P

ol

* engiifio}

sy T

-
g

b
i

Y
L)

PN |

.
:-E* -
2 N

g0 H

© 268
| M677
\; 1982
. §\ -
2
F’STUDY OF THE USE OF ERROR-CORRECTING
CODES IN BROADCAST: TELIDON N J’w o Mfﬁ&ff’f.?i./
l:. S‘ :ii-.iri.' ey : '
/DR ;ﬁRIAN MORT IMER / MUty Canada i

NSERC RESEARCH FELLOW

B'BLIOT v
HEQ
lndusme Can'de-JuE

SR N

o
3
ek

. Flnal Report o . A‘:§ F??%-’
982 L 1
February, 198 LBRARY /Dl mmufauz N

DSS Contract No. OSUS1-00095 (

<'Sciehtific Authority:

Dr. Mike Sablatash |
Communications Research Centre,
Department of COmmuniqations, :
" Ottawa. |

_Prihcipal Investigator:

Dr. Brian Mortimer
' NSERC Research Fellow, _
Department of Mathematlcs and Statistics,
“ Carleton Unlver81ty, Ottawa‘
Research Associates:

Dr. Mike Moore

Brian Leroux ‘

Lee Oattee (oo !

Tom thchford o
Department of Mathematlcs and StatthlCS,-'

Carletoa Untver81ty,0ttawa'

L& £
SR
wik —
.l

»
o SIS

g it

[P e

References

K etsomeets

‘L:;",:'

y
“TABLE OF CONTENTS

Abstract

Statement of Work from the Contract Proposal

Outline of Main Conclusions
Acknowledgmentsf

! . [N .
Chapter 1. Summary of Results

‘1.1 Introduction
1.2 The Prefix I
. 1.3 Coding the Data Block g
1.4

ter 2. One—byte Data Block Codes
2.1 Introduction

2.2 The Codes Defihed

2.2.1 PRODUCT code,

2.2.2 CARLETON code

2.3 Performance
2.4 A New Burst Channel Model
: 2.5 Decoding !
;Appendlx 2.A Definition of CARLETON code

'2.B A Software Encoder for CARLETON code
2.C A Software Decoder for CARLETON code
2.D Parameters of the Channels

2.E Parameters of the Codes

Chapter 3. Example of'a Half- -page Code
3.1 Introduction:’ a Reed- Solomon code
3.2 Performance
3.3 Decoding

Chapter 4. The System as a Whole

Codes on a Page and Puttlng the System Together

iii.
iv. .
vi.

le6.
l6.
17.
18.
22,
23.
34.

T 40,

41.
43
51..
56.

‘58,
61.

62

66.

v
Es
1
ki

(SR

L,

. bt

information gives a rather detailed picture of how the codes

‘would perform in a variety of error environments.

The problem of decoding was also examined very

© carefully. Software decoders were implemented in MC6809

maéhine cdde for the thfée codes. Moreover hardware decoders
for PRODUCTAand CARLETON code were»sketchea in some detail.
Decbding of 'CARLETON éode was shown to be possible well
within‘the engineering constraints. |

‘Eurthef studies were made of‘the possibilitywof;using

* long block codes to correct a .half—pagé. at a time. The

pe;formance‘of such a code was analyzed both by itself and

in conjunction with the prefix - Hamming code and the data

block code.: A preliminary étudy‘of decoding was made. It was

found that the code choosen (a . Reed-Solomon code) gave

éxtremely good performance to the extent of overpowéring the

rest of the error control scheme.

;) o))
Future work is needed on the 2 and 3 byte suffices for

the data blocks and . on a weaker half-page or pagé code with
‘a quick decoder all of which harmonizes with the rest of the

error—-correction scheme.

i

(i)

%
i

[P

Lrvormina s

[

[T

o

sﬁatement.of Work from the Proposal for the Contract.

DESCRIPTION

The research to be carried out under this epntract will con-
sist of a thorough enamination of the use of Errhr-corfecting
codes in broadcast Telidon. To-date several codes have been
identified as being especially suitable. Theoretical calcula;ions
have shown their ability to improve performance. The addieipnali
constraints to bevconsidered are éhe,amonnt of time necessary‘forA

decoding, the increase. cost of a Telidon ‘terminal which uses»the

. code, and the amount of redundancy introduced into the ‘data by the

code. All must be minimized. This research w111 use both theo-~

reticai calculaﬁions and simulations to measure these parameters.
These simulations Wlll use a mlcrOprocessor ‘of the same type as is
used by Telidon. Fleld data of channel error statistics will be
used-if and when it is avallable- In their absence a variety of

theoretical channel models will be used to exercise the codes.

PURPOSE OR OBJECT

v

The purpose of this project is to select and analyze a range of
ECC for use in improving the performance and extending the range

of brbadcast'Telidon. A .careful choice of error-correcting codes

and a detailed ana1ys1s of their impact on the Telldon system W111.

allow the simultaneous satisfaction of the many constralnts, economlc,

engineering and acceptability for internatidnal standardsr At the

same time, thorough and thoughtful exploration of coding options at
. {

this time will allow for a quick response as the Telidon requirements

change'in the future. o °

(iii)

OUTLINE OF MAIN CONCLUSIONS

' | N 1) One-byte suffix cpdes:

7 ' a) The CARLETON code gives performance soperiof ;o'the’PRODUQT

k code specified in- the provisional BS-la on all but-one of’

H the model channels coosidered. When there is a baekgrouﬁd of
3 » ohite gaﬁssian noise the only situation.in which the PRODUCT
1 . ’ eode.makes fewer.decoding errors is when theie are numerous

- bursts of length 5-10.

b) It has been shown that CARLETON code can be decoded in 0.97 msec

with a 6809 mlcroprocessor at a clock speed of 1.29 MHz ‘using

'512 bytes of look-up table. Longer decodlng times with less

look-up table are also possible. Efficient hardware decoding

- ' is possibie.

_The CARLETON code has been shown to be essentlally optlmal on
the whlte gaussian channel as a one byte data block code which
has-overall known parity (for better error detection) and few
codewords which are short bursts. (for better perfo:mance.on

bursty channels).

A - d) The SAB code recommended by Seguin, Allard and Bhargava was

|
-originally defined for 25 byte data>b10cksvand it is not clear ‘
. ohether a 281byte version is possible. In any case a code of -

the SAB type gives'near optimal oerformance on the white gaussisn - |

channel but has a serious probability of decoding'efror when |

there are short bursts. An effective software-deeoder for SAB

code was developed.

&>

5 < . 3 oo
Brmaeign, [S ——— [y Y | il ATy '.'nwn—.c,‘:‘,:r
0
~r

Fammetyipn,

(iv) .

gy ',n:’_»‘:’./:.,". iy Eiphiinti g -)

J

R

gy

© b0V

A.-?
H
£

2

et

agmenrenr]

[EUrEee

~ 2), Codes for a Half-Page: .
.. a) A 14 byte-error correcting Reed-Solomon code dgﬁined on a

. L0 . :
set of 9 data blocks would virtually eliminate decoding

errors at bit error rates < 1073,

b) Decoding of the Reed-Solomon code wduld-require'more time
) than.the 4 millisecond interval between packets from the

same packet so a whole page would have to be captured first

then be decoded.

3) TheSystem as-a Whole:
'.:a) When using the Prefix code and. one-byte data block code -
together the laftgr.is limiting in terms of delayé~¢aused >

by detected .uncorrectable errors,

b) When the.Prefix code and Reed—Solémpn code aré,uéed together
(with or without the daté-block code) it is the frefix code
ﬁhich ié limiting. To this must be added the decoding delay
for the Reed;Soldmpn code. The conclusion is that the Reed-
:Solomon*éode is inépp:opriate and\should‘be replééed by a

-

less powerful code with a quicker decoder.

sy

ACKNOWLEDGEMENTS

I am happy to ‘take this opportunityAto &cknbwledgefﬁhe

contributions to this repo:£ made by my four co-workers on

the project: Brian Leroux, Mike Moore, Lee Oattes and Tom
.Ritchford.~Théy all worked hard on the research préSénted in

‘the Preliminary Report [2] and their iﬁfluenée on this Final

Report can easily be seen. In particular'Brian_Lerotx gave
ihvaluable‘ assistance in the calculation of many_ of the

numbers presented here.. It is also with pleaéﬁre that T

ekpress my appreciation to André Vincent, John Storrey and

.especially to Mikle Sablatash of the Communications Reséarch

Centre for their interest, ' gnthusfasm‘ and_ assistance
throughout this research. groject.>’Finally_ the skill and-
efficiency of Susan Jameson and Jo-Ann Haynes .has greatly
cased .the -production -and - improved ﬁhé"&uaiity ;of -thesé{

reports and is’gratefully<acknowledged.

(vi)

N &
—— or——elh

%

Chaptér 1. Summary of Results.

SR

1.1 Introduction

poile 3
{afiieiidg

. The object of the research project - reported here (and

Lngnaieiih

covered by DSS Contract No. 0SU81-00095) was to select and'

.
et

analyze as thoroughly as possible error-correcting codes

which ére' appropriate for the Canadian Broadcast Telidon

Lt by

system.' The lion's share of the work done was reported in

‘the preliminary report - "A Study of the Use of
" Error-correcting Codés in the Canadian. Broadcast Télidbn
System" ,August,1981 'fZI.This final._report should be viewed
as .beiné supplementary and 'complimentarf to that eafiier

report.

In analyzing the performance of the codeé_ we 1identify
certain possible outcomes of the decoding process. We then
calculate the probabilities of these various events occuring

under appropriate assuhptions. The possible outcomes of the
B : R :

decoding process are the/following. D

Correct Decoding: the ‘error pattern (if any) that occured
was one which the code deals -with
correctly passing on the actual codeword
that was sent. '

H

G

s}:»‘.-:éxér‘j‘:.{

X

R

e .
P]
]

pp——

. Decoding Fault: the other cése, i.e. aﬁ uncorrectable error

is corrupting the codeword. The faults
are then sub-divided as follows.

Decoding Failure: the error - pattern was Trecognized ‘as. an
- error but the code cannot correct it.
The decoder warns the system that - the

data is falaceous. - g

Decoding Error:the error pattern occured was mistaken by the
: decoder for a correctable pattern when it
was not.. The decoder introduces at least
one more bit error and passes the
codeword on as if it was correct.

. The pfobébility of a ‘correct decoding depends "only ‘on

the coding strafegy (e.g. single erroricorrection,.double

error correction etc.) used and not on ' the detailS"fof the
éode,' The -, same. applies to :déchiné faults so .theée
parameters are.éasiest to calcﬁlate.‘ At aszixed bit error
rate if :the.fchannel is‘bursty‘then the-er:ors will corrupt

fewer codewords and hence, genefally speaking}‘ show. an

‘increase in the frequency of cqrrect'decodihg. Thus the

assumption that errors are independent:(i.e. white gausSian

“channel) is reasonable for assessing performance as regards:

correct decoding and decoding faults. -

When we move to -the more refined (and ‘"interesting) .

level ' of " analysis which consider- th;ee‘possiblé outcomes

‘(correct decoding, decciing failure -and decoding error)

several complications arise. At this level it is the way in

bz L

e

«
3
1

Brvrsmnags

Baipapinie

gl

S~

¢

-which the code is defined which determines' how it will
- perform. Thus detailed (and hard to get) information about

the code is required. Moreover the performance of a given

code ' is much more difficult to predict when the channel is

‘bursty if we are interested in the frequency;>of decOdihg

errors. 1In general though, decoding eérrors are a small

fraction bf_the decoding faults.. This must be traded-off
against the - fact that in the context of a videotex sYétém
decoding failures result in delays in delivery of a page to

a user while a decoding error results in rubbish on the

‘screen which may- be - either gross or»>Quite subtle' and.

undetectable by the user as a false page. More will be said

"below (Sectin 1;3) on the relative - frequency of decoding

errors. and failures.

As a reference point when comparing the performance of

a code on a number of channels wé'assume that the overall

bit errér ‘'rate is constant for .all.' channels. - This
cofresppnds to the fact‘that~overall bit error rate~tenas to.
f;be_tﬁe first;(and often only) paraméter_.relevéntv to error
- patterns, whiéh is'measuféd on a commuhications‘éhanhei. An
'alternate'aésumption would be: that a burst noise ‘phenomenon

is ' adaed onto a background of random errors. -The background

bit error rate would then be held constant. We tried this

second .approach with the .new channel model of Chapter 2,

./A.

e——y

Bserritt

i

M EEL

—4-

Section 3. The results obtained didn't show a sighificaht

change over the previous assumption.

‘The unit of the broadcast videotex system (as‘ specified
in the provisional ‘versidn of BS-14 [1]) which is of
“interest for _coaing purposes is the data paéket, Eaéh

. A A A _ C A
 packet' consists of 33 bytes. There are 5 prefix bytes then:

a series of (28—S?jdata bytes and finally .S suffix bytes.

g . : v \
Here S may be 0,1,2, or 3 and is specified by two of the
bits in the prefix. We deal with the various parts of this

packet one at a time.

)

1.2 The Prefix.

~

‘The five prefix bytes are eéch“ encoded with an

odd-parity variant of the'(8,4)_Hammiﬁg codé as specified in.

Appendix B’ of BS-14. Thus if one of these bytéé, is (bg

b7 _b61. b5 ' b4f b3 b2: bl) . then the . bits b8’

7

b6} b4f- b2> carry information while the other four -

bits. are check bits. The code is defined so that

—

(arithmetic mod 2):

11101000 [bg ~ To
oor111010| (B3| = lo| ..
10001110 [bl 0|
10100011| |be 0
(o b,
' |4
2
by

$erderd L v

st

L3

Py
k)

epd

1
]

f
E
k.

1-b

for a single byte and- | 1- (l Prg)

27 2

2; ' Complementing this bit results in an odd parity

byte. . (For purposes of error—correction _performance

calculations 'we leave the bytes with even parity since this
gives us a linear code).
J

Assuming that errors arise independently with

probébility o the prbbability of a correction ;eCeptiOnf

for one such"bY£e is q8 where g = l-p. . The prbbabilify

of a single error in a byte is 8pq7. Thus the.0v§rall

probability of a prefix being correctly decoded is A (q8 +

7)5;

o
8pq
7,5

l-(q8 + 8pg’) Again assuming independént'igerrors,
the probability of decoding ‘error can. be estimated,.

‘Strictly in terms of the Hamming code_thié\is,

5 3. 7

-" 35 54, 8
PDE 4A4p q +A4p q +4A4p g +. 8A8 p'q * A8p

= 56p3q5 + l4p4q4 + 56p5q3 + 8p7q + p8

. DE > fér' 5 bytes. = On the

" other hand the videotex decoder will not. accept all decodlng

errors. in the prefix as valid messages. The five bytes are

' interpreted as indicated in Figure 1.1.

Here ‘55 is the complement of b,; that 'is b, =

The probability ~of decoding fault . is then;

il

gt S

.
I

iy

S
: Packet Address Bytes Continuity Eacket’structure:
(up to 212 Qifferent Index byte: b2 std. /syncc
addresses) , counts 0 to b4 full/ngt full

15 increment | b, number of
once for each by suffix bytes

packet in a

given channel]
Figure 1.1 The Packet Prefix
The first three bytes'specify a channel . number then the fourth

byte 1is a continuity index count on the data packets of_that

channel as they are broadcast. .A decoding error in the first four

bytes must change the continuity . index by the exact quantlty _

required to make it the next packet from the new channel (i. e. the

channel specified after ' the errors are introduced). Moreover,

- either the next pecket actually £ransmitted on the new channel

must Dbe lost or all subsequent packets must have their continuity
ihdex .incremented by one by a further decoding error. .The
probability of such an event is negligibie (say, <'10-.17
BER = 107> assuming 1000 different channels in use).

Thus the only decod’ng errors that might occur are

those affecting only the packet structure byte. Again many

.at:

Bt &

‘‘‘‘‘

bf these decoding 'ertors';will be caught .by. thes'décbdef
because of 6theﬁ ambiéuities inﬁthe subSequent-broquSing‘of
the.paqket. Thus we can take as a very rough uppér bound on
the probability of a decoding error cbming frém ﬁhe p;efix
3q7

the estimate: 56p . Careful"implementation- of the

videotex decoder would reduce this much further.

3

1.3 Coding the Data Block

M

The prOVisional versioﬁ of Bs;l4u [1] specifies__that

0,1,2 or 3 suffix bytés may be appended to the data block’

of a data packet to be used for error correction.. We have

not yet looked seriously at the cases of 2 or 3"suffix bytes

and in fact BS-14 leaves specification of these . bytes to

the future.

If no suffix bytes -are used then error correction

within the data block 1is impossible: If an odd number of

errors corrupt one of the bytes then these errors -will be

detected. In an environment of random exrrors with bit error.

rate p (and q =1-p), thé probability of chrect decoding
224

“is just q® while the probability of a decoding error is

'approximatelyu

pzid

b
&

]

iy s

B

 Explicitly this is 784pg

28(g)p2q222 + [28(3) + (22)(2)21 ptq?20,

24222 4 'goasgap?q??0 |

\

The case of a one-byte suffix has been. intensively

‘studied - by a numer of research groups [2]([31,[4],[5f-'

The proyisional,version. of BS-14 spécifies -a ’gimple but
effective PRODUCT code for this purpose [1], [4]. Allard

Bhargava and Seguin [3] suggested -another~.code\ which5‘they

‘called’ SAB. This code was defined for data packets of 30

bytes and it is not clear that it can be extended to 33
bytes - in a-reasbnable way. The SAB‘code is very good for a

channel with random errors but has- a‘ high probability of

making a decoding errof én a short burst. A third code was

suggested ,ih [2], [5] by our group. Giving it the
(temporary) name CARLETON code . the preliminary’report [21
preéented an exhaustive comparison of this code .with SAB

code ' and PRODUCT code. The assumed number of bytes in data

block plus suffix in {21 was 25. Since BS—l4‘Aspecifies- 28

N

the results of that preliminary report have had to be

‘updated here. They are presented in Chapter 2. .Since the_

SAB; code cannot be immediately\extended»to these longer data
blocks,it was droppéd from the discussion. PRODUCT code and

CARLETON: code have eésentially the same probabiliﬁy' of

\

wy

e

¥

H

i
-4
X

~

decoding failure ‘on any channel (and hence would produce
:delays with the same frequéency). When we~look at'decoding.
- errors we find that the expected hhmber of pages fdefined as
lhnitsb of 18 oackets) befdre.a decoding‘error'occursfis‘fiVe

‘times larger for CARLETON-code than forlPRODUCT~code~ on the

white gaussian channel. Looking at bursty channels w1th a

\

- background = of white gadss1an noxse vwe found that thls

sqperiority persists. The best tool to use for seelng thls
isAthe'new'channel model of-Chapter 2, ‘Section 3. There - we
observe that, unless the Fhahnél + is systematically -

introducing pathologies, the 'white:,gaussiah ~ performance’

characteristics of th codes pers1st as . the channel becomes

more bursty untll the peformance qulte abruptly degenerates

to a common (poor) value for both codes (Figure 2.4.2). c

We have also shown that Carleton code be décOded:'by a
Motorolla ;6809 mlcroprocessor using l254 machine . cycles

whlch represents 0.97 milliseconds at a 1.29 MHz clock ~speed

using a lOok—up table " of 512 bytes. In fact the PRODUCT

. code, can: be decoded in.a s1m11ar way - us1ng approx1mately the

- same amount of time and look—up storage.

N

Chapter 2 is devoted entirely to the case of a ~one

byte suffix. We conclude the - discussion here with a few

'~ remarks on "optimality". By optimality we mean minimal

Sppentins,

sl

k]
E
3

s snrmatiod,

-10-

probability of decbdin& efrdr. It can be.asked: what..is the
éétimal choiée for a - code using a oné byté suffix; The
answer'is that "optimal" ”cén only be agplied'gto a code
wofking on a péftibular “chanrel. {fhe‘hiétéfical approach
seems to have beén that a cbde is chéosen’to work well; on la

white "gaussian channél and other channels are-eithefvignored

-or treated incidentally. Optimizing a . code on the white

! ' \

gaﬁssian channel translafes; simply teo the minimization of
phe number of low weight codewords. For 'any channel, -in
generéi, Eo obtain an optimal cpde With rggpect<tq.decoaing_
errors«selec£ ajche with- a miniﬁai' numﬁer~iof codewords
which- occurlamongvthé most common clags_of error patterns on
thevbhanﬁel. So réally yoﬁ'have to'have_ a»ispecific ;channél
before. you dan talk about optimization. | |

T

Consider now the special case of a white gaussian

‘channel. Thus the:errors in the channel arise as independent

events. Let"Aifstand_for'the number of codewords ‘of weight

i in somevoneﬁbyte data block code. Certainly we‘would‘take'

,a,singleierror correcting code so .A1=A2=0. In order to
N - X -

{ T

" detect all double errors we take'A3=O. Can we have A,=0?
"No. This means that double error cprrectioh'iS‘-nGt possible

"with only one byte in the suffix. How small can we make.

A4?.Chapter 4 of the prelimihary report [2] was déﬁoted to

this question. We will up-date those results here to the

ViR

3

SRR

_probabilities of correct decoding P

1 .
E——— I st SN ————— it

-11-

case of data packets of 33 bytes (data blocks of 27‘ bytes

pius 1 suffix byte) as follows:

(i)for an arbitrary one byte . suffix code:
A4Z285 ' :
(ii)if the code has only_codewdrds of known parity:
A,>676 , - :
(iii)if the code has no weight 4 codewords with all
ones confined to a single byte: A42853
(iv)if the céde satisfies.' (ii) and (iii):
A,>2028 | \

The first case, (i), givés a bound'on how good a code

we can expect t. find for the white gaussian channel;{fThe

‘other cases deal with added conditions which would give th

code Qauable characteristics . on other channels. CARLETON
code has A4 = 2,154 and satisfies (iv). PRODUCT code
also ' satisfies (iv) and has A4 = 10,584. éd sticking to
codes with the»proper£ies (iv) we can't improve mﬁch (for
the whité gaussiah channel) on_CARLETOﬁ code: 'In order to
get a better code fér\the ~white géussian channei AQe must
weaken its .ability to detect bursts .by either allowing-
arbitrafy overall parity (not (ii)) or aliowing' burst-like

weight 4‘codewords (hot (iii)).

It is also 'essential to_Arealize that ‘there is ‘a

‘trade-off between decoding failures and errors. = The

CD} decoding failure

Pop and of decoding errors Ppn satisfy the - simple

P

e

PN

-
—
f=}

. w

'y
¥

:
£
=

F
ary of

g4 NI,
. jes until

<Joding
ailure -

R

=

‘relation

CDh

DF

PRODUCT O

] CARLETON @
) (i),
] vy IIHi)(U
]
] —o— e |]
]
4
d (1))
T T - "‘l‘ v LN B 'j"l T Yy rrv l"' [] mTrravey l T L 2R ‘ ¥ “ll T T vy T T ’V "l'l] LS l""l
0 10! 10° 10> wt T 1w 108 C10 108

FIGURE 1.2 Expected Number of Paées‘until Decodihg Failure/Error for_sing;"

Expecfed Number of Pages until Decoding Error

Erroxr ggrrecting Codes on the White Gaussian Channel at Bit Error Rate 10
and 10 : . - :

o

skl

e

*angreriind

emriink el

"B, = 1/(18 P

-13-

since they» represent all the possible outcomes of the

Ch

with which error free bloéks.and corréctable. error patterhs

"decoding process.: Now = P depehds only on the frequency

Ch

channel for, say, all single eror . correcting - codés.

arise in the channel. So P _is' the same on any diven

Consider the case of the white gaussian channel and single
error Cbrrécting codes - of - length . n. ‘Then
PCD = qn'+ npqn—l whefe 'p . 1is the bit error rate and-

q= l-p. Thergfore. :BbF_+ Pyp . is a constant fo; all

such codes. ~ Now we take_- By =1/(18 Pp.)) and
E bﬁ) : which are . reséectivey‘ the ilexéécted.
'number - of pages (= 18 data packets) untii-déédding failure
’and until'agfdechiné‘ error. We see that (1/B; + (l/BE)

is a constant sd'vthe graph of the points (BE, Bg) is a

E

ghyperbolé.'. Thus we cannot increase B without

decreésing"BF. Moreover no céde hés.simultaneousiy-good

performanée\as regards bqth decéding failurés and errorg.

Figure 1.2 is a plot of B égainSt .BE
-3

~and 1074 for the white gaussian

for bit error.
rates BER = 10 A “
channel. The points representing several codes are marked.
Also inciuded are thq points for iméginary COdeé"whiCh

: . ‘ {) : ‘
satisy the bounds (i), (ii), (iii), and (iv) -above. While

"keeping"\BE aéceptably lafge e hay be forced to make

!

Bp unacceptably small. The only temedy is to do more

- corréction. This has the effect of reducing the size of the

i .

1 constant? C >in_theufqrmula' .
~ %:+ %'= c .
which .= leads us back to the .old% problem. . Which error

PR |

 patterns are the most common? These‘“are the ones which
- should be corrected first. But these éatterns will depénd'
on the ' channel. Unless we have explicit informaﬁion'about
the actual sroadcast videotex channels.we’ére moreliikely.‘td

be led astray by furﬁher correction than directly to better:

&
P
_%f

'perfbrmancé. These remarks apply of course to the chéice\ of

2 and 3 suffix byte'éodes as wéll,

i

1.4 Codes on a Page and Putting the:Sysﬁém'Togeﬁher{
" We have discussed the prefix and data block codes™ and
; - ' . : ¢))
I ‘now - turn to larger units containing fa number of data

.papkéts. The strategy is to use a powerful code of greatef

length‘ £o ‘cover .a set of say. 8 déta blqcks.ﬁy adding a

cmplete’aata packet of redundancy. Décoding‘ wou}q ~5e ‘too

y . complex to be done in sofﬁWargr‘in4 the sgﬁtutory 4

j . ,millisecohds.allowed for "on—lipe"‘ proCégéingv Qf'.inéqminé
data 'péékets;\ The whole .videotex "page would be éktrééted

g . from the'ghannel first and it could then be'_decoded 'ﬁoff

. line". The idea is to use a code which corrects so many
4 ! T . o i . .

R 1... e S

Iy R

errors that only éxtremely rarely will it be necessary to
re—extrgcﬁ ~a data -block from the channel.. Thus an extra,

say, 2 seconds would be required to deliver - the picture to -

the screen. but that picture could be virtually guaranteed to

v

'be error free. The fact that such a code was in use could

. (., . N .
be specified by a Record Type specification in the Record

Header.

We have examined one such code, a Reed-Solomon code .

over the field GF(256). Thisfrcode can correct up to 1l4.

'byte errors in a set of 9 data blocks . _These could be 14

random bit errors. or a continuous run of 98 bit errors.
Decoding was. not exhaustively examined but can be
accomplished in a matter of a second or two by a software

decoder.

Putting all thiéltogether_we. will = show in ‘Chapter 4
that this Reed-Solomoﬁ“céde overpowers the prefix code in

the sense that it provides very much better performance "than

the prefix can deliyer. We conclude thaﬁ a>differen£_code

woulafbe more effective and such a code. should be sought out

'_and.analyzed.

Vs e womnd

Gada

g

- B

PRI |

16

Chapter 2. One-byte Data Block Codes \\

. 2.1 Introduction : ' o . « \\\\\

Tﬁe pfovisibﬁél issue of BS-14 "Telgvision Broadcasﬁ Videotex" -
[1] stiﬁulates that. a suffix‘of 0,1, 2 of 3 bytes is added to
each data block.fo_be used fo; érror correction énd detection, (ﬁhe
number of such bytes béing specified by the.bits B6 and 38 ofiﬁhe
‘Packet Structure gyfe),' Together.they form:Whathwe will call a data
block code; This chaptér is devoted to a discuésion of codes ap—A

propriate to the case of a one-byte suffix. Since the Preliminary

"Report [2] submitted in August 1981, consists of a thorough analysis

of this problem we. will present here information which is supplementary

to that Report. In particular we move the discussion to the case

of longer data blocks of 27 bytes plus a suffix byte as specified by.

" BS-14. Also we present hardware versions of our decoders, a soft~-

\
\

ware encoder and a new burst channel model.

" 2.2 The Codes Defined.

Two particular codes are thee main object of discussion in this
Section, namely PRODUCT and CARLETON codes. The first is a simple
cbmbinatorially defined code which is specified in BS-14 (paragraph 3.3)

as the_codeAuéed to define a single suffix byte. CARLETON code is

e

S

J—

A T——

et

fr————

;17_

\

an algebraically defined code whose definition (first given in [2]

and [Sj) contains the pSeqdo-random element inhergnt in using a finite
fiéld to give the code bettéf behévio;f ﬁothrthese dodes‘are.sigglé'
error:correcting‘and use the fact thaﬁ tﬁé data Bytes have.ddd

parity. The.sb-called SAB code whichAwas defiped in [3] agma pos-

sible code for Telidon and was compafed(with\PRODUCT and CARLETON

codes in [2] is not discussed in this report. This is principally

because it is far from transparent whether the SAB code can be ex-

tended to 28 bytes in a sensible way.

2.2.1 TRODUGCT Code
The PRODUCT. code is the simplest species of the genus of product
codes. It'uses an (odd) barity check on bytes and 'a longditudinal "
(odd) parity check.across the bytes to correct single errors.. Write
' = 3 s s ey . i = :"':zv
the data blocks as Bi (bi8’ bi7 Pil) .for i - 1 , 7

and let B°8

- represent the suffix byte. Then with additions taken
mod.2 (excluéive -or) we define the eighfh bit of each’block'by

= eee + b N
big = LAbiyHb 4. by

for i =1,...,27 and define the suffix byte by

b. . = 1+b. .+ ... +Db
285 = L TPy 27

TR

proets

Y iy

3

| P

-18-

for: j = l,...,8; Since there are an odd number of data bytes of
odd parity the check.byte also has odd parity gutomaticaliy.

Thejuse of odd parity is a ngisaﬁqe to the coding.theogist
since it is a non-lineafvdoqaition’ahdAremoves the equivalenée of
minimum weight and minimum distance.‘~Thu$ we will alﬁays considér
the even parity version.of the PRODUCT‘code (so0 tﬁe.ohes a#é re -
moved from the equgtions above). This even-parity‘code‘has the
same distance structuré as the odd parity vérsiog (and hence perférms
in thé_éame way) but is a lihear code'apd hence its analysis is

easier to describe.

For additional information and discussion of this code‘consult

[4] and the literature cited there.

2,2.2 CARIETON Code

The CARLETON~code is an a;gebraically defined code whiéh is
allieé‘to a sﬁort;ned Hamming code but. makes uéeiof the odd pa?ity
of the data bytes Bi'_ (It was first defined.in Maréh, 1981 éuring
an attémpt,to show that the PRODUCT code is optimal as a dgta block:
code on thé white'Gaussian channe; which it isn't in faét,i

We first give a terse if_somewhéﬁ mysteriouSAQnd unmotivéted ’

definition then present an algebraic definition.

U f

]

[

it

ot
-

%
i
¥
¥

. =19-

The suffix byte BZ8 of CARLETON code is obtained by suc-
cessively adding each of the.27 data bytes to an accumulator

(a_, a

g> 877 ...,'al), vhich starts off set to zeroes. After each

~

addition the bits of the accumulator are transformed according to.
the following rules (sums are mod 2):

LI .
a1 ::1.1 +‘az_+ a6 + a8-

Y .
a7 a, +_a3‘+ a4 + é8

. '= .,‘ .
‘ a8 ay + a5 + a6 +:a7 + ag b

After the 27th byte has been processed the accumulator contains the

=

ix byt
suffix .y e B28

.The transformation of the accumulator involves each bit an odd-

‘number of times. Therefore it preserves the parity of the accumulator.
‘\ . .- . .

The{accumulator starts with even parity and the effect of the

_additions and transformations is to changs this parity 27 times. Thus

328‘ has odd parity automhtically.

|

~20~-

: , ' ‘ Where did the transformation rules come from? Let GF(128)
§, | g ‘ , , . .

denote the field of 2’ =128 elements. The non-zero elements of

w.a‘uxv&ékj

this field form a cyclic group which can be gencrated by o where

d"is a root of X7 + X3 + 1 over the.field GF(2) of two elements.

v

[RSWEEDES B

Thus a7 = a3 + 1 in .GF(128) and the powers al' run through all

E . A the non-zero field éléments with period 127 . 1If a codeword_of
QCARLETON code is written as a bit string'as'_(Bl, cers 328)“=
: heos eeey th th d def that
(0223,kC222, ,qu, CO) _then f éo e is so de ined tha
BN o ‘ \
| 223 4
Z C.;al = 0. .
i=0 *
, he ith b i itt = (b,_; b eee, b is i
Iﬁ\t e ith byte is er- en Bi (17° P16’] iO) thls_}s
28 7 .
1 - 224-
5 Z“'bi. o 24-8i+]j =0
i=l j=0 I
; v .
More explicitly this is »
223 . 216 R Y 0
b o ee + b ces b ees + b . @
Gy T b)b e (g Pag,07)
V‘ o We write this equation in ‘the form
o 7 6 0, 8.27 -
i b o ceo b,
. _ ‘ by 7 +b g% * thio¥da
C 7 S 0, 8.26
. . . b - T arsesveenus e b L
} . + ,(3,7 ¢ + | + 2,0'a')ia
1 - 1 -
s . 7 E o 0. 8-0 : ‘.
I, ~ . b ‘ B, b). = .
x o By & . Thyg ¥) =0 \

NG

#
$
S
&

-21-

Given the first 27 bytes we wish to select the bits of the 28th byte

so that this equation is valid with the parity of B odd.

28

Each byte B, represents an element of the field GF (128),
. . l .

o 0 . ;
namely bi a7'+‘..._+ biO‘a , which we again denote by Bi'

7

We then see that the'check'ésuffix) byte is determined by the above

equation,

@)t

=]
I

8.27 8.26 =
28 Bl(cv) +B2(Q') +....+B27

(...((Blas) + B2)a8 + eeo + 32'7)918‘ cee (%)

In fact each field element x has two representations as

7 -6 1 . 7 3 -0
X = u7a + ueor. + vee + ula -#uo since 0 =q +ao +o . One

representation has an odd number of ones (non-zero coefficients)
and the other has an even number of ones. Therefore B28 can be
represented by . an odd parity byte and we have found the suffix byte.

The "Horner's method" definition of B28 ((*) above) is the

expression used in the first definition of Carleton code. The

transformation specified in that definition is just "multiplication

by a8". As an 8 %8 binary matrix the "multiply by as" trans-

15 14

N \-‘ 8 N
formation has rows equal to @ , o , +.e5 @ o Using odd'parity

representations for these field elements the matrix ‘is

-w:-wrfrj

eesmrend

e
¥
£

22
— — ' o v
"1 1 10100 1 1
o 1 01001 00
A L 0110 0010
8 00110010
(mult. by o)= . = 00011001 y
' "9 1 1 000 0 0 1 .
0’8 1 010 11 0 1
o 1 0 01 1-0 1 1
SR L ‘ A

This matrix then determines the linear relations in our first

definition.

As with the PRODUCT code we actﬁally work with even parify

bytes in CARLETON:code when carrying out ﬁéfformance calculations.

1

2.3 PERFORMANCE

The main thrust of our brogress report [2] was the analysis

" 0f the relative performanée of PRODUCT, CARLETON and SAB codes. '

We have repeated the calculations for the first two codes extended

\

tg é 1eng£h of 28ibytes and will report our resu1ts hefe. Fof de-
tails on methodsvéf calcuiationé etc.~tﬁé ré;der is ;efer?ed to the
earlier report'tg]. \
One méasurg used to assess the codes is the probabilitf that
é burst of 1ength’b resultsfin dgpoding error. - Here a burst:iS'a

continuous string of b bits each of which is in error with

probability %. For PRODUCT and CARLETON codes these probabilities '

(TR .

ey rt

e g

et

-23-

are independent of the length. of a code sé no new calculations are
necessary. Thus Figure 2.3.1is repeated from the Progress Report
unchanged; The actual numbers are given in Table 2.3.1 and are-used
in the chapnei ﬁodel of Sec#ion 2.4 below.

The probability'of é decbding erfor'(or dépbding failure) on
a vafiety of model channels,was the other pe?formance measure used.
This fequires (in £he'absence of field da;a) that quiﬁe arﬁitfary.

assdmptions be made about the nature of the error patterns in the

‘channel so that the calculations can actually be carried out.
'Hence a range of channels was used. The channels are described

briefly beléw (and in more detail in Appendix 2D). The results

appear in-Tgble 2.3.2. Note that the Burst Channel #2 of fhe_
Progress Report has been removed from those comsidered. Each channel

depends-.on a choice of parameters and this choice was always made
k _ ,

so that the overall git error rate would be one of 10_3,A10—4,

107 or 10_'6 .

: White Gaussian Channel.

The errors occur as independent events with a fixed probabil -
~ - - _ B _6 "
ity of 10 3, 10 é, 10 > or 10 ~ .

Burst Channel 1.

‘This channel is of the type introduced by Giibert in Reference [6].

The channel haé two states} ”good”'anﬂ.'%ad”. -In the ''good"

4

e i et

| Bl - i e —

PRSEY SR —— RS sl i i3

FIGURE .2.3.1 The Probability that a Burst Causes a Decoding Error

[l P -

ezl

25
.20 |
Probability . '
or (O PRODUCT code
Deceding @ ~ CARLETON code
’prror :
.15 4' ’[34 SAB code
LLAD
.CH 4
‘ ., .
LA AN Wy —
VL T - = I PR T . T T V,)
10 - - 715 © .20 a5) 30 35

Zurst Length (in bits)

-z~ |

"4‘:,-49“;:;@;

TABLE 2.3.1 The Probability that a Burst of Length b Causes Decoding Error

W 0 ~N & U1 B~ W

10

12
13
14

15
16
17

18
119 -

20
25
30

35

40
45

50

\f25—

PRODUCT .code : :CARLETON code
0 0
0 o0
0 .00781
0 .00781 -
0 .00586
0 .00122
.0137 0237
.0213 .0309
| | .0251 | h
.0252; -
.0271 -
.0268 .
.0261]
L0257
0243
.0233
. .0223
.0213"
0161 :
.0123 |
..0090
.0066
C L0047 -
©.0033)
{
{

Channels:
Bit Error Ceode White Gaussian
Rate -
3
_ PRODUCT 1.61x10
1073 : 3
CARLETON 8.04x10
. ' PN)
Bxpected No. | -h PRODU;T , 1.4x106
of Pages until CARLETON -7.0x10
Decoding _s PRODUCT - 1.3x10°
Error 10 . CARLETON 6.4x10°
' PRODUCT 1.3x1012
1076 12
‘ CARLETON © 6, 4x10
-3 . :
10 _ The same for 2.6
Expected No.- 10—4 both codes 926
of Pages until -5 . 4
Decoding 'lO :) 2.2x10.A |
Failure | . lO—6 2.2x106-‘

TABLE 2.3.2 Performance Parameters on a Variety

Bu;st
Chgnﬁel
#1-

154
755

1.28x10%
6.30x10"

1.27x10°
: 6.22x106
1.z7x108'
6.21x10°

2.

16

165

1653

L

Setrarmntoss o o

Burst
Channel
#2

90

451

7.81x103

w3.94x104

'7.70x10§

3,89x106

7.69x107

3.88xL08

2.4

.30

308

3100

S

Burst

Channel

#3

337
1660

1
3

4
2

1
8

3.

.12x105
5
.49%10

.32x107
8.
.12x10

.68x1010

.22x10lo

4

197

1

6

. 28x10*

.83x10°

of Model Chanﬁels

bpmanini

-Burst

Channel
#4

43

254

3.81x10%
2.26x104

3.77x105

6
2.23x%10

3.76x107
2.23x10§

1.4

9

84

838

—1III'-’_M —

Burst

Channel

1.15x10
LB4x107

3.

#5

7410
.57x103

.46x106
.18x106

10
10

13

.19x10
.25x10"

7

284

1.

4.

12x105

03x106

-9Z-

state errors occur as in White Gaussian .channel. In the "bad"

[r e

state every bit is in error. The result is a channel with numerous

short bursts (1éngths 2 and 3 being the most popular).

gt

«

Burst Channel 2}

i

This channel is a Markov chain with a one bit memory. Again
'! it is characterized by short bursts (lengths 3 and é_dcminating.)

" Burst Channel 3.

This channél is based on a Pareto distributions (see Reference 7).

$egr

Its most frequent burst lengths are 5,6 and 7. -

Burst Channel 4,

o

/

. This channel is a White Gaussian channel in which some phenomenon

Fruteing

¢

\ . converts half the isolated single errors into consecutive double
errors., It has a curious distribution of burst lengths .with even
1eﬁgth bursts favoured over odd.

. Burst Channel 5.

payenti

.I ‘ This channel has occaéioggl logg bu%sts (of about lo,bitS) and
, is approximately White Gaussian thé rest of the time, The éoi;

J ‘ . lection of the errors into‘théée longer bursts at a.fixed.bit error
i ' .rate efﬁegtiveiy cleans uplarge stretches between the burSﬁé. The
result is a channél on which codes behave 1aréély as they w;uldlon

)

’ a White Gaussian channel with a bit error rate much less than the
| observed bit error rate.

wmenedh

Y

JREp—

PP

B mel¥

At

e TRy
M,;.ﬁ

[

et ™

e s.,,--,d P]

" (generally it is 1 or close to 1), This drawback is overcome by

-28-

The low-weight distributions of the codes is given in Table .
2.3f3. There Ai’ is the number of chewbrds of weight i.

A A A Al

. _ 4 5 6 7
PRODUCT 10,584 0 - 1,100,736 0
CARLETON 2,154 0 622,733 0

Table 2.3.3 ZLow Weight Distribution of -the Codes .

2.4 A New Burst. Channel Model

. One of the problems with our earliev burst-error medel chan-.

‘nels is that the bit error rate within a burst is too high

{

the channel model we now describe. We assume that each d ata block
(i.e. codeword) is received in either godd or bad condition. 1In

the good state the errors are independent events while in the bad -~

state a burst error of some length ‘b occurs (and all other bits .

are correct). The necessary parameters of. the channel model and code

" are the following:

PG = probability that a good block is.received,l
P, =1-P, = probability that a bad block is received,
o = bit error rate in a good block,

: p(b) = probability that a bad block contains a burst of length b,
' : . Yo , o

i

[T A——

-29-

EB(b)“= probability that the code being used turns a burst
' . of length b into a decoding‘error)~
EGQJ) = probability of decoding error for the code being used

on a white gaussian channel with bit e;rb: rate o .

We assume that there is no correlation between the states of
successive blocks. We also assume that the bits of a good block
outside the burst are correct and that inside the burst the bit
' y - b . ' o
error rate is % with all 2 burst error patterns equally likely =

to arise. Writing n for the length of the code the overall bit

error rate is

BER =Po + P
G 2n

b
B .E | p(b) .

The probabilities of decoding error .and of correct.décoding
o . :) : ')

are..
| =P . +P .5 pb b) .
; PDE . PG EG@?) + PB % ?() EB()
. n ‘ n-1. - bl
PCD = PG((lﬂj). + no Flw:)) + PB E zb .

\ : . S
Thé parameters EB(b) are in fact numbers caléulated‘earlier.

They appear in Table 2.3.1 and Figure 2.3.1. The parameters EGQJ)

© .

is easily calculated from the %eight distribution of the Eode} Yet
to be determined are o, PG and the values -p(b) for" b = 1,2,5.. .
The value of o is'deﬁermined from the others by fixing the over-

(

[

—30j

- A) e \
all bit error rate (at say 10 3, 10 4, 10 > or 10) ‘and solving

the bit error rate equatioﬁ for o. éince 0<o < 1: not -all
choiéeé fér PG .aré feasiﬁlea

Knoﬁing the histribution EB(bS:in advaﬁcg.meané ﬁhat we can‘k
produce almosf any result by choosipg.the distribution p(b)‘ab-‘
proprigtely. In ;omparigg;dARIETON and PRODUCT_Goaes tbg-question

is: does the'bettér performance of CARLETON.bode on the gqod blopks

compensate for its relative wéakness on the bad blocks Wiéh_bufsts

N

of lengths 4 to»lO?’AOr more to the point, what happens to -the per-

formance as the. channel becomes more bursty i.e. as Py increases?
" Three distributions: p(b) have been used to demonstrate this
model. We call them Channels A, B and C, and they are plotted ih\

Figure 2.4.1. _This channels have B.E.R. E'IO—B. As we move from

Channel A to Channel C there is an increasing'trendttoilonger bursts.

~ Note that Channel A hasvbﬁrsts on1§ in the range-(b =5,6,7,8) in

which.CARLETON code produces decoding efrorslénd PKOﬁﬁéT'codg do¢s
not, ﬁénce, this channellproduces a rather femé£kab1e-pufvevin
Figure 2.4,2 where the mean number of (18 data Blocg) paéés uﬁti}
deqodiﬁg éfror is plot;gd against the probability ~PB thét a bibck

contains.a burst error. Once we move the preponderance of bursts .

* to longer lengths as in Chénnels B and C we see a consistent -shape

. . . [] R " i ’ . ._,_._.,,“'
. ¢ . ' e Dk P RIBIS.§ ﬂ“mw-d.;i dHmnmntiihs S
-~ e 4 P Yemearaenss O ppimmgt,presbnad (BN LPRUEREY e St Fopr e e Frabmilil s —
. | ‘ ' » ' ‘

Figure 2.4.1 New Channel Model :
. Channel A
. ’ - Distribution of p(b) { Channel B - ————--
o4) - Channel C --wereerivun
Distribution of EB(b){ PRODUCT code O
. . CARLETON code o
0.3 -
PROBABILITY
i
w
.
-
0.2 ~
0.1 7
1| 2' 3 4 5 6 7 [} ;]_;)A 11 12 13 14 15 .16 17 1'8 ;9 20 21 22 23 24 25 26 27 2§ 29 30 31 32

BURST LFHGTY , b

~32- : - _ . j
|- : _ ‘ " Figure 2.4.2
New Channel Model : mean numbr of pages
to Decoding Error at BER=10 ~ as a function
A of probability of a bursty block . ‘
{ 9000 o : : L '
i Channel A
' ~ Channel B ~==~~-
% 1 CARLETON code ;
i : Channel c =s=sec-c
' 8000 i -
. %l .
_ 7000 -
?
i 6000 =
Y Mean Number of
¥ Pages until
i Decoding Error

- ¥oso -
4000 o
b)
§ T
3000
-l
' - ’ 2000
PRODUCT, code
f ERRTINE o ’
: T
I -
‘ 1000 ‘ o oo
i
T LA e B 2 O T 1 T T Ui T U T .-.‘_‘]I“”l T TT7
o 1076 1073 B 1072 .
‘ . ’ Probability That a Block Contains a Burst Error

'

wresonlsy

aiensriig]

TV

G

Trvesri

-33-

for the curves. Thus as- PB increases the mean number of pagés,

until decoding error declines from the whité'gaus§ian values (for
o -5, . ~ L3 -2
say PB < 10 7) to a matter of a few hundred when PB is 10 = to 10 .,

X

The behavior of the codes is easy to explain. When PB is

small the channel Hﬁprnximates white gaussian closely. When PB

is large more errors occur in bursts and fewer as independent events.

. Thus the superiority of CARLETON code is lost in the roughiy equi~-

Yalent ébilities of the two codes with Bﬁrsts. In the case of
Channél A we have a curious anomally. Thi; chanpel never has
a‘burst‘of errors which outwits PRODUCT code; Hence as PB in-
creases PRODUCT code makes fewer decoding errors on this channel.

This discussion is made simply to indicate the flexibility of

the model and the intimate interdependence of performance with error

pattern frequencies. This channel was developed to give a more ac-
curate model of burst channel performance but has the additional
virtue that it would be.straight forward to fit this model té field

data. It is ready and wéiting if any such data every appear.

Py

csasdf

N

i

e

and implementation can be handled in various ways.

-34- -

-

2.5 Decoding.
‘The software decoding of both PRODUCT and CARLETON codes was

discussed in [2]. As the algorithms given there were implemented .
/.

for the shorter 25 byte data blocks we have included here in an ap-= ,

pendix implementations of the software decoding algbrithm'fbr the .
. . " 5§ CARLETOU code. o
length 28 bytes casef . Again these are written in 6809 assembler,

The time to decode a single data block with this algorithm is at _
. (e

most 12!34 machine cycles (msec. at 1.29 M/hz), for CARLETON{

Again this algorithm uses 511 bytes of look-up table storage. The

~decoding time for CARLE®Ncode by the algo:ithm given here is a7?msec.

Hardware decoding of both PRODUCT and CAR;ETON\code is straigﬁt-

forward. We describe below hardware decoders for these codes to a -

\

reaéonably detailed level. Of course the actual form gf decoding

s : $ S
uses in any particular videotex terminal.will depend very much on

(

. the -overall architecture of the terminal. Hence there isn't much

point in.refinihg the désign completely.f The hardware -decoder is

developed only for enough to, show that its.complexity is not extreme

aam‘m;f [.._.. B o —ni ,

o

btz

R

[

4t I: fosg3

~35-

2.5.1 A Hardware Decoder for Carleton Code-.
(S . -

This decoder will correct a single error or declares a decoding

'faildre'in 448 clock cycles. These cycles are divided into an inr-

put phase of 224 cycles and an equal output phase. The decoder is

working in a bit-serial mode with the suffix byte last.

During input the incoming bits are counted off into bytes and

‘the parity of each byte is-checked. The bytes are counted from O

i

to 27 and when a parity failure in a byte is detected we fecord-the

_ byte number in the set of 5 flip-flops. Simultaneousiy wé'cbunt

the number of byte failureé"ﬁy:passing a 1 down a 2 stage.shiftf

register. This allows us to identify whether there were 0,1 or more

than'1 byte parity-failufes.' At ;he_same‘time a feedback‘sbifﬁi
regisfer.is calculating the.algeﬁraic syﬁdrope (by‘multiplying by
a rédt @ of 'x? + x3 + 1)'. \

Aftér 224;;10ck cycles the entiré.received'string has been

clocked into the data buffer. We now clock it out for 224 cycles.,

First the swtich A is opened toAprgserve the number of the last byte

.

to show a parity failure. The five adders then compare this byte -
number with the number of the byte now leaving the data buffef..‘:
The NOR gate identifies aAmatch..

The\algebraic syndrome register continues to cycle during the

olabaddy

Wi

]

; lfxt/

IS

|22

srzpeiE

=

Mtteomtert 0l

et

_,36-

oulpﬁt phase. Two 1ogié circqips décidegwhether the contengs of
this register is non-zerp-and whether it:is the répresenf%;ion
.of 0223 = (0,0,G,l?l,l,l). Thi; last condition means that.a
single eirror in the pit,nbw leaving the ciréuit quld have giVen_
the same syndromé. ~Then .if the byte numBer mﬁtches the last éné
Gith a parityiéailure and théfe‘was only.one byte with a pa;ity
failure then we correct the bit.

Decoding failufé”is.declare§ if any pf the followiﬂg occur,

1; at 1eas§ two bytes\have;a parity"faiiure;

2. the algebraic syndrome is zero and at least one byte has
a'pafity failure;
3. the aigebraic syndrome is‘nonfzero'and there were no cor-

rections attempted.

This last condition is unknown until the last bit is out so decoding

failure is decided only at the end of the 224 c&éles.

After the 224 bits are closekd out of the circuit the swifch A *

- is closed and*ali the registers are rgéet appropriately. (The 5

flip-flops must be reset to a string which is not a byte humbér;)
The details of clocking and reset are not worked out.

(For the flip-flops a dot . marks the clock input.)

| ?D0ES CURRENT

R{ - BYTE NUMBER MATCH
. NUMBER OF THE
T LAST BYTE WITH

A PARITY FAILURE?

| count oFF THE.
-] 224 BITS 1N|0
i ;28 BYTES

| CHANGE THIS
CALCULATE I | : e
" INCOMING BYTE FA : B P

~ # OF BYTE
PARITY . 21
- FAILURES >1

“:éiSYNDROME
223

o | 2N0 GOR-
: aiTREG =:a" '

- ZIRECTIO .
CU|ALIEMPTEQ?

DECLARE A DECODING FAILURE

| FEEDBACK SHIFT R ‘STER 0 tALCULATE THE ~'. : by, oy
ALGEBRAIC SYNOROME. MULTIPL’ES BY &] - -
pROTOFX X 31

~ DATA IN.

L ¥

~

. -

S

ammenid — w‘awiﬂi .

4

224 BIT SHIFT REGISTER

o

e

1to38
- COUNTER

1 to 28

COUNTER

NECONTNG FATEIRF

v :
NATA ONT

—L‘E_

—n . R | [ST R -..;‘ — . PR

),

heiad et .‘P%} - O

N ‘: ‘.K»\l "

-38-

-2.5.2 A Hardware Decoder for Product Code

‘-This'decoder i$ similar to the one formca¥let6§ éode._ The-
layover_highlights the differences. ' The algebréic éyndrome ié fe—
placed by a feedback shift.register which calcﬁlates tge colu@n:
checks. A 2.stagg shift rggister counts the number of failure; .
(i.e. 0's) in this set-of 8 polumnléhecks;

Decoding'failure is declared if, S
1. tﬁege are a£ least 2 column failures;
2.'theré are at leas§'2 row (i.e. Byte‘failures),_

s

| COUNT THE .
~ Jcoi. FAIL.|

CF.S.R. TO-CALCULATE THE LaGOTTOUDINAL | - ~ |- = = OF

ALLURE

1 to '_8 '

COUNMTER

1 to 28
' COUNTER

b

DECODING FAILURE

N

6€.

y .

- DATA OUT

~40-

- Appendix 2.A Definition of Carleton Code.

)

In addition to the odd-parity qhecks on the 2% daté bytes a
“single Sfoix Byte is added as follows. Each ;uccessive'ﬁyte is-
éddea mod 2 (eiciusiveQOr) tq_anyapcumulator (al, ...,Ja8). . After
each addifion the accﬁmglator is transformed ac¢ording to ;he
rulesi(moa 2):

' a''=a +a +a +a_ + a,

| B, : :
a7—al+a3+a4+a8

[- .
. a8. a4 + ag f ac + a7 + é8

- After 27 bytes have been processed the accumulator contains the

check byte.

‘byte. A

~41~

Appendix 2.B A Software Encoder .for Carleton Code.

This encoder implements the method of page

written in 6809 Assemﬁler code.

X points to the first message

is set to zero.

Each successive byte is exclusive-~or'd

with the A register.

. The A register is them multiblied

by .o eight times. -The iterations
are counted by shifting a one across
the B register. The contents of A

are shifted once to the left. If a

.one appéars in the carry bit C then

A contained (1L,....) a number using

. @ in its representation. .Thus if,

C =1 after the shift we add 08_ onto .

7 -

4 3 .
.A where a? =g +o +o +o+1=(10011011)

In decimal this byte represents 155.-

¢

BYTELGOP

" XALPHA

. SKIP

. It is
DX BYTEL
CLRA
EORA X
ILDB ~ #1
ASIA
BCC = SKIP
.EORA #155
" ASLB

' BCC - XALPHA

~

i ~ . e rmicts] g [—— lrv:jmk"‘l - Basresit retarnns e aiiad -z:wé‘o.%&n;i o S— ' —_— ek

5
e

mmera e

42

After 27 bytes have been processed

we ieave the loop

A

A Which‘ncw contains the check byfe(

is stored in the next byte below

" the data bytes in memory.

Return

LEAX
CMPX

BNE

STA

RTS

»X+

BYTEL + 28 -

. BYTELOOP

»X

A

vhatﬂ!—?i:vl"g}’i .

PERROR

J—

1
i
i
4
3

ERFLAG

QSYND

"MULS8

-43-

APPENDIX 2.C IMPLEMENTATION OF THE DECODER FOR CARLETON CODE

(LENGTH = 28 BYTES)

MEMORY ALLOQATION

This routine uses 3 bytes of RAM;

Is‘fwo consecutive bytes that will store the location of

 the first faulty byte that we find. We use two bytes, as

we must store the index register 'Y' here, but-since 'Y'
only takes on values between 1 and 28, the first byte will
always be zero. So, to see if anything has been stored in
'"PERROR', we' will always look at the contents. of PERROR+L.

Is the decoding failure flag. It is set to zero at the start -
of the routine and will remain zero if we decode.correctly.
However, if we have a decoding failure then ERFLAG receives

a non-zero, value. ' This is unnedeSsarX if a bit in the con—
dition code register is used ad an error flag.

»' This routine also uses 511 bytes of tables in ROM:

Is a table of length 256 - which has the quasi-syndrome for
any given message byte. The table is stored in the fol-
1owing format:

For. an entry in the table corres?ond%ng to a given byte.',The
emen

dflrst bit of the entryy is the erlty of the corresponding
message byte while the last seven bits are the actual quasi-

syndrome of the byte. This allows us to do the syndrome
calculatlons and the parity- checklng of a message byte.
51mu1taneously :

Is a table of length 128 whlch is used to multiply a given

partial syndrome by 08 An entry .in this table corresgonding
to a given byte is just-the product of this byte and o°, in.
the finite field. We only need a table of length 128, as the
partial syndromes are all 7 bits. 1ong, which gives us a

- maximum of 128 different partlal syndromes and 128 different
locations in the table. :

T W pF fgueresmae PR R — Epetieniarion; ' — PR
N . . i)

~-44~

LOG . Is a table of - logarithms in the given field. For a given
byte- B the corresponding entry in the table is.the '
number U such that oU = B. We use this table to find
the error p051t10n in our recelved message from a glven
synd rome.

‘Finally,,the.array ’message' is‘the received message, which is
assumed to be 28 bytes long and to have the following format:
An information byte in message looks like

X ceiy X,

| 7’ Fit6’ 1 o | |
-with the -leftmost bit being the most signifiecant bit .of the byte.

Thus the first byte of message will go—ftom'XZZBVto Xé16,>whilevthe’

last byte coﬁprises through X

Xy 0"

Assembler Program

TOPBYTE EQU #28

' LDY #TOPBYTE
CLRA o
CLR PERROR
CLR PERROR + 1
CLR ERFIAG

TOPBYTE ' Is the number of bytes in the received message.. Currently,
we assume a message length of 28 bytes. ‘

' Y - Is the internal'index registex of the 6809 microprocessor’

that points to the byte of the received message that we

are currently examining. Since we are working from the last
byte of our message down to the first, Y will 1n1tlally have
the value TOPBYTIE. ~ .

A Is the 1nterna1 reglster of the 6809 that contalns the .
partial syndrome during this main loop. It has an lnltlal
value of zero, as we initially have no syndrome.. :

PERROR Is the first of two memory locations that will be used to

store the locations of any‘bytss that have odd pafity and -
thus an odd number of errors. Initially, PERROR is also -
zero, as we have not yet encountered any parity failures.

ezl [

ermiid

-45-

The following loop, from the statemeht
~labelled 'OLOOP' to the statement

labelled 'GOON', is repeated once for
each byte INn the received, message,
starting with the last byte and going
downwards to the first.

We start by multlplylng our cu§rent
value of the partial syndrome by ¢ .

" This is done by looking up the product in

the table- 'MULS8'. _
Remember that 'A', the partial syndrome,
is initially zero, and thus this multi-
plication has no effect on the first
iteration of the .loop. ' '

Now, we add»theAquasiﬁsyndrdme from

our current byte‘of message to the current

partial syndrome that is stored in 'A'.
Since we are working mod 2, we do. this ad-

dition using the’ 'Exclu31ve-0r Instructlons
-of the microprocessor. Also, to find the

quasi-syndrome corresponding ‘to our current
byte of received message, we look up the
value in the table named 'GSYND'.

‘Now, the entries in the table 'QSYND'
are structured as follows: The first
(most significant) bit of an entry in '
'QSYNDf corresponding to a given byte, is

-the parity of that byte, while the last
'seven digits of the table entry are the
actual quasmrsyndxome. Thus, we can calculate
. ﬁhe parity of the current byte' as well as

the up-to-date part1a1 syndrome in one
operatlon.)

So, in order to look at the parity of
our current byte, we have to look at the
leftmost bit of register 'A', which is our

current partial syndrome. If the leftmost ..

bit is set, then the current byte is of odd

parity, and there is an odd number of errors.
in this byte.

" 0LOOP

LDX

LDA

LDB
LDX.

" EORA
BITA
“BEQ

#MULS
A,X

| MESSAGE-1,X

#PSYND
B,X
#$80
GOON

Y
|

»(Mrn-ﬂﬂd’

it

Bt

Wvd‘:-rf'}ﬁéﬁ

-46-

If we reach this section, then
the parity of the current byte was even
so we had.an odd number-of errors. '
So we would like to store the location
of this current byte, presently held
in register 'Y', at PERROR,

However, if PERROR is currently
non-zerp,lthen this is the second
byte containing a parity error. Thus
there are at least two errors in the

received message, and we have no hope
- .of performing a correction. In this

case we branch to the location 'FAIL',

which indicates a decoding failure.

Otherwise, this is our first-parity-
failure, and we could still correct

our etrror, and finish correctly. So
we store the location of the current
byte, 'Y', in location 'PERROR'.

" Now we decrement register 'Y' by 1.

" Lf 'Y' is not zero, it will point to

the next byte to be processed. In this
case we branch back to the beginning of

‘the loop. Otherwise, if Y is zero, we

have finished the parity checking and
syndrome calculation section of the
program, and we can now go on to attempt
an error correction.

Now we have generated the syndrome,

“and we have the location of any one byte .
that had a parity failure stored We =

would obviously like to know if we could
correct any errors that have crept in to

‘the received message. To answer this, we

need to consider foutr main cases:-

TST

'BNE

ST
ANDA

GOON

LEAY

" BNE.

TSTA
BEQ

TST

BRQ

PERROR+ 1
FAIL

PERROR
#STE

' -l,Y. ‘ .
0LOOP

NOSYND
. PERROR + 1

Pritmyeity

pa—

B

e

J
|
i

47 -

Case 1l:. PERROR—O and A=0 ‘
- We assume that we received the
message correctly, and pass
to the end of the program.

Case 2: PERROR#O and A=0

In this case there are at
least two errors in the

' received message; and we .
cannot possibly decode cor-.
rectly. So, we immediately
report a decoding failure by
branching to the label 'FAIL'.

. Case 3: PSYND=0 and A#0

Again, we have at least two
errors, and we report a
decoding failure.

Case 4: PSYND#0. and A#0
Here we have at least a chance
of correcting the error. There
_are two possible positions in
the received message where an
error would cause a syndrome
identical to 'A'. 1If either of
these positions lies within the
“byte numbered 'PERROR' then we
assume that we only had a single

rect it. However, if neither of.
these two positions is in the byte

at location 'PERROR', we, again fail.:

This is case 4.- o
We would like to try to.correct our one
error, if there is only one. Our first
step is to find the two possible error. ,
positions-corresponding to our calculated.
syndrome. The first of these error -
positions is the number U, such that aU
=A (the calculated syndrome.) We may " find

such’ a U by looklng it up in a logarithm

table for the given field, The other pos-

error at that position, and we cor-

LDX

LDB -

TFR

LSRA

LSRA

LSRA"
INCA -

CMPA

BEQ

#10G-1

AX

B,A

PERROR+1
CORERR

Avrmnd e et

[IERN

- -48-

.sible error position is simply U+127,

since our primitive element, ¢, has
order 127, ' '
: -/

We. can calculate U very simply, by
looking up the value of U appropriate to
the syndrome in a ''LOG" Table for the
finite field. We then proceed to store
this, the first possible error position
in both registers' 'A' and 'B'. Now we
would like to see if this error position’
falls within the byte pointed to.by
'"PERROR'. To do this; we simply divide
register 'A' by eight, which ﬁill give us
a byte position between.0 and 24, then
add one. Since the 6809 has no divide
instruction, we shift register 'A' three
bits to the right, which has the same ef-
fect as dividing by eight. Once we.have
computed this result, we compare it to
'"PERROR', and if the two are the same, we

proceed to the label 'CORERR' to attempt -

to éorrect the error at byte 'PERROR'.

If we reach theé following section of code,
it means that our first error position.did
not fall within the byte pointed to by
'"PERROR'. However, there is still our
second possible error position ‘to try.

This position is 127 bits later than the
first. Our value for the first error
position is stored in register 'B': We.
move the cohtents of this register into
register 'A', add 135, and divide by eight,
using three‘rightvshifts,as above. Adding
135 has a dual purpose:. We wish to add 127

to get the next possible error position, .and
eight more to avoid having to.increment 'A',
‘as was necessary in the last section.

ADDA.

' LSRA

LSRA
LSRA
CMPA -
BNE

"DECB

- BLA .

#$87

PERROR + 1

- FAIL

vememtic]

~49-

We shduld now have the byte position

of this, our second possible error position.
We compare this with 'PERROR'. - If the two

are equal, then this second error position

is assumed to be the right one and we con-
tinue on to corerr where we correct the'assumed
error, Otherwise, neither of the potential
error positions fell within the byte with odd

.parity. In this. case, there are at least two

errors in ‘the received message, and again we
must report a decoding failure. :

.Here, we have decided that there is exactly CORERR COMB

one’ error 1n the received message, at the - . ANDB
position glven by the contents of reglster A INCB.
'B', in the byte of the received message . LDX
numbered 'PERROR'. We would now like to cor- LDA.

rect this error., Since we know which byte
the error falls in, to correct it we need

~only create a byte which is all zero except

for a one in theIposition‘correSpOnding to . .
the faulty position in the incorrect byte

and 'EXCLUSIVE-OR' this byte with the faulty

byte. The zeros in this correction byte

will not affect the correct digits in the

" faulty byte while the one will change the

faulty bit. This position within the faulty

" byte is given by the last three digits of

register 'B' which are, in effect, the re-

mainder when 'B' is divided by eight. So, our

correction byte-is created by placing a 'l'

into the leftmost bit of register 'A'.

shifting it to the right the number of times

given by seven less the last three digits of”

'B'. Then, 'EOR'ing this byte with our faulty

byte corrects the error.) oY

#7

PERROR
#128

G Porrmdod

© pneeggeebizid

of

ittty

btz

i
\

This next section is the loop that actually = CORLOOP . DECB'

creates the correction byte. Register 'A' BEQ
starts out with a one in the leftmost . LSRA
position (Most significant bit) and is C . BRA

shifted to the right the number of times-
‘given by register B less one. Note that

‘the test ‘in this loop is at the beginning,

to take into. account the case where the :
faulty bit occup ies the leftmost position
in the faulty byte, and no shift is required.

Thus we have created .our correction byte in ECRLOOP EORA
register 'A'. We now use it to correct the | . STA

error. Since register 'X' now has the BRA
location of the faulty byte, we use 'X' as
an index to exclusive-or "the faculty byte
with .the correctlon byte, then to store 1t
back again, o

The following are cases 1 and 2 from above. NOSYND. "~ TST
If we get to here, then register 'A',the BNE
‘syndrome is zero. ‘Hence, if we did not _
observe any bytes with .odd parity in the .re- -
ceived'messagé then we assume correct reception,
and terminate. Otherwise, we did find a faulty

" byte and to produce a zero syndrome there must-

have been -at least three errors and we have no
hope of correcting. So we announce a decoding
failure by branching to the label 'FAIL'.

If we reach-this.iabel, then we have had what oK RTS
we assume is-a successful decoding, and we
return to the calling.program. ~

_ If we arrive at thls sectlon, then ‘'we have a FAIL "COM

decoding fallure. We have this if we are sure ‘ : RTS
that we'have two or more errors in the received ,
message. Since a zero value 'ERFLAG', the de-

coding . failure flag, indicates a correct’ de-

coding, we set 'ERFLAG' to be a non-zero number,

before returning to the calling program.,

'ECRLOOP

CORLOOP

‘MESSAGE-1,X

MESSAGE-1,X
OK |

PERROR+1
FATIL

- ERFLAG "

-51-

\ o . Appendix 2.D Parameters of the Channels

i

3 . o ~

! The burst error channels used in the performance analysis of
] o the codes were described briefly in Section 2.3 . These are the’

Y " channels used in the eérlier gtudy.[z]..-Thié Appendix gives more
details. ‘The new burst channel model of.Section 2.4'is not dis-
cussed é.ny fur—ther her'é. V

Burst.Channel #1 is a Gilbert type of model éhaﬁnei. Th@s.
chapnel modél has oftén begn used, for ekample by’WéldonEﬂ,The
chahnei is assumed tp.bé in either a.good;étate\or,a béd sﬁaté.
In thg.good:stateter;ors occur indepeﬁdently with frequency o ;.
in thé,bad'stage every Bit is in erfqr._.KThis'lattér assumption

makes the calculation feasible though a bad error rate of % would

| e [N l,,,,,_m,;,q Bl FIA— -

be more reasonable.) ‘Transitions betweenthe good and bad state
occur at each bit transmission with the probabilities shown in
Table 2.0.1,The ''good" error probability is then determired to give

the desired overall bit error rate. The distribution

good - bad . . bad -,good
1072 a5 x 1074 .5
0% 3.0 x 10'5. B
. L 107 3.0 x 107° .5
‘ . . ._ . . . -7 '
| . 1078 3.0 x 10 -5

Table‘z.D;l State Transztion Probabilitieé-fbr Burst‘Chahnél #.

/

PR

-52-

into types of thé weight fou; codewords as gi?eﬁ.ih Apéen&ix Z.E.
is the‘informatiqn“féquired to caiculéte theiprobgbilit? of dé-.
coding error. |

The four remaining burst channéls are defined as sPeciéi cases
of é’general model. We assume thatxthe'lengthsfof the‘gaps between
cqrrectly received bits afe iﬁdepen&enﬁ and identicélly distributéd.
It X ' is the. number of bits from'one correctly receiVed‘bit‘tq_the‘
next tben we $étm'fa % ?r(X€=m} ‘ﬁor m > 1. 'ihgge-ghaéﬁéls only
ﬁave memory.of'sfrings of'consecufi&e errors. Once a bit is re-
ceived éorre;tly the disposition of furthér bits is governed sdlely‘

by the distribution of X. =~ . R

’

' An alternate way of specifying such a channel is to define -p;

B

the probability that a bit is in error. glven that the previous i-1
bits are erroneous. The parameters 'pi are related to the para-

meters fn' by the formulas,

th
1

o Cm-l o
Q-p) Py, m>1
i=1

£ =1-p..
‘ ?1
We assume that ¥ f = 1 and hence that the bit error rate.(BER)

is given by

BER = L-1/(gm £) .

e AR

-
S
i
¥

"Then .BER = P /(L+P_ -]
.T ?n BE. C/(1+PC P

53

For Burst Channel #2 we set pl = PC and pi-; PE. if i > 2.

E).‘ The result is a channel in which errors

arise as a bitwise Markov chain. A bit is in -error with‘probability

'PC if the previous bit was in error and with probability PE if

it was erroneous.. Table 2.D.2 presents the Values used in the

calculationé.-'We take»always> PC = 106 PE .

[

3ER : P,)
107 L9099 x 1073
107% L9902 x 1074
Joﬁv..9%oxj06
15"5. .99991x 107

’Tabie 2.D.2 Parameter values for Burst Channel #2 .

The gap lengths between correct bits on Burst Channel #3 have.

a Pareto distribution. For some ¢ > 1 and for m > 1 we have

The values of ¢ are chosen so that the channel has 4 preset bit

: error rate; see Table 2.D.3.. The formula for bitAerrdr-ratevin ‘

this case is

Wamranaid

iwv'whié .

i

-54-
o - ‘oo l"'Q'
BER = 1-(3x k /(s k)
k=1 k=l
‘ BER . o
-3 - .
10 10.01656
A ’)
10 13.3009
;5 | ;
10 16,61307
-6

10 19. 93246

Table 2.D.3 Parameter Values for Burst Channel #3.‘

Burst_Channel #4 was dqsignéd-to produce many consecutive

double errors. Over a background of white Gaussian noise with an

error rate. p an additional process causing errors is superimposed.

This second process causes isolated single errors to be followed

by a second error with probability M. This correSponds-to_sefting

pi =p for i +# 2 and Py = p+.(l-p)M in oui_genéral model.

Table.2.D.4& gives the v?lues selected for the parameters.

.. BER ' p . . M

107 67 x 100 - s

107 6667 1074 s
107 Leeerx 1070

10'_»6 L6667 10'6» 5

‘Table 2.D.4 Parameter Values for Burst Channel i

Eamrivyan

!
|

, =55~

!

Burst Channel #5 was designed to have longer runs of,érrqneoﬁs

" bits than the other channelsl‘ At a fixed bit error rate the effect

of a longer burst is merely that there are many fewer random errors .

: between the bursts. The codes tend to behave on such a, channel as

if it were a white Gaussian channel with smaller QVerall'bit error

rate, We, take fm = pm/m!<ep -1) for m > 1. This gives -

BER =‘1 -e(ep -1)/pep. The values determined for thevparametef ére

given in‘Tabie 2.D.5.

v

BER p
107 2x107
0% 2x10™
107 10™°
1078 107

AP

1z

il

J—

-56—

Appendix 2.E Parameteré of the Codes

The analysis'of the performance of the codes on bursty channels
re&uires a detailed cataloging of the weight inﬁo-types according to
the degreé of separation of their ones by zeroes. We use the

integer'l to denote a single one and use 2 to stand for two ones in

.a row. The single hyphen "-" repreéentsla single intervehing zZero

while a double hyphen '"--" denotes at least two and perhaps more

‘consecutive zeroes. Thus the vector (---00011010000100---) has

type 2-1--1.
Type '.PRODUCT . CARLETON
2--2 2646 72
2--1-1 - 0 257 .
-,2"41"1» | 21 . . 683
"1-1-1--1" ' 2268 . . 60
1-1--1--1 . 54 571
1--1--1--1 5589 511

57—
Chapter 3.. Example of a Half—page Code

3.1 Introduction: A Reed-Solomon code.

In'additionvto the use of error correction ohyindividual
data lineé coding cah be introduced into the Broadcast Telidon
system at other levels on a dlscretlonary basxs. .This chapter
explores one such 90331b111ty. _ We conSLder a Reed=-Solomon
code which grohps 8 dataablocks_together then_adds a ninth
line of check bytes (fighre 3.1).. Thus this code has 8 x 28
"information"_bytes and‘28 "check " bytes. - (The preflx bytes
are ignored) The symbols of thlS code are- bytes rather than'
bits. In fact any pattern of 14 byte errors .can be corrected.
These byte errors. can come from 14 1ndependent blt errors
scattered in 14 .separate bytes.‘or from: a series ‘of 98.
coneecutive bit errors. This code' gives extremely good
_performance at the cost of an. 1ncrease in- decoding overhead

and in decoding tlme.

.27 Data Bytes . ‘Suffix Byte -

line #1 . L e ' . 1\
line #2 - ' ' b
line #3_ ' : o Teee : R A information_bytes
- o E — - — > of the Reedeolomon
‘Code (8 x 28)
o /S
line #9 }
Reed- Solomon check bytes

!

" FIGURE 3.1 A Codeword of the Reed Solomon Code‘

ATV

[

lemteriuein

-58-"

3.2 Performance.

We have"used‘ as a performance measure the expected
length of a run of trouble free‘pages. We therefore make no
distinction between decoding. failure and decodlng error.

Any outcome of a- decodlng -other . than correct. decodlng' we

w1ll call a decoding fault. We calculate the probablllty of

‘ a ‘decoding fault. From. this the mean number Of pages until

a decoding fault occurs is ~calculated. The results are

. plotted 1n Flgure 3.2.

. The data ‘block code might or mlght not have been ‘used
prior to a Reed—Solomon decodlng. Slnce the bytes of the

data blocks all have known‘parity the data,block_code will

never corrupt a good byte in .an attempt to correct errors. in

thatldata block. Thus‘the_data.block code cannot make -the
job of the.Reed-Solomon code any ﬁore difflcultrand‘it may
make it ea51er._ “ i o

Not making any dlStlnCthn hetween decoding failures

and decodlng errors has two simplifying Aconsequences.

.First, 51nce we are only 1nterested in the number of corrupt

bytes 1n a 9 block unit a channel w1th 1ndependent errors

»lwill tend to - be the worst. A bursty channel: will have_
errors occuring in clusters. Thus at a fixed bit error

rate, a bursty channel will'have_more clean:pages and fewer

corrupt bytes.. .The second simplification is that .if we are

A\

i ’
‘l' S P
" .
3 10 !
7
§ v
i
. |
| ol |
J A ;
b 108
1 MEAN NUMBER
£ .. OF PAGES
UNTIL -7
" DECODING °
I - FAULT
) . 6 _‘
. 10 |
-
3
104
102 -
! .
3
R -

~59~

Figure 3.4:
Mean Number of Pages until Decoding
Fault for a 14 byte-error Correcting

Code of Length 252 bytes.
: kl-page= 2 codewords= 504 bytes)
(decoding fault=decoding error or failur=z)
(* for comparison-18 lines
, encoded with a single error

correcting code.)

10

BIT ERROR RATE .

o} w-'mu-tlml (Dwvamoig ...-. e PRt

R

il

_the Reed Solomon code is

6OA

going to calculated the p:obahility'of a‘decodingffault we

are - essentially “calculating ' the probability of correct

‘decoding. Thus the Reed-Solomon code can be replaced by an

arbitrary 14 byte-error corfecting ~ code.- The precise

structure of the code is not requifed (and would be very |

difficult to calculated in any case).

- Assume that errors occur independently 'in_ the channel

i

‘with probability p. - Then the probablllty that a. byte - i

received _correctly is- b¢= q8 where qg = 1l-p. The |

probability that. Ithe byte contains ‘an error is then

b =-l~q8; Ignorlng any . effect due to correctlons made at

e

the data. block level the probablllty of correct- decodlng for

2(252 pi 252 -i

o

. Then the-'prebability of idecoding fault is. P_= 1-P and

F CD
the mean number ef'pages (= 2 codewords) untit_a'decoding
fanlt'can‘be'teken as 1/(2QF). |
.he _have ‘included in Fiéure‘ 3,2. the ‘corresponding
expected numbers of - pages until . decodlng fault for a data

block code used w1thout a Reed- Solomon ‘code (thet is with

single bit-error _correctlons. line by vllne). Of course .in

- our earlier studies we used scarcity:of decoding errors as

the. prime indicator of good performance. These represent

Pt

o]

.
- §

¢ ie : ’
F— .t.n;.%-,_c i Beed - ——

-.61_

1

.only a émall fraction of the decdoing?faults._ To.calculate'

" the probability of decoding errof.for'the Reed-Solomon code

would be difficult and not very illuminating'i§incé decoding
faults in general are so rare). An attempt at reconciling

the two assessment measures is made in Table 3.1.

Bit Error - Mean Number of’Pages Until"
Rate Decoding Fault: Decoding Error: Decoding Fault
Data Block Code Carleton Coae: Reed-solomon Code
1073 2.8 8.0 x 10° 1.7 x 108
1074 226 . 7.0 x 10° 2.0 x 1013

TABLE 3.1 Comparison of Performance

3.3 Decoding.

Only a preliminary 'stﬁdy was made concerning the:‘!

QeCOding of the Reed-Solomon code. ‘Mﬁch ﬁas‘been written on
this subject. sée:for example [3]}and the feferences*cited
there. ‘Av;décoding élgofithm -of .the MaséeyA.type was
implemeﬁﬁed in ﬁmicrobrocessor softwaré S (6502) . . Decoding
requiredAoﬁ'fhé brdef of oné éecdnd and‘used 1/2'K,of.the

look~up tables for finiteffield arithmetic.

]

.
.

[P

A st

—62-

Chapter 4. The System-as a Whole

. The final atage “in our analysié~ of error4éorrection ;
codlng for the .Telidon sYsteml waé .an -analySis_ of the.
performance~oﬁ the ovérall‘éyatem‘under Various'assumpriéﬂs.:
Cading .has been prOPOSed or apprdved for the'.five . byte
prefix,'thé.data blocks and for groups of'data blocks. How
do these éodes interQrelare as3regarQS performance?

We.conaider two arrangements fbr aoding a séquence;of'
nine data packets. The first‘ thion'-Avidbes lnoél.usé "a

Reed-Solomon code while the .second does.

' Option A: =-each prefix byte'encodéd\with Hamming (8.4).

-each data block completed with a one-byte

: : suffix to correct single errors. o
Option B: =—each prefix byte encoded with Hamming (8,4).

-coding on the data bloéks optionai

~the 9 data blocks as.a whole form a codeword -

for a 14 . byte-error correctlng code

(Reed-Solomon for example). : B :
We assume.that errors arise independentiy; We use as a
measure of performance the expected nﬁmber" of (18 data
packet) pages until decoding fault. In'_other> words the

number calculated ‘is the expected number ‘of pages .in a

problemffreé run. Faults include both decoding errors and

' decoding' failures with the former being .a very_ small

fraction on -the channel used. The advantage of using'the'

[Op—

UGS S

Exfaalniieds

_63 -

[y

prbbability of a decoding fault over usihg.decoding;error is

7~that'independent errors are. the worse case for the former

and_~generally the bést ' case for ‘the latter. A bursty

- channel has its errors packéd into fewer bytes so there;are_

longer runs of correct bytes. Moreover it ;voiiid be v'é.ry
difficult to calculate the‘pfobability of:decoding error for
the l4¥byte.error correcfing (Reed—Solqun) cdde éven iﬂ the
simplestvcaselof independentverrors. | |

Table 4.1 presents the‘expected number of pageS“uhtil a

decoding fault for Optioné A and B at various bit error

rates. Wé' ihclude~ for compariéon the same parameter
" calculated with the ‘prefix code assumed to work perfectly -

(i.e. no faults).

.ERRORv . 'OPTION A ' OPTION B DATA BLOCK , REED_SOLOMON
RATE - VPfefix & Block Prefix & Reed alone | alone
| éodes o Soloﬁbn'Codés
01 - .50 56 s s
003 . .66 41 .66 420 |
.001 2.8 399 2.8 1.7 x 108
0003 - 26 4414 2 > 1013

0001 225 39692 . o225 7 > 1%

TABLE 4.1 Expected Number of Pages until Decoding Fault

—-64-

What we can' quickly deduce is that in Option A the.
i! . faults are mostly coming from the data blockAcode while in

Option- B they ére-'mostly rcoming from the prefix. "If we

[pa—— o

- ~ {
examine the probabilities of faults arising in the prefices,

data bléck ‘code and Reed Solomon code- this becomes more

JR—

clear. .

’BIm ERROR o ' PROBABILITY OF DECODING FAULT IN...

RATE . - 9 PREFICES, 9 DATA BLOCKS. WITH 9 DATA BLOCKS WITH
; S 1 SINGLE ERROR CORR. 14 BYTE-ERROR CORR.
£ .001 1.14 x 1073 0.9999933_, 0.8829 .

.003 1.11 x 1073 7.58 x 1077 ' 1.17 x 107,
; .001 1.25 x 107; . 1.78 x 1027 o 2.98_3,107% .
1 0003 1.13 x 1075 Cl.e2 x 1072 < 10775
..001 . 1.26 x°10 S 2.21 x 1073 <107t

-PABLE 4.2 Probablllty of at 1east one decoding fault 'in Various‘péfts of
the system _ .

} (
AThefefore most ;of the power " of the -~i4 ‘byte
]) Ver:or;cbr;ecting: éode is ‘lost since_ thé. prefix code is
1 slowing the‘systemvdqwn"anyway. On the-otbér haﬁd; without
| fthis long code the single errér correcting code on a,&ata'
Ji‘ block is the limiting factor. - We -conclude that iﬁ'the_light

- of the decoding complexity'of‘the Reed-Solomon code future

P Lot

oyt

e

Foibon sl

. -65-

work should replace this. Reed-Solomon 'code with simpler
codés that éorrect'fewér byteé, that canibe decoded faster

and‘which?are closer to thé prefix code inAprobability of'a\

e .

decoding fault,

)

—-66—

: ‘ - References
. 1. "pelevi sion - Broadcast Videotex", Broadcast -
; .Specification. = No. 14, Issue 1, Provisional,
5 o, . i L B :
‘Telecommunication Regulatory - Service,Department of

o

=]

Cqmmunicatibns!-Canada +June 19, 1981.

2. Leroux, B., M. Moore, B. Mortimer, L. Oattes and T.

Ritchford, "A ‘Study of the Use of Errorfcorrecting.codes in |

" the' canadian Broadcast Telidon System", Progress Report,

.DSS Contract No. O0SU81-00095, Department of Communicationsu

' Canada, AuguSﬁ 1981.

;-

3. Allard, P.E., V.K. Bhargava, and G.E. Seguin,

y 'Realization, Economic ° and Performance - Analysis of

}
g

“55.‘?‘:!»

Error-correcting Codes and ARQ Systems for Broadcast Telidon
and other Videotex Transmission", DSS Contfact 0su80-00133,
Final Report, Department of Communications, Canada, .June

1981.

4. Sablatash, M. and J.R. _Storey, "Determination" of

'Throughputs; Efficiencies and Optimal BiOck"Léngths for. an -

. Error-correcting .Scheme forﬁ the Canadian Broadcast Telidbn

System", Can. Elec. Eng. J. (1979), 25-39.

iRt

22

::‘?"i".‘:'{’}r"(“g

3
i
e
}

-67-—

5. Mortimer, B.C., '"A Description of the Carleton

Code", DSS Contract No. 08081460095, Progress Report,

.Department of Comﬁunicatibns, Canadé,'September 1981.

6. Gilbert, E.N., "Capacity of a Burst Noise Channel®,

Bell Sys. Tech. J., 39(1960), 1253-%k*x*

LA

7. Sussman, ‘S.M., "Analysis of . the AParetc> model for

error .statistics and telephone circuits", IEEE Trans. Comm.

Sys., CS-11(1963), 213-221.

8. Weldqh, E.J., "Error Control-on-High—Speéd Satellite

Channels", Int. Comm. Conf. Record, (1981).

