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FINAL REPORT  

LOCAL AREA NETWORKS AND OPEN SYSTEMS INTERCONNECTION 

I. 	Introduction 

Local Area Networks (LAN) are a class . of data networks . 

having limited geographical areas, usually within a kilometer. 	Networks 

confined to a single office building, shopping center or university 

campus are prime examples of LAN's. The emergence of LAN's is part of 

the general growth of computer and digital technology, however the intro-

duction of Office Automation and Distributed Processing Systems has 

furnished additional impetus. In both of these applications LAN techni-

ques play a significant role. 

In the past Local Area Networks were defined in terms of 

geographical extent and data rate, however in view of the rapid growth of 

technology, more useful definition of Local Area Networks may be in terms 

of usage and configuration. 	The purpose of Local Area Networks - is to 

provide a common communication channel among a number of users in the same 

limited geographical area. 	The emphasis is upon ease and flexibility in 

providing access. Due to the limited geographical area bandwidth is not 

the critical commodity that it is in larger networks. 	Thus the access to 

the network can be simplified at the cost of bandwidth. Data networks cover-

ing a large area require redundancy to ensure operation against failures. For 

• 
example one of the features of the ARPA net

1 
 is two paths between source 

destination pairs. Because of the limited geographical extent of the 

typical Local Area Network, it is in something of a protected environment 
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and this redundancy is unnecessary. This simplifies the topology since 

only a single path need be provided between source-destination pairs. 

In current practice three configurations are prevalent - ring, bus and 

star (see Figure 1). 	(Precise definitions for topologies and access techni- 

ques will be given in the sequel). As matters now stand the ring and the 

bus topologies are receiving the most attention. However it appears that 

the star topology is well suited to the optical fiber medium. As optical 

fiber finds application we would expect more work on the star topology. 

There are a large number of access techniques, i.e., 

techniques for sharing the line among users. Of these two are under active 

consideration for standards - Token Passing and Carrier Sense Multiple 

Access. Historically, Token Passing was developed in connection with the 

ring topology.
2 

CSMA with collision detection is the latest development 

in random access techniques. The first of these techniques was part of 

the ALOHA radio system.
3 

Random access became part of Local Area Network 

technology through the Ethernet
4 

although there had been some analysis of 

random access in connection with local distribution.
5 ' 

The Ethernet and the 

associated CSMA protocol seems to be wedded to the bus topology. Neverthe- 

less in connection with standards activity there is an application of the 

Token Passing technique to bus architecture. 	In the main body of this re- 

port we shall compare Token Passing and CSMA. We shall also make compari-

sons with alternative access techniques. 

A third component of Local Area Networks, in addition to 

the topology and the access technique, is the physical medium. 	In our 



investigation we have encountered three types: twisted pairs, coaxial 

cable and optical fiber. Twisted pairs operate at a rate of approxi- 

mately  1M  bps. Because of the long established T 1 technology, 

there is a strong tendency to operate at a rate of 1.544 M bps. As we 

shall see presently physical considerations impel the ring topology for 

use in connection with twisted pairs. 	The access techniques are  •those 

that are appropriate to the ring topology. 

At this writing coaxial cable seems to be the most widely 

employed medium for Local Area Networks. The speed range mentioned in 

connection with coaxial cable systems is in the range of 1 to 20 M bps. 

*Existing systems seem to be at the middle to loWer'end.of the rànge. 	The 

great advantage of coaxial cable is its flexibility of operation. Coaxial 

cable can be used in either the bus or the ring topology. Moreover 

coaxial cable presents no problem with regard to access technique so long 

as the technique is appropriate to the topology. As we shall see the 

great advantage of coaxial cable is the ease of connection, particularly 

in the bus topology. 

The salient advantage of optical fiber seems to be high 

data rate ; speeds up to 50 M bps are obtainable without 

great cost. 	The speed of 44.736 M bps is attractive in view of the exist- •  

1.3 

ing T3 . technology. There are other advantages to optical fiber. The 

fiber is immune to electromagnetic interference, is chemically inert 

material and is an insulator for high voltage. All of these properties 

may be important for particular applications however they are difficult to 



assess within the context of our study. 	The salient limitation to 

optical fiber lies in the lack of easy access. 	This property pre- 

cludes a bus topology implemented with fiber and one is driven to 

alternative topologies. 

The foregoing reriresents a brief overview of Local Area 

Networks. 	In the succeeding sections of this report we shall delve in 

some detail into several issues relevant to the design of LAN's. In 

section II we consider standards activities relevant to the local area 

networks. We review the Open Systems Interconnection concept by the 

International Standards organization. We also review the work of the 

IEEE 802 committee on a Local Area Network standards. 	Section III is 

devoted to the consideration of the ring topology. The emphasis is upon 

a comparison of the Token Passing technique with what is commonly called 

'buffer insertion. The buffer insertion technique allows more than one 

station at a time to use the system. 	The comparisons in this and in the 

next section of the report are based on mathematical models based on 

Queueing Theory. The bus topology and the appertaining station access 

techniques are studied in section IV. 	Included are a comparison of CSMA 

and Token Passing. This section also contains a comparison of collision 

resolution by means of random retransmission, as in the current version of 

CSMA, and tree search. Section V of the report deals with the HDLC proto-

col. The focus in this section is upon a simulation program for HDLC 

which includes an emulation of the media access protocol. This simulation 

program is the first component of a projected large software system designed 

to evaluate Local Area Network protocols. The penultimate section of the 

1.4 
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report deals with the role of optical fiber in Local Area Networks. As 

indicated above the particular properties of optical fiber compel network 

configurations which are different from those appropriate . to  metallic 

media. 	In a final section we draw our conclusions and chart our course 

for future work. 
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H. 	Standards - OSI and 802  

The International Standards Organization has established 

a géneral architecture, Open Systems Interconnection (OSI), for Computer 

Communication Networks. The architecture segments the communication's pro-

tocols involved . intb. seven layers and specifies the interface between 

layers. Within the layers standard protocols such as RS 232, X21 and 

the emerging 802 standard (see below), operate autonomously. 	The only 

requirement is that there be a proper interface with adjacent layers. 

The seven layers of the protocol are represented on Figure 

2. The lowest or the most elemental level is the Physical  layer. This 

is the layer in which the physical link is established between a pair of 

•terminals so that they may exchange zeroes and ones. 	For example, in 

this layer we have the CCITT V series recommendations involving the 

operation of voice band modems. A good deal of our work is concerned 

•with the second layer, the Link  layer. 	Functions related to flow on the 

line such as flow control and error checking reside. 	This layer involves 

sending blocks of data in frames. 	The line access protocols, such as 

Token Passing and CSMA , is a sublayer of the link layer. A higher sub-

layer within the link control is a flow control protocol such as HDLC . 

(We shall explain HDLC in detail in section V of this report). At 

the third layer, the Network  layer, protocols dealing with several links 

in tandem reside. 	For example, for large networks, routing protocols 

would reside in this layer. In the context of Local Area Networks this 

layer would be concerned with the establishment of a virtual circuit 

An excellent overview of OSI is given by Zimmerman
6 

2.1 
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For example the recently established X25 standard would fall within the 

netowrk layer. The first three layers are in the province of the network 

but the next, the Transport layer, is where protocols* for end-to-end control 

by the user reside. The first four levels make up what is called for 

obvious reasons the Transport service. The next three layers make up the 

Session Service Subsystem. At the Session layer sessions between users 

are initiated and terminated. The printing and the display of data is 

controlled in the Presentation  layer. 	In the highest level, the Applica- 

tions layer the control of the files and data bases is carried out. These 

last four levels are not of immediate concern to our work. 

Also directly relevant to our work is the effort of the 

IEEE 802 committee to establish a standard for Local Area Networks.
7 

Most 

of the committee seems to have been concerned with the media access techni-

que and on the physical properties of the media. The media access techni-

ques that are under study are Token Passing and CSMA/CD . The speeds that 

are supported for the two techniques are 1, 5, 10 .  and 20 M bps, at broad-

band and baseband. A subcommittee has considered performance criteria and 

has done some work on the comparison of the different approaches.
8 

As 

part of thi's work an extensive survey of the literature has'been carried 

out. 

In connection with the physical media work has been done 

on obtaining standards for coaxial cable
7 
 and for optical fiber- We have 

only recently become aware of the work on optical fiber.9 This work has 

been particularly valuable to us since it reinforces conclusions we had 

reached through independent effort. 
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3.1 

I .  

III. 	Ring Systems  

One of the two most prevalent topologies for Local Area 

Networks is the ring or, synonymously, the loop structure. The idea 

of using a ring for computer communications was first proposed by 

Farmer and Newhall in 1969.
2 
 The Farmer-Newhall loop was followed 

10,11 
shortly by an alternative proposal by Pierce. Tfiese two techniques 

form the basis of the current work on .ring systems. The fundamental 

differences between the two systems lie in the technique for granting 

access to users. Farmer and Newhall originated Token Passing whereby 

the station possessing the token has the exclusive right to transmit on 

the ring to any other station. Flow on the ring is in one direction. 

(See Figure 3.1). 	In terms of the 802 standard the medium is sequential. 

When a station has transmitted all that it is going to transmit, an End-

of-Message Character (EOM) is transmitted. The EOM is in effect the 

token. 	Upon receiving the End-of-Message character, the next station 

downstream assumes the right to transmit. If it has nothing the token 

is immediately passed on to the following station downstream. This techni-

que was implemented using T2 technology implying a data rate of 6.312 M bps. 

The protocol associated with the Farmer-Newhall system.has 

remained very muçh the same over the years and is very much the same as 

'the token passing scheme which is being considered by the 802 Committee. 

However a number of alternatives based on the access technique used in the 

Pierce loop have been developeâ
3-17

In the original proposal flow on the 

line was slotted into fixed duration frames (see Figure 3.2). The stan- 

12 



dard Ti  frame was used in an early implementation of the technique. 18 

At the beginning of each frame there is a single bit marker indicating 

whether or not the frame is empty or full. A station perceiving a 

frame to be empty can fill the frame with its own packets. If the 

station sees that a frame is full it checks the address bits that succeed 

the empty or full marker. 	If the packet is destined for the station it 

is removed thereby freeing the frame. Clearly there must be enough 

buffering in the node to allow examination of addresses before the marker 

bit is transmitted. Flow on the line is given priority and a message 

consisting of a number of packets may be interrupted in the course of 

transmission (see Figure 3.2 for an illustrative example). Due to this 

interruption each packet must be accompanied by source-destination 

addresses in order to sort out the flow on the line. 	In applications 

where there are a large proportion of variable length packets this could 

lead to a large part of the line capacity being taken up by overhead. 

The increase in overhead may be balanced by  the  fact that more than one 

station may access the line simultaneously. 

The need for excessive address overhead is due to the fact 

that the protocol for sharing the line is, in queueing theory terms, pre- 

emptive, i.e., traffic already on the line can preempt the line from a 

local statio
20
The advantage of this discipline is simplicity of opera-' 

tion. 	Once a packet is on the line it suffers no random delay, only a 

constant processing delay in each of the stations on its route. For 

multiple packet messages there is a random reassembly delay. 

3.2 
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An alternative to the Pierce loop protocol is the so-called 

Buffer Insertion protocol.
14 

The essential feature of this protocol is 

that it follows a non-preemptive discipline in which traffic a/ready on 

the line has priority but may not interrupt the transmission of messages 

already in progress (see Figure 3.3). 	Since a destination iS assured 

of receiving a complete message without interruption only one address need 

accompany a message. There is, however, an attendant increase in com-

plexity: once a message is on the line its . delay is random since it must 

wait for the termination of message transmission at intervening stations. 

Moreover, buffers allocated to line traffic can overflow unless a limit is 

placed on the maximum duration of messages. As in the case of the Pierce 

Loop line utilization is improved since more than one terminal may trans-

mit at a time. 

Since its inception questions concerning the . reliability of 

ring systems have been raised. A break in continuity would render the 

system inoperative. This question has been addressed from two points-of-

view. In virtually every implementation of ring networks the nodes have 

been fail-s'afe in that, in the event of loss of power, electrical continuity 

is preserved. 	The second aspect of the reliability considerations is the 

provision of redundant ring structures which would avert system failures.
21-22 

We shall return again to the consideration of reliability when we consider 

optical fiber. 

In both of the seminal works on the ring topology by Farmer•

and Newhall and by Pierce a hierarchical ring structure was proposed. 

This concept is perhaps most graphically illustrated in Figure 3.4 where a 

hierarchy local, regional and national rings are shown.
11 

In the original 
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proposed by Pierce flow on each of the rings have the same frame struc-

ture, with different speeds allowed. 	The access technique from one 

ring to another is the saine  preemptive technique discussed above; 

Comparison Token'PassingsandsBuffsr*Insertion  

In this section we shall compare the Token Passing Strategy 

with that of Buffer Insertion on the basis of the average delay of messages. 

Unfortunately, at this writing analytical models for a comparison based'on • 

higher moments of delay are much less tractable and further study is re-

quired. 

In this and in all subsequent studies in this report we shall 

assume that messages arrive at a Poisson rate with an average rate of 

to each of the N stations.sharing the common line. We shall assume that 

the durations of the messages follow an arbitrary distribution with mean m 
— 

and mean square m
2

. 

Now in order for messages to be transmitted without ambiguity 

to the proper destination certain overhead information must accompany the 

information bits. We recognize that the overhead for, addressing and for 

message delimiting is contained in existing protocols such as HDLC. How-

ever we shall include it in our analysis in order to account for the 

required overhead in the most efficient possible manner. 	If successive 

messages arriving at a terminal have independent destinations then on the 

order of log
2 
N address bits must accompany each message. Furthermore, 
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since messages have an arbitrary length distribution, and since there are 

no restrictions on the patterns of the actual data, some method is re-

quired to indicate the end of a message and the beginning of a new message. 

.There are currently two techniques for doing this - flags and blocks. 	In 

the flag technique the end of the message is signalled by a unique bit 

pattern; e.g., 1000. 	If the true data sequence replicates the flag a bit 

is stuffed into the sequence so that 10010 is transmitted. The augmenta-

tion of a message that is due to flag and stuff bits has been analyzed for 

general distributions of message lengths. For the case of geometrically 

distributed message lengths it can be shown that the average duration of 

23,24 

11 F-1 F-2 ml = 7(7 [1 + (7) 	q ] + F 	 (3.1a) 

1 where F is the duration of the flag and — is the average duration 
1-q 

of the message. 

Similarly for geometrically distributed messages it can be shown that mean 

square value of the augmented message is given by 

(q) 2F-3 	q F-1 	q F-2 	1 --- 	1+q + u-1 	-1-.  4 (7)
•

(-
2

) 	[F - —
2

] 2  ml
2 

- 	 + 
- 

(1-q)
2 

1-q 

the augmented message is 

1 F-1 F-2 
1 + (---) 	q . 	) 

2   + 2(F+1) ( 	+ (F+1)
2 

 
1-q (3.1b) 

It has been shown that the optimum duration of the flag in terms of mini-

mizing the average duration of the augmented message is given by 



pB pB+1 	pB pB-1 
(3.2h) 

3.6 

• • F = flog2  m"-] + 1 	 (3.1c) 

In the blocking technique a message is segmented into fixed 

length blocks. The first two bits in a block indicate whether or not it 

is the first of a message and whether or not it is full. In a block that 

is not completely filled there must be delimiter bits indïcating which of 

the bits are true information bits and which are stuff bits. Again, the 

length of the augmented message has been worked out for arbitrary message 

length distributions. The probability of a message being represented by 

k blocks each consisting of B bits is 

A 
- Pr fk blocks] = Pr f(k-1)B - flog2 

+ 
B ‹kB - flog

2 B] ] 

(3.2a) 

For geometrically distributed random variables it is a simple matter to 

work out the mean and the mean square of the augmented message. It has 

been shown that, for geometrically distributed messages, the optimum block 

size'is given by B which satisfies 

Q
k 

In addition to overhead for addressing and message delimiting, 

which is essentially the same for both Token Passing and Buffer Insertion, 

there is overhead that is peculiar to each technique. Thus a certain num-

ber of bits are required to pass the token. A reasonable way to do this 

is to repeat the flag at the end of the last flag followed by an address 

indicating the next station receiving exclusive line access. An alterna- 



rely upon an analysis of a polling model by Hashida. This model assumes 
25 . 	_ 

3.7 

tive in the case of block encoding is to follow the final block of a mess-

age with a non-full block which is not the first block of a message. 	In 

this non-empty block is the address of the next station to be granted 

access. 

In the case of the Insertion Buffer, overhead assumes a 

slightly different form. When a message enters a station there must be 

a delay to examine the address to determine whether the message should be 

passed on or not. 	This delay is in addition to any traffic induced delay. 

In Token Passing this delay is not required. 	In compensation the Buffer 

Insertion technique does not require a token to be passed.' 

' In calculating message delay for Token Passing we shall 

infinite buffers and exhaustive service; i.e., a station possessing the 

token transmits all the messages in its buffer before passing the token. 

1 
There are a number of alternative models which are not quite appropriate 

for comparison with the buffer insertion model we have available to us. 

Polling models are characterized . by  a periodically avail-

able server which in this case corresponds to exclusive access to the line. 

Since message arrival to each of -the stations is Poisson, depehdencies are 

introduced between the queues at each of the terminals. The longer the 

token resides at a station the more messages will be present at another 

An addendum to this report is a survey of local distribution techni-
ques by the author. In this survey is an exhaustive discussion of 
polling models. 
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(3.3) 

station when it receives the token. Hashida has accounted for these 

dependencies. He has shown that the average delay of a message is 

NW(1-p) 	N X m2  
2(1-Np) 	. 2 (1-Np) 

where p =*X ; and W, the walktime, is the amount of time that•is re-

quired to pass the token. 	 • 

In calculating the performance of the Buffer Insertion by 

2, 
Eux and Schlatte

6
r, a simplified derivation of their result is given here. 

This derivation is illustrated by means of the three node ring shown on 

Figure 3.5. We assume that messages destined for node 3 exclusively arrive 

at statibns 1 and 2 with rates X
1 
 and X

2 
 respectively. Further it is 

assumed that station 3 receives but does not generate traffic. In each 

of the nodes there are two buffers, one for locally generated traffic and 

one for traffic already on the line. Previous analyses of this kind of 

network were seriously flawed. For example if X
2 
= 0 then messages from 

terminal 1 suffer the same kind of delay at terminal 2 as they do at termi-

nal 1 . However arrival at terminal 1 is Poisson and can be handled as an 

M/G/1 whereas at terminal 2 messages from terminal I can be handled on the 

fly with a constant processing delay. Further,,  in previous analyses there 

was an unjustified assumption of independence between stations 1 and 2 . 

An analysis based on a repeated application of Little's 

27 
theorem leads to the correct value of average message delay. The delay 

of messages in an M/G/1 queue is 

Poisson arrival rate, general service time and a single server. 



- 

I. 

I. 

3.9 

A m2 
G(A) 	+m  

2(1-p) 
(3.4 ),  

A - 
where p = m . From Little's theorem the average number of messages 

residing in such system is  Q(A) = AG(A) . Now with respect to stations 

1 and 2, notice that the aggregate of stations 1 and 2 as well as station 1 

alone behaves like an M/G/1 queue with arrival rate A +
2 
 and A , re- 

1 	1 

spectively, since there is no lost work. 	The average message delay in 

station 2, denoted by D
2 

, is not given by the M/G/1 formula to the 

stream nature of the line traffic. However by using Little's theorem we 

have for the average number of terminals in both stations 

(A
l 
+ 1

2
) Ga

l 
+ A

2
) = 1  G(A1 ) + (X1  + A2 ) D2 

 

and 
A
l  

D
2 

= G(A
1 

+  12
) 	

Al + 12 
G(12 ) 

In node 2 we may distinguish two kinds of delay - locally generated messages 

and line traffic. If the line traffic has non-preemptive priority, the 

delay suffered by the local traffic is given by the standard formula 

(Al 
 + 12

) m
2 

_ 
D
2A 

- 	+ m 
2(1-p

1
-p

2
) (1-p

1 
 ) 

where p l 	and p 2  = 2 2  ; . 

If D
2B 

is the average delay suffered by line traffic then from Little's 

theorem we have for the average number of messages in station 2 

(3.5) 

(3.6) 

iL 
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(3.7) 

+) D =AD +AD 
2 	2 	1 2 A 	2 2B 

or 
+ X 	X 

2 	• " 1 
D
2B 

- (1 	) D - D 
A

2 	
2 	A 2A 

. 	2 

From equationà (3.4) - (3.7) the average in transit queueing delay of a 

message at station 2 can be calculated. 

' The result generalizes easily for the case of a data collec-

tion ring of N stations where all messages have the same destination. 

Consider the transient delay for a message passing through the ith station. 

The first i-1 stations act, for all intents and purposes, like a single 

M/G/1 queue. The transit delay for the ith station is given by equations 
i-1 

(3.4) - (3-7) with
1 
 replaced by .E 	and A

2 
by A. . 	Here A. is 

i=1 

the arrival rate to the ith station. 

When there is no single source or destination for traffic 

an exact analysis is not possible. 	However, Bux and Schlatter have demon- 

strated by means of simulation that a reasonable approximation works. In 

the approximation A1 in equations (3.4) - (3.7) is replaced by that por-

tion of the line traffic which passes through the station and A2 becomes 

the locally generated traffic. This is illustrated by means of two  ex- 

amples. 	Suppose that all traffic goes to an adjacent terminal. 	In this 

case A
1 

= 0 in the foregoing equations and from the foregoing equations the 

only delay.suffered by a message is that of an M/G/1 queue. The second 

exaMple is that of completely symmetric traffic where each terminal transmits 



equally to all other terminals. 	If X.  = 	; i = 1, 2, ... N , 

3.11 

N-2 , 
x 1 
	

E 	= . (N- 2 )  
N-1 	2 	° 

i=1  

N-2 
On the average a message passes through 

2 

stations. The average delay due to queueing processes is the transient 

N-2 
delay computed from equations (3.4) to (3.7) with

1 
= (----)1 and 12 = X 

2 
N-2 

multiplied by —° To this must be added the average delay upon enter-
2 

ing the line given by (3.6) and the processing delays at each of (N-2)/2 

nodes, on the average. 

A comparison of the mean delay versus system load of buffer 

insertion rings and token rings is shown on Figures 3.6 - 3.10. .In these 

curves, a message is assumed to consist of data bits and all the necessary 

address and control information required by higher level protocols. The 

length of a message is assumed to be geometrically distributed, with mean 

TMEAN = 1/(1-q) . Assuming flag bits are used by the physical layer proto-

col to delimit individual messages, the message length is augmented by the 

flag bits, the stuff bits needed to maintain the uniqueness of the flag, and 

one indicator bit necessary to distinguish between the end of an 3,ndividual 

packet and the end of the last of a station's packets. 

As mentioned above, Hashida's
25 
 analysis is used here to 

find the mean delay of a token ring or polling system where all stations have . 

 the same Poisson.arrival rate, X
L 

, and service at each station is exhaus-

tive; i.e., all packets which are present when the station is polled are 

transmitted, as are all packets which may be generated during the service. 

Contrast this situation to Kaye's work,
34 

where the buffers at each station 
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hold at most one message. Hashida's analysis assumes that all packets are 

destined to a central processor, but one may equally well assume that 

packets are either broadcast to all stations on the ring, with a packet's 

destination address determining the correct recipient, or relayed station 

by station to the proper destination. 	If, however, one assumes that 

messages are relayed, then, in lieu of modifying the analysis to account 

for processing delays at each station en route, the message length distribu-

tion should be appropriately adjusted. For the purposes of this comparison, 

assume that packets are broadcast to all stations. Given this interpreta-

tion, then, the walk-time between the polling of adjacent stations is 

equivalent to the transmission time of a control packet (the token) from 

the station currently transmitting to the next station. The walk-time is 

therefore assumed to be a constant, arbitrarily assumed equal to the trans-

mission time of 40 bits. 

There is no possible affibiguity in the mean delay analysis of 

buffer insertion rings: the protocol stipulates that packets are relayed 

station by station from source to destination. Each hop incurs a process-

ing delay, since, at the very least, a station must inspect each packet's 

destination address to determine if the packet is to be transmitted on Ito  

the next station. Possible inspection of, for example, the source address 

(to prevent packets from perpetually circling the ring) and other control 

parameters may further increase this delay. The processing delay per 

packet per station is thus assumed to be the transmission time of 40 bits. 

1 
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The analysis of buffer insertion ring systems requires 

explicit knowledge of the ring traffic patterns as defined by the routing 

probabilities p(i, j) that a packet originating from station i is 

destined to station j . To compare the delay performance of buffer in-

sertion rings to that of token passing systems, assume that traffic in the 

buffer insertion ring is symmetric; i.e., the Poisson arrival rate of 

messages to each station is 	and each packet's destination is drawn 

with equal probability from the stations on the ring, excluding the sender. 

The graphs of buffer insertion ring and token ring mean 

delays are plotted against the system load, defined as the product of the 

number of stations, the message arrival rate per station, and the mean mess-

age duration. The overhead required by the physical level protocol - the 

flag bits, stuff bits, and indicator bit - is not included. The system 

load or traffic intensity thus reflects the ratio of the rate at which valid 

data enters the system to the system's transmission rate. . 

The most remarkable feature of these curves, then is the 

fact that buffer insertion rings are able to support loads greater than 

unity with tolerable mean packet delays. This result is due t° the decen-

tralized nature of the buffer insertion ring protocol: according to the 

ring priority scheme considered here, a station transmits its own generated 

packets whenever it has no ring traffic to relay and need not wait to be 

polled. Furthermore, packets are relayed around the ring no farther than 

their destination. 	In the case of symmetric traffic, (see Figures 3.6 - 

3.9) packets travel on average only halfway around the ring and so the 
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system is able to provide a data rate effectively approaching twice the 

actual transmission rate. Such behavior is taken to the extreme in the 

case of nearest-neighbor traffic, where a station generates messages des-

tined only to its neighbor one hop away. As the two graphs of buffer 

insertion ring performance with nearest-neighbor traffic show, (see Figure 

3.10) 	, the system supports data rates approaching N times the.actual 

transmission rate, where N is the number of stations. Effectively, each 

station has a dedicated line to its neighbor. 

As a final note, one would expect that, since a processing 

delay is incurred at each station, the delay performance of a buffer inser-

tion ring relative to a token ring would degrade as the number of stations 

increase. 	That behavior is in fact not observed here since, at low system 

loads, token rings suffer an equivalent overhead as the token is passed 

around the ring to those stations with messages to transmit. At higher 

system loads, a packet's mean delay in either type of system is dominated • 

by its waiting time in a station or stations' queue(s). 	Of course, a 

buffer insertion ring in which the majority of each station's traffic is 

destined to the most relatively remote station will have a significant over-

head penalty due to processing delays, but then so will a token ring if one 

assumes that packets are not broadcast to all stations, but rather relayed 

station by station. 	In that case, token ring mean delays would be even 

greater than the results reported here. 
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4.1 

TV. 	Bus Systems  

The current alternative to the ring architecture is the 

bus shown in Figure 4.1. The essential ingredient is that the medium 

is of the broadcast type as identified by the 802 committee. Signals 

transmitted on the line are received by all terminals at times differing 

only by propagation times on the medium. 	It seems . that coaxial cable is 

the idea medium for use in the bus architecture. Stations can be bridged 

onto the line without disturbing the flow or affecting transmission. This 

does not seem to be the case for the other media. As we shall see in 

section VI in our discussion of optical fiber, this has important implica-

tions in connection with topology. 

Two protocols have been proposed for use on the bus 

architecture - Token Passing and Carrier Sense Multiple Access (CSMA) 

The Token Passing Protocol operates in very much the same fashion as in 

ring systems. A single station at a time has exclusive access to the 

medium. • At the end of its transmission a sequence indicating the end of 

transmission and the address of the next terminal are appended. The 

techniques for doing this, flags or blocks, are the same as in ring systems. 

The performance analysis of Token Passing for the bus architecture is the 

same as in the ring system. The important parameters are the mean and the 

mean square message length, the message arrival rate, the number of stations 

and the time required to pass a token from one station to another (see 

equation (3.3)). 
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As we have seen in connection with token passing in ring 

systems, Token Passing has an overhead which is proportional to the number 

of stations in the system. Furthermore for the bus architecture; the 

.startup sequence can be fairly complicated since unlike ring sistems there 

is no natural ordering among the terminals. An alternative protocol , 

which has neither of these drawbacks  (but  drawbacks of its own) is Carrier 

Sense Multiple Access with - Collision Detection CSMA/CD . 

CSMA/CD is the latest in a sequence of random access 

techniques which began with the ALOI-IA radio system.
28 
 Although random 

access techniques have made advances there is a common behavioral pattern 

which is manifest in all classes of random access systems. This can be 

illustrated by the behavior of ALOHA in its simplest form - unslotted. 

In unslotted ALOHA a message is transmitted as soon as it is received by a 

station. If the message is received by the destination on the common 

channel some form of acknowledgement is returned to the transmitting 

terminal. When two or more stations transmit messages simultaneously 

collisions will occur. A station that has been involved in a collision 

will .retransmit after a randomly selected timeout interval. Traffic on 

the line will then consist of new attempts and retransmissions. A classi-

cal analysis,.begins with the assumption that the total flow on the line 

is Poisson. Under the additional assumption that the duration of messages 

is:constant this leads to a simple.relationship between newly generated 

load at all stations p and combined load.new and retransmitted, R . 

We have 

p 	R e
-R 

(4.1) 
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As in the previous section of this report the load is the product of 

.message arrival rate and message duration. 	Equation (4.1) is plotted 

on Figure 4.1. Notice that p is the independent variable since it is 

the load that is offered to the system. We see that for very light 

loading there is a linear relationship between p and R since the 

number of retransmission is negligible. However as the offered load 

inbreases there is a point of saturation at an offered load of 18% . 	In 

fact as shown on Figure 4.1 there is instability in that there are two 

values  of total traffic for each offered load.
29-30 

At the higher values 

of total traffic transmission is dominated by retransmissions. Although 

the model presented here is quite simple and the Poisson assumption on 

line flow is a bit dubious, a large number of analyses and simulations have 

• verified the result. 

• By the introduction of slotting, i.e., only allowing 

transmission at periodically spaced points in time, it has been shown that 

this capacity is doubled. 	The performance is as shown on Figure 4.1. 

Notice that the same basic instability is present. 

Random access systems have developed along the line of 

utilizing a sensing capability at the station.
32 

Thus in Carrier Sense 

Multiple Access a station senses the line before transmission.. In the 

P-persistent implementation transmission takes place at the end of the 

current transmission with probability P . •With probability 1-P trans-

mission is delayed by T seconds which is the maximum propagation delay 

between any pair of terminals. Due to propagation delay there may be. 
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more than one terminal transmitting at the same time in which case termi-

nals are retransmitted after random timeout intervals. An optimum value 

of P for a given load can be chosen so as to balance the probability of 

retransmission with channel utilization. 	In the non-persistent version 

of CSMA, transmission is rescheduled with a random timeout interval when 

line is sensed to be busy. The detection of carrier on the line is 

treated as though there were a collision in so far as message transmission 

is concerned. Studies have shown that the optimum P-persistent and the 

non-persistent protocols have similar performance characteristics. 

The latest development of random access protocols which 

have particular application in local area networks is Carrier Sense Multiple 

Access with Collision Detection (CSMA/CD).
33 

In the CSMA protocole messages 

from stations spaced by t seconds will collide if they transmit within t 

seconds of one  another onto a clear line. 	In CSMA/CD this collision is 

detected and transmission is aborted. There may be a certain reinforce-

ment interval after a collision which assures that all stations on the line 

detect the collision. After the collision transmissions are rescheduled 

after a random timeout interval. 

A number of studies of CSMA have been carried out by means 

of analysis and simulation. From our point-of-view the difficulties with 

these have been the obtaining of a consistent model for the comparison of 

different protocols. For example in the previous section the  work of 

Hashida
25 

gives the message delay for a Token Passing in the case of the 

Poisson Arrival of arbitrary length messages to infinite capacity buffers. 



No analysis or simulation based on the same assumptions has been done 

for CSMA/CD . In order - to utilize existing analyses of the same model 

for both Token Passing and CSMA it is necessary to examine a more re-

strictive model. Accordingly we shall assume . that messages are all of 

the same constant length and that each station can hold only a single 

message at a time. We assume that the time until arrival at an empty 

buffer follows a Poisson Distribution.  Based on these assumptions, 

Kaye's
34 

analysis of Token Passing and Lam's
35 

analysis of CSMA/CD are 

appropriate to our study. The details of calculations based on these 

models were presented in the interim report to the project. A typical 

result of these calculations are shown on Figure 4.2 where average message 

delay is shown as a function of the load offered to the system for a system 

with fifty stations. We see for CSMA the same sort of pattern that was 

indicated for the ALOHA system, good performance for light loading but a 

rapid deterioration with increased . loading. 	In contrast the Token Passing 

system has slightly worse performance at light loading but a more graceful 

degradation as load increases. These results are in conformity with the 

findings of other workers.
36 

A good deal of effort was expended on developing a more 

general performance model for CSMA/CD in the sense of general message dis-

tributions, large station buffers and higher moments of delay. At this 

writing only partial success can be reported. We developed a complex but 

accurate model of the system. The difficulty is that the complexity of the 

model have led to numerical problems which have prevented a complete evalua-

tion of the model. We feel that these problems present no real obstacle and 

4.5 
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results will be soon forthcoming. A simulation program designed to model 

the system is in the final stages of development as well. The goal is 

to evaluate the accuracy of both the simple and the complex model by means 

of simulation. 	In the next.section of this report we shall discuss a 

simulation of the HDLC protocol. Our objective is to link the CSMA simula-

tion program with that of HDLC . In fact software was developed with this 

objective in mind. 

In order to evaluate the CSMA/CD protocol on the same baSis 

as Token Passing we attempted to develop a model based on the Î4/G/1 queue. 

The effort was not successful however the source of our difficulties may be 

of interest. The model assumes that messages of arbitrary distribution 

arrive at an infinite queue at a Poisson rate. We shall assume the non-

persistent discipline so that stations sensing the line to be busy reschedule 

transmission. Stations involved in a conflict also reschedule transmission 

in the same fashion. 	Once a station gains access to the line, it transmits 

all of the messages including new arrivals until its buffer is empty. Let 

the mean and the mean square value of the time required to gain access to 

2 
the line be denoted by s and s 	We shall assume for the moment that 

these quantities are known. The average delay of a message can be found 

from the standard analysis of the M/G/1 queue with a minor modification. 

The service time of the first message to gain access, i.e., the first message 

in.a busy period, is augmented by the time requiied to gain access to the 

• • line. 	The resulting delay is: 

À m
2 

- 	2 
D=  

2(1 - ;A) 
(4.2) 

1 
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• 

where m and m
2 

are respectively the mean and the mean square values 

of the messages. Notice that if s = s
2 

= 0 we  have the  delay for the 

M/G/1 queue. It is not difficult to find higher moments of delay pro-

vided that higher moments of the message length and of the access time are 

known. 

The real problem then is finding the distribution of this 

access time. Each of the stations with messages contend for exclusive 

access to a free line. Once access is gained the line is occupied for a 

time interval equal to a k-fold busy period where k is the number of 

messages that have accumulated in the station buffer since the station was 

last emptied. After the k-fold busy period, the contention begins again. 

It appears to be a safe assumption that the successful station is chosen at 

random from those contending. From all of these elements it is necessary 

to form estimates of the distribution of the moments of the access time. 

In the next phase of our work this will comprise part of our effort. 

I .  
• Tree Search Techniques  

In the introduction to this section it was pointed out that 

due to retransmissions the slotted ALOHA technique was limited to a maximum 

line capacity of 36% . Furthermore there is the more serious problem of 

instability in the channel. Recently there has been something of a break- 

through in random access protocols. By the application of a technique 

36,37 
called Probing 

	
which is essentially a tree search, the capacity of 
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the channel has been increased to 43% for the first application
38 
 and to 

over 50% of capacity for subsequent refinements.
39-40 

Moreover instabi- 

lity in the operation of the channel has been eliminated. 

In the slotted ALOHA context the probing technique grants 

access to a group of stations simultaneously. 	If any of the stations have 

messages they transmit immediately. 	If there is a conflict between two 

or more stations having messages, the initial group is split in two branches 

and access is granted to each branch in turn. This stands in contrast to 

the random retransmission technique which had been lised for conflict resolu-

tion. 	In the event of continued conflict splitting into branches continues. 

The process continues until all messages are isolated within a branch. 

Probing can be made adaptive in that the search of a group of terminals be-

gins not by granting access to the entire group but to subgroups (see below). 

The tree search technique can be used to resolve conflicts 

in CSMA . 	Stations sensing the line to be free transmit in the saine  

fashion as previously. 	If two or more terminals conflict, the conflict is 

resolved by splitting the entire group in two parts and granting access to 

each group in turn rather than by a random rescheduling of transmission. 

After a very long transmission the probability of a station having a message 

is large and if access were granted to all stations simultaneously conflict 

would almost surely ensue. In the adaptation of the tree algorithm the 

total number of stations are split into groups at the end of a long trans-

mission and each group is given access to the line in turn. 
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In order to evaluate tree search for conflict resolution 

in CSMA, calculations based on simple models were carried out. 	It Was 

assumed that for each of N stations the probability of having a message 

is. P . 	For both tree search and random retransmission we compute the 

average amount of time required to resolve all conflicts.and to have each 

message transmitted. While the conflict resolution is going on it is 

assumed that there are no new arrivals to the system. It is recognized 

that this is a great oversimplification since the conflict  résolution in 

real systems is carried out amid continual arrivals. Nevertheless we 

feel that the computation will give a valid comparison of the collision re-

solution capability of the two approaches. 

The adaptive probing technique is here used in the random 

access context where an inquiry is answered by either silence, a successful 

message transmission, or a garbled transmission resulting from a conflict 

between two or more users. Each inquiry requires one slot, the inquiries 

effecting a binary search of, for example, 2 users. 	It has been shown 

that a recursive relationship for the generating function  Q.  (z) of a ran- 

dom access probing cycle is given by 

2 	2 	2 
Q(z) = zQi _1 (z) 	(z-z ) 	Noi-1  Qj....1 (z)] 

0j-1 1j-1 	

2 	3m 
N 	N 	(2z-z -z)z  ; 

where 

(4.3) 
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2j-1  

where 

	

= 	the* number of users in a group, 

N
Oj 	

= 	Pr {no messages in 2
j 

stations} = (1-p)
2j 

	

N
lj ,

= 	Pr {one message àmông 2 j  static:ins} = 2 jp(1-p 

m' 	= 	the number of slots/messages ; 

and 

2 	2 
(1-p) z + 2p(1-p)z

m+1 
t p z

2nt3 
Q
1
(z) = 

where 

P 	= 	Pr {a station has a . message }  . 

From the above it is a simple matter to 'find the mean and 

mean-square of the time needed to transmit all messages: 

E[cycle.] 	Q!(1) = 1 + 2Q! (1) + 
N0j-1 

DI 	+
1j-1 + 1] 3 

with 

E[cycle
j1

] = Q'
1
(1) .  = 1 + 2p

2 
+ 2mp; 

= 

The probing technique is adaptive in the sense that the 

initial 2
n 

users may be divided into  2
"-k 

groups of 2
k 

, each group 

to be .probed separately. The number of groups is chosen so as to minimize 

the duration of a cycle. The mean 'total cycle time is thus 2
n-k 

 

To minimize the mean cycle time, one chooses k = max{0, 1, 	, 	n} 

(4.4) 

such that 
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(4.5) N + N 	+ 3N 	N. 	1 > 0 . 
03 	OD-1 	03-1 1D-1 

• 	* 
Note that k = 0 implies, as a - result of the relatively high probability 

that each station has a message, that conventional polling, sequentially 

querying each user, will minimize the mean cycle time. Adaptive probing 

here reverts to polling whenever the probability p that a user'has a 

' message exceeds 1/II = .707 . 

The foregoing analysis assumes that a single inquiry is 

needed to probe the system irrespective of the number of messages in the 

system. Thus even if the system is empty the duration of a cycle is one 

inquiry time. Also in the case of a single message in the system a single 

inquiry time is allocated. Now suppose we take the point-of-yiew that the 

tree search begins only after there has been a conflict. The average 

cycle time is reduced by the probability of there being zero or two messages 

in the system. In order to be complete we shall show the results of both 

computations. 

In contrast to the systematic procedure of adaptive probing, 

the decentralized non-deterministic scheme of slotted non-persistent CSMA 

operates in the following fashion: 

at the beginning of each time slot, stations with 

messages ready to transmit sense the channel and 

transmit if it is sensed idle ; 

(1) 



(2) if the channel is sensed busy or if a transmission 

conflict has occurred, then the user, now backlogged, 

schedules retransmission according to the retrans-

mission delay distribution. 

Assume here that the retransmission delay is geometrically distributed with 

mean 1/v slots; i.e., each backlogged user senses the channel with prob-

ability v . Messages are of fixed length m slots, where one slot, 

being the length of a probing inquiry, is assumed to be at least as long as 

the maximum propagation delay T between stations. In accordance with 

the probing analysis, assume that the message length m incorporates T 

and thus in itself represents the full amount of time that the channel is 

sensed busy after a transmission. No collision detect and abort capability 

is assumed - - conflict between two or more users lasts one message Jength - - 

yet the acknowledgement indicating a foiled transmission is assumed to arrive 

in a negligible amount of time. 	If only one station has a message, then 

its transmission is immediate and successful. 	If k > 1 stations have a 

message, then all k transmit and collide in the first m slots. All k 

stations are then backlogged and must resolve their conflict through the 

random retransmission policy. 

Let y. be the probability of a sucdessful message trans-

mission given that i stations are backlogged. From the above description, 

must equal the probability that only one of the i iDacklogged stations Y1  

senses the channel: 	 • 

'ri = i v(1-v)
i-1 

.4.12 

(4.6) 
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The resolution process is represented by the accompanying transition 

diagram. 

I. 

I. 

The time spent in each state of the transition diagram is geometrically 

distributed and statistically independent of the time spent in other states; 

the probability of (n-1) collisions, each of length m slots, finally 

followed by a successful transmission, given that there are i backlogged 

stations,is. yi (1-y)
n-1 

. 	Thus the generating - function of the nuMber of 
, 

slots spent in state i is 

Co 
 n-1 
z
nm 

- 
1 - (1-yi )zm  

The generating function G
k

(z) of the number of slots re-

quired until all k packets are transmitted without collision is simply 

the product of the above generating functions: 

k
.

z 	Yi  
km  

G
k
(z) = H

1  	- z 	H 	 (4.8) 

j=11---(1--Yi )zm j=1-1-(1-Y i)zm 

From G (z) , one can obtain E[Tik] = G'(1) , the mean number of slots 

required given k stations are backlogged: 

n-1 

ci 



E IT I k] 	kari + xn. î -2-- j k 	2 . 
Y• 

j=1 	1  
I. (4.9) •  

je 

N k 	N-k 
11k  = 

 (4,11) 

1 	' V. 
Var(T) = (1 -

0
)T1-

2 
m
2 
 + 	Var(Tik)u

k 
(4,13) 
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Similarly, E[Tik] 	EfTlk] = G"(1) is given by the expression 

	

,.) k 1-y. 	k ly.(1-yjm(m-1)+2m
2
(1-y.) 2 }. II 21 	 .1  EfT Ik] - EfTik] = km(km-1) + 2km`î--:1-' -1-î 	11  

	

Y. 	2 
• Yi j=1 	1 	j=1 

II 

. 	k 	(1-y.

1

) 	k 	(1-y.) 	• 
+ 

• j 	
Y. 

   m2 
	

; 	k 
.-e

2 • . 	(4.10) II=1 	1  

With p equal to the probability that each station has a message, the 

probability that k of N stations have a message is given by 

From the discussion of the CSMA scheme, it is clear that the mean cycle 

time EfT] (in slots) required to clear the system is 

E[T] =  Il 	no]m + 	EfTlk]uk  f 	 (4.12) 

KL 

and the variance of the cycle time is given by 

K=L 

The mean and variance of the cycle time depend on the value 

, the probability that a backlogged user senses the channel. Just 



for such a value V is not 

hinges on the value of p 

probing, then, v was chosen 

solution of .005 . 
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as the adaptive probing algorithm takes advantage of knowledge of p , 

the probability that a station initially has a message, to minimize the 

mean probing cycle time, so too can the mean CSMA cycle time be minimized 

by judicious selection of the parameter v While an analytic expression 

* . 
readily obtained, it is easy to see that v 

To make the desired comparison with adaptive 

as that value minimizing E[T] wïthin a re- 

Discussion  

The results obtained from this comparison of random retrans-

mission and adaptive probing are exhibited in Figures 4.3 - 4.5 of the mean 

and variance of the number of slots required to clear the N terminals 

versus p , the probability each of the N terminals having a message. 

A feature common to all the graphs is the superiority of adaptive probing 

over CSMA for large values of p . This result is to be expected since 

the mean'time to clear for adaptive probing is always less than or equal to 

that required by conventional polling. When all stations are likely to have 

messages, however, the contention scheme of random retransmission compara-

tively wastes time as stations compete for exclusive use of the channel. 

On the other hand, when the system is lightly loaded, i.e., 

for low levels of p , random retransmission often exhibits an advantage 

over adaptive probing due to the fact that it is very likely that only a 

single station has a message and there is no competition for the channel. 
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The adaptive firobing algorithm may waste inquiries on groups of stations 

that have no messages at all. This characteristic is most vivid in the 

set of curves for messages of one slot length: adaptive probing requires 

at least one inquiry to determine whether there are any messages in the 

system at . all, while stations without messages do not do anything under the 

random retransmission protocol. The advantage of random retransmission, 

however, diminishes for fixed values of p as the number of stations in-

creases, since then the probability of more than one message in the system, 

and hence the need for contention resolution, increases. Similarly, 

CSMA's performance relative to adaptive probing's deteriorates as the mess-

age length increases - - adaptive probing's one slot inquiry overhead then 

becomes less significant with respect to the total delay. 

Now if we take the point-of-view of comparing probing and 

random retransmission only when true contention is taking place the advantage 

of random retransmission disappears. We assume that the contention resolu-

tion interval begins when two or more terminals have collided. In this case, 

as shown on the curves, there is very little difference between probing and 

CSMA at light loading while probing retains its advantage at heavy loading. 

It should be noted that this comparison has cast the CSMA 

protocol in the best possible light in the sense that the mean retransmission 

delay 1/v has been adjusted for each value of p, N, and message length m 

to minimize the mean time required to successfully transmit all the messages 

initially present. Typically, CSMA protocols such as that implemented 

in Ethernet establish an initial value of 1/v and then progressively in- 
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crease its value in the event of a subsequent collision. Of course, 

the actual CSMA protocol is such that the initial condition assumed here, 

the presence of messages being at each of N terminals with probability 

is somewhat contrived since, as mentioned previously, CSMA is an 

ongoing process in which such a situation is not routine. A more 

thorough evaluation of adaptive probing in CSMA would consider their per-

formances in terms of, say, message delay as a function of system load 

where one accounts for successive arrivals and the possibility of a 

.message arriving during a fraction of a probing cycle. The point here, 

however, has been to compare the relative efficiencies of random retrans-

mission and adaptive tree search as contention resolution processes. 

Propinquity  

In the foregoing comparison - of probing and random retrans-

mission it is assumed that the time required to make an inquiry, i.e., 

grant access to a group .of terminals is the full propagation delay in the 

system since this.is presumed to be the time that is required to decide 

whether there is a conflict between two or more stations. Now the essence 

of the tree search technique is to split groups of stations. It is not 

unreasonable to compose subgroups of stations according to propinquity, i.e., 

terminals in the same area in the same subgroup. Thus the time required 

to decide whether a conflict has occurred within a subgroup is not the pro-

pagation delay for the whole system and the time required to resolve con-

flicts is reduced. The number of inquiries may be the same but the duration 
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of inquiries is reduced in proportion to the size of subgroups. This 

effect can be illustrated by a straightforward example. We assume that 

stations are equally spaced along a bus. This is something of a worst 

case since it is likely that in actual systems stations will be clustered. 

As in previous cases we assume that messages arrive at a Poisson rate. 

Again we use as the measure of performance the time required to transmit 

all messages. An expression for the probability generating function of 

this cycle time similar to that in equation (4.3) has been derived. From 

• 	j this expression the average time required to probe 2 stàtions can be 

found. Faced with 2
N 

terminals each of which have a message with 

probability P this calculation for average cycle time çan be used to  seg-

ment the group in an optimum fashion. This is exactly the same procedure 

as in the previous case the only difference being that the duration of an 

inquiry is proportional to the size of the group of stations being probed. 

The results of illustrative calculations are shown on Figure 4.6 for 32 

stations. The topmost curve shows the duration of a cycle when the full 

roundtrip delay is the duration of each inquiry. In computing this curve . 

the optimum starting groupings as given in equation (4.5) is used. 	In 

contrast by varying the inquiry time according to the size of groups one 

obtains the lower curve. As is evident there is considerable reduction in 

the cycle time. 

The idea of taking advantage of propinquity is not appro-

priate to random retransmission but only to Probing or Tree search. The 

results of this'and the previous section indicate that tree search offers 

potential advéntages over random retransmission as a means of resolving con- 
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flicts among stations transmitting messages simultaneously. In order to 

fully evaluate the relative performance of the two techniques a full scale 

simulation would be necessary, since a complete analytical evaluation is 

not analytically tractable. 

Assuming, as seems likely at this point, tree search yields 

superior performance then the relative complexity of the two techniques 

should be assessed. • It seems that the tree search requires more complex 

logic at the stations. However, in the era of VLSI, more complex logic 

is no obstacle. 
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High Level Data Link Control (HDLC)  

In section II of this report the Open Systems Intercon-

nection concept was discussed. The key here is  •the layering of protocols 

with carefully defined interfaces. Of immediate interest is the opera-

tion of the sublayers within layer 2 the Link layer. 	In this layer we 

have a flow control protocol overlaid on the line access protocols such as 

CSMA and Token Passing, à key issue in the design of Local Area Networks the 

interaction of the two protocols within the Link Layer. The effect of the 

variability of the different random access techniques is of particular 

interest. The analytical models in the literature take no account of this 

variability due to obstacles involving mathematical tractability.
41,42 

At this juncture it seems that simulation is the best course of action. 

Insight will be developed on the operation of the protocol and it is hoped 

that mathematical models will emerge. As mentioned in the previous section 

of this report simulation will be part of the study of CSMA 	So that we 

shall eventually have a complete system model the programs for HDLC and 

CSMA are designed to be compatible with one another. 

Before describing simulator details and results obtained 

from the simulation, essential features of HDLC are first presented. As 

well as being part of the link level protocol proposed by ISO, CCITT Recom-

mendation X 2.5 Layer 2 is one of the permissible options of HDLC. 	It is 

currently the most used protocol for computer networks and distributed pro-

cessing. The main objàctive of HDLC is to help provide a communication 

mechanism for a user to send any number and any pattern of bits in a fault- 

5.1 



tolerant manner without being dependent on the topology of the network. 

Moreover the efficiency of the protocol is not to.be affected by such 

features of transmission links as full or half duplex mode, propagation 

delays and transmission rates. 

A frame (that is, a packet) in HDLC usually consists of 3. • 

header bytes, zero and more information bytes and 3 trailer bytes (see 

Ficjure 5.13). 	• 

Header Bytes: 

Byte 1: The flag, 01111110, which indicates 

the start of a frame. 

Byte 2: An 8-bit address capable of addressing 

up to 256 units on a network. 

Byte 3: A control byte which is described later. 

Information Bytes: 

Any number including zero of bytes can be carried 

between the . header and the trailer. ' 

Trailer Bytes: 

Bytes 1 and 2: Error detection code. 

Byte 3: The flag, 01111110, which indicates 

. the end of the frame. 

To avoid the mixup between the flag.  byte and an identical 

information byte, a scheme called bit stuffing is used in which the 0 bit 

is inserted after every five consecutive 1 bits in the data. The receiv-

ing unit deletes any 0 bit following five consecutive 1 bits in order to 

retrieve the original data. 

5.2 



• The frame makeup as described above is flexible in that 

the address byte, the control byte and the 2 error detection bytes can 

be extended to be more than four bytes. These extensions however are 

not considered the simulation study. 

The control byte specifies one of the three frame  types  

possible in HDLC protocol (see Figure 5.13). 

Case 1: 	If the first bit of the control byte is 0 , then the correspond- 

ing frame is referred to as an I-frame (information transfer frame). An 

I-frame is used to send the data. The Ns field of 3 bits in the control 

byte refers to the sequence number (between 0 and 7) of the I-frame being 

sent. 	It implies that no more than 8 different frames can be simultaneously 

in-transit from one unit to any other units. This is also referred as the 

window of a transmitting unit. One advantage of this window is that up to 

8 frames may be sent before an acknowledgement is received. In case an 

acknowledgement or a reply of some sort is needed for data of less than 8 

frames in size, the P/F bit is set to 1 in the last frame. 

5.3 
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The acknowledgement for frames received at one unit can be 

sent to the transmitting unit in one of the .two ways. One way is to use 

an S-frame described in the sequel. The other is to piggyback the acknow- 

. ledgement information on an I-frame. The Nr field of 3 bits is used for 

this purpose. More specifically, if say unit 1 is sending an I-frame to 

unit 2, then the Nr value informs unit 2 that unit 1 has received all the 

frames numbered 0 ., 1, 2, ... , Nr-1, from unit 2, and is now ready to re-: 

ceive the I-frame with sequence number Nr . 

Case 2: 	If the first two bits of the control byte refer to the 10 pattern, 

the corresponding frame is referred to as an S-frame (supervisory frame). 

No information bytes are supplied in this frame as its main function is to 

provide such supervisory, control functions as acknowledgements, requesting 

transmissions and requesting a temporary suspension of transmission. The 

next two bits (bits 3 and 4) of the control byte indicate the type of the 

frame. 

Case 2a; 	00: RR (receive ready) 

This type of S-frame is sent by say unit 1 to unit 2 to 

acknowledge that it has received frames numbered up to Nr-1 correctly from 

unit. 2..  It can also be used by a primary unit (such as a computer) to 

poil a secondary unit (such as.a terminal). 

Case 2b: 	01; NW (reject) 

This type of S-frame is sent to request transmission or 

retransmission of I-frames numbered Nr and higher. 



5.5 

Case 2c: 	10: RNR (receive not ready) 

Whenever a unit is temporarily busy and cannot accept any 

I-frames, it sends out an RNR S-frame. The end of a busy condition may 

be signalled with any other valid S-frame. 

Caàe 2d: 	11: SREJ (selective reject) 

This type of S-f rame  is sent to request.transmission or 

retransmission of a single 1-frame numbered Nr 

Case 3: 	If the first two bits of the control byte are 11, then the cor- 

responding frame is referred to as a U-frame (unnumbered frame). It is 

used to provide additional link control functions which are not directly 

relevant to our discussions here. 

For control purposes it is often convenient to establish a 

hierarchy among various units on the same physical link. For instance, a 

unit is termed primary if it assumes responsibility for the organization 

of data flow and for  error recovery operation on the link. A non-primary 

or secondary unit i is then under the control of a primary unit. The 

most general form of hierarchy is achieved when a unit assumes the role of 

both a primary and a secondary; i.e., it is a combined unit.  Ail  units 

then have the same set of protocols and any unit can  pend and receive in-

formation on its own initiative. 	Such a mode of operation is called 

asynchronous balanced  mode  Aem or simply as balanced -  mode. 
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The efficiency of an HDLC protocol depends on the number 

of units in a network, message traffic at each unit, error and retrans-

mission probability and on the physical level protocols, CSMA/CD or 

Token Passing, lised in the . link. 	The design of the HDLC simulator 

described below is motivated by the desire to study the interrelationship 

among these various factors. 

FIDLC Simulator  

The simulator named sim is written in PASCAL to fully ex-

ploit thé advantages of the . data structure flexibility of PASCAL over • 

FORTRAN. The main emphasis of sim is to be upward compatible.with future 

simulations of higher level protocols in local area networks. Thus in 

future, sim could.become a component of a complete local area network simu-

lator. On its own level which is the link level and physical level, sim 

iS being designed to simulate variables such as number of terminals, • 

different message traffic at each terminal, various error distributions, 

CSMA/CD and Token Passing protocols, and then determine their effect on 

such parameters as round trip delay, window size, send and receive buffer 

size, and number of S-frames in transit. 

..Sim . is event-driven and is constantly executing one of the 

following events: 

A message arrival at any terminal. 

2. 	A frame arrival at any terminal. 
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3. 	Transmission of an S-frame from a terminal. 

•4. 	Transmission of an I-frame from a terminal; 

• 

	

.5. 	Time out. 

Messages arrive at each terminal with . a Poisson arrival rate, and are con- 

verted into I-frames and stored into a transmission buffer.. Whenever the 

window is open and no acknowledgement is due, the I-frames from the trans- 

mission buffer are sent out, that is they are put in an in-transit queue. 

The error distribution and physical level protocol is applied to frames in 

this queue, and when the transmission is possible, frames are next put into 

the receive buffer of t the destination terminal. 	If no errors are de- 

tected, an acknowledgement of each frame is sent either using the piggy- 

backing or a separate S-frame. 	In case of an error, the.transmitting 

terminal waits until a certain time out period and if no acknowledgement 

is received in that time, the frames are transmitted again. Figures 5.1 

to 5.9 contain the flow charts of this procedure. . The complete program 

for sim appears in Appendix A . Every event as it occurs is logged in sim 

and various graphs are plotted using this logged data. The next section 

describes some such graphs and results obtained from them. 

In this early .stage of software development only two 

stations communicating with one another are simulated. However we have 

in mind systems where a number of stations share the same.line through 

CSMA or through Token 1') assing. We eedel this sharing through the prob-

ability distribution of the access delay of a message. For CSMA we take 

the message delay to be a geometricalaS7 distributed sum of geometrically 
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distributed random variables. This roughly models the processes of 

sensing the line and randomly rescheduling transmission. As the 

analysis of the CSMA protocol progresses (see section IV), more refined 

models of message access delay can be used. For Token Passing the 

probability,distribution of access delay was modeled as a constant time 

followed by a geometrically distributed random variable. The constant 

term 'models the overhead required to pass control from one station.to 

another and the geometrically distributed random variable models message 

transmission. Again as the work progresses this distribution can be re- 

• fined. 

Typical results of simulation are shown on Figure 5.10  for  

CSMA and on Figure 5.11 for Token Passing. In these curves we show average 

delay as a function of load with window size as a parameter. The vertical 

line through points indicates the variability between stations. It is 

assumed in the simulation that the transit time for the S-frame is one-fifth 

that of an information frame. The results show the effect of varying the 

window size. The maximum window size shown is seven since increasing be-

yond this has no effect. 	In fact the curve for W = 7 is the same as that 

for the M/G/1 queue for both CSMA and Token Passing. As the window size 

is decreased there is a significant deterioration of performance. There 

is an interesting comparison between Figures 5.10 and 5.11. We see that the 

model for Token Passing (Figure 5.11) shows much less deterioration of per-

formance as the window size is decreased. In both cases the mean access 

time is the same. However variance of the access time for the CSMA model 

(Figure 5.10) is larger. 	Thus it would seem that a less variable access 

scheme would prove superior. 
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On Figure 5.12 we show the average number of S-frames 

transmitted as a function of load. The decrease in this average with 

increasing load is entirely expected since as load increases more in-

formation frames are available for piggybacking acknowledgements. What 

was unexpected was that the decrease was very nearly linear. 
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VI. 	Optical Fiber  

The existing Local Area Network techniques have been 

developed in connection with metallic media, either twisted pair or 

coaxial cable. 	The Token Passing technique, which originated . with 

twisted pairs in the ring configuration is easily adapted to coaxial 

cable. The CSMA technique which had its origins in the ALOHA radio 

systems is also well suited to coaxial cable. With the rapid develop-

ment of optical fiber technology it is natural to study the kinds of 

access techniques that are appropriate. 

• 
Optical fiber

43,44 
possesses a number of features that 

make it attractive as a transmission medium. 	It has low transmission 

loss:,  a realizable standard is 4db per kilometer. 	It appears that for 

single mode operation losses of ldb per kilometer are attainable. Thus 

distances in the order of kilometers are supportable for point-to-point 

operation. A second large advantage of optical fiber is high bandwidth. 

Data rates up to 20 M bps seem to be easily attainable. Recently we have 

learned of a fully operational experimental system which supports a 50 M bps 

data stream using LED as a source. Other properties which are of value 

in certain applications are immunity to electromagnetic interference. Due 

to fiber's insulating property there is no need for electrical insulation 

as a safety precaution. Finally optieal fibers are small. A bundle of 

fibers with enormous capacity can be placed in a relatively small space. 

The salient disadvantage of fiber for LAN's is that it 

is inherently a point-to-point medium. In order for fiber.to be a multiple 
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access medium such as coaxial cable or radio, low loss taps on the line 

would be required. However with current technology the loss of a 

passive T is from 3 to 6db . As we shall see this loss severely 

limits the number of allowable access points. Also in order to bring a 

new station on the system it is necessary to interrupt service. 	In ,a  

sense the nonconductivity of fiber is something of a disadvantage from 

the point-of-view of reliability. 	It is desirable, as in ordinary 

telephone service, to power stations through the communications medium. 

In order to do this in fiber systems a separate copper wire should parallel 

the optical fiber. 

• The fact that only a limited number of access points can 

 be put on the fiber is illustrated by the following example. As specified 

by the 802 standard the average power should be greater than 10 pW(-20dbm). 

In order for reception to be reliable, i.e., 10
-10 
 bit error rate; the 

average received power must be 0.1 pW(-40dbm). 	Thus with six passive taps 

almost all of the margin is used up in the best case. 	There is almost 

nothing left for fiber attenuation and attenuation due to splicing and coup-

ling. Taps with attenuation in the range .1 - .2db have been discussed 

• as a future possibility. This together with parallel development of the 

other components would change the current assessment. 

Apart from the attenuation of passive taps there is • 

another significant disadvantage. As we have sen  there is considerable 

improvement in random access•techniques if the line can be continuously 

monitored for collisions. With the present technology this continuous 
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monitoring during transmission is not possible since there is large re- 

flected energy on transmission. 

In applying CSMA to fiber systems the roundtrip delay 

in the system comes'into play. Suppose that the roundtrip delay is due 

to 2km of cable. 	If the light velocity is .8 of the free space velo- 

city the roundtrip delay is greater than 8 psec. This is. the minimum 

time required to transmit a message since it is necessary to see if a 

collision has occurred. Note at a rate of 50 M bps a 400 bit message can 

be transmitted in 8 p seconds. Any shorter length messages are trans-

mitted inefficiently. 

From these considerations it seems that fiber systems 

with a bus topology and the CSMA access protocol are not feasible with 

current technology. A ring topology with digital demultiplexing at each 

of the nodes'is certainly feasible since it is really a series of point-

to-point connections. The idea of an optical fiber ring has been 

implemented in a system which is aptly called HALO . 

The topology which seems to be.  of greatest current in-

terest is the star connection. 	With the star topology 

the number of connections and regeneration points is minimized. • Re-

liability is improved since only the center of the star may need a guarded 

power supply for system reliability. If the terminals at the point of the 

star fail presumably ystem operation would be unimpaired. This stands in 

direct contrast to the ring topology since failure of ring nodes may bring 
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the entire system down. Reliability vay be further improved by the use 

of a passive component at the center of the star. Such a component, for 

example, may be a reflector. 

In summation,it appears that the role of optical fiber in 

LAN is confined to high speed, limited access applications. This ma  y be 

ideal for connecting LAN's to one another, to high speed processors and 

to the public switched network.  In the interim report we spoke of such 

configurations as Networks of Local Area Networks. It seems that for 

connecting a large number of low- Speed users to a Common line a bus con- 

figuration with some form of CSMA protocol may be optimum. Twà suggested 

configurations are shown on Figures 6.1 and 6.2, where respectively the 

ring and star topologies are used to tie together LAN's . Obviously a 

keY element in either configuration is the black box interfacing the LAN 

and the inner star or ring. As discussed in the interim report it seems 

that it would be appropriate to place higher level protocolS such as HDLC 

at this point. 
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: VII. 	SUmMary'and'Future'Diréctions  

In this last section of the report we shall summarize 

the work and we'shall chart the direction of our effort in the coming 

.year. 	Section III of the report dealt with ring systems. 	In this 

section we considered alternatives to Token Passing. 	In particular we 

compared the mean delay of Token Passing with the buffer insertion techni-

que. The results show that buffer insertion shows significant improvement 

in performance. The analysis that is available is limited to average 

delay. During the coming period we shall attempt to find higher moments 

and the probability distribution of delay for buffer insertion.. 

In section rv we considered line accessing techniques 

which are appropriate to bus networks. We began with a summary of a 

previous study comparing CSMA with Token Passing. The difficulty is that 

the model is rather limited. Substantial effort has been expended'in find-

ing more general models for CSMA. We expect this effort to bear fruit 

shortly. We have also done a good deal of work on a simulation program 

which Will be yielding results very soon. 	In sectibn IV we considered the 

application of a tree search technique for conflict resolution in CSMA sys-

tems. Comparisons with random retransmission systems show the technique 

to be promising particularly if distance between stations are taken into 

account. In the coming period this work will be continued by means of 

simulation and analytical techniques. The objective will be a full evalua-

tion of alternatives to random retransmission. 



The HDLC protocol is the subject of section V of the 

report. A simulation program has been written to evaluate the perform-

ance of HDLC in Local Area Networks. Results have been obtained on 

window size for models of CSMA and Token Passing systems. The program 

deals with only two terminals. In the coming period the simulation 

program will, be extended. . A basic thrust here is to form a link with 

simulation programs modeling line access techniques. 

In section VI of the report is a qualitative discussion 

of the role optical fiber in Local Area Networks is assessed. The salient 

result here is that the star configuration may be the most appropriate. 

We shall continue work in this area in two directions. An analysis of 

the behavior of star systems and comparison with the ring configuration 

would be of interest. Secondly we shall attempt to build, on a modest 

scale, a laboratory model of' an optical fiber data communications system.: 

7.2 
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< computer network simulation Using hdlc protocol > 
< for abstract see P.Pownall or T.Venteer 

1 <  - 	 • 

buf 
t = t 2; < no. or terMinals 

A.: send buffer size 
<-1enoth of arr?del/err des ›.• 

buffsiz = 8; 
h = 99; 

< info or s-frame 
< queue type  
< pointers 
< 4 event types 

< pointer 
< the reCord fields : 
< to address 

kind of frame > 
< send and rec seq nos > 
• delay, error times > 

< these are the time  fields  
• next pointer -field 

*A-1 APPENDIX 	A  

program network (input,output,stats,sumdat,busm); 

• .const 	 « 

I
**4:44!********» 11:************************* ) 
 > 

< The following are the system parameters which deterMine 	> . 
< the performance of the sys•tiril.  At the moment, we have 'a 	> 

I 	

• 
. < two terminal .sustem. Each of th% terminals has a send . > * 
.< buffer and a receive buffer. The eend buffer is controlled> 
'< usihg  the pointers  sendbuff,. eendeeq, and nextavail .. • >

I  

< The two terminals.have independent arrivals, and will.  -... : 
<. piggyback acknowledgements using the nr field on the info > , 
< frames they send. If their send buffer is empty; an 	3- 
-C  s-frame is Constructed and transmitted. 	% : 

I
< 	 -, . 	• 	.. 
-1-: ****4.*****************************************e********** 3.. 

I < 	 p- 
•< The followino describes the types of variables that 'are 	".›. 

•• < used in the program. The main data structure is: . 
< 
< record : This is the standard record (analogoUs to a ' 	

> 

I 
> 
> 

. < 	frame )  which is paesed through the simulation  > 
< 

I 	
sustem. The fields are described below. - 	> 

< 

	

. 	> 
< ************4c**************************************** > 

• II tupe* • 
frametupe = ( sframe,iframe )3 
queue = arraw El..t:O..n3 of real; 
lists.= arrau E 1,.t3 of integer; 
eventupe = ( arretra,red:tim ›; 
string = packed array cl..111 of char; 
link = tobject; 
objedt = record 	. . 

toaddr : integer; 
frame : frametype; 
ns,nr•: integer; 

' delay:error : 'real; 
• arrivtim,sendtim,transtim, 

recevtim,fintim,acktim : real; 
next : link; 

end; •

card = arrauCl..t,l..9] of real) 
cardfile = file of card; 

< 

I 	

. , 
.< The actual variable"namee are .outlined in this section. 
< 

1 
< summary file line 
< summary file type 

< ************************************************************** > 

I .  



loop counters . 
the output  stats 
the dumpout file .  
counts for dumpout 	-> 
arrival,deLay meane 
error probability 	• 
proceesing and timout > 

< random seed, window 

-C, the  current time 
< the current-terminal, > 
< the queues 

< pointers to queues 
.t] of link; 

ptre for send buffer 

"e- 

3- 
> 

D- 

4". 

< ********** ******************* ***************** ***** ************ > 

var 
i,J,mainloop 	integer- 
stat  

• buey  
lastct,h1count 	integer; • 
alambdaedlambda : real; 

elambda : real; 

tiproc,tsproc,tout,framenum : real; 

runtim : real; 

seed,sizwin : integer; 
clocktim : réal; 

term : integer; 

arrivq,proq,errorq : queue; 
nextarr,nextpro,nexterr, 	: lists; 
sendbuff,nexteend,bottom : array Cl. 

bufferfull : array [ l..t] of boolean; < buffer full flag' 
transbuferecbuff . : arrau[1..t] of link;< pointers to buffers 
recno,sendseq : lists; 	 < • rec 8: send #s, 
timout 	arrau 	 of real; 	 < • timout timer 

^1.  

event : eventupe; 
intranstop : link; 

todays_date,.current-time : string; 
isum : arrauCl..t,l..81 of real; 

seum 	arrauCI..t,l..4] of real; 
scountecount : arrayEl..t] of •eal; 
buff : card; 

sumdat 	cardfile; 
optleopt2,opt3,opt4 : integer; 

roptl,ropt2,increments,load : real; 

freelist : link; 

current event type • > 
Pointer to in-:trans q > 

stats running sums 	D- 
s-frame sums 	 • > 

frame counts > 
summary file buffer 

the summarY file 
simulation options -> 

free record list ptr > 

function mth$random ( seed : integer) : real; extern; 
* 	* 	* el< * ****** ***** *** 

• this is the system random number generator > 
< yields a uniform distribution in CO31› • >, 
< ****************************************** > 

procedure histogram< term : integer ; .event : eventype ›; 
<**********************************************************************> 

< This procedure prints.a histogram! 

<**********************************************************************> 

var 

i,j,timelesslecount : integer; 

traverse : link; 

begin 

timelessl := round(clocktim - 1.0); 
if <timelessl  K  laetct) then timeless1:=1astct; 
for i := lastct to'timeleesl 
begin ' 

if (hlcount > 49) then 

begin 

dd 



1 

I .  

I. 

page(busu); 	• 
hlcount := 0; 
writeln<busu,'TERMINAL 1'25,'TERMINAL  2':40); 	• 
writeln<busu,'  	'.25e' 	 e:40); 
writeln (busu); 
writeln<busu, - CLOCKTIM':9,'SENDBUFF':10,'TRANSBUFFe:lle 

'INTRANSIT QUEUE':17,'TRANSBUFFe: . 11SENDBUFF':10 ) ; 
for j := 1 to 70 do write<busuj'-'); 
Writeln(busy) 

end; 	 • 
write(buswi:7e .'1':5); 
traverse := sendbuff[1]; 
count := 1; 
while <traverse <> nil) and <count < 12 > do 
begin 

if (traverse .t.sendtim < clocktim) and <traversetsendtim > -1) 
then 

if <traverse/.ns = -1) 
then write<busup'S') 
else write(busyetraverset.ns:1) 

else write(busu,t*'); 
traverse := traverset. next; • 

• count := count 4. 1 	 • 
.ene: 
for j:= count to  12 dowrite<busve"); 
if transbufElJ = nil 
then Write(busy,'1':12) 	 • 
else . if <transbufElJt..ns  

then write(busl ep'5','I':11) 
else Write<busy,transbufrirt . . nsl,'I':11); 

traverse 	in-Wansi:bp; 
• our t : 
while (traverse <> nil) and (count < 17) do 	• 
bedin 
• if (traverse .r.toaddr = 1) 

then write(busw'1') 
else write<busw,''2'); 
traverse =traverset.next; 
coUnt := count 4. 1 

end; 
forj := count to 17 do write<busw' 

transbufC2] = nil 
then write(bUsup'1':8) 
else if (transbuf[2]t.ns = -1) 	 • 

then write(busy,'S',:7) 
else write<busy,transbufE21t.ns:1,'I':7); 	 • 

traverse := sendbuff.C23; 
count := 1; 	• 	 • 
while .(traverse<>nil) and ( count < 12) do 
bedin 

if (traversel. .sendtim < clocktim) and <traverset.sendtim .  > -1) 
. then 

if'  <traversetns 
. then write<busy,'S'). 

• eise write(bUsuJtravereet.ne:1) 
else write ( busu,e*e); 
traverse  := traverzet. next; 	 • 
coun.t : = count 	1 

end; 
writeln(busy); 

• I 
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hlcount := hlcount +. 
end' 

end; 

procedure create (var ptr 	link); 

4: This procedure keeps a list of discarded records and gives them 
• out when needed_ 

begin 	 • 
if freelist = nil 	 • 

.then new(ptr) 
else 

begin 
ptr := freelist; 
freelist := freeliztt.next 

end 
end; 

procedure release <ptr : link>) 

4: This procedure places a discarded record back into *he list,of 
-C. free records. 	 •> 
{*******************************************************************) 
begin 

if (ptr <> nil> then 
begin 

ptrl'.next := freelist; 
freelist := ptr 

end 
end; 

procedure emptybuffer (var rec 	link); 

-C* This procedure is used at the end of a run of a load to release the 	4:> 
• memoru which happened to be in ,use when time ran out. 

var 
teeinp : link; 

begin 
while (rec <> nil).do 
begin 

temp : =. rec; - 
rec. := recls.next; 
release(temp) 

end 
end; 

procedure fillarr ( term : integer ›; 

4: this procedure uses a Poisson interarrival time distribution to 
-C refill the arrival queue. The formula used for the seed value is 
-C arbitram Note that absolute times are calculated from the inter ›. 



var 	• 
i : integer; 
lasttime,randnum : real; 

begin . 

I 	

laettime 	 e := arriviEtermn]; 	 < last value offset 
if.  ( term=2 ) and ( opt4 = 0 ) then 	. < 	 > for single server, 	

> 

for i := 0 to n do arrivqtterm,i]:=runtim 	< no arrivals for 2 	> 
. 	elee 

.1 	begin 
tor i .- 0 to n do 

•
- 

• randnum := mthSrandom(seed); 

	

	< get. random no. 	> 
arrivciEterm,i) := lasttime 4- abs( ln( 1-randnum ) ) * alambda ; 

< absolute arr time 	> 
lasttime := arrivq[term,i3 	' < advance last value 	> 

end 

I end; < fillarr > 	 . 

I  procedure fillpro ( term : integer ); • 4.: ***************************************************  D-  
-C This pro':  fills the tiproc queue according t6 the 	> 
< distribution  specified bu option 1 (opt1). 	> 

•
< optl = 0 	: constant (zero) distribution 	• 	> 

' 	• optl = 1 	: CSNA distribution 	> 
< optl = 2 	: Token Faeeing  distribution 	> 
< NOTE.' AT THIS TIME THIS IS R CRUDE APPROX. WE WILL › I { IMPROVE THIS LATER. > • 
< ******************>e******************************** > 

II 

var 
i,j,sumg,trusetryq : intecer; 
p0,q0,4*.andnum : real; 

I begin 
if (opt1=0) then 	< for constant server, the proceseino D-  

for  i := O  to n do 	.< time is just tiproc or tsproc, and > 
progEterm,i) := 0.0 < is done in SEND. 

elee • 
begin 

if (opt1=1) then 	< for csma server, we generate a var > 
for i := 0 to n do 	< which is oeometric sum of geometric > 
.begin 	< random variables. For the exact 

p0 := sqrt(0:01) .; 	.< formula, see the literature 
• randnum := mth$random(seed); 	< note that we generate a > 

trys := 1; 	 < distribution in 0..100 
while not (randnum < p0) do . < and then ecale down 
begin 

randnum := mth$random(seed); 
true := trye + 1 

end; 
sumq := 0; 

• for  j 	1 to trus do 
begin <oeometric - inter-trial,  time > 

q0 := eqrt(0.01); 
randnum := mth$random(seed); 
truq := 1; 

A-5 

< arrival times: • 	 -%. 
J . 

4: *****************************************************************.> 

II 



A-6 
• while not (randnum < q0) do 

begin 
• randnum := mthSrandom(seed); 

tryq := trmq + 
end; 

• sumq := sumq + tryq 
end; 
prog[term;i] := sumq*0.08 	4: scale down to 8.0 mean > 

end 
else  
for i := 0 to n do 
begin 	 for token passing; we generate > 

e := 0.01; 	O 	a geometric  r. y. in 0...100, 
randnum := mthe.random<seed); 	and add a constant plus tiOroc > 
tryq := 1; 	-C. or  tsproc respectively. 
while not (randnum < le> do 	Again, see lit for details 
begin 

randnum := mth$random(seed); 
tryq := trug 4. I 

end; 
proci[term,i] := trmq*O. 02 + 6.0 	.4: scale to 8.0 mean again.> 

end 
end 

end; 	fillpro > 

procedure fillerr ( term : integer ); 

4: This proc fills the error queue with 0 or 1. 0 indicates OK; 1 is in . 
• error. Elambda is 1 minus the error * probability . 
• ************************************************************ie******** 

j.

var  
: integeri- 

begin 
.for 	0 to -n do 

if <mthSrandom(seed) > elambda>  thon  errorgEterm;i] 
else errorgEterm;i] := 0 

• end; 	fillerr > 

function windowcheck (newr,left 	integer):boolean; 
• *,>:******************************************************************* 
-1: Checks if a number is within a window of size Sizwin. 	. 
• ***********************:*********************************************.* 

var 
integer; 

begin 
windowcheck := false; 	 4: assume false > 
if (left 4:.> -1> then 

for i := 0 to (sizwin-1) do 
if ( (left + i>mod buffsiz = newr ) then windowcheck := true 

end; 	windowcheck > 

procedure findnextevent (var term 	integer; var event : eventupe 
~ ********************************************************************.* 

:= 



• 	 A-7 
< This proc searches the lists in order to find the event which'occurs > 

I
< next. It does this bm comparing•the times; obviouslu the next event  > 
< time is less than the runtim, eo we assume the next time is runtim to > 
< begin with. We check each terminal consecutively, so terminal one has > 
< passive prioritu on events that occur simultaneously. - 	> • 

I < **********************4:*************************4:****************** .  > 

Var 
integer ; 

high : real; 

begin 	. 

II 	
high := run -timi 	 4: assume-next is runtim 	> 
for J.  := 1 to t do begin 

() 	< --,ARRIVAL QUEUE -- > 	 . . 
1 	 . 

if < arrivqEi,nextarrEil:i < high > then • 

• 

 

• I 
begin 	 ' 

high . := arrivq Ei,nextarr Cill; 	< set high to arr time 	> 
. 	term := i; 	 < set term to i 	> 

7v er- lt  :::' arr 	
. 	< set event to arrival 	> 

. 
 

• end  
< -- TRANSMIT bu!ffER -- > 	. 

I 	

if ( transbuf[i3 <>. nil > then 	- 	< check •nonempty • > 
if ( transbufLiMtranstim < high ) then begin 

 

	

high := transbuftiMtranstim; < set high to trans time 	> - 
, 	term := i; 	 < set term to i 	. > 

I 	

.ti 
end; 

:= tra 
•

< set even* to trans 	> 

< -:-. TIME-OUT -- > - 

II

if < timoutE1.3.< high ) then 
begin 

high := timoutEi]; 	

. 
' 	

. 	. 

< set high . to  timout time 	>. 
term := i; ' 	 < Set term to i 	> 

I 	' 

	

. event := tim 	 < set even* to *imout 	> 
end 	 . 

end; 	. 	. 	. 
< -- IN-TRANSIT QUEUE 7- > 

I 	
if ( intranstop <> nil ) then 

if ( intrahstoptrecevtim < high ) 
the-rr;  check nonempty 	

. 	
> 

begin 	 • 	 . 	. . 	. 

I 	
high := intranstopt. recevtim; 
term := intranstopt. toaddr; 	

< set high to recevtim 
" < set term to destination 

event := rec 	. 	< set event to receive 	> • 
! 	end; • 	

. • 	I P clocktim := high 	 < adjust clocktim. 	> < . 	 . 
end; < findnextèvent > 

procedure log ( term : integer;. var rec : link ); 
- 

 I 	

***************************************************************** > 
< This procedure updates the running eums which are. being kept to > 
< track the performance of the system. 

	

	 . > 
} 

1 begin 
if (rect.frame = iframe) then 
with rect do 
begin 	• 

isumLterm,13 := isumEterm,13 	(sendtim - arrivtlm); 

1 



: = 
: = 
: = 
: = 
: = 

: = 

isungterm, 2] 
isum E term, :3] 
isumC term, 4 ] 
is-  um terrild 51 
isumEterm, 63 
isum E term; 73 
isum  r.  term, 81 

isUmCterm,21 
isumEterm,33 
isumEterm,43 
isumEterm,53 
isumEterm,61 
isumEterm,71 
arrivtim; 

+ Ctranstim 
+ (rerevtim 
+ (fintim 
+ (fintiM 
+ (acktim 
+ (acktim 

sendtim); 
transtim); 

recevtim); 
arrivtim); 
fintim); 
arrivtim); 
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countEterml := count[term] + 1.0 

: 
: = 

: = 

end 
else 
with rect do 

- begin 
esumCterm,13 
ssumEterm,23 
ssumEtPrm,31 
ssumEterm,43 
scoUntEterM1 

end 
end; < log > 

ssumCterm,11 
esumCterm,23 
5sumEterm033 
ssumEterm,41 
scountEterm3 

+ Csendtim 	arrivtim); 
+ (transtim 	sendtim); 
+ (recevtim 	transtim); 
+ (fintim - arrivtim); 
+ 1.0 

.4" 

procedure send ( term : .integer ); 
{ *******:***********e:**********************4:*********4:**W********* 

this procedure takes a.record from the send buffer, if any exists 
and places it into the transmission buffer.• At the same time it 
calcula - es the sendtim at which the record will be completely 
transmitted. Note that a new physical record is formed in order 
to keep physical records in the send buffer. 
Note that we onIU .« , ipt-pj if the transbuff is empty. 
***************************************************************** 

var 
p,temp,traverse 	link; 

begin 	 • 
if (transbufCterm.1 = nil) then 	 • 
begin 

if ( nextsend C1;erm3 = nil > 
then 	 < nothing"to send  3-  

if ( sendbuffEterm3 = nil ) 	< if empty, 	> 
then timoutEterm] := clocktim + tout 	• 	< extend timout 
else < do nothing > 	 • 

else 	 • 
begin 

if C. windowcheck•< nextsend Ctermlt. ns,sendbuff Ctermlt.ns 
or  C  nextsendEterm3t.ns = H1') then 	 • 

begin 	 insidP window >- 
create (p); 	 < create new physical loc > 
pt := nextsend rterm11; 	< 	copy- buffer > 
nextsendEterm3t.sendtim := clocktim; 	<t> 
if .(nex1senaterm3t.frame = eframe ) then < del sframe.buff > 
begin 

if (nextsendCterm1 = sendbuffEterm3) then 
begin 	 < at top 	3- 

£r (nextsendEterm) = bottomEterm3) then 
bottomEterml := nil; 

temp := sendbuffEterm3; 
sendbuffEterml 	sendbuffEterm3t.next; 
nex1sendCterm1 := nextsendC1erm31.next; 
re.lease..C.temps,1 	 .• 

3. 

3. 
3.  



I .  

I .  

I 

1 
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end ' 
else 	 -C within buffer 
begin 

traverse := sendbuffCterm]; 
while ( traverset.next <> extsend[term] ) do 

traverse := travereet.next; 
traverset.next := nextsendEtermJt.next; 
if ( nextsendr.term] = bottom[term] ) then 
•begin 

release(nextsendCterm].); 
nextsend[term3 := nil; 
•ottomIterm] := traverse 

• .'end 
else 

• begin' 
temp := nextsendCterml; 
nextsendEterml := nextsendCtermit. next; 
release(temp) 

• end 
,end 

• end 
else 	 i-frame 

nextsend [term] := next:send EtermIl%next; 	move pointer > 
pt.nr := recno Eterm3; 	fill rec  no field  
pt.delay-:= dlambda; 	.C - delau field . 	>' 
pt.error := errorgEtermenexterrCtermJi; 	errôr field 	>'- 
if.(nexterrCterm3 = n) then fillerr(term); 
nexterrEterml 	(nexterrCterm] + 	mod (n+1); 
pi'.  sendtim := clocktim; 	send time field 
if <pt.frame = iframe> then 

pt.transtim := clocktim + progEterMenextpro[terM]3+tiproc 
else 

pt.transtim := clocktim + progEtermenextproCterm]J+tsproc; 
if <nextproCterm3 = n> then finpro<term); 
nextproCterml := <nextproCterml + 1> mod (n+1); 
transbuf[term] :=.p 

end 
else 

end 
end 

IIelse 
end; -r. send >  

.{ assign pointer 

do nothing - outside window •). 

-C do nothing - transbuf occupied > 

II procedure arrival (term 	integer ); 	 . - 

-C this procedure takes an arrival time from the'arrival queuee builds a )-  
II -i: record and places it into the eend buffer for that terminal. 	- › 

-c ************************************************************m****** > 

I var 
p  t  link; 

begin 
create(p); create new rec 	• *.> • 

• with  pi'  do 	 ni=xt avail record 
begin 

. • 	toaddr := ( term mod t) + 1; 	-r_ to terminal 

I 
Il 	

ns )=. sendségCterm]; 
sendsegEt 	 + 	ff 

e 	
erml := (sendseqttermJ 	1) mod .buL:rasea na  

fram := iframe; 	 -t. frame type D.  
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arrivtim := arrivqCterW;nextarrEtermll; 	" % arrival time 
sendtim := -1; 	 -r.t> 	• 
next := nil 

'end; 
if (nextarrEterm] = n> then fillarr(term); 	. 	% refill if necé > • . 
next.zer[term] := (nextarrEterm:), 	1> mod (n4-1); 	% advance ptr > 
if (bottomEterm] = nil) then bottomEterm3 := p 
else 
Pegin 

bottomEterm]t. next := p; 	 % add to end of the > 
'bottomEterm] := p 

end; 	 S • 	. 	. 
if (sendbuff[term] = nil) then sendbuffCterm3 := p; 
if (nextsend[terml = nil) then nexteendEterm] := p; 
send  (terni) check if'  we can send > 

end; % arrival > 

• procedure ssframe (: -term : integer J'etupe : integer); • 
• ***************************************************************** > • 
• this proc places an s-frame into the send buffer  of the  terminal 	• 
% specified and fills in the-appropriate fields. 	 3- 
-C  Note that sendseq doee not change since that field is•used to 
~ identifu the s-frame command (stype). 	 . > 
• *****************************************:************************* > 

var 
p 	link; 

begin 
create(p); 	 4: create new record 	> 
with e do 

	

	 % fill in the fields ' > 
• begin 

toaddr := (term mod t) 	1; 	% to other  terminal 
arrivtim := clocktiM; 	% arrival time 
frame := sframe; 	 frame'tee is e-frame > 
ns := stupe; 	 % ns field is s type 
nr := recnoCterm]; 	 %.request recno retrane >. 
next := nil 

end; 
if (bottom[termi = nil) then - bottomEtermJ := p 	. 
else 	. 
begin 

bottomEterm:It. next := p; 	 add  ta  buffer 
bottom[term] := p 

end; 
.if (sendbuffEterm3 = nil) then SendbuffE13erm3 := p; 
if (nextsendEterml = nil) then nextsenaterm3 
send(term) 	 4: check if we  cari  send. 	> 

end; 	ssframe > 

procedure trans (term 	integer ); 
• ****************************************************************** 

this procedure places the record from the transmission buffer into 
% the in-transit queue in order of recevtim at the other terminal 
4: we assume the record  is not placed to begin with and use a 
• standard bubble-down algorithm. 
• ***************************************************************** Y

Y
Y

Y
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Var . 
placed : boolean) 
prev,now : link; 

• begin . 
placed := false) 	 < assume not placed 
transbufCterm31. recèvtim := clocktim 	transbuf[termlt.delay; 
transbuf[term7t. next := nil; 	< set pointer • to nil 

(intranstop = nil ) then intranstop := transbufEterm3 
< if in-trans q is empty, .then place > 

else. 
begin 	 < the in-trans q is not •empty > 

if (transbufEtermJt.'recevtim < intranstopt.recevtim) then 
begin 	 < place at top if lower recev tim > 

transbufÊtermlt..next := intranstop; 
intranstop := transbuftterml 

end 
else 

• begin 	 < insert into intrans queue > 
prev := intranstop; 	• < set,prev pointer 
now := prevt.next) 	< set next pointer 
while ( now <> nil ) do begin 

if ( transbufEtermIt.recevtim < nowt.receVtim ) then 
begin 

prevt.next := transbuf•terml; 	< correct; insert 
• transbufEterm]t.next := now; 

now := nil) 
placed := true 	< set indicator value > 

end 
else 
begin 

prev := now; 	 < advance 
now : = nowt. next 

end 
end; 
if not (placed )  then prevt.next := transbuf[terM) .< at end > 

d 
• end; 

transbufEterm] = nil; 	 < empty transbuff 
send(term) 

	

	 < check if we can send > 
• end) < trans > 

fprocedure •ck ( term : integer; var rec : link ); 
*********************************************************** > 

'< This proc acknowledges the receipt of a frame. The info is > 
< contained ln the nr field; nr-1 ie the number of frames the > 
< other terminarhas reci=ived .  
*********************************************************** 

var 
num : integer; 
temp : link; 

begin 	 . 
' 	if ( sendbuffEterm3 <> nil > then 

. begin . 	. . 
. num:= (rect.nr + buffsiz - 1) mod buffeiz) 	. 	-i,.' 	nr-1 using MOD > 
if ( windowcheck ( num,gendbuffEtermlt.ns >) then < 	window check 	> 

• begin 	 ' < advance left edge >. 
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while ( sendbuffEterm3t.ne <> num )  and 	.. . 	. 

( sendbuff[term] <> nextsend[term3 ) do 
begin 	. 	. 	. . 	. . 	 . 

sendbuffEtermDt.aCktim := clocktim; 	. . 	. 
temp.:= sendbuffCtermD;  
sendbufftterml := sendbuffEtermlt neXt) . .,  

log <term:temp); 	 . 
release (temp) 	 -4: reassign memory to freelist › 

end; 	 . 
sendbuffEtermDt.acktim := clocktim; 
temp := sendbuffCterm3; 	 . 	. 
sendbuffEtermJ := sendbuff[term31:next; 	{ advance ptr 	> 
log (term:temp); 	 ' 
release (temp); 	 < peassign.memory to freelist ,› 
timoutCterm3 := clocktim 4. tout; 	< 	reset timout . 	D- 
if ( eendbuffEterml = ni). ) then 	 . 	. 

LIclomUterm]:= nil; 	. 	 • 	 . . 

send<term) 	 . 	. . 
end 

end 
end; < ad-< D- 

procedure buffer (term : integer; var newframe : link); : 
• ******************************************************* p. 
< This procedure inserts a new frame into the receive 	.1-- 
< buffer for that terminal. The process used is again the .1- 
< standard bubble-down algorithm: with a check for frames  J-
-C  that are alreadu in the receive buffer ( This could 
{ occur after a timout ) 
• **:**›11********************************************* •• 

var 
tempitraverse : link; 

. 	. 
begin 

create (temp); 	 { create temp location D- 
if (recbuffltermD = nil) then recbuffEterm3 	newframe 	{, empty D. 
else 
begin 

if <newframet.ns < recbuffEterm3t.ns),then 	4: top of  queue ? 
bedin 

newframet.néxt := recbuffEterm.]; 	{ - place at top 	1- 
, recbuffEterm3 := newframe 

end 
• else 

bedin 	 {  traverse the  queue  )- 
traverse := recbufftte•m3; 	{ set traverse Pointer > 
while (newframet.nS > •raverset. eve) and 

(traverset.next <> nil) do traverse - : - = traverset.next; 
if (traverset.next = nil) then 

• begin 
if <traverset.ns = newframet.ne) then 	< already there 
else traverset.next 	newframe 	-4: place at end 

end 
else 	 < the frame is inside the queue 1- 
begin • 

if (traverset.ns = newframét.ns) then 	< already there 
else 
begin 

1 



newframeotraverseotemp link) 
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tempt := traverset; 	< insert frame 	> 
traverset := newframet; 
traverset.next := temp; 
release(temp) 

end 
end 

end 
end 

end; 4: buffer > 

procedure update (term 	integer ; var rec : link); 

This proc updates the fields of the frame received with 
y4: the original copu of the frame in the send buffer . of the 
i{ other terminal 

****:**************4:*********.**4:*********************** 

var 
traverse : Link; 

bedin 
traverse := sendbuffE(term mod t)4-1]; 	traverse the other term > 
while (traverset.ns  K>  rect.ns) and 

'<traverse <> nil) do traverse := traverset.next; 
if (traverse=nil) then writeln("%nerror in update') 

update the fields 	> elsim 
with, traverset do 
begin 

. 	nr = rect. nr ; 
' delay := rect. delay; 
error := rect.error) 
sendtim. := rect,sendtim) 
transtim := rect.transtim) 
recevtim := rect.recevtim; 
fintim := rect.fintim 

. end 
end; 

‘ 

{ 

procedure receive <term:integer); 
********************************************************* 
this procedure is called when the next event to occur is a 
frame arriVind at a terminal from the ihtransit queue. 
The frame is removed from the intraneit queue and passed 
if possible. If the frame is out of sequenceo it is placed 
in the receive buffer: We also chock for' ad<  using the nr.  
field of the received frame. 
***4:****************************************************** 

var 

3. 

3. 

J. 

• begin 
newframe := intranstop; 
intranstop := intranstopt.next; 
newframet.next := nil; 
if (newframet. error = 0) then 
begin 

if <newframet.frame = iframe) then 

• take frame from in-trans 
< advance in-trans queue 
< nil the next pointer 

• erame is ok 	> 
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begin . 	 < 	I-FRAME SECTION -"- . > 
if ( windowcheck  C  newframet.ns,recnoCterm] >> then 
begin 	 < sequence num within window > 

if ( newframet.ns = . recnoEterml > then• 
begin 	 < pass out the frame 

recnoCterm3 := (newframet.ne + 1> mod buffsiz; < adVance recno> 
newframet.fintim := clocktim; 	< fill fintim field 
update(term,newframe); 	< 	update rec at other term > 
ack (terminewframe); 	< check for ack info 
release (newframe); 	• 
while ( recbuffCterm] <> nil > do 	< advance recbuff ? 
begin 	 < advance buffer 	> 

if (.recnoEterm) = recbuffEterm3t.ns) then • 
begin 	 < expected frame ? 

recnoEterml := (recnoCterm1+1) mod buffsiz; 
• retbuffEtermJt.fintim := cloCktim; . 	< fintim field 
update(term. r':buf - erm]) 	O 	< update other copy > 
temp := recbuffCterm3; 	, • 
recbuff[termJ := recbuffEterm]t. net ; <.'advance pointer, > 
release(temp) 

end.  
end; • 
if CnextsendEtermJ = •nil > 
then ssframe (term,-1) 
else 

end 
else buffer(termJnewframe> • < outside place in receive buffer. > 

<:place e-frame with  PR  code > 
< do nothing - no s-frame needed .  > , 

end • 	 • 
else 	 < frame is outside window > 

end 
else 	 < 	S-FRAME SECTION --- > 
begin 

if ( newfraniet.ns = -1 > then 	<  PR  frame: ack only 	> 
begin 

newframet.fintim := clocktiw. 	< fill in fintim field 
ack(term,newframe); 
log(term,newframe); 	• 	< log the S • frame• 	• > 
release(newframe) 

end 
else 	 < REJ frame: retransmit 
begin 	 • 

traverse := recbuffEterml; 	< find•the restart point > 
* if (traverse<> nil )  then 
while (traverset.ns <7. 3-  newframet.nr ) and 

(traverse'(>.  ni)..) do traverse := traverset.next) 
if (traverse = nil) *hen writeln('= error in . red') 
else nextsendEtermJ := traverse; > < reset the next pointer 
send(term) 	 < check to send 

end 
end 

end 
else <* here goes the REj instr• *3- 	< frame in errOr; discard 3- 

.ssframe(termi-9) • 
end; < receive > 

procedure calltime (term : integer ); 
< ********************************************************************** > 
< this proc deals With a.time-out by recucIing the send buffer for that 
< for that terminal. This means we set s (next to send) back to  1  (left > 



terminal",térM: 

• 

2); 
set s back to 1 > 
send if poss 
reset timout 	› 
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{ edge) and begin retransmitting the frame:..7„ 
********************************************************************* 

begin 
writeln(' •imeout at',clocktim:4, for 
nextsendEterm] := sendbuffEtermJ; 
send(term); 
timoutCterm] := clocktim 4. tout 

end; 	calltime 

A 
, K..**************************************************************************> 

'3-.. 	 1,1 Pi I N 	 .  *). 
-;:4: 	 *). 

begin { main > 

--- interactive section: set parameters for the run 
open < sumdat,"sumdat.dat"); 	4: the summary stets file > 
rewrite ( sumdat ); • 	 4: prepare  for  write 

date ( todays_date ); 	tt> 
time (.current_time ); 
writeln (" , SET SYSTEM PARAMETERS 
writeln; 
writeln (" ENTER : 
writeln (' dlambda :• Mean propagation delay time "); 	• 
writeln C e  elambda : Probability of correct transmission "); 
writeln C e  tiproc .  : I-frame mean service time "); • 
writeln < e  tsproc 	S-frame mean service tiMe 
writeln (' tout 	Timout time e >3 
writeln ( e  framenum: The running time per trial '); 
writeln C e  sizwin : The window size '); 	• 
writeln c." seed 	M• random seed '); 
readln < dlambda,elambda , tiproc,tsproc,touteframenum,sizwin,seed 

writeln (' tiproc constant (0), csma <1); or token passing (2)• 
readln < optl ); 
writeln (' load minimum,load maximum ( real) 
readln < roptl1ropt2); 
writeln ( e  increment size (real) 
readin < increments ); 	• 
writeln (' busy diagram listing. NO = 0; YES = I 
readln < opt3 ); 
writeln. (' Single station (0) or  double station (a.) ? 
readln ( opt4 ); 

**›4**************** here begins the maihloop ***********************- 

writeln; 'writeln; 
writeln('***** RUNNING - PLEASE STANDBY *****"); 
writeln; 
freelist := nil; 
opt2 := round<<ropt2-roptl>/increments); 

>3 

> , >3 

.-> e ); 

>•); 

> e >3 

> e >3 



if ( opt3=1 ) then 
beqin 

< busyout file is required 

); 	 < open the. stats. file. 
< prepare for writing 

3- 
} 
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for Mainloop : = Ø to opt2 do 
begin 

load = min1oop*incrernent:  1 roptl; 
alambda = (tiproc ÷ 8. 0) 	load; 
runtim : = framenuM*alambda; 

< busyout . printino section .r 

. open c. busy,'busy.dat" ›; 	 < open the bustiout file 
rewrite ( bustA ›; 	 < 'prepare for writing 	. > 
writeln (busu, ": 7,  
writeln biAsu, 	7, current_time ) ; 
writeln 	 . 

writeln (busu, "dlambda: 23, dlambda: 6:1 'elambda: ao, elambda: E,: 2); 
writelh (busu, 'tiproc: 	23, tiproc:: 6: 	" tsproc:  ':23, t.sproc:'6: 1); 
write.ln (busiA, 'tout:  e  23, tout: 6: 1, ' , frarne.num: ': 23, framenum: 6:1); • 
writeln (bw.--,u,•"buffsiz: 	23, buffsiz: 60 . " window:•': 23, sizwin: 6) 

end; 

< --- statistics printing section --- 

open ( stets, "stats. dat" 
rewrite ( stats ); 
date ( todays_date, ); . 
time ( current_time > ; 
writeln 
write  in 
writeln 
writeln 
writeln 
w r it eln 
writeln 

<stats, -1:0days...date.); • 
(s. tats, curre.nt_time); 
(state., idlambda: ': 23, dlambda: 7: 1, 'elambda: 	23; elambda: 7: 1); 
(state, tiproc:  ':23, tiproc: . 7: 1, 't.sproc: 	23, tsproc: 7: 1); 
(stats. , 'tout: 	23, tout: 7: 1; "framenum: 	20, fr.amenum: 7: 1); 
(stets, buffsiz: ": 23, buff.siz: 7, "window: : 20, sizwin: 7); 
(state); writein(:.z. ,:tats); writelnIstate); 

initialize system structures 

for term : = 1 to .t  do  
begin 

arrivciEtarm, nj = 
fillarr (term); 
fillPro.(terM); 
fillerr (term); 

.recno [term] := 0; 
nextarr [term] := 0; 
nextpro [term] := 0; 
nexteri- [term] := 0; 
sendbuff [term] := nil; 
nextsend [term] := nil; 
bottom [term] := 
sendseq [term] := 0;. 
transbUf[term] := nil; 
intranstop := nil; 
recbuffEterm] := ni!;  

< initialize each terminal: 
{ arrival queue last entry 
< call fill' arrivals 
< call fill delays 

call, fill e..rrors 
set  receive no to zero 

• < next arrivai - 
< next proc time' 
< next error . 
< nil the left. edge pointer . 
< 'nil the next te.send pointer 
<- nil the bottom pointer 
< send sequence.number 
< nil the trans buffer 
< nu, thé in-trans queue 
< nil the receive buffer 

3- 

3- 

timout[term] : = arrivqrte.rm, 11 ÷ tout; 	< set the first timout 
for j : = 1 to 8 do isurnterm, „I] 	3. 0; < set running sum:F.-- 
for • 	= 1 to 4 do ssum[te.rm, j] : = 3. 0; 
count[ term] : = 3. 3; 
scount[ term] : 3. 3 

end; 
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clocktim 	0; 	 -C. start at zero clocktim 
lastct :=  
hlcount := 50; 	 -CtD 

action loop begins here --- 

findnextevent (term,event); 

if ( opt3 = 	'then histodram (term,event); 
, 

',' hile ( clocktim < runtim ) do begin 	. • -C. begin event 100P 	. :)" 	
1 

case event of 	 . 	 . 
art-  : arrival (term); 	 { process. arrival 	D 1 
tra : trans (term); 	 -C process transmit 	> , 
rec : receive (term); 	, 	. 	proceee receive 	D ' 	1 

I tim : calltime (term) 	-C procese timout 	• D 	1 
end; 	' 	 . 	. 	• 	. 	•i 
lastct := round(clocktim);  
findnextevent<term,event); 	-C-  find next event 	D 
if'( opt3 = 1 ) then histodram(term,event) - 	 - 

end; -C of cycle loop D 	 . 

if (opt3=1) then close : (busu); 

-=:tatistics caldulating section --- > 

writeln (stats,"RUNNING 5TATIeIC8":40); 
writeln (stets); 
Writeln (state,'THEORETICRL LORD":20,load:5:2); 
writeln (statse'EXPERTMENTRL LORD 1":20,(isumEl,23/isumEle8]):5:2); 
writeln (stats,'EXPERIMENTRL LORD 2":20,risu«2,2]/isUmE2,:8»:5:2); 
writeln.(stats); 
for i := l to 8 do 	 -C divide bu counts to get 	D 
begin 	 the mean statistics 	D 

if (countE13(>0). then isumEl,i3 := isumEl,il/countUJ; 
• if (countr2]<>0) .then 	isum[2,1A/countE23 

end; 
for i := l to 4 do 
begin 	 • 

,if (scount[1]<>0) then ssumCiFil := ssumE1,11?scountril; 
if (scountE2J<>0) then ssumE2,13 := ssumC2,i3/scountE23 

I .  

1 

find firet even* 	> 

end; 
writeln (stats,":36,'TERMINAL 	':5,'TERMINAL 2'); -  • 
writeln (stets); 
writeln (stats,''I-FRRMÈS":30); 
writeln (stats,'Number of -frames 

countEl3:7:0," ":9,count[2]:7:0); 
writeln.(stats,'Mean send buffer wait time . 	, 

ieumE1013:7:2," 	:9,isumC2,11;.7:2); 
writeln (stats,'Mean transmission <efervér) time, 

isum[1,2]:7:2,":9,isumU2,23:72); 
writeln (stats,'Mean  propagation  delay 

isuML103]:7:2,' ':51 ,ieumC2,31:17 :2); 
writeln (stats0'Mean receive buffer wait time. 

ieum[1,41:7:2,' ":9,ieum[204]:7:2)) 
writeln (stats,'Mean one-way transit time  

isumE1,57:7:2,":90ieumr2.,51:72); 
writeln (stats,'Mean acknowledge t •me 	•' . 	e 

isumEle63:7:2,' ":90isumE2,61:7:2);' 
writéln (stats,'Mean two-wau transit time 	. 
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isum[1,73:7:2,":9,isum[2,73:7:2); 
writéln (stats,'Mean interarrival time 	: 

isumE1,8]:7:2,' ':9,isumr2,83:7:2); 
Writeln (stets); 
writeln (stats,'S-FRAMES":30); 
writeln (stats,'Number'of frames • 

scoun1.[1]:7:0," ':9,scountrE]:7:0); - 
writeln (stats,'Mean Send buffer wait  lime  

ssum[1,11:7:2,": . 9,ssumr.2413:7:2); 
writeln (stats,'Mean transmit (server) time 

ssum[1,23:7:2,":9,ssum[2,23:7:2); 
writeln (stats,"Meen one-wau propagation delay, 

ssumC1,7,1:7:2,":9,.ssumC2,31:7:a); - 
writeln (stats,'Mean one-way transit time 

ssum[1,43:7.:2,' ":9,seumE2,43:7:2); 
writeln (stets); writeln (state); 
time (current...time); 
writeln (stats,current_time); 
clnse (stets); 	 4; close the st•tistic= file > 

-C 	Write . a summary.record to siAMdet . --- 

for i := 'I to 2 do 
for j := j to 8 

buffri,j] 
buff[1,93:=Ioad; 
buffE2,91:=1oad;* 
sumdatt := buff; 
put(sumdat); 

do 
isumEi,,O; 

4: release of memoru for next run > 

for term := I o t do 
beoin 

emptybuffer(sendbuffEterm3); 
release(transbufCterm]); 
emptybuffer(recbuffÇtermJ> 

end; 

emptybuffer(intranstop); 
writeln( chr(7) ); 
writeln('finished run for load =',1oad:5:2) 

, end;  4.. the .  Meinloop loop  D- 

close  ( sumdat ); 
writeln (". ALL DONE! "); 
for i :=  j to 5 do write( chr(?) ) 

end. -C main 
IT'S FINISHED! RING THE BELL!!! 
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A sophistication of early queueing 
theory solves bursty transmission 

problem. 

significant part of the field of Computer 
Communications is concerned with providing 
transmission facilities for data sources which 
may be characterized as bursty, i.e., short 

spurts interspersed with relatively long idle periods. It has 
been estimated, for example, that terminals in interactive data 
networks are active from 1 to 5 percent of the time [1],[2]. 
This burstiness allows one to share channels among a number 
of sources. In this paper, we shall consider a particular 
context in which transmission facilities must be provided- 
local distribution. In local distribution a number of geo- 
graphically dispersed sources are to be connected to a central 
facility. The importance of local distribution systems lies in 
the fact that they are the most common class of computer 
communication networks. Further, as part of large systems, 
local distribution consumes a significant portion of the total 
cost. In this paper, we shall describe the basic approaches to 
local distribution. Our discussion encompasses certain 
adaptive techniques which have been discovered recently. 

The focus of our discussion is on the fundamental principles 
of the techniques used in local distribution without dwelling on 
details of implementation. We distinguish three main 
categories: polling, random access, and adaptive techniques. 
A fourth category is techniques which are suited to a 
particular topology—the ring or loop structure. As well as 
describing the techniques we shall summarize the results 
of studies of performance. These results quantify the effect of 
various system parameters on performance. An extensive 
review of the literature is given in a final section of the paper. 

To a large extent the analyses of performance that we shall 
discuss are based on queueing theory. Queueing theory 
began with the work of a Danish mathematician, A. K. 
Erlang (1878-1929) [3], on telephone switching systems. 
His first paper on the subject was published in 1909 [4]. 
Amazingly, the formulas derived by Erlang in a 1917 paper 
[5 ] are in constant use in engineering the modern telephone 
office. Furthermore, although queueing theory finds wide use 
as one of the basic components of operations research, 

telecommunications remains as its most successful applica-
tion. As one might expect, voice traffic was the primary 
concern in telecommunications applications. However, re-
cently there has been an upsurge of interest in data traffic and 
a corresponding reapplication of queueing theory in connec-
tion with computer communications [6],[7]. 

Although Erlang's work was concerned with voice traffic, 
certain of his basic concepts are appropriate to data networks. 
In the generic queueing model customers randomly arrive at a 
facility with service requirements that may be random in 
nature. The theory attempts to find probabilistic descriptions 
of such quantities as the size of the waiting lines, the delay of a 
customer and availability of a serving facility. In the voice 
telephone network, demands for service take the form of 
'telephones going off hook or call attempts. Erlang found that 
given a sufficiently large population, the random rate of such 
calls can be described by a Poisson process.' The service time 
of a customer is the duration (holding time) of a call and was 
found to have an exponential distribution which is closely 
related to the Poisson distribution. In computer communica-
tions applications, the generation of data messages at a 
terminal is the analog of customer arrival. The service time is 
the time required to transmit the data message. In many cases 
of interest, the arrival process is approximated by a Poisson 
process. The duration of messages is commonly taken to be 
constant or to be exponentially distributed. 

POLLING SYSTEMS 

A ubiquitous example of a local distribution system is 
shown in Fig. 1 where we depict part of the communications 
facilities in the Bonanza of Bargains Shopping Mall and 
Family Entertainment Center. A number of terminals situated 
throughout the B of B are bridged across a common line and 
connected to a common computer. The common line may be 
wire or coaxial cable. 2  The terminals are engaged in such 
commercially useful activities as credit checking and 
inventory control. However, even in the best of seasons the 
traffic produced by an individual terminal is bursty and a 
number of terminals can share the saine line. Located at the 

A definition of the Poisson process will be given in the sequel. 

2The required properties of this common line are related to the particular 
local distribution technique employed and will be discussed in due course. 
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Fig. 1. Geographically dispersed users tree topology. 

computer is a controller, one of whose functions is effecting 
this sharing efficiently and equitably. 

A common technique for parcelling out bits per second 
among users sharing a common line is roll-call polling3 . It is 

assumed that the common line is such that the controller can 
broadcast to all terminals simultaneously. Each terminal has 

an address which is transmitted in sequence by the controller 

over the common line. After broadcasting a terminal's 

address the controller pauses for a message from the terminal. 

If a terminal has a message the polling cycle is interrupted 

while the message is transmitted. 
The ability to achieve economies by sharing transmission 

facilities is limited by performance requirements usually 

expressed in the delay experienced by a user in obtaining 

service. If there are too many terminals on the line, for 

example, the time required to cycle through all terminals is too 

large and user dissatisfaction ensues. The parameters of the 

mathematical models of performance are: the number of 

terminals, the volume of traffic generated by each terminal, 

the line speed in bits/s and the line required by the polling 

protocol. As we shall see in connection with the analysis of 
polling models a significant factor in performance is 
overhead, i.e., the time required to poll all terminals even 
when there are no messages. In the case of terminals equip-

ped with voiceband modems, for example, this may involve 
equalizer training as well as the phase and timing recovery 
associated with the transmission of each polling message. 

A close relative to roll-call polling is hub polling [8],[9]. 
Again, we have the geographically dispersed terminals of 
Fig. 1. The controller begins a polling cycle by broadcasting 
the address of the most distant terminal thereby granting to 
this terminal exclusive access to the line. After this terminal 
has transmitted any messages that it might have, it transmits 
an "end of message" symbol which acts to grant access to the 
next most distant terminal. Upon receiving this symbol, the 
next most distant terminal repeats the process, passing on 

3 For implementation of polling systems, see [8] and [9].  

access to the third most distant terminal when its messages 
have been transmitted. The process continues until all 
terminals have been given an opportunity to transmit 
messages whereupon the controller initiates a new cycle. This 
model contains the same parameters as roll-call polling. The 
salient difference between the two is the time required to grant 
access to a terminal. In roll-call polling, the time required to 
transmit a message and receive a reply is typically much 
larger than the time required to transmit a symbol from one 
terminal to another. However, hub polling requires that the 
line be such that terminals reliably receive transmissions from 
other terminals. 

The hub-polling technique has been implemented in the 
ring topology depicted in Fig. 2 [10]. Flow around the ring is 
clockwise as shown. The central processor grants first access 
to the first terminal downstream. As in the previous 
implementation, access is passed from a terminal to its 
nearest neighbor downstream. An end of message character 
is appended to the data from a terminal. We have the same 
set of parameters as in the previous cases. The time required 
to pass access from one terminal to another is the time 
required to transmit an end of message character. 

Before going on to consider other local distribution 
techniques we pause to consider the performance of polling 
systems as related to network parameters and to traffic. A 
useful measure of performance is the cycle time which is the 
time required to grant access to all terminals in the system at 
least once and to transmit messages from the terminals. We 
may view the cycle time as having two components—fixed 
and random. The overhead or fixed component is the time 
required to grant access to all terminals. In roll-call polling, for 
example, it is the time required to broadcast all of the terminal 
addresses and to listen for replies. In the hub-polling 
technique, overhead is the total time in a cycle that is required 
to pass access from one terminal to another. 

The random component of a polling cycle is due to the 
random nature of the message generation process. The 
number of messages transmitted in a cycle varies from one 
cycle to the next. The analysis of polling systems is 

Fig. 2. Ring topology. 
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polling systems. 5  In connection with cycle time, we con-
sidered the case of infinite buffers and Poisson message 
generation. Results on the average delay for this case with 
constant length messages are shown on Fig. 3. The average 
delay normalized to the time required to transmit a message is 
shown as a function of the total load into the system, S 
m—À n. The parameters are n, the total number of terminals, 
and W/nm is the overhead per terminal normalized to the 
message transmission time. The curves show the character-
istic rapid increase in delay as the load approaches one. A 
strong dependence on overhead is also evident. For loadings 
less than 0.5, which is the region where the system will be 
operated, overhead dominates. These points can be illus-
trated by an example. Suppose that ten terminals share a 
common 2400 bit/s line. Each terminal generates messages 
at an average rate of 28.8 messages per busy hour (0.008 
messages/s). The messages are each 1200 bits long. Finally, 
assume that in order to poll each terminal and listen for a 
response 50 ms are required. The load in the system is 
S = 0.04. From Fig. 3, the average delay is approximately 
0.25 seconds. Now suppose that as a convenience to users 
the number of terminals sharing the line is doubled without 
increasing the load. We see from Fig. 3 that the average 
message delay doubles. Of the two polling techniques hub 
polling tends to have lower overhead than roll-call polling. We 
may view hub polling as a more distributed form of control of 
access to the system. 

LOOP NETWORKS 

The ring or loop topology shown in Fig. 2 finds extensive 
application in distributed processing where computers and 

5 See the review of the literature at the end of the paper. 
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complicated by the fact that there are correlations between 
the number of messages encountered in successive cycles and 
in the number of messages in adjacent terminals. 

The most studied model assumes Poisson arrival4  at a 
terminal having storage facilities which may be regarded as 
being infinite, i.e., compared to the arrival rate of messages 
the terminal buffer is so large that the probability of overflow 
is negligible. The time required to poll n terminals may be 
written 

T  = t; + W 
i 

where W is the overhead in a cycle, assumed to be constant, 
and t, is the time spent at terminal i to read out messages. 
Even though there are dependencies between buffer contents, 
the average cycle time is easily found since the expected value 
of a sum such as shown in (1) is the sum of the expected 
values. Assuming that the arrival rates and message 
transmission times are the same for all terminals we find that 
I', the average duration of a cycle is given by 

W/(1  —S) 	 (2) 

where S = n m X, m is the average duration of a message and 
X is the average arrival rate at each terminal. Equation (2) 
has a characteristic queueing theory form. The numerator 
represents overhead, the amount of time during a cycle for 
which a message is not being transmitted. All of the traffic 
dependency is contained in the quantity S in the denomina-
tor. This load S is the average work presented to the system 
normalized to the capacity of the channel. In voice networks, 
a similar quantity has been given the unit of Erlangs. There is 
a point of instability when S = 1 since the average amount of 
work that is arriving is just equal to the capacity  of the  system 
and there is no allowance for overhead. We note that when 
W =-- 0, the average cycle time is zero. This is consistent if we 
consider that an infinite number of cycles occur in zero time 
when the terminals have no messages to transmit. Equation 
(2) indicates the effect of overhead on performance. Suppose, 
for example, that the total traffic load into the system is kept 
constant (i.e., S constant) while the number of terminals is 
doubled. If overhead is incurred on a per terminal basis, the 
cycle time is doubled with no increase in traffic. 

A more tangible measure of performance for the user is 
message delay which we define to be the time elapsing 
between the generation of a message and its transmission 
over the common line. This delay consists of several 
components. A message generated at a terminal must wait 
until it is the terminal's turn to be polled. If the terminal can 
store more than one message at a time, a queue is formed at 
each terminal which implies fu rther delay. Finally, a certain 
amount of time is required simply to transmit the message. 
There have been a number of analyses of the performance of 

4 For the Poisson distribution the probability of k message arrivals in 

T seconds is Pk = (ÀT) exp(—À7)/k! k = 0,1,2 —• where  A  is the average 

arrival rate. The interarrival time is exponentially distributed, i.e., 

P, [interarrival time 5_ = 1 — exp(—Xr); r 0. 

(1) 
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Fig. 4. Average delay versus load In STDM and DM [34]. 

peripherals in close proximity (within a kilometer) are tied 
together. In this application, it is necessarily true that the 
traffic is bursty. However, the loop structure lends itself to 
interesting multiplexing techniques which may be appropriate 
to bursty sources. The most obvious technique is a form of 
time division multiplexing which in this context is commonly 
called Time Division Multiple Access (TDMA). Assuming 
synchronous transmission, the flow on the line is partitioned 
into segments each of which is dedicated to a particular 
terminal. A terminal simply inserts messages into segments 
assigned to it. The shortcoming of this system in the case of 
many lightly loaded terminals is that very often terminals 
have nothing to send and segments are wasted. At the same 

time, empty segments may be passing by terminals which do 
have messages. The same drawback applies to Frequency 
Division Multiple Access (FDMA) in which each terminal is 
allocated a fixed bandwidth. A recent study has shown that 
FDMA is inferior to TDMA from the point-of-view of 
performance [11]. 

An alternate technique to TDMA in a loop context is 
Demand Assignment (DA). The flow is the same as in 
TDMA except that the blocks are not assigned to any 
terminal. When an empty block passes by a terminal which 
has a message to transmit, the block is seized by the terminal 
and the message along with addressing information is 
inserted. There is an increase in the utilization of the line over 
TDMA at the cost of an increase in the complexity of the 
terminals. On Fig. 4, the average delay is shown as a function 
of the load with the number of terminals in the system as a 
parameter. The results illustrate the inefficiency of TDMA for 
lightly loaded systems where the dominant factor is the time 
required to transmit a single message. At light loading, 
demand multiplexing is superior to TDMA by a factor equal 
to the number of terminals sharing the line.. As the load 
increases, the difference between the two systems decreases 
since in demand multiplexing different terminals will tend to 

9 

have messages at the same time. Once again, the lesson that 
we carry away from this study of loop systems is that in lightly 
loaded systems, a distributed control of access to the channel 
is more sufficient. 

The TDMA technique is also appropriate to the tree 
topology of Fig. 1. It is necessary to establish synchronization 
among the terminals. Each terminal is assigned a periodically 
recurring time slot. However, in the tree topology as well as in 
the loop topology the TDMA technique is not efficient for 
bursty sources. 

RANDOM ACCESS (ALOHA) 

Random access techniques hitherto associated with radio 
and satellite systems have recently been applied to local area 
networks [12]. The origin of these methods is the ALOHA 
protocol which is the ultimate in distributed control. Again, we 
assume that n terminals are sharing the same channel as 
depicted in Fig. 1. As soon as a terminal generates a new 
message it is transmitted on the common line. Along with the 
message, the terminal transmits address bits and parity check 
bits. If a message is correctly received by the central 
controller a positive acknowledgment is returned to the 
terminal on the return channel. Since there is no coordination 
among the terminals it may happen that messages from 
different terminals interfere with one another. If two or more 
messages collide, the resulting errors will be detected by the 
controller which returns a negative acknowledgment or no 
acknowledgment. An alternative implementation is to have 
the terminal itself detect collisions simply by listening to the 
channel. After a suitable timeout interval a terminal involved 
in a collision retransmits the message. In order to avoid 
repeated collisions the retransmission intervals are chosen 
randomly. The key element of the ALOHA protocol and its 
descendants is the retransmission traffic on the common line. 
If the rate of newly generated traffic is increased, the rate of 
conflicts among terminals increases to the point where 
retransmitted messages dominate and there is saturation. 
This effect is expressed succinctly in the formula 

S G exp (— G) 	 (3) 

where S is the normalized load into the system generated at all 
terminals and G is the total traffic on the line including all 
retransmissions. In the derivation of (3), it is assumed that all 
messages are the same length and that they are generated at a 
Poisson rate. The plot of (3) on Fig. 5 shows that the channel 
saturates at 18 percent of its capacity inasmuch as the input 
cannot be increased beyond this point. Thus, it appears that 
simplicity of control is achieved at the expense of channel 
capacity. 

The basic ALOHA technique can be improved by 
rudimentary coordination among the terminals. Suppose that 

a sequence of synchronization pulses is broadcast to all 
terminals. Again, let us assume constant length messages or 
packets. A so-called slot or space between synch pulses is 
equal to the time required to transmit a message. Messages, 
either newly generated or retransmitted, can only be 
transmitted at a pulse time. This simple device reduces the 
rate of collisions by half since only messages generated in the 
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random access techniques [47]. 

same interval interfere with one another. In pure ALOHA, 
the "collision window" is two message intervals. The equation 
governing the behavior of slotted ALOHA is 

S = G exp (-2G). 	 (4) 

We see from the plot of (4) on Fig. 5 that the channel 
saturates at approximately 36 percent of capacity. 

An extension of the ALOHA technique that is particularly 
appropriate for local distribution is Carrier Sense Multiple 
Access (CSMA). Before transmitting a message a terminal 
listens on the common channel for the carrier of another 
terminal which is in the process of transmitting. If the channel 
is free the terminal transmits; if not, transmission is deferred. 
Variations on the basic technique involve the retransmission 
strategy. We illustrate retransmission strategies by means of 
the P-persistent CSMA strategy. If the channel is busy then 
the terminal transmits at the end of the current transmission 
with probability P. With probability 1-P, transmission is 
delayed by T seconds which is the maximum propagation 
time between any pair of terminals. Due to propagation delay 
there may be more than one terminal transmitting at the same 
time in which case messages are retransmitted after random 
timeout intervals. The value of P is chosen so as to balance 
the probability of retransmission with channel utilization. The 
characteristic equations for CSMA are plotted on Fig. 5. The 
form is similar to pure and slotted ALOHA. The ability to 
sense carrier from other terminals leads to considerable 
improvement in throughput. As indicated, decreasing P leads 
to improved throughput which is obtained at the expense of 
increased delay. The curves shown in Fig. 5 are for a 
propagation delay 0.01 normalized to message transmission 
time. As this normalized delay is increased the performance 
of CSMA degrades. 

There have been a number of analyses of random access 
protocols focusing on message delay as a function of 
throughput. On Fig. 6, we summarize the results of this work 
in the form of normalized message delay as a function of load. 
For lightly loaded systems, pure and slotted ALOHA 
perform well. However, as the load increases the increasing 
rate of retransmission rapidly degradeF performance. Since 
the carrier sense protocol keeps the channel clear by avoiding 

retransmission, it has a graceful degradation. Also shown on 

Fig. 6 is delay for roll-call polling. As we have seen earlier, 

there is a severe penalty for overhead required when the 

number of terminals is increased. The curves also show that 

the performance of the polling protocol degrades more 
gracefully than that of the random access protocols. This is 

where the beneficial effect of the controller is seen. By 

scheduling transmission, the avalanche effect of retransmis-

sions in the random access protocols is prevented. 
The curves for the random access techniques in Fig. 5 

show the same basic form in which a level of input traffic S 
can lead to two possible levels of line traffic G. It can be shown 

that this characteristic may lead to an unstable state resulting 

in saturation of the channel and a drop in throughput. By 

choosing system retransmission parameters properly, un-
stable states can be prevented. An example of this is 
decreasing the parameter P in the P-persistent CSMA 
protocols. In ALOHA, the range of the retransmission 
interval can be increased. In both cases, there is a penalty in 

increased delay. 

ADAPTIVE TECHNIQUES 

The deleterious effect of overhead on the performance of 
polling systems is abundantly clear from the foregoing results. 
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In order to ameliorate this effect an adaptive technique has 
been devised recently. The essence of the technique, which 
has been designated probing, is to poll terminals in groups 
rather than one at a time. In order to implement the technique, 
it is assumed that the central controller can broadcast to all 
terminals in a group simultaneously. If a member of a group 
of terminals being probed has a message to transmit, it 
responds in the affirmative by putting a noise signal on the 
common line. Upon receiving a positive response to a probe, 
the controller splits the group into two subgroups and probes 
each subgroup in turn. The process continues until individual 
terminals having messages are isolated whereupon messages 
are transmitted. The probing protocol is illustrated on Fig. 7 
for a group of eight terminals of which terminal 6 has a 
message. The algorithm is essentially a tree search which the 
controller begins by asking, in effect, "Does anyone have a 
message?" Branches with affirmative responses are split into 
subbranches. 

If only one terminal in a group of 2 k  has a message, the 
probing process requires the controller to transmit at most 
2k -I- 1 inquiries. In contrast, conventional polling requires 2 k  
inquiries. The comparison may not be so favorable when 
more than one terminal has a message. For example, if all 
terminals have messages, 2"  + —1 inquiries are required for 
probing. This consideration leads to adaptivity where the size 
of the initial group to be probed is chosen according to the 
probability of an individual terminal having a message. Thus, 
in Fig. 7, for example, one may begin a cycle by probing two 
groups of four rather than one group of eight. The criterion for 
choosing the sizes of the groups is the amount of information 
gained from an inquiry. If the initial group is too large the 
answer to an inquiry is almost certainly, "Yes there is a 
message." However, if the group is split into too many 
subgroups, the answer to an inquiry is too often, "No." If the 
arrival of messages to terminals is Poisson, the probability of 
a terminal having a message can be calculated by the 
controller given the duration of the previous probing cycle. 
Given this probability, the optimum group size can be found. 
Notice that if the probability is high enough, the best strategy 
may be to poll every terminal. 

The results of simulation for the adaptive technique are 

shown on Fig. 8 where the average time to probe all terminals 

in a 32 terminal network is shown as a function of message 

arrival rate. In Fig. 8, the cycle time and the message length 
are normalized to the amount of time required to make an 
inquiry. The comparison made with conventional polling 

shows a considerable improvement in performance for light 

loading. Moreover, due to the adaptivity there is no penalty 

for heavy loading. 
Although the probing concept was devised in connection 

with polling systems it is also appropriate in a random access 
context. Suppose that in response to a probe a terminal 

transmits any messages that it might be harboring. Conflicts 

between terminals in the same group are detected by the 

controller and the group is divided in an effort to isolate 
individual terminals. Each subgroup is given access to the line 
in turn. Optimal initial group sizes can be chosen by means of 
very much the same criterion as in polling systems. Probing 

too large a group results in almost certain conflict. The 
opposite extreme gives too many probes of empty groups of 
terminals. Again, the optimum group size can be chosen 
adaptively as the process unfolds. The probability of a 
terminal having a message is a function of the previous cycle 

and the average message generation rate at a terminal. This 
probability determines optimum initial group size. 

Control of the adaptive process need not be as cen-
tralized as in the foregoing. Suppose that as in slotted 
ALOHA synchronizing pulses are broadcast to all terminals. 
Suppose further that the slots between synch pulses are 
subdivided into two equal subslots. In the tree search 
protocol, the first subslot is devoted to an upper branch and 
the second to a lower. Consider the example in Fig. 9(a) and 
(b) depicting ari eight terminal system of which 5, 7, and 8 
have messages. The first subslot is empty since it is dedicated 
to terminals 1 -4. In the second subslot, terminals 5, 7, and 
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Flg. 8. Average cycle time versus message arrival probing 
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estimate the number of other terminals having messages. 
Simulation studies indicate that performance is insensitive to 
small errors in this estimate. 

Related to random access multiplexing are a large number 
of reservation techniques in which sources, upon becoming 
active, reserve part of the channel. The reservation 
techniques are appropriate to sources which are active 
infrequently but transmit a steady stream while active. The 
traffic from such sources is not bursty. However, the request 
methods are and consequently may be treated by the 
techniques discussed in the foregoing. For example, reserva-
tions could be made using the ALOHA technique over a 
separate channel. 

Fig. 9. (a) Tree search illustration. (b) Tree search illustration. 

8 conflict. The conflict is resolved in subsequent slots. After 
this conflict resolution process has begun, any newly arrived 
messages are held over until the next cycle. Again, the 
algorithm can be made adaptive by adjusting the size of the 
initial groups to be given access to the channel according to 
the probability of a terminal having a message. 

Upper and lower bounds on average delay as a function of 
the input load are shown in Fig. 10. Notice that the system 
saturates when the load is 43 percent of capacity. This 
contrasts with the case of slotted ALOHA where this 
maximum is 36 percent of capacity. Recent improvements of 
the technique have pushed this figure to over 50 percent. 
There are no unstable states where the system is saturated by 
retransmissions and conflicts. If conflicts persist each terminal 
is assigned an individual slot and the system reverts to 
TDMA. 

The so-called "random urn" is another technique in which 
the size of groups granted access is chosen adaptively. The 
assumption underlying this protocol is that at the beginning of 
a cycle the total number of terminals having messages is 
known to all terminals. Access is granted to groups of size k 
where k is chosen so as to maximize the probability that only 
one terminal has a message. If, as in heavily loaded systems, 
all terminals have messages, then the optimum group size is 
one and the system is simple TDMA. Under light loading, the 
random urn scheme behaves as ALOHA. The key issue in 
implementing this scheme is determining the number of 
terminals having messages. One possibility is a reservation 
interval at the beginning of a cycle. In this interval, terminals 
having messages indicate as such. From this, terminals can 

REVIEW OF LITEFtATURE 

There is an analogy between polling systems and machine 
patrolling in which a repairman examines n machines in a 
fixed sequence. If a machine is broken he pauses to make 
repairs. This is the analog in polling systems to message 
transmission. The overhead that is incurred is the time 
required to walk between machines. This walktime corres-

ponds to the time required to poll a terminal. The earliest work 

on this problem was done for the British cotton industry by 
Mack et al. [13]. Based on this work, Kaye [14] derived the 
probability distribution of message delay for the case where 
terminals store a single fixed length message. This result is the 
one shining example of a simple expression for probability 
distributions in polling models. Some idea of the delicacy of 
the model may be gained from Mack's analysis of very much 
the same situation but with a variable repair time [15] 
(corresponding to variable length messages in polling 

systems). In order to find a solution it is necessary to solve a 
set of 2n -I linear equations. For a treatment of work on related 
problems, see Cox and Smith [16]. 

A great deal of work has been devoted to the case of the 
infinite buffer. The earliest work in this area involved just two 
queues with zero overhead [17],[18]. Later, this was 

Fig. 10. Average delay versus load tree search [50].  
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generalized to two queues with nonzero overhead [19],[20]. 
In terms of the models that we are concerned with, the first 
papers of interest are those of Cooper and Murray [21] 
and Cooper [22]. The number of buffers is arbitrary and both 
the gated and exhaustive services models are considered. The 
drawback is that the analysis assumes zero overhead. The 
characteristic functions of the waiting times are found. Also 
found is a set of n (n + 1) linear equations whose solution 
yields the mean waiting time at each buffer when the message 
arrival time is different for each. The assumption of zero 
overhead here may yield useful lower bounds on 
performance. 

For a long time, the only work on an arbitrary number of 
queues with nonzero overhead was by Liebowitz [23] who 
suggested the independence assumption. In 1972, both 
Hashida [24] and Eisenberg [25] separately published results 
on multiple queues with nonzero overhead. Both used 
imbedded Markov chain approaches. (Some of Hashida's 
results are plotted on Fig. 3.) Computer communications 
stimulated the next significant step in polling models. 
Konheim and Meister [26] studied a discrete time version of 
model. Transmission time over the channel is divided into 
fixed size discrete units called slots. Messages are described in 
terms of data units which fit into these slots. (An 8-bit byte is a 
good example of a data unit.) The analysis is carried out by 
imbedding a Markov chain at points separated by slots. In 
most of this work, the emphasis was upon symmetric traffic. 
Recently, Konheim and Meister's work was extended to the 
case of asymmetric traffic [27]. Interestingly, it was found 
that in the case of asymmetric traffic, the order in which 
terminals are polled affects performance. 

A significant remaining problem involves nonexhaustive 
service where, at most, a fixed number of messages are 
transmitted from a particular buffer. If there are more than the 
fixed number of messages at the buffer they are held over until 
the next cycle. If there are less than this fixed number the next 
terminal is polled immediately after the buffer is emptied. At 
the present writing no exact analysis is available. There have 
been several analyses of systems of this kind based upon 
approximations [28]-[30]. The latest of these is by Kuehn 
who obtains results when at most one message is removed at 
a time. Kuehn evaluates his results by comparing them to 
earlier results by Hashida and Ohara and to simulation. 

Pioneering work on loop systems was carried out by 
Farmer and Newhall [10] who proposed the hub-polling 
technique discussed above. The demand multiplexing ap-
proach in loop systems is due to Pierce [31],[32]. A version 
of demand multiplexing was used by Fraser in the 
implementation of the Spider network [33]. There have been 
several analyses of demand multiplexing [34]-[37]. The 
curves shown on Fig. 4 were taken from [34]. A nice 
summary of later work on the implementation and the 
analysis of performance of loop networks is contained in [38]. 

Recently, two thorough survey papers emphasizing 
random access techniques have appeared [39],[40]. These 
allow us to be more terse in our survey. The first publication in 
the area is due to Abramson [41],[42] who derived (3) under 
the simplifying assumption of Poisson retransmitted traffic. A 

great deal of subsequent work has shown (3) to be an 
accurate description of ALOHA. The slotted ALOHA 
technique was proposed by Roberts [43] who derived (4). An 
analysis of message delay as effected by retransmission 
strategy for the pure ALOHA technique is contained in [44]. 
Also given in [44] is a comparison of random access and 
polling. Instability in random access systems was brought to 
light by Carleial and Hellman [45] and by Kleinrock and Lam 
[46]. The results on carrier sense multiple access given in 
Figs. 5 and 6 are drawn from work by Tobagi and Kleinrock 
[47]. For several extensions of the basic ALOHA concept 
and for work on reservation systems, the reader is referred to 
the survey papers mentioned above. The reader is also 
referred to an insightful tutorial paper on this material [48]. 

The probing technique discussed in connection with 
adaptive systems is due to Hayes [49]. The distributed 
adaptive protocol described above was devised by 
Capetanakis [50] who also found the increase in the capacity 
given by adaptive techniques. More recent work in this area is 
contained in [51]-[55]. Kleinrock and Yemini devised the 
random urn scheme [56]. 

CONCLUSION 

We have reviewed the basic techniques of implementing 
local distribution for bursty data sources. A couple of 
generalizations emerge from this study. It seems that under 
conditions of light loading distributed control is best. 
However, as the loading increases distributed control leads to 
difficulties and centralized control gives the better perf or-
mance. This is entirely in conformity with everyday 
experience with automobile traffic. At 4 A.M., stop signs 
minimize delay. However, along heavily traveled routes at 
rush hour, stop signs would cause collisions (in the usual sense 
of the word) and the centralized control of traffic lights is 
required. 
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