages until Decoding Fault

-64 -

. What we can quickly deduce is that in Option A the.

faults are mostly coming from the data block code while in

Option- B they are mostly ,coming from the prefix. If we

examine the probabilities of faults arising in the prefices,

data blOck coae and Reed Solomon code this becomes more

clear.

i
MIT ERROR 	PROBABILITY OF DECODING FAULT IN...

	

RATE 	9 PREFICES 	9 DATA BLOCKS WITH 	9 DATA BLOCKS WITH
SINGLE ERROR CORR. 	14 BYTE-ERROR CORR. g•

	

1 .001 	1.14 x 10 -1 	0.9999933 	0.8829 -

	

.003 	1.11 x 10 2 	
7.58 x 10-1 	1.17 x10 3

	

.001 	1.25 x 10 -3

	

-4 	
1.78 x 10 	2.98_ 4 10 -1 	 -8

	

0003 	1.13 x 10
-5 	1.92 x 10 -2 	<

	

1'001 	1.26 x 10 	2.21 x 10 	< 10
-14 -3

I W 	 . • . 	 .
. 	 .

	

. 	 ,
-PABLE 4.2 Probability of at least one decoding fault'in "variou s . parts of
the . system 	. 	. 	 .

.

• Therefore most of the power of the 14 byte

error-correcting code is lost since the prefix code is

slowing the system down anyway. On the other hand, without

this long code the single error correcting code on a data

block is the limiting factor. We conclude that in the light

of the decoding complexity of the Reed-Solomon code future

-65-

•
work should replace this Reed-Solomon 'code with simpler

codes that correct fewer bytes, that canibe decoded faster

and which are closer to the prefix code in probability of a

decoding fault.

Canada, August 1981.

- 66 -

References

0 1. 	"Television 	Broadcast 	Videotex", 	Broadcast

.SPecification 	No. 	14, 	Issue 	1, 	Provisional - ,

.Telecommunication 	Regulatory 	Service,Department 	of

Communications, Canada ,June 19, 1981.

2. Leroux, B., M. Moore, B. Mortimer, L. Oattes and T:

Ritchford, "A'Study of the Use of Error-correcting codés in

the Canadian Broadcast Telidon System", Progress Report,

•DSS Contract No. OSU81-00095, Department of Communications,

3. Allard, P.E., V.K. Bhargava, and G.E. Seguin,

rRealization, Economic and Performance Analysis of

Error-correcting Codes and ARQ Systems for Broadcast Telidon

and other Videotex Transmission", DSS Contract OSU80-00133,
•

1 Final Report, Department of Communications, Canada, ,June

1981.

4. Sablatash, M. and J.R. Storey, "Determination of

Throughputs, Efficiencies and Optimal Block Lengths for an

Error-correcting Scheme for. the Canadian Broadcast Telidon

System", Can. Elec. Eng. J. (1979), 25-39.

-67-

• 5. Mortimer, B.C., "A Description of the Carleton

Code", DSS Contract No. OSU81-00095, Progress Report,

Department of Communications, Canada, September 1981.

•

6. Gilbert, E.N., "Capacity of. a Burst Noise Channel",

Bell Sys. Tech. J.,39(1960), 1253-***

7. Sussman, S.M., "Analysis of the Pareto model for

ei. ror.statisticS and telephone circuits", 'IEEE Trans. Comm,

• Sys., CS-11(1963), 213-221. 	 •

' 	8. Weldon, E,J., "Error Control on•High-Speed Satellite

Channels", Int, Comm. Conf. Record, (1981-).•

