
'I C L i P
91
C654
H3944
1982

I

I
I
I
I
I

I
I
I
I
I

I
I
I
I
I
I

I
I

r 	 1

Local area networks
and open systems interconnection

: final report /J.F. Hayes.

• 	A

I p

• 91
C654
H3944
1982

Government of Canada
Department of Communications

COMMUIIICAT:0:18 CEE

*Feet

DOC CONTRACTOR REPORT - 	 DOC-CR-CS-(YEAR)-(Serial #)

1982 	0031

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

COMMUNICATION SYSTEMS RESEARCH AND DEVELOPMENT

TITLE: Local Area Networks and Open Systems Interconnection:'

Jeremiah F. Hayes

ISSUED BY CONTRACTOR AS REPORT NO: 82-3

ps V R
A P R

1ndustrie Ce;cieaen

• j,3.11,1i014 -111e

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 1450 36100-1-0166

DOC SCIENTIFIC AUTHORITY: 	W.A. McCrum

CLASSIFICATION: 	Unclassified •

This report presents the views of the author(s).
Publication of this report does not constitute DOC
approval of the report's findings or conclusions.
This report is available outside the Department by
special arrangement.

DATE:

1

1

1

1

1

1

1

1

1
1

1

1 •

1

•

Industrial Research
CONTRACTOR: . McGill University

Industrial Research

AUTHOR(S):

- 2 7.M1

;

1
1
1

1

1

-77)0e/is

.?Mq •

/11

FTNAL REPORT

LOCAL AREA NETWORKS AND OPEN SYSTEMS INTERCONNECTION

Principal Investigator: J.F. Hayes

Department of Electrical Engineering

McGill University

Montreal, Canada.

March, 1982.

FINAL REPORT

LOCAL AREA NETWORKS AND OPEN SYSTEMS INTERCONNECTION

I. 	Introduction

Local Area Networks (LAN) are a class . of data networks .

having limited geographical areas, usually within a kilometer. 	Networks

confined to a single office building, shopping center or university

campus are prime examples of LAN's. The emergence of LAN's is part of

the general growth of computer and digital technology, however the intro-

duction of Office Automation and Distributed Processing Systems has

furnished additional impetus. In both of these applications LAN techni-

ques play a significant role.

In the past Local Area Networks were defined in terms of

geographical extent and data rate, however in view of the rapid growth of

technology, more useful definition of Local Area Networks may be in terms

of usage and configuration. 	The purpose of Local Area Networks - is to

provide a common communication channel among a number of users in the same

limited geographical area. 	The emphasis is upon ease and flexibility in

providing access. Due to the limited geographical area bandwidth is not

the critical commodity that it is in larger networks. 	Thus the access to

the network can be simplified at the cost of bandwidth. Data networks cover-

ing a large area require redundancy to ensure operation against failures. For

•
example one of the features of the ARPA net

1
 is two paths between source

destination pairs. Because of the limited geographical extent of the

typical Local Area Network, it is in something of a protected environment

1.2

and this redundancy is unnecessary. This simplifies the topology since

only a single path need be provided between source-destination pairs.

In current practice three configurations are prevalent - ring, bus and

star (see Figure 1). 	(Precise definitions for topologies and access techni-

ques will be given in the sequel). As matters now stand the ring and the

bus topologies are receiving the most attention. However it appears that

the star topology is well suited to the optical fiber medium. As optical

fiber finds application we would expect more work on the star topology.

There are a large number of access techniques, i.e.,

techniques for sharing the line among users. Of these two are under active

consideration for standards - Token Passing and Carrier Sense Multiple

Access. Historically, Token Passing was developed in connection with the

ring topology.
2

CSMA with collision detection is the latest development

in random access techniques. The first of these techniques was part of

the ALOHA radio system.
3

Random access became part of Local Area Network

technology through the Ethernet
4

although there had been some analysis of

random access in connection with local distribution.
5 '

The Ethernet and the

associated CSMA protocol seems to be wedded to the bus topology. Neverthe-

less in connection with standards activity there is an application of the

Token Passing technique to bus architecture. 	In the main body of this re-

port we shall compare Token Passing and CSMA. We shall also make compari-

sons with alternative access techniques.

A third component of Local Area Networks, in addition to

the topology and the access technique, is the physical medium. 	In our

investigation we have encountered three types: twisted pairs, coaxial

cable and optical fiber. Twisted pairs operate at a rate of approxi-

mately 1M bps. Because of the long established T 1 technology,

there is a strong tendency to operate at a rate of 1.544 M bps. As we

shall see presently physical considerations impel the ring topology for

use in connection with twisted pairs. 	The access techniques are •those

that are appropriate to the ring topology.

At this writing coaxial cable seems to be the most widely

employed medium for Local Area Networks. The speed range mentioned in

connection with coaxial cable systems is in the range of 1 to 20 M bps.

*Existing systems seem to be at the middle to loWer'end.of the rànge. 	The

great advantage of coaxial cable is its flexibility of operation. Coaxial

cable can be used in either the bus or the ring topology. Moreover

coaxial cable presents no problem with regard to access technique so long

as the technique is appropriate to the topology. As we shall see the

great advantage of coaxial cable is the ease of connection, particularly

in the bus topology.

The salient advantage of optical fiber seems to be high

data rate ; speeds up to 50 M bps are obtainable without

great cost. 	The speed of 44.736 M bps is attractive in view of the exist- •

1.3

ing T3 . technology. There are other advantages to optical fiber. The

fiber is immune to electromagnetic interference, is chemically inert

material and is an insulator for high voltage. All of these properties

may be important for particular applications however they are difficult to

assess within the context of our study. 	The salient limitation to

optical fiber lies in the lack of easy access. 	This property pre-

cludes a bus topology implemented with fiber and one is driven to

alternative topologies.

The foregoing reriresents a brief overview of Local Area

Networks. 	In the succeeding sections of this report we shall delve in

some detail into several issues relevant to the design of LAN's. In

section II we consider standards activities relevant to the local area

networks. We review the Open Systems Interconnection concept by the

International Standards organization. We also review the work of the

IEEE 802 committee on a Local Area Network standards. 	Section III is

devoted to the consideration of the ring topology. The emphasis is upon

a comparison of the Token Passing technique with what is commonly called

'buffer insertion. The buffer insertion technique allows more than one

station at a time to use the system. 	The comparisons in this and in the

next section of the report are based on mathematical models based on

Queueing Theory. The bus topology and the appertaining station access

techniques are studied in section IV. 	Included are a comparison of CSMA

and Token Passing. This section also contains a comparison of collision

resolution by means of random retransmission, as in the current version of

CSMA, and tree search. Section V of the report deals with the HDLC proto-

col. The focus in this section is upon a simulation program for HDLC

which includes an emulation of the media access protocol. This simulation

program is the first component of a projected large software system designed

to evaluate Local Area Network protocols. The penultimate section of the

1.4

1.5

report deals with the role of optical fiber in Local Area Networks. As

indicated above the particular properties of optical fiber compel network

configurations which are different from those appropriate . to metallic

media. 	In a final section we draw our conclusions and chart our course

for future work.

Fe6.0 	/./ 	ety3 Co N FieuRA ---rioW

FIE u RE 1.1 	- 	/ No. Com Ft&- o R Art obv

ri6i-uRE 801C- 	̀T'iU\CONFIG-uRATioAr

H. 	Standards - OSI and 802

The International Standards Organization has established

a géneral architecture, Open Systems Interconnection (OSI), for Computer

Communication Networks. The architecture segments the communication's pro-

tocols involved . intb. seven layers and specifies the interface between

layers. Within the layers standard protocols such as RS 232, X21 and

the emerging 802 standard (see below), operate autonomously. 	The only

requirement is that there be a proper interface with adjacent layers.

The seven layers of the protocol are represented on Figure

2. The lowest or the most elemental level is the Physical layer. This

is the layer in which the physical link is established between a pair of

•terminals so that they may exchange zeroes and ones. 	For example, in

this layer we have the CCITT V series recommendations involving the

operation of voice band modems. A good deal of our work is concerned

•with the second layer, the Link layer. 	Functions related to flow on the

line such as flow control and error checking reside. 	This layer involves

sending blocks of data in frames. 	The line access protocols, such as

Token Passing and CSMA , is a sublayer of the link layer. A higher sub-

layer within the link control is a flow control protocol such as HDLC .

(We shall explain HDLC in detail in section V of this report). At

the third layer, the Network layer, protocols dealing with several links

in tandem reside. 	For example, for large networks, routing protocols

would reside in this layer. In the context of Local Area Networks this

layer would be concerned with the establishment of a virtual circuit

An excellent overview of OSI is given by Zimmerman
6

2.1

2.2

For example the recently established X25 standard would fall within the

netowrk layer. The first three layers are in the province of the network

but the next, the Transport layer, is where protocols* for end-to-end control

by the user reside. The first four levels make up what is called for

obvious reasons the Transport service. The next three layers make up the

Session Service Subsystem. At the Session layer sessions between users

are initiated and terminated. The printing and the display of data is

controlled in the Presentation layer. 	In the highest level, the Applica-

tions layer the control of the files and data bases is carried out. These

last four levels are not of immediate concern to our work.

Also directly relevant to our work is the effort of the

IEEE 802 committee to establish a standard for Local Area Networks.
7

Most

of the committee seems to have been concerned with the media access techni-

que and on the physical properties of the media. The media access techni-

ques that are under study are Token Passing and CSMA/CD . The speeds that

are supported for the two techniques are 1, 5, 10 . and 20 M bps, at broad-

band and baseband. A subcommittee has considered performance criteria and

has done some work on the comparison of the different approaches.
8

As

part of thi's work an extensive survey of the literature has'been carried

out.

In connection with the physical media work has been done

on obtaining standards for coaxial cable
7
 and for optical fiber- We have

only recently become aware of the work on optical fiber.9 This work has

been particularly valuable to us since it reinforces conclusions we had

reached through independent effort.

7 APPL.tcATtoos LAYER

PR Es 	Vreoev Lee

S"Essioo 	AYmR,

if TRANS PoT leflYER

NGertuoik 	L AYER

NbL.c...
g LiNk LAYER 	AccEss r____

1-- 	eittysicA/- LietYff

PR oTe. 01-

O PEN ÇYSTEMS rmTERCooNEcrioM

3.1

I .

III. 	Ring Systems

One of the two most prevalent topologies for Local Area

Networks is the ring or, synonymously, the loop structure. The idea

of using a ring for computer communications was first proposed by

Farmer and Newhall in 1969.
2
 The Farmer-Newhall loop was followed

10,11
shortly by an alternative proposal by Pierce. Tfiese two techniques

form the basis of the current work on .ring systems. The fundamental

differences between the two systems lie in the technique for granting

access to users. Farmer and Newhall originated Token Passing whereby

the station possessing the token has the exclusive right to transmit on

the ring to any other station. Flow on the ring is in one direction.

(See Figure 3.1). 	In terms of the 802 standard the medium is sequential.

When a station has transmitted all that it is going to transmit, an End-

of-Message Character (EOM) is transmitted. The EOM is in effect the

token. 	Upon receiving the End-of-Message character, the next station

downstream assumes the right to transmit. If it has nothing the token

is immediately passed on to the following station downstream. This techni-

que was implemented using T2 technology implying a data rate of 6.312 M bps.

The protocol associated with the Farmer-Newhall system.has

remained very muçh the same over the years and is very much the same as

'the token passing scheme which is being considered by the 802 Committee.

However a number of alternatives based on the access technique used in the

Pierce loop have been developeâ
3-17

In the original proposal flow on the

line was slotted into fixed duration frames (see Figure 3.2). The stan-

12

dard Ti frame was used in an early implementation of the technique. 18

At the beginning of each frame there is a single bit marker indicating

whether or not the frame is empty or full. A station perceiving a

frame to be empty can fill the frame with its own packets. If the

station sees that a frame is full it checks the address bits that succeed

the empty or full marker. 	If the packet is destined for the station it

is removed thereby freeing the frame. Clearly there must be enough

buffering in the node to allow examination of addresses before the marker

bit is transmitted. Flow on the line is given priority and a message

consisting of a number of packets may be interrupted in the course of

transmission (see Figure 3.2 for an illustrative example). Due to this

interruption each packet must be accompanied by source-destination

addresses in order to sort out the flow on the line. 	In applications

where there are a large proportion of variable length packets this could

lead to a large part of the line capacity being taken up by overhead.

The increase in overhead may be balanced by the fact that more than one

station may access the line simultaneously.

The need for excessive address overhead is due to the fact

that the protocol for sharing the line is, in queueing theory terms, pre-

emptive, i.e., traffic already on the line can preempt the line from a

local statio
20
The advantage of this discipline is simplicity of opera-'

tion. 	Once a packet is on the line it suffers no random delay, only a

constant processing delay in each of the stations on its route. For

multiple packet messages there is a random reassembly delay.

3.2

3.3

An alternative to the Pierce loop protocol is the so-called

Buffer Insertion protocol.
14

The essential feature of this protocol is

that it follows a non-preemptive discipline in which traffic a/ready on

the line has priority but may not interrupt the transmission of messages

already in progress (see Figure 3.3). 	Since a destination iS assured

of receiving a complete message without interruption only one address need

accompany a message. There is, however, an attendant increase in com-

plexity: once a message is on the line its . delay is random since it must

wait for the termination of message transmission at intervening stations.

Moreover, buffers allocated to line traffic can overflow unless a limit is

placed on the maximum duration of messages. As in the case of the Pierce

Loop line utilization is improved since more than one terminal may trans-

mit at a time.

Since its inception questions concerning the . reliability of

ring systems have been raised. A break in continuity would render the

system inoperative. This question has been addressed from two points-of-

view. In virtually every implementation of ring networks the nodes have

been fail-s'afe in that, in the event of loss of power, electrical continuity

is preserved. 	The second aspect of the reliability considerations is the

provision of redundant ring structures which would avert system failures.
21-22

We shall return again to the consideration of reliability when we consider

optical fiber.

In both of the seminal works on the ring topology by Farmer•

and Newhall and by Pierce a hierarchical ring structure was proposed.

This concept is perhaps most graphically illustrated in Figure 3.4 where a

hierarchy local, regional and national rings are shown.
11

In the original

3. 4

proposed by Pierce flow on each of the rings have the same frame struc-

ture, with different speeds allowed. 	The access technique from one

ring to another is the saine preemptive technique discussed above;

Comparison Token'PassingsandsBuffsr*Insertion

In this section we shall compare the Token Passing Strategy

with that of Buffer Insertion on the basis of the average delay of messages.

Unfortunately, at this writing analytical models for a comparison based'on •

higher moments of delay are much less tractable and further study is re-

quired.

In this and in all subsequent studies in this report we shall

assume that messages arrive at a Poisson rate with an average rate of

to each of the N stations.sharing the common line. We shall assume that

the durations of the messages follow an arbitrary distribution with mean m
—

and mean square m
2

.

Now in order for messages to be transmitted without ambiguity

to the proper destination certain overhead information must accompany the

information bits. We recognize that the overhead for, addressing and for

message delimiting is contained in existing protocols such as HDLC. How-

ever we shall include it in our analysis in order to account for the

required overhead in the most efficient possible manner. 	If successive

messages arriving at a terminal have independent destinations then on the

order of log
2
N address bits must accompany each message. Furthermore,

3.5

since messages have an arbitrary length distribution, and since there are

no restrictions on the patterns of the actual data, some method is re-

quired to indicate the end of a message and the beginning of a new message.

.There are currently two techniques for doing this - flags and blocks. 	In

the flag technique the end of the message is signalled by a unique bit

pattern; e.g., 1000. 	If the true data sequence replicates the flag a bit

is stuffed into the sequence so that 10010 is transmitted. The augmenta-

tion of a message that is due to flag and stuff bits has been analyzed for

general distributions of message lengths. For the case of geometrically

distributed message lengths it can be shown that the average duration of

23,24

11 F-1 F-2 ml = 7(7 [1 + (7) 	q] + F 	 (3.1a)

1 where F is the duration of the flag and — is the average duration
1-q

of the message.

Similarly for geometrically distributed messages it can be shown that mean

square value of the augmented message is given by

(q) 2F-3 	q F-1 	q F-2 	1 --- 	1+q + u-1 	-1-. 4 (7)
•

(-
2

) 	[F - —
2

] 2 ml
2

- 	 +
-

(1-q)
2

1-q

the augmented message is

1 F-1 F-2
1 + (---) 	q .)

2 + 2(F+1) (+ (F+1)
2

1-q (3.1b)

It has been shown that the optimum duration of the flag in terms of mini-

mizing the average duration of the augmented message is given by

pB pB+1 	pB pB-1
(3.2h)

3.6

• • F = flog2 m"-] + 1 	 (3.1c)

In the blocking technique a message is segmented into fixed

length blocks. The first two bits in a block indicate whether or not it

is the first of a message and whether or not it is full. In a block that

is not completely filled there must be delimiter bits indïcating which of

the bits are true information bits and which are stuff bits. Again, the

length of the augmented message has been worked out for arbitrary message

length distributions. The probability of a message being represented by

k blocks each consisting of B bits is

A
- Pr fk blocks] = Pr f(k-1)B - flog2

+
B ‹kB - flog

2 B]]

(3.2a)

For geometrically distributed random variables it is a simple matter to

work out the mean and the mean square of the augmented message. It has

been shown that, for geometrically distributed messages, the optimum block

size'is given by B which satisfies

Q
k

In addition to overhead for addressing and message delimiting,

which is essentially the same for both Token Passing and Buffer Insertion,

there is overhead that is peculiar to each technique. Thus a certain num-

ber of bits are required to pass the token. A reasonable way to do this

is to repeat the flag at the end of the last flag followed by an address

indicating the next station receiving exclusive line access. An alterna-

rely upon an analysis of a polling model by Hashida. This model assumes
25 . 	_

3.7

tive in the case of block encoding is to follow the final block of a mess-

age with a non-full block which is not the first block of a message. 	In

this non-empty block is the address of the next station to be granted

access.

In the case of the Insertion Buffer, overhead assumes a

slightly different form. When a message enters a station there must be

a delay to examine the address to determine whether the message should be

passed on or not. 	This delay is in addition to any traffic induced delay.

In Token Passing this delay is not required. 	In compensation the Buffer

Insertion technique does not require a token to be passed.'

' In calculating message delay for Token Passing we shall

infinite buffers and exhaustive service; i.e., a station possessing the

token transmits all the messages in its buffer before passing the token.

1
There are a number of alternative models which are not quite appropriate

for comparison with the buffer insertion model we have available to us.

Polling models are characterized . by a periodically avail-

able server which in this case corresponds to exclusive access to the line.

Since message arrival to each of -the stations is Poisson, depehdencies are

introduced between the queues at each of the terminals. The longer the

token resides at a station the more messages will be present at another

An addendum to this report is a survey of local distribution techni-
ques by the author. In this survey is an exhaustive discussion of
polling models.

3.8

(3.3)

station when it receives the token. Hashida has accounted for these

dependencies. He has shown that the average delay of a message is

NW(1-p) 	N X m2
2(1-Np) 	. 2 (1-Np)

where p =*X ; and W, the walktime, is the amount of time that•is re-

quired to pass the token. 	 •

In calculating the performance of the Buffer Insertion by

2,
Eux and Schlatte

6
r, a simplified derivation of their result is given here.

This derivation is illustrated by means of the three node ring shown on

Figure 3.5. We assume that messages destined for node 3 exclusively arrive

at statibns 1 and 2 with rates X
1
 and X

2
 respectively. Further it is

assumed that station 3 receives but does not generate traffic. In each

of the nodes there are two buffers, one for locally generated traffic and

one for traffic already on the line. Previous analyses of this kind of

network were seriously flawed. For example if X
2
= 0 then messages from

terminal 1 suffer the same kind of delay at terminal 2 as they do at termi-

nal 1 . However arrival at terminal 1 is Poisson and can be handled as an

M/G/1 whereas at terminal 2 messages from terminal I can be handled on the

fly with a constant processing delay. Further,, in previous analyses there

was an unjustified assumption of independence between stations 1 and 2 .

An analysis based on a repeated application of Little's

27
theorem leads to the correct value of average message delay. The delay

of messages in an M/G/1 queue is

Poisson arrival rate, general service time and a single server.

-

I.

I.

3.9

A m2
G(A) 	+m

2(1-p)
(3.4),

A -
where p = m . From Little's theorem the average number of messages

residing in such system is Q(A) = AG(A) . Now with respect to stations

1 and 2, notice that the aggregate of stations 1 and 2 as well as station 1

alone behaves like an M/G/1 queue with arrival rate A +
2
 and A , re-

1 	1

spectively, since there is no lost work. 	The average message delay in

station 2, denoted by D
2

, is not given by the M/G/1 formula to the

stream nature of the line traffic. However by using Little's theorem we

have for the average number of terminals in both stations

(A
l
+ 1

2
) Ga

l
+ A

2
) = 1 G(A1) + (X1 + A2) D2

and
A
l

D
2

= G(A
1

+ 12
) 	

Al + 12
G(12)

In node 2 we may distinguish two kinds of delay - locally generated messages

and line traffic. If the line traffic has non-preemptive priority, the

delay suffered by the local traffic is given by the standard formula

(Al
 + 12

) m
2

_
D
2A

- 	+ m
2(1-p

1
-p

2
) (1-p

1
)

where p l 	and p 2 = 2 2 ; .

If D
2B

is the average delay suffered by line traffic then from Little's

theorem we have for the average number of messages in station 2

(3.5)

(3.6)

iL

3.10

(3.7)

+) D =AD +AD
2 	2 	1 2 A 	2 2B

or
+ X 	X

2 	• " 1
D
2B

- (1) D - D
A

2 	
2 	A 2A

. 	2

From equationà (3.4) - (3.7) the average in transit queueing delay of a

message at station 2 can be calculated.

' The result generalizes easily for the case of a data collec-

tion ring of N stations where all messages have the same destination.

Consider the transient delay for a message passing through the ith station.

The first i-1 stations act, for all intents and purposes, like a single

M/G/1 queue. The transit delay for the ith station is given by equations
i-1

(3.4) - (3-7) with
1
 replaced by .E 	and A

2
by A. . 	Here A. is

i=1

the arrival rate to the ith station.

When there is no single source or destination for traffic

an exact analysis is not possible. 	However, Bux and Schlatter have demon-

strated by means of simulation that a reasonable approximation works. In

the approximation A1 in equations (3.4) - (3.7) is replaced by that por-

tion of the line traffic which passes through the station and A2 becomes

the locally generated traffic. This is illustrated by means of two ex-

amples. 	Suppose that all traffic goes to an adjacent terminal. 	In this

case A
1

= 0 in the foregoing equations and from the foregoing equations the

only delay.suffered by a message is that of an M/G/1 queue. The second

exaMple is that of completely symmetric traffic where each terminal transmits

equally to all other terminals. 	If X. = 	; i = 1, 2, ... N ,

3.11

N-2 ,
x 1
	

E 	= . (N- 2)
N-1 	2 	°

i=1

N-2
On the average a message passes through

2

stations. The average delay due to queueing processes is the transient

N-2
delay computed from equations (3.4) to (3.7) with

1
= (----)1 and 12 = X

2
N-2

multiplied by —° To this must be added the average delay upon enter-
2

ing the line given by (3.6) and the processing delays at each of (N-2)/2

nodes, on the average.

A comparison of the mean delay versus system load of buffer

insertion rings and token rings is shown on Figures 3.6 - 3.10. .In these

curves, a message is assumed to consist of data bits and all the necessary

address and control information required by higher level protocols. The

length of a message is assumed to be geometrically distributed, with mean

TMEAN = 1/(1-q) . Assuming flag bits are used by the physical layer proto-

col to delimit individual messages, the message length is augmented by the

flag bits, the stuff bits needed to maintain the uniqueness of the flag, and

one indicator bit necessary to distinguish between the end of an 3,ndividual

packet and the end of the last of a station's packets.

As mentioned above, Hashida's
25
 analysis is used here to

find the mean delay of a token ring or polling system where all stations have .

 the same Poisson.arrival rate, X
L

, and service at each station is exhaus-

tive; i.e., all packets which are present when the station is polled are

transmitted, as are all packets which may be generated during the service.

Contrast this situation to Kaye's work,
34

where the buffers at each station

3.12

hold at most one message. Hashida's analysis assumes that all packets are

destined to a central processor, but one may equally well assume that

packets are either broadcast to all stations on the ring, with a packet's

destination address determining the correct recipient, or relayed station

by station to the proper destination. 	If, however, one assumes that

messages are relayed, then, in lieu of modifying the analysis to account

for processing delays at each station en route, the message length distribu-

tion should be appropriately adjusted. For the purposes of this comparison,

assume that packets are broadcast to all stations. Given this interpreta-

tion, then, the walk-time between the polling of adjacent stations is

equivalent to the transmission time of a control packet (the token) from

the station currently transmitting to the next station. The walk-time is

therefore assumed to be a constant, arbitrarily assumed equal to the trans-

mission time of 40 bits.

There is no possible affibiguity in the mean delay analysis of

buffer insertion rings: the protocol stipulates that packets are relayed

station by station from source to destination. Each hop incurs a process-

ing delay, since, at the very least, a station must inspect each packet's

destination address to determine if the packet is to be transmitted on Ito

the next station. Possible inspection of, for example, the source address

(to prevent packets from perpetually circling the ring) and other control

parameters may further increase this delay. The processing delay per

packet per station is thus assumed to be the transmission time of 40 bits.

1

3.13

The analysis of buffer insertion ring systems requires

explicit knowledge of the ring traffic patterns as defined by the routing

probabilities p(i, j) that a packet originating from station i is

destined to station j . To compare the delay performance of buffer in-

sertion rings to that of token passing systems, assume that traffic in the

buffer insertion ring is symmetric; i.e., the Poisson arrival rate of

messages to each station is 	and each packet's destination is drawn

with equal probability from the stations on the ring, excluding the sender.

The graphs of buffer insertion ring and token ring mean

delays are plotted against the system load, defined as the product of the

number of stations, the message arrival rate per station, and the mean mess-

age duration. The overhead required by the physical level protocol - the

flag bits, stuff bits, and indicator bit - is not included. The system

load or traffic intensity thus reflects the ratio of the rate at which valid

data enters the system to the system's transmission rate. .

The most remarkable feature of these curves, then is the

fact that buffer insertion rings are able to support loads greater than

unity with tolerable mean packet delays. This result is due t° the decen-

tralized nature of the buffer insertion ring protocol: according to the

ring priority scheme considered here, a station transmits its own generated

packets whenever it has no ring traffic to relay and need not wait to be

polled. Furthermore, packets are relayed around the ring no farther than

their destination. 	In the case of symmetric traffic, (see Figures 3.6 -

3.9) packets travel on average only halfway around the ring and so the

3.14

system is able to provide a data rate effectively approaching twice the

actual transmission rate. Such behavior is taken to the extreme in the

case of nearest-neighbor traffic, where a station generates messages des-

tined only to its neighbor one hop away. As the two graphs of buffer

insertion ring performance with nearest-neighbor traffic show, (see Figure

3.10) 	, the system supports data rates approaching N times the.actual

transmission rate, where N is the number of stations. Effectively, each

station has a dedicated line to its neighbor.

As a final note, one would expect that, since a processing

delay is incurred at each station, the delay performance of a buffer inser-

tion ring relative to a token ring would degrade as the number of stations

increase. 	That behavior is in fact not observed here since, at low system

loads, token rings suffer an equivalent overhead as the token is passed

around the ring to those stations with messages to transmit. At higher

system loads, a packet's mean delay in either type of system is dominated •

by its waiting time in a station or stations' queue(s). 	Of course, a

buffer insertion ring in which the majority of each station's traffic is

destined to the most relatively remote station will have a significant over-

head penalty due to processing delays, but then so will a token ring if one

assumes that packets are not broadcast to all stations, but rather relayed

station by station. 	In that case, token ring mean delays would be even

greater than the results reported here.

F4 elE g - A/EWHIq LL LOO P

F/(2/eé 3.1

5

1
111

: _SOURCE A bbgEss

1)E-sr/N47 ION IMDRÉSS

PI Ê--gcg LooP

11-.1- ugE 3.

BUFFER IN

F_r- u,eE . 3.3

1

1

1

1

1

Fie.TuççE 3.y-L HIERARCHY bF RING-S

I

1

1

1

1

1

1

FIG-uç 	3.S BuFF 	SER-nom MODEL.

I

I .

1

1

10

1

I 	Eniii

1/1

I 	DI.

4'& I ,1/45 â0 c

I

ee

BoFFE TivsERTiom

ii R 	cp

Pût—Lgim

iviERP4 MRS5AtrE Etvcrrn

le z() er5 lOg

virtZ êLerE

FL i16-• LEN6-7151 	RITS

TRANS,Mi£PoN Rerre
lo

// 32 sTerrioos

// 	 — I z 8 ST ern oNS

F/G-uRe 	3&

1//
/pe

h 5" 	ce.0 Q
Lo 6 ()

I . RoFFE INSERT/06v

RiNG-S

MEAN MESSAG-E LEAIG-T H
= 	Birs 	etis

FLAG- LehiGTH tr to ?irs
AveRA&E i1/41c) STu FF 8/1-S

/.?

TRMOSMtioilt
t o frideep....4>

ez 5 r A rvo S

I?3 ÇrATibmS

Th

o

Ut

MEA4v lelessAcre tg1'J G.T.11
toz>e. 8trs

°›-

ÉD.

FL Gei Cr L EeoCr -rie /0 091-5

/MEAN 	S"TuFF go-5
l 3

TRA.MS/41S5tom RATE

vi

o
V -

Li 10

DN.

`17

Et)

11;

Il

MEAN MEssAcrE LEA)&rki

/07-Y- airS

FLAG E er 14- e 4d. girs

M-FA N No STuFF ITS
/ 6

il 1 Teems m t ssroiv pr -r E

g

IzA
e
0.se

_ I
FicrUKG

o A bl '>°

1

11

1

1
ee l

,t

t o

Ptc.,,oeE

NEAResr NEIG-Hu6R TRAFFt4

Nom6eK (5F STATiom r. « e.
TRAN9ei /SS/ ceu RATE e iM

/

elEAW NIEssAG.E
LEA)G-TH:-. 10t)4 0

MEAN NESS4G-E
LE0G-Tii

I 0

4.1

TV. 	Bus Systems

The current alternative to the ring architecture is the

bus shown in Figure 4.1. The essential ingredient is that the medium

is of the broadcast type as identified by the 802 committee. Signals

transmitted on the line are received by all terminals at times differing

only by propagation times on the medium. 	It seems . that coaxial cable is

the idea medium for use in the bus architecture. Stations can be bridged

onto the line without disturbing the flow or affecting transmission. This

does not seem to be the case for the other media. As we shall see in

section VI in our discussion of optical fiber, this has important implica-

tions in connection with topology.

Two protocols have been proposed for use on the bus

architecture - Token Passing and Carrier Sense Multiple Access (CSMA)

The Token Passing Protocol operates in very much the same fashion as in

ring systems. A single station at a time has exclusive access to the

medium. • At the end of its transmission a sequence indicating the end of

transmission and the address of the next terminal are appended. The

techniques for doing this, flags or blocks, are the same as in ring systems.

The performance analysis of Token Passing for the bus architecture is the

same as in the ring system. The important parameters are the mean and the

mean square message length, the message arrival rate, the number of stations

and the time required to pass a token from one station to another (see

equation (3.3)).

4.2

As we have seen in connection with token passing in ring

systems, Token Passing has an overhead which is proportional to the number

of stations in the system. Furthermore for the bus architecture; the

.startup sequence can be fairly complicated since unlike ring sistems there

is no natural ordering among the terminals. An alternative protocol ,

which has neither of these drawbacks (but drawbacks of its own) is Carrier

Sense Multiple Access with - Collision Detection CSMA/CD .

CSMA/CD is the latest in a sequence of random access

techniques which began with the ALOI-IA radio system.
28
 Although random

access techniques have made advances there is a common behavioral pattern

which is manifest in all classes of random access systems. This can be

illustrated by the behavior of ALOHA in its simplest form - unslotted.

In unslotted ALOHA a message is transmitted as soon as it is received by a

station. If the message is received by the destination on the common

channel some form of acknowledgement is returned to the transmitting

terminal. When two or more stations transmit messages simultaneously

collisions will occur. A station that has been involved in a collision

will .retransmit after a randomly selected timeout interval. Traffic on

the line will then consist of new attempts and retransmissions. A classi-

cal analysis,.begins with the assumption that the total flow on the line

is Poisson. Under the additional assumption that the duration of messages

is:constant this leads to a simple.relationship between newly generated

load at all stations p and combined load.new and retransmitted, R .

We have

p 	R e
-R

(4.1)

4.3

As in the previous section of this report the load is the product of

.message arrival rate and message duration. 	Equation (4.1) is plotted

on Figure 4.1. Notice that p is the independent variable since it is

the load that is offered to the system. We see that for very light

loading there is a linear relationship between p and R since the

number of retransmission is negligible. However as the offered load

inbreases there is a point of saturation at an offered load of 18% . 	In

fact as shown on Figure 4.1 there is instability in that there are two

values of total traffic for each offered load.
29-30

At the higher values

of total traffic transmission is dominated by retransmissions. Although

the model presented here is quite simple and the Poisson assumption on

line flow is a bit dubious, a large number of analyses and simulations have

• verified the result.

• By the introduction of slotting, i.e., only allowing

transmission at periodically spaced points in time, it has been shown that

this capacity is doubled. 	The performance is as shown on Figure 4.1.

Notice that the same basic instability is present.

Random access systems have developed along the line of

utilizing a sensing capability at the station.
32

Thus in Carrier Sense

Multiple Access a station senses the line before transmission.. In the

P-persistent implementation transmission takes place at the end of the

current transmission with probability P . •With probability 1-P trans-

mission is delayed by T seconds which is the maximum propagation delay

between any pair of terminals. Due to propagation delay there may be.

4.4

more than one terminal transmitting at the same time in which case termi-

nals are retransmitted after random timeout intervals. An optimum value

of P for a given load can be chosen so as to balance the probability of

retransmission with channel utilization. 	In the non-persistent version

of CSMA, transmission is rescheduled with a random timeout interval when

line is sensed to be busy. The detection of carrier on the line is

treated as though there were a collision in so far as message transmission

is concerned. Studies have shown that the optimum P-persistent and the

non-persistent protocols have similar performance characteristics.

The latest development of random access protocols which

have particular application in local area networks is Carrier Sense Multiple

Access with Collision Detection (CSMA/CD).
33

In the CSMA protocole messages

from stations spaced by t seconds will collide if they transmit within t

seconds of one another onto a clear line. 	In CSMA/CD this collision is

detected and transmission is aborted. There may be a certain reinforce-

ment interval after a collision which assures that all stations on the line

detect the collision. After the collision transmissions are rescheduled

after a random timeout interval.

A number of studies of CSMA have been carried out by means

of analysis and simulation. From our point-of-view the difficulties with

these have been the obtaining of a consistent model for the comparison of

different protocols. For example in the previous section the work of

Hashida
25

gives the message delay for a Token Passing in the case of the

Poisson Arrival of arbitrary length messages to infinite capacity buffers.

No analysis or simulation based on the same assumptions has been done

for CSMA/CD . In order - to utilize existing analyses of the same model

for both Token Passing and CSMA it is necessary to examine a more re-

strictive model. Accordingly we shall assume . that messages are all of

the same constant length and that each station can hold only a single

message at a time. We assume that the time until arrival at an empty

buffer follows a Poisson Distribution. Based on these assumptions,

Kaye's
34

analysis of Token Passing and Lam's
35

analysis of CSMA/CD are

appropriate to our study. The details of calculations based on these

models were presented in the interim report to the project. A typical

result of these calculations are shown on Figure 4.2 where average message

delay is shown as a function of the load offered to the system for a system

with fifty stations. We see for CSMA the same sort of pattern that was

indicated for the ALOHA system, good performance for light loading but a

rapid deterioration with increased . loading. 	In contrast the Token Passing

system has slightly worse performance at light loading but a more graceful

degradation as load increases. These results are in conformity with the

findings of other workers.
36

A good deal of effort was expended on developing a more

general performance model for CSMA/CD in the sense of general message dis-

tributions, large station buffers and higher moments of delay. At this

writing only partial success can be reported. We developed a complex but

accurate model of the system. The difficulty is that the complexity of the

model have led to numerical problems which have prevented a complete evalua-

tion of the model. We feel that these problems present no real obstacle and

4.5

1

1 •

4.6

results will be soon forthcoming. A simulation program designed to model

the system is in the final stages of development as well. The goal is

to evaluate the accuracy of both the simple and the complex model by means

of simulation. 	In the next.section of this report we shall discuss a

simulation of the HDLC protocol. Our objective is to link the CSMA simula-

tion program with that of HDLC . In fact software was developed with this

objective in mind.

In order to evaluate the CSMA/CD protocol on the same baSis

as Token Passing we attempted to develop a model based on the Î4/G/1 queue.

The effort was not successful however the source of our difficulties may be

of interest. The model assumes that messages of arbitrary distribution

arrive at an infinite queue at a Poisson rate. We shall assume the non-

persistent discipline so that stations sensing the line to be busy reschedule

transmission. Stations involved in a conflict also reschedule transmission

in the same fashion. 	Once a station gains access to the line, it transmits

all of the messages including new arrivals until its buffer is empty. Let

the mean and the mean square value of the time required to gain access to

2
the line be denoted by s and s 	We shall assume for the moment that

these quantities are known. The average delay of a message can be found

from the standard analysis of the M/G/1 queue with a minor modification.

The service time of the first message to gain access, i.e., the first message

in.a busy period, is augmented by the time requiied to gain access to the

• • line. 	The resulting delay is:

À m
2

- 	2
D=

2(1 - ;A)
(4.2)

1

I.

4.7

•

where m and m
2

are respectively the mean and the mean square values

of the messages. Notice that if s = s
2

= 0 we have the delay for the

M/G/1 queue. It is not difficult to find higher moments of delay pro-

vided that higher moments of the message length and of the access time are

known.

The real problem then is finding the distribution of this

access time. Each of the stations with messages contend for exclusive

access to a free line. Once access is gained the line is occupied for a

time interval equal to a k-fold busy period where k is the number of

messages that have accumulated in the station buffer since the station was

last emptied. After the k-fold busy period, the contention begins again.

It appears to be a safe assumption that the successful station is chosen at

random from those contending. From all of these elements it is necessary

to form estimates of the distribution of the moments of the access time.

In the next phase of our work this will comprise part of our effort.

I .
• Tree Search Techniques

In the introduction to this section it was pointed out that

due to retransmissions the slotted ALOHA technique was limited to a maximum

line capacity of 36% . Furthermore there is the more serious problem of

instability in the channel. Recently there has been something of a break-

through in random access protocols. By the application of a technique

36,37
called Probing

	
which is essentially a tree search, the capacity of

4.8

the channel has been increased to 43% for the first application
38
 and to

over 50% of capacity for subsequent refinements.
39-40

Moreover instabi-

lity in the operation of the channel has been eliminated.

In the slotted ALOHA context the probing technique grants

access to a group of stations simultaneously. 	If any of the stations have

messages they transmit immediately. 	If there is a conflict between two

or more stations having messages, the initial group is split in two branches

and access is granted to each branch in turn. This stands in contrast to

the random retransmission technique which had been lised for conflict resolu-

tion. 	In the event of continued conflict splitting into branches continues.

The process continues until all messages are isolated within a branch.

Probing can be made adaptive in that the search of a group of terminals be-

gins not by granting access to the entire group but to subgroups (see below).

The tree search technique can be used to resolve conflicts

in CSMA . 	Stations sensing the line to be free transmit in the saine

fashion as previously. 	If two or more terminals conflict, the conflict is

resolved by splitting the entire group in two parts and granting access to

each group in turn rather than by a random rescheduling of transmission.

After a very long transmission the probability of a station having a message

is large and if access were granted to all stations simultaneously conflict

would almost surely ensue. In the adaptation of the tree algorithm the

total number of stations are split into groups at the end of a long trans-

mission and each group is given access to the line in turn.

4.9

In order to evaluate tree search for conflict resolution

in CSMA, calculations based on simple models were carried out. 	It Was

assumed that for each of N stations the probability of having a message

is. P . 	For both tree search and random retransmission we compute the

average amount of time required to resolve all conflicts.and to have each

message transmitted. While the conflict resolution is going on it is

assumed that there are no new arrivals to the system. It is recognized

that this is a great oversimplification since the conflict résolution in

real systems is carried out amid continual arrivals. Nevertheless we

feel that the computation will give a valid comparison of the collision re-

solution capability of the two approaches.

The adaptive probing technique is here used in the random

access context where an inquiry is answered by either silence, a successful

message transmission, or a garbled transmission resulting from a conflict

between two or more users. Each inquiry requires one slot, the inquiries

effecting a binary search of, for example, 2 users. 	It has been shown

that a recursive relationship for the generating function Q. (z) of a ran-

dom access probing cycle is given by

2 	2 	2
Q(z) = zQi _1 (z) 	(z-z) 	Noi-1 Qj....1 (z)]

0j-1 1j-1 	

2 	3m
N 	N 	(2z-z -z)z ;

where

(4.3)

4.10

2j-1

where

	

= 	the* number of users in a group,

N
Oj 	

= 	Pr {no messages in 2
j

stations} = (1-p)
2j

	

N
lj ,

= 	Pr {one message àmông 2 j static:ins} = 2 jp(1-p

m' 	= 	the number of slots/messages ;

and

2 	2
(1-p) z + 2p(1-p)z

m+1
t p z

2nt3
Q
1
(z) =

where

P 	= 	Pr {a station has a . message } .

From the above it is a simple matter to 'find the mean and

mean-square of the time needed to transmit all messages:

E[cycle.] 	Q!(1) = 1 + 2Q! (1) +
N0j-1

DI 	+
1j-1 + 1] 3

with

E[cycle
j1

] = Q'
1
(1) . = 1 + 2p

2
+ 2mp;

=

The probing technique is adaptive in the sense that the

initial 2
n

users may be divided into 2
"-k

groups of 2
k

, each group

to be .probed separately. The number of groups is chosen so as to minimize

the duration of a cycle. The mean 'total cycle time is thus 2
n-k

To minimize the mean cycle time, one chooses k = max{0, 1, 	, 	n}

(4.4)

such that

4.11

(4.5) N + N 	+ 3N 	N. 	1 > 0 .
03 	OD-1 	03-1 1D-1

• 	*
Note that k = 0 implies, as a - result of the relatively high probability

that each station has a message, that conventional polling, sequentially

querying each user, will minimize the mean cycle time. Adaptive probing

here reverts to polling whenever the probability p that a user'has a

' message exceeds 1/II = .707 .

The foregoing analysis assumes that a single inquiry is

needed to probe the system irrespective of the number of messages in the

system. Thus even if the system is empty the duration of a cycle is one

inquiry time. Also in the case of a single message in the system a single

inquiry time is allocated. Now suppose we take the point-of-yiew that the

tree search begins only after there has been a conflict. The average

cycle time is reduced by the probability of there being zero or two messages

in the system. In order to be complete we shall show the results of both

computations.

In contrast to the systematic procedure of adaptive probing,

the decentralized non-deterministic scheme of slotted non-persistent CSMA

operates in the following fashion:

at the beginning of each time slot, stations with

messages ready to transmit sense the channel and

transmit if it is sensed idle ;

(1)

(2) if the channel is sensed busy or if a transmission

conflict has occurred, then the user, now backlogged,

schedules retransmission according to the retrans-

mission delay distribution.

Assume here that the retransmission delay is geometrically distributed with

mean 1/v slots; i.e., each backlogged user senses the channel with prob-

ability v . Messages are of fixed length m slots, where one slot,

being the length of a probing inquiry, is assumed to be at least as long as

the maximum propagation delay T between stations. In accordance with

the probing analysis, assume that the message length m incorporates T

and thus in itself represents the full amount of time that the channel is

sensed busy after a transmission. No collision detect and abort capability

is assumed - - conflict between two or more users lasts one message Jength - -

yet the acknowledgement indicating a foiled transmission is assumed to arrive

in a negligible amount of time. 	If only one station has a message, then

its transmission is immediate and successful. 	If k > 1 stations have a

message, then all k transmit and collide in the first m slots. All k

stations are then backlogged and must resolve their conflict through the

random retransmission policy.

Let y. be the probability of a sucdessful message trans-

mission given that i stations are backlogged. From the above description,

must equal the probability that only one of the i iDacklogged stations Y1

senses the channel: 	 •

'ri = i v(1-v)
i-1

.4.12

(4.6)

. z
Yi (4.7)

4.13

The resolution process is represented by the accompanying transition

diagram.

I.

I.

The time spent in each state of the transition diagram is geometrically

distributed and statistically independent of the time spent in other states;

the probability of (n-1) collisions, each of length m slots, finally

followed by a successful transmission, given that there are i backlogged

stations,is. yi (1-y)
n-1

. 	Thus the generating - function of the nuMber of
,

slots spent in state i is

Co
 n-1
z
nm

-
1 - (1-yi)zm

The generating function G
k

(z) of the number of slots re-

quired until all k packets are transmitted without collision is simply

the product of the above generating functions:

k
.

z 	Yi
km

G
k
(z) = H

1 	- z 	H 	 (4.8)

j=11---(1--Yi)zm j=1-1-(1-Y i)zm

From G (z) , one can obtain E[Tik] = G'(1) , the mean number of slots

required given k stations are backlogged:

n-1

ci

E IT I k] 	kari + xn. î -2-- j k 	2 .
Y•

j=1 	1
I. (4.9) •

je

N k 	N-k
11k =

 (4,11)

1 	' V.
Var(T) = (1 -

0
)T1-

2
m
2
 + 	Var(Tik)u

k
(4,13)

4.14•

Similarly, E[Tik] 	EfTlk] = G"(1) is given by the expression

	

,.) k 1-y. 	k ly.(1-yjm(m-1)+2m
2
(1-y.) 2 }. II 21 	 .1 EfT Ik] - EfTik] = km(km-1) + 2km`î--:1-' -1-î 	11

	

Y. 	2
• Yi j=1 	1 	j=1

II

. 	k 	(1-y.

1

) 	k 	(1-y.) 	•
+

• j 	
Y.

 m2
	

; 	k
.-e

2 • . 	(4.10) II=1 	1

With p equal to the probability that each station has a message, the

probability that k of N stations have a message is given by

From the discussion of the CSMA scheme, it is clear that the mean cycle

time EfT] (in slots) required to clear the system is

E[T] = Il 	no]m + 	EfTlk]uk f 	 (4.12)

KL

and the variance of the cycle time is given by

K=L

The mean and variance of the cycle time depend on the value

, the probability that a backlogged user senses the channel. Just

for such a value V is not

hinges on the value of p

probing, then, v was chosen

solution of .005 .

4.15

as the adaptive probing algorithm takes advantage of knowledge of p ,

the probability that a station initially has a message, to minimize the

mean probing cycle time, so too can the mean CSMA cycle time be minimized

by judicious selection of the parameter v While an analytic expression

* .
readily obtained, it is easy to see that v

To make the desired comparison with adaptive

as that value minimizing E[T] wïthin a re-

Discussion

The results obtained from this comparison of random retrans-

mission and adaptive probing are exhibited in Figures 4.3 - 4.5 of the mean

and variance of the number of slots required to clear the N terminals

versus p , the probability each of the N terminals having a message.

A feature common to all the graphs is the superiority of adaptive probing

over CSMA for large values of p . This result is to be expected since

the mean'time to clear for adaptive probing is always less than or equal to

that required by conventional polling. When all stations are likely to have

messages, however, the contention scheme of random retransmission compara-

tively wastes time as stations compete for exclusive use of the channel.

On the other hand, when the system is lightly loaded, i.e.,

for low levels of p , random retransmission often exhibits an advantage

over adaptive probing due to the fact that it is very likely that only a

single station has a message and there is no competition for the channel.

416

The adaptive firobing algorithm may waste inquiries on groups of stations

that have no messages at all. This characteristic is most vivid in the

set of curves for messages of one slot length: adaptive probing requires

at least one inquiry to determine whether there are any messages in the

system at . all, while stations without messages do not do anything under the

random retransmission protocol. The advantage of random retransmission,

however, diminishes for fixed values of p as the number of stations in-

creases, since then the probability of more than one message in the system,

and hence the need for contention resolution, increases. Similarly,

CSMA's performance relative to adaptive probing's deteriorates as the mess-

age length increases - - adaptive probing's one slot inquiry overhead then

becomes less significant with respect to the total delay.

Now if we take the point-of-view of comparing probing and

random retransmission only when true contention is taking place the advantage

of random retransmission disappears. We assume that the contention resolu-

tion interval begins when two or more terminals have collided. In this case,

as shown on the curves, there is very little difference between probing and

CSMA at light loading while probing retains its advantage at heavy loading.

It should be noted that this comparison has cast the CSMA

protocol in the best possible light in the sense that the mean retransmission

delay 1/v has been adjusted for each value of p, N, and message length m

to minimize the mean time required to successfully transmit all the messages

initially present. Typically, CSMA protocols such as that implemented

in Ethernet establish an initial value of 1/v and then progressively in-

4.17

crease its value in the event of a subsequent collision. Of course,

the actual CSMA protocol is such that the initial condition assumed here,

the presence of messages being at each of N terminals with probability

is somewhat contrived since, as mentioned previously, CSMA is an

ongoing process in which such a situation is not routine. A more

thorough evaluation of adaptive probing in CSMA would consider their per-

formances in terms of, say, message delay as a function of system load

where one accounts for successive arrivals and the possibility of a

.message arriving during a fraction of a probing cycle. The point here,

however, has been to compare the relative efficiencies of random retrans-

mission and adaptive tree search as contention resolution processes.

Propinquity

In the foregoing comparison - of probing and random retrans-

mission it is assumed that the time required to make an inquiry, i.e.,

grant access to a group .of terminals is the full propagation delay in the

system since this.is presumed to be the time that is required to decide

whether there is a conflict between two or more stations. Now the essence

of the tree search technique is to split groups of stations. It is not

unreasonable to compose subgroups of stations according to propinquity, i.e.,

terminals in the same area in the same subgroup. Thus the time required

to decide whether a conflict has occurred within a subgroup is not the pro-

pagation delay for the whole system and the time required to resolve con-

flicts is reduced. The number of inquiries may be the same but the duration

4.18

of inquiries is reduced in proportion to the size of subgroups. This

effect can be illustrated by a straightforward example. We assume that

stations are equally spaced along a bus. This is something of a worst

case since it is likely that in actual systems stations will be clustered.

As in previous cases we assume that messages arrive at a Poisson rate.

Again we use as the measure of performance the time required to transmit

all messages. An expression for the probability generating function of

this cycle time similar to that in equation (4.3) has been derived. From

• 	j this expression the average time required to probe 2 stàtions can be

found. Faced with 2
N

terminals each of which have a message with

probability P this calculation for average cycle time çan be used to seg-

ment the group in an optimum fashion. This is exactly the same procedure

as in the previous case the only difference being that the duration of an

inquiry is proportional to the size of the group of stations being probed.

The results of illustrative calculations are shown on Figure 4.6 for 32

stations. The topmost curve shows the duration of a cycle when the full

roundtrip delay is the duration of each inquiry. In computing this curve .

the optimum starting groupings as given in equation (4.5) is used. 	In

contrast by varying the inquiry time according to the size of groups one

obtains the lower curve. As is evident there is considerable reduction in

the cycle time.

The idea of taking advantage of propinquity is not appro-

priate to random retransmission but only to Probing or Tree search. The

results of this'and the previous section indicate that tree search offers

potential advéntages over random retransmission as a means of resolving con-

4.19

flicts among stations transmitting messages simultaneously. In order to

fully evaluate the relative performance of the two techniques a full scale

simulation would be necessary, since a complete analytical evaluation is

not analytically tractable.

Assuming, as seems likely at this point, tree search yields

superior performance then the relative complexity of the two techniques

should be assessed. • It seems that the tree search requires more complex

logic at the stations. However, in the era of VLSI, more complex logic

is no obstacle.

cL

S Lor TED LOF/4

c
,t) g.FERE 	Lo

FI6- 0 E 14-e 1

I
1
1

1
I

1
1
1

1
1
1
I 	ç„.)

1
1
1
1

MEssAGO LEKà&TE-I

8

e /02-tit 	SEc

M
E

sS
A

G
E

P

E
L

c*
iL

aZS

`3.

FICyOkE Lt"-2-

FIG.0RE et.s

122

e STATtoms

RAK)boet

ETR pt i0 &M tsstoM

AoUINICI:\

SLOTS/MESSAGE e.

0
•=_Î

(/)

e•

2

t.

attel'î obo 	(KO 	00E5 	.é

?Rog/Neff. rrY A S'ribteroceJ
HAS A PlEsSAee

L 0 r5th e el q. F '22 1 0

600.5> 	400f 	vot 	hiwi• 	eiee 	fied

PRO8Aâlt. ITY A S' TAT/ 	H s .A Mrs5 A&E

Ft& u R. E-4LÇ

2-8 ST Tio05

	

o 	 P 	LA

‘.1

	

ÇA 	 Pn TRietWçh1eiSIOK)
Roe I me

N.\

3z STRT/oNS

w

SLors MEssole,v 	te.'0

1.0

fL

-e 	-
ete ote ,o/ 	ere .ee ../

lei«? v 	-rimE

PRopoKnoNAL To

GKouê S)tE

6-01 	 Oe 	 *

PR.o%ARiLITY A TERmimAL HAs A MESS716.

FiçeiAE Or.

High Level Data Link Control (HDLC)

In section II of this report the Open Systems Intercon-

nection concept was discussed. The key here is •the layering of protocols

with carefully defined interfaces. Of immediate interest is the opera-

tion of the sublayers within layer 2 the Link layer. 	In this layer we

have a flow control protocol overlaid on the line access protocols such as

CSMA and Token Passing, à key issue in the design of Local Area Networks the

interaction of the two protocols within the Link Layer. The effect of the

variability of the different random access techniques is of particular

interest. The analytical models in the literature take no account of this

variability due to obstacles involving mathematical tractability.
41,42

At this juncture it seems that simulation is the best course of action.

Insight will be developed on the operation of the protocol and it is hoped

that mathematical models will emerge. As mentioned in the previous section

of this report simulation will be part of the study of CSMA 	So that we

shall eventually have a complete system model the programs for HDLC and

CSMA are designed to be compatible with one another.

Before describing simulator details and results obtained

from the simulation, essential features of HDLC are first presented. As

well as being part of the link level protocol proposed by ISO, CCITT Recom-

mendation X 2.5 Layer 2 is one of the permissible options of HDLC. 	It is

currently the most used protocol for computer networks and distributed pro-

cessing. The main objàctive of HDLC is to help provide a communication

mechanism for a user to send any number and any pattern of bits in a fault-

5.1

tolerant manner without being dependent on the topology of the network.

Moreover the efficiency of the protocol is not to.be affected by such

features of transmission links as full or half duplex mode, propagation

delays and transmission rates.

A frame (that is, a packet) in HDLC usually consists of 3. •

header bytes, zero and more information bytes and 3 trailer bytes (see

Ficjure 5.13). 	•

Header Bytes:

Byte 1: The flag, 01111110, which indicates

the start of a frame.

Byte 2: An 8-bit address capable of addressing

up to 256 units on a network.

Byte 3: A control byte which is described later.

Information Bytes:

Any number including zero of bytes can be carried

between the . header and the trailer. '

Trailer Bytes:

Bytes 1 and 2: Error detection code.

Byte 3: The flag, 01111110, which indicates

. the end of the frame.

To avoid the mixup between the flag. byte and an identical

information byte, a scheme called bit stuffing is used in which the 0 bit

is inserted after every five consecutive 1 bits in the data. The receiv-

ing unit deletes any 0 bit following five consecutive 1 bits in order to

retrieve the original data.

5.2

• The frame makeup as described above is flexible in that

the address byte, the control byte and the 2 error detection bytes can

be extended to be more than four bytes. These extensions however are

not considered the simulation study.

The control byte specifies one of the three frame types

possible in HDLC protocol (see Figure 5.13).

Case 1: 	If the first bit of the control byte is 0 , then the correspond-

ing frame is referred to as an I-frame (information transfer frame). An

I-frame is used to send the data. The Ns field of 3 bits in the control

byte refers to the sequence number (between 0 and 7) of the I-frame being

sent. 	It implies that no more than 8 different frames can be simultaneously

in-transit from one unit to any other units. This is also referred as the

window of a transmitting unit. One advantage of this window is that up to

8 frames may be sent before an acknowledgement is received. In case an

acknowledgement or a reply of some sort is needed for data of less than 8

frames in size, the P/F bit is set to 1 in the last frame.

5.3

5.4

The acknowledgement for frames received at one unit can be

sent to the transmitting unit in one of the .two ways. One way is to use

an S-frame described in the sequel. The other is to piggyback the acknow-

. ledgement information on an I-frame. The Nr field of 3 bits is used for

this purpose. More specifically, if say unit 1 is sending an I-frame to

unit 2, then the Nr value informs unit 2 that unit 1 has received all the

frames numbered 0 ., 1, 2, ... , Nr-1, from unit 2, and is now ready to re-:

ceive the I-frame with sequence number Nr .

Case 2: 	If the first two bits of the control byte refer to the 10 pattern,

the corresponding frame is referred to as an S-frame (supervisory frame).

No information bytes are supplied in this frame as its main function is to

provide such supervisory, control functions as acknowledgements, requesting

transmissions and requesting a temporary suspension of transmission. The

next two bits (bits 3 and 4) of the control byte indicate the type of the

frame.

Case 2a; 	00: RR (receive ready)

This type of S-frame is sent by say unit 1 to unit 2 to

acknowledge that it has received frames numbered up to Nr-1 correctly from

unit. 2.. It can also be used by a primary unit (such as a computer) to

poil a secondary unit (such as.a terminal).

Case 2b: 	01; NW (reject)

This type of S-frame is sent to request transmission or

retransmission of I-frames numbered Nr and higher.

5.5

Case 2c: 	10: RNR (receive not ready)

Whenever a unit is temporarily busy and cannot accept any

I-frames, it sends out an RNR S-frame. The end of a busy condition may

be signalled with any other valid S-frame.

Caàe 2d: 	11: SREJ (selective reject)

This type of S-f rame is sent to request.transmission or

retransmission of a single 1-frame numbered Nr

Case 3: 	If the first two bits of the control byte are 11, then the cor-

responding frame is referred to as a U-frame (unnumbered frame). It is

used to provide additional link control functions which are not directly

relevant to our discussions here.

For control purposes it is often convenient to establish a

hierarchy among various units on the same physical link. For instance, a

unit is termed primary if it assumes responsibility for the organization

of data flow and for error recovery operation on the link. A non-primary

or secondary unit i is then under the control of a primary unit. The

most general form of hierarchy is achieved when a unit assumes the role of

both a primary and a secondary; i.e., it is a combined unit. Ail units

then have the same set of protocols and any unit can pend and receive in-

formation on its own initiative. 	Such a mode of operation is called

asynchronous balanced mode Aem or simply as balanced - mode.

5.6

The efficiency of an HDLC protocol depends on the number

of units in a network, message traffic at each unit, error and retrans-

mission probability and on the physical level protocols, CSMA/CD or

Token Passing, lised in the . link. 	The design of the HDLC simulator

described below is motivated by the desire to study the interrelationship

among these various factors.

FIDLC Simulator

The simulator named sim is written in PASCAL to fully ex-

ploit thé advantages of the . data structure flexibility of PASCAL over •

FORTRAN. The main emphasis of sim is to be upward compatible.with future

simulations of higher level protocols in local area networks. Thus in

future, sim could.become a component of a complete local area network simu-

lator. On its own level which is the link level and physical level, sim

iS being designed to simulate variables such as number of terminals, •

different message traffic at each terminal, various error distributions,

CSMA/CD and Token Passing protocols, and then determine their effect on

such parameters as round trip delay, window size, send and receive buffer

size, and number of S-frames in transit.

..Sim . is event-driven and is constantly executing one of the

following events:

A message arrival at any terminal.

2. 	A frame arrival at any terminal.

5.7

	

3. 	Transmission of an S-frame from a terminal.

•4. 	Transmission of an I-frame from a terminal;

•

	

.5. 	Time out.

Messages arrive at each terminal with . a Poisson arrival rate, and are con-

verted into I-frames and stored into a transmission buffer.. Whenever the

window is open and no acknowledgement is due, the I-frames from the trans-

mission buffer are sent out, that is they are put in an in-transit queue.

The error distribution and physical level protocol is applied to frames in

this queue, and when the transmission is possible, frames are next put into

the receive buffer of t the destination terminal. 	If no errors are de-

tected, an acknowledgement of each frame is sent either using the piggy-

backing or a separate S-frame. 	In case of an error, the.transmitting

terminal waits until a certain time out period and if no acknowledgement

is received in that time, the frames are transmitted again. Figures 5.1

to 5.9 contain the flow charts of this procedure. . The complete program

for sim appears in Appendix A . Every event as it occurs is logged in sim

and various graphs are plotted using this logged data. The next section

describes some such graphs and results obtained from them.

In this early .stage of software development only two

stations communicating with one another are simulated. However we have

in mind systems where a number of stations share the same.line through

CSMA or through Token 1') assing. We eedel this sharing through the prob-

ability distribution of the access delay of a message. For CSMA we take

the message delay to be a geometricalaS7 distributed sum of geometrically

5.8

distributed random variables. This roughly models the processes of

sensing the line and randomly rescheduling transmission. As the

analysis of the CSMA protocol progresses (see section IV), more refined

models of message access delay can be used. For Token Passing the

probability,distribution of access delay was modeled as a constant time

followed by a geometrically distributed random variable. The constant

term 'models the overhead required to pass control from one station.to

another and the geometrically distributed random variable models message

transmission. Again as the work progresses this distribution can be re-

• fined.

Typical results of simulation are shown on Figure 5.10 for

CSMA and on Figure 5.11 for Token Passing. In these curves we show average

delay as a function of load with window size as a parameter. The vertical

line through points indicates the variability between stations. It is

assumed in the simulation that the transit time for the S-frame is one-fifth

that of an information frame. The results show the effect of varying the

window size. The maximum window size shown is seven since increasing be-

yond this has no effect. 	In fact the curve for W = 7 is the same as that

for the M/G/1 queue for both CSMA and Token Passing. As the window size

is decreased there is a significant deterioration of performance. There

is an interesting comparison between Figures 5.10 and 5.11. We see that the

model for Token Passing (Figure 5.11) shows much less deterioration of per-

formance as the window size is decreased. In both cases the mean access

time is the same. However variance of the access time for the CSMA model

(Figure 5.10) is larger. 	Thus it would seem that a less variable access

scheme would prove superior.

5.9

On Figure 5.12 we show the average number of S-frames

transmitted as a function of load. The decrease in this average with

increasing load is entirely expected since as load increases more in-

formation frames are available for piggybacking acknowledgements. What

was unexpected was that the decrease was very nearly linear.

INPUT
system
parameters

5.1. Network 	Main

Start

OPEN
logfile

INITIALIZE
all system
variables
and data
structurés

find next
event

Input

System Parameters

Output

log file records

error messages.

CLOSE
logfile

STOP

Calltime

find next
event

Arrival Trans

71\

Receive

Input

arrivaltime

nextavail

Output

new send buffer

fraddr,
toaddr,
frame,
arri.Vtim.

<fields>

5. 2. • Arrival

nextavail
1

C RETURN-p

transbüf
trectim

now. t.?
cti

Y

(inside)

prey t.next = • transbuf

transbuft . next = now

placed = t

placed = f

fill in
recevtim

top
= nil

?
top = transbuf (empty)

transbuf 1.next = top
top = transbuf

(at top)

top
4'.rectim

transbuf
d'recti

While
now <> nil
placed = f

do

prey = now
now = nowt.next

prevl.next = transbuf. •

bottom) Y

transbuf = nil

5.3. Trans

Input

transbuf

Output

updated

in-transit

queue

5.4 Receive Input:

transbuf

Output

updated

-transbuf

-recbuff

ack, recno

	-ML__---_
Get frame
from top of
the intransit
queue

V
Advance re- '
ceive No:;
Record timeof
receipt; up-
date info in
sendbuff of
origin

CALL
ACKNOWLEDGE

(checks for ne
acknowledge
info)

Get next
frame from
rec buff

b.5i dalttlwo ,

ith

taleual

dutet

tiLiw twilduuti

wit) tImouÈ lLtu

SEQ NUM
N WINDOW?

CALL LOG
(Transaction is
complete - can
now record the
frame' s data)

ADVANCE
LEFTEDGE OF
SENDBUFF

More
frames which
have beeny/

ackned?
CALL SEND

(check if a
frame was wait-
ing for an ackn
we have now
received)

iL

RESET
TIME OUT

TIMER

RETURN

5.7. Ack

Compute seq.
number of

• frame which
we now know
was received
at other term

CALL
WINDOWCHECK

(See if we have
already done
this frame.)

Reset
bufferfull to
false if
necessary.

C RETURN.

Start

5,8. SSframe Input

term

sendbuffer

fill in:

fraddr

toaddr

..arrivtim

delay,error

frame

Place in
sendbuf (n)

n = n 1

set
bufferfull

SEND

Return

• Output

updated

- sendbuf fer

nextavail (n)

. Input

a record

Output

updated

recbuff

recbuff

= nil

(empty)

new

ecbuf

Return

newt.next = recbuff
recbuff = new (at top)

tray = recbuff

Return

While
new > trav
travt <>nil
do trav=travt.next

tray+
.next =

nil
9 .

• tray
= new

? ,
travt.next
= new •

(at end)

Return

. Return

(Inside)

Return

recbuff
= newf rame

5. 9 . Buffer

Return

1-9

/el

Lb 0

38

36

3/1

"

26
2

n

16

I .

1.2

LO

8

6

Lb

2

CSA14 DO U5LE 5ERVEI-
1.0,000 5 	PLE5

L OAD

nio oR E

Q3 	0. 1.4 	05 	0.6 o.8 	0.9

40

30

1-L1

sZ

2.0 —

10

Wr-1

FiGuKE 5-,01

0.3

10,000

o.4 	0.5 	 0.7 	0. 8 	0.9

LOAD

PA ss/./K

5ew,LE3

100

VO

bs GO

te„

U-D

• t5

t- 40
. 211

ing

E0

04 	0.5 	04

LoAD

0.7 	0.8 	0.9

1 6 -

ie-cre(e
/-9 dhete

01. 11. 11.10 irIELD

IL

In/roieltIATlOiv 011.1i .a0

SEA)t) Saix--..vce pi c RECE-11/É5E6?.

(1) 	Aiowee, A/5 	Nuitc&ie, iv,e I- FRAivIc

isoxy p I c eÉce/v
J- 	O SuPe ll

coilmAles 1' 	Altm/i3e, /vA, " 5 - ÉkAmE

I UNNUmbee pir -Unleiviii5ÉÉ
Comimes 	CoilliteievP5

- Fg AmE

-

cekttuy

HDLC Fg 1\1 É

Ce2Arroi- BYTE

F ..E.ueE 5J3

6.1

VI. 	Optical Fiber

The existing Local Area Network techniques have been

developed in connection with metallic media, either twisted pair or

coaxial cable. 	The Token Passing technique, which originated . with

twisted pairs in the ring configuration is easily adapted to coaxial

cable. The CSMA technique which had its origins in the ALOHA radio

systems is also well suited to coaxial cable. With the rapid develop-

ment of optical fiber technology it is natural to study the kinds of

access techniques that are appropriate.

•
Optical fiber

43,44
possesses a number of features that

make it attractive as a transmission medium. 	It has low transmission

loss:, a realizable standard is 4db per kilometer. 	It appears that for

single mode operation losses of ldb per kilometer are attainable. Thus

distances in the order of kilometers are supportable for point-to-point

operation. A second large advantage of optical fiber is high bandwidth.

Data rates up to 20 M bps seem to be easily attainable. Recently we have

learned of a fully operational experimental system which supports a 50 M bps

data stream using LED as a source. Other properties which are of value

in certain applications are immunity to electromagnetic interference. Due

to fiber's insulating property there is no need for electrical insulation

as a safety precaution. Finally optieal fibers are small. A bundle of

fibers with enormous capacity can be placed in a relatively small space.

The salient disadvantage of fiber for LAN's is that it

is inherently a point-to-point medium. In order for fiber.to be a multiple

6.4

access medium such as coaxial cable or radio, low loss taps on the line

would be required. However with current technology the loss of a

passive T is from 3 to 6db . As we shall see this loss severely

limits the number of allowable access points. Also in order to bring a

new station on the system it is necessary to interrupt service. 	In ,a

sense the nonconductivity of fiber is something of a disadvantage from

the point-of-view of reliability. 	It is desirable, as in ordinary

telephone service, to power stations through the communications medium.

In order to do this in fiber systems a separate copper wire should parallel

the optical fiber.

• The fact that only a limited number of access points can

 be put on the fiber is illustrated by the following example. As specified

by the 802 standard the average power should be greater than 10 pW(-20dbm).

In order for reception to be reliable, i.e., 10
-10
 bit error rate; the

average received power must be 0.1 pW(-40dbm). 	Thus with six passive taps

almost all of the margin is used up in the best case. 	There is almost

nothing left for fiber attenuation and attenuation due to splicing and coup-

ling. Taps with attenuation in the range .1 - .2db have been discussed

• as a future possibility. This together with parallel development of the

other components would change the current assessment.

Apart from the attenuation of passive taps there is •

another significant disadvantage. As we have sen there is considerable

improvement in random access•techniques if the line can be continuously

monitored for collisions. With the present technology this continuous

6.3

monitoring during transmission is not possible since there is large re-

flected energy on transmission.

In applying CSMA to fiber systems the roundtrip delay

in the system comes'into play. Suppose that the roundtrip delay is due

to 2km of cable. 	If the light velocity is .8 of the free space velo-

city the roundtrip delay is greater than 8 psec. This is. the minimum

time required to transmit a message since it is necessary to see if a

collision has occurred. Note at a rate of 50 M bps a 400 bit message can

be transmitted in 8 p seconds. Any shorter length messages are trans-

mitted inefficiently.

From these considerations it seems that fiber systems

with a bus topology and the CSMA access protocol are not feasible with

current technology. A ring topology with digital demultiplexing at each

of the nodes'is certainly feasible since it is really a series of point-

to-point connections. The idea of an optical fiber ring has been

implemented in a system which is aptly called HALO .

The topology which seems to be. of greatest current in-

terest is the star connection. 	With the star topology

the number of connections and regeneration points is minimized. • Re-

liability is improved since only the center of the star may need a guarded

power supply for system reliability. If the terminals at the point of the

star fail presumably ystem operation would be unimpaired. This stands in

direct contrast to the ring topology since failure of ring nodes may bring

6.4

the entire system down. Reliability vay be further improved by the use

of a passive component at the center of the star. Such a component, for

example, may be a reflector.

In summation,it appears that the role of optical fiber in

LAN is confined to high speed, limited access applications. This ma y be

ideal for connecting LAN's to one another, to high speed processors and

to the public switched network. In the interim report we spoke of such

configurations as Networks of Local Area Networks. It seems that for

connecting a large number of low- Speed users to a Common line a bus con-

figuration with some form of CSMA protocol may be optimum. Twà suggested

configurations are shown on Figures 6.1 and 6.2, where respectively the

ring and star topologies are used to tie together LAN's . Obviously a

keY element in either configuration is the black box interfacing the LAN

and the inner star or ring. As discussed in the interim report it seems

that it would be appropriate to place higher level protocolS such as HDLC

at this point.

FeER gbDi\JCe.

ro Ps 1\.;
To Op ER

cemf,
us3Es__

F I 	R

A

1

1

To Onil

I .
ViGu RE 	z-

1

7.1

: VII. 	SUmMary'and'Future'Diréctions

In this last section of the report we shall summarize

the work and we'shall chart the direction of our effort in the coming

.year. 	Section III of the report dealt with ring systems. 	In this

section we considered alternatives to Token Passing. 	In particular we

compared the mean delay of Token Passing with the buffer insertion techni-

que. The results show that buffer insertion shows significant improvement

in performance. The analysis that is available is limited to average

delay. During the coming period we shall attempt to find higher moments

and the probability distribution of delay for buffer insertion..

In section rv we considered line accessing techniques

which are appropriate to bus networks. We began with a summary of a

previous study comparing CSMA with Token Passing. The difficulty is that

the model is rather limited. Substantial effort has been expended'in find-

ing more general models for CSMA. We expect this effort to bear fruit

shortly. We have also done a good deal of work on a simulation program

which Will be yielding results very soon. 	In sectibn IV we considered the

application of a tree search technique for conflict resolution in CSMA sys-

tems. Comparisons with random retransmission systems show the technique

to be promising particularly if distance between stations are taken into

account. In the coming period this work will be continued by means of

simulation and analytical techniques. The objective will be a full evalua-

tion of alternatives to random retransmission.

The HDLC protocol is the subject of section V of the

report. A simulation program has been written to evaluate the perform-

ance of HDLC in Local Area Networks. Results have been obtained on

window size for models of CSMA and Token Passing systems. The program

deals with only two terminals. In the coming period the simulation

program will, be extended. . A basic thrust here is to form a link with

simulation programs modeling line access techniques.

In section VI of the report is a qualitative discussion

of the role optical fiber in Local Area Networks is assessed. The salient

result here is that the star configuration may be the most appropriate.

We shall continue work in this area in two directions. An analysis of

the behavior of star systems and comparison with the ring configuration

would be of interest. Secondly we shall attempt to build, on a modest

scale, a laboratory model of' an optical fiber data communications system.:

7.2

Acknowledgements

. It is with pleasure that the author expresses his appreciation

to those who participated in the work presented in this report. V. Agarwal

acted as a consultant for computer matters. A. Jacobsen performed most

of the computations in sections III and IV, and participated in formulating

the models. P. Pownall and T. Venster wrote the HDLC simulation program

discussed in section V . The results on propinquity in section IV were

obtained by N. Karimi. Finally the material in section VI was researched

by G. Legaria from the National Technical University of Mexico, who •is

spending a sabbatical at McGill.

References

L.

	

	L.G. Roberts and B.D. We5sler, "Computer Network Development to

.Achieve Resource Sharing," Proc. SJCC 1970,pp. 543-549.

2. W.D. Farmer and E.E. Newhall, "An Experimental Distributed Switch-

ing System to Handle Bursty Computer Traffic," Proc. ACM Symp.,

Problems Optimization of Data Commun. Syst., pp. 1-34, Pine

Mountain, Ga., October 1969.

3. N. Abramson, "The ALOHA . - System - Another. Alternative for Computer

Communications," in Fall Joint Comput. Conf. AFIPS Conf. Proc,,

Vol. 37, pp. 281-285.

4. R.M.Metcalfe and D.R. Boggs, "Ethernet: Distributed Packet Switching

for Local Computer Networks," Commun Ass. Comput. Mach., Vol. 19,

pp. 395-403, 1976.

5. J.F. Hayes and D.N. Sherman, "A Study of Data Multiplexing Techniques

and Delay Performance," Bell System Tech. J., Vol. 51, pp. 1985-2011,

November 1972.

6 , 	H. Zimmerman, "OSI Reference Model - The ISO Model of Architecture

• for Open Systems Interconnection," IEEE Trans. on Comm., Vol. Corn.

28, No. 4, pp. 425-433, April 1980.

7. IEEE 802 Local Network Standard and Draft 1, July 4, 1981.

8. • W. Bux et al., IEEE Project 802 Local Area Networks.Traffic

Handling Characteristics Committee Report Working Draft.

Ri

9. N.M. Denkin, IEEE Standard and Specifications for Local Network

Man Medium Interface and Medium Optical Fiber Baseband System,

IEEE Media Subcommittee, April 27th, 1981.

10. . J.R. Pierce, "Network for Block Switches of Data," Bell System

Tech. J., Vol. 51, No. 6, pp. 1133-1145, July/August 1972.

11. J.R. Pierce, "How Far Can Data Loops Go?" 	IEEE Trans. on Comm.,

Vol. Com, 20, No. 3, pp. 527-530, June ' 1972.

12. W. Bux et al., "A Reliable Token-Ring-System for Local Area Com-

munication," National Telecommunications Conference, pp. A2.2.1-

2.2.6, New Orleans, La., December 1981 ,

13. A.G. Fraser, "Spider - A Data Communications Experiment," Computing

Science Tech. Rep., No. 23, Bell'Labs., Murray Hill, U.S.A. (1974).

14. M.T. Liu and C.C. Reams, "Message Communication Protocol and Operating

Systems Design for the Distributed Loop Computer Network (DLCN),"

Proc. 4th Annual Symposium on Computer Architecture, pp. 193-200,

March 1977.

15. M.V. Wilkes, "Communication Using a Digital Ring," PAC NET Conf.,

Sendai, Japan, August 1975.

16. •E.R. Hafner et al., "A Digital Loop Communication System," IEEE

Trans. Comm., Vol. Corn. 22, No. 6, pp. 877-881, June 1974.

17 , 	Z.G. Vranesic et al., Tornet: A Local Area Network, Proc. 7th

Data Communications Symposium, Mexico City, October 1981.

18. 	W.J. Kropfl, "An Experimental Data Block Switching System," Bell

Syst. Tech. J,, Vol.; , 51, No. 6, pp. 1147-1165, July/August 1972.

R2

19. J.F. Hayes and D.N. Sherman, "Simulated Performance of a Ring .

'Switched Data Network," Bell Syst. Tech. J., Vol. 50, No. 9,

.pp. 2947-2978, November 1971,

20. R.R. Anderson' et al., "Simulated Performance of a Ring Switched-

Data Transmission.System," IEEE Trans. Comm., Vol. Corn. 20,

No. 3, pp. 576-591, June 1972.

21. P. Zafiropulo, "Reliability Optimization in Multiloop Communication

Networks," IEEE Trans. Conlin., Corn. 21, No. 8, pp. 898-907,

.August 1973.

22 , 	P. Zafiropuio, "Performance Evaluation of Reliability Improvement:

• Techniques for Single Loop Communication Systems," IEEE Trans. Comm.,

Vol. 22, No. 6, pp. 742-751, June 1974 ,

23. R.J. Camrass and R.G. Gallager, "Encoding Message Lengths for Data

Transmission," IEEE Trans. Inform. Theory, Vol. IT-24, July 1978.

24. HK-W. Lau, "Data Multiplexing: Many Lightly Loaded Sources," Master's

Thesis, McGill University. 1981.

25. 0. Hashida, "Analysis of Multiqueue," Rev , Elect , Comm. Lab., NTT,

• Vol. 20, Nos , 3"and 4, pp. 189-199, March/April 1972...

	

26 , 	W. Bux and M. Schlatter, "An ApproXimate Method for the Perfbrmahce

Analysis of Buffer Insertion Rings," tC be published IEEE Trans. on

	

- 	Comm.

R3

27. 	R.B. Cooper, oznIx5eicajj„1/19_111 .5_.m„ Macmillan, 1972, p. 156,

R4

28. N. Abramson, "The ALOHA System - Another Alternative for Computer

Communications," in 1970 Fall Joint Comput. Conf. AFIPS Conf, Proc.,

Vol. 37, pp. 281-285.

29. S.S. Lam and L. Kleinrock, "Packet Switching in a Multiaccess

Broadcast Channel: Performance.Evaluation," Vol. Corn. 23, No. 4,

'DP. 410-423, April 1975.

30. • A.B. Cardeal and M.E. Hellman, "Bistable Behavior of ALOHA - type

Systems," IEEE Trans. Comm., Vol. 23, No. 4, pp.. 401-410, April

1975.

: 31. 	L.G. Roberts, "ALOHA Packet System with and without Slots and

Capture," Computer Comm. Rev., Vol. 5, pp. 28-42, April 1975.

32. F.A. Tobagi and L. Kleinrock, "Packet Switching in Radio Channels

Part 1: Carrier Sense Multiple Access Modes and Their Throughput

. Delay Characteristics," Vol. Corn. 23, No. 12, pp. 1400-1416,

December 1975.

33. F.A. Tobagi and V.B. Hunt, "Performance Analysis of Carrier Sense

Multiple Access with Collision Detection," Computer Networks, Vol. 4,

No. 5, pp. 245-259, November 1980.

34. A.R. Kaye, "Analysis of a Distributed Control Loop for Data Trans-

mission," in Proc. Symp. Comput. Comm.: Network Teletraffic, Polytech.

Inst. of Brooklyn, Brooklyn, N.Y., April 1972.

35. S.S. Lam, "A Carrier Sense Multiple Access Protocol for Local Net-

works," Computer Networks, Vol. 4, No. 1, pp. 21-32.

R5

36. J.F. Hayes, "An Adaptive Technique. for Local Distribution," .

IEEE Trans. Comm., Vol. Corn. 26 ., No. 8, pp. 1178-1186, August

1978.

37. A. Grami and J.F. Hayes, "Delay Performance of Adaptive Local

Distribution," Proc. ICCI80, Seattle, Wa., pp. 39.4.1 - 39.4.5,

June 1980.

38. . J. Capetanakis, "'Tree Algorithms for Packet Broadcast Channels,'

IEEE Trans. Inform. Theory, Vol. IT-25, pp. 1178-1186, September

1979. 	 •

39. N. Pippenger, "Bounds on the Performance of ProtocolS for a Multiple

Access Broadcast Channel," IEEE Trans. Inform , Theory, Vol. IT-27,

No. 2, March 1981.

40. P.A. Hamblet and J. Mosely, "Efficient Accessing of a MultiaCcess

Broadcast Channel," IEEE Conf. Decision and Control, Albuquerque,

December 1980.

41. J. Labetoulle and G. Pujolle, "HDLC Throughput and Response Time for

Bidirectional Data Flow with Nonuniform Frame Sizes," IEEE Trans.

Computers, Vol. C-30, No. 6, pp. 405-413, June 1981.

42. W. pux et al., "Balanced HDLC Procedures.: A Performance Analysis,"

IEEE Trans. Comm., Vol. Corn. 28, No. 11, pp. 1889-189 8 , November 1980.

43. "Guided Optical Communications," Proc. Society of Photo-Optical

Instrumentation Engineers, Vol. 63, August 19-20, 1975, San Diego.'

44. E.G. Rawson and R.M. Metcalfe, "Fibernet: Multimode Optical . Fibers.

for Local Computer Networks," IEEE Trans. Comm., Vol. Corn. 26, No. 7,

pp. 983-990, July 1978. .

< computer network simulation Using hdlc protocol >
< for abstract see P.Pownall or T.Venteer

1 < - 	 •

buf
t = t 2; < no. or terMinals

A.: send buffer size
<-1enoth of arr?del/err des ›.•

buffsiz = 8;
h = 99;

< info or s-frame
< queue type
< pointers
< 4 event types

< pointer
< the reCord fields :
< to address

kind of frame >
< send and rec seq nos >
• delay, error times >

< these are the time fields
• next pointer -field

*A-1 APPENDIX 	A

program network (input,output,stats,sumdat,busm);

• .const 	 «

I
4:44!******» 11:*************************)
 >

< The following are the system parameters which deterMine 	> .
< the performance of the sys•tiril. At the moment, we have 'a 	>

I 	

•
. < two terminal .sustem. Each of th% terminals has a send . > *
.< buffer and a receive buffer. The eend buffer is controlled>
'< usihg the pointers sendbuff,. eendeeq, and nextavail .. • >

I

< The two terminals.have independent arrivals, and will. -... :
<. piggyback acknowledgements using the nr field on the info > ,
< frames they send. If their send buffer is empty; an 	3-
-C s-frame is Constructed and transmitted. 	% :

I
< 	 -, . 	• 	..
-1-: ****4.***e********** 3..

I < 	 p-
•< The followino describes the types of variables that 'are 	".›.

•• < used in the program. The main data structure is: .
<
< record : This is the standard record (analogoUs to a ' 	

>

I
>
>

. < 	frame) which is paesed through the simulation >
<

I 	
sustem. The fields are described below. - 	>

<

	

. 	>
< ************4c** >

• II tupe* •
frametupe = (sframe,iframe)3
queue = arraw El..t:O..n3 of real;
lists.= arrau E 1,.t3 of integer;
eventupe = (arretra,red:tim ›;
string = packed array cl..111 of char;
link = tobject;
objedt = record 	. .

toaddr : integer;
frame : frametype;
ns,nr•: integer;

' delay:error : 'real;
• arrivtim,sendtim,transtim,

recevtim,fintim,acktim : real;
next : link;

end; •

card = arrauCl..t,l..9] of real)
cardfile = file of card;

<

I 	

. ,
.< The actual variable"namee are .outlined in this section.
<

1
< summary file line
< summary file type

< ** >

I .

loop counters .
the output stats
the dumpout file .
counts for dumpout 	->
arrival,deLay meane
error probability 	•
proceesing and timout >

< random seed, window

-C, the current time
< the current-terminal, >
< the queues

< pointers to queues
.t] of link;

ptre for send buffer

"e-

3-
>

D-

4".

< ********** ******************* ***************** ***** ************ >

var
i,J,mainloop 	integer-
stat

• buey
lastct,h1count 	integer; •
alambdaedlambda : real;

elambda : real;

tiproc,tsproc,tout,framenum : real;

runtim : real;

seed,sizwin : integer;
clocktim : réal;

term : integer;

arrivq,proq,errorq : queue;
nextarr,nextpro,nexterr, 	: lists;
sendbuff,nexteend,bottom : array Cl.

bufferfull : array [l..t] of boolean; < buffer full flag'
transbuferecbuff . : arrau[1..t] of link;< pointers to buffers
recno,sendseq : lists; 	 < • rec 8: send #s,
timout 	arrau 	 of real; 	 < • timout timer

^1.

event : eventupe;
intranstop : link;

todays_date,.current-time : string;
isum : arrauCl..t,l..81 of real;

seum 	arrauCI..t,l..4] of real;
scountecount : arrayEl..t] of •eal;
buff : card;

sumdat 	cardfile;
optleopt2,opt3,opt4 : integer;

roptl,ropt2,increments,load : real;

freelist : link;

current event type • >
Pointer to in-:trans q >

stats running sums 	D-
s-frame sums 	 • >

frame counts >
summary file buffer

the summarY file
simulation options ->

free record list ptr >

function mth$random (seed : integer) : real; extern;
* 	* 	* el< * ****** ***** ***

• this is the system random number generator >
< yields a uniform distribution in CO31› • >,
< ** >

procedure histogram< term : integer ; .event : eventype ›;
<**>

< This procedure prints.a histogram!

<**>

var

i,j,timelesslecount : integer;

traverse : link;

begin

timelessl := round(clocktim - 1.0);
if <timelessl K laetct) then timeless1:=1astct;
for i := lastct to'timeleesl
begin '

if (hlcount > 49) then

begin

dd

1

I .

I.

page(busu); 	•
hlcount := 0;
writeln<busu,'TERMINAL 1'25,'TERMINAL 2':40); 	•
writeln<busu,' 	'.25e' 	 e:40);
writeln (busu);
writeln<busu, - CLOCKTIM':9,'SENDBUFF':10,'TRANSBUFFe:lle

'INTRANSIT QUEUE':17,'TRANSBUFFe: . 11SENDBUFF':10) ;
for j := 1 to 70 do write<busuj'-');
Writeln(busy)

end; 	 •
write(buswi:7e .'1':5);
traverse := sendbuff[1];
count := 1;
while <traverse <> nil) and <count < 12 > do
begin

if (traverse .t.sendtim < clocktim) and <traversetsendtim > -1)
then

if <traverse/.ns = -1)
then write<busup'S')
else write(busyetraverset.ns:1)

else write(busu,t*');
traverse := traverset. next; •

• count := count 4. 1 	 •
.ene:
for j:= count to 12 dowrite<busve");
if transbufElJ = nil
then Write(busy,'1':12) 	 •
else . if <transbufElJt..ns

then write(busl ep'5','I':11)
else Write<busy,transbufrirt . . nsl,'I':11);

traverse 	in-Wansi:bp;
• our t :
while (traverse <> nil) and (count < 17) do 	•
bedin
• if (traverse .r.toaddr = 1)

then write(busw'1')
else write<busw,''2');
traverse =traverset.next;
coUnt := count 4. 1

end;
forj := count to 17 do write<busw'

transbufC2] = nil
then write(bUsup'1':8)
else if (transbuf[2]t.ns = -1) 	 •

then write(busy,'S',:7)
else write<busy,transbufE21t.ns:1,'I':7); 	 •

traverse := sendbuff.C23;
count := 1; 	• 	 •
while .(traverse<>nil) and (count < 12) do
bedin

if (traversel. .sendtim < clocktim) and <traverset.sendtim . > -1)
. then

if' <traversetns
. then write<busy,'S').

• eise write(bUsuJtravereet.ne:1)
else write (busu,e*e);
traverse := traverzet. next; 	 •
coun.t : = count 	1

end;
writeln(busy);

• I

A-4

hlcount := hlcount +.
end'

end;

procedure create (var ptr 	link);

4: This procedure keeps a list of discarded records and gives them
• out when needed_

begin 	 •
if freelist = nil 	 •

.then new(ptr)
else

begin
ptr := freelist;
freelist := freeliztt.next

end
end;

procedure release <ptr : link>)

4: This procedure places a discarded record back into *he list,of
-C. free records. 	 •>
{***)
begin

if (ptr <> nil> then
begin

ptrl'.next := freelist;
freelist := ptr

end
end;

procedure emptybuffer (var rec 	link);

-C* This procedure is used at the end of a run of a load to release the 	4:>
• memoru which happened to be in ,use when time ran out.

var
teeinp : link;

begin
while (rec <> nil).do
begin

temp : =. rec; -
rec. := recls.next;
release(temp)

end
end;

procedure fillarr (term : integer ›;

4: this procedure uses a Poisson interarrival time distribution to
-C refill the arrival queue. The formula used for the seed value is
-C arbitram Note that absolute times are calculated from the inter ›.

var 	•
i : integer;
lasttime,randnum : real;

begin .

I 	

laettime 	 e := arriviEtermn]; 	 < last value offset
if. (term=2) and (opt4 = 0) then 	. < 	 > for single server, 	

>

for i := 0 to n do arrivqtterm,i]:=runtim 	< no arrivals for 2 	>
. 	elee

.1 	begin
tor i .- 0 to n do

•
-

• randnum := mthSrandom(seed);

	

	< get. random no. 	>
arrivciEterm,i) := lasttime 4- abs(ln(1-randnum)) * alambda ;

< absolute arr time 	>
lasttime := arrivq[term,i3 	' < advance last value 	>

end

I end; < fillarr > 	 .

I procedure fillpro (term : integer); • 4.: *** D-
-C This pro': fills the tiproc queue according t6 the 	>
< distribution specified bu option 1 (opt1). 	>

•
< optl = 0 	: constant (zero) distribution 	• 	>

' 	• optl = 1 	: CSNA distribution 	>
< optl = 2 	: Token Faeeing distribution 	>
< NOTE.' AT THIS TIME THIS IS R CRUDE APPROX. WE WILL › I { IMPROVE THIS LATER. > •
< ******************>e******************************** >

II

var
i,j,sumg,trusetryq : intecer;
p0,q0,4*.andnum : real;

I begin
if (opt1=0) then 	< for constant server, the proceseino D-

for i := O to n do 	.< time is just tiproc or tsproc, and >
progEterm,i) := 0.0 < is done in SEND.

elee •
begin

if (opt1=1) then 	< for csma server, we generate a var >
for i := 0 to n do 	< which is oeometric sum of geometric >
.begin 	< random variables. For the exact

p0 := sqrt(0:01) .; 	.< formula, see the literature
• randnum := mth$random(seed); 	< note that we generate a >

trys := 1; 	 < distribution in 0..100
while not (randnum < p0) do . < and then ecale down
begin

randnum := mth$random(seed);
true := trye + 1

end;
sumq := 0;

• for j 	1 to trus do
begin <oeometric - inter-trial, time >

q0 := eqrt(0.01);
randnum := mth$random(seed);
truq := 1;

A-5

< arrival times: • 	 -%.
J .

4: ***.>

II

A-6
• while not (randnum < q0) do

begin
• randnum := mthSrandom(seed);

tryq := trmq +
end;

• sumq := sumq + tryq
end;
prog[term;i] := sumq*0.08 	4: scale down to 8.0 mean >

end
else
for i := 0 to n do
begin 	 for token passing; we generate >

e := 0.01; 	O 	a geometric r. y. in 0...100,
randnum := mthe.random<seed); 	and add a constant plus tiOroc >
tryq := 1; 	-C. or tsproc respectively.
while not (randnum < le> do 	Again, see lit for details
begin

randnum := mth$random(seed);
tryq := trug 4. I

end;
proci[term,i] := trmq*O. 02 + 6.0 	.4: scale to 8.0 mean again.>

end
end

end; 	fillpro >

procedure fillerr (term : integer);

4: This proc fills the error queue with 0 or 1. 0 indicates OK; 1 is in .
• error. Elambda is 1 minus the error * probability .
• **ie********

j.

var
: integeri-

begin
.for 	0 to -n do

if <mthSrandom(seed) > elambda> thon errorgEterm;i]
else errorgEterm;i] := 0

• end; 	fillerr >

function windowcheck (newr,left 	integer):boolean;
• *,>:***
-1: Checks if a number is within a window of size Sizwin. 	.
• ***********************:***.*

var
integer;

begin
windowcheck := false; 	 4: assume false >
if (left 4:.> -1> then

for i := 0 to (sizwin-1) do
if ((left + i>mod buffsiz = newr) then windowcheck := true

end; 	windowcheck >

procedure findnextevent (var term 	integer; var event : eventupe
~ **.*

:=

• 	 A-7
< This proc searches the lists in order to find the event which'occurs >

I
< next. It does this bm comparing•the times; obviouslu the next event >
< time is less than the runtim, eo we assume the next time is runtim to >
< begin with. We check each terminal consecutively, so terminal one has >
< passive prioritu on events that occur simultaneously. - 	> •

I < **********************4:*************************4:****************** . >

Var
integer ;

high : real;

begin 	.

II 	
high := run -timi 	 4: assume-next is runtim 	>
for J. := 1 to t do begin

() 	< --,ARRIVAL QUEUE -- > 	 . .
1 	 .

if < arrivqEi,nextarrEil:i < high > then •

•

• I
begin 	 '

high . := arrivq Ei,nextarr Cill; 	< set high to arr time 	>
. 	term := i; 	 < set term to i 	>

7v er- lt :::' arr 	
. 	< set event to arrival 	>

.

• end
< -- TRANSMIT bu!ffER -- > 	.

I 	

if (transbuf[i3 <>. nil > then 	- 	< check •nonempty • >
if (transbufLiMtranstim < high) then begin

	

high := transbuftiMtranstim; < set high to trans time 	> -
, 	term := i; 	 < set term to i 	. >

I 	

.ti
end;

:= tra
•

< set even* to trans 	>

< -:-. TIME-OUT -- > -

II

if < timoutE1.3.< high) then
begin

high := timoutEi]; 	

.
' 	

. 	.

< set high . to timout time 	>.
term := i; ' 	 < Set term to i 	>

I 	'

	

. event := tim 	 < set even* to *imout 	>
end 	 .

end; 	. 	. 	.
< -- IN-TRANSIT QUEUE 7- >

I 	
if (intranstop <> nil) then

if (intrahstoptrecevtim < high)
the-rr; check nonempty 	

. 	
>

begin 	 • 	

I 	
high := intranstopt. recevtim;
term := intranstopt. toaddr; 	

< set high to recevtim
" < set term to destination

event := rec 	. 	< set event to receive 	> •
! 	end; • 	

. • 	I P clocktim := high 	 < adjust clocktim. 	> < . 	 .
end; < findnextèvent >

procedure log (term : integer;. var rec : link);
-

 I 	

*** >
< This procedure updates the running eums which are. being kept to >
< track the performance of the system.

	

	 . >
}

1 begin
if (rect.frame = iframe) then
with rect do
begin 	•

isumLterm,13 := isumEterm,13 	(sendtim - arrivtlm);

1

: =
: =
: =
: =
: =

: =

isungterm, 2]
isum E term, :3]
isumC term, 4]
is- um terrild 51
isumEterm, 63
isum E term; 73
isum r. term, 81

isUmCterm,21
isumEterm,33
isumEterm,43
isumEterm,53
isumEterm,61
isumEterm,71
arrivtim;

+ Ctranstim
+ (rerevtim
+ (fintim
+ (fintiM
+ (acktim
+ (acktim

sendtim);
transtim);

recevtim);
arrivtim);
fintim);
arrivtim);

A-8

countEterml := count[term] + 1.0

:
: =

: =

end
else
with rect do

- begin
esumCterm,13
ssumEterm,23
ssumEtPrm,31
ssumEterm,43
scoUntEterM1

end
end; < log >

ssumCterm,11
esumCterm,23
5sumEterm033
ssumEterm,41
scountEterm3

+ Csendtim 	arrivtim);
+ (transtim 	sendtim);
+ (recevtim 	transtim);
+ (fintim - arrivtim);
+ 1.0

.4"

procedure send (term : .integer);
{ *******:***********e:**********************4:*********4:**W*********

this procedure takes a.record from the send buffer, if any exists
and places it into the transmission buffer.• At the same time it
calcula - es the sendtim at which the record will be completely
transmitted. Note that a new physical record is formed in order
to keep physical records in the send buffer.
Note that we onIU .« , ipt-pj if the transbuff is empty.

var
p,temp,traverse 	link;

begin 	 •
if (transbufCterm.1 = nil) then 	 •
begin

if (nextsend C1;erm3 = nil >
then 	 < nothing"to send 3-

if (sendbuffEterm3 = nil) 	< if empty, 	>
then timoutEterm] := clocktim + tout 	• 	< extend timout
else < do nothing > 	 •

else 	 •
begin

if C. windowcheck•< nextsend Ctermlt. ns,sendbuff Ctermlt.ns
or C nextsendEterm3t.ns = H1') then 	 •

begin 	 insidP window >-
create (p); 	 < create new physical loc >
pt := nextsend rterm11; 	< 	copy- buffer >
nextsendEterm3t.sendtim := clocktim; 	<t>
if .(nex1senaterm3t.frame = eframe) then < del sframe.buff >
begin

if (nextsendCterm1 = sendbuffEterm3) then
begin 	 < at top 	3-

£r (nextsendEterm) = bottomEterm3) then
bottomEterml := nil;

temp := sendbuffEterm3;
sendbuffEterml 	sendbuffEterm3t.next;
nex1sendCterm1 := nextsendC1erm31.next;
re.lease..C.temps,1 	 .•

3.

3.
3.

I .

I .

I

1

A-9

end '
else 	 -C within buffer
begin

traverse := sendbuffCterm];
while (traverset.next <> extsend[term]) do

traverse := travereet.next;
traverset.next := nextsendEtermJt.next;
if (nextsendr.term] = bottom[term]) then
•begin

release(nextsendCterm].);
nextsend[term3 := nil;
•ottomIterm] := traverse

• .'end
else

• begin'
temp := nextsendCterml;
nextsendEterml := nextsendCtermit. next;
release(temp)

• end
,end

• end
else 	 i-frame

nextsend [term] := next:send EtermIl%next; 	move pointer >
pt.nr := recno Eterm3; 	fill rec no field
pt.delay-:= dlambda; 	.C - delau field . 	>'
pt.error := errorgEtermenexterrCtermJi; 	errôr field 	>'-
if.(nexterrCterm3 = n) then fillerr(term);
nexterrEterml 	(nexterrCterm] + 	mod (n+1);
pi'. sendtim := clocktim; 	send time field
if <pt.frame = iframe> then

pt.transtim := clocktim + progEterMenextpro[terM]3+tiproc
else

pt.transtim := clocktim + progEtermenextproCterm]J+tsproc;
if <nextproCterm3 = n> then finpro<term);
nextproCterml := <nextproCterml + 1> mod (n+1);
transbuf[term] :=.p

end
else

end
end

IIelse
end; -r. send >

.{ assign pointer

do nothing - outside window •).

-C do nothing - transbuf occupied >

II procedure arrival (term 	integer); 	 . -

-C this procedure takes an arrival time from the'arrival queuee builds a)-
II -i: record and places it into the eend buffer for that terminal. 	- ›

-c **m****** >

I var
p t link;

begin
create(p); create new rec 	• *.> •

• with pi' do 	 ni=xt avail record
begin

. • 	toaddr := (term mod t) + 1; 	-r_ to terminal

I
Il 	

ns)=. sendségCterm];
sendsegEt 	 + 	ff

e 	
erml := (sendseqttermJ 	1) mod .buL:rasea na

fram := iframe; 	 -t. frame type D.

. • A-10

arrivtim := arrivqCterW;nextarrEtermll; 	" % arrival time
sendtim := -1; 	 -r.t> 	•
next := nil

'end;
if (nextarrEterm] = n> then fillarr(term); 	. 	% refill if necé > • .
next.zer[term] := (nextarrEterm:), 	1> mod (n4-1); 	% advance ptr >
if (bottomEterm] = nil) then bottomEterm3 := p
else
Pegin

bottomEterm]t. next := p; 	 % add to end of the >
'bottomEterm] := p

end; 	 S • 	. 	.
if (sendbuff[term] = nil) then sendbuffCterm3 := p;
if (nextsend[terml = nil) then nexteendEterm] := p;
send (terni) check if' we can send >

end; % arrival >

• procedure ssframe (: -term : integer J'etupe : integer); •
• *** > •
• this proc places an s-frame into the send buffer of the terminal 	•
% specified and fills in the-appropriate fields. 	 3-
-C Note that sendseq doee not change since that field is•used to
~ identifu the s-frame command (stype). 	 . >
• ***:************************* >

var
p 	link;

begin
create(p); 	 4: create new record 	>
with e do

	

	 % fill in the fields ' >
• begin

toaddr := (term mod t) 	1; 	% to other terminal
arrivtim := clocktiM; 	% arrival time
frame := sframe; 	 frame'tee is e-frame >
ns := stupe; 	 % ns field is s type
nr := recnoCterm]; 	 %.request recno retrane >.
next := nil

end;
if (bottom[termi = nil) then - bottomEtermJ := p 	.
else 	.
begin

bottomEterm:It. next := p; 	 add ta buffer
bottom[term] := p

end;
.if (sendbuffEterm3 = nil) then SendbuffE13erm3 := p;
if (nextsendEterml = nil) then nextsenaterm3
send(term) 	 4: check if we cari send. 	>

end; 	ssframe >

procedure trans (term 	integer);
• **

this procedure places the record from the transmission buffer into
% the in-transit queue in order of recevtim at the other terminal
4: we assume the record is not placed to begin with and use a
• standard bubble-down algorithm.
• *** Y

Y
Y

Y

A-11

Var .
placed : boolean)
prev,now : link;

• begin .
placed := false) 	 < assume not placed
transbufCterm31. recèvtim := clocktim 	transbuf[termlt.delay;
transbuf[term7t. next := nil; 	< set pointer • to nil

(intranstop = nil) then intranstop := transbufEterm3
< if in-trans q is empty, .then place >

else.
begin 	 < the in-trans q is not •empty >

if (transbufEtermJt.'recevtim < intranstopt.recevtim) then
begin 	 < place at top if lower recev tim >

transbufÊtermlt..next := intranstop;
intranstop := transbuftterml

end
else

• begin 	 < insert into intrans queue >
prev := intranstop; 	• < set,prev pointer
now := prevt.next) 	< set next pointer
while (now <> nil) do begin

if (transbufEtermIt.recevtim < nowt.receVtim) then
begin

prevt.next := transbuf•terml; 	< correct; insert
• transbufEterm]t.next := now;

now := nil)
placed := true 	< set indicator value >

end
else
begin

prev := now; 	 < advance
now : = nowt. next

end
end;
if not (placed) then prevt.next := transbuf[terM) .< at end >

d
• end;

transbufEterm] = nil; 	 < empty transbuff
send(term)

	

	 < check if we can send >
• end) < trans >

fprocedure •ck (term : integer; var rec : link);
*** >

'< This proc acknowledges the receipt of a frame. The info is >
< contained ln the nr field; nr-1 ie the number of frames the >
< other terminarhas reci=ived .

var
num : integer;
temp : link;

begin 	 .
' 	if (sendbuffEterm3 <> nil > then

. begin . 	. .
. num:= (rect.nr + buffsiz - 1) mod buffeiz) 	. 	-i,.' 	nr-1 using MOD >
if (windowcheck (num,gendbuffEtermlt.ns >) then < 	window check 	>

• begin 	 ' < advance left edge >.

A-12

while (sendbuffEterm3t.ne <> num) and

(sendbuff[term] <> nextsend[term3) do
begin

sendbuffEtermDt.aCktim := clocktim; 	. . 	.
temp.:= sendbuffCtermD;
sendbufftterml := sendbuffEtermlt neXt) . .,

log <term:temp); 	 .
release (temp) 	 -4: reassign memory to freelist ›

end; 	 .
sendbuffEtermDt.acktim := clocktim;
temp := sendbuffCterm3; 	 . 	.
sendbuffEtermJ := sendbuff[term31:next; 	{ advance ptr 	>
log (term:temp); 	 '
release (temp); 	 < peassign.memory to freelist ,›
timoutCterm3 := clocktim 4. tout; 	< 	reset timout . 	D-
if (eendbuffEterml = ni).) then 	 . 	.

LIclomUterm]:= nil; 	. 	 • 	 . .

send<term) 	 . 	. .
end

end
end; < ad-< D-

procedure buffer (term : integer; var newframe : link); :
• *** p.
< This procedure inserts a new frame into the receive 	.1--
< buffer for that terminal. The process used is again the .1-
< standard bubble-down algorithm: with a check for frames J-
-C that are alreadu in the receive buffer (This could
{ occur after a timout)
• **:**›11*** ••

var
tempitraverse : link;

. 	.
begin

create (temp); 	 { create temp location D-
if (recbuffltermD = nil) then recbuffEterm3 	newframe 	{, empty D.
else
begin

if <newframet.ns < recbuffEterm3t.ns),then 	4: top of queue ?
bedin

newframet.néxt := recbuffEterm.]; 	{ - place at top 	1-
, recbuffEterm3 := newframe

end
• else

bedin 	 { traverse the queue)-
traverse := recbufftte•m3; 	{ set traverse Pointer >
while (newframet.nS > •raverset. eve) and

(traverset.next <> nil) do traverse - : - = traverset.next;
if (traverset.next = nil) then

• begin
if <traverset.ns = newframet.ne) then 	< already there
else traverset.next 	newframe 	-4: place at end

end
else 	 < the frame is inside the queue 1-
begin •

if (traverset.ns = newframét.ns) then 	< already there
else
begin

1

newframeotraverseotemp link)

A-13

tempt := traverset; 	< insert frame 	>
traverset := newframet;
traverset.next := temp;
release(temp)

end
end

end
end

end; 4: buffer >

procedure update (term 	integer ; var rec : link);

This proc updates the fields of the frame received with
y4: the original copu of the frame in the send buffer . of the
i{ other terminal

****:**************4:*********.**4:***********************

var
traverse : Link;

bedin
traverse := sendbuffE(term mod t)4-1]; 	traverse the other term >
while (traverset.ns K> rect.ns) and

'<traverse <> nil) do traverse := traverset.next;
if (traverse=nil) then writeln("%nerror in update')

update the fields 	> elsim
with, traverset do
begin

. 	nr = rect. nr ;
' delay := rect. delay;
error := rect.error)
sendtim. := rect,sendtim)
transtim := rect.transtim)
recevtim := rect.recevtim;
fintim := rect.fintim

. end
end;

‘

{

procedure receive <term:integer);

this procedure is called when the next event to occur is a
frame arriVind at a terminal from the ihtransit queue.
The frame is removed from the intraneit queue and passed
if possible. If the frame is out of sequenceo it is placed
in the receive buffer: We also chock for' ad< using the nr.
field of the received frame.
***4:**

var

3.

3.

J.

• begin
newframe := intranstop;
intranstop := intranstopt.next;
newframet.next := nil;
if (newframet. error = 0) then
begin

if <newframet.frame = iframe) then

• take frame from in-trans
< advance in-trans queue
< nil the next pointer

• erame is ok 	>

A-14

begin . 	 < 	I-FRAME SECTION -"- . >
if (windowcheck C newframet.ns,recnoCterm] >> then
begin 	 < sequence num within window >

if (newframet.ns = . recnoEterml > then•
begin 	 < pass out the frame

recnoCterm3 := (newframet.ne + 1> mod buffsiz; < adVance recno>
newframet.fintim := clocktim; 	< fill fintim field
update(term,newframe); 	< 	update rec at other term >
ack (terminewframe); 	< check for ack info
release (newframe); 	•
while (recbuffCterm] <> nil > do 	< advance recbuff ?
begin 	 < advance buffer 	>

if (.recnoEterm) = recbuffEterm3t.ns) then •
begin 	 < expected frame ?

recnoEterml := (recnoCterm1+1) mod buffsiz;
• retbuffEtermJt.fintim := cloCktim; . 	< fintim field
update(term. r':buf - erm]) 	O 	< update other copy >
temp := recbuffCterm3; 	, •
recbuff[termJ := recbuffEterm]t. net ; <.'advance pointer, >
release(temp)

end.
end; •
if CnextsendEtermJ = •nil >
then ssframe (term,-1)
else

end
else buffer(termJnewframe> • < outside place in receive buffer. >

<:place e-frame with PR code >
< do nothing - no s-frame needed . > ,

end • 	 •
else 	 < frame is outside window >

end
else 	 < 	S-FRAME SECTION --- >
begin

if (newfraniet.ns = -1 > then 	< PR frame: ack only 	>
begin

newframet.fintim := clocktiw. 	< fill in fintim field
ack(term,newframe);
log(term,newframe); 	• 	< log the S • frame• 	• >
release(newframe)

end
else 	 < REJ frame: retransmit
begin 	 •

traverse := recbuffEterml; 	< find•the restart point >
* if (traverse<> nil) then
while (traverset.ns <7. 3- newframet.nr) and

(traverse'(>. ni)..) do traverse := traverset.next)
if (traverse = nil) *hen writeln('= error in . red')
else nextsendEtermJ := traverse; > < reset the next pointer
send(term) 	 < check to send

end
end

end
else <* here goes the REj instr• *3- 	< frame in errOr; discard 3-

.ssframe(termi-9) •
end; < receive >

procedure calltime (term : integer);
< ** >
< this proc deals With a.time-out by recucIing the send buffer for that
< for that terminal. This means we set s (next to send) back to 1 (left >

terminal",térM:

•

2);
set s back to 1 >
send if poss
reset timout 	›

A-15
{ edge) and begin retransmitting the frame:..7„

begin
writeln(' •imeout at',clocktim:4, for
nextsendEterm] := sendbuffEtermJ;
send(term);
timoutCterm] := clocktim 4. tout

end; 	calltime

A
, K..**>

'3-.. 	 1,1 Pi I N 	 . *).
-;:4: 	 *).

begin { main >

--- interactive section: set parameters for the run
open < sumdat,"sumdat.dat"); 	4: the summary stets file >
rewrite (sumdat); • 	 4: prepare for write

date (todays_date); 	tt>
time (.current_time);
writeln (" , SET SYSTEM PARAMETERS
writeln;
writeln (" ENTER :
writeln (' dlambda :• Mean propagation delay time "); 	•
writeln C e elambda : Probability of correct transmission ");
writeln C e tiproc . : I-frame mean service time "); •
writeln < e tsproc 	S-frame mean service tiMe
writeln (' tout 	Timout time e >3
writeln (e framenum: The running time per trial ');
writeln C e sizwin : The window size '); 	•
writeln c." seed 	M• random seed ');
readln < dlambda,elambda , tiproc,tsproc,touteframenum,sizwin,seed

writeln (' tiproc constant (0), csma <1); or token passing (2)•
readln < optl);
writeln (' load minimum,load maximum (real)
readln < roptl1ropt2);
writeln (e increment size (real)
readin < increments); 	•
writeln (' busy diagram listing. NO = 0; YES = I
readln < opt3);
writeln. (' Single station (0) or double station (a.) ?
readln (opt4);

›4************** here begins the maihloop ***********************-

writeln; 'writeln;
writeln('***** RUNNING - PLEASE STANDBY *****");
writeln;
freelist := nil;
opt2 := round<<ropt2-roptl>/increments);

>3

> , >3

.-> e);

>•);

> e >3

> e >3

if (opt3=1) then
beqin

< busyout file is required

); 	 < open the. stats. file.
< prepare for writing

3-
}

A-16

for Mainloop : = Ø to opt2 do
begin

load = min1oop*incrernent: 1 roptl;
alambda = (tiproc ÷ 8. 0) 	load;
runtim : = framenuM*alambda;

< busyout . printino section .r

. open c. busy,'busy.dat" ›; 	 < open the bustiout file
rewrite (bustA ›; 	 < 'prepare for writing 	. >
writeln (busu, ": 7,
writeln biAsu, 	7, current_time) ;
writeln 	 .

writeln (busu, "dlambda: 23, dlambda: 6:1 'elambda: ao, elambda: E,: 2);
writelh (busu, 'tiproc: 	23, tiproc:: 6: 	" tsproc: ':23, t.sproc:'6: 1);
write.ln (busiA, 'tout: e 23, tout: 6: 1, ' , frarne.num: ': 23, framenum: 6:1); •
writeln (bw.--,u,•"buffsiz: 	23, buffsiz: 60 . " window:•': 23, sizwin: 6)

end;

< --- statistics printing section ---

open (stets, "stats. dat"
rewrite (stats);
date (todays_date,); .
time (current_time > ;
writeln
write in
writeln
writeln
writeln
w r it eln
writeln

<stats, -1:0days...date.); •
(s. tats, curre.nt_time);
(state., idlambda: ': 23, dlambda: 7: 1, 'elambda: 	23; elambda: 7: 1);
(state, tiproc: ':23, tiproc: . 7: 1, 't.sproc: 	23, tsproc: 7: 1);
(stats. , 'tout: 	23, tout: 7: 1; "framenum: 	20, fr.amenum: 7: 1);
(stets, buffsiz: ": 23, buff.siz: 7, "window: : 20, sizwin: 7);
(state); writein(:.z. ,:tats); writelnIstate);

initialize system structures

for term : = 1 to .t do
begin

arrivciEtarm, nj =
fillarr (term);
fillPro.(terM);
fillerr (term);

.recno [term] := 0;
nextarr [term] := 0;
nextpro [term] := 0;
nexteri- [term] := 0;
sendbuff [term] := nil;
nextsend [term] := nil;
bottom [term] :=
sendseq [term] := 0;.
transbUf[term] := nil;
intranstop := nil;
recbuffEterm] := ni!;

< initialize each terminal:
{ arrival queue last entry
< call fill' arrivals
< call fill delays

call, fill e..rrors
set receive no to zero

• < next arrivai -
< next proc time'
< next error .
< nil the left. edge pointer .
< 'nil the next te.send pointer
<- nil the bottom pointer
< send sequence.number
< nil the trans buffer
< nu, thé in-trans queue
< nil the receive buffer

3-

3-

timout[term] : = arrivqrte.rm, 11 ÷ tout; 	< set the first timout
for j : = 1 to 8 do isurnterm, „I] 	3. 0; < set running sum:F.--
for • 	= 1 to 4 do ssum[te.rm, j] : = 3. 0;
count[term] : = 3. 3;
scount[term] : 3. 3

end;

A-17

clocktim 	0; 	 -C. start at zero clocktim
lastct :=
hlcount := 50; 	 -CtD

action loop begins here ---

findnextevent (term,event);

if (opt3 = 	'then histodram (term,event);
,

',' hile (clocktim < runtim) do begin 	. • -C. begin event 100P 	. :)" 	
1

case event of 	 . 	 .
art- : arrival (term); 	 { process. arrival 	D 1
tra : trans (term); 	 -C process transmit 	> ,
rec : receive (term); 	, 	. 	proceee receive 	D ' 	1

I tim : calltime (term) 	-C procese timout 	• D 	1
end; 	' 	 . 	. 	• 	. 	•i
lastct := round(clocktim);
findnextevent<term,event); 	-C- find next event 	D
if'(opt3 = 1) then histodram(term,event) - 	 -

end; -C of cycle loop D 	 .

if (opt3=1) then close : (busu);

-=:tatistics caldulating section --- >

writeln (stats,"RUNNING 5TATIeIC8":40);
writeln (stets);
Writeln (state,'THEORETICRL LORD":20,load:5:2);
writeln (statse'EXPERTMENTRL LORD 1":20,(isumEl,23/isumEle8]):5:2);
writeln (stats,'EXPERIMENTRL LORD 2":20,risu«2,2]/isUmE2,:8»:5:2);
writeln.(stats);
for i := l to 8 do 	 -C divide bu counts to get 	D
begin 	 the mean statistics 	D

if (countE13(>0). then isumEl,i3 := isumEl,il/countUJ;
• if (countr2]<>0) .then 	isum[2,1A/countE23

end;
for i := l to 4 do
begin 	 •

,if (scount[1]<>0) then ssumCiFil := ssumE1,11?scountril;
if (scountE2J<>0) then ssumE2,13 := ssumC2,i3/scountE23

I .

1

find firet even* 	>

end;
writeln (stats,":36,'TERMINAL 	':5,'TERMINAL 2'); - •
writeln (stets);
writeln (stats,''I-FRRMÈS":30);
writeln (stats,'Number of -frames

countEl3:7:0," ":9,count[2]:7:0);
writeln.(stats,'Mean send buffer wait time . 	,

ieumE1013:7:2," 	:9,isumC2,11;.7:2);
writeln (stats,'Mean transmission <efervér) time,

isum[1,2]:7:2,":9,isumU2,23:72);
writeln (stats,'Mean propagation delay

isuML103]:7:2,' ':51 ,ieumC2,31:17 :2);
writeln (stats0'Mean receive buffer wait time.

ieum[1,41:7:2,' ":9,ieum[204]:7:2))
writeln (stats,'Mean one-way transit time

isumE1,57:7:2,":90ieumr2.,51:72);
writeln (stats,'Mean acknowledge t •me 	•' . 	e

isumEle63:7:2,' ":90isumE2,61:7:2);'
writéln (stats,'Mean two-wau transit time 	.

A-18

isum[1,73:7:2,":9,isum[2,73:7:2);
writéln (stats,'Mean interarrival time 	:

isumE1,8]:7:2,' ':9,isumr2,83:7:2);
Writeln (stets);
writeln (stats,'S-FRAMES":30);
writeln (stats,'Number'of frames •

scoun1.[1]:7:0," ':9,scountrE]:7:0); -
writeln (stats,'Mean Send buffer wait lime

ssum[1,11:7:2,": . 9,ssumr.2413:7:2);
writeln (stats,'Mean transmit (server) time

ssum[1,23:7:2,":9,ssum[2,23:7:2);
writeln (stats,"Meen one-wau propagation delay,

ssumC1,7,1:7:2,":9,.ssumC2,31:7:a); -
writeln (stats,'Mean one-way transit time

ssum[1,43:7.:2,' ":9,seumE2,43:7:2);
writeln (stets); writeln (state);
time (current...time);
writeln (stats,current_time);
clnse (stets); 	 4; close the st•tistic= file >

-C 	Write . a summary.record to siAMdet . ---

for i := 'I to 2 do
for j := j to 8

buffri,j]
buff[1,93:=Ioad;
buffE2,91:=1oad;*
sumdatt := buff;
put(sumdat);

do
isumEi,,O;

4: release of memoru for next run >

for term := I o t do
beoin

emptybuffer(sendbuffEterm3);
release(transbufCterm]);
emptybuffer(recbuffÇtermJ>

end;

emptybuffer(intranstop);
writeln(chr(7));
writeln('finished run for load =',1oad:5:2)

, end; 4.. the . Meinloop loop D-

close (sumdat);
writeln (". ALL DONE! ");
for i := j to 5 do write(chr(?))

end. -C main
IT'S FINISHED! RING THE BELL!!!

LOCAL DISTRIBUTION IN COMPUTER COMMUNICATIONS

J. F. Hayes

Reprinted from IEEE Communications Magazine
0163-6804/81/0300-0006 $00.75 © 1981 IEEE

IEEE COMMUNICATIONS MAGAZINE

LOCAL DISTRIBUTION IN
COMPUTER COMMUNICATIONS
JEREMIAH F. HAYES

A sophistication of early queueing
theory solves bursty transmission

problem.

significant part of the field of Computer
Communications is concerned with providing
transmission facilities for data sources which
may be characterized as bursty, i.e., short

spurts interspersed with relatively long idle periods. It has
been estimated, for example, that terminals in interactive data
networks are active from 1 to 5 percent of the time [1],[2].
This burstiness allows one to share channels among a number
of sources. In this paper, we shall consider a particular
context in which transmission facilities must be provided-
local distribution. In local distribution a number of geo-
graphically dispersed sources are to be connected to a central
facility. The importance of local distribution systems lies in
the fact that they are the most common class of computer
communication networks. Further, as part of large systems,
local distribution consumes a significant portion of the total
cost. In this paper, we shall describe the basic approaches to
local distribution. Our discussion encompasses certain
adaptive techniques which have been discovered recently.

The focus of our discussion is on the fundamental principles
of the techniques used in local distribution without dwelling on
details of implementation. We distinguish three main
categories: polling, random access, and adaptive techniques.
A fourth category is techniques which are suited to a
particular topology—the ring or loop structure. As well as
describing the techniques we shall summarize the results
of studies of performance. These results quantify the effect of
various system parameters on performance. An extensive
review of the literature is given in a final section of the paper.

To a large extent the analyses of performance that we shall
discuss are based on queueing theory. Queueing theory
began with the work of a Danish mathematician, A. K.
Erlang (1878-1929) [3], on telephone switching systems.
His first paper on the subject was published in 1909 [4].
Amazingly, the formulas derived by Erlang in a 1917 paper
[5] are in constant use in engineering the modern telephone
office. Furthermore, although queueing theory finds wide use
as one of the basic components of operations research,

telecommunications remains as its most successful applica-
tion. As one might expect, voice traffic was the primary
concern in telecommunications applications. However, re-
cently there has been an upsurge of interest in data traffic and
a corresponding reapplication of queueing theory in connec-
tion with computer communications [6],[7].

Although Erlang's work was concerned with voice traffic,
certain of his basic concepts are appropriate to data networks.
In the generic queueing model customers randomly arrive at a
facility with service requirements that may be random in
nature. The theory attempts to find probabilistic descriptions
of such quantities as the size of the waiting lines, the delay of a
customer and availability of a serving facility. In the voice
telephone network, demands for service take the form of
'telephones going off hook or call attempts. Erlang found that
given a sufficiently large population, the random rate of such
calls can be described by a Poisson process.' The service time
of a customer is the duration (holding time) of a call and was
found to have an exponential distribution which is closely
related to the Poisson distribution. In computer communica-
tions applications, the generation of data messages at a
terminal is the analog of customer arrival. The service time is
the time required to transmit the data message. In many cases
of interest, the arrival process is approximated by a Poisson
process. The duration of messages is commonly taken to be
constant or to be exponentially distributed.

POLLING SYSTEMS

A ubiquitous example of a local distribution system is
shown in Fig. 1 where we depict part of the communications
facilities in the Bonanza of Bargains Shopping Mall and
Family Entertainment Center. A number of terminals situated
throughout the B of B are bridged across a common line and
connected to a common computer. The common line may be
wire or coaxial cable. 2 The terminals are engaged in such
commercially useful activities as credit checking and
inventory control. However, even in the best of seasons the
traffic produced by an individual terminal is bursty and a
number of terminals can share the saine line. Located at the

A definition of the Poisson process will be given in the sequel.

2The required properties of this common line are related to the particular
local distribution technique employed and will be discussed in due course.

0163-6804/81/0300.0006 $00.75 © 1981 IEEE

6

CENTRAL PROCESSOR

MARCH 1981

Fig. 1. Geographically dispersed users tree topology.

computer is a controller, one of whose functions is effecting
this sharing efficiently and equitably.

A common technique for parcelling out bits per second
among users sharing a common line is roll-call polling3 . It is

assumed that the common line is such that the controller can
broadcast to all terminals simultaneously. Each terminal has

an address which is transmitted in sequence by the controller

over the common line. After broadcasting a terminal's

address the controller pauses for a message from the terminal.

If a terminal has a message the polling cycle is interrupted

while the message is transmitted.
The ability to achieve economies by sharing transmission

facilities is limited by performance requirements usually

expressed in the delay experienced by a user in obtaining

service. If there are too many terminals on the line, for

example, the time required to cycle through all terminals is too

large and user dissatisfaction ensues. The parameters of the

mathematical models of performance are: the number of

terminals, the volume of traffic generated by each terminal,

the line speed in bits/s and the line required by the polling

protocol. As we shall see in connection with the analysis of
polling models a significant factor in performance is
overhead, i.e., the time required to poll all terminals even
when there are no messages. In the case of terminals equip-

ped with voiceband modems, for example, this may involve
equalizer training as well as the phase and timing recovery
associated with the transmission of each polling message.

A close relative to roll-call polling is hub polling [8],[9].
Again, we have the geographically dispersed terminals of
Fig. 1. The controller begins a polling cycle by broadcasting
the address of the most distant terminal thereby granting to
this terminal exclusive access to the line. After this terminal
has transmitted any messages that it might have, it transmits
an "end of message" symbol which acts to grant access to the
next most distant terminal. Upon receiving this symbol, the
next most distant terminal repeats the process, passing on

3 For implementation of polling systems, see [8] and [9].

access to the third most distant terminal when its messages
have been transmitted. The process continues until all
terminals have been given an opportunity to transmit
messages whereupon the controller initiates a new cycle. This
model contains the same parameters as roll-call polling. The
salient difference between the two is the time required to grant
access to a terminal. In roll-call polling, the time required to
transmit a message and receive a reply is typically much
larger than the time required to transmit a symbol from one
terminal to another. However, hub polling requires that the
line be such that terminals reliably receive transmissions from
other terminals.

The hub-polling technique has been implemented in the
ring topology depicted in Fig. 2 [10]. Flow around the ring is
clockwise as shown. The central processor grants first access
to the first terminal downstream. As in the previous
implementation, access is passed from a terminal to its
nearest neighbor downstream. An end of message character
is appended to the data from a terminal. We have the same
set of parameters as in the previous cases. The time required
to pass access from one terminal to another is the time
required to transmit an end of message character.

Before going on to consider other local distribution
techniques we pause to consider the performance of polling
systems as related to network parameters and to traffic. A
useful measure of performance is the cycle time which is the
time required to grant access to all terminals in the system at
least once and to transmit messages from the terminals. We
may view the cycle time as having two components—fixed
and random. The overhead or fixed component is the time
required to grant access to all terminals. In roll-call polling, for
example, it is the time required to broadcast all of the terminal
addresses and to listen for replies. In the hub-polling
technique, overhead is the total time in a cycle that is required
to pass access from one terminal to another.

The random component of a polling cycle is due to the
random nature of the message generation process. The
number of messages transmitted in a cycle varies from one
cycle to the next. The analysis of polling systems is

Fig. 2. Ring topology.

7

gr41100, w = 10

n•n111Mnig, rifl-

= 100, w = 1
nr7i

rr; 410, v 10
nirvi

111111•ainrcii
m = 100. w= 0.1

n rT1

w = 1
arTi

m - 20, w = 0.1

400

200

100

60

40

20

A
V

E
R

A
G

E
 D

E
L
A

Y
/r

n

100

60

40

20

10

.n P. a ,

mi=corriii

0.2 	0,4 	0.6 	08

S =n Xffi

Fig. 3. Polling delay versus load.

2

6

4

nrfi
m = 10, w = 0.1

am

polling systems. 5 In connection with cycle time, we con-
sidered the case of infinite buffers and Poisson message
generation. Results on the average delay for this case with
constant length messages are shown on Fig. 3. The average
delay normalized to the time required to transmit a message is
shown as a function of the total load into the system, S
m—À n. The parameters are n, the total number of terminals,
and W/nm is the overhead per terminal normalized to the
message transmission time. The curves show the character-
istic rapid increase in delay as the load approaches one. A
strong dependence on overhead is also evident. For loadings
less than 0.5, which is the region where the system will be
operated, overhead dominates. These points can be illus-
trated by an example. Suppose that ten terminals share a
common 2400 bit/s line. Each terminal generates messages
at an average rate of 28.8 messages per busy hour (0.008
messages/s). The messages are each 1200 bits long. Finally,
assume that in order to poll each terminal and listen for a
response 50 ms are required. The load in the system is
S = 0.04. From Fig. 3, the average delay is approximately
0.25 seconds. Now suppose that as a convenience to users
the number of terminals sharing the line is doubled without
increasing the load. We see from Fig. 3 that the average
message delay doubles. Of the two polling techniques hub
polling tends to have lower overhead than roll-call polling. We
may view hub polling as a more distributed form of control of
access to the system.

LOOP NETWORKS

The ring or loop topology shown in Fig. 2 finds extensive
application in distributed processing where computers and

5 See the review of the literature at the end of the paper.

IEEE COMMUNICATIONS MAGAZINE

complicated by the fact that there are correlations between
the number of messages encountered in successive cycles and
in the number of messages in adjacent terminals.

The most studied model assumes Poisson arrival4 at a
terminal having storage facilities which may be regarded as
being infinite, i.e., compared to the arrival rate of messages
the terminal buffer is so large that the probability of overflow
is negligible. The time required to poll n terminals may be
written

T = t; + W
i

where W is the overhead in a cycle, assumed to be constant,
and t, is the time spent at terminal i to read out messages.
Even though there are dependencies between buffer contents,
the average cycle time is easily found since the expected value
of a sum such as shown in (1) is the sum of the expected
values. Assuming that the arrival rates and message
transmission times are the same for all terminals we find that
I', the average duration of a cycle is given by

W/(1 —S) 	 (2)

where S = n m X, m is the average duration of a message and
X is the average arrival rate at each terminal. Equation (2)
has a characteristic queueing theory form. The numerator
represents overhead, the amount of time during a cycle for
which a message is not being transmitted. All of the traffic
dependency is contained in the quantity S in the denomina-
tor. This load S is the average work presented to the system
normalized to the capacity of the channel. In voice networks,
a similar quantity has been given the unit of Erlangs. There is
a point of instability when S = 1 since the average amount of
work that is arriving is just equal to the capacity of the system
and there is no allowance for overhead. We note that when
W =-- 0, the average cycle time is zero. This is consistent if we
consider that an infinite number of cycles occur in zero time
when the terminals have no messages to transmit. Equation
(2) indicates the effect of overhead on performance. Suppose,
for example, that the total traffic load into the system is kept
constant (i.e., S constant) while the number of terminals is
doubled. If overhead is incurred on a per terminal basis, the
cycle time is doubled with no increase in traffic.

A more tangible measure of performance for the user is
message delay which we define to be the time elapsing
between the generation of a message and its transmission
over the common line. This delay consists of several
components. A message generated at a terminal must wait
until it is the terminal's turn to be polled. If the terminal can
store more than one message at a time, a queue is formed at
each terminal which implies fu rther delay. Finally, a certain
amount of time is required simply to transmit the message.
There have been a number of analyses of the performance of

4 For the Poisson distribution the probability of k message arrivals in

T seconds is Pk = (ÀT) exp(—À7)/k! k = 0,1,2 —• where A is the average

arrival rate. The interarrival time is exponentially distributed, i.e.,

P, [interarrival time 5_ = 1 — exp(—Xr); r 0.

(1)

8

40 20 TERMINALS—DM

1 0

A
V

E
R

A
G

E
 D

E
L

A
Y

 I
N

 M
IL

L
IS

E
C

O
N

D
S

10'

10

MARCH 1981

4000

20 TERMINALS—STDM

400

5 TERMINALS—STDM

5 TERMINALS—DM

0.2 	0.4 	0.6 	0.8

LOAD

Fig. 4. Average delay versus load In STDM and DM [34].

peripherals in close proximity (within a kilometer) are tied
together. In this application, it is necessarily true that the
traffic is bursty. However, the loop structure lends itself to
interesting multiplexing techniques which may be appropriate
to bursty sources. The most obvious technique is a form of
time division multiplexing which in this context is commonly
called Time Division Multiple Access (TDMA). Assuming
synchronous transmission, the flow on the line is partitioned
into segments each of which is dedicated to a particular
terminal. A terminal simply inserts messages into segments
assigned to it. The shortcoming of this system in the case of
many lightly loaded terminals is that very often terminals
have nothing to send and segments are wasted. At the same

time, empty segments may be passing by terminals which do
have messages. The same drawback applies to Frequency
Division Multiple Access (FDMA) in which each terminal is
allocated a fixed bandwidth. A recent study has shown that
FDMA is inferior to TDMA from the point-of-view of
performance [11].

An alternate technique to TDMA in a loop context is
Demand Assignment (DA). The flow is the same as in
TDMA except that the blocks are not assigned to any
terminal. When an empty block passes by a terminal which
has a message to transmit, the block is seized by the terminal
and the message along with addressing information is
inserted. There is an increase in the utilization of the line over
TDMA at the cost of an increase in the complexity of the
terminals. On Fig. 4, the average delay is shown as a function
of the load with the number of terminals in the system as a
parameter. The results illustrate the inefficiency of TDMA for
lightly loaded systems where the dominant factor is the time
required to transmit a single message. At light loading,
demand multiplexing is superior to TDMA by a factor equal
to the number of terminals sharing the line.. As the load
increases, the difference between the two systems decreases
since in demand multiplexing different terminals will tend to

9

have messages at the same time. Once again, the lesson that
we carry away from this study of loop systems is that in lightly
loaded systems, a distributed control of access to the channel
is more sufficient.

The TDMA technique is also appropriate to the tree
topology of Fig. 1. It is necessary to establish synchronization
among the terminals. Each terminal is assigned a periodically
recurring time slot. However, in the tree topology as well as in
the loop topology the TDMA technique is not efficient for
bursty sources.

RANDOM ACCESS (ALOHA)

Random access techniques hitherto associated with radio
and satellite systems have recently been applied to local area
networks [12]. The origin of these methods is the ALOHA
protocol which is the ultimate in distributed control. Again, we
assume that n terminals are sharing the same channel as
depicted in Fig. 1. As soon as a terminal generates a new
message it is transmitted on the common line. Along with the
message, the terminal transmits address bits and parity check
bits. If a message is correctly received by the central
controller a positive acknowledgment is returned to the
terminal on the return channel. Since there is no coordination
among the terminals it may happen that messages from
different terminals interfere with one another. If two or more
messages collide, the resulting errors will be detected by the
controller which returns a negative acknowledgment or no
acknowledgment. An alternative implementation is to have
the terminal itself detect collisions simply by listening to the
channel. After a suitable timeout interval a terminal involved
in a collision retransmits the message. In order to avoid
repeated collisions the retransmission intervals are chosen
randomly. The key element of the ALOHA protocol and its
descendants is the retransmission traffic on the common line.
If the rate of newly generated traffic is increased, the rate of
conflicts among terminals increases to the point where
retransmitted messages dominate and there is saturation.
This effect is expressed succinctly in the formula

S G exp (— G) 	 (3)

where S is the normalized load into the system generated at all
terminals and G is the total traffic on the line including all
retransmissions. In the derivation of (3), it is assumed that all
messages are the same length and that they are generated at a
Poisson rate. The plot of (3) on Fig. 5 shows that the channel
saturates at 18 percent of its capacity inasmuch as the input
cannot be increased beyond this point. Thus, it appears that
simplicity of control is achieved at the expense of channel
capacity.

The basic ALOHA technique can be improved by
rudimentary coordination among the terminals. Suppose that

a sequence of synchronization pulses is broadcast to all
terminals. Again, let us assume constant length messages or
packets. A so-called slot or space between synch pulses is
equal to the time required to transmit a message. Messages,
either newly generated or retransmitted, can only be
transmitted at a pulse time. This simple device reduces the
rate of collisions by half since only messages generated in the

A
V

E
R

A
G

E
 D

E
L
A

Y
 (P

A
C

K
E

T
S

)

o
4

0 0.8 1,0 0.2 	0.4 	0.6

0.8

0.6
ci)

0.4

0.2

IEEE COMMUNICATIONS MAGAZINE

0003:51111E GSM;

,MIC 1111

egilik 	1
?al ega0111

10 	100
G

Fig. 5. Input load as a function of channel traffic for several

random access techniques [47].

same interval interfere with one another. In pure ALOHA,
the "collision window" is two message intervals. The equation
governing the behavior of slotted ALOHA is

S = G exp (-2G). 	 (4)

We see from the plot of (4) on Fig. 5 that the channel
saturates at approximately 36 percent of capacity.

An extension of the ALOHA technique that is particularly
appropriate for local distribution is Carrier Sense Multiple
Access (CSMA). Before transmitting a message a terminal
listens on the common channel for the carrier of another
terminal which is in the process of transmitting. If the channel
is free the terminal transmits; if not, transmission is deferred.
Variations on the basic technique involve the retransmission
strategy. We illustrate retransmission strategies by means of
the P-persistent CSMA strategy. If the channel is busy then
the terminal transmits at the end of the current transmission
with probability P. With probability 1-P, transmission is
delayed by T seconds which is the maximum propagation
time between any pair of terminals. Due to propagation delay
there may be more than one terminal transmitting at the same
time in which case messages are retransmitted after random
timeout intervals. The value of P is chosen so as to balance
the probability of retransmission with channel utilization. The
characteristic equations for CSMA are plotted on Fig. 5. The
form is similar to pure and slotted ALOHA. The ability to
sense carrier from other terminals leads to considerable
improvement in throughput. As indicated, decreasing P leads
to improved throughput which is obtained at the expense of
increased delay. The curves shown in Fig. 5 are for a
propagation delay 0.01 normalized to message transmission
time. As this normalized delay is increased the performance
of CSMA degrades.

There have been a number of analyses of random access
protocols focusing on message delay as a function of
throughput. On Fig. 6, we summarize the results of this work
in the form of normalized message delay as a function of load.
For lightly loaded systems, pure and slotted ALOHA
perform well. However, as the load increases the increasing
rate of retransmission rapidly degradeF performance. Since
the carrier sense protocol keeps the channel clear by avoiding

retransmission, it has a graceful degradation. Also shown on

Fig. 6 is delay for roll-call polling. As we have seen earlier,

there is a severe penalty for overhead required when the

number of terminals is increased. The curves also show that

the performance of the polling protocol degrades more
gracefully than that of the random access protocols. This is

where the beneficial effect of the controller is seen. By

scheduling transmission, the avalanche effect of retransmis-

sions in the random access protocols is prevented.
The curves for the random access techniques in Fig. 5

show the same basic form in which a level of input traffic S
can lead to two possible levels of line traffic G. It can be shown

that this characteristic may lead to an unstable state resulting

in saturation of the channel and a drop in throughput. By

choosing system retransmission parameters properly, un-
stable states can be prevented. An example of this is
decreasing the parameter P in the P-persistent CSMA
protocols. In ALOHA, the range of the retransmission
interval can be increased. In both cases, there is a penalty in

increased delay.

ADAPTIVE TECHNIQUES

The deleterious effect of overhead on the performance of
polling systems is abundantly clear from the foregoing results.

100
80

60

40

20

10
8
6

4

2

S=OuT,

Fig. 6. Delay In random access systems [47].

0
0,01 0.1

A
V

E
R

A
G

E
 D

E
L
A

Y
/ F

n-

10

?

6 E.— TERMINAL

WITH

MESSAGE 7

?

. ? —>

0.6 0.5

MARCH 1981

C
Y

C
L
E

 T
IM

E

?

3

8

Fig. 7. Probing illustration.

In order to ameliorate this effect an adaptive technique has
been devised recently. The essence of the technique, which
has been designated probing, is to poll terminals in groups
rather than one at a time. In order to implement the technique,
it is assumed that the central controller can broadcast to all
terminals in a group simultaneously. If a member of a group
of terminals being probed has a message to transmit, it
responds in the affirmative by putting a noise signal on the
common line. Upon receiving a positive response to a probe,
the controller splits the group into two subgroups and probes
each subgroup in turn. The process continues until individual
terminals having messages are isolated whereupon messages
are transmitted. The probing protocol is illustrated on Fig. 7
for a group of eight terminals of which terminal 6 has a
message. The algorithm is essentially a tree search which the
controller begins by asking, in effect, "Does anyone have a
message?" Branches with affirmative responses are split into
subbranches.

If only one terminal in a group of 2 k has a message, the
probing process requires the controller to transmit at most
2k -I- 1 inquiries. In contrast, conventional polling requires 2 k
inquiries. The comparison may not be so favorable when
more than one terminal has a message. For example, if all
terminals have messages, 2" + —1 inquiries are required for
probing. This consideration leads to adaptivity where the size
of the initial group to be probed is chosen according to the
probability of an individual terminal having a message. Thus,
in Fig. 7, for example, one may begin a cycle by probing two
groups of four rather than one group of eight. The criterion for
choosing the sizes of the groups is the amount of information
gained from an inquiry. If the initial group is too large the
answer to an inquiry is almost certainly, "Yes there is a
message." However, if the group is split into too many
subgroups, the answer to an inquiry is too often, "No." If the
arrival of messages to terminals is Poisson, the probability of
a terminal having a message can be calculated by the
controller given the duration of the previous probing cycle.
Given this probability, the optimum group size can be found.
Notice that if the probability is high enough, the best strategy
may be to poll every terminal.

The results of simulation for the adaptive technique are

shown on Fig. 8 where the average time to probe all terminals

in a 32 terminal network is shown as a function of message

arrival rate. In Fig. 8, the cycle time and the message length
are normalized to the amount of time required to make an
inquiry. The comparison made with conventional polling

shows a considerable improvement in performance for light

loading. Moreover, due to the adaptivity there is no penalty

for heavy loading.
Although the probing concept was devised in connection

with polling systems it is also appropriate in a random access
context. Suppose that in response to a probe a terminal

transmits any messages that it might be harboring. Conflicts

between terminals in the same group are detected by the

controller and the group is divided in an effort to isolate
individual terminals. Each subgroup is given access to the line
in turn. Optimal initial group sizes can be chosen by means of
very much the same criterion as in polling systems. Probing

too large a group results in almost certain conflict. The
opposite extreme gives too many probes of empty groups of
terminals. Again, the optimum group size can be chosen
adaptively as the process unfolds. The probability of a
terminal having a message is a function of the previous cycle

and the average message generation rate at a terminal. This
probability determines optimum initial group size.

Control of the adaptive process need not be as cen-
tralized as in the foregoing. Suppose that as in slotted
ALOHA synchronizing pulses are broadcast to all terminals.
Suppose further that the slots between synch pulses are
subdivided into two equal subslots. In the tree search
protocol, the first subslot is devoted to an upper branch and
the second to a lower. Consider the example in Fig. 9(a) and
(b) depicting ari eight terminal system of which 5, 7, and 8
have messages. The first subslot is empty since it is dedicated
to terminals 1 -4. In the second subslot, terminals 5, 7, and

0.1 	0.2 	0.3 	0.4

MESSAGE ARRIVAL RATE

Flg. 8. Average cycle time versus message arrival probing

technique [49].

2

1 1

A

NO MESSAGE
TERMINALS

1-4 EMPTY

TERMINALS TERMINAL 	TERMINAL TERMINAL TERMINAL

5, 7. AND e 	5 	7 AND 8 	7 	 8
CONFLICT TRANSMITS CONFLICT TRANSMITS TRANSMITS

SLOT 2 	 SLOT 3 SLOT 1

4

5

TERMINALS

6 / WITH

if MESSAGES

7

? —>

i?
--->

-->

A
V

E
R

A
G

E
 D

E
L

A
Y

0.1 	0.2 	0.3 	0.4 0.43 	0.5

IEEE COMMUNICATIONS MAGAZINE

estimate the number of other terminals having messages.
Simulation studies indicate that performance is insensitive to
small errors in this estimate.

Related to random access multiplexing are a large number
of reservation techniques in which sources, upon becoming
active, reserve part of the channel. The reservation
techniques are appropriate to sources which are active
infrequently but transmit a steady stream while active. The
traffic from such sources is not bursty. However, the request
methods are and consequently may be treated by the
techniques discussed in the foregoing. For example, reserva-
tions could be made using the ALOHA technique over a
separate channel.

Fig. 9. (a) Tree search illustration. (b) Tree search illustration.

8 conflict. The conflict is resolved in subsequent slots. After
this conflict resolution process has begun, any newly arrived
messages are held over until the next cycle. Again, the
algorithm can be made adaptive by adjusting the size of the
initial groups to be given access to the channel according to
the probability of a terminal having a message.

Upper and lower bounds on average delay as a function of
the input load are shown in Fig. 10. Notice that the system
saturates when the load is 43 percent of capacity. This
contrasts with the case of slotted ALOHA where this
maximum is 36 percent of capacity. Recent improvements of
the technique have pushed this figure to over 50 percent.
There are no unstable states where the system is saturated by
retransmissions and conflicts. If conflicts persist each terminal
is assigned an individual slot and the system reverts to
TDMA.

The so-called "random urn" is another technique in which
the size of groups granted access is chosen adaptively. The
assumption underlying this protocol is that at the beginning of
a cycle the total number of terminals having messages is
known to all terminals. Access is granted to groups of size k
where k is chosen so as to maximize the probability that only
one terminal has a message. If, as in heavily loaded systems,
all terminals have messages, then the optimum group size is
one and the system is simple TDMA. Under light loading, the
random urn scheme behaves as ALOHA. The key issue in
implementing this scheme is determining the number of
terminals having messages. One possibility is a reservation
interval at the beginning of a cycle. In this interval, terminals
having messages indicate as such. From this, terminals can

REVIEW OF LITEFtATURE

There is an analogy between polling systems and machine
patrolling in which a repairman examines n machines in a
fixed sequence. If a machine is broken he pauses to make
repairs. This is the analog in polling systems to message
transmission. The overhead that is incurred is the time
required to walk between machines. This walktime corres-

ponds to the time required to poll a terminal. The earliest work

on this problem was done for the British cotton industry by
Mack et al. [13]. Based on this work, Kaye [14] derived the
probability distribution of message delay for the case where
terminals store a single fixed length message. This result is the
one shining example of a simple expression for probability
distributions in polling models. Some idea of the delicacy of
the model may be gained from Mack's analysis of very much
the same situation but with a variable repair time [15]
(corresponding to variable length messages in polling

systems). In order to find a solution it is necessary to solve a
set of 2n -I linear equations. For a treatment of work on related
problems, see Cox and Smith [16].

A great deal of work has been devoted to the case of the
infinite buffer. The earliest work in this area involved just two
queues with zero overhead [17],[18]. Later, this was

Fig. 10. Average delay versus load tree search [50].

12

[1]

[2]

[3]

MARCH 1981

generalized to two queues with nonzero overhead [19],[20].
In terms of the models that we are concerned with, the first
papers of interest are those of Cooper and Murray [21]
and Cooper [22]. The number of buffers is arbitrary and both
the gated and exhaustive services models are considered. The
drawback is that the analysis assumes zero overhead. The
characteristic functions of the waiting times are found. Also
found is a set of n (n + 1) linear equations whose solution
yields the mean waiting time at each buffer when the message
arrival time is different for each. The assumption of zero
overhead here may yield useful lower bounds on
performance.

For a long time, the only work on an arbitrary number of
queues with nonzero overhead was by Liebowitz [23] who
suggested the independence assumption. In 1972, both
Hashida [24] and Eisenberg [25] separately published results
on multiple queues with nonzero overhead. Both used
imbedded Markov chain approaches. (Some of Hashida's
results are plotted on Fig. 3.) Computer communications
stimulated the next significant step in polling models.
Konheim and Meister [26] studied a discrete time version of
model. Transmission time over the channel is divided into
fixed size discrete units called slots. Messages are described in
terms of data units which fit into these slots. (An 8-bit byte is a
good example of a data unit.) The analysis is carried out by
imbedding a Markov chain at points separated by slots. In
most of this work, the emphasis was upon symmetric traffic.
Recently, Konheim and Meister's work was extended to the
case of asymmetric traffic [27]. Interestingly, it was found
that in the case of asymmetric traffic, the order in which
terminals are polled affects performance.

A significant remaining problem involves nonexhaustive
service where, at most, a fixed number of messages are
transmitted from a particular buffer. If there are more than the
fixed number of messages at the buffer they are held over until
the next cycle. If there are less than this fixed number the next
terminal is polled immediately after the buffer is emptied. At
the present writing no exact analysis is available. There have
been several analyses of systems of this kind based upon
approximations [28]-[30]. The latest of these is by Kuehn
who obtains results when at most one message is removed at
a time. Kuehn evaluates his results by comparing them to
earlier results by Hashida and Ohara and to simulation.

Pioneering work on loop systems was carried out by
Farmer and Newhall [10] who proposed the hub-polling
technique discussed above. The demand multiplexing ap-
proach in loop systems is due to Pierce [31],[32]. A version
of demand multiplexing was used by Fraser in the
implementation of the Spider network [33]. There have been
several analyses of demand multiplexing [34]-[37]. The
curves shown on Fig. 4 were taken from [34]. A nice
summary of later work on the implementation and the
analysis of performance of loop networks is contained in [38].

Recently, two thorough survey papers emphasizing
random access techniques have appeared [39],[40]. These
allow us to be more terse in our survey. The first publication in
the area is due to Abramson [41],[42] who derived (3) under
the simplifying assumption of Poisson retransmitted traffic. A

great deal of subsequent work has shown (3) to be an
accurate description of ALOHA. The slotted ALOHA
technique was proposed by Roberts [43] who derived (4). An
analysis of message delay as effected by retransmission
strategy for the pure ALOHA technique is contained in [44].
Also given in [44] is a comparison of random access and
polling. Instability in random access systems was brought to
light by Carleial and Hellman [45] and by Kleinrock and Lam
[46]. The results on carrier sense multiple access given in
Figs. 5 and 6 are drawn from work by Tobagi and Kleinrock
[47]. For several extensions of the basic ALOHA concept
and for work on reservation systems, the reader is referred to
the survey papers mentioned above. The reader is also
referred to an insightful tutorial paper on this material [48].

The probing technique discussed in connection with
adaptive systems is due to Hayes [49]. The distributed
adaptive protocol described above was devised by
Capetanakis [50] who also found the increase in the capacity
given by adaptive techniques. More recent work in this area is
contained in [51]-[55]. Kleinrock and Yemini devised the
random urn scheme [56].

CONCLUSION

We have reviewed the basic techniques of implementing
local distribution for bursty data sources. A couple of
generalizations emerge from this study. It seems that under
conditions of light loading distributed control is best.
However, as the loading increases distributed control leads to
difficulties and centralized control gives the better perf or-
mance. This is entirely in conformity with everyday
experience with automobile traffic. At 4 A.M., stop signs
minimize delay. However, along heavily traveled routes at
rush hour, stop signs would cause collisions (in the usual sense
of the word) and the centralized control of traffic lights is
required.

ACKNOWLEDGMENT

The author expresses his thanks to Pauline Fox for her
efforts in preparing the manuscript.

REFERENCES

P. Jackson and C. Stubbs, "A study of multiaccess computer
communications," in AFIPS Conf. Proc., vol. 34, p. 491.

E. Fuchs and P. E. Jackson, "Estimates of distributions of random
variables for certain computer communications traffic models,"
CACM, vol. 13, no. 12, pp. 752-757, 1970.

E. Brockmeyer, H. L. Halstrpm, and A. Jensen, "The life and works
of A. K. Erlang," Trans. Danish Academy Tech. Sci., ATS
no. 2, 1948.

[4] A. K. Erlang, "The theory of probabilities and telephone conversa-

tions," Nyt Tidsskrift Matematik, B.V20, pp. 33-39, 1909.

	, "Solution of some problems in the theory of probabilities of sig-
nificance in automatic telephone exchanges," Electroteknikeren, vol.
13, pp. 5-13, 1917; in English: PO Elect. Eng. J., vol. 10, pp. 189-

197, 1917-1918.

[6] L. Kleinrock, Queueing Systems, Vol. 1: Theory and Vol. 2: Computer
Applications. New York: Wiley, 1975.

[7] H. Kobayashi and A. G. Konheim, "Queueing models for computer

communications system analysis," IEEE Trans. Commun., vol.

COM-25, pp. 2-29, Jan. 1977.

M. Schwartz, Computer Communication Network Design and
Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1977.
J. Martin, Teleproccessing Network Organization. Englewood
Cliffs, Ni: Prentice Hall, 1970.

[8]

[8]

[9]

13

IEEE COMMUNICATIONS MAGAZINE

[10] W. D. Farmer and E. E. Newhall, "An experimental distributed switch-
ing system to handle bursty computer traffic," in Proc. ACM Symp.
Problems Optimization Data Commun. Syst., pp. 1-34, Pine
Mountain, GA, Oct. 1969.

[11] I. Rubin, "Message delays in FDMA and TDMA communications
channels," IEEE Trans. Commun., vol. COM-27, pp. 769-777,
May 1979.

[12] R. M. Metcalfe and D. R. Boggs, "Ethernet: Distributed packet switch-
ing for local computer networks," Commun. ACM, vol. 19, pp.
395-404, July 1976.

[13] C. Mack, T. Murphy, and N. L. Webb, "The efficiency of NMachines
unidirectionally patrolled by one operative when walking and repair
times are constant," J. Royal Stat. Soc. Ser. B., vol. 19,
pp. 166-172, 1957.

[14] A. R. Kaye, "Analysis of a distributed control loop for data transmis-
sion," in Proc. Symp. Comput. Commun. Network Teletraffic,
Polytech. Inst. Brooklyn, Brooklyn, NY, Apr. 4-6, 1972.

[15] C. Mack, "The efficiency of N machines unidirectionally patrolled by
one operative when walldng time is constant and repair tirnes are
variable," J. Royal Stat. Soc. Ser. B., vol. 19, pp. 173-178, 1957.

[16] D. R. Cox and W. L. Smith, Queues. London: Methuen, 1958.
[17] B. Avi-Itzhak, W. L. Maxwell, and L. W. Miller, "Queues with alter-

nating priorities," J. Oper. Ras. Soc. America, vol. 13, no. 2,
pp. 306-318, 1965.

[18] L. Takacs, "Two queues attended by a single server," Opns. Res.,
vol. 16, pp. 639-650, 1968.

[19] J. S. Sykes, "Simplified analysis of an altemating priority queueing
model with setup time," Opns. Res., vol. 18, pp. 399-413, 1970.

[20] M. Eisenberg, "Two queues with changeover times," Opns. Res.,
vol. 19, pp. 386-401, 1971.

[21] R. B. Cooper and G. Murray, "Queueing served in cydic order,"
Bell Syst. Tech. J., vol. 48, pp. 675-689, Mar. 1969.

[22] "Queues served in cyclic order: Waiting times," Bell Syst.
Tech. J., vol. 49, no. 3, pp. 399-413, Mar. 1970.

[23] M. A. Liebowitz, "An approximate method for treating a class of
multiqueue problems," IBM J., vol. 5, pp. 204-209, July 1961.

[24] 0. Hashida, "Analysis of multiqueue," Rev. Elect. Commun. Lab.,
NTT vol. 20, Nos. 3 and 4, pp. 189-199, Mar. and Apr. 1972.

[25] M. Eisenberg, "Queues with periodic service and changeover times,"
Opns. Res., vol. 20, pp. 440-451, 1972.

[26] A. G. Konheim and B. Meister, "Waiting lines and times in a system
with polling," J. ACM, vol. 21, pp. 470-490, July 1974.

[27] G. B. Swartz, "Polling in a loop system," J. ACM, vol. 27, pp. 42-59,
Jan. 1980.

[28] 0. Hashida and K. Ohara, "Une accommodation capacity of a
communication control unit," Rev. Elect. Commun. Lab., NTT vol.
20, pp. 231-239, 1972.

[29] S. Halfin, "An approximate method for calculating delays for a family
of cyclic type queues," Bell Syst Tech. J., vol. 54, pp. 1733-
1754, Dec. 1975.

[30] P. J. Kuehn, "Multiqueue systems with nonexhaustive cyclic service,"
Bell Syst. Tech. J., vol. 58, pp. 671-699, Mar. 1979.

[31] J. R. Pierce, "How far can data loops go?," IEEE Trans. Commun.,
vol. COM-20, pp. 527-530, June 1972.

[32] "A network for the block switching of data," Bell Syst. Tech. J.,
vol. 51, pp. 1133-1145, July/Aug. 1972.

[33] A. G. Fraser, "Spider—A data communications experiment,"
Computing Sci. Tech. Rep. 23, Bell Laboratories, Murray Hill,
NJ, 1974.

[34] J. F. Hayes, "Performance models of an experimental computer
communications network," Bell Syst. Tech. J., vol. 53, pp. 225-259,
Feb. 1974.

[35] J. F. Hayes and D. N. Sherman, "Traffic analysis of a ring switched
data transmission system," Bell Syst. Tech. J., vol. 50, pp. 2947-
2978, Nov. 1971.

[36] A. G. Konheim and B. Meister, "Service in a loop system," J. ACM,
vol. 19, pp. 92-108, Jan. 1972.

[37] J. D. Spragins, "Loop transmission systems—Mean value analysis,"
IEEE Trans. Commun., vol. COM-20, Part II, pp. 592-602,
June 1972.

[38] B. K. Penney and A. A. Baghdadi, "Survey of computer communica-
tions loop networks," Comput. Commun.: Part 1, vol. 2, no. 4,
pp. 165-180; Part 2, vol. 2, no. 5, pp. 224-241.

[39] F. A. Tobagi, "Multiaccess protocols in packet communications
systems," IEEE Trans. Commun., vol. COM-28, pp. 468-489,
Apr. 1980.

[40] S. S. Lam, "Multiple access protocols," TR-88, Dep. of Comput. Sci.,
Univ. of Texas at Austin, to appear in Computer Communication:

14

Start of the Art and Direction for the Future, W. Chou, Ed. Engle-
wood Cliffs, NJ: Prentice-Hall.

[41] N. Abramson, "The ALOHA system—Another altemative for
computer communications," in 1970 Fall Joint Comput. Conf. AFIPS
Conf. Proc., vol. 37, pp. 281-285.

[42] "The ALOHA system," Comput. Commun. Networks,
N. Abramson and F. Kuo, Eds. Englewood Cliffs, NJ: Prentice-Hall.

[43] L. G. Roberts, "ALOHA packet system with and without slots and
capture," Computer Commun. Rev., vol. 5, pp. 28-42, Apr. 1975.

[44] J. F. Hayes and D. N. Sherman, "A study of data multiplexing
techniques and delay performance," Bell Syst. Tech. J., vol. 51
pp. 1985-2011, Nov. 1972.

[45] A. B. Carleial and M. E. Hellman, "Bistable behaviour of ALOHA-
type systems," IEEE Trans. Commun., vol. COM-23, pp. 401-
410, Apr. 1975.

[46] S. S. Lam and L. Kleinrock, "Packet switching in a multiaccess broad-
cast channel: Performance evaluation," vol. COM-23, pp. 410-423,
Apr. 1975.

[47] F. A. Tobagi and K. Kleinrock, "Packet switching in radio channels,"
IEEE Trans. Commun.: Part 1: Carrier Sense Multiple Access Modes
and Their Throughput Delay Characteristics, vol. COM-23,
pp. 1400-1416, Dec. 1975; Part III: Polling and (Dynamic) Split
Channel Reservation Multiple Access, vol. 2, COM-24, pp. 832-845,
Aug. 1976.

[48] L. Kleinrock, "On resource sharing in a distributed communications
environment," IEEE Commun. Mag., vol. 17, pp. 27-34, Jan. 1979.

[49] J. F. Hayes, "An adaptive technique for local distribution," IEEE
Trans. Commun., vol. COM-26, pp. 1178-1186, Aug. 1978.

[50] J. Capetanakis, "Tree algorithms for packet broadcast channels,"
IEEE Trans. Inform. Theory, vol. I1-25, pp. 505-515, Sept. 1979.

[51] A. Grami and J. F. Hayes, "Delay performance of adaptive local dis-
tribution," in Proc. ICC '80, Seattle, WA, pp. 39.4.1-39.4.5,
June 1980.

[52] N. Pippenger, "Bounds on the performance of protocols for a multiple
access broadcast channel," Report RC 7742, Math Science Dep.,
IBM Thomas J. Watson Research Center, Yorktown Heights, NY,
June 1979.

[53] P. A. Humblet and J. Mosely, "Efficient accessing of a multiaccess
channel," presented at the IEEE Conf. Decision Contr., Albuquerque,
NM, Dec. 1980.

[54] C. Meubus and M. Kaplan, "Protocols for multiaccess packet satellite
communication," in Proc. NTC '79, Washington, DC, Dec. 1979,
pp. 11.4.1-11.4.5.

[55] E. P. Gundjohnsen et al., "On adaptive polling technique for computer
communication networks," in Proc. ICC '80, Seattle, WA, June 1980,
pp. 13.3.1-13.3.5.

[56] L. Kleinrock and Y. Yemini, "An optimal adaptive scheme for
multiple access broadcast communication," presented at the ICC '78,
Toronto, Ont., Canada, June 1978.

Jeremiah F. Hayes received the B.E.E. degree

from Manhattan College, New York, NY, in

1956. He received the M.S. degree in mathe-

matics from New York University, New York,

NY, in 1961, and the Ph.D. degree in electrical

engineering from the University of California,

Berkeley, CA, in 1966.

From 1956 to 1960 he was a Member of the

Technical Staff at Bell Laboratories, Murray

Hill, NJ. He worked at the Columbia University

Electronics Research Laboratories, New York, NY, from 1960 to 1962. In

the interval 1966 to 1969 he was a member of the faculty at Purdue Univer-

sity, Lafayette, IN. During the summer of 1967 he was employed by the Jet

Propulsion Laboratory, Pasadena, CA. From 1969 to 1978 he was a mem-

ber of the Technical Staff at Bell Laboratories, Holmdel, NJ. Since

September 1978 he has been a member of the Electrical Engineering Depart-

ment at McGill University, Montreal, P.Q., Canada.

Professor Hayes is a Senior Member of the IEEE. He is currendy the

Editor for Computer Communication of the IEEE TRANSACTIONS ON COM-

MUNICATIONS. His research interest is primarily in the area of computer

communications.

201-6503 Printed
in USA

m°11010MADA

HAYES, JEREMIAH F.
--Local area networks and open systems
interconnection : final report

91
C654
H3944
1982

DUE DATE

