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V.1,7 

information gives a rather detailed picture of how the codes 

would perform in a variety of error environments. 

The problem of decoding was also examined very 

carefully. Software decoders were implemented in MC6809 

machine code for the three codes. Moreover hardware decoders 

for PRODUCT and CARLETON code were sketched in some detail. 

Decoding of CARLETON code was shown to be possible well , 

within the engineering constraints. 

.Further studies were made of the possibility of using 

long block codes to correct a half-page at a time. The 

performance of such a . code was analyzed both by itself and 

in conjunction with the prefix  • Hamming code and the data 

block code. :A  preliminary study of decoding was made. It \aas 

found that the code choosen ( a Reed-Solomon code) gave • 

extremely good performance to the extent of overpowering the 

rest of the error control scheme. 

Future work is needed on the 2
)
and 3 byte suffices for 

the data blocks and on a weaker half-page or page code with 

a quick decoder all of which harmonizes with the rest of the 

error-:correction scheme. 



Stâtement,of Work from the Proposal for the Contract. -  

DESCRIPTION  

The research to be carried out under this contract will con- 
, 

sist of a thorough examination of the use of Error-correcting 

codes in broadcast Tendon. To-date severarcodes have been 	• 

identified as being especially suitable. Theoretical calculations 

have shown their ability to improve performance. The additional 

constraints to be considered are the amount of time necessary for 

decoding, the increase cost of a Telidon terminal which uses the 

code, and the amount of redundancy introduced into the data by the 

code. All must be minimized. This research will use both theo-

retical calculations and simulations to measure these parameters. 

These simulations will use a micropràcessor  •of the same type as is 

used by Telidon. Field data of channel •rror statistics will be 

used if ànd when it is available. In their absence a variety of 

theoretical channel models will be used to exercise the codes. 

PURPOSE OR OBJECT 

The purpose of . this project is to select and analyze a range of 

ECC for use in improving the performance and extending the range 

of broadcast Telidon. A careful choice of error7correcting codes 

and a detailed analysis of their impact on the Telidon system will 

allow the simultaneous satisfaction of the many c'onstraints; economic, 

engineering and acceptability for international standards. At the 

same time,thorough and thoughtful exploration of coding options at 

this time will allow for a quick response as the Telidon requirements 

change in the future. o  

(iii) 
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OUTLINE OF MAIN CONCLUSIONS  

1)-9ne-byte  suffix codes: • • 

u) The CARLETON code gives performance superior to the PRODUCT 

code specified in the provisional BS-14 on all but one of' 

the model channels considered. When there is a background of 

white gaussian noise the only situation in which the PRODUCT 

1 

	

	code makes fewer decoding errors is when there are numerous 

bursts of length 5-10. 

b) It has been shown that CARLETON code can be decoded in 0.97 msec 

with a 6809 microprocessor at a clock speed of 1.29 MHz using 

512 bytes of look-up table. Longer decoding times with less 

look-up table are also possible. Efficient hardware decoding 

is possible. 

c) The CARLETON code has been shown to be essentially optimal on 

the white gaussian channel as a one byte data block code which 

has overall known parity (for better error detection) and few 

codewords which are short bursts. (for better performance on 

bursty'channels). 

d) The SAB code recommended by Seguin, Allard and Bhargava was 

 originally defined for 25 byte data blocks and it is not clear 

whether a 28 byte version is possible. In any case a code of 

the SAB type gives near optimal performance on the white gaussian 

channel but has a serious probability of decoding. error when 

there are short bursts. An effective software decoder for SAB 

code was developed. 

r 

( iv) 
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2),Codes for a Half-Page: 

a) A 14 byte-error correcting Reed-Solomon code defined on a 

set of 9 data blocks would virtually eliminate decoding 

-3 errors at bit,error rates < 10 	. 	• 

b) Decoding of the Reed-Solomon code would require more time 

than the 4 millisecond interval between packets from the 

same packet so a whole page would have to_be captured first 

then be decoded.' 

3) The - System as•a Whole: 

a) When using the Prefix code and one-byte data block code 

together the latter is limiting ih terms of delays caused 

by detected.uncorrectable errors. 

b) When the Prefix code and Reed-Solomon code are used together 

(with or without the data-block code) it is the Prefix code 

which is limiting. To this must be added the decoding delay 

for the Reed-Solomon code. The conclusion is that the ReedL 

Solomon code is inappropriate and should be replaced by a 

less powerful code with a quicker decoder. 

(v) 

n 
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Chapter 1. Summary of Results. 

:3 

1.1 Introduction 

The object of the research project  • reported here (and 

covered by DSS Contract No. OSU81-00095) was to select and 

analyze as thoroughly as possible error-correcting codes 

which are appropriate for the Canadian Broadcast Telidon 

system. The lion's share of the work done was reported in 

the preliminary report "A Study of the Use of 

Error-correcting Codes in the Canadian Broadcast Telidon 

System",August,1981 [2].This final report should be viewed 

as  • being supplementary and complimentary to that earlier 

• report. 

In analyzing the performance of the codes we identify 

certain possible outcomes of the decoding process. We then 

calculate the probabilities of these various events occuring 

under appropriate assumptions. The possible outcomes of the 

décoding process are the following. 

Correct Decoding:' thé'errOr pattern (if any) that 'occured 
was one which the code dealà mith 

• ' 	correctly passing on the actual codeword 
- that was sent. 



- 2 - 

Decoding Fault: the other case, i.e. an uncorrectable error 
is corrùpting the codeword. ,The faults 
are then sub-divided as follows. 

Decoding Failure: the error pattern was recognized as an 
error but the code cannot correct it. 
The decoder warns the system that the 
data is falaceous. 

Decoding Error:the error pattern occured was mistaken by the 
decoder for a correctable pattern when it • 

• was not.. The decoder introduces at least 
one more bit error and passes the 

• , codeword on as if it was correct. 

The probability of a correct decoding depends only on 

the coding strategy (e.g. single error correction, double 

error correction etc.) used and not on the details .of  •the 

code. The same applies to decoding faults so these 

parameters are easiest to calculate. At a fixed bit error 

rate if the (channel is bursty then the errors will corrupt 

fewer codewords and hence, generally speaking, show an 

increase in the frequency of correct decoding. Thus the 
• 

assumption that errors are independent (i.e. white gaussian 

'channel) is reasonable for assessing performance as regards • 

correct decoding and decoding faults. 

Whèn we move to .thé more refined (and 'interesting) 

level of analysis which consider three possible outcomes 

(correct decoding, decc:ling failure and decoding error) 

several complications arise. At this level it is the way in 



which the code is defined which determines how it will 

perform. Thus detailed (and hard to get) Information about 

the code is required. Moreover the performance of a given 

code, is much more difficult to predict when the channel is 

bursty if we are interested in the frequency of decoding 

errors. 	In general though, decoding errors are a small 

fraction of the decoding faults. 	This must be traded-off 

against the fact that in the context of a videotex system 

decoding failures result in delays in delivery of a  •  page to 

a user while a decoding error results in rubbish on the 

screen which may be  • either_ gross or quite subtle and 

undetectable by the user as a false page. More will be said 

below (Sectin 1.3) on the relative frequency of decoding 

errors and failures. 

As a reference point when comparing the, performance of 

a code on a number of channels we assume that the overall 

bit error rate is constant for all channels. This 

corresponds to the fact that overall bit error rate tends to 

be the first (and often only) parameter relevant to error 

patterns, which is measured on a communications channel. An 

alternate assumption would be , that a burst noise phenomenon 

is  added onto a background of random errors. The background 

bit error rate would then be held constant. We tried this 

second approach with the new. channel model of.Chapter 2, 
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Section 3. The results obtained didn't show a significant 

change over the previous assumption. 

The unit of the broadcast videotex system (as specified•

in the provisional version of BS-14 [1) ) which is of 

interest for coding purposes is the data packet. Each 

packet consists of 33 bytes. There are 5 prefix bytes then 

a series of (28-S) data bytes and finally S 	suffix bytes. 

Here 	S 	may be 0,1,2, or 3 and is specified by two of the 

bits in the prefix. We deal with the various parts of this 

packet one at a time. 

1.2 The Prefix. 

The five prefix bytes are each encoded with an 

odd-parity variant of the (8,4) Hamming code as specified in

•  Appendix  • B of BS-14. Thus if one of these bytes is 	(b8• 

b
7 	b6 	b i b4  'b 	b2 	b1 ) 	then 	the 	bits 	b 8' 5 	3  

b
6' 

b 4' b 2 	carry information while 	the 	other 	four 

bits 	are 	check 	bits. 	The code is defined so that 

(arithmetic mod 2): 

1 1 1 0 1 0 0 0 
0 0 1 1 1 0 1 0 
1 0 0 0 1 1 1 0 
1 0 1 0 0  0 . 1  
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Here «-E-  is the complement of b2' • that is 	b2 = 2  

1-b
2' 	

Complementing this bit results in an odd parity 

byte. (For purposes of error-correction performance 

calculations we leave the bytes with even parity since this 

gives us a linear code). 

Assuming 	that errors 	arise 	independently 	with 

probability 	p, the probability  of  .a  correction (reception 

for one such byte is q8 where q = 1-p. •  The probability 

of a single error in a byte is 8pq7 . Thus the overall 

probability of a prefix being correctly decoded is 	(q
8 

+ 

8pq7)
5. e 

The 	probability 	of 	decoding fault is then 

1-(q8  + 8pq7 ) 5 . 	Again 	assuming 	independent 	errors, 

the probability of 	decoding error can be estimated. 

Strictly in terms of the Hamming code this is, 

= - 4A4  p
3 q5+A4  p

4q 4 +4A
4  p

5 q 3+.8A
8  p

7 q + A
8

- p s 
. 	. 	. 	•  

• 
• = 56p

3
q
5 

+ 14p4 q
4 
 .+ 56p5 q 3  ' + 8p 7  q + p 8 

for a single byte and 	1-(1-PDE 
) 5 	for 5 bytes. ' On the 

, 

other hand the videotex decoder will not accept all decoding 

errors.in  the prefix as valid.messages.  The five bytes are 

'Interpreted as indicated in  Figure 1.1. 	, 
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Packet Address Bytes 

(up to 2 12  different 

addresses)  

11%  
Continuity 

Index byte: 

counts 0 to 

15  incrément  

once for each 

packet in a 

given channel 

Packet structure: 

b2= std./sync. 

b 4= full/not full 

b6 nmber of 

b 8 suffix bytes 

Figure 1.1 The Packet Prefix 

The first three bytes specify a channel. number then the fourth 

byte is a continuity index count on the data packets of that 

channel as they are broadcast. .A decoding error in the first four 

bytes must change the continuity index by the exact quantity 

required to make it the next packet from the new channel (i.e. the 

channel specified after the errors are introduced). Moreover , . 

either the next packet actually transmitted on the new channel 

mut  be lost or all subsequent packets must have their continuity 

index incremented by one by a further decoding error. 	The 

probability of such an event is negligible 	(say, < 10 -17 at 

-3 BER = 10 	assuming 1000 different channels in use). 

Thus the only decod!.ng errors that might occur are 

those affecting only the packet structure byte. Again many 
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of these decoding erro‘s will be caught by the decoder 

because of other ambiguities in the subsequent processing of 

the pecket. Thus we can take as a yery rough upper bound on 

the probability of a decoding error coming from the prefix 

the estimate 56p3q7  . Careful  • implementation of the 

videotex decoder would reduce this much further. 

1.3 Coding the Data Block 

The provisional version of BS-14 [1] specifies that 

0,1,2 or 3 	suffix bytes may be appended to the data block 

of a data packet to be used for error correction. 	We have 

not yet looked seriously at the cases of 2 or 3 suffix bytes 

and in fact BS-14 leaves specification of  • these bytes to 

the future. 

If no suffix bytes are used then error correction 

within the data block is impossible. If an odd number of 

errors corrupt one of the bytes then these errors will be 

detected. In an environment of random errors with bit error. 

rate p (and q .=.1-p), the probability of correct decoding 

. 	. 	224 q  is Dust 	while the probability of a decoding error is 

approximately . 
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The case o one-byte suf f ix has been intensively 

studied by a numer of research groups  

The provisional version of ES-14  specifies a simple but 

effective PRODUCT code for this purpose [1], [4]. Allard 

Bhargava and Seguin [3] suggested another code which they 

called SAB. This code was defined for data packets of 30 

bytes and it is not clear that it can be extended to 33 

bytes in a reasbnable way. The SAB code is very good for a 

channel with random errors but has a high probability of 

Making a decoding error on a short burst. A third code was 

suggested in [2], [5] by our group. Giving it the 

(temporary) name CARLETON code the preliminary report [2] 

presented an exhaustive comparison of this code with SAB 

code and PRODUCT code. The assumed number of bytes in data 

block plus suffix in [2] was 25. Since BS-14 speCifies 28 

the results of that preliminary report have had to be 

updated here. They are presented in Chapter 2. Since the 

SAB .  code cannot be immediately extended to these longer data 

blocks it was dropped from the discussion. PRODUCT code and 

CARLETON code have essentially the same probability  • of 
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decoding failure'on• any channel (and hence would produce 

delays with the same frequency). When we look at decoding 

errors we find that the expected number of pages (defined as 

units of 18 packets) before a decoding error occurs is five 

times larger for CARLETON code than for PRODUCT code on the 

white gaussian channel. Looking at bursty channels with a 

'background of white gatissian noise we found that this 

superiority persists. 	The best tool to use for seeing this 

is the new channel model of • Chapter 2, Section 3. 	There we 

observe that, unless the channel is systematically 

introducing pathologies, the white gaussian performance 

characteristics of th codes persist as the channel becomes 

more bursty until the peformance quite abruptly degenerates 

to a common (poor) value for both codes (Figure 2.4.2). 

We have also shown that Carleton code be decoded  • by 

Motorolla 6809 microprocessor using 1254 machinecycles 

which represents 0.97 milliseconds at a 1.29 MHz clock speed 

using a look-up table of 512 bytes. In fact the PRODUCT 

code can be decoded in.a similar way using approximately the 

same amount of time and look-up storage.' 

Chapter 2 is devoted entirely to the case of a one 

byte suffix. We copclude the discussion here with a few 

remarks on "optimality". By optimality we mean minimal 
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• 
probability of decoding error. It can be asked: what is the 

optimal choice for a code using a one byte suffix? The 

answer is that "optimal" can only be applied ,to a code 

working on a particular channel. The historical approach 

seems to have been that a code is chOosen'to work well on a 
. 	• 

white . gaussian channel and other channels are . either ignored 

or treated incidentally. Optimizing a code on the white 

gaussian channel translates simply to the minimization of 

the number of low weight codewords. For any channel, ln . 

general, to obtain an optimal code with respect to decoding. 

errors.selecta'cociewiciamillinialrimber  of  codewords 

which occur among ,  the most common class of error patterns on 

the Channel. So really you have to have a 'specific 'channel 

before.you Can talk about optiMizàtion. 

1 

"- • 

CCnsider now the special case of .  a, white gaussian 

channel. Thus the:erors in the channel arise as independent 

I • event.s- Let . .stand for the number of codewods of weight Ai  

i in some one-byte data block code. Certainly we would take 

a single' error correcting code so A =A2  =O. In order to 
1 

detect all double errors we take A3.  =O. Can we have A4=0? 

No. This means  •that double error correction ià' not possible 

' 	with onlY one .byte' in the suffix. How small can  we  make 

A
4' 
9  Chapter 4 of the preMminary report [2] was devoted to 

JAIL 	this question. We will up-date those results here  Sto  the 
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case of data packets*of 33 bytes .(data blocks Cf 27 bytes 

plus 1 suffix byte) as follows: 

(i)•or an 	arbitrary 	one  • byte 	suffix 	code: 
A>285  4- 

(ii)if the code has only codewords of known parity: 
A

4?-.
676  

(iii)if the code has no weight 4 codewords with all 
ones confined to a single byte: 	A4-?--853 	•  

(iv)if the 	code 	satisfies 	(ii) 	and 

, 	A4- >2028 

The first case, (1), gives a bound on how good a code 

we  • can expect t find for the white gaussian channel. The 

other cases deal with added conditions which would give th 

eITTIT'OrnnVY 

— 

-, e- 	also satisfies (iv) and has A4 = 10,584. So sticking to 
,..._. 

. 	
codes with the properties (iv) we can't improve much (for 

.7r . 
‘,11i 	the white gaussian channel) on CARLETON code. In order to 

-i, 	get a better code for, the white gaussian channel we must 
I  
1 

weaken its ability to detect bursts by either allowing 

arbitrary overall parity (not (ii)) or allowing burst-like 

weight 4 codewords (not (iii)). 

It is also essential to realize that there is a 

trade-off 	between 	decoding 	failures and errors. 	The 

1 
r 	 probabilities of correct decoding 

PCD g 

11, 	

, decoding failure 

P
DF 

and 	of 	decoding 	errors PDE  satisfy the  •  simple 

; 



CARLETON • 

PRODUCT 0 

-12- 

+ P
DF 

+ P
DE  = 1 

BER = 10-4 

relation 

10
3 

10
2 

111110,of 
riiesùhtil 
oding 

ailure - 

1 60  1 • 	•." I 

10 6 
I 	1 II 	 1 	 I 	 n 

	

. 	(111)
(I1) (0 (1v) 

	

el 	H 	1, 

100 	 101 	 W
2 

10 3- 	1(34 	
M

5 

• 	Expected Number of Pages until Decoding,Error 

FIGURE 1.2 Expected Number of Pages until Decoding Failure/Error for,Singl 

Error C2rrecting Codes on the White Gaussian Channel at Bit Error Rate 10 

and 10-  . 
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since they represent all the possible outcomes of the 

decoding process. 	Now P CD depends only on the frequency 

with which error free blocks and correctable error patterns 

P 	arise in the channel. 	So P 	is CD 	the same on 
any given 

channel for, say, all single 	eror 	correcting 	codes. 

Consider the case of the white gaussian channel and single 

error ' correcting codes of length n. • Then 

P
CD 

= qn + npqn1  where 	p • is the bit error rate and • 

- 

q = 1-p. 	Therefore 	P + P 
DF 	DE 	is a constant for all 

such 	codes. 	Now 	we 	take 	B =1/(18 PDF ) 	and 

BE 
= 1/(18 P ) DE  • which 	are  • respectivey 	the 	expected 

number of pages (= 18 data packets) until decoding failure 

and until a decoding error. We see that (l/BF + (l/BE ) 

is a constant so the graph of the points (BE' BF ) is a 

hyperbola. Thus we cannot increase B
E without 

decreasing B
F

. 	Moreover no code has simultaneously good 

performance as regards both decoding failures and errors. 

Figure 1.2 is a plot of BF 	against BE  for bit error,  

-3 
rates 	BER = 10 	•  and 10

-4 
for 	the white 	gaussian 

channel. 	The points representing several codes are marked. 

Also included are the points for imaginary codes which 

satisy the bounds (i), (ii), (iii), and (iv) above. While 

keeping BE  acceptably large we may be forced to make 

BF unacceptably small. The only remedy is to do more 
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4. correction. This has the effect of reducing the size of the 
r 

constant C in the formula 

1:, 1 m- 	C 
F BE  

which leads us back to the old problem. 	Which error 

patterns are the most common? These are the ones which 

should be corrected first. But these patterns will depend 

on the channel. 	Unless  we  have explicit information about 

the actual broadcast videotex channels we are more likely, to 

be led astray' by further correction than directly to better 

performance. These remarks apply of course to the choice' of 

2 and 3 suffix byte codes as well. 

1 . .4 Codes on a Page and Putting the System Together. 

We have discussed the prefix and data block codes and 

now turn to larger units containing a number of data 

packets. The strategy is to use a powerful code of greater 

length to cover a set of say 8 data blocks by adding a 

cmplete data packet of redundancy. ) Decoding would be too 

complex to be done in software •in the statutory 4 

milliseconds allowed for "on-line" processing of incoming 

data packets. The whole  • videotex page would be extracted 

from the channel first and it could then be decoded "off 

•

, 
line". 	The idea is to use a code which corrects so many 
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errors that only extremely rarely will it be necessary to 

re-extract a data block from the channel.. Thus an extra, 

say, 2 seconds would be required to deliver the picture to 

the screen but that picture could be virtually guaranteed to 

'be error free. The fact that such a code was in use could 

be specified by a Rècord Type specification in the Record 

Header. 

We have examined one such code, a Reed-Solomon code 

oVer the field. 	GF(256). 	This , code can.correct up to 14. 

.byte errors in a set of 9 data blocks . .Thesè .could. be 14 

random bit error's. or a continuous run of 98 bit errors. 

Decoding was not 'exhaustively examined but càn be 

• accomplished in a matter of a second or two by a software• 

decoder. 

Putting all this together we will show  •  in Chaptr 4 

that this Reed-Solomon code overpowers the prefix code in 

the sense that it provides very much better performance than 

the prefix can deliyer. We conclude that a different code 

would be more effective and such a code should be sought out 

and analyzed. 



-Mapter 2. One-byte Data Block Codes 

• 2.1 Introduction 

The p.rovisional issue of BS-14 "Television Broadcast Videotex" .  • 

[1] stipulates that a suffix of 0, 1, 2 or 3 bytes is added to 

each data block to be used for error correction and detection, (the 

number of such bytes being specified by the bits B6 and B8 of the 

Packet Structure Byte). Together they form what we will call a data 

block code. This chapter is devoted to a discussion of codes ap-

propriate to the case of a one-byte suffix. Since the Preliminary 

Report [2] submitted in August 1981, consists of a thorough analysis 

of this problem we will present here information which is supplementary 

to that Report. In particular we move the discussion to the case 

of longer data blocks of 27 bytes plus a suffix byte as specified by 

ES-14. Also we present hardware versions of our decoders, a soft- 	' 

ware encoder and a ne  w burst channel model. 

-16- 

2.2 The Codes Defined. , 

Two particular codes are the main object of discussion in this 

Section, namely\  PRODUCT and CARLETON codes. The first is a simple 

combinatorially defined code which is specified in BS-14 -(paagraph 3.3) 

as the code used to define a single suffix byte. 	CARLETON code is 
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an algebraically defined code whose definition (first given in [2] 

and [5]) contains the pseudo-random element inherent in using a finite 

field to give the code better behavior. Both these codes are single 

error correcting and use the fact that the data bytes have odd 

parity. The sb-called SAB code which was defined in [3] as.a pos- 

sible code for Telidon and was compared with PRODUCT and CARLETON 

codes in [2] is not discussed in this report. This is principally 

because it is far• from transparent whether the SAB code can be ex- 

tended to 28 bytes in a sensible way. 

2.2.1 PRODUCT Code 

The pRODUCT code is the simplest species of the genus of product 

codes. It . uses an (odd) parity check on bytes and a longditudinal 

(odd) parity check.across the bytes to correct single errors. Write 

the data blocks as B. =
i8' 

b
i7' 	

b) for i = 1,...,27 
1 

and let B
28 

represent the suffix byte. Then with additions taken 

mod 2 (exclusive -or) we define the eighth bit of each block by 

b
i8 

= 1 + b
i7 

+ b
i.6 

+ 	+ b.
1.1 

for , .i = 1,...,27 and define the suffix byte by 

b
28j 7

-  1 + b • + 	+ b
27j lj 



-18- 

for j = 1,...,8. Since there are an odd number of data bytes of 

odd parity the check byte also has odd parity automatically. ' 

The use of odd parity is a nuisance to the coding theorist 

since it is a non-linear condition and removes the equivalence of 

minimum weight and minimum distance. Thus we will always consider 

the even parity version of the PRODUCT code (so the ones are re- 

moved from the equations above). This even-parity code has the 

same distance structure as the odd parity version (and hence performs 

in the same way) but is a linear code and hence its analysis is 

easier to describe. 

For additional information and discussion of this code consult 

[4] and the literature cited there. 

2.2.2 CARLETON Code 

The CARLETON code is an algebraically defined code which is 

allied to a shortened Hamming code but makes use of the odd parity 

of the data bytes B. . 	(It was first defined in March, 1981 during 

an attempt to show that the PRODUCT code is optimal as a data block 

code on the white Gaussian channe; which it ish't in faCt.) 

We first give a terse if somewhat mysterious and unmotivated 

definition then present an algebraic definition. 



a
4 

= a
l 
+ a

4 
a
5 
+ a

8 

= a
5 
+ a

7 
+ a

8 

= a
2 
+ a

7 
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The suffix byte. B
28 '43

f CARLETON code is obtained by suc-

cessively adding each of the.27 data bytes  to an accumulator 

(a
8' 

a
7' "' 

a
1
), which starts off set to zeroes. After each 

addition the bits of the accumulator are transformed according to 

1 
the following rules .(sums are mod 2): 	• 

a
1 
= a

l 
+ a

2 
+ a

6 
+ a

8 

a
2 

= a
l 
+ a

3 
 +• a6 

 

• a'=a +a +a +a 
3 	2 	3 	4 	7 

a
7
' = a

1 
 + a

3 
 + a

4 
 + 

• 

a
8 

= a
l 
+ a

5 
+ a

6 
+ a

7 
+ a

8 • 

After the '27th byte has been processed the accumulator contains the 

suffix byte 
B28 " 

The transformation of the accumulator involves each bit an odd .  

, number of times. Therefore it preserves the parity of the accumulator. 

Theaccumulator starts with even parity and the effect of the- 

additions and transformations is to chanu_ this parity 27 time's. Thu::,. 

B28 
has odd parity automatically. 

-  
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the non-zero field elements with period 127. If a codeword of 

CARLETON code is written as a, bit string . 'as (B
1

, 	B28 )  = 
 . 

then the cOde'is so defined that' . 
n 

(C 	C 
223' ,  .222' .. "-C1' CO 
• ) 

223 	i 
E C a 
i=0 

gle . 
. . 	. 	. 	

-, . 	. 	. 
• 

.. 	‘ 	Where did the transformation rules cOme fromi Let GÉ(128) 

f ' 
, 	V 

. denote the field of 2
7 
= 128 elements,. The non-zero elements of 

-7: 	 . 
1 • this field form a cyclié group which can be generated by a where 
.à-
1 

Thus a
7 

= a
3 
+ 1 in GF(128) and the powers cy

i 
run through all 

a is a root of X
7 
+ X

3 
+ 1 over the field GF(2) of two elements. 

If the ith byte is written B. = (b. b 	b ) this is 
1 	17' i6' 	i0 

28 	7 
E 	E' 134

224-8i+j 
=0  

i=1 j=0 	•  

More explicitly this is 

223 	216 	• 	, 	7. 	0 • 

(b re 	) 	(b28,e 1?28,0ce  ) = 

We write this equation in the form 

7 	6 	0, 8.27 
(b

1,7 
a + b

1,6 
a +• + b

1 	
) a 

0 
7 	• 0 	8.26 

+ 	
27 

 a + 	 +b
20  a) a 

' 4". 	V0041 

7 	 0 	8.0 
+ (h 	a + 	, 	 + 

b28,0a 
 ) a 	= 0 . 

28,1 



Given the'first.  27 bytes we wish to select the bits of the 28th byte 

so that this equation is valid with the parity of B
28 
 odd. 

• Each byte 
.
B
i 

represents an element of the field GF(128), 

' 
 n 

• i0
0  

We then see that the check (suffix) byte is determined by the above 

equation, 

827 	826 	81  

. 
B
28 

B
1
(a ) 	+ B

2
(a ) 	+ 	+ B

27 
 (a ) 

= 1 	+ B2
)a8  + 	+ B

27 
 )a,8 •. (') 

In fact each field element x has two representations as 

7 	6 	1 	 7 	3 	0 
X  = u

7
a + u

6
a + 	+ u

l
a +u

0 
 since 0 = ce + a + ce . One 

representation has an odd number of ones (non-zero coefficients) 

and the other has an even number of ones. Therefore B
28 

can be 

represented by,an odd parity byte and we have fourid the suffix byte. 

The "Horner's method" definition of B
28 

( (*) above) is the 

expression used in the first definition of Carleton code. The 

transformation specified in that definition is just  "multiplication  

8 
by a "• As an 8x8  binary matrix the "multiply by a

8
" trans- 

15 	14 	8 

	

formation has rows equal to a , a , 	. Using odd parity 

- 2 1-7 

representations for these field elements the matrix.is 
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• 
14 

a 
(mult. by ce

8
) =. 

Q' 

.9 

15 

8 

1 1 0 1 0 0 1 . 1 
1 0 1 0 0  1 0  0 

0. 1 1 0 0 0 1 0 
0 0 1 1 0 0 1 0 
0001  1001

•1 1 0 0 0 0 0 1 

1 0 1 0 1 1 0 1 
1 0 0 1 1 0 1 1 

• 

This matrix then determines the linear relations in our first 

definition. 

As with the PRODUCT code we actually work with even parity 

bytes in CARLETON code when carrying out performance calculations. 

2.3 PERFORMANCE 

The main thrust of our progress report [2] was the analysis 

of the relative performance of PRODUCT, CARLETON and SAB codes. 

We have repeated the calculations for the first two codes extended 

to a length of 28 bytes and will report our results here. For de- 

tails on methods of calculations etc. the reader is referred to the 

earlier report [2]. 

One measure used to assess the codes is the probability that 

a burst of length b results in decoding error. Here a burst is a 

continuous string of b bits each of which is in error with 

probability .1/2. For PRODUCT and CARLETON codes these probabilities 



1 , 

tJ 

0 

fah 

111111.  

'es 

1 
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are 1.ndependent of the length of a code so no new calculations are 

necessary. Thus Figure 2:1Iis repeated from the Progress Report ' 

unchanged: The actual numbers are given in Table 2.3.1 and are used 

in the channel model of Section 2.4 below. 

The probability of a decoding error (or decoding failure) on 

. a variety of model channels was the other performance measure used. 

This requires (in the absence of field data) that quite arbitrary 

assumptions be made about the nature of the error patterns in the 

channel so that the calculations •can actually be carried out. 

Hence a range of channels  mas  used. The channels are described 

briefly below (and in more detail in Appendix 2D). 	The results 

appear in Table 2.3.2. Note that the Burst Channel #2 of the 

Progress Report has been removed from those considered. Each channel 

depends.on a choice of parameters and this choice  mas  always made 

-3 	-4 
so that the overall bit error rate would be one of 10 , 10 , 

10
-5 

or 10
-6 

' 

	

, White Gaussian Channel. 	. 	• 	. . 

The errors occur as independent events with a fixed probabil-

-4 	-5 

	

ity of 10
-3

, 10 ., 10 	or 10
-6 

. 

Burst Channel 1. 

This channel is of the type introduced by Gilbert in Refetence[6].. 

The channel has two states; "good" and. "bad". 	In the ,%ood" 
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TABLE 2.3.1 The Probability that a Burst of Lengt103.Causes Decoding Error' 

CARLETàN code PRODUCT code 

( 

••n•n••n 

0 	' 	0 

	

4 	, 	0 	 0, 

	

5 , 	0 	;00781 

	

.6 	0 	.00781' s 

	

7 	. 	0 	.00586 .  

	

8 	0 	• .00122 

	

9 	.0137 	,0237 

	

.10 	. 	.02,13 	
.0340 9' 

	

11 	 .0251 

	

12 	, 	 .025 7 	- • 

13 . 	 ' 	.0271 	• 

	

14 	 .0268 

15 , 	 .0261 

	

16 	' 	 - '.0257  

	

17 	. 	 .0243 

	

18 	 .6'233 

19 • 	 .0223 

	

20 	' 	! 	• .0213' 

	

25 	 .0161 

	

30 	 .0123 

35 . 	 . .0090 	— 	. 

	

40 	. 	 .0066 

	

45 	. 	• 	.0047 

.0033 



• 

Bit Error 

Rate 

10
-3 

10
-4 

10 -5  

-6 
10 

Code 

PRODUCT 

CARLETON 

- PRODUCT 

CARLETON 

PRODUCT 

- CARLETON 

PRODUCT 

CARLETON 

Expected No. 

of Pages until 

Decoding 

Error 

1.61x10
3 

8.04x10
3 

1.4
x

10
6 

7.0x10
6 

1.3x10
9 

6.4x10
9 

1.3x10 12 

 6.4x10
12 

Burst 

Channel 

#5 

1.74x10
3 

- 
 8.57x10
3  

J.46x10
6 

7.18x10
6 

1.15x
1

0
10  

5.64x10
10  

1.19x10
13 

6.25x10
13 

CS) 

10
-3 

10
-4 

10
-5  

10
-6 

Channels: 

White Gaussian 	Burst 	Burst 	Burst 	-Burst 

Channel 	Channel 	Channel . Channel 

. 	#1- 	#2 	 #3 ' 	 #4 

154 	90 	 337 	 43 

755 	451 	1660 	254 

1.28x10
4 	

7.81x10
3 

1.12x10
5 

3.81x10
3 

6.30x10
4 	

3.94x10
4 

5.49x10
5 

2.26x10
4 

	

1.27x10
6 	

7.70x10
5 

4.32x10
7 

3.77x10
5 

6 

	

6.22x10
6 	

3.89x10
6 

2.12x10 8  2.23x10 

' 

	

1.27x10
8 	

7.69x10
7 	

1.68x10
10  

3.76x10
7 

	

6.21x108 	3.88x10 8 	8.22x10 1° 	2.23x108 

2. 

16 

165 

1653 

1.4 

9 	- 

84 

Expected No. - 

 of Pages until 

Decoding 
• 

Failure  • 

The same for 2.6 

both codes 
226 

4 
2.2x10 

2.2x10
6 

2.4 

. 30 

308 

3100 

3.4 

197 

1.28x10
4 

6.83x10
5 

838 

3.7 

284 

1.12x10
5 

4.03x10
6 

TABLE 2.3.2 Performance Pàrameters on a Variety of Model Channels 
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state errors occur as in White Gaussian channel. In the "bad" 

state every bit is in error. The result is a channel with numerous 

short bursts (lengths 2 and 3 being the most popular). 

Burst Channel 2. 

This channel is a Markov chain with a one bit memory. Again 

it is characterized by. short bursts (lengths 3 and 4 dominating.) 

Burst  Channel'  3. 

This channel is based on a Pareto distributions (see Reference 7). 

Its most frequent burst lengths are 5,6 and 7. 

Burst Channel 4. 

This channel is a White Gaussian channel in which some phenomenon 

converts half the isolated single errors into consecutive double 

errors. It has a curious distribution of burst lengths with even 

length bursts favoured over odd. 

Burst Channel 5.  

This channel has occasional long bursts (of about 10 bits) and 

is approximately White Gaussian the rest of the time. The col- 

lection of the errors into these longer bursts at a fixed bit error 

rate effectively cleans up . large stretches between the bursts. The 

result is a channel on which codes behave largely as they unuld on 

a White Gaussian channel with a bit error rate much less than the 

observed bit error rate. 



PRODUCT 

CÀRLETON 

-7 

The 1ow-weight distributions of the codes is given in Table 

2.3.3. There A4 is the number of codewords of weight i. 

A*4 	A
5 	

A
6 	

A
7 

	

10,584 	0 • 1,100,736 	0 

	

2,154 	0 	622,733 	0 

Table 2.3.3 Low Weight Distribution of the Codes . 

2.4 A New Burst Channel Model 

One of the problems with our earliev burst-error model chan-

nels is that the bit error rate within a burst is too high 

(generally it is 1 or close to 1). This drawback is overcome by 

the channel model we now describe. We assume that each data block 

(i.e. codeword) is received in either good or bad condition. In 

the good state the errors are independent events while in the bad 

state a burst error of some length b ocèurs (and all other bits 

- 
are correct). The necessary parameters of.the channel model and code 

are the following: 

P
G 
 = probability that a good block is received, • 

P
B 

= 1 -P
G 

= probability that a bad block is received, 

a = bit error rate in a good block, 

p(b) = probability that a bad block contains a burst of length b, 



BER = P
G 

+ P
B 	

p(b) • 
b  2n 

+ na (1.-a) n-l ) + 	E 1.2±1.  
CD 	G 	 B b 2b 
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E
B
(b)' -= probability that the code - being used turns a burst 

of length b into a decoding error,' 

E
G

(D. ) = probability of decoding error for the code being used 

on a white gaussian channel with bit error rate a . 

. We assume that there is no correlation betWeen the states of 

successive blocks.  We also assume that the bits of a gbod block 

outside the burst are correct and that inside the burst the bit 

• 
error rate' is 1/2 with all 2

b 
burst error .patterns equally likely 

to arise. Writing n for the length of the code the overall bit 

error rate is 

The probabilities of decoding error and of correct decoding 

p = p 
 DE 	G 
E 
 G 

 (a) + p 
B ' 
 E p(b) E

B
(b) . 

b  

are.. 

The parameters E (0) are in fact numbers calculated earlier. 

They appear in Table 2.3.1 and Figure 2.3.1. The parameters E 
G
(a) 

is easily calculated from the xâeight distribution of the code. Yet 

to be determined are a, P
G 

and the values p(b)  for  b 

The value of cy is determined from the others by fixing the over- 
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the bit  errOr rate  equation for a . Since 0 < < 1 not all 

Figure 2.4.2 where the iilean number à (18 data block) pages until 

-6 
all bit error rate (at say 10

-3
, 10

-4
, 10

-5 
or 1O) and solving 

choices for P
G 

are feasible. 

Knowing the distribution E
B
(b).in advance means that  se  can 

produce almost any result by choosing the distribution p(b)'ap-

propriately. In comparing,•CARLETON and PRODUCT Codes the 'question 

is: does the better performance of CARIETO1Ccode on  the good blocks 

compensate for its relative weakness on the bad blocks with bursts 

n 

of lengths 4 to 10? Or more to the point, what happens to the per- 

formance as the channel becomes more bursty i.e. as P
B 

increases? 

Three distributions ,  p(b) have been used to demonstrate this 

model. We call them Channels A, B and C, and they are plotted in 

-3 
Figure 2.4.1. This channels have B.E.R. = 10 . As we move from 

Channel A to Channel C there is an increasing 'trend. to longer bursts. 

Note that Channel A has bursts onlY in the range (b = 5,6,7,8) In . 

which CARLETON code produces decoding errors and PRODUCT , code does 

not. Hence, this channel produces a rather remarkable curve in 

decoding error is plotted against the probability P
B 

that a block 

contains,a burst error. Once we move the preponderance of bursts- 

. to longer lengths as in Channels B and .0 we see .a  consistent  shape 
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for the curves. Thus as P
B 

increases. the mean number of pages, 

until decoding error declines from the white gauspian values (for 

-5 
say P

B 
< 10 ) to a matter of a few hundred when P

B 
is 10

-3 
to 10

-2
. 

The behavior of the codes is easy to explain. When P
B 

is 

small the channel approximates white gaussian closely. When P 

is large more errors occur in bursts and fewer as independent events. 

Thus the superiority of CARLETON code is lost in the roughly equi-

valent abilities of the two codes with bursts. In the case of 

Channel A we have a curious anomally. 	Thig channel never has 

a burst of errors which outwits PRODUCT code. Hence as P
B 

in- 

creases PRODUCT code makes fewer decoding errors on this Channel. 

This discussion is made simply to indicate the flexibility of 

the model and the intimate interdependence of performance with error 

pattern frequencies. This channel was developed to give a more ac-

curate model of burst channel performance but has the additional 

virtue that it would be straight forward to fit this model to field 

data. It is ready and waiting if any such data every appear. 



2.5 Decoding 

The software decoding of both PRODUCT and'CARLETON codes was . 

discussed in [2]. As the algorithms given there , were implemeàted . 

for the shorter 25 byte data blocks we have included here in an  ap 

pendix implementations of the software decoding algOrithm for the 

( • 
 CARL-el-11W code- . 

length 28 bytes caseA . Again these are written in 6809 assembler. 

The time to decode a single data block with this algorithm is at 

most  •12.5> 1-  machine Cycles (msec. at 1.29 M/hz), for CARLETON. 

Again this algorithm uses 511 bytes of look-up table storage. The 

.decoding time for CARLEIIIVCode by the algorithm given here is • 9'insec. 

Hardware decoding of both PRODUCT and CARLETON code is straight-

forward. We describe below hardware decoders for these codes to a 

reasonably detailed level. Of course the actual form of decoding 

uses in any particular videotex terminal will depend very much on 

the overall architecture of the terminal. Hence there isn't much 

Point in refining the design completely.. The hardware decoder is 

developed only for enough to, show:that . its.complexity is notextreme' 

and implementation can be handled in various ways. 
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2.57.1 A Hardware Decoder for Carleton Code 

This decoder will correct a single error or declares a decoding 
• 

failure in 448 clock cycles. These cycles are divided into an in- 
, 	, 

put phase of 224 cycles and an equal output phase. The dècoder is - 

working in a bit-serial mode with the suffix byte last. 

During input the incoming bits are counted off into bytes and 

the parity of each byte is checked. The bytes are counted from 0 

to 27 and when a parity failure in a byte is detected we record the 

byte number in the set of 5 flip-flops. Simultaneously we count 

the number of byte failureé by passing a 1 down a 2 stage shift-

register. This allows us to identify whether there were 0,1 or more 

- 
than 1 byte parity .  failures.' At the same time a feedback shift 

register is calculating the algebraic syndrome °by-multiplying by 

a rock cy of X
7 
± X

3 	
1). 

After 224 clock cycles the entire received string has been 	, 

clocked into the data buffer. We now clock it out for 224 cycles. 

First the swtich A is opened to preserve the number of the last byte 

to show a parity failure. The five adders then compare this byte 

number with the number of the byte now leaving the data buffer. 

The NOR gate identifies a match. 

The algebraic syndrome register continues to cycle during the 



output phase. Two logic circuits decide whether the contents Of 

this register is non-zero and whether it is the representation 

223 
of a 	= (0,0,0,1,1,1,1). This last condition means that a 

single error in the bit now leaving the circuit would have given 

the same syndrome.  • Then if the byte number niatches the last one 

with a parity failure and there was only one byte with a parity 

failure then we correct the bit. 

Decoding failure is declared if any of the following occur, 

1. at least two bytes have a parity failure; 

2. the algebraic syndrome is zero and at least one byte has 

a parity failure; 

3. the algebraic syndrome is'non-zero and there were no cor-

rections attempted. 	' 

.This last condition is unknown  ntil  the last bit is out so decoding 

failure is decided only at the end of the 224 cycles. 

After the 224 bits are closekd out of the circuit the switch A 

is closed and all the registers are reset appropriately. (The 5 

flip-flops must be reset to a string which is not a byte number.) 

The details of clocking and reset are not 'worked out. 

(For the flip-flops a dot . marks the clock input.) 
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'2..2  A Hardware Decoder for P.roduct Code  

This decoder ià similar to the one for Carleton code. The 

layover highlights he differences. The algebraic syndrome is re-

placed by a feedback shift register which calculates the column 

• checks. A 2 stage shift register counts the number of failures 

(i.e. O's) in this set of 8 column checks. 

Decoding failure is declared if, 	;) 

1. there are at least 2 column failures; 

2..there are at least 2 row (i.e. byte failures). 
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Appendix 2.A Definition of Carleton Code. 

In addition to the odd-parity checks on the 27 data bytes a 

single suffix byte is added as follows. Each successive byte is 

added mod 2 (eXclusive-or) to an accumulator (a
I 
 ... a

8 
 ). After 

.  

each addition the accumulator is transformed according to the 

rules (mod 2): 

=  a1 +  a
2 
+ a

6 
+ a

7 
+ a

8 

=+ a + a 
1 	3 	6 

a =a
2 
 +a

3 
 +a+ a 

3 	4 	7 

a' =a+a+a+ a 
4 	1 	4 	5 	8 

5 
+ a

7 
+ a

8 	. 

a' = a 
6 

a' = a +7  a + a + a 
7 	1 	3 	4 	8 

a' = a
l 
+ a

5 
+ a

6 
+ a

7 
 + a 

8  

.After 27 bytes have been processed the accumulator contains the 

check byte. 



X points to the first message 

byte. A is set to zero. 

• LDX 	BYTE1 

CLRA 

TÈ 

APpendix 2.B A Software Encoder for Carleton Code. 

This encoder implementà the method of page' 	. It. is 

written in 6809 Assembler code. 
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Each successive byte is exclusive-or'd BYTELOJP EORA 	,X 

with the A register. 

The A register is them multiplied 	LDB 	#1 

by a eight times. The iterations 

are counted by shifting a one across 

the B register. The contents of A 	XALPHA. ASLA 

are shifted once to the left.' • If a 

.one appears in the carry bit C then 

A contained (1,...,) a number using . 

7 
a in its representation. . Thus if, 	. BCC 	SKIP 

C = 1 after the shift we add a
8

. onto. 	.EORA 	#155 • 

• 
.A 	

8 
where ce =

7 
 a. 	

4 
HH

3
a + cy+1 - .-  (10011011). SKIP ' ASLB 	. 

In deçiMal this byte represents 155. - 	' 	BCC 	XALPHA 

• • 



After 27 bytes have been processed 

we leave the loop 

A which now Contains the check byte 

LEAK 	,X+ 

CMPX 	BYTE1 + 28 - 

BNE 	BYTELOOP 

STA 	,X 

is stored in. the next byte•below 

' the data bytes in memory. 

Return 	 • 	RTS 



-43- 

APPENDIk 2.0 IMPLEMENTATION OF THE DECODER FOR CARLETON CODE 

(LENGTH = 28 BYTES) 

MEMORY ALLOCATION 
- 

This routine uses 3 bytes of RAM :  

PERROR 	Is two consecutive bytes that will store the location of 
the first faulty byte that we find. We use two bytes, as 
we must store the index register 'Y' here, but since 'Y' 
only takes  on  values between 1 and 28, the first byte will 
always be zero. So, to see if anything has been stored in 
'PERRÔR', we will always look at the contents of PERROR+1. 

ERFLAG 	Is the decoding failure flag. It is set to zero at the start» 
of the routine and will remain zero if we decode correctly. 
However, if we have a decoding failure then ERFLAG receives 
a non-zero, value. This is unnecessary if a bit in the con-
dition code register is used ad an error flag. 

This -routine also uses 51Lbytes of tables in ROM: 

QSYND 	Is a table of length 256- which has the quasi-syndrome for 
any given message byte. The table is stored in the fol-
lowing format: 

For an entry in the table corresponding eto a given byte. The 
first bit of the entry is the

4 
 p ri y o the  corresponding 

message byte while the last seven bits are the actual quasi-
syndrome of the byte. This allows us to do the Syndrome 
calculations and the parity checking of a message byte 
simultaneously. 

MUL8 	Is a table of length 128 which is used to multiply a given 
partial syndrome by u8 . An entry in this table corresRonding 
to a given byte is just . the product of this byte and (y ee , in 
the finite field. We only need a table of length 128, as the 
partial syndromes are all 7 bits long, which gives us a 
maximum.of 128 different partial syndromes and 128 different 
locations in the table. 



LOG 

• 

Finally, the array 'message' is the received message, which is 

assumed to be 28 bytes long and to have the following format: 
An information byte in message looks like 

XX 	..., X 	X. 
i+6 , 	i+1 	- 

with the leftmost bit being the most significant bit of the byte. 

Thus the first byte of message will go-from X
223 

to 
X216' 

while the 

last byte comprises X
7 
 through X„ . 

Assembler Program 

TOPBYTE EQU -#28 

LEY #TOPBYTE 
CLRA 

• CLR PERROR 
• • CLR PERROR + 1 

CLR ERFLAG 

TOPBYTE 	Is the number of bytes in the received message.. Currently, 
we assume a message length of 28 bytes. 

PERROR 
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Is a table of logarithms in the given field. For a given 
byte B the corresponding entry in the table is the 

number U such that  a 	B. We use this table to find 
the drror position in our received message from a given 
syndrome. 

A 

Is the internal index register of the 6809 microprocessor 
that points to the byte of the received message that we 

are currently examining. Since we are working from the last 
byte of our message down to the first, Y will initially have 
the value TOPBYTE. 

Is . the internal register.of the 6809 that contains, the 
partial syndrome  during this main loop. It has an initial 

value of zero, as we initially have no syndrome. 

. 	g 
Is the first of two memory locations that will be used to ' 
store the locations of any bytes that have odd parity  and  

thus'an odd number of errors. Initially, , PERROR is also - 
zero,  as  we have ,  not yet encountered, any parity failues. 



.''OLOOP 	LDX 

' 	2 	LDA 

#MUL8 

A,X 
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• 

1- 	• 

The following loop, from the statement 

-labelled 'OLOOP' to the statement . 
labelled 'GOON', is . repeateci once for 
each byte  In  the received,message, 
starting with the last byte and going 

downwards to the first. 

We start by multiplying our  curent  
value of the partial syndrome by a  . 

This is done by looking up the product in 

the table 'MUL8'. 

Remember that 'A', the partial syndrome, 

is initially zero, and thus this multi-

plication has no effect on the first 

iteration of the loop. 

Now, we add the quasi-syndrome from 
our current byte of message to the current 
partial syndrome that is stored in 'A'. 
Since we are working mod 2, we do this ad- 
dition using the 'Exclusive-0r'  Instruction é 
of the microprocessor. Also, to find the  
quasi-syndrome corresponding to our current 
byte of received message, we look .up the 
value in the table named 'GSYND'. 

No, the entries in the table 'QSYND' 
are structured as follows: .  The first 

(most significant) bit of an entry in 

'QSYND' corresponding to a given byte, is 

the parity of that byte, while the last 
seven digits of the table entry are the 
actual quasi-syndrome. Thus, we .can calculate 
the parity of the current byte'as well As 

the up-to-date partial syndrome in one 
operation. 

So, in order to look at the parity of 

our current byte, we have to look at the 

leftmost bit of register 'A', which is our 

current partial syndrome. If the leftmbst 
bit is set, then the current byte is of odd 

parity, and there is an odd number of errors 

in this byte. 

LDB •;ME.SSAGE-1,X 
LDX. ePSYND 

EORA .  B,X 
BITÀ. #$80 
-BEQ GOON 



If we reach this section, then 	TST 	PERROR+ 1 
the parity of the current byte was even 	'BNE 	FAIL 
so we had an odd number of errors. 

So we would like to store the location 	STY 	PERROR 
of this current byte, presently held 	ANDA 	#$7F 

in register 'Y', at PERU«. 

However, if PERROR is currently 

non-zero, then this is the second 
byte containing a parity error.' Thus 

there are at least two errors in the 

received message, and we have no hope 

of performing a correction. In this 

case we branch to the location 'FAIL', 
which indicates a decoding failure. 

OtherWise, this is our first-parity . 	, 

failure, and we could still correct 

our error, and finish correctly. So 
we store the location of the current 
byte, y, in location 'PERROR'. 

• 

Now we decrement register 'Y' by 1. 	GOON 	LEAY 	-1,Y 

If 'Y' is not  • zero, it will point to 	BNE 	OLOOP 
the next byte to be processed. In this 

case we branch back to the beginning of 
the loop. Otherwise, if Y is zero, we 
have finishedthe parity checking and 

syndrome calculation section of the 

program, and we can now go on to attempt 
an error correction. 

Now we have generated the syndrome, 	TSTA 

and we have the location of any one byte 	BEQ 	NOSYND 
that had a parity failure stored. We • 	TST 	PERROR+1 
would obviously like to know if we could 	BEQ 
correct any errors that have crept in to 

the received message. To answer this, we 

need to consider four main cases: 

-46- 

• 
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Case 1: PERROR=0 and A=0 
We assume that we received the 

message correctly, and pass 
to the end of the program. 

Case 2: PERRORM and A=0 
In this case there are at 

least two errors in the 

received message, and we 

cannot possibly decode cor-

rectly. So, we immediately 

report a decoding failure by 

branching to the label 'FAIL'. 

Case 3: PpYND=0 and Ae 
Again, we have at least two 

errors, and we report a 

decoding failure. 

Case 4: PSYNDe and Ae0 
Here we have .at least a chance 
of correcting the error. There 

are two possible positions in 

the received message where an 
error would cause a syndrome .  

identical to 'A'. If either of 

these' positions lies within the 

byte numbered 'PERROR' then we : 
. assume that we only had_a single 

error at ..that position, and we cor-
rect it. However, if neither of 

these two positions is in the byte 
at location 'PERROR', we,again.  fail. 

This is case 4.* 	. 	. 
. 	 . 

We would like to try to.corrept our one . . 	LDX 	#LOG-1 
èrror, if there is only One. Our first 	LDB . - A,X 	,• 
step is to find the two possible error . , 	TFR 	B',A 	- 
positions.corresPonding to our calCulated. 	. ... LSRA' 
syndrome. The first of thebe erroi -  . 	.. • LSRA 
positions is the number. I.F, such that O. 	' 	LSRA• , 
=A (the calculated syndrome.) We may'find 	INCA. :' 
:sucha H by looking it up in a logarithm . 	CMPA 	PERRORA4 
table for the given field. The other pos- 	BE:Ok 	•CORERR 



sible error position is simply U+127, 

since our primitive element, cy,has 

order 127. 

' 	/ 
We.can calculate U very simply, by 

looking up the value of U appropriate to 

the syndrome in a "LOG" Table for the 

finite - field. We then proceed to store 

this, the first possible error position 

in both registers 'Al .  and 'B'. Now we 
would like -to see if this error position . 

 fall's within the byte pointed to.by 

'PERROR'. To do this; we simply divide 

register 'A' by eight, which Will give Us 

a byte position between.0 and 24, then 

add one. Since the 6809 has no diVidé 

Instruction, we Shift register 'A' three 
bits to the right, which has the same ef-

fect as dividing by eight. Once we.have 

computed this result, we Compare it to 

'PERROR', and if the two are the same, we 

proceed to the label 'CORERR' to attempt , 

 to Correct the error at byte 'PERROR'. . 

If we reach the following section of code, 	TFR 	B,A 

it means that our first error position did 	ADDA 	#$87 

not fall within the byte pointed to by 	LSRA 

'PERROR'. However, there is still our 	LSRA 

second possible error position to try. 	LSRA 

This position is 127 bits later than the 	CMPA ,  PERROR+1 
first. Our value for the first error 	BNE 	FAIL 
position is stored in register 'B': We. 	DECB 
move the contents of this register into 

register 'A', add 135, and divide by eight, 

using three'right shifts as above. Adding 

135 has a dual purpose:. We wish to add 127 

to get the next possible error position, and 

eight more to avoid having to increment 'A', 

as was necessary in the last section. 
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We should now have the byte position 

of this, our second possible error position. 

We compare this with 'PERROR'. If the two 

are equal, then this second error position 

is assumed to be the right one and we con- 

tinue on to corerr where we correct the assumed 

error. Otherwise, neither of the potential 
error positions fell within the byte with odd 

parity. In this case, there are at  lest  two 

. errors in the received message, and again we 

must report a decoding failure. 

Here, we have decided that there is exactly 	CORERR 	COMB 
one*error in the received message, at the 	ANDB #7 
position giVen by the contents of register 	IMCB. 

'B', in the byte of the received  message 	LDX PERROR 
numbered 'PERROR': We would now like to cor-. 	LIDA #128 
reet this error. Since We know which byte 
the error. falls in, to correct it we need 

only'create a byte which is all zero except 	• 

for a one in the position correspônding to 

• the faulty' position in the incorrect byte 
and 'EXCLUSIVE-OR' this byte with the faulty 
byte. The zeros in this correction byte 

will not affect the correct digits in the 

faulty byte while the one will change the 

faulty bit. This position within the faulty 

byte is given by the last three digits of 
• register 'B' which ara, in effect, the re-

mainder when 'B' is divided by eight. So, nur 

correctiàn byte.is  created by placing a '1' 
inéo the leftmost bit of register  'A' and ' 

• shifting it.to  the right the number of times 	 • 

given by Sevénless the last three - digits of-

'B'. • Then, 'EOR5 this byte*with our faulty 

byte corrects the error. 
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This next section is the loop 'that actually CORLOOP . DECB' 

creates the correction byte. Register 'A' 	BEQ ECRIOOP 

starts out with a one in the leftmost . 	LSRA • 

position (Most significant bit) and is 	BRA CORIOOP 

shifted' to the right  the  number of times' 

given by register B less one. Note that 
• the test In this loop is at the beginning, . 

to take into.account the case where the 

faulty bit occup ies the leftmost position' 

• . 	• • in the faulty byte, and no shift is - required.. 

ThuS we have created ntir correction byte in ECRIOOP 	BORA  'MESSAGE-1,X 

.register. 'A'. We now Use it to correct the 	. 	STA MESSAGE-1,X 

error. Since register''X' now has the 	BRA OK 	, 

location of the faulty byte, we  use 	as 

an index tnexclusive-or -the faculty.  byte 
, with ,the  correction byte, then to store it 

back again. 

The following are cases 1 and 2 from above. NOSYND, 	TST PERROR+1 

If we get to here, then register 'Al,the 	BNE FAIL 

syndrome is zero. Hence, if we did not 

observe any bytes with cdd parity in the re- 

ceived message then we assume correct reception; 

and terminate. Otherwise, we did find a faulty 

byte and to produce a zero syndrome there must 

have been at least three errors and we have no 

hope of correcting. So we announce a decoding 

failure by branching to the label 'FAIL'. 
' 

If we reach this label, then we have had what 	OK 	RTS 

we assume is a successful decoding, and we 

return to the calling program. - 

If we arrive at this section, then we  have a FAIL 	COM ERFLAG 

decoding failure. We have this if we are sure 	RTS 

that we have two or more errors in the received 

message. Since a zero value 'ERFLAG', the de- 

coding.failure flag, indicates a correct de- 

Coding, we set 'ERFLAG' to be a non-zero number, 

before returning to the calling program. 
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Appendix 2.D Parameters of the Channels 

The burst error channels used in the performancè analysis of 

the codes were described briefly in Section 2.3. These are the 

channels used in the earlier study [2]. This Appendix gives more 

details. The new burst channel model of Section 2.4 is not dis-

cussed any further here. 

Burst Channel #1 is a Gilbert type of model channel. This 

channel model has often been used, for example by WeldonN.The 

channel is assumed to be in either a good state or a bad state. 

In the good.state errors occur independently with frequency a ; 

in the bad state every bit is in error.  (This latter assumption 

makes the calculation feasible though a bad error rate of  ½ would 

be more reasonable.)  Transitions  between the good and bad state 

occur at each bit transmission with the probabilities shown in 

Table 2.0.I.The "good" error probability is then determined to give 

the desired overall bit error rate. 	The distribution 

good -; bad 	bad ->,good 

-3-4 
10 	2.5 x 10 

-4 
10 	3.0 x 10

-5 

-5 
10 	3.0 x 10

-6 

-6 	-7 
10 	3.0 x 10 

Table 2.D..1 State  Transition  Probabilities .for  Burst'Channél #1. 
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f 



BER = 1.7 1/(E m 

-0 

into types of the weight four codewords as given in Appendix 2.E 

is the information required to calculate the probability of de- 

. 
coding error. 

The four remaining burst channels are defined as special cases 

of a general model. We assume that the lengths of the gaps between 

correctly received bits are independent and identically distributed. 

If X is the.number of bits from one correctly received bit to the 

next then we set 'f = Ilr(X=m) for m > 1. These channels only 

have memory of strings of consecutive errors. Once a bit is re-

ceived correctly the disposition of further bits is governed solely 

by the distribution of X. . 

An alternate way of specifying such a channel is to define  • p. 
1 

the probability that a bit is in error given that the previous i-1 

bits are erroneous. The parameters p. are related to the pare- 

meters f
n. 

by the formulas, 

m-1 
f= (1  -p)  -n- pi  

i=1 

f
L 
 = 1 - 

m >1 

We assume that E f = 1 and hence that the bit error rate (BER) 

is given by 



BER P
c 
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For Burst Channel #2 we set p
l = 

P
c 

and p. = P if i > 2. 
E 	— 

Then BER = P /(1-IFP -P ).• The result is a channel in which errors 
C E 

arise as a bitwise Markov chain. A bit is in error with probability 

P if the previous bit was in error and with probability P if 
C 	. 	 E 	- 

it was erroneous. Table 2.D.2 presents the values used in the 

calculations. We take always P
c 

= 100 P
E 

-3 • 	-3 
10 	.9099 x 10 

-4 	- 
10 	.9902 x 10

4 
 

-5 
10

-5 	
.9990 x 10 

10
-6 	

.9999 x 10
-6 

Table 2.D.2 Parameter values for Burst Channel #2. 

The gap lengths between correct bits on Burst Channel #3 have 

a Pareto distribution. For some a > 1 and for m > 1 we have 

co 

	

- 	- 

	

f
m 

= m 	E k a' ). 
k=.1 	• 

The values of a are chosen so that the channel has à preset bit 

error rate; see Table 2.D.3. The formula for bit error rate in 

this case Is 
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co 

( E  
k=1 	k=1 

BER= 

BER 

BER 

-3 
10 	10.01656 

10
-4 

13.30094 

10
-5  

16.61307 

10
-6 

19.93246 

Table 2.D.3 Parameter Values for Burst Channel #3. 

Burst Channel #4 was designed to produce many consecutive 

double errors. Over a background of white Gaussian noise with an 

error rate p an additional process causing errors is superimposed. 

This second process causes isolated single errors to be followed 

by a second error with probability  M. This corresponds to setting 

p. = p for i 	2 and .p
2 

= pq-(1-p)M in our general model. 

Table 2.D.4 gives the values selected for the parameters. 

10
-3 

.667  x 10
-3 	

.5 

10 	.6667x 10 	. 5  

-5 
10

-5 
.666 7x 10 	.5 

10 -6  .6667x 10
-6 

.5 	' 

Table 2.D.4 Parameter Values for Burst . Channel #4 



10
-3 

2 x 16 -3  

10
-4 

2 x 10
-4 

• 

-5 10 	10
-5 

6 
10

- 
 . 	10

-6 
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Burst Channel #5 was  designed to have longer runs of erroneous 

bits than the other channels.. At a fixed bit error rate the effect 

of a longer burst is merely that there are many fewer random errors 

between the bursts. The codes tend to behave on such a,channel as 

if it were a white Gaussian channel with smaller overall bit error 

p 
rate. We take f

m 
p 
m 
 /m!(e -1) for m > 1. This gives 

BER =  1  -e(e -1)/pe . The values determined for the parameter are•

given in Table 2.D.5. 	•  

BER 

Table 2.D.5 Parameter-Values for Burst Channel #5 . 
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Appendix 2.E Parameters of the Codes  

The analysis of the performance of the codes on bursty channels 

re4uires a detailed cataloging of the weight into types according to 

the degree of separation of their ones by zeroes. We use the 

integer 1 to denote a single one and use 2 to stand for two ones in 

a row. The single hyphen "-" represents a single intervening zero 

while a double hyphen "--" denotes at least two and perhaps more 

consecutive zeroes. Thus the vector (---00011010000100--) has 

type 2-1--1. 

Type 	PRODUCT 	' • 	,CARLETON 

2--2 	2646 	72 

2--1-1 	0 	257 

2--1--1 	27 	683 

1-1-1--1 	2268 	. 	60 

1-1--1--1 	. 	54 	. 571 

1--1--1--1 	f5589 	511 
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Chapter 3..EXample of a Half -page Code 

3.1 Introduction: A Reed-Solomon code. 

information bytes  

of the Reed7Solomon 

*Code ' (8 x 28) 

71«  

1 
1 

In addition to the use of error correction on individual 

data lines coding can be introduced into the Broadcast Telidon 

system at other levels on a discretionary basis. This chapter 

explores one such possibility. We consider a Reed-Solombn 

code which groups 8 data blocks together then adds a ninth 

line of check bytes (figure 3,1). Thus this code has 8 x 28 

"information" bytes and 28 "check" bytes. (The prefix bytes 

are ignored.) The symbols of this code are bytes rather than 

bits. In fact any pattern of 14 byte-errors can be corrected. 

These byte errors can come from 14 independent bit errors 

scattered in 14 separate bytes 'or from a series of 98 

consecutive bit errors. This code gives extremely good 

performance at the cost of an  increase in decoding overhead 

and in decoding time.  • 

.27 Data Bytes 	, Suffix Byte 

line #1 ' 
li'ne .#2 

line # 3  

• 
• 
.• 

line 
Reed-SOlomOn'check bYtes 

' FIGURE 3..1 A Codeword of the Reed-Solomon Code  • 	• 
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3.2 Performance. 

We have used as a performance measure the expected 

length of a run of trouble free pages. We therefore make no 

distinction between decoding failure and decoding error. 

Any outcome of a decoding other . . than correct decoding we 

will call a dedoding fault. We calculate the probability of 

decoding fault. From.this the mean number of pages until 

a decoding fault occurs is calculated. The results are 

plotted in Figure 3.2. 

. The data 'block code might  or  might not have been used 

prior to a Reed-Solomon decoding. Since the bytes of the 

data blocks all have known parity the data ,block code will 

never corrupt a good byte in .an attempt to correct errors in 

that data block. Thus the data 'block code cannot make the 

job of the Aeed-Solomon code any more difficult and it may 

make it easier.. • 

Not making any distinction between decoding failures 

and decoding errors has two simplifying consequences. 

.First, since we are only interested in the number of corrupt 

bytes in a .9 block unit a channel with independent errors 

will tend to be the worst. A bursty dhanneL will have 

•errors occuring in clusters. Thus at a fixed' bit error 

rate, a burSty channel will  •have more clean pages and fewer 

corrupt bytes.' The second simplification is that if we are 
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Figure 3.1: 

Mean Nimber of Pages until Decbding 

Fault for a 14 byte-error Correcting 

Code of' Length 252 bytes. 

• page= 2 codewords= 504 bytes) 

(decoding fault=decoding err .or or failur) 

• 
' (* for Comparison-18 line s .  

encodèd with a single error 

correcting code.) 

.14 

10 
8 

MEAN NUMBER 
OF PAGES 
UNTIL 	' 
DECODING 
.FAULT 

'  
10 6 

4 
10 

2 
J.0 

10
-4 

10
73 

• . BIT ERROR RATE 

• -2 
10 



• 

P = 
CD 

252 i 252-i 
)b_b i ' -e-c 

14 

i=0 
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1 	. 

going to calculated 'the probability of a decoding fault we 

are . edSentially - calculating thé PrObability of correct 

decoding. Thus the 'Reed-Solomon Code can be replaced by an 

arbitrary 14 byte-error correcting code. 	The precise 

structure of the code is not required (and would be very 

difficult to calculated in any case). 

Assume that errors occur independently in the .channel 

with probabilfty p. 	Then the probability that a byte is 

received correctly is 	bc= q
8 where 	q = 1-p. 	The 

probability that the byte contains an error is then 

b
e 
= 1-q8  . Ignoring any effect due to corrections made at 

the data block level the probability , of correct-decoding for 

the Reed-Solomon code is 

i • 	 Then the probability of decoding fault is P F= 1 CD 
-P 	and 

the mean number of pages ( = 2 codewords) until adecoding 

fault can be taken as 1/(2P F ). 

.We have included in Figure 3.2 the corresponding 

expected numbers of pages until decoding fault for a data 

block code used without a Reed-Solomon code (that is with 

single bit-error corrections. line bY line). Of course ,in 

our earlier studies we used scarcity I:5f decoding errors as 

the, prime indicator of good performance. These represent 
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ë; 

only  a small fraction of the decdoing faults. To calculate 

the probability of decoding error for the Reed-Solomon code 

would be difficult and not very illuminating (since decoding 

faults in general are so rare). An attempt at reconciling 

the two assessment measures is made in Table 3.1. 

Bit Error 	Mean Number of Pages Until 

Rate Decoding Fault: 	Decoding Error: 

Data Block Code Carleton Code 

Decoding Fault 

Reed-solomon Code 

-3 	 8 10 	2.8 	8.0 x 10 3 	1.7x 10• 
-4  10 	I 	226 	7.O . x 10 6 2.0 x 10 13  

TABLE 3.1 Comparison of Performance 

3.3 Decoding. 

Only a preliminary study was made concerning the' 

decoding of the,Reed-Solomon code. Much has been written on 

this subject. See for example [3] and the references cited 

there. 'A decoding algorithm of the Massey type was . 

implemented in ndcroprocessor software (6502). • Decoding 

required on the order of one second and used 1/2 K of the 

look-up tables for finite field arithmetic. 
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Chapter 4. The System.as a. Whole 	. 

.The final stage •in  our analysis  of error-correction 

coding for the Telidon system was an analysis of the 

performance of the overall system under various assumptiàns. 

Coding .has been proposed or approved for the - five byte 

prefix, the data blocks and for gràups of data blocks. How 

do these codes inter-relate as regards performance? 

We consider two arrangements for coding a séquence , of 

nine data packets. 	The first Option 

Reed-Solomon code while the second does. 

A does not use a 

Option A: 

Option B: 

-each prefiX byte . encoded with Hamming (8.4) . .. 
-each data block completed with a one-byte. 
suffix to correct single errors. 
.'-each prefix byte encoded with Hamming (8,4). 

-coding on the data blocks optional 

-the 9 data blOcks as a whole form a codeword 
for a 14 byte-error correcting code 
(Reed-Solomon for example). 

We assume .  that . errors arise independently.. We use as a 

measure of performance the expected number -  of - , (18 data 

paCket) pages until decoding fault. In 'other words the 

number calculated .is the expected number (:)f pages in a 

problem7free run. Faults include both decoding errors and 

decoding failures with the former being a very small 

fraction• on the channel used. The advantage of using the 



• 

-63- 

probability of a decoding fault over using decodingerror is 

that independent errors are the worse case for the former 

and generally the best  •  case for the latter. A bursty 

channel has its errors packed into fewer bytes so there are 

longer runs of correct bytes. Moreover it woilld be very 

difficult to calculate the probability of decoding error for 

the 14-byte error correcting (Reed-Solomon) code even in the 

simplest case of independent errors. 

Table 4.1 presents the expected number of pages until a 

decoding fault for Options A and B at various bit error 

rates. We include for comparison the same parameter 

calculatèd with the prefix code assumed to work perfectly 

(i.e. no faults). 

ERROR 	 •  OPTION A 	OPTION B 	DATA BLOCK ,REED_SOLOMON 

RATE 	Prefix & Block Prefix & Reed alone 	alone 

codes  • 	Solomon Codes 

	

.01 	.50 	.56 	.5 	.6 

	

.003 	.66 	• 	41 	.66 	•  420 

	

.001 • 	 2.8 	399 	2.8 	1.7 x 10
8  

	

.0003 	26 	4414 	26 	> 1013 

	

.0001 	225 	39692 	225 	> 1013•  

TABLE 4.1 Expected Number of Pages until Decoding Fault 
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. What we  can  quickly deduce is that in Option A the. 

faults are mostly coming from the data block code while in 

Option- B they are mostly ,coming from the prefix. If we 

examine the probabilities of faults arising in the prefices, 

data blOck coae and Reed Solomon code this becomes more 

clear. 

i 
MIT ERROR 	PROBABILITY OF DECODING FAULT IN... 

	

RATE 	9 PREFICES 	9 DATA BLOCKS WITH 	9 DATA BLOCKS WITH 
SINGLE ERROR CORR. 	14 BYTE-ERROR CORR. g• 

	

1 .001 	1.14 x 10 -1 	0.9999933 	0.8829 - 

	

.003 	1.11 x 10 2 	
7.58 x 10-1 	1.17  x10 3 

	

.001 	1.25 x 10 -3 

	

-4 	
1.78 x 10 	2.98_ 4 10 -1 	 -8 

	

0003 	1.13 x 10
-5 	1.92 x 10 -2 	< 

	

1'001 	1.26 x 10 	2.21 x 10 	< 10
-14 -3 

I W 	 . • . 	 . 
. 	 . 

	

. 	 , 
-PABLE 4.2 Probability of at least one decoding fault'in "variou s .  parts of 
the . system 	. 	. 	 . 

. 	. 	 . . 	. 

• Therefore most of the power of the 14 byte 

error-correcting code is lost since the prefix code is 

slowing the system down anyway. On the other hand, without 

this long code the single error correcting code on a data 

block is the limiting factor. We conclude that in the light 

of the decoding complexity of the Reed-Solomon code future 
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• 
work should replace this Reed-Solomon 'code with simpler 

codes that correct fewer bytes, that canibe decoded faster 

and which are closer to the prefix code in probability of a 

decoding fault. 
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